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Abstract

Pokud farmaceuticka firma vyviji novou latku, pak je pro ni velice dilezité, aby obdrzela
korektni data z klinického testu od 1ékare, ktery kontrolovalje v prubéhu testu vliv latky
na pacienty. Tedy, pokud si chce byt farmaceuticka firma jista, ze od 1ékate obdrzi data,
ktera lékar nezménil, pak ho musi prubézné kontrolovat.

V této praci jsme se zamérili na optimalni planovani inspekei v jedné fazi klinickych
testt. Formalizovali jsme tento problém jako hru mezi farmaceutickou firmou a lékaiem,
kde inspektori farmaceutické firmy kontroluji 1ékare tak, aby maximalizovali pravdépo-
dobnost, ze 1ékari posilaji pouze korektni data. Nejprve jsme formalizovali problém jako
casoveé nezavily, od kterého jsme odvodili ¢asoveé zavisly model pro planovani inspekci.
V cCasové zavislém modelu bereme v ivahu, ze kazdy tyden ovliviiuje rozhodnuti o Gc¢in-
nosti latky s jinou vahou. Optimélni plan inspekci hleddme v podobé Nashova a silného
Stackelbergova equilibria podle struktury uzitkové funkce hracu.

Nad ramec zadani jsme dekomponovali problém rozdélovani celkového rozpoctu na
inspekce, kde planujeme pokryti inspekcemi celého klinického testu pres vsechny faze.

Nakonec jsme zhodnotili naimplementované algoritmy na danych scénatich a ukézali
vlastnosti feseni a skalovatelnosti algoritmu hledajiciho resendi.
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Abstract

If the pharmaceutical company develops new drug, then it is very important to observe
correct data from the clinical trial from the doctor, who controls drug’s effect on the
participants in the trail. If the pharmaceutical company wants to be certain that the
doctor reports correct data then they have to inspect him.

In this thesis, we focus on optimal scheduling inspections in one phase of the clinical
trial. We formalize problem as the game between the pharmaceutical company and
the doctor, where the pharmaceutical company though the inspector wants to protect
data from the testing from the doctor’s changes. Firstly, we formalize the game as
time independent model and then we extend time dependent model for scheduling
inspections. Time dependent model respects that every week in trial has different
weight for decision about the efficiency of the tested drug. The optimal schedule for
inspections is found using Nash and Stackelberg equilibrium with dependence on the
utility function of the agents.

Out of the assignment, we decompose the problem of budget division, where we plan
coverage of all clinical trial by the inspections.

Finally, we evaluate implanted algorithms on defined scenarios and show performance
and scalability of the algorithm.

Keywords

Clinical trials; game theory; inspection processes; optimization
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1 Intro

Pharmaceutical industry is area which is based on developing new drugs and selling
them. In this thesis, we focus on the clinical trials. The clinical trial is part of testing
new drug, where the drug for testing is already developed and tested in preclinical
testing. The clinical trial is divided into Phases. Each phase tests the drug specifically
for efficacy, dosage and side-effects. Volunteers participate in testing each Phase and
they test the drug. They take the drug for Time period and they are controlled by the
doctor who controls them in control weeks. The doctor controls how the drug affects
their state of health.

In this thesis, we focused on the detection of fraud in one Phase of clinical trial.
Fraud can be conducted by the participants or by the doctor.

The doctor controls participants and prevents participant’s fraud. He reports about
the state of health of the participants and this reports are very important for the
pharmaceutical company. But even doctor can perform fraud due to competitive or
adversarial reasons. And because he collects the data about the group of participants
his changing reports can significantly affects the decision, which the pharmaceutical
company makes about the efficacy and the future of the drug.

We focused on the doctor’s fraud, which has a significant importance for the phar-
maceutical company. The doctor’s fraud can be prevented by the inspections. The
inspector inspects doctor in control weeks, when the doctor controls the participants of
the testing. The inspector wants to detect if the doctor performs fraud and he wants to
prevent doctor’s fraud by inspecting him frequently. Nowadays, if the pharmaceutical
company wants to know that they observe correct data from the doctor then inspections
should be every control week in the Time period of the Phase.

The goal of this thesis was to plan the optimal schedule of inspections for the inspector
for one Phase of clinical trial if the pharmaceutical company does not want to inspect
every control week in the Time period or does not have the budget to inspect the doctor
every control week in the Time period. We expected that if the doctor is inspected and
performs fraud then the inspector detects doctor’s fraud.

We formalized the inspection problem of one Phase of clinical trial as a security game,
where the inspector is defender who wants to detect and prevent doctor’s fraud. The
doctor is attacker who wants to perform fraud by changing the results of the Phase
of clinical trial. Then we searched for the solution of the security game using Nash or
Strong Stackelberg equilibrium in dependency on structure of utility function of agents.

In our work, we created two utility models of security games that optimally solved
the inspection scheduling problem. Firstly, we created time independent model. In this
model, the type of Phase is defined by the number of control weeks in the Time period
of the Phase and limited budget is represented by maximal number of inspections in
the Phase.

Secondly, we extended this time independent model to time dependent model. The
time dependent model reflects that the control weeks in the Time period of Phase,
when participants are controlled by the doctor, have not the same weight for decision
about efficacy of the drug. For example, some control weeks are more focused to control
patients if they use the drug in compliance with using the drug and some are important
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to check the drug effect on the state of health of participants. Time dependent model
uses the same specification of Phase and representation of limited budget as time inde-
pendent model plus the time dependent model specifies the importance of every control
week in the Time period of the Phase of clinical trial. Both models expect that the
doctor is motivated to perform fraud.

We evaluated the proposed algorithms on synthetic data on which we measured the
influence of single parameters on scalability and quality of the obtained solutions. Con-
cretely, we evaluated our game theoretical solution and other simplification strategies
on the same scenario and then we compared the solutions. We find out that the the
solution computed by our model gave us the best result in comparison with other sim-
plification strategies. Then, we wanted to find the instances of the inspection problem
which are the hardest to solve, hence we computed the (d : s) ratio.

Out of the bachelor project assignment, we created model of optimal budget division.
This model reflects problem how to divide optimally budget for inspection into Phases
of clinical trial if the pharmaceutical company knows with high probability that the
drug is effective and we expected that somebody wants to thwart clinical trial of the
drug. In this model, we used previously defined model for planning inspections in one
Phase of clinical trial.

1.1 Goals of the thesis

This thesis contains goals which are described in following description.

Understand the problem of clinical trials

The problem of fraud in clinical trials is decomposed in Chapter (4). We describe that
clinical trial is liable to frauds, which can has various types. Techniques for prevention
of fraud and methods how the control organization as FDA detect fraud in clinical
trials.

Create a model of clinical trial process and describe each Phase

Process of clinical trial is described in Chapter (4) where the process is decomposed
and every Phase is briefly introduced. Then the model of clinical trial process is used
for model of budget division in Chapter (5).

Formalize the inspection problem in one Phase as a game between the
pharmaceutical company and doctors

The game models used in this thesis are formalized in Chapter (5). We formalize the
inspection problem in one Phase as a game between the pharmaceutical company and
doctors in two utility models. The first is time independent model and the second is
time dependent model.

Propose models of the game with differing complexity (zero-sum vs. non-
zero sum, simultaneous move vs. leader-follower)

Specification of different game models with different complexity is compared in Chap-
ter (5). Firstly, we compare zero-sum games and their types and then non-zero sum
games.

Implement algorithms able to solve the games defined in (4)

We solve the model of inspection problem in one Phase as Stackelberg Security game.
The main part of the implementation is described in Chapter (6).

Evaluate performance of the algorithms on synthetic data

Finally, we evaluated implement algorithms and this evaluation is shown in Chap-
ter (7).



2 Methods and techniques

The main part of technical work presented in this thesis is based on the Game theory,
linear programming and optimization. This chapter introduces theoretical background
used for solving and modeling the inspection scheduling problem one Phase of clinical
trials.

2.1 Game theory intro

Game theory is a mathematical framework for capturing interaction among indepen-
dent, self-interested agents [1]. Self-interested agent means that each agent has his own
description of which states of the world he prefers. His acts can include good things or
bad things to other agents. Agent acts in an attempt to bring about these states of the
world.

Agent should be able to appraise all states of the world. Value of the state is repre-
sented by a utility function. A utility function is a mapping from states of the world to
real numbers. These numbers are interpreted as measures of an agent’s level of satis-
faction in the given states. When the agent is uncertain about which state of the world
he faces, his utility is defined as the expected value of his utility function with respect
to the appropriate probability distribution over states.

Agents are parts of the game. The game is interaction between agents in defined area
of model world.

Every agent in a game is a self-interested and rational agent who would like to
maximize his utility. It means he would like to execute actions that maximize utility
for him. The set of actions of the player is set of all possible state transitions that agent
can play.

2.2 The normal form game

In the normal form game, every agent has utility functions and wants to maximize
expected value of his utility function [1]. He chooses a single action that maximizes
expected utility. This suggests that acting optimally in an uncertain environment is
conceptually straightforward at least as long as the outcomes and their probabilities
are known to the agent and can be succinctly represented. However, situation is more
complicated when the world contains two or more utility-maximizing agents whose
actions can affect each other’s utilities.

The normal form representation is also known as the strategic form and is arguably
the most fundamental in game theory. The normal form game does not contain any
kind of uncertainty. Every player has to have representation of utility function for
every state of the world, in the special case where states of the world depend only on
the player’s combined actions in game written in this way.

2.2.1 Definition of Normal from game

Definition 1. A (finite,n-person)normal-form game is a tuple (N ,A ,u ), where [1]:
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e N is a finite set of n players, indexed by i ;

e A=Ay x---x A, where A; is a finite set of actions available to player i. Each
vector a = (ay,...,an) € A is called an action profile;

o u=(u,...,uy) where u; : A — R is a real-valued utility (or payoff) function for
player 1.

A natural way to represent games is via an n-dimensional matrix. The two-dimensional
matrix is used for two-player game in this thesis. Each row corresponds to a possible
actions (strategies) for player 1, each column corresponds to a possible action (strate-
gies) for player 2, and each cell corresponds to one possible outcome. Each player’s
utility for an outcome is written in the cell corresponding to that outcome in player’s
two-dimensional matrix.

2.2.2 Types of strategies

One type of strategy for agent is to select a single action and play it. This type
of strategy is called a pure strategy, and the notation is the same as for actions to
represent it. A choice of pure strategy for each agent is called a pure-strategy profile.

Players could also follow another and use less obvious type of strategy like random-
izing over the set of available actions according to some probability distribution. Such
a strategy is called a mixed strategy. We define a mixed strategy for a normal-form
game as follows.

Definition 2. Mized strategy: Let (N,A,u) be a normal form game, and for any set
X let TI(X) be the set of all probability distribution over X. Then the set of mized
strategies for player i is S; = II(A;).

Definition 3. Mized strategy profile: The set of mized-strategy profiles is simply the
Cartesian product of the individual mized-strategy sets, S1 X -+ X Sy.

2.3 Nash equilibrium

Nash equilibrium is the most influential solution concept in game theory.

The most important is that if an agent knows how the others are going to play,
his strategic problem would become simple. The problem would be simplified to the
single-agent problem of choosing a utility-maximizing action. Formally, define s_; =
(S1y.eey Si—1, Sit1,---Sn), & strategy profile s without agent i’s strategy. We can write
s = (84,5—;). If the agents other than ¢ (whom we denote —i) were to commit to
play s_;, a utility-maximizing agent ¢ would face the problem of determining his best
response.

Definition 4. Best response: Player i’s best response to the strategy profile s_; is a
mized strategy si € S; such that u;(s},s—;) > ui(si, s—1i) for all strategies s; € S;.

The best response may not be unique. The best response is unique only in extreme
case that it is a pure strategy. The number of best responses is always infinite in other
cases. When the support of a best response s* includes two or more actions, the agent
must be indifferent among them — otherwise, the agent would prefer to reduce the
probability of playing at least one of the actions to zero. It means, any mixture of these
actions must also be a best response, not only the particular mixture in s*. Similarly,
if there are two pure strategies that are individually best responses, any mixture of
the two is necessarily also a best response. In general an agent will not know what
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strategies the other players plan to play. The result is, the notion of the best response
is not a solution concept, because it does not identify an interesting set of outcomes in
this general case. But we can use the idea of best response to define what is arguably
the most central notionin noncooperative game theory, the Nash equilibrium.

Definition 5. Nash equilibrium: A strategy profile s = (81, ..., $n) s a Nash equilibrium
if, for all agents i, s; is a best response to s_;.

Intuitively, a Nash equilibrium is a stable strategy profile. Thus no agent would want
to change his strategy if he knew what strategies the other agents were following.

Theorem 1. Theorem (Nash, 1951) : Every game with a finite number of agents and
action profiles has at least one Nash equilibrium.

Proof. Proof is described in [1]. O

2.4 Strong Stackelberg equilibrium

In Multiagent systems, strategic settings are often analyzed that the agents choose their
strategies simultaneously. However, strategies could not be always selected in such a
simultaneous manner. In many real-world settings oftentimes, one agent is able to
commit to a strategy before the other agent makes a decision [2]. The agent, who is
able to commit to a strategy before the other agent is called the leader and the other
agent, is called the follower. In a Stackelberg model, the leader chooses its strategy
first, and the follower chooses a strategy after observing the leader’s choice. This can
happen due to variety of reasons. Commitment power has a profound impact on how
the game should be played. In general, if commitment to mixed strategies is possible,
then it never hurts, and often helps, to commit to strategy [3].

Theorem 2. In 2-agent normal-form games, an optimal mized strateqy to commit to
can be found in polynomial time using linear programming.

Proof. For every pure follower strategy t is computed a mixed strategy for the leader
such that [2]. Playing t is a best response for the follower, and under this constraint, the
mixed strategy maximizes the leader’s utility. This mixed strategy can be computed
using the following linear program (1). Where S is set of leader’s pure strategies and v,
is his utility function. T is set of follower’s pure strategies and wuy is his utility function.

Vt € T maximize Zpsul(s, t)

seS
subject to
vi'eT Zpsu]c(s,t) > Zpsu]v(s,t/) (1)
s€S seS
Zps =1
seS

This program may be in-feasible for some follower strategies ¢. For example, if ¢ is
a strictly dominated strategy. However, the program must be feasible for at least some
follower strategies. From these follower strategies, it can be chosen a strategy t* that
maximizes the linear program’s solution value.

Then, if the leader chooses mixed strategy which corresponding the optimal settings
of the variables ps for the linear program for ¢* and if the follower plays t*, then it
constitutes an optimal strategy profile. O
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Figure 1 Utility function structure of Security games [4]

2.4.1 Security games

In security games there are set of possible targets T' = {¢1,t2,- - ,t,} and two agents
— defender and attacker. In contrast with other types of games, all the security game
models have specific utility function as shown in Figure (1). Where Ug(t;) represents
defender’s utility if ¢; is attacked by the attacker while t; is covered by some defender
resource and U} (t;) if ¢; is not covered by any defender’s resource. Attacker’s utility
US(t;) represents if ¢; is attacked by the attacker while ¢; is covered by some defender
resource and UZ(t;) if t; is not covered by any defender’s resource. Difference between
defender’s covered and uncovered utilities is represents as AUg(t;) = US(t;) — U (t;).
Similarly, the difference for the attacker is AU, (t;) = UY(ti) —US(ti). As a key property
of security games, it is assumed Uy(t;) > 0 and U,(t;) > 0 [4].

Stackelberg Security games

In Stackelberg security games defender is the leader and attacker is the follower of the
game. Defender wants to protect these set of targets and attacker wants to attack
these targets. Each of these targets has a unique profit and loss to both. To protect
these targets, the defender has a set of strategies. He counts the best one via SSE
which maximizes his reward and he commit to these strategy. He expects that attacker
(follower) observe his strategy and then attacker choose targets to attack. Even attacker
wants to maximize his profit. Thus, if the attacker attacks target which is not protected
by the defender, then attacker has a profit from these action and defender loose this
action else vice verso.

2.4.2 Using Strong Stackelberg equilibrium in this thesis

Lets imagine the following situation. The pharmaceutical company has doctors, who
control patients in clinical trials. The pharmaceutical company conducts a lot of clinical
trials and the company cooperates with the same doctors repeatedly. Sometimes, for
reasons discussed further, the doctors are inclined to perform frauds. Thus doctors
are inspected repeatedly by the inspector and they can learn the inspection strategy
through observation. In the modeling game for planning inspections, we have to expect
that the doctor knows inspector’s strategy.

Finally in this thesis, we use the Stackelberg Security game model. The inspector
acts first as a leader by committing to an inspection strategy and the doctor as follower
chooses when to cheat after observing the inspector’s choice. Targets are represented
as weeks when the doctor can cheat. The typical solution concept applied to these
games is Strong Stackelberg Equilibrium, which assumes that the inspector will choose
an optimal mixed strategy based on the assumption that the doctor will observe this
strategy and choose an optimal response.
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2.5 Linear programming

Linear programming (LP) is an essential optimization technique. LP solves the problem
represented by model. Model is structure of problem which has been built with purpose
exhibiting features and characteristic of the problem. More about model building is
described in [5].

The concept of a Linear program contains following components. Decision variables
are quantities to be determined. How the decision variables affect the cost or value to
be optimized is represented via an Objective function. The objective function is a linear
function which can be minimized or maximized and which is limited by Constrains.
Constrains are affine functions which represent linear relationships and influence how
the decision variables use resources, which are available in limited quantities.

If we solve some model, then solving a linear program has three possible types of so-
lutions [6]. Firstly, model has at least one optimal solution. Secondly, model has empty
set of feasible solutions. It indicates that constrains are in contradiction. Thirdly, model
is unbounded and model’s objective function with given constrains can be unlimitedly
improved.

A Linear program can be represented by several forms [7]. The first form is to repre-
sent model in a general form (2). The general form representation permits the objective
function to be maximized or minimized, allows both inequalities and equality constrains
and puts no constraints on the values of the variables other than the constraints that
appear in the program. Another possibility is a canonical form (3) which has following
regulations. Constrains are allowed only in Ax < b from, the objective function has to
be maximized and it is required that decision variables are non-negative.

max or min ciz

subject to Ax > b
Az < b (2)
Ax = b
r € R

max clz

subject to Ax < b
s > 0 (3)
z € R

2.6 Decision tree

Decision trees are great tool for assistance in choosing between several options of an
action [8]. They can show us a balanced picture of the risks and rewards associated with
each possible course of action and allow us to analyze the possible consequences of a
decision fully. It helps us to make the best decisions on the basis of existing information
and best guesses.

Firstly, it is necessary to draw the decision diagram of some problem [9]. Decision
diagram starts in the root node and branch out via actions to another nodes and finally
to leaves as is shown in Figure 9. Node represents result of an action and it can be a
decision node or an uncertainty node. In decision node, we have to decide which action
will follow. And in uncertainty node, we do not know which action will follow but every
outgoing action from uncertainty node has a probability that occurs. If the probability
is in percentages, probabilities of all actions from one node have to sum up to 100%.
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Figure 2 Decision tree

Now the decision diagram is ready for the evaluation. If the diagram contains some
uncertainty nodes, we have to evaluate or estimate the probability of each outgoing
action. Then the leaves node should be assigned with some value, the best leafs node
with the highest value and the worst leaf outcome with the lowest value. If we have
done previous steps, we can start calculating the values that will help us make our
decision. We evaluated leaf nodes and we will calculate the value of nodes back towards
the root node.

The value of an uncertainty node is calculated by summing up all values of outgoing
actions which are multiplied by their probability.

When we evaluate the decision node, we can easily choose the max value of outgoing
action. But actions have oftentimes some cost. Thus we have to subtract the cost of
action from every value of outgoing node and then find the maximal value of outgoing
node. Then maximal value of outgoing action is value of the node.

At the end we have evaluated outgoing nodes from the root node. So we can see the
reward of each outgoing action and decide for the best action.

2.7 CPLEX

Linear programming was revolutionized when CPLEX software was created. The
CPLEX was developed by Robert E. Bixby in 1987, it was distributed by ILOG com-
pany and now the CPLEX is distributed by IBM since 2009. The CPLEX is high
performance solver for Linear Programming (LP), Mixed Integer Programming (MIP)
and Quadratic Programming (QP/QCP/MIQP/MIQCP) problems.

For problems with linear constraints, CPLEX uses a simplex method or a primal-dual
interior point method to solve the problem. The CPLEX package contain following four
distinct methods for solving problem|[10]. First, a primal simplex algorithm that first
finds a solution feasible in the constraints, then iterates toward optimality. Second, A
dual simplex algorithm that first finds a solution satisfying the optimality conditions,
then iterates toward feasibility. Third, a network primal simplex algorithm that uses
logic and data structures tailored to the class of pure network linear programs. Fourth,
a primal-dual interior-point algorithm that simultaneously iterates toward feasibility
and optimality, optionally followed by a primal or dual crossover routine that produces
a basic optimal solution.

The simplex algorithm is fundamental part of CPLEX, which was named for the
simplex method as implemented in the C porigrameng language. The simplex algorithm
is more described by M. Trick [11].

The primal-dual interior point algorithm for linear programming used in CPLEX was
introduced by Megiddo. He use logarithmic barrier methods to solve the primal and
dual problems simultaneously. He describes this algorithm in book [12].
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Figure 3 CPLEX Performance [13]

E. Bixby recompiled [13] each of the corresponding twelve CPLEX released versions
from Version 1.2 through CPLEX 11 and he compared them. He shows improvement
of scalability during the time which is shown in Figure 3. The scale on the left refers to
the bars in the bar chart and shows version to version speed up. The scale on the right
to the piecewise-linear line through the middle and shows cumulative speed up. We can
see that bar comparing CPLEX 3.0 to 2.1 stands out, because it has Version-to-Version
Speedup of nearly 5.5. It corresponds to the maturity of the dual simplex algorithm.
Second and the biggest stand out bar compares CPLEX 6.5 to 6.0. These big speedup
was caused by ability to solve real-world MIPs. The piecewise-linear line through the
middle shows us that overall speedup factor from CPLEX 1.2 to CLEX 11 is almost
100,000.



3 Related work

3.1 Stackelberk games

There has been significant recent research interest in game-theoretic approaches to
security at airports, ports, transportation, shipping and other infrastructures. Many of
these problems have used Stackelberg game framework to model interactions between
defenders and attackers.

Stackelberg games are at the heart of decision-support applications like ARMOR,
IRIS, GUARDS and PAWS.

3.1.1 ARMOR

Pita at al. [14] proposed protecting national infrastructure such as airports including
tasks such as monitoring all entrances or inbound roads and checking inbound traffic.
Where limited resources imply that it is typically impossible to provide full security
coverage at all times. In particular, they proposed a software assistant agent called
ARMOR (Assistant for Randomized Monitoring over Routes). They mapped the prob-
lem of security scheduling as a Bayesian Stackelberg game and they solved it via an
algorithm called DOBSS (Decomposed Optimal Bayesian Stackelberg Solver). In sum-
mary, they modeled problem via Stackelberg game with two types of agents. The police
force is a leader and their adversaries are followers. They assume that there are m dif-
ferent types of adversaries, each with different attack capabilities, planning constraints,
and financial ability. Each adversary type observes the police force checkpoint policy
and then decides where to attack. Attacker’s targets are inbound roads 1 through n.
The police force has picked up p resources-roads to place checkpoints. Thus, their
strategy is all combinations of p checkpoints. Each adversary type can choose strategy
and decide to attack one of the n roads or possibly not attack at all. If the police force
selects road 7 to place a checkpoint on and adversary type [ selects road j to attack then
both receive differed rewards. These rewards depend on three considerations: (i) the
chance that the Los Angeles World Airport police checkpoint will catch the adversary
on a particular inbound road; (ii) the damage the adversary will cause if it attacks via a
particular inbound road; (iii) type of adversary, i.e. adversary capability. For example,
if Police force catches the adversary then it is positive reward for police and negative
reward for adversary.

ARMOR has been successfully deployed since August 2007 at the Los Angeles Inter-
national Airport (LAX) to randomize checkpoints on the roadways entering the airport
and canine patrol routes within the airport terminals.

3.1.2 IRIS

Tsai at al. [15] proposed protection of transportation networks such as airplanes which
carry millions of passengers per day. It makes them a prime target for terrorists and
extremely difficult to protect for law enforcement agencies. They implement IRIS (In-
telligent Randomization In Scheduling) system based on strategic randomization. IRIS
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is modeled as a Stackelberg game, with law enforcement agencies as leaders that com-
mit to a flight coverage schedule and terrorists as followers that attempt to attack
a flight. For solving this class of Stackelberg game was used ERASER-C algorithm.
IRIS is a scheduling assistant for the Federal Air Marshals (FAMS) which provides
a game-theoretic solutions similar in spirit to the ARMOR.

3.1.3 GUARDS

Pita at al. [16] developed a new application called GUARDS (Game-theoretic Unpre-
dictable and Randomly Deployed Security) to assist in resource allocation tasks for
airport protection at over 400 United States airports. TSA is charged with protecting
over 400 airports in the US. The key challenge is how to intelligently and predictably
deploy limited security resources. They lead to a new game model called “Security
Circumvention Games” (SCGs) and they work with Stackelberg game with two agents.
The leader of the game and the defenders of the airports is United States Transportation
Security Administration (TSA). The follower of the game is TSA’s potential adversary.
Defender has set of pure strategies and he is able to execute variety of security activities
in the set of different areas. Follower has set of pure strategies where each of them cor-
responds to selection of a single area and a specific mode of attack. They use DOBSS
Stackelberg game solver.

3.1.4 PAWS

Ford at al. [17] formulates the wildlife crime problem. The Protection Assistant for
Wildlife Security (PAWS) generates optimized defender strategies for use by park
rangers. PAWS implements a novel adaptive algorithm that processes crime event
data, builds multiple human behavior models, and, based on those models, predicts
where adversaries will attack next. These predictions are then used to generate a pa-
trol strategy for the rangers that can be viewed on a GPS unit. They model security
game as a Bayesian Stackelberg game with infinite types, where the leaders are the
rangers and the followers are the poachers.
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4 Clinical trials intro

In this chapter, we want to introduce the background of clinical trials. The area of
clinical trials is primary created by pharmaceutical companies and by the control’s
regulations of clinical trials. Firstly, we introduce the process of clinical trials and then
we focus on introduction to fraud and misconduct in clinical trials and how it can be
detected and prevented. All these general information help us to imagine process of
developing new drug in pharmaceutical area.

4.1 Review intro

Process of discovering and developing new drug is long, complex and expensive as is
shown in Figure 4.

Firstly, new drug is developed be the research community [18].

Thousands of drugs are discovered in research but only a few hundred drugs are
suitable to continue into preclinical testing. In preclinical testing, drug are tested on
animals or in laboratories. Tests should determinate whether a drug is suitable for
human testing.

If the drug successfully finish preclinical testing then the drug can continue to clinical
trial. In clinical trials, the drug is tested on human volunteers—participants. The
process of clinical trial takes approximately six to seven years. The process of clinical
trial is divided into several phases. The drug must successfully complete all of these
phases and then it can be submitted to the FDA for review.

If the drug successfully completed first three phases of the clinical trial then it indi-
cates that the drug is safe and effective. Then the pharmaceutical company can submit
a New Drug Application to the FDA. The pharmaceutical company has to make avail-
able for FDA the data from the whole process of previous testing. Scientists at the
FDA review all the results from previous testing and then they decide whether to grant
approval that the drug is safe and it has declared effect.

4.2 The specific explanation of clinical trials

A clinical trial represents an international trial involving human subjects, who partici-
pate Phases of clinical trials [19]. A clinical trial does not include the use of drug in the
normal course of medical practice or non-clinical laboratory study. Clinical trials are
tests of vaccines, drugs, or new uses for existing drugs. Tests should detect efficiency,
safety, side-effects and another specification of the drug.

4.2.1 Definition of terms

Vaccine is a biological preparation of weakened or killed forms of the microbe, its toxins
or one of its surface proteins by Britannica [20]. Vaccination is process administering
vaccine by injection or orally. The main importance of vaccine is primarily to prevent
disease. Vaccine must be effective and harmless.
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Figure 4 Drug approval process [18]

Drug is by FDA [21] a substance recognized by an official pharmacopoeia or formulary
which is intended for use in the diagnosis, cure, mitigation, treatment, or prevention
of disease. It is a substance other than food intended to affect the structure or any
function of the body or a substance intended for use as a component of a medicine but
not a device or a component, part or accessory of a device.

FDA (The Food and Drug Administration) is a federal agency of the United States
Department of Health and Human Services. The FDA is responsible for protecting
and promoting public health through the regulation and supervision of pharmaceutical
drugs and others.

4.3 Clinical trial

Clinical trial is divided into Phases. Every Phase tests different criteria on groups of
volunteers. Number of volunteers in groups depends on specification of each Phase.
Volunteers are generally paid for participating in the testing.

4.3.1 Phase | (Checking for safety)

Phase I assesses the safety of a drug. Phase I is an initial phase of testing. Phase I can
take from six to twelve months or more to complete. The drug is tested on a group
of 20-100 participants [22].Participants in this Phase are mainly healthy. The study is
designed to determinate medicine safety, reaction of the body to medicine, indication
of medicine, expected effects and side effects of the drug. About 70% of experimented
drugs pass this phase of testing successfully [22].

4.3.2 Phase Il (Checking for efficacy)

Phase II studies the efficacy of a drug. The Phase normally takes from six to ten moths
or more and involves group of 100-500 participants [22]. Participants for testing vac-
cines are mainly healthy. Participants for the drug testing have the disease or condition
the medicine is designed to treat. The Phase is designed to detect the drug’s effects,
safety of the drug, side effects and indication of the drug. About 33% of experimented
drugs successfully complete both, Phase I and Phase II.
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4.3.3 Phase Il

Phase III is the most expensive part of clinical trial. Testing can take from 1 to 4 years.
Medicament is tested on a group of 1000-5000 participants [22]. Participants for testing
medicine have the disease or condition the drug is designed to treat. Participants for
testing vaccine are mainly healthy or have the disease or condition the drug is designed
to treat. The study is designed to control how the drug’s effects are good, safety of the
drug, side effects and indication of the drug. The main difference between Phase 1T and
Phase I1II is the number of participants and total complexity. From the drugs that enter
Phase III then from 70% to 90% drugs successfully complete this phase of testing [22].
The pharmaceutical company can request FDA approval for marketing the drug after
the drug pass Phase III. It means, the pharmaceutical company submits a New Drug
Application.

4.3.4 Phase IV

Phase IV is conducted after a drug has been approved for consumer sale. Pharma-
ceutical companies continue in research to get more information about the drug or the
vaccine and its safety, side effects and effectiveness [22]. Pharmaceutical companies can
also compere medicament with other medicaments already in the market.

Marketed products are also studied for new indications. Thousands of people usually
participate in ongoing trials.

In this thesis, we does not use the Phase IV for future decomposition of the process

of clinical trial. We focus on the part of clinical trial before the drug is approved by
the FDA.

4.4 Drug approval process costs

Facts about budget are explained by Roy [23]. The budget invested into the pharma-
ceutical industry has quickly increased in last 40 years. The equivalent of $100 million
in today’s dollars was spent for research and development of the average drug approved
by FDA in 1975. The budget of $300 million was spent in 1987 and $1.3 billion in 2005.
The budget is definitely larger today as can be seen in Figure 5.

Matthew Herper found that 12 leading Pharmaceutical companies had spent $802 bil-
lion to gain approval for just 139 drugs from 1997 to 2011 [23]. It means, a staggering
$5.8 billion per drug.

The budget increased due to the regulations of testing new drugs on human volun-
teers in Phase III of clinical trial. Phase III has become larger and more complex.

The Tuft’s group has shown, that the average length of a clinical trial increased by
70%, the average number of routine procedures per trial increased by 65% and the
average clinical trial staff work burden increased by 67% in research from 1999 to 2005.
The increasing trend is shown in Figure 6.

Criteria for selection participants in clinical trial has been considerably tightened

and the number of volunteers admitted into trials declined by 21%. More than 30% of
participants drop out clinical trial before completion.
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4.5 Fraud and misconduct in clinical trials

Figure 1. Average Cost to Develop One New Drug
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Figure 5 Average Cost to Develop One New Drug [23]

Table I. Changes in Clinical Trials: Resources, Length, and Participation

Function 1999 2005 Percent Change
Median procedures per trial protocol 96 158 65%
{e.g., blood work, routine exams, x-rays, etc.)
Average clinical trial staff work burden, 21 35 67%
work-effort units
Average length of clinical trial, days 460 780 70%
Clinical trial participant enrollment rate 75% 59% 21%
(% of volunteers meeting trial criteria)
Clinical trial participant retention rate 69% 48% -30%
(% of participants completing trial)
Source; Tufts Center for the Study of Drug Development, Impact Report 10, No. 1({2008)

Figure 6 Changes in Clinical Trials [23]

Pharmaceutical companies in research and development spend 40% of expenditures
to Phase III of clinical trials. Overall expenditures include hundreds of pharmaceutical
candidates that never reach Phase III tests. Phase III clinical trials represent 90% or
more of the cost of developing an individual drug. Expenditures are written out in
Figure 7.

4.5 Fraud and misconduct in clinical trials

Fraud and misconduct in clinical trials are widespread problem. Good clinical practice
is used international guideline for conduct of clinical trials. But internationally harmo-
nized framework for managing research fraud and misconduct is unavailable. It makes
clinical research vulnerable area to commit fraud [24].
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| Table 2. R&D by Function, PARMA Member Companies, 2009 |

Function Dollars (xMM) Share of Total Probability of FDA Approval
Prehuman/preclinical $11,717.4 28.6% 8%

Phase | $ 37529 9.2% 21%

Phase I $ 71237 17.4% 28%

Phase Ill $16,300.1 39.8% 58%

Approval $ 2,046.9 5.0% 90%

Total R&D up to FDA approval $40,941.0 100.0%

Phase IV $ 53027 13.0%

Uncategorized $ 1978 0.5%

Source: PhRMA Annual Member Survey, 2011; DiMasi et al., J Health Econ 22{2003):151-85

Figure 7 Expenditure [23]

4.5.1 Intro

Several studies have found that more than 40% of researchers were aware of misconduct
but did not report it. Sheehan et al. reported in 2005 that 17% of surveyed authors
of clinical drug trials reported that they personally knew of fabrication in research
occurring over the previous 10 years [24]. Clinical trials are controlled by audits and
inspections. It should prevent fraud and misconduct.

Fraud and misconduct can lead to study losing its credibility, to ineffective or harmful
treatment being available or patients being denied of effective treatment.

4.5.2 Definition of terms

Fraud and misconduct are two terminologies often used interchangeably. Both is a vi-
olation of the standard codes of scholarly conduct and ethical behavior in scientific
research. But there is difference between these terms.

Misconduct may not be an intentional action, rather an act of poor management. It
also includes failure to follow established protocols if this failure results in unreasonable
risk or harm to humans [24].

Fraud should have an element of deliberate action, which is not the case with miscon-
duct. Definition of the fraud is defined in court as “the knowing breach of the standard
of good faith and fair dealing as understood in the community, involving deception or
breach of trust, for money.” [24].

4.5.3 Types of fraud

Fraud can be fabrication, falsification, and plagiarism of data or even deception in
conduct by Gupta [24]. Fabricating data is creating a new record of data or results.
Informed consent Forms and Patient diaries are the most commonly fabricated doc-
uments. Falsifying data means altering the existing records. For example undesired
data or results are distorted or omitted. Plagiarism is an unacknowledged presentation
or exploitation of work and ideas of others as one’s own. Deception is the deliberate
concealment of a conflict of interest. It includes deliberately misleading statements in
research proposals or other documents.
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4.5 Fraud and misconduct in clinical trials

4.5.4 Types of misconduct

Misconduct in clinical trial can be failure to follow an investigational plan, inadequate
and inaccurate records, inadequate drug accountability, inadequate completion of in-
formed consent forms, failure to report adverse drug reactions, failure to obtain docu-
ment subject consent, failure to notify an Institutional Review Board or Ethics Commit-
tee of changes or progress reports, failure to obtain or document Institutional Review
Board approval by Gupta [24].

4.5.5 Reasons why somebody commits fraud or misconduct

Reasons for fraud or misconduct in clinical trials are disparate from professional to per-
sonal. Fraud could be ambition like professional over to become famous, prestige being
a part of international clinical trials or financial interests. Sometimes it could be lazi-
ness of the researcher or necessity repeat assessments for complex study. For example,
repeating blood pressure measurements because blood pressure was rounded off to near-
est 5 mm. Misconduct can happen when an investigator strongly believes intuitively
in the "right" answer and does not respect the available evidence being contrary, due
to ignorance or although due to oversight of the study. Misconduct can be backdating
the subject’s signature on a consent form because the subject forgot to date the form
initially. Reasons for both include pressures for promotion and tenure, competition
among investigators, ego, personality factors and conflicting personal and professional
obligations. Existence of explicit versus implicit rules, penalties and rewards attached
to such rules could be too reason for fraud or misconduct by Gupta [24].

4.5.6 Reasons why participants commit fraud or misconduct

Reasons why patients commit fraud or misconduct are various. Participant can be so
interested in research that they can feel better or worst then their state of health is.
But for example, it did not change the result of their blood tests. Bigger problem is
when participants regularly cheat. The degree of cheating in one trial is a whopping 30
% by Marshall [25]. Participants forget to use medicine sometimes or they intentionally
do not use medicine. Another type of cheating is dual enrolment into more then one
clinical studies at one time by Barry [26]. All these types of cheating can change the
result of clinical trial. Cheating in clinical trial is violation and can be classify like fraud
or misconduct.

4.5.7 Impact of fraud and misconduct

The impact on affected individuals or research community could be significant. Fraud
or misconduct can lead to repeating some aspects of research, which were fraudulent.
Such incidents result in huge cost to the pharmaceutical company and also huge con-
sequence for researchers. Disciplinary action can be lead with affected researchers or it
may not be allowed them to be part of any advisory committee or peer review board.
Articles publishes by such a researcher might be re-reviewed and retracted if required.
Fraudulent clinical research affects the validity of data, what’s more it affects rights,
safety and well-being of research participants. In worth case, we would be able to buy
ineffective or harmful molecules in the market by Gupta [24].
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4.5.8 Detection of fraud and misconduct

Fraud or misconduct in clinical trials can be committed by all sites involved in clini-
cal trial. There are a lot of inspecting mechanisms. Companies interested in clinical
trial have their own mechanisms, even every country has owns regulations but every
mechanism is aimed on another par of clinical fraud or misconduct.

Organization like Institutional Review Board and Ethics Committee should be active
in strengthen research misconduct and fraud detection. They protect interest of research
participants, simplification regulations and they made regulations more effective. They
should have internal controls and review mechanisms for monitoring the ethical and
quality aspects of ongoing studies.

One way how to detect fraud or misconduct is by data analysis. Data analysis
can be done during the conduct of clinical trial. Warning signals can be excessive
instances of perfect attendance on the scheduled day, 100% drug compliance, identical
lab on electrocardiogram results, no serious adverse events reported or subjects adhering
perfectly to a visit schedule [24]. Data analysis can be used like control mechanism by
pharmaceutical companies as well as by government’s organizations and institutions.

For example, FDA in USA is the most important in prevention and detection frauds
in USA. If researchers have not compliance with the regulatory requirements or has
engaged in fraudulent activity, then the FDA has the power to disqualify the investigator
from taking part in further research [24].

4.5.9 Prevention of fraud and misconduct

Fraud and misconduct has many different forms as was explained above. Each form
has different characteristic and should be solve particularly. Every pharmaceutical
company has to solve this problem but they keep in secret detection process of fraud or
misconduct. Also every country has own regulations of clinical trials to prevent research
fraud. Generally it is impossible to prevent all fraud and misconduct that can be in
clinical trial [24].

e "Adopt zero tolerance-all suspected misconduct must be reported and all allega-
tions must be thoroughly and fairly investigated."

e "Protect whistle-blowers-careful attention must be paid to the creation and dis-
semination of measures to protect whistleblowers."

e "Clarify how to report-establish clear policies, procedures and guidelines related
to misconduct and responsible conduct."

e "Train the mentors-researchers must be educated to pay more attention to how
they work with their junior team members."

e '"Use alternative mechanisms-institutions need continuing mechanisms to review
and evaluate the research and training environment of their institution, such as
internal auditing of research records."

e "Model ethical behavior-institutions successfully stop cheating when they have
leaders who communicate what is acceptable behavior, develop fair and appro-
priate procedures for handling misconduct cases, develop and promote ethical
behavior and provide clear deterrents that are communicated."

4.5.10 FDA inspections

FDA conducts clinical investigator inspections to determine if the clinical investigators
are conducting clinical studies in compliance with applicable statutory and regulatory
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requirements. Clinical investigators are required FDA investigators to access, copy, and
verify any records or reports made by the clinical investigator.
FDA conducts both announced and unannounced inspections of clinical investigator
sites, typically under the following circumstances [27]
e "to verify the accuracy and reliability of data that has been submitted to the
agency
e as a result of a complaint to the agency about the conduct of the study at a
particular investigational site
e in response to sponsor concerns
e upon termination of the clinical site
e during ongoing clinical trials to provide real-time assessment of the investigator’s
conduct of the trial and protection of human subjects
e at the request of an FDA review division
e related to certain classes of investigational products that FDA has identified as
products of special interest in its current work plan (i.e., targeted inspections based
on current public health concerns)."

4.5.11 Conclusion

This clinical trial summary gives us an overview of the area where medical companies
develop new drug and potential medicine. Even it gives us guideline how to create a
model for planning inspection.
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5 Formalization

In this chapter the models of inspection scheduling problem are described. This chapter
is divided into two sections. The first section deals with model of budget division. The
second section deals with inspection scheduling problem in one Phase of clinical trial.

5.1 Scheme of the clinical trial

The scheme of the clinical trial represents a distribution of the global budget into
partial budgets of individual phases. The budget of individual Phases is used to finance
inspections in these Phases.

Every Phase has a different specification. Every phase is specified by the number of
control weeks in the Time period and has some critical moments and every moment is
critical by a different way. The results of critical moments decide about the future of
the tested drug. The decision can be rejection of the drug or continuation of the clinical
trial. A wrong rejection of an applicable drug means a potential loss of profit for the
company if the drug is effective.

The pharmaceutical company needs correct data for the correct decision of the future
of the drug for profit maximizing. Correct data are provided by inspections which are
expensive and the cost of one inspection is different for each Phase of clinical trial. For
example, inspection in one control week in Phase I is cheaper than in Phase III because
less patients participate in Phase I. The best case is, if every Phase of clinical trial
would be absolutely covered by inspections but it is not always possible. Thus, the goal
of the complex scheme is to show risks with different share of inspection. It will helps
pharmaceutical company to divide global budget effectively.

The description of the complex scheme is shown in Figure 8.

Main budget

Budget for phase | ? Budget for phase lll ?

Budget for phase I ?

P P
Yes< Yes< TP ———> Reward
EP FP Ye5<
Phase | Successful? Phase Il Successful? Phase Il Successful?
Doctor’s reliability| Doctor’s reliability| Doctor’s reliability FP Dead loss
Budget | Budget Il Budget Il
™ N ™
No < No < No <
FN FN FN
Testing fail Testing fail Testing fail

Figure 8 A scheme of dividing budget to three phases of clinical trial
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5.1.1 Model of budget division

This model of budget division can be represented as a decision tree. The model of the
decision tree focuses on the problem when a pharmaceutical company has a working
drug in testing and another company has a similar drug. Then the other company
may wants to thwart development of the drug in our pharmaceutical company. Briefly,
they can bribe the doctor who works for our pharmaceutical company and then the
doctor will want to conduct fraud by changing the result of testing. Thus, an inspector
has to inspect the doctor every control week if the pharmaceutical company wants to
absolutely know that the data are correct. But the pharmaceutical company has a
limited budget for inspections and they have to divide budget in the most effective way.
The decision tree can help them to decide about the budget because the decision tree
shows them the decomposed problem of the budget division and potential risks. The
decision tree for division budget into three Phases of clinical trial is shown in Figure 9.

Budget Division: Decision tree description

This decision tree is modeled for three different Phases of clinical trial. Every Phase
has different parameters, such as number of control weeks in Time period, different
importance of each week and a cost of one inspection. For example, Phase I can be
defined with the following parameters: 3 control weeks in Time period, the impor-
tance of control weeks {0.5,0.8,1} and the cost for inspection in one control week is 1.
Phase II can be defined with the following parameters: 4 control weeks in Time period,
importance of control weeks {0.9,0.8,0.7,1} and cost for inspection in one control week
is 3. Phase III can be defined with the following parameters: 5 control weeks in Time
period, importance of control weeks {0.6,0.8,0.9,0.5,1} and cost for inspection in one
control week is 10.

The pharmaceutical company faces the decision problem how much they have to
inspect in each Phase. This decision problem is simplified to a problem with branching
factor b = 3 (however, in reality, the branch factor is much larger). It means that the
number of inspected weeks in each Phase can be 1/3 or 2/3 of weeks in the Time period
or every week in the Time period.

If we have defined all previous parameters then values of leaves nodes have to be
defined. Then the decision tree as is shown in Figure 9 can be then evaluated. This
decision tree contains two types of nodes — G-nodes and Phase-nodes which are eval-
uated in a different way. G-node (uncertainty node) computes solution for one Phase
using game-theoretic approach, as is described in following Section (5.2). Parameters
for game depend on the type of Phase (i. e. Phase I, Phase II etc.) and the number
of inspections. The simulation of the game with defined number of inspections gives us
probability of following actions — FN (leaf node) and TP (node of following phase). FN
represents the probability that the data from the Phase are changed by the doctor and
TP represents that the data are correct. Phase-node represents decision node. Possible
actions in decision node are different options how much the inspector can inspect the
doctor. The pseudo-code of this algorithm is shown in Algorithm 1.

Algorithm of Decision tree description

The Algorithm (1) starts with function buildTree with the input node n.(1). The node
ne is initial node and his type is t. The type t represents a group of all possible
types of nodes in the decision tree. Specifically, type t£ is type of Phase node and a
represents the number of the Phase (i.e Phase I, Phase II etc.). Type t& represents
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Algorithm 1 The decision tree

function BUILDTREE(n.)
switch n..getType() do
case tI’: BUILDPHASE(n., d1, I, t¥, ¢1)

(
case t}: BUILDPHASE(n, da, I, t§, c2)
(

case t{: BUILDGAME(n,, di, Pi, t})
case t§: BUILDGAME(n,, d2, Py, t)
case t§: BUILDGAME(n,, d3, Ps, t")
case t& n..Value < 100000

10: end function

11:

12: function BUILDGAME(n., d, P, t)

13: p < SSE(d, n..getInspections, P)

14: nry < addFNNode(n,, p.getFN, value-0, t¥)

15: nrp < addTPNode(n., p.getTP, t)

1:
2
3
4
5 case t{: BUILDPHASE(n., ds, I3, t$, c3)
6
7
8
9

16: nrp < BUILDTREE(nrp)

17: ne.Value < npp.getValue - npp.getProbability
18: end function

19:

20: function BUILDPHASE(n,, I, t, ¢)
21: for all i € I do

22: cost < i - ¢ + nc.getPreviousCost

23: if cost < maxBudget then

24: Nep, < BUILDTREE(new Node(ne, t, cost, 7))
25: ne.addChildren(n.p)

26: end if

27: end for

28: end function

Game and type t© represents Leaf. Number of control weeks in Time period for one
Phase is represented in algorithm as d, where a is index of corresponding Phase. The
1, represents group of choices how to inspect in Phase a and the cost of one inspection
in Phase a is represented as c,. Set of weights for weeks in the Time period in Phase a
is stored in P,. Values of dg, I, cq, P,, with a ranging from 1 to 3 and maxBudget are
given by default.

As was previously stated, the Algorithm (1) starts in function buildTree (1) which
defines the decision tree level by level and the function recursively builds the Decision
tree. Because the Decision tree contains two types of internal nodes—Phase node and
Game node, the function buildTree builds the Decision tree with help of two other
functions.

The function build Phase (20) has one of the input arguments node n.. This function
generates possible children of the node n. (24, 25). The type of the node n, corresponds
to the Phase node which is represented as a decision node. The set of possible decisions is
set of choices how to inspect current Phase under constraint that the cost of inspections
in this Phase and previous Phases is equal or lower than the maximal budget (23). For
example, if the Time period contains three weeks and the maximal budget is enough
for three inspections then possible decisions are inspect one, two or three weeks in the
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Figure 9 Decision tree for budget division

Time period. The Decision tree is recursively build with all possible children node of
input node n. (24).

The function buildGame (12) plays game of the previous Phase with the given number
of inspections (see Section 5.2). Then this function generates two children nodes for the
input node n. (14,15). The first child node is a leaf node npy (14) which represents
option that doctor changed the result of the testing and the inspector does not know
about it. The value of this node is equal to zero. The second child node is positive
node npp (15) which contains probability that the inspector correctly inspects data.
The decision tree is recursively built with the node nyp (16).

5.2 Formalization of the inspection scheduling problem in one
Phase

5.2.1 Problem definition

The model with formalization of the inspection scheduling problem in one Phase rep-
resents the interaction between the doctor and the inspector in a single Time period of
Phase.

Time period P is the duration of one phase of the clinical trial. It is represented as
a number of control weeks in which the patients are controlled by the doctor and the
number of control weeks depends on the type of the drug and type of the Phase.

Doctor controls patients in the control weeks. The doctor wants to perform fraud in
this type of model. But he prefers not to be revealed by the inspections. The doctor
can be only one person if the trial is small. If the trial is bigger and it needs more
doctors then the doctor represents group of doctors who want to do fraud.
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Inspector is a member of pharmaceutical company and he is the person who is re-
sponsible for detecting and preventing frauds. Every Phase has a given budget for
inspections. The size of the budget is represented as the maximum number of inspec-
tions which inspector can realize in the Time period. He leads inspections and if he
inspects doctor who cheats, he detects the fraud.

The goal of our model is to find the schedule of inspections for inspector which will
maximize the probability of detecting doctor’s fraud our deter the doctor from conduct
fraud altogether.

5.2.2 Decomposition of type of games with different complexity

In this section, models of the two-person security games with different complexity are
analyzed. In these games, one agent is defender and the second agent is attacker.
In model of inspection problem, the defender is inspector and the attacker is doctor.
Defender wants to protect attacker’s targets from attacker’s attacks. Models could have
parameters like zero-sum vs. non-zero sum, simultaneous move vs. leader-follower and
types of models are shown in following table.

‘ Zero-suin ‘ non-zero sum
Game 1 Game 2
Game 3 Game 4

simultaneous move
leader-follower

Decomposition of Game 1 and Game 3

Both these games are zero-sum games. Nash equilibrium is used for solving Game
1 where both agents play simultaneously. Strong Stackelberg equilibrium is used for
Game 2 where defender is the leader and the attacker is the follower. Defender has to
suppose that attacker will obtain leader’s strategy.

In some situations follower may chooses to act without acquiring leader’s security
strategy. Especially, if the security measures are difficult to observe. Then the leader
faces an unclear choice about which game to play in this case Game 1 or Game 3.
Relationship between the NE in Game 1 and SSE in Game 3 strategies in security
games is following. For finite two-person zero-sum security games, it is known that
game theoretic solution concepts of NE and SSE give the same strategy [4].

In general settings, the equilibrium strategy can in fact differ between the game with
NE and SSE. But the Nash equilibrium strategies of zero-sum games have a property
in that they are interchangeable [28].

Decomposition of Game 2 and Game 4

Both these games are non-zero sum and they are derived from previous Games 1 and
2. The typical solution concept applied to Game 2 is Nash equilibrium and Strong
Stackelberg for Game 4.

Defender faces the same problem, which game to play. But answer in non-zero sum
games is not as straight as in zero-sum games. However, if the non-zero-sum game
is security game (2.4.1) and satisfies the SSAS (Subset of Schedules Are Schedules)
property, then the defender’s set of SSE strategies is a subset of his NE strategies [4].

In conclusion, the zero-sum game using Nash Equilibrium, however, we solve the
non-zero-sum game using Strong Stackelberg Equilibrium, which is more realistic in
real-world inspection scheduling problems.
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5.2.3 Security game of the inspection scheduling problem in one Phase

Security game of the inspection scheduling problem in one Phase contains two agents,
doctor and inspector. The inspector is defender of the game and the doctor is attacker.
Both agents have set of strategies which can play.

The doctor is player who wants to perform fraud. He knows that he is checked by
the inspector but he knows only probability of the inspections for every control week
in the Time period. The doctor’s strategies contain two types of weeks. The first
type is week when the doctor correctly works and the second type is week when doctor
performs fraud. So, the doctor’s strategies are permutation with repetition of two-
choices (cheating week and normal week), which are repeated r-times and r correspond
to number of control weeks in the Time period.

The inspector is player who has profit when he detects or prevents doctor’s fraud. The
inspector has given number of inspections and this number of inspections corresponds
to the given budget for inspections in one Phase. Inspector’s strategies are permutation
of vector, which size is equal to number of control weeks in the Time period and which
contain on x positions 1 where x is equal to number of inspections and other positions
contain 0 which represent any inspection in the week.

There are examples of doctor’s T' and inspector’s S strategies. Let’s imagine the
following situation, the Time period contains three control weeks and the inspec-
tor can inspect in two control weeks in the Time period. Then the set of inspec-
tor’s strategies is S = {110,011,101} where 1 state represents inspection and 0 state
represents no inspection in corresponding control week. The doctor’s strategies are
T = {000, 100,010,001,011, 101,110,111} where 1 state represents fraud and 0 repre-
sents no fraud in corresponding week.

The doctor has a pay-off matrix based on doctor’s utility function, where every
doctor’s strategy is evaluated with every inspector’s strategy. The inspector has a
pay-off matrix based on inspector’s utility function, where every inspector strategy is
evaluated with every doctor’s strategy.

5.3 Utility models

5.3.1 Time-independent utility model

Model time-independent works on game described in Section (5.2.3). The model rep-
resents the inspector as a leader and defender in the game and the doctor is a follower
and attacker.

The inspector wants to find the best commit to mixed strategy which will represents
his effort to detect and prevent doctor’s fraud. The doctor wants to perform fraud but
he does not want to be detected by the inspector. The doctor knows the leader’s mix
strategy and he wants to play the best strategy to the leader’s strategy.

In this model, all weeks in the Time period has the same importance. Both players
in this model want to maximize their utility function.

Doctor’s utility function

Doctor’s utility function Up reflects the type of doctor who is inspected. Without
inspections the doctor is strongly inclined to perform a fraud. Another type is doctor
who does not want to perform fraud.

In this type of game is expected that the doctor wants to perform fraud because he
expects some reward. Thus, if the doctor performs fraud only in one control week in the
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5 Formalization

Time period his reward is much lower than if the doctor performs fraud every control
week in the Time period but even the risk is bigger.

When the doctor’s fraud is detected by the inspector then the doctor expects a
punishment. The doctor knows what the punishment is. For example, the doctor
has to pay a penalty to the pharmaceutical company. This fact is written in the
doctor’s agreement with the pharmaceutical company. Thus, if the doctor knows about
the punishment and he still wants to do fraud, his reward has to be higher than the
punishment. In another way, the doctor would not be enough motivated to do fraud.

The doctor is rational and he wants to maximize his utility function Up. The doctor’s
utility function can be defined as sum of values of each doctor’s control weeks in the
Time period as in Equation (5). The value of each week is represented in the following
Equation (4). Where P is Time period, d is one week of Time period, vé) is value of
single week d for the doctor, t is doctor’s pure strategy, s is inspector’s pure strategy
and Up is doctor’s utility function.

loss if ty=cheat and s;= inspection
vP = profit  else if ty=cheat and sy= no inspection (4)
0 else

Up =3 vi (5)

deP

Inspector’s utility function

The inspector’s utility function U; reflects inspector’s mission. He is a member of
the pharmaceutical company and he is responsible for the correct data from the testing.

His inspections have to detect fraud if the doctor performs fraud and have to have a
prevention effect. Thus, the inspector fails in his function, when he does not detect the
doctor’s fraud in any week in the Time period and the doctor performs fraud in some
weeks in the Time period. It means that his schedule for inspecting the doctor was not
good. If the doctor does not perform fraud in any control week in the Time period,
the inspector gets the same reward as if he detects doctor’s fraud. Because when he
inspects and the doctor does not perform fraud it can be due to the prevention effect
of his inspections and it means, that schedule for inspections is good.

We can represent inspector’s utility function as equation (8). Where P is Time
period, d is one week of Time period, ¢ is doctor’s pure strategy, s is inspector’s pure
strategy and Ug is inspector’s utility function. Inspector’s week d when the inspector
does not inspect and the doctor cheats is captured by the vév ' variable. Inspector’s week
d when the inspector inspects and the doctor cheats is captured by the vé variable.

1 if ty=cheat and sy= no inspection
vt = (6)
0 else
1 if ty=cheat and s;= inspection
vy = (7)
0 else
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1 iy vh>0
deP
Ur=4 0 else ifz v >0 (8)
deP
1 else

Example of utility functions

Let’s imagine the following situation. The time period has three weeks and the inspector
will inspect only one control week in the Time period. The doctor’s profit is 60 and the
doctor’s loss is -40 for counting his utility function.

For example, the doctor’s strategy is ¢ = {011} and inspector’s strategy is s = {001}.
Thus, doctor will do fraud at the second and at the third week and inspector will inspect
the third week.

Then doctor’s utility function Up(t, s) is sum of fucll):l =0, 1)6?22 = 60, and vfl):?) = —40.
Therefore, doctor’s utility function is Up(¢, s) = 20.

Inspector’s utility function U;(t, s) work on U£:1 =0, vézz =0, and 0523 = 1. Thus,
inspector’s utility function is Uj(t, s) = 1.

5.3.2 Time-dependent utility model

Doctor model time-dependent is derived from the Doctor model time-independent.
The main difference is in the importance of control weeks in the Time period. Some
control weeks are more critical. The importance of weeks in the Time period depends
on the type of the drug and the Phase.

For example, the first control week is very important, because we will compare state
of health before the drug starts to effect and after. Thus, the effect of the drug would
be the most dynamic in the middle of the Time period and the result of these weeks are
really important. But some weeks can be only control weeks for patients, if they really
use the drug correctly and if the patients have the right amount of drug in their blood.
The result is that some weeks are more important in decision making of the future of
the drug.

The doctor and the inspector have experience with the clinical testing and they both
know which weeks are important in decision making of the future of the drug.

The different importance of control weeks changes the utility functions from the
previous model.

Doctor’s utility function

Doctor’s utility function Up is derived from Doctor’s utility function in Section (5.3.1).
The doctor has the same goal but he knows the importance of the control weeks in the
Time period.

As before, the reward gives him somebody who wants to change the results of testing
as much as possible. Thus, if doctor cheats in less important control weeks in the Time
period, the reward is lower than if the doctor cheats in more important control weeks
in the Time period.

The doctor is rational and he wants to maximize his utility function. The doctor’s
utility function can be defined as the sum of values of every doctor’s control week in
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Time period as is shown in equation (10). Where P is Time period, d is one week in
the Time period, UdD is value of single week d for the doctor, ¢ is doctor’s pure strategy,
s is inspector’s pure strategy and Up is doctor’s utility function.

loss if ty=cheat and s;= inspection
vP =< profit - i? else if t;=cheat and sy= no inspection 9)
0 else

D
Up=>)_ v (10)
deP

Inspector’s utility function

The inspector’s utility function U; is derived from the inspector’s utility function in
Section (5.3.1). Inspector has the same goal but he knows the importance of the
control weeks in the Time period.

Inspector’s utility function is represented in equation (14). Where P is the Time
period, d is one control week in the Time period, t is doctor’s pure strategy, s is
inspector’s pure strategy, Uy is inspector’s utility function and « represents weights
of control weeks in the Time period. Inspector’s week d when the inspector does not
inspect and the doctor cheats is captured by the U(Jiv I variable. Inspector’s week d when
the inspector inspects and the doctor cheats is captured by the vﬁl variable.

1 if t(d)=cheat and s(d)= no inspection

o) = (11)

0 else

1 if t(d)=cheat and s(d)= inspection

g (12)
0 else
. d
Qmaz = mazx{a®} (Vd € P | t(d) = cheat & s(d) = inspection) (13)
1 Qg i) 05 >0
deP
U=4{0 else ifz véw >0 (14)
depP
1 else

Example of utility functions

Let’s imagine the following situation. The Time period has three weeks and inspector
will inspect only in one control week in the Time period. Importance of 15t week is 0.2,
of 2" week is 0.7 and of 3" week is 0.9. Doctor’s profit is 60 and doctor’s loss is -40
for counting doctor’s utility function.

For example, doctor’s strategy is ¢ = {011} and inspector’s strategy is s = {001}.
Thus, doctor will do fraud at the second and at the third week and inspector will inspect
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the third week.
Then doctor’s utility function Up(t, s) is sum of

vl =0, v, = 60-0.7, and v ; = —40. Therefore, doctor’s utility function is
Up(t,s) = 2.

Inspector’s utility function Uj(t,s) work on 9521 = 0, 1)5:2 = 0, and Ué:g = 1.
And Qmag 18 Qmae = maz{a®™3} = max{0.9}. Thus, inspector’s utility function is

U[(t, 8) =0.9.

Conclusion

The utility models described in this section are used for non-zero sum game, which is
counted by Strong Stackelberg equilibrium. The goal of this game is to find for every
control week in the Time period probability that the inspector will inspect the doctor.

5.3.3 Zero-sum game approximation

In this subsection, zero-sum game approximation is presented. This game contains two
agents—doctor and inspector. Doctor’s utility function Up reflects the incentive of a
doctor who wants to do fraud and without an inspection he is strongly inclined to do
so. Thus, the doctor’s utility function is represented in the following Equation (17).
Where P is Time period, d is one week of Time period, ¢ is doctor’s pure strategy and
s is inspector’s pure strategy and. Label of the inspector’s week d when the inspector
does not inspect and the doctor cheats is vév I Inspector’s week d when the inspector
inspect and the doctor cheats is captured by the vé variable.

1 if t(d)=cheat and s(d)= no inspection

vy = (15)
0 else

1 if t(d)=cheat and s(d)= inspection

vh = (16)
0 else
—1  if> vi>0
deP
Up=141 else ifz véw >0 (17)
deP
0 else

Then, the doctor’s utility function is defined as Uy = —Up.
For this type of game the solution is found by Nash Equilibrium.
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6 Solution

Practical implementation of solution concepts for solving inspection planning problem
was implemented in Java SE 8. These concepts contain LP problems which were solved
by IBM solver CPLEX.

6.1 Solution of Security game of the inspection problem in
one Phase

The game contain two agents—doctor and inspector.

The values of every pair of inspector’s strategy and doctor’s strategy is stored in
three-dimensional matrix A,, ,, , where each ith row correspond to ith doctor’s strategy
and j% column correspond to j** inspector’s strategy. Each cell has values given by
utility functions of pair of i*" doctor’s strategy and j** inspector strategy for doctor
Up(i,j) in matrix Ay, 2 and for inspector U(i,j) in matrix Ay, p 1.

Ur(1,1) - Up(ln)
Amn = : :
U(m,1) --- Ur(m,n)
UD(l,l) UD(l,n)
Ammz =
Up(m,1) --- Up(m,n)

This representation is implemented in class Matriz.

6.1.1 Solution for inspection planning problem computed by NE

First, we solve computationally easier zero-sum game with opposite utilities (see Sec-
tion 5.3.3), where both agents plays simultaneously. The doctor has the set of pure
strategies T and the inspector has the set of strategies S. This game is implemented in
class InspectionProblemNash.

The solution of this game is found by linear program (18) for computing Nash equi-
librium [1]. Variables in this linear program are mixed strategy terms ps and v. This
linear program gives us inspector’s mixed strategy in equilibrium.

min v
subject to
VteT ZpS'UD(s,t) < v
seS (18)
Z bs = 1
seS
\V/S S S Ps 2 0
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6.1.2 Solution for inspection planning problem computed by SSE

Inspection planning problem is represented as security game with to commit to strategy.
This problem is implemented in class PlaningInspectorScheduleProblem.

As was previously stated, the game has two players — doctor and inspector. The
doctor has the set of pure strategies 1" and inspector has set of pure strategies S.

Then SSE can be computed as presented by Conitzer and Sandholm et al [2]. For
every pure doctor strategy ¢ a mixed strategy for inspector is computed while assuming
t is a best response for the doctor’s mixed strategy. The SSE can be computed using
the following linear programs (19). Variable p; is a probability of s* inspector strategy.
Linear programs are solved with the CPLEX solver.

Vvt € T max Zps ~Ur(s,t)

s€S
subject to
vi' e T Zps'UD(s,t) > Zps-UD(s,t’) (19)
seS seS
Zps =1
s€S

If the linear programs are solved with a single best solution for the inspector then the
inspector knows probability for each of his strategy. If the linear programs are solved
with more than one possible solution then the inspector has set of mixed strategies
which has for the inspector the same value computed by inspector’s utility function.

6.2 Implementation

As it has been mentioned, the the algorithms for compoting Nash and SSE were imple-
mented in Java SE.

The utility functions described in Section (5.2.3) are implemented in class Utility F'D TimeDep
for the doctor and in class UtilityL C'TimeDep for the inspector. The values of the util-
ity functions for pairs of doctor and inspector strategy are stored in three-dimensional
matrix which is implemented in classMatriz.

The solution for inspection schedule problem solved be NE described in Subsec-
tion (6.1.1) is implemented in class InspectionProblemNash. The solution for the in-
spection schedule problem solved by SSE described in Section (6.1.2) is implemented
in class PlaningInspectorScheduleProblem. The concept for finding SSE solution for
inspection schedule problem from Section (6.1.2) is computed as the set of linear pro-
grams, where each linear program is solved by the IBM CPLEX solver. Some of these
linear programs may be in-feasible if these programs are solved for some doctor strate-
gies t. For example, if ¢ is a doctor’s strictly dominated strategy (see Section 2.4).

The decision tree for budget division is implemented in class Tree and the j-graph
library is used for the visualization this decision tree.
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7 Evaluation

In this chapter, we evaluate algorithms proposed above. This chapter is divided into two
sections. The first section deals with the evaluations of inspection scheduling problem.
We focus on evaluation SSE, because NE is less computationally hard and it is less
realistic. The second section deals with the problem of budget division.

All test in this chapter were performed on synthetic data.

7.1 Deployment to saturation ratio

In this section, we will focus on the runtime required by the algorithm with different
parameters and finding the hardest combination of them. In this case, the parameters
are number of weeks in the Time period and number of inspections. The number of
weeks must be minimally equal or higher than number of inspections.

The evaluation in this section is based on the concept of deployment to saturation
(d : s) ratio. The concept shows that the problem exhibits a phase transition at 0.5 for
random Stackelberg Security Game instances [29], and shows that the hardest instances
arise at this point. The (d : s) ratio has the following definition: the deployment refers
to the number of defender’s resources available to be allocated, and the saturation
refers to the minimum number of defender’s resources such that the addition of further
resources beyond this point yields no increase in the defender’s expected utility. In this
case the (d : s) ratio is represented as the number of inspections divided by the number
of weeks in the Time period.

Experiments were executed on Intel i7 processor with 16 GB RAM and CPLEX 12.5
was used as the LP solver. The evaluation was executed for number of control weeks
ranging from 1 to 9 with a random value of each day in the Time period. The evaluation
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Figure 10 Deployment to saturation ratio
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for number of weeks less than five in the Time period has very similar computation
time for different number of inspection. In this evaluation we focus to find the hardest
combination of input parameters. Thus, we focus on the number of weeks higher than
4.

The scenarios for the evaluation had the initial number of control weeks in the Time
period ranging from 5 to 9. For each scenario the test was executed for number of
inspections ranging from 1 to i, where i refers to the number of control weeks in the
Time period. Every test of scenario was executed 10 times. The average results of tests
are depicted in Figure 10. The x-axis contain (d : s) ratio, it is number of inspections
divided by the number of control weeks in the Time period. The y-axis represents the
runtime in milliseconds and it has a logarithmic scale.

We can see the expected result of the graph in the Figure 10. The worst cases of
input argument are those around (d : s) = 0.5. On the other hand cases with minimal
and maximal (d : s) ratio are the easiest to compute. This result is expectable because
it matches sizes of pay-off matrix which are the largest around (d : s) ~ 0.5 than in
other values of the (d : s) ratio.

7.2 Comparison inspector’s strategy computed by SSE with
other types of strategies

Inspections can be planned by many different ways. In this section we compare strategy
computed by Strong Stackelberg equilibrium with greedy strategy and uniform strategy.

Strategies are planned for scenario with eight control weeks in the Time period and
four inspections. The importance of the control weeks in the Time period is shown in
Figure 11. The first day is very important because doctor measures patients health
before the drug will have an effect. Than the drug is the most effective at the fourth
and the fifth control day. The doctor can measure effectiveness of the drug and results
are very important for the pharmaceutical company. Next control weeks will not show
so much about effectiveness of the drug but the last day is important for the next
comparison with previous results of the testing. This fact about day importance is
known to the doctor even as the inspector.

In these evaluation, we expect the doctor is motivated to do fraud, thus the doctor’s
utility function will be computed with the loss equal to -40 and with the profit equal
to 60.

7.2.1 Strategy computed by strong Stackelberg equilibrium

The best strategy for the inspector computed by a Strong Stackelberg equilibrium is
shown in Figure 12. The inspector will commit to this strategy and the doctor’s best
response to the inspector’s strategy is shown under the inspector strategy in Figure 12.
Then value of inspector strategy is equal to 1 and value of doctor strategy is equal to
19.9.

7.2.2 Greedy strategy

The inspector can also choose not to compute the SSE, however, use a more simplistic
greedy strategy. The inspector easily chooses the most important weeks in the Time
period and he will only inspect the most important weeks. The doctor will respond
to the inspector’s strategy and the doctor will perform fraud in the weeks when the
inspector will not inspect as it is shown in Figure 13.
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The importance of days
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Figure 11 The importance of control weeks in the Time period
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Figure 12 SSE Strategy with 8 control weeks in the Time period and 4 inspections

Thus we can see that in some weeks the doctor can easily cheat and he knows that
inspector will not inspect him. Even if the doctor does not cheat in the most important
weeks, he can change the result of the trial. So, this type of inspector’s strategy does
not have any preventive effect and value of inspector strategy is equal to just 0.0 and
value of doctor strategy is equal to 135.

7.2.3 Uniform strategy

Another strategy for the inspector is uniform strategy. The inspector’s strategy will
have the same probability of inspection in every control week of the Time period as it
is shown in Figure 14. Then the doctor’s best response is cheat every week and value
of inspector strategy is 0.9 and value of doctor strategy is 36.5.
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7.2 Comparison inspector’s strategy computed by SSE with other types of strategies

c
-% Leader - Ispector strategy
2
7]
£
S
ey
z
© 1 | | |
2 2 3 4 5 6 7 8
T Weeks
BFraud
Follower - Doctor strategy [ INo Fraud
4 5 6 7 8
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Figure 14 Uniform strategy with 8 control weeks in the Time period and 4 inspections

7.2.4 Summary

All strategies presented above are possible for inspector. But if we compare them by
the value of the inspector’s strategy the worst is greedy strategy. If the doctor is clever
and he wants to perform fraud, it is really easy for him to change completely the results
of the Phase in the less important control weeks. Additionally, he can cheat and knows
that he will not be inspected. Greedy strategy is very bad strategy with no prevention
effect in comparison with other types of inspector’s strategies.

Uniform strategy has a higher value of inspector strategy than greedy strategy. The
value of inspector’s strategy is greater than the value of the greedy strategy, but if we
focus on the doctor’s best response to the inspector strategy, the doctor cheats in the
the most important weeks and in more then half weeks in the Time period. Even if
inspector’s strategy covers weeks when the doctor performs fraud but the strategy does
not cover these days optimally. Thus, we can see that this inspector strategy has not
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Time period

enough prevention effect. Moreover, inspector’s strategy motivates doctor to cheat in
the most important weeks and change the result of the Phase.

The highest value of inspector strategy has a strategy computed by the Strong Stack-
elberg equilibrium. We can see that the best response for the doctor is to cheat only in
three weeks. Thus, inspector’s strategy computed by the SSE covers the weeks in the
Time period by the most optimal way for a given number of inspections and because
the doctor is strongly motivated to perform fraud the four inspections are not enough
to demotivate the doctor to perform fraud. This inspector strategy has bigger preven-
tion effect than inspector’s strategies computed as greedy strategy or uniform strategy.
Thus, the best strategy from these three types of inspector’s strategies is strategy com-
puted by SSE.

Inspector’s strategy type

Value inspector’s strategy

Value of doctor’s strategy

SSE 1 19.9
Greedy strategy 0.0 135
Uniform strategy 0.9 36.5

7.3 Incentives for the doctor to perform fraud

If the pharmaceutical company has not budget to cover every control week in the Time
period by the inspection, then it is useful to know how the doctor reacts to different
numbers of inspections. Thus, the dependence of the value of doctor’s strategy on the
number of inspections will be discussed in this section.

We use a similar scenario as in the previous section. Specifically, the Time period
contains 8 control weeks with importance of weeks as is shown in Figure 11. Doctor is
motivated to do fraud and for counting his utility function is used loss equal -40 and
profit equal 60 and numbers of inspections will increase from 1 to 8. We will focus on
the dependence of doctor’s motivation to perform fraud on the number of inspections
which is shown in Figure 15.

We can see that for one inspection in the Time period the value of the best doctor
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strategy is equal to 260. Then this value steeply decreases with increasing number of
inspections to four inspections where the value of doctor’s best strategy is equal to 19.9.
Then value of doctor’s strategy slowly decreases to six inspections where the value of
doctor’s strategy is equal to 0.

Thus, if the pharmaceutical company in this case uses four inspections to control
the doctor, then they significantly reduce doctor’s motivation to perform fraud. If the
pharmaceutical company wants to demotivate the doctor to perform fraud, they have to
have budget minimally for six inspections. For better idea, comparison of the doctor and
the inspector strategies for four and six inspection’s weeks in the Time period is shown
in Figure 16. We can see that the inspector’s strategy for six inspections in the Time
period covers the important weeks when the doctor is motivated to perform fraud. The
inspector strategy for four inspections in the Time period reduce the doctor’s motivation
to perform fraud but this number of inspections is not enough to demotivated the doctor
to perform fraud.

In conclusion, the doctor will not demotivated to perform fraud if the pharmaceutical
company will cover the Time period with six or more inspections.

7.4 Budget division

If the pharmaceutical company has a limited budget or even if they want to inspect
Phases of testing optimally then the pharmaceutical company wants to know risks and
the optimal solution how to inspect in each Phase of the clinical trial. The model of
budget division which is described in Subsection (5.1.1) as a decision tree is evaluated
in this section with the following Scenario for budget division.

The scenario for budget division contains three Phases of clinical trial. Phase I is
defined with the following parameters: three control weeks in Time period, importance
of weeks in the Time period is {0.5,0.8,0.1} and cost for inspection in one week is
1. Phase II is defined with the following parameters: four weeks in the Time period,
importance of weeks is {0.9,0.8,0.7,1} and cost for one inspection is 3. Phase III can
be defined with the following parameters: five weeks in the Time period, importance of
weeks is {0.6,0.8,0.9,0.5,1} and cost for inspection in one control week is 10. Options
how to inspect Phase I are inspected one, two or three weeks in the Time period.
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Options how to inspect Phase II are inspected two, three or four weeks in the Time
period. And options how to inspect Phase III are inspected two, four or five weeks in
the Time period.

Firstly, Scenario of budget division is evaluated with budget equal to 65. This budget
is enough to cover with inspections every control week in every Phase of clinical trial.
The resulting decision tree is shown in Figure 17.

We can see that the optimal number of inspections in Phase I is two, for Phase II
it is three inspections and for Phase III it is four inspections. Thus, if the Phases are
optimally inspected then they do not be covered have to be the inspection for every
week to guarantee correct data.

Second, scenario of budget division is evaluated with the limited budget which is
equal to 27. The result of evaluation is shown in Figure (18). We can see that Phase I
is covered with two inspections Phase II is inspected only with two inspections and
Phase III is inspected only with two inspections. Previously, Phase II was inspected
with three inspections and Phase I1I with 4 inspections.

Hence, this scenario shows that it is possible to optimally divide the inspections for
limited budget, but the uncertainty that pharmaceutical company receive incorrect data
is higher than for a higher global budget. The uncertainty, that this division of global
budget does not guarantee the correct data is taken into consideration in value of Phase
1 node, which has lower value than in division for higher budget.

For a better understanding, Figures of Budget division, blue node P represents Phase
(i.e Phase I is P1 etc.). Outgoing edges from Phase nodes are possible how much to
inspect Phase. For example ¢ : 2 represents that Phase will be inspected twice in
the Time period. Green nodes represent Game nodes, where the game for specific
Phase with a specific number of inspectionsis computed. Outputs from these nodes
are outgoing edges which represent probability of following nodes. Red nodes represent
leaves, which have a certain value. If the testing finishes successfully with correct data
then the value is 100000, otherwise ti is 0.

In conclusion, we can see that with growing number of inspections the uncertainty
that pharmaceutical company observes incorrect data declines. Additionally, if the
Phases are inspected optimally then Phases could not be fully covered by the inspections
and it helps more effectively to divide global budget into phases and save up global
budget.
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8 Conclusions

The goal of this thesis was to decompose the process of clinical trials and then detect and
prevent the doctor’s fraud in one Phase of the clinical trials by the optimal scheduling
inspections for the inspector. The area of clinical trials is very complicated. Every
Phase has a number of specifications which depend on the type of the drug and on the
type of Phase. Some specifications depend on the pharmaceutical company.

We have proposed a model of the inspection problem in one Phase of the clinical
trial as a game between the pharmaceutical company and the doctor, who controls
participants in control weeks in the Time period of Phase. The pharmaceutical company
is represented be an inspector, who is paid by the pharmaceutical company and he is
responsible for the correct data from each Phase.

Firstly, we formalized the game as a security zero-sum game and we searching for
solution using Nash equilibrium. But the zero-sum game does not reflect differing
interests of agents exactly. Thus, then we formalized the game as a Stackelbeg Security
game, which is closer to reality and which is able to solve the inspection scheduling
problem optimally. In this game, the inspector is leader who tries to prevent the
doctor’s fraud. The inspector commits to a mixed strategy which is observable for
the doctor. The doctor is the follower and he is motivated to perform frauds, i.e., he
wants to change the data from the testing of the Phase. This model was created for
the pharmaceutical company with a limited budget for inspections, and for different
types of Phases. Thus, we defined the game for a limited number of inspections and
for a different number of weeks in the Time period which specifies the type of Phase of
clinical trial.

As a part of formalization of Stackelberg Security game, we have created two utility
functions models how the inspection scheduling problem can be represented. Firstly, we
created time independent model which consider that all weeks in the Time period have
the same importance for the decision about the quality of the drug. Then we extended
this model and we created time dependent model which respects that different aspect
of the drug can be observed in different weeks in the Time period. That implies that
every week has a different importance for the decision about the quality of the drug.

The solution of the Stackelberg Security game for solving schedule problem in one
Phase of clinical trial is found by the set of linear programs, where each linear program
is solved by IBM CPLEX solver.

We created a scenario on which we evaluated the model of inspection scheduling
problem. We found out that for a given number of possible inspections the solution
computed by the SSE demotivated the doctor to perform fraud the most in comparison
with greedy and uniform strategy. We tested how the doctor’s incentives to perform
a fraud decrease with the increased number of inspections and we compared how the
strategies of the inspector and the doctor changed with different number of inspections.
We demonstrated that the doctor is almost completely demotivated to perform fraud
for number of inspections lower than number of control weeks in the Time period if
the inspection schedule is computed using SSE. We also showed via an experiment
that model of inspection problem solved by LP is hardest to solve with deployment-to-
saturation ratio (Manish et. al. 2014) (d : s) ~ 0.5.
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8 Conclusions

We fulfilled all points from the bachelor project assignment. Except the goals spec-
ified in the assignment, we have proposed a model of budget division. This model is
applicable in a situation when the pharmaceutical company knows that the tested drug
is effective with a high probability. Then pharmaceutical company is afraid that some-
body wants to thwart clinical trial of this drug for competitive or adversarial reasons.

The model of budget division is able to plan an optimal number of inspections for
each Phase of clinical trial under the constraint that the cost for all inspections in the
clinical trial has to be equal or lower than the maximal global budget for the clinical
trial. The model expects that one inspection in each Phase has different cost and
that inspections in each Phase are scheduled with the model of inspection scheduling
problem.

We evaluated this model for two types of global budgets. The firs budget was able
to cover completely all Phases by the inspections and the second budget was limited.
We showed that if the Phases of clinical trial were optimally inspected then the optimal
number of inspections for each Phase of clinical trial is lower then number of weeks
in the Time period of the Phase. Thus, even if the company has a budget to cover
completely all Phases by the inspections, it is better to inspect only optimal number of
days, because every extra inspection costs extra money. We showed, that it is possible
to optimally divide budget even for a limited budget but we have to expect that the
uncertainty that pharmaceutical company receive incorrect data is higher.

In conclusion, we described an innovative application of game theory to inspections
of clinical trials. This topic allows future use and extensions. If it would be possible to
extract from historical data doctor’s reliability, this knowledge could be incorporated
into the model to design more effective schedules. This model can be inspiration for
control organizations of clinical trials as FDA which can use analogue of this inspection
models to detect fraudulent behavior of pharmaceutical companies.
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