
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor Thesis

Intelligent Algorithms for Optimal

Exploration and Exploitation in Dynamic

environments

Petr Marek

Supervisor: MSc. Štěpán Kopřiva, MSc.

Study Programme: Open Informatics

Specialisation: Computer and Information Science

May 21, 2015

Poděkováńı

Zde bych rád poděkoval všem, kteř́ı mě podporovali při psańı mé bakalářské
práce.
Předevš́ım děkuji MSc. Štěpánu Kopřivovi, MSc. za vedeńı, konzultace a
cenné rady, které mi poskytl při psańı tohoto textu v angličtině.

Prohlášeńı

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl
veškeré použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı
etických princip̊u při př́ıpravě vysokoškolských závěrečných praćı.

V Praze dne 21.5.2015 Petr Marek

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Petr M a r e k

Studijní program: Otevřená informatika (bakalářský)

Obor: Informatika a počítačové vědy

Název tématu: Algoritmy pro optimální exploraci a exploitaci v dynamických prostředí

Pokyny pro vypracování:
1. Nastudujte problém optimální explorace a exploitace v dynamických prostředích.
2. Nastudujte koncept multi-armed bandit, s ním spojené algoritmy a použití pro počítání
 optimální explorace a exploatace.
3. Formulujte problém optimální explorace a exploitace pro jednoduchou online hru s volitelnými
 herními parametry.
4. Naprogramujte jednoduchou online hru s volitelnými herními parametry.
5. Navrhněte vhodný algoritmus pro problém explorace a exploitace v prostoru herních
 parametrů výše jmenované hry.
6. Naimplementujte algoritmus z bodu 5.
7. Otestujte algoritmus na online hře z bodu 4.

Seznam odborné literatury:
[1] Joannès Vermorel , Mehryar Mohri - Multi-armed bandit algorithms and empirical evaluation
 - 2005
[2] Peter Auer , Nicolò Cesa-Bianchi , Paul Fischer – Finite-time Analysis of the Multi-armed
 Bandit Problem- 2000

Vedoucí bakalářské práce: MSc. Štěpán Kopřiva, MSc.

Platnost zadání: do konce letního semestru 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 14. 1. 2015

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Petr M a r e k

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Intelligent Algorithms for Optimal Exploration and Exploitation
 in Dynamic environments

Guidelines:

1. Study the problem of optimal exploration & exploitation in dynamic environments.
2. Study the multi - armed bandit problem and its relation to the optimal exploration &
 exploitation.
3. Formalize the problem of optimal exploration and exploitation for a simple online game.
4. Design and implement simple online game with variable game parameters.
5. Design an algorithm for exploration and exploitation in the space of game parameters
 of the game in 4.
6. Implement the algorithm designed in 5.
7. Evaluate the algorithm on the game in 4.

Bibliography/Sources:
[1] Joannès Vermorel , Mehryar Mohri - Multi-armed bandit algorithms and empirical evaluation
 - 2005
[2] Peter Auer , Nicolò Cesa-Bianchi , Paul Fischer – Finite-time Analysis of the Multi-armed
 Bandit Problem- 2000

Bachelor Project Supervisor: MSc. Štěpán Kopřiva, MSc.

Valid until: the end of the summer semester of academic year 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 14, 2015

Abstrakt

V předložené práci studujeme algoritmy, které se zabývaj́ı udržováńım rov-
nováhy mezi exploration (pr̊uzkum prostřed́ı ve snaze naj́ıt optimálńı strate-
gii) a exploitation (využ́ıváńı strategie, která přináš́ı největš́ı užitek). Dilema
mezi exploration a exploitation je součást́ı teorie posilovaného učeńı (rein-
forcement learning) a jeden z jeho nejjednodušš́ıch př́ıklad̊u je u tzv. multi-
armed bandit problému, který je v práci využit pro modelováńı konkrétńıho
prostřed́ı jednoduché online hry. Hlavńım ćılem práce je navrhnout algo-
ritmus, který bude optimálně vyvažovat exploration a exploitation a tak
přinese největš́ı užitek. V př́ıpadě jednoduché online hry je algoritmus scho-
pen naj́ıt nejobĺıbeněǰśı variantu této hry. K tomu účelu je navržena hra
Speeder s volitelnými herńımi parametry a algoritmus UCBCustom, který
je uzp̊usobený použit́ı v daném prostřed́ı a jeho efektivita analyzována na hře
Speeder. Algoritmus umı́ za běhu dynamicky přepoč́ıtávat užitky parametr̊u.
V práci také popisujeme, jak se mı́sto herńıch parametr̊u daj́ı použ́ıt ceny v
př́ıpadě freemium her. Skrze testováńı práce ukazuje, že navržený algoritmus
UCBCustom je schopný identifikovat parametry jedné z nejobĺıbeněǰśıch va-
riant hry a to již po malém počtu odehraných her.
Kĺıčová slova: Multi-armed bandit, exploration versus exploitation, free-
mium

Abstract

In the thesis we study algorithms that balance exploration (searching the
environment for optimal strategy) and exploitation (using the most benefi-
cial strategy). The exploration vs. exploitation dilemma is the main aspect
of various problems in theory of reinforcement learning and one of its sim-
plest instances is the multi-armed bandit problem, which we use to model
a specific environment of a simple online game. The main objective of the
thesis is to develop an algorithm that will optimally balance exploration and
exploitation and thus will result in the best possible profit. In the case of a
simple online game, the algorithm is able to find the most enjoyable variant
of the game. To that end, we have designed a game with variable game pa-
rameters called Speeder and a custom algorithm called UCBCustom, which
is tailored for use in the given environment and its effectiveness is evaluated
on the game Speeder. The algorithm is able to dynamically re-evaluate ben-
efits of the parameters during runtime. The thesis also describes how we
can use prices of features in a freemium game instead of game parameters.
Further in the thesis, we show through testing that our designed algorithm
UCBCustom is able to identify one of the more enjoyable variants of the
game even after a limited number of plays.
Keywords: Multi-armed bandit, exploration versus exploitation, freemium

Contents

1 Introduction 1
1.1 Goals of the thesis . 1
1.2 Structure of the thesis . 2

2 State of the art 4
2.1 History of Multi-armed Bandits 4
2.2 Practical use cases of MAB 5

3 Technical background 6
3.1 Multi-armed bandit framework 6
3.2 Bandit algorithms . 7

3.2.1 ε-greedy and other semi-uniform strategies 7
3.2.2 Upper Confidence Bound (UCB) algorithms 8
3.2.3 Algorithms for MAB with an infinite number of arms 9

3.3 Testing using Multi-Armed Bandit 11
3.4 Developing the game . 12

3.4.1 Game of Speeder . 13

4 Problem formalisation 15
4.1 Chosen game parameters . 15
4.2 Discretization of parameters 16
4.3 Normalisation of rewards . 17

5 Algorithm 18

6 Implementation 21
6.1 Implementation of Speeder 21

6.1.1 Level and car . 22
6.1.2 Obstacles and other objects 23
6.1.3 Integration of the game into a web page 24

6.2 Implementation of the MAB framework 24
6.2.1 Implementation of arms/machines 25
6.2.2 Implementation of the algorithm 26
6.2.3 Dynamic web page . 27
6.2.4 Collecting the reward 28

7 Evaluation 29
7.1 Testing environment . 29
7.2 Examples of UCB indices . 30
7.3 Results and discussion . 31

8 Conclusion 33

References 34

A UCBCustom1 graphs 35

B UCBCustom2 graphs 36

C UCBCustom3 graphs 37

1 Introduction

The exploration versus exploitation dilemma is a vital part of reinforcement
learning and describes situations where one searches for balance betweeen
exploring the environment for profitable actions and trying to take the best
action found so far as often as possible. The multi-armed bandit problem
is the simplest instance of this particular situation and has been thoroughly
studied, since it is associated with many practical use cases. Multi-armed
bandit (MAB) problem describes a situation of a gambler in front of a row
of slot-machines, that are called arms, where each machine returns a reward
from a probability distribution unknown to the gambler whenever the ma-
chine is played. The practical use cases include clinical trials or resource
allocation for research projects. The MAB problem can also be used in eco-
nomics, where the aim is to maximize profit by correctly pricing products
when the product’s market demand is not known beforehand.

We are using the multi-armed bandit framework for its effectiveness in
software testing and its potential use in freemium games. Freemium is a type
of bussiness model, where the product is provided free of charge to everyone
and revenue is generated by selling additional premium features to a small
percentage of users - premium users. The intention of the company that
developed the product is to convert as many of the users to premium users.
Freemium games have lately become very popular, however their generated
profit relies heavily on proper pricing of the premium features.

In our thesis, we have decided to design and implement a multi-armed
bandit algorithm which determines the best combination of variable game
parameters of a developed game by sequentially testing the game. In case of
freemium games, each game parameter would correspond to either the price
or a different attribute of a premium feature. However, we cannot evaluate
our algorithm on the proposed case of freemium games as we would be
risking a company’s profit in the process. Instead, we have chosen to create
a simple online game with variable game parameters and aim to find the
most enjoyable variant of the game and its corresponding combination of
parameters using our designed algorithm.

1.1 Goals of the thesis

1. Study the problem of optimal exploration & exploitation in
dynamic environments
The problem of optimal exploration & exploration in dynamic environ-
ments is explained and its importance in practical use cases discussed
in the first part of chapter 3.

2. Study the multi-armed bandit problem and its relation to the
optimal exploration & exploitation
We study the multi-armed bandit problem and its relation to the op-

1

timal exploration and exploitation dilemma in chapters 2 and 3. First
we create a summary of related work and briefly describe the history of
the multi-armed bandit problem in chapter 2. In chapter 3 we formally
define the multi-armed bandit problem and introduce some common
algorithms that solve the multi-armed bandit problem.

3. Formalize the problem of optimal exploration and exploita-
tion for a simple online game
In chapter 3 we define the specifications of a simple online game for
which the multi-armed bandit problem and its associated exploration
and exploitation dilemma is then formalized in chapter 4.

4. Design and implement simple online game with variable game
parameters Our simple online game Speeder including variable game
parameters is designed in the last part of chapter 3
and its implementation is presented in chapter 6.

5. Design an algorithm for exploration and exploitation in the
space of game parameters of the game in 4
We create an algorithm for the multi-armed bandit problem, which is
inspired by some of the algorithms we described in chapter 3. The
algorithm uses a type of upper confidence bound policy called UCB1
and is also able to work in cases where the amount of arms exceeds the
total number of tests. The design of our algorithm is fully described
in chapter 5.

6. Implement the algorithm designed in 5
The implementation of our designed algorithm along with the corre-
sponding framework, under which the game is run, can be found in
chapter 6. Playing the game under this framework then allows our
algorithm to eventually determine the best combination of game pa-
rameters.

7. Evaluate the algorithm on the game in 4
We evaluate our algorithm by analyzing data collected from testing
of the framework and the algorithm. In the testing phase we try out
three different variants of our algorithm. The variants differ only in
how much they are prone to exploring new arms. The testing phase
and the evaluation is presented in chapter 7.

1.2 Structure of the thesis

In chapter 2, we present an overview of published work related to exploration
and exploitation dilemma and the multi-armed bandit problem. The chapter
consists of two sections. The first section of the chapter summarizes the
history of multi-armed bandits and the evolution of the strategies which solve

2

MAB. The second part of the chapter focuses on practical use cases of the
multi-armed bandit problem by summarizing several works, that describe
the use of MAB in real world examples, such as clinical trials and so on.

In chapter 3, we first explain the exploration vs. exploitation trade-off
and formally describe the multi-armed bandit problem. The next section of
the chapter then outlines some of the most known and often used strate-
gies that solve the MAB problem. Simple semi-uniform strategies and the
popular upper confidence bound policies are the main focus of the second
section and the problem of the infinitely-many armed bandit and its rela-
tion to our case is also introduced here. The third section of the chapter
describes the use of multi-armed bandit as a testing method. It explains
how the MAB framework can be mapped to the testing environment and
compares the MAB approach to the popular A/B testing method. The last
section of the chapter presents our simple game Speeder and the process of
how we designed it.

Chapter 4 focuses on the formalization of the multi-armed bandit prob-
lem for the specific testing environment of our game. It is divided into three
sections, where the first section describes the chosen game parameters that
are to be tested by our MAB framework. The second section contains the
domains of the game parameters and the reason why they have to be prop-
erly discretized. The last section deals with the problem of normalizing the
rewards for our algorithm as it works only with bounded rewards and our
time-based rewards are not limited.

In chapter 5, we design our own algorithm UCBCustom that is based
on the popular UCB1 algorithm. Our algorithm also has an addition that
comes as an inspiration from the UCB-AIR algorithm, which solves the
infinitely-many armed bandit problem. That allows us to use our algorithm
in our limited testing case, where the total number of tests is extremely
small compared to the amount of arms.

Chapter 6 focuses on the practical application of both our game Speeder
and the multi-armed bandit framework that contains our designed algorithm
from chapter 5. The chapter is divided into two main sections, with the first
containing details of implementation of the game Speeder and the second
describing the aspects of the MAB framework implementation.

Chapter 7 contains essential information about the evaluation process of
our designed algorithm. The first section of the chapter describes the envi-
ronment in which we have tested our algorithm and points out its numerous
differences from the theoretical environment of the multi-armed bandit and
how it might affect our resulting data. The second section provides a sum-
mary of collected data and graphs illustrating the effectiveness of our algo-
rithm. The last section of the chapter contains a discussion of the results of
our evaluation process and compares them to our initial predictions.

3

2 State of the art

2.1 History of Multi-armed Bandits

The multi-armed bandit framework and its exploration vs. exploitation
dilemma was originally described by Robbins in [1]. His work included
several problems in sequential design, which is a type of statistical analysis
developed for more efficient industrial quality control during World War
II. Sequential design differs from classical analysis by not having a fixed
sample size and evaluating data as it is collected. Optimal solutions for
these problems were not known at the time and later were found to be hard
to achieve. Robbins proposed some reasonably good ways to solve these
problems, but mainly raised the general question of this problem - that is
how to properly learn from past experiences in instances of these problems.
Since then, many asymptotically optimal solutions were found and described
in literature.

Gittins [2] provided an algorithm for computing the optimal strategy
in certain bandit problems. The method however assumes the rewards are
geometrically time-discounted, which is usually not the case in practical
instances of the multi-armed bandit framework. The algorithm lies in pro-
viding a way to compute a Gittins index for each arm seperately without
relying on information about the other arms and choosing an arm with the
highest Gittins index. Even in the special case of geometrically discounted
rewards, the Gittins index method is unfortunately accompanied by compu-
tational and other difficulties, since the standard Gittins indices are hard to
compute exactly. There is a way to approximate the indices using a normal
approximation, but this method can exhibit so-called incomplete learning,
which means there is a probability that a suboptimal arm will be played
forever. The notion of assigning indices to the arms and choosing the arm
with the highest/lowest index was later on used in many other algorithms -
all of them denoted as index policies.

The main measure of a strategy’s success is called regret and is based on
the fact that the optimal arm is not selected every time. Lai and Robbins [3]
were one of the first to prove that regret has to grow at least logaritmically
for the multi-armed bandit problem. They also developed a whole category
of policies that asymptotically achieve this regret. The strategies are all
based on computing an upper confidence bound (UCB) for each machine.
The computation of the index as proposed originally by Lai and Robbins can
be quite difficult, but many later studies, i.e. [4] by Auer et. al, enhanced
the algorithms to be more effective in this sense. These modern variations
of UCB algorithms are quite popular, since they are asymptotically optimal
and simple to implement.

A different, Bayesian perspective on the MAB framework is shown in
the work of Steven L. Scott [5]. It describes a method which plays arms

4

randomly based on the Bayesian posterior probability of each arm that it is
optimal. This heuristic algorithm is called randomized probability match-
ing and in simpler conditions can outperform certain optimal methods. The
basics of this strategy lie in playing the arms in proportion to their corre-
sponding probabilites of being optimal, there is however no guarantee of this
method being asymptotically optimal.

2.2 Practical use cases of MAB

Multi-armed bandit framework has been rising in popularity in the past
decades and many studies concentrating on applying the theory to real-
world instances have been published.

In [6], Hardwick and Stout analyzed the use of multi-armed bandit frame-
work in its most associated instance - clinical trials. The analyzed problem
consists of a clinical trial, in which we need to optimally allocate the patients
to two treatments in order to decide which treatment is better. However,
there is an underlying ethical dilemma that results in the need of mini-
mal patient losses. The article compares several allocation strategies and
discovers that the bandit policies perform really well even with the ethical
condition of keeping the failures to minimum.

The effectiveness of MAB framework in economics and finance is assessed
and summarized in [7]. In economics, bandit strategies are for example used
to optimally sequentially allocate prices to products based on an unknown
market demand, which is learnt and unveiled through this process. It is
shown that with higher intensity experimentation market demand is tracked
almost perfectly as opposed to lower intensity experimentation.

Galichet et al. investigated in [8] the use of multi-armed bandit on
application domains, where the exploration phase contains hazards and risks
- i.e. energy management or robotics. The paper presents the Multi-Armed
Risk-Aware Bandit (MARAB) algorithm, which takes the arm’s probability
of risk into account. It then analyzes the MIN algorithm, to which MARAB
tends under certain conditions, and compares both the algorithms with the
popular UCB on several experiments.

5

3 Technical background

3.1 Multi-armed bandit framework

In this chapter, we will write about the multi-armed bandit framework
(MAB), particularly what it is and how it works. But to fully understand
the nature of the multi-armed bandit problem, one must first be aware of
the exploration vs exploitation tradeoff.

There are many theoretical and practical problems, in which decisions are
made to maximize a certain numerical reward. In some of these problems,
the possible actions that can be taken include not only actions which directly
lead to maximizing the expected reward, but also actions that gather more
information about the situation and may ultimately lead to an ever higher
reward. The main difficulty when solving these problems lies in the balance
of those two sets of actions. If one chooses to only gain more knowledge
exploring in an environment where the best strategy is already known, they
lose a potential amount of reward they might have gained instead. If how-
ever, one chooses to only exploit the best strategy based on their knowledge
without exploring new options, they might be missing out on an opportunity
to gain an even higher reward. This dilemma is called the exploration vs.
exploitation trade-off and is a big part of reinforcement learning.

One of the typical exploration vs. exploitation problem instances are
clinical trials [9]. It is a situation, where one wants to determine the best
treatment by experimenting and trying new treatments, but at the same
time needs to minimize patient losses. Similar example can be found in the
case of allocating resources to competing projects, where an organization has
a fixed budget and aims to fund only the most successful project. However
at the beginning, little is known about all of the projects’ eventual rewards.
The organization learns the payoffs of each project over time and repeatedly
makes decisions which project to move their attention and resources to at
any given time.

The multi-armed bandit problem, also called the K-armed bandit prob-
lem [4], is a brilliant example of this kind of a problem. It describes a
situation of a gambler in front of a row of K slot-machines, which are called
one-armed bandits, that all provide some reward based on a probability dis-
tribution that is tied to that certain slot-machine. The gambler has no prior
knowledge of the rewards given by the machines, and it is up to the gambler
to try and maximize their sum of rewards in a carefully selected sequence
of lever pulls.

Formally, as per defintion by Auer et al. [4], a K-armed bandit problem
is defined by a set of random variables Xi,n for 1 ≤ i ≤ K and n ≥ 1. Each i
denotes an index of an arm (machine) of a bandit and n denotes the n-th play
of the machine. Therefore, Xi,1, Xi,2, Xi,3, . . . represent rewards won from
subsequent plays of an arm with index i. These are identically distributed

6

based on an unknown distribution with an unknown expected value µi. Let
Ti(n) be the number of times an algorithm chose to play machine i during
a total of n plays. Cumulative regret is then defined as

µ∗n−
K∑
j=1

µj [Tj(n)] (1)

where µ∗ = max
1≤i≤K

µi.

Since Tj(n) might be stochastic, it is often more useful to work with a
different version of regret - expected regret [10]. In a stochastic environment
it is more logical to assess an algorithm against the optimal play from the
perspective of expectation rather than against the optimal strategy on the
already received rewards. Expected regret (also called pseudo-regret) is
defined as

µ∗n−
K∑
j=1

µjE[Tj(n)] (2)

where µ∗ = max
1≤i≤K

µi and E[Tj(n)] denotes the expected value of Tj(n).

Algorithms which solve the K-armed bandit problem aim to minimize regret.
Regret can be illustrated as the expected loss, since no algorithm will always
play the best machine. A zero-regret strategy is an algorithm, for which the
average regret per play tends to zero whilst the number of plays tends to
infinity.

There is a version of the multi-armed bandit problem, where the gambler
knows all the possible rewards of the machines, which has a simple solution
that lacks the problem of balancing exploration and exploitation. This ver-
sion will not get much attention in this thesis, as the first one is significantly
more useful in real-life situations. We will try using the theoretical algo-
rithms that solve the multi-armed bandit on our chosen practical problem,
which is to derive the most profitable and enjoyable settings of a computer
game during its testing phase by providing each tester a game with different
settings.

3.2 Bandit algorithms

In this part we will describe the algorithms that are widely used to solve the
multi-armed bandit problem.

3.2.1 ε-greedy and other semi-uniform strategies

ε-greedy strategy [11] is one of the most commonly used methods to solve
bandit problems. Although being a very simple and straightforward strat-
egy, it is interesting to point out that it’s often very hard to beat. The main

7

principle of the strategy consists of choosing a random machine to play with
ε-frequency and otherwise playing a machine with the highest mean. The
mean is computed and estimated using the rewards from previous rounds.
ε is a parameter of the algorithm and is left up to the developer. A higher
value of ε leads to a more explorative strategy, while lower values will result
in less exploration-based policies.

There are many variants of the algorithm that vary on the use of the ε
parameter. The ε-first strategy is based on doing all the exploration at the
beginning of the algorithm. If we decide to play a total number of N plays,
the first εN rounds will consist of pure exploration, where the strategy will
pick a machine to play at random. The algorithm will then only exploit the
gained information and pick the machine with the highest estimated mean
in the later (1− ε)N rounds.

The main setback of the basic ε-greedy strategy is the use of a constant
ε. Even after the algorithm might have already found the optimal machine
to play and converged, a constant (1− ε) portion of rounds to be played will
still be about exploration. The ε-decreasing strategy tries to solve this issue
by introducing a decreasing ε over the course of played rounds in order to
asymptotically get closer to the optimal strategy. If the ε function is well
chosen, this strategy can be considered a zero-regret strategy.

3.2.2 Upper Confidence Bound (UCB) algorithms

The use of upper confidence values for solving the multi armed bandit prob-
lem was first introduced in the work of Lai and Robbins [3]. However, their
algorithm had the downside of needing the entire history of the previous
choices and rewards, which consumes a lot of memory. An often used UCB1
algorithm was introduced by Auer et al. in [4]. It uses the ideas of Lai and
Robbins and conserves a lot of memory.

The UCB1 algorithm starts by playing each machine once. Afterwards,
during each round, the policy plays a machine i which maximizes

X̄i +

√
2b lnT

Ti
(3)

where X̄i is the average reward of machine i, Ti is the number of times
machine i was played and T denotes the total number of rounds played.
This form of the confidence bound assumes the rewards come from a bounded
support in [0, b].

The regret for the multi-armed bandit problem is proven to grow at
least logaritmically in [3] and this algorithm achieves this logaritmic regret
asymptotically. Practically speaking, it means the optimal machine is played
exponentially more often than a different, sub-optimal machine. As can be
seen in [4], the expected regret of the algorithm UCB1 used on a K-armed

8

bandit problem is after n plays at most

[8
∑

i:µi<µ∗

lnn

µ∗ − µi
] + (1 +

π2

3
)(

K∑
j=1

(µ∗ − µi)) (4)

The UCB family of algorithms also contains an important variant of the
algorithm called UCB-V. This algorithm was introduced in [12] by Audibert
et al. and uses a confidence bound, which differs from UCB1’s bound by
also weighing in an empirical estimate of the variance of the arm’s rewards
into the computations. The method is superior to UCB1 especially in cases,
where the rewards of the suboptimal arms have low variance. The upper
confidence bound index for the UCB-V algorithm is defined for each arm i
in the n-th total play as follows:

X̄i +

√
2ViεTi,n
Ti

+ c
3εTi,n
Ti

(5)

where X̄i is the average reward of machine i and Ti is the number of times
machine i. Vi is the empirical estimate of variance for arm i and ε is called an
exploration function or exploration sequence, and its typically chosen value
is εs,t = ςln(t), so despite being a function of (s, t), it usually only depends
on t. ς, c > 0 then become additional parameters that can be used to specifi-
cally tune the algorithm’s behavior and the balance between exploration and
exploitation. As in UCB1, this form of the upper confidence bound works
with rewards that come from the interval of [0, b]. The empirical estimate
of variance for arm i after it has been chosen t times is computed using

Vi =
1

t

t∑
j=1

(Xi,j − X̄i)
2 (6)

where X̄i, as in previous equations, is the average reward of the machine.
UCB-V initializes the same way as other UCB algorithms - by choosing

each arm once. Then each round consists of first computing the upper con-
fidence bound indices for all the arms of the problem and choosing the arm
with the highest index afterwards.

3.2.3 Algorithms for MAB with an infinite number of arms

There exists a variant of the multi-armed bandit problem, where the amount
of the arms is not finite and given by an integer, but is instead unlimited.
Formally, the infinitely-many armed bandit problem is defined by a set of
random variables Xi,n for i ≥ 1 and n ≥ 1. Each i denotes the index
of an arm and n denotes the n-th play of that particular arm. The main
difference from the definition of the K-armed bandit problem is the absence

9

of the upper bound on i, which allows us to consider an infinite amount of
arms.

The problem is similar to a case where the number of arms is too high
for the planned amount of plays. In both described situations it is impos-
sible to explore all the arms and policies starting by trying every arm once
are therefore unusable. There are several algorithms that solve the MAB
problem in these circumstances, however their optimality usually relies on
assumptions made on the mean-reward distributions.

Wang et al. [13] introduced two main algorithms that solve the infinitely
many armed bandit problem and both of these policies are based on the Up-
per Confidence Bound algorithms. The policies demand certain knowledge
about the mean-reward distribution to be known beforehand and use this
knowledge in from of a parameter β > 0. Formally, as stated in [13], the
probability that a new arm i is ε -optimal is of order εb for infinitely small
ε, that means P (µi ≥ µ∗ − ε) = Θ(εb) for epsilon → 0. µ∗ denotes the
mean-reward of the optimal arm, and a value of β = 1 corresponds to the
usual uniform distribution.

The first of the two policies is called the UCB-F (fixed horizon) and
is the go-to strategy for cases, where the number of total plays is known
beforehand. Given a total number of plays n and the parameter β, the
algorithm first chooses K arms at random. The value of K depends on
the parameter β > 0 and the mean-reward of the optimal arm µ∗ ∈ [0, 1]

- if µ∗ = 1 or β ≥ 1, K = n
β
β+1 , otherwise the value of n

β
2 is assigned

to the variable K. Then, as specified in [13], a UCB-V strategy is run
on the K randomly chosen arms with the exploration sequence satisfying
2 ln (10 ln t) ≤ εt ≤ ln t.

Algorithm 1 UCB-F Algorithm

1: Given: set of all arms ARMS, empty set of arms A, β > 0, number of
total plays n

2: if β ≥ 1 then

3: K ← n
β
β+1

4: else
5: K ← n

β
2

6: end if
7: A← random K arms from the set ARMS
8: run the policy UCB-V on the set of arms A

The second of the policies is called the UCB-AIR (arm-increasing rule)
and is used in the case, where UCB-F is unusable - when the total number
of plays is unknown before the strategy is applied. It starts with an empty
set of arms A. In the n-th total round, the following rules apply. If β ≥ 1 or
µ∗ = 1, a new arm is added to the set A only if the number of arms already

10

included is lower than n
β
β+1 . Otherwise, if β < 1 and µ∗ < 1, a new arm is

added to A if the amount of arms already included is lower than n
β
2 . If the

number of arms in set A is greater than the appropriate bound, no new arm is
included in A that turn. On the set of arms A, a common UCB-V algorithm
is applied, with the exploration function satisfying 2 ln (10 ln t) ≤ εt ≤ ln t,
as specified in [13]. Obviously, whenever a new arm is added to the set, it
is immediately chosen afterwards.

Algorithm 2 UCB-AIR Algorithm

1: Given: set of all arms ARMS, empty set of arms A, β > 0, N = 0
2: loop
3: if β ≥ 1 then

4: K ← (N + 1)
β
β+1

5: else
6: K ← (N + 1)

β
2

7: end if
8: if size(A) < K and A 6= ARMS then
9: add a random arm i /∈ A from ARMS into the set A

10: end if
11: apply the policy UCB-V on the next round with the set of arms A
12: N++
13: end loop

3.3 Testing using Multi-Armed Bandit

Whenever a product is being developed, it often has more variants. Then it
is in the developer’s best interests to thoroughly test which variant would be
more successful, popular and profitable. There are many frameworks that
facilitate this for the developer and most commonly they use a technique
called A/B Testing. The main principle lies in showing the different variants
to different people and measuring the usability and usefulness of the variant.
In practice it can be used when creating web sites, i.e. showing two variants
of the same page, the only difference being in the size of a button. One
variant has a bigger button and the other has a smaller one. The framework
keeps tracking the number of people that clicked on the button when they
were shown variant A and the same thing for the second variant. Then
it computes whether the results are relevanth using statistical significance.
After the test has ended, the framework chooses the better variant for the
developer. A/B Testing is usually limited by having only two variants, one
being the main control variant, and the second - treatment - being the
amended one. There are several modifications of A/B Testing that involve
more variants, but those are not used very often.

Multi-armed bandit approach can be similarly used as a testing method

11

instead of A/B Testing. It is often debated to be the better method and
for example Google uses MAB algorithms in their testing service Google
Website Optimizer. Essentially showing a variant i of the software or website
to the user corresponds to playing a machine i in the multi-armed bandit
problem. The reward then depends on the actions of the user, i.e. whether
he completed the provided task, how long it took him to complete the task
and so on. Unlike A/B Testing, MAB testing is not limited by the number
of the variants and one can get the exact size of the button in pixels simply
because MAB solves the exploration vs exploitaton problem.

The main goal of this thesis was to find a proper algorithm for MAB
testing on freemium games not unlike Candy Crush, Farmville and so on.
Freemium is a business model combining the Free and Premium business
models. The game itself is free to play, but it has microtransactions in
the game and the player may opt to buy additional content or pass and
enjoy the game for free. MAB testing would be perfect for determining the
right prices for the microtransactions, since every bandit algorithm aims to
minimize regret. And in this instance regret corresponds to loss of profit
against the best possible profit of the game as if the prices were optimal
from the beginning.

This is however very difficult to test, since the programmer is basically
risking the game’s profit. So in this thesis we will test the bandit algorithms
on a different aspect of developing the game. Our situation is very similar to
determining the right prices and attributes of the microtransactions in the
fremium model. The prices and attributes of the microtransactions can be
viewed as parameters of the game, which are to be determined by our MAB
testing. We will however choose several different parameters of our game
to test using our bandit algorithms. For example we will try to determine
how many lanes our game should have, how fast the car should go at the
beginning and so on. The rewards from the testing won’t have the form
of profit, but will result in higher satisfaction of the players, which we will
measure by tracking how long has the user played the game. The principle
of the testing is the same, but it avoids the danger of potentially losing a
potential company’s money and profit from their game.

3.4 Developing the game

To test the theory in practice, we had to develop the game - the platform
on which to test the algorithms. The game had to be simple, catchy, easily
accessible and developed for use under our own framework, which would
implement the best algorithm for multi-armed bandit testing and deliver
the parameters to the game. Firstly, I will describe the idea of the game
and then the technologies and libraries used to develop the game itself.

12

3.4.1 Game of Speeder

Figure 1: Game of Speeder

In recent years, the catchiest games are based usually on a very simple idea.
One brilliant example can be Flappy Bird - even though it is very easy to
implement, the game and idea itself caught on and millions of people played
it in their free time. So one of the requirements of the game was for it to not
be too difficult to implement, since many successful games took many years
and teams full of developers to create, but these are resources we didn’t have
at our disposal. We tried to find inspiration in past games, especially from
the early history of the gaming era with games like Pong and so on.

The game revolves around a speeding car, which tries to avoid as many
obstacles as possible. The car has no option to slow down and the only way
to avoid obstacles is to switch lanes. The player switches lanes using the
keys A and D on the keyboard. The game screen is fixated on the car itself
and the car speeds up every time he misses an obstacle. The goal of the
game is to survive as long as possible and the difficulty lies in the need of

13

quicker and quicker reactions from the player. When the car runs into an
obstacle, the game restarts to the beginning speed and the score changes
back to zero.

14

4 Problem formalisation

Formally, the problem of choosing the best combination of game parame-
ters during its testing phase can be seen as a K-armed bandit problem [4],
where each arm corresponds to a certain variant of the game. A variant
of the game is defined by its combination of game parameters. Showing a
variant to a testing player can be seen as playing the corresponding arm in
MAB, and the reward is based on the satisfaction of the user - in our case
this is represented solely by the amount of time spent playing. The MAB
framework can then solve this problem while minimizing the regret, which
is essentially the dissatisfaction of users. In this chapter we will talk about
the chosen game parameters, their discretization and other formalisation
problems.

4.1 Chosen game parameters

For the MAB framework to have the biggest impact, the observed and tested
game parameters needed to have a large influence on the player’s satisfaction.
We have chosen the game parameters as follows:

Number of lanes
One of the most significant parameters of our game is the total number
of lanes. A change of this parameter is immediately perceived by the
player, since it has such a visual impact on the game.

Initial speed
The optimization of the initial speed of the car is very important for
the game playability. If it is too low, the game might become too dull
and slow-paced, since the player starts over every time they crash into
an obstacle and their speed reverts back to the initial speed. However,
if it’s higher than it should be, the game becomes too difficult or even
impossible to play.

Speed-up coefficient
The car speeds up every time it successfully avoids an obstacle. The
game is designed in a way so that the speed grows exponentially -
si = qsi−1, where s denotes the speed. We describe the value q as the
speed-up coefficient. For example, if the speed was to be increased by
5% every time the car avoids an obstacle, the value of q would be set
to 1.05.

Speed cap
Since the speed of the car is designed to grow exponentially, there has
to be a value of speed, at which the exponential growth stops. If the
growth didn’t stop, the game would most likely become unplayable.

15

However, we leave this to be determined by the MAB framework. We
allow a value 0 for this parameter, which means the growth won’t stop.

Frequency of obstacles
This parameter denotes the time between generating new obstacles in
seconds, that is if a suitable lane is found for the block.

Minimal space
We didn’t want the game to be impossible, so the generating algorithm
needed to guarantee a possible path for the car to take. That is en-
sured by the parameter of minimal space, which describes the minimal
distance between two obstacles that are located in adjacent lanes.

4.2 Discretization of parameters

We have described all the game parameters, now we need to specify their
domains. There are upper and lower limits associated with each of the
parameters, which are described in the table below. The limits alone however
aren’t enough to make the values viable for the bandit algorithms. The MAB
framework works with a set of arms, which in our case corresponds to the
cartesian product of the domains of each parameter. If we chose n possible
values for each game parameter, the amount of all arms would be equal
to n6, since we have 6 parameters. Therefore, the domains for each game
parameter have to be carefully discretized and picked, especially for our
limited testing.

Parameter Lower bound Upper bound

Number of lanes ≥ 2 ≤ 5

Initial speed > 0 ≤ speed cap

Speed-up coefficient > 1 ≤ 2

Speed cap ≥ inital speed ≤ 50

Frequency of obstacles ≥ 0 ≤ 2

Minimal space ≥ car length ≤ game screen height

Number of lanes needs to have an integer value of at least 2. Having
just one lane defeats the purpose of our game, since it is mainly about
avoiding obstacles by switching lanes quickly. It could be set to any integer
values higher than 2, but based on our observation, having more than 5
lanes doesn’t seem to have a significant effect on the gameplay.

Initial speed has to be higher than 0 for the car to even start moving
and it shouldn’t exceed the value of the speed cap, since that is the maximum
speed the car can travel at.

Speed-up coefficient should be a real number higher than 1 for the car
to keep speeding up and not slowing down. However, a value higher than
2 seemed redundant based on our experience during manual experiments -

16

the value corresponds to a 100% increase of speed every time the car avoids
an obstacle, which usually leads to reaching the speed cap after only 2 or 3
obstacles.

Speed cap has to be greater or equal to the initial speed and is techni-
cally limited only by the screen height of the game, but a higher value than
50 is way too fast to react to.

Frequency of obstacles needs to be higher or equal to 0, otherwise
the obstacles wouldn’t spawn at all. We have also limited frequency to be
lower or equal to 2, since more than 2 seconds between potential obstacles
seemed too long of a time.

Minimal space should have a value higher than the length of our car,
for the obstacle generating algorithm to guarantee a path for the player.

4.3 Normalisation of rewards

As we have earlier described, time spent playing our game is considered as
the reward in our multi-armed bandit framework. However, some of the
algorithms depend on the reward being between the values 0 and 1, so the
value that is returned to the framework has to be normalised before it is
stored in memory.

Every time a new reward is recorded, it is normalised as a portion of
the highest reward. If the new reward is higher than the maximum value,
it is normalised to a value of 1 and all the rewards stored in memory have
to be normalised as a portion of the new maximum. If this normalisation
procedure is called every time a new time is received, every reward recorded
will be greater or equal to 0 and less or equal to 1. Then the MAB framework
can decide which arm to play based on these normalised rewards.

Bandit strategies don’t necessarily store all the recorded rewards and
many of them use the rewards’ mean values instead. In case of recorded
mean values the procedure remains the same and it can be shown the result
is equal to normalising each reward by itself and then computing their mean
value anew.

Algorithm 3 Reward normalisation

1: Given: maxReward
2: procedure Normalise(a) . Normalisation of reward a
3: if a > maxReward then
4: for all recorded rewards r do
5: r ← r ∗ maxRewarda
6: end for
7: maxReward← a
8: end if
9: return a

maxReward . Returns the new normalised reward
10: end procedure

17

5 Algorithm

In this chapter we describe the algorithm we have designed and implemented.
Our algorithm is based on the Upper Confidence Bound algorithm UCB1 in-
troduced by Lai and Robbins in [3] with some inspiration from the algorithm
UCB-AIR, that is used to solve infinitely many-armed bandit problems. The
main part of our algorithm is a further simplified and efficient variant of the
original UCB1 algorithm. The policy is based on the following idea. Instead
of choosing a machine that was the best in the previous rounds (highest
mean of rewards) and since we cannot know which machine is truly optimal
for sure, the algorithm plays the machine which is most likely to be the best
one. A machine is likely to be optimal in two cases:

• The machine’s mean reward is higher than the others and it has been
measured very well, so it can be said with a high degree of statistical
significance.

• The machine’s mean reward is not the highest, but the confidence
interval is large - it has not been played very often, so the mean reward
is likely to be inaccurate and possibly higher.

The algorithm is based on the Chernoff-Hoeffding bound and inequality,
which requires the random variables we work with - in our case the rewards
from playing the machine - to be bound by an interval [a,b], where a, b
are real numbers. Our index policy assumes the rewards are bound by the
interval [0,1], so we need to normalise our time-based rewards before working
with them, since they originally have no upper bound. The normalisation
process is described in section 4.3 and is referenced in the code in this section.

As described in the work of Auer et Al. [4] and Audibert et Al. [14], the
algorithm UCB1 initializes by playing each machine once and in following
rounds always plays the machine maximizing value

X̄i +

√
ρ lnT

Ti
(7)

where X̄i is the average reward of machine i, Ti is the number of times
machine i was played, T denotes the total number of rounds played and
ρ > 1 is the exploration coefficient - the algorithm is much more prone
to exploration the higher the coefficient is. As in [4], we have chosen the
parameter ρ to be equal to 2, which is the most commonly used value for
this parameter and doesn’t result in a too exploration-heavy policy, which
could result in a potentially higher regret.

We cannot however initialize our algorithm by playing each machine
once, since each arm corresponds to a combination of our game parameters.
Even when proper bounds are created for the parameters and the bounded
intervals are discretized, the total amount of arms rises exponentially in

18

comparison to the number of possible values for each arm. Similar situation
can be seen in the infinitely many-armed bandit problem described in [13]
by Wang et al., where one also cannot explore all the arms, since there is an
unlimited amount of them. However, there are some requirements for their
introduced algorithms UCB-F and UCB-AIR that we cannot fulfill. Those
requirements include setting a value for their parameter β, that characterizes
the mean-reward distribution. In our case we have no knowledge about the
distribution of our mean-rewards and therefore cannot know the proper value
for the parameter β with certainty.

Our addition to the simple UCB1 algorithm comes as inspiration from
the UCB-AIR (arm-increasing rule) policy. Our algorithm uses the UCB1
algorithm on a set of arms A, that is initialized as an empty set and expands
in the n-th round only if the condition |A| <BOUNDFUNCTION(n) is
fulfilled. Furthermore, the UCB-AIR algorithm uses the UCB-V policy,
while our custom UCB algorithm utilizes the simpler UCB1 policy.

The BOUNDFUNCTION(n) function allows for further experimentation
with the explorative properties of the algorithm. In our testing phase, we
want to test three different variants of the algorithm. All of the variants
are associated with a certain value of β and for all of our tested variants

the BOUNDFUNCTION(n) returns a value of
√

β
β+1 . The default variant

UCBCustom1’s β value is set to 1, which corresponds to a uniform reward-
mean distribution and is the commonly used value. The two other variants
UCBCustom2 and UCBCustom3 correspond to β = 2, β = 3 respectively.
Both of the additional variants are more explorative variations of our algo-
rithm, in the sense that the set of arms A expands more quickly than the
versions with lower β values.

19

Algorithm 4 UCB-CUSTOM Algorithm

1: Given: set of all arms K, set of included arms A = ∅, N=0
2: loop
3: if size(A) < BOUNDFUNCTION(N+1) textbfand A 6= K then
4: add a random arm i /∈ A from K into the set A
5: best ← i
6: skip to line 12
7: end if
8: for each machine i in A do
9: UCBIndex[i] ← mean[i] +

√
2∗ln(N)

numOfPlays[i]

10: end for
11: best ← argmax(UCBIndex)
12: reward ← NORMALISE(playMachine(best))

13: mean[best] ← mean[best]∗numOfPlays[best]+reward
numOfP lays[best]+1 . Update mean

14: numOfPlays[best]++ . Update number of plays
15: N++ . Update total rounds played
16: end loop

20

6 Implementation

In this chapter we describe how we have implemented both the simple online
game of Speeder and our Multi-Armed Bandit framework, which is able to
determine the best possible combination of parameters for our game thanks
to our developed algorithm. We also consider how our framework could be
re-used for other games, websites or similar online projects, where the best
variant is needed to be determined through testing.

6.1 Implementation of Speeder

The game of Speeder, designed specially for testing and tweaking our algo-
rithm, is a simple game implemented to be playable in a web browser. After
the idea for the game was created, we started to look for a suitable game
engine to implement it with. One of the options was Unity, a well-known
cross-platform game engine used mainly by both beginning and seasoned
indie developers. It’s main drawback is the need of either downloading the
game itself in an executable file or installing a special web browser plugin
called Unity Web Player. Although being quite easy to use, Unity seemed
far too advanced for developing a very simple game like ours.

In the end, our final choice went to a sprite game engine called Pjs 2D
Game Engine which is written in an object-oriented programming language
called Processing.js. Processing.js is a JavaScript port of the original Pro-
cessing language and is used to display animations or interactive content on
web sites without the need of either a Java Applet or a web browser plugin
like aforementioned Unity Web Player or Flash Player. The Processing lan-
guage is based on Java, but simplifies its syntax and makes it very easy to
work with graphical content. It’s often used for introducing programming
mechanics to creative people with no programming experience. Processing.js
converts code written in this language into pure JavaScript, which then uses
the canvas element on the web site to render the interactive content. Since
the final product is rendered by pure JavaScript, it’s very easy to facilitate
communication between the site and Processing.js content. This is very
useful in our case, since it helps us deliver the game parameters from our
algorithm into the game. That is done by adding a script element to the
source code of the web site containing precisely these parameters. Then you
can just work with them in the Processing language as if they were defined
variables.

The Pjs 2D Game Engine was created by a Processing.js developer called
Pomax and aims to make it even easier for people to use Processing.js for
developing games. It uses sprites for the graphic visualization of the player,
characters and other interactive objects in the game. It implements many
features and game mechanics including not only ways to control the sprites,
but also methods facilitating keyboard and mouse input, trigger areas, cam-

21

era control and so on. However, several limitations of the rather simple
engine became apparent during our development and needed to be worked
around during our implementation.

The most significant limitation of the game engine, considering our game
design, lies in the fact that it works with game levels that have to be strictly
bounded. However, our game is built around a car that is speeding with no
intention of stopping, hence the level would have to be considered as infinite,
which is sadly impossible in the Pjs Game Engine. The workaround we have
realized lies in making the car stationary at the bottom of the screen (level)
and making the obstacles and lane marks move towards the car from the
top, making it seem like the car is speeding with the camera following its
movement forwards.

Both the Processing and Processing.js languages are built on the Java
language, but have a simplified syntax. They have several additional func-
tionalities in the area of graphics programming, since it is mainly used for
electronic arts and other visual designs. With Processing.js being an object-
oriented programming language, we have tried to fully utilize that fact and
build our objects upon the underlying code of the Pjs Game Engine by
extending their classes.

6.1.1 Level and car

Since the Pjs Game Engine is built around the use of levels, we needed
to implement at least one level with one level layer for our purposes. The
Level class is mainly a container for LevelLayer instances, but also defines
the level’s size and controls its view box (camera). In our case both the
level’s height and the view box’s height are set to 600 and their widths
are computed based on one of our game parameters - the number of lanes.
Our Level class contains only one LevelLayer instance - an instance of our
MyLeverLayer class, which extends LeverLayer. Lever layers are the main
source of the game’s content in Pjs Game Engine. They control adding
characters, interactable objects and for us are an ideal place to store the
obstacle generating logic in.

The method draw() is overriden in MyLevelLayer and calls the obstacle
generating method generateNewBlock() every now and then. Another one
of our game parameters, the Frequency of obstacles parameter, defines how
often generateNewBlock() is called. The draw() method is called every
time a new frame is requested, and since the game’s frames per second setting
is set to 30, we are able to uphold the frequency with a simple counter. The
generating algorithm first randomly picks a lane for the obstacle to spawn
in. An obstacle is created in this lane if it is guaranteed that there will
be a path for the car to avoid the obstacles. That is managed through the
Minimal space parameter, which is the minimal distance between the last
spawned obstacles in this lane and at least one of the adjacent ones. Then

22

the car is guaranteed to be able to avoid the obstacles by steering into one
of the adjacent lanes.

The MyLeverLayer class also creates and adds our main character of the
game - the car. It is implemented in the class Car by extending the Player

class and its main purpose is to handle the keyboard input and move the
car to adjacent alnes. Input handling is already mostly implemented in
the Pjs Game Engine and we mainly only use those functions to register
the key strokes and reposition the car accordingly, while checking for level
boundaries. Pressing the key A moves the car to the left adjacent lane and
pressing the key D results in the car being moved to the right adjacent lane.

6.1.2 Obstacles and other objects

The obstacles are to be considered the main enemies of our game. The class
implementing an obstacle is called a Block and it extends the Interactor

class. The Interactor objects are the interactable in-game objects or ene-
mies and the main difference from other Actor objects is the ability to detect
and handle interaction with other actors. The logic behind the interaction
with other in-game objects or characters is stored in the overlapOccuredWith()
method. Since our obstacles can only overlap with our car and not with each
other, the interaction logic is quite clear. Whenever the obstacle overlaps
with something, the game is over and started over.

Besides the obstacles, we have also implemented a trigger area based on
the class Trigger. Triggers are areas of the level that run a certain procedure
when an actor of the game passes through them. Our SpeedupTrigger

object’s area is spread over the entire width of the level and is just below
the visible viewbox and the car. The main purpose of the trigger area is
to speed up the game continually. Every time the car avoids an obstacle,
the obstacle moves into the area of the trigger and the trigger removes the
obstacle and speeds up the game by multiplying the current speed by the
Speed-up coefficient parameter, if it is still below the Speed cap parameter.
If the new speed is higher than the cap, it is limited to the value of the
Speed cap and no longer increased every time an obstacle hits the trigger
area.

The last objects we have implemented into our game are instances of the
LaneLine class. These objects have a purely visual impact on the game,
since they simulate the road beneath the car moving downwards. They are
the visual separators of adjacent lanes and move downwards at the same
speed as the obstacles. When they hit the speed-up trigger area, they are
moved back to the top of the level. This enables us to create a better illusion
of the car moving, even though it is implemented as a vertically stacionary
actor.

23

6.1.3 Integration of the game into a web page

Applications written in Processing.js are meant to be rendered in the web
element <canvas>, which has references to the application code. The Pro-
cessing.js JavaScript file has to be present aswell to do both the code in-
terpretation and rendering itself. We have designed the game of Speeder to
work with several game parameters that are needed for the game’s function-
ality, but are specified just before the game is instantiated. Those parame-
ters have to be present in the web page in a JavaScript <script> element.
That allows our MAB framework to generate the page dynamically based
on the MAB algorithm we have developed.

6.2 Implementation of the MAB framework

World

+ numberOfLanes: int

+ initSpeed: double

+ cap: double

+ frequency: double

+ speedupCoefficient:
double+ minimalSpace: int

+ getWorlds(): World[]

+ toString(): String

UCBCustom
<<Singleton>>

­ index: HashMap<World, Integer>

­ values: World[]

­ avg: double[]

­ bestPossibleMean: double[]

­ N: int

­ maxReward: double

­ K: ArrayList<Integer>

­ newWorlds: ArrayList<Integer>

­ normalise(double): double

+ getNextValue():
World+ setReward(World, double): void

WsServlet
@ServerEndpoint

­ world: World

­ time: double

+ onClose(): void

+ onTextMessage(String): void

JSP Page
Calls

Updates time repeatedly

Calls
1

1

1

n

Figure 2: Class diagram of our MAB framework implementation

The main product of this thesis is the framework, providing the bandit
algorithm and delivering the chosen parameters into the game itself. Our
Multi-Armed Bandit framework was conceived as a server-side application,
which would be running on a web server and would contain the logic of

24

our developed MAB algorithm. The website with our game would then be
able to request the new set of parameters from the web server and all the
computing would be done on the server.

We have chosen to implement the framework using the Java language,
specifically using the Java Enterprise Edition (Java EE) platform. Java EE
is a runtime environment for developing and running network and web ap-
plications and services. It contains many API specifications that ease the
developer’s work with technologies broadly used in network applications,
such as e-mail, XML, web services and so on. It also features several spec-
ifications unique to Java EE, for example Enterprise JavaBeans, servlets,
JavaServer Pages and other.

Since the platform only describes functionalities through those specifi-
cations, the exact implementation of those functionalities depends on the
application server. Due to this fact, Java EE applications with these fea-
tures are required to run on a server and will not work as a stand-alone
application. We are using a Java application server called Apache Tomcat.
It is not considered a full Java EE server, since it lacks several features
like Enterprise JavaBeans or Java Messaging Service. However, most of the
missing features are of no use to us and Tomcat contains the implementa-
ton of our most needed specifications - Java Servlets, JavaServer Pages and
WebSockets. Since Java is an object-oriented programming language, we
describe each component of our framework as an object.

6.2.1 Implementation of arms/machines

As we have already specified, each arm of the K-armed bandit problem [4]
corresponds to a certain variant of our game. Each variant is then fully
defined by its properties, the game parameters. We have implemented the
variants as objects of the class World. The variables of each world are as
follows:

Game parameter Property Data type

Number of lanes numberOfLanes int

Initial speed initSpeed double

Speed-up coefficient speedupCoefficient double

Speed cap cap double

Frequency of obstacles frequency double

Minimal space minimalSpace int

The instances of the World class have a purely data-holding purpose,
hence the methods implemented in the class include only the parameters’
getters and setters, and the methods equals() and hashCode. According
to the principle of encapsulation, each member variable of a class should not
be directly accessible from the outside of the object, but only through so-
called accessors - setters and getters. A setter is a public method that alters

25

the value of the member variable and sets it to a new, given value, while a
getter is a public method that returns the value of the private property of
the object. The methods equals() and hashCode() are functions that help
us find the stored variants by their game parameters’ values, for example
when we link the arms to their reward means using a HashMap.

6.2.2 Implementation of the algorithm

Our developed algorithm needs to store several values, such as reward means,
from the first playthrough of the game until the end of the testing phase.
The instance of the object also needs to be globally accessible, since we do
not intend to create a new instance every time the game is played. Due
to these facts, we have decided to store the algorithm logic in a class that
is implementing the Singleton design pattern. A singleton class is a type
of class that cannot be instantiated more than once. When an instance of
the class is requested for the first time, it is instantiated and stored into
a private static variable of the class. The instance then becomes globally
accessible through a static getter and remains that way until the application
is stopped, restarted or undeployed. This allows us to store relevant data
into the object’s member variables and we are guaranteed the data will not
be deleted by Java’s garbage collector.

The entire design was implemented in the class UCBCustom. The object
is provided with an array of all the possible variants during its first instanti-
ation and then proceeds to create all the required data structures necessary
for the algorithm to function properly. Those include an array to hold all the
corresponding reward means (avg), an array containing the number of plays
of each arm (numOfPlays) and an array used for computing the upper con-
fidence bound indices - bestPossibleMean. All of the arrays have a length
equal to the total number of all variants. A mapping World→ arrayindex
is created and stored in a HashMap to help us later on find out which array
index belongs to a certain set of game parameters. We also work with two
ArrayLists - K and newWorlds - in the UCB-AIR inspired part of the policy,
that lets us work with a high amount of arms even in the case of small or
limited testing. All of these data structures are vital for the algorithm and
are all stored as member variables of the object. The algorithm also stores
the maximum reward recorded sofar in the variable maxReward, which allows
us to normalise the rewards to the bounded interval [0,1]. The last data
structure included in the object is a simple integer counter, that counts the
total number of plays. There are no getters and setters implemented, since
all of these variables are only used within the class itself. The whole process
of the UCB1 algorithm is then divided into the two main public methods
- getNextValue() and setReward(). Other methods do not contain the
logic of the policy and are present to simplify logging.

The method getNextValue() is called when the next arm needs to be

26

chosen - in our case the method’s return value is requested when the website
of the game is loading for a user. The method returns the arm it has chosen
to play - a World object containing a certain combination of parameters that
are to be used by the game. The method works according to our designed
UCB algorithm and uses two array lists K and newWorlds to properly ex-
pand our set of explored worlds continually. K represents the worlds already
included in the previous plays, while newWorlds contains all the possible
unexplored worlds. If one of the arms in the set K wasn’t played yet - their
corresponding numOfPlays value equals to 0 - the arm is chosen. If none of
the numOfPlays values for the arms in K are equal to 0, the upper confidence
bound indices are computed as in 4 for each explored machine and stored in
the bestPossibleMean array. The world that corresponds to the maximum
value of this array is then returned by the method.

The method setReward() is the second part of our algorithm, used when
the reward is to be recorded into our framework. It has to be separated
from the first part, since we need to wait for the user to finish playing the
game before we collect the final reward. Before the received reward can
be recorded and our stored reward means accordingly amended, the reward
neeeds to be first normalised as specified in Section 4.3. The method contains
the implementation of the normalisation procedure and uses it before storing
the new data.

6.2.3 Dynamic web page

The web page containing the game of Speeder is implemented using a Java
EE specification called JavaServer Pages. This specification is used to create
dynamically generated web pages, which allows us to initialize the game with
different parameters each time the page is requested, based on the chosen
variant by our MAB algorithm. JavaServer Pages are written in HTML,
with the addition of JSP scriptlets that are written in the Java language.
The JSP is compiled by the application server the first time it is accessed.
The scriptlets inside the JSP are run when a user requests the page and using
those fragments of Java code we are able to create the page dynamically.

When our JavaServer Page is requested by a user, we first get ahold of
the instance of our UCB algorithm by calling the getInstance() method
on our singleton class containing the algorithm. We proceed by querying the
algorithm for the next chosen variant and its corresponding game parame-
ters. Then we put the values of those parameters inside a <script> HTML
element in the form of JavaScript. The parameters then become visible and
usable for the game.

27

6.2.4 Collecting the reward

Sadly we are unable to provide the reward to the UCB algorithm using a JSP
scriptlet, since they are run only when the page is requested. Quitting the
game is possible only through closing the browser or leaving the page, which
we are also unable to intercept, because each browser treats those events
differently. The workaround we have implemented works with one other Java
EE specification - WebSockets. This technology is used for communication
between the client (the browser) and the server.

Our JavaServer Page estabilishes the connection to our server-side imple-
mentation, which is stored in a class called WsServlet. The class is marked
by the @ServerEndpoint annotation and implements methods onClose()

and onTextMessage(). The page includes a JavaScript timing event, which
continuously waits and executes a function at given time-intervals. The
function sends the used variant and its current reward information - game
parameters and time so-far played - to the server endpoint of the connection
over and over. The servlet is instantiated once per connection, so every time
it receives a message containing the new information, it updates its corre-
sponding member variablee with the current reward. When the connection
is closed, the onClose() method is called and the reward with the corre-
sponding variant is passed on to our multi-armed bandit algorithm. This
way we have guaranteed the safe transfer of our reward after the user is done
playing the game.

Server­side Client­side

UCBCustom
Algorithm

getNextValue()

setReward()

WebSocket
Servlet

Timed event
repeat every 0.5s

Dynamically
generated JSP

page

 Page request

onClose()

Provide game parameters

Update reward

when page
 is closed

Request game parameters

Figure 3: Server-client communication in our framework

28

7 Evaluation

The final goal of the thesis was to evaluate our designed and implemented
algorithm on our created game Speeder. In this chapter, we describe the
testing environment we have tested the algorithm in, illustrate the resulting
data we have obtained and discuss the outcome of the testing phase.

7.1 Testing environment

Since our algorithm doesn’t require the total number of plays to be known
beforehand, the simplest solution to testing our framework was to take our
implemented Java EE application and upload it to a public web server, mak-
ing it accessible via a website on the Internet in the process. The deployment
of the application on the server marked the start of the testing phase of our
algorithm. We have distributed the website to our friends and colleagues
with the intention of collecting as much data as possible. We have also de-
signed a logging mechanism beforehand for the purpose of monitoring the
collected data by implementing a singleton object in our application con-
taining the desired logs. Corresponding JavaServer Pages were created to
allow us to view and collect the resulting data from the logs located in the
singleton object.

We have already specified the domains of our game parameters in chapter
4, but we still need to further limit the possible values of the parameters
to just a few values for our limited testing environment. We have decided
to choose 4 significant possible values for each parameter, which results in
a total of 4096 arms in our MAB problem. The possible values for each
parameter are usually not picked evenly from their domains, since values
near the bounds of the domains often already result in an unplayable game.
The following table contains the chosen possible values for each of our game
parameters.

Game parameter Values

Number of lanes 2 3 4 5

Initial speed 2 4 6 8

Speed-up coefficient 1.02 1.05 1.15 1.5

Speed cap 10 12 15 18

Frequency of obstacles 0.1 0.3 0.5 0.8

Minimal space 160 180 200 220

Even though we have limited and discretized our game parameters prop-
erly, our MAB algorithm still needs to take into account the high amount
of arms compared to the small expected number of plays during our test-
ing. As we have described in chapter 5, our designed MAB strategy starts
with an empty set of arms A and with the increasing number of plays keeps
expanding the set of arms that an UCB policy is applied on. The speed at

29

which our MAB algorithm expands the set of arms depends on a parameter
β - if β > 1, the set A expands in the n-th round only if the size of A

is lower than the value of n
β
β+1 . Therefore β can be viewed as the algo-

rithm’s exploration parameter, that defines the way the algorithm handles
and explores the considerably high amount of arms. To test the significance
of this parameter, our testing environment contains three instances of our
game and it’s associated MAB algorithm, that differ in the value of the ex-
ploration parameter β. UCBCustom1 is the main variant of the algorithm
with the default value of β = 1, while UCBCustom2 and UCBCustom3 have
the parameter set to β = 2 and β = 3 respectively.

Multi-armed bandit strategies are proved to work correctly and efficiently
in a set of certain conditions, that we unfortunately cannot guarantee in our
particular use case. Bandit strategies aim to create a sequence of plays,
where the next play is chosen always after the reward from the last round
is collected. However, we cannot guarantee the sequentiality of successive
plays in our testing environment. If a player begins the game before the last
user is finished playing, our multi-armed bandit framework will instantiate
the game for the new player with the same combination of parameters as
the previous user. In theory it corresponds to playing the arm twice instead
of once after it has been chosen. MAB strategies also require the arms
to return a reward from a bounded interval, but our original time-based
reward does not have an upper bound at all. We have used a normalisation
technique described in section 4.3, that is widely considered to work quite
well in practical cases. However, there are no theoretical guarantees for
this normalisation technique and both of the described issues can hinder the
effectiveness of our designed algorithm in our testing environment.

7.2 Examples of UCB indices

In this section we will illustrate the evolution of the upper confidence bound
indices as the number of plays grows. The upper confidence bound index
of an arm consists of two parts - the average reward of the arm and the
bias factor. The index is computed as a sum of those two parts and the
significance of the bias factor shifts over to the average reward as the number
of rounds increases. Furthermore, the bias factor is smaller for arms that
have been played more often and bigger for arms the algorithm has not
experimented with very much. The following tables show how the upper
confidence bound indices evolve over time and illustrate how they affect the
balance between exploration and exploitation.

30

Arm 1 2 3 4 5 6 7 8

Number of plays 8 9 10 7 5 5 5 1

Average reward 0.281 0.409 0.422 0.208 0.059 0.110 0.078 0.063

Bias factor 0.988 0.932 0.885 1.057 1.251 1.251 1.251 2.797

UCB1 index 1.269 1.341 1.307 1.265 1.310 1.361 1.329 2.860

Table 1: UCB indices for 8 selected arms after n = 50 rounds

Arm 1 2 3 4 5 6 7 8

Number of plays 13 38 16 12 11 10 10 12

Average reward 0.135 0.487 0.198 0.099 0.028 0.027 0.015 0.101

Bias factor 0.865 0.547 0.81 0.899 0.976 1.006 1.006 0.899

UCB1 index 1.000 1.034 1.008 0.998 1.004 1.033 1.021 1.000

Table 2: UCB indices for 8 selected arms after n = 190 rounds

7.3 Results and discussion

We have collected the resulting data after a period of time that encompassed
a total of 426 plays of our game Speeder. The game instance associated with
the main variant UCBCustom1 of our UCBCustom algorithm was played
190 times, the second variant UCBCustom2 was played 153 times and the
last UCBCustom3 had 83 rounds recorded. The main variant UCBCustom1
is the most likely to show convergence, since it is the least explorative variant
and was played the most from the three instances.
From the total of 4096 arms, UCBCustom1 explored 14 arms over the course
of its 190 rounds, UCBCustom2 had a total of 29 explored arms after 153
plays and UCBCustom3 was able to try out 28 arms in only 83 rounds.
Just from this short summary we can clearly see the significance of our algo-
rithm’s exploration parameter β. UCBCustom3 explored the same amount
of arms nearly twice as quickly as its less explorative sibling UCBCustom2.
Even though we will be able to explore more arms with the UCBCustom3
version of our algorithm, the high rate of exploration will most likely hinder
the strategy’s ability to identify and exploit the best arm from the already
explored arms.
We have created several graphs illustrating the development of the number of
plays of each arm as the total number of plays grows for each of the versions
of our algorithm. Those graphs can be found in appendices A,B and C for
the versions UCBCustom1, UCBCustom2 and UCBCustom3 respectively.
In the appendices you can find two columns of graphs, where one column
contains bar graphs showing the number of plays for each world (arm) and
the second one illustrates the corresponding average rewards computed from
received rewards for these arms.

31

As we can see from the graphs in appendix A, our previous prediction that
the UCBCustom1 variant will show the strongest signs of convergence was
confirmed during our evaluation phase. The exploitation portion of our al-
gorithm can be clearly visible if we compare the number of plays of arm
number 3 in the graphs A.2 and A.3. In graph A.2, which represents the
state of the MAB problem after 120 rounds, the world with the highest
average reward was chosen approximately twice as much as the other sub-
optimal worlds. After another 70 recorded plays, this optimal arm is played
nearly three times as much as some of the worse performing arms and the
algorithm was still able to explore three new worlds in the meantime. The
most optimal arm found by UCBCustom1 corresponds to a game variant
with three lanes, where the car speeds up quickly and continues travelling
at a very high speed. The game parameters for this world have the minimal
space between obstacles set to the lowest setting, which results in a high
pace game that requires the player to have quick reactions and fully concen-
trate when avoiding obstacles. It is not surprising that this version of our
game is considered as the most enjoyable by our algorithm.
UCBCustom2, the second version of our algorithm, is a more explorative
variant of the algorithm compared to UCBCustom1. However, we can still
show some, but much weaker signs of convergence in the graphs provided
in appendix B. The arm number 18 has the highest average reward in both
graph B.2 and B.3. Even though the graphs are separated by 53 rounds, the
best world was chosen only once during those rounds. The reason lies in the
explorative properties of our algorithm - instead of exploiting the best arm
as much as possible, the strategy sacrificed a big portion of the 53 rounds
to explore new options and worlds due to the higher β parameter. However,
if we continued the experiment, we would see the best arm played more
and more often as the pauses between adding new arms would grow longer,
leaving more opportunities for the exploitation part of our algorithm.
The results obtained from UCBCustom3 do not show nearly any attempts
of exploitation due to the very low amount of rounds. After 83 plays, the
version UCBCustom3 has not yet advanced from the first, exploration-heavy
phase of the algorithm and we can see the speed of the algorithm’s conver-
gence is heavily reliant on the exploration parameter β. With versions with
higher β values we would need to wait a much longer time for the algorithm
to fully converge. However, one of the goals was to test which one of the
three versions of our algorithm most effectively exploits the found optimal
arm while exploring the suboptimal arms at the same time and from that
perspective, the UCBCustom1 variant is clearly the best one.

32

8 Conclusion

We have studied and researched the multi-armed bandit problem and its as-
sociated exploration versus exploitation dilemma and presented an overview
of typical strategies solving this particular problem in theoretical environ-
ments. We have described several practical use cases, where the multi-armed
bandit problem is effectively used, and proposed the potential of using the
bandit algorithms in freemium games.
We have formalized the multi-armed bandit for the specific environment of
a simple online game with variable game parameters and shown how it can
be mapped to the case of pricing the products in freemium games. For
this formalized setting, we have then developed our own bandit algorithm
UCBCustom, which is mainly based on upper confidence bound algorithms
and is also able to solve the multi-armed bandit problem in environments,
where the amount of arms exceeds the total number of plays.
Given the risk of losing a company’s profit associated with evaluating the
algorithm on an existing freemium game, we have rather designed and imple-
mented a simple online game Speeder, where the player controls a speeding
car and tries to avoid obstacles by switching lanes. The design of Speeder
includes variable game parameters, that have a significant impact on the
gameplay. Instead of finding the most profitable attributes and prices of
premium features in a freemium game, we have used our algorithm to iden-
tify the most enjoyable variant of our game Speeder and its underlying
combination of game parameters.
For the evaluation phase, we have created three instances of our algorithm,
each with a different exploration parameter β that defines the strategy’s
behaviour when exploring new arms. Higher β value results in a more ex-
plorative strategy, while a version with a lower β value will not expand the
set of explored arms very often. The default version, UCBCustom1 with the
exploration parameter set to β = 1, ended up showing the greatest promise
in minimizing the regret and playing the best arm significantly more than
the other suboptimal arms, while still exploring other options. The other
two versions, UCBCustom2 (β = 2) and especially UCBCustom3 (β = 3),
showed weaker signs of convergence than UCBCustom1. Those versions
would require a much higher number of rounds to advance from the early
state mainly consisting of exploration into a phase where the exploitation of
the best arm would become more apparent.

33

References

[1] Herbert Robbins. Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 1952.

[2] John Gittins. Multi-armed Bandit Allocation Indices. John Wiley and
Son, 1989.

[3] T. L. Lai and Herbert Robbins. Asymptotically efficient adaptive allo-
cation rules. Advances in Applied Mathematics, 1985.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis
of the multiarmed bandit problem. Machine Learning, 2002.

[5] Scott and Steven L. A modern bayesian look at the multi-armed bandit.
Appl. Stoch. Model. Bus. Ind., 2010.

[6] Janis Hardwick and Quentin F. Stout. Bandit strategies for ethical
sequential allocation. Computing Science and Statistics, 1991.

[7] Dirk Bergemann and Juuso Valimaki. Bandit problems. Cowles Foun-
dation Discussion Paper No. 1551, 2006.

[8] Nicolas Galichet, Michèle Sebag, and Olivier Teytaud. Exploration vs
exploitation vs safety: Risk-aware multi-armed bandits. Asian Confer-
ence on Machine Learning 2013, 2014.

[9] Michael N. Katehakis and Arthur F. Veinott Jr. The multi-armed ban-
dit problem: Decomposition and computation. Mathematics of Opera-
tion Research, 1987.

[10] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochas-
tic and nonstochastic multi-armed bandit problems. Foundations and
Trends in Machine Learning, 2012.

[11] Joannes Vermorel and Mehryar Mohri. Multi-armed bandit algorithms
and empirical evaluation. In Machine Learning: ECML 2005. Springer
Berlin Heidelberg, 2005.

[12] J.-Y. Audibert, R. Munos, and Cs. Szepesvári. Tuning bandit algo-
rithms in stochastic environments. Algorithmic Learning Theory, 2007.

[13] Yizao Wang, Jean yves Audibert, and Rémi Munos. Algorithms for in-
finitely many-armed bandits. In Advances in Neural Information Pro-
cessing Systems 21. Curran Associates, Inc., 2009.

[14] J.-Y. Audibert, R. Munos, and Cs. Szepesvári. Exploration-exploitation
trade-off using variance estimates in multi-armed bandits. Theoretical
Computer Science, 2009.

34

Appendix A - UCBCustom1 graphs

Graph A.1 After n = 50 plays

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

12

World

N
u

m
b

er
 o

f
p

la
ys

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

World
A

ve
ra

g
e

re
w

ar
d

s

Graph A.2 After n = 120 plays

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

World

N
u

m
b

er
 o

f
p

la
ys

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

World

A
ve

ra
g

e
re

w
ar

d
s

Graph A.3 After n = 190 plays

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

30

35

40

World

N
u

m
b

er
 o

f
p

la
ys

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

World

A
ve

ra
g

e
re

w
ar

d
s

35

Appendix B - UCBCustom2 graphs

Graph B.1 After n = 50 plays

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

World

N
u

m
b

er
 o

f
p

la
ys

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

World
A

ve
ra

g
e

re
w

ar
d

s

Graph B.2 After n = 100 plays

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

World

N
u

m
b

er
 o

f
p

la
ys

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

World

A
ve

ra
g

e
re

w
ar

d
s

Graph B.3 After n = 153 plays

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

11

World

N
u

m
b

er
 o

f
p

la
ys

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

World

A
ve

ra
g

e
re

w
ar

d
s

36

Appendix C - UCBCustom3 graphs

Graph C.1 After n = 35 plays

0 5 10 15 20 25
0

1

2

3

4

5

World

N
u

m
b

er
 o

f
p

la
ys

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

World
A

ve
ra

g
e

re
w

ar
d

s

Graph C.2 After n = 60 plays

0 5 10 15 20 25
0

1

2

3

4

5

World

N
u

m
b

er
 o

f
p

la
ys

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

World

A
ve

ra
g

e
re

w
ar

d
s

Graph C.3 After n = 83 plays

0 5 10 15 20 25
0

1

2

3

4

5

World

N
u

m
b

er
 o

f
p

la
ys

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

World

A
ve

ra
g

e
re

w
ar

d
s

37

	Introduction
	Goals of the thesis
	Structure of the thesis

	State of the art
	History of Multi-armed Bandits
	Practical use cases of MAB

	Technical background
	Multi-armed bandit framework
	Bandit algorithms
	-greedy and other semi-uniform strategies
	Upper Confidence Bound (UCB) algorithms
	Algorithms for MAB with an infinite number of arms

	Testing using Multi-Armed Bandit
	Developing the game
	Game of Speeder

	Problem formalisation
	Chosen game parameters
	Discretization of parameters
	Normalisation of rewards

	Algorithm
	Implementation
	Implementation of Speeder
	Level and car
	Obstacles and other objects
	Integration of the game into a web page

	Implementation of the MAB framework
	Implementation of arms/machines
	Implementation of the algorithm
	Dynamic web page
	Collecting the reward

	Evaluation
	Testing environment
	Examples of UCB indices
	Results and discussion

	Conclusion
	 References
	A UCBCustom1 graphs
	B UCBCustom2 graphs
	C UCBCustom3 graphs

