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Abstract
V této bakalářské práci se věnujeme problému robustního odhadu dvoupohledové ge-
ometrie z mnohonásobných korespondencí. Způsoby, kterými se standardně získávají
tentativní korespondence, zajištují, že se každý zájmový bod uplatní pouze v jediné
potenciální korespondenci. Tyto konstrukce množiny potenciálních korespondencí, ob-
vykle založené na testu poměru vzdáleností [1], nebo na vzájemné blízkosti [2] příznaků,
přirozeně vyřazují potenciálně víceznačné korespondence.

Ukazujeme, že v některých typech scén, například ve scénách obsahujících opako-
vané struktury, nesou mnohonásobné korespondence cenné informace, které mohou být
využity pro vylepšení odhadu geometrie.

Navrhujeme čtyři nové varianty algoritmu LO-RANSAC, z nichž všechny využívají
mnohonásobných korespondencí k tomu, aby v určitých situacích poskytly lepší vý-
sledky než standardní LO-RANSAC.

Shromáždili jsme přes 50 dvojic fotografií ze standardních testovacích datových sad
obohacených o naše vlastní snímky a využili je k otestování navrhovaných algoritmů a
jejich porovnání se standardním algoritmem LO-RANSAC. Na základě výsledků těchto
testů jsme potvrdili, že jeden z námi navrhovaných algoritmů překonává standardní
LO-RANSAC a přitom v případech, které zvládá původní algoritmus řešit dobře, není
výpočetně náročnější.

Klíčová slova
LO-RANSAC; mnohonásobné korespondence; opakující se struktury
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Abstract
In this bachelor thesis, we investigate the problem of robust two-view geometry estima-
tion from many-to-many correspondences. In standard approaches, the construction of
tentative correspondences ensures that each feature point participates in at most one
potential correspondence. Such constructions, typically based on a distance ratio [1]
test or mutually nearest property [2], naturally drops potentially ambiguous correspon-
dences.

We show, that for certain types of scenes, such as those containing repeated struc-
tures, many-to-many correspondences contain valuable information that can be utilized
in order to improve the geometry estimation.

Four new variants of the LO-RANSAC algorithm are proposed, each of them using
the additional many-to-many correspondences in order to get better results than the
standard algorithm in some scenarios.

We have collected more than 50 image pairs from standard benchmark datasets and
our own photos and used them to test all of our proposed algorithms against the state-of-
the-art LO-RANSAC. Based on the experimental results, we have concluded, that one of
our proposed algorithms outperforms the standard LO-RANSAC, while not introducing
any additional computational cost in the cases, when the original algorithm works well.

Keywords
LO-RANSAC; many-to-many correspondences; repeated structures
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1 Introduction

1.1 Motivation
The problem of estimating a two-view geometry and is an essential part of several
computer vision tasks such as wide-baseline stereo matching [3, 2], structure and motion
estimation [4], image retrieval [5] and more.

Contemporary state-of-the-art algorithms achieve good results at reasonable speed on
usual image pairs, but certain scene configurations can effect their accuracy, stability
or speed in a bad way. Moreover, some scenes are even not solvable at all by those
algorithms.

The standard algorithms use one-to-one feature correspondences and usually achieve
good results, but there are certain scenarios that cause them to fail.

We discuss the use of many-to-many correspondences, because they help in some of
these situations and their utilization has not been covered by the literature yet.

1.2 Thesis contribution
This bachelor thesis contributes to the state of the art in two-view geometry estimation
by RANSAC. It provides a discussion about the effective utilization of many-to-many
correspondences. New feature matching strategy is proposed and the newly created
set of tentative correspondences is then utilized in proposed LO-RANSAC algorithm
modifications, outperforming the standard state-of-the-art LO-RANSAC.

1.3 Structure of the thesis
In chapter 2, we start by an introduction to the prior work related to our topic. The
geometry of image matching is briefly described, as well as the standard phases of
image matching, including local feature detection and description and establishing of
the tentative correspondence set. We finish the first introductory part by describing
the RANSAC algorithm and some of its numerous variants.

In chapter 3, utilization of many-to-many correspondences is discussed and four dif-
ferent new RANSAC variants are proposed.

Experimental results are analyzed in chapter 4 and chapter 5 contains the conclusions.
Appendices contain manual for the implementation and all the experimental results.
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2 Prior work

This chapter reviews some of the background of the image matching necessary for
understanding the thesis.

The image matching is done by estimating the two-view geometry relating given
images. The goal is to estimate the geometric model and to find a set of point-to-point
correspondences between the images.

In most of the use cases of image matching, the images are heavily distorted by
various effects, as described later in this chapter, and approaches based on some form
of direct comparison of the image intensities are not suitable. Instead, local feature
based methods are widely used.

The standard approach of image matching consists of three distinct steps. First, local
regions of interest are found in each of the images. They are then represented by an
appropriate descriptor. Second, tentative correspondences are generated by a search in
the descriptor space.

Final step is then to estimate the geometric model from these correspondences by
RANSAC [6] or some other robust estimator.

2.1 Geometric relations between pairs of images

We assume that we have two images taken by a projective camera (i.e. pinhole camera).
Matched photos are usually related by one of the two geometric relations introduced in
the text below.

2.1.1 Homography

A homography is a transformation often relating images in two special situations. The
first one is that of two photos being taken with two cameras sharing one projection
center. This often arises when the images for a panoramic photo are taken with one
camera rotating around its projection center.

The second possible configuration where homography can be used are images of flat
scenes. The camera poses and intrinsic parameters are not restricted in any way and
the only condition that has to be met is that the scene 3D points have to be coplanar.
Planar structures are often found in architecture, so homography can relate for example
two views of one building facade.

Homography can be represented as rank 3 matrix H ∈ R3×3, bounding the pairs of
image points in the following way:

𝜆𝑖𝑥𝑖
′ = H𝑥𝑖 (1)

𝜆𝑖

⎡⎢⎣𝑥′
𝑖

𝑦′
𝑖

1

⎤⎥⎦ = H

⎡⎢⎣𝑥𝑖

𝑦𝑖

1

⎤⎥⎦ (2)
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2.1 Geometric relations between pairs of images

Here 𝑥𝑖, 𝑦𝑖 and 𝑥′
𝑖, 𝑦′

𝑖 are coordinates of the related points in the first and the second
image respectively with respect to the bases of the images. The vectors augmented
with a new row of 1 are called homogeneous coordinates of 𝑥𝑖

′ and 𝑥𝑖

After representing the matrix H by its rows ℎ⃗ᵀ
1, ℎ⃗ᵀ

2 and ℎ⃗ᵀ
3 and rewriting the equation 2

we get:

𝜆𝑖𝑥
′
𝑖 = ℎ⃗ᵀ

1𝑥𝑖 (3)

𝜆𝑖𝑦
′
𝑖 = ℎ⃗ᵀ

2𝑥𝑖 (4)

𝜆𝑖 = ℎ⃗ᵀ
3𝑥𝑖 (5)

then it is possible to eliminate the lambdas from the first two equations

(︁
ℎ⃗ᵀ

3𝑥𝑖

)︁
𝑥′

𝑖 = ℎ⃗ᵀ
1𝑥𝑖 (6)(︁

ℎ⃗ᵀ
3𝑥𝑖

)︁
𝑦′

𝑖 = ℎ⃗ᵀ
2𝑥𝑖 (7)

(8)

and after putting everything to one side

�⃗�ᵀℎ⃗1 −
(︀
𝑥′

𝑖�⃗�
ᵀ)︀

ℎ⃗3 = 0 (9)
�⃗�ᵀℎ⃗2 −

(︀
𝑦′

𝑖�⃗�
ᵀ)︀

ℎ⃗3 = 0 (10)

Then represent these two equations in a matrix form and we get

[︃
𝑥 𝑦 1 0 0 0 −𝑥′𝑥 −𝑥′𝑦 −𝑥′

0 0 0 𝑥 𝑦 1 −𝑦′𝑥 −𝑦′𝑦 −𝑦′

]︃ ⎡⎢⎣ℎ⃗1
ℎ⃗2
ℎ⃗3

⎤⎥⎦ = 0⃗ (11)

Zℎ⃗ = 0⃗ (12)

In order to compute the homography H, the matrix Z must be of rank 8. This is so
because of the fact that if 𝜇H′ = H and 𝜇 ̸= 0, then both matrices represent the same
homography and so we want one-dimensional subspace of rank 3 real 3× 3 matrices.

Therefore we need 4 correspondences as each provide us with two rows of Z. More-
over no three points can be collinear, since such configuration would leave us with
rank (Z) < 8

2.1.2 Epipolar geometry
An epipolar geometry is a relation between two images of the same 3D scene. An
illustration of the scene configuration can be seen in Fig. 1. We denote 𝑋 the scene
3D point and 𝑥1 and 𝑥2 its projections to first and second camera respectively. The
camera’s projection centers are called 𝐶1 and 𝐶2. Their projections to the other camera
images - 𝑒1 and 𝑒2 are called epipoles and the plane formed by the camera centers and
𝑋 is a epipolar plane.

The epipolar geometry is then represented by a fundamental matrix F ∈ R3×3, with
rank (F) = 2, relating the image points in the following epipolar constraint

𝑥2
ᵀF𝑥1 = 0 (13)

with 𝑥1 and 𝑥2 represented in the homogeneous coordinates.

3



2 Prior work

Figure 1 Epipolar geometry of two cameras

Figure 2 SIFT histograms of gradients (4 spacial bins are used in this illustration, but the
standard is to use 16 of them.) (taken from [1])

This equation can be understood as a relation between the image points 𝑥1, 𝑥2 and
the corresponding lines 𝑙2 and 𝑙1, respectively, in the second image (also represented in
homogeneous coordinates).

F𝑥1 = 𝑙2 (14)

Fᵀ𝑥2 = 𝑙1 (15)

The equations 14 and 15 show us, that by transforming an image point (with excep-
tion of the epipole) by a fundamental matrix, we get a line in the other image, on which
the corresponding image point should lie.

A fundamental matrix can be estimated from 7 point correspondences as described
in [7].

2.2 Local features
2.2.1 Feature detection
In the first step, the regions of interest are found in the images. These regions should
satisfy the condition of repeatability i.e. the probability of detecting the same feature

4



2.3 Feature matching

in the other image should be high.
Hence, they should be local - only relatively small patch of pixels, because global

features are prone to occlusion and viewpoint changes.
Also, the regions have to be information rich, i.e. have significant texture. Regions

that are too small lead to too similar features which then in turn badly affects their
discriminative power.

There are several image feature detection algorithms. Standard examples include
Hessian affine region detector (HAF) by Mikolajczyk [8], Maximally stable extremal
regions (MSER) by Matas et al. [2] and DoG (Difference of Gaussians) used in Scale-
invariant feature transform (SIFT) detector by Lowe [1].

The detected regions are represented as affine frames.

2.2.2 Feature description

In order to be able to find corresponding features across the images, the detected pixel
patches have to be represented in a way that is invariant to affine transformations and
illumination changes and is both stable with respect to detection phase and highly
discriminative.

The following commonly used procedure was described by Lowe [1]. First, the pixel
patches defined by the detected region of interest affine frames are transformed to
canonical patches. This is done by transforming the elliptical patch to a circle with
given diameter and rotating it then by the features dominant orientation.

The patch orientation can be determined by computing a histogram of gradients
orientations. The peaks are then detected in the histogram and the biggest one is
considered to be the dominant orientation assigned to the feature. However, multiple
peaks can be detected and if they are within 80% of the highest one, they are used to
create new features.

Representing the features in this canonical way ensures affine invariance of all the
measures performed on the patches.

Second, the canonical patches are described using histograms of gradients. The rea-
soning behind this choice lies in the fact that using the gradients ensures invariance to
affine illumination changes and histogram introduces higher robustness.

The canonical patch is divided into 4× 4 grid of spatial cells. A weighted histogram
of gradients is computed in each of these cells. To eliminate the effect of any errors of
the feature detection phase, the gradients on the boundaries of the spatial cells vote in
each of the neighboring cells.

The histograms used have 8 bins each, so this whole description can be represented
by 4 * 4 * 8 = 128-dimensional vector.

Last, the descriptor vectors are normalized to unit length, its values are thresholded
at 0.2 in order to suppress the effects of non-linear illumination changes and then the
descriptors are renormalized to unit length again.

2.3 Feature matching

When the features are detected and described, the next step is to generate tentative
correspondences by matching the features based on a nearest neighbor search in the
descriptor space. The standard approach described below was introduced by Lowe [1].
He discovered that the absolute distance of the descriptors is not a good measure of
goodness of the match as not all the descriptors are equal. Some of them are much

5



2 Prior work

more discriminative than others and there is no good distance threshold to be used in
the search.

A first-to-second (FTS) ratio test was proposed in order to generate a set of so called
tentative correspondences (TCs). The tentative correspondences are all of the point
correspondences proposed to be used later in a model estimation algorithm. These
correspondences have to be verified as not all of them are correct, e.g. the TC set may
contain a correspondence relating a corner of a window in one image and a door knob
in the other one.

If the ratio of the distances to the first and the second nearest neighbor is too high
(usually thresholded at 0.8, but can be adjusted to get better results in some cases),
the correspondence is discarded, because we cannot be sure which of the two similar
possible matches is the good one and the probability of choosing the wrong one is too
high. On the other hand, if the test is passed, the correspondence of the feature and
its first nearest neighbor in the second image is added to the tentative correspondences
set.

Setting the first-to-second ratio threshold to 0.8 eliminates 90% of false matches,
while less than 5% of good ones are discarded on Lowe’s synthetic set of randomly
altered images (rotated, scaled, and affected by noise). While his threshold is widely
adapted, better thresholding may be possible on different datasets.

Lowering the amount of false matches this dramatically increases the inlier ratio of
the TC set, allowing big speedups of the robust estimator applied in the next phase of
the image matching procedure.

2.4 RANSAC

Random sample and consensus - RANSAC [6] is a robust fitting algorithm. Classical
techniques used for parameter estimation, such as least squares, aim to fit all the noisy
data on input by given model, but they depend on an assumption that with enough
input data, correct fitting model can be found despite the noise. These techniques deal
well with small errors on the data points, but even one piece of data can completely
destroy the fit if it is affected by a gross error as shown in Fig. 3.

In the image matching problem we need to fit tentative correspondences (TCs) of
visually similar local image features by an appropriate geometric model - usually either
homography or epipolar geometry.

The correspondences are affected by two kinds of errors. First, by some small noise
coming from inexact feature detection, insufficient photo resolution and other factors.

The second type of error comes from bad local feature matching. This can be caused
by illumination changes between the images, big difference in angles under which the
photos were taken, repetition, occlusion and other factors.

Incorrectly matched features, called outliers (as opposed to correct correspondences -
inliers), can take much more than 50% of all the data. See Fig. 4 for example of typical
TCs.

The idea behind RANSAC lies in significant change in the optimization goal. Instead
of minimizing the sum of squared errors it aims for maximizing the size of hypothesis
support set (the number of data consistent with the hypothesis model under given
threshold of some cost function, e.g. Sampson error for fundamental matrix estimation).

The RANSAC algorithm works as follows. Minimal size data samples (the size is
the minimal number of data needed to produce finite number of hypotheses fitting
the minimal sample exactly) are taken repeatedly and the model(s) estimated from

6



2.4 RANSAC

Figure 3 Even a single bad datapoint can completely ruin fitting with least squares. (red line
is least squares fit to all the data, green line is the fit unaffected by gross error of the point
(0, 20))

Figure 4 An example of a tentative correspondences set. Notice the high outlier ratio. (inliers
are green, outliers red)

the sample is computed. Then, in the second phase, the quality of the estimation is
evaluated on all the input data. Standard RANSAC uses number of inliers, that is
data points consistent with the model (defined by a threshold on some loss function),
as the cost function. The best-so-far model is remembered and the whole process
is repeated until the probability of finding better model falls under some user-given
threshold (usually 0.05 or 0.01).

The procedure stands on an assumption that fitting an all-inlier minimal sample
produces a correct model.

The probability of picking such sample is:

𝑃 (𝐼) =
(︀ 𝐼

𝑚

)︀(︀𝑁
𝑚

)︀
Where 𝐼 is number of inliers, 𝑚 is minimal sample size and 𝑁 is total number of TCs.

We can then derive this upper bound:

𝑃 (𝐼) =
𝑚−1∏︁
𝑗=0

𝐼 − 𝑗

𝑁 − 𝑗
≤

(︂
𝐼

𝑁

)︂𝑚
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2 Prior work

The probability of missing an all-inlier sample after 𝑘 samples is then

𝜂 = (1− 𝑃𝐼)𝑘 (16)

We want to repeat sampling until probability of a fail falls under predefined threshold
𝜂0. In order to find out the number of samples needed, we transform the equality 16 to
an inequality and solve it for 𝑘

(1− 𝑃𝐼)𝑘 ≤ 𝜂0

𝑘 log (1− 𝑃𝐼) ≤ log 𝜂0

𝑘 ≥ log 𝜂0
log (1− 𝑃𝐼) (17)

Equation 17 gives us a stopping criterion for the RANSAC procedure. See algorithm 1
for pseudocode description of the standard RANSAC procedure.

Algorithm 1 RANSAC
1: 𝑘 ← 0, 𝑘* ←∞
2: while 𝑘 ≤ 𝑘* do
3: 𝑘 ← 𝑘 + 1
4: 𝑆𝑘 ← randomly drawn minimal sample
5: 𝑀𝑘 ← model estimated from 𝑆𝑘

6: 𝐼𝑘 ← support set of 𝑀𝑘

7: if |𝐼𝑘| > |𝐼*| then
8: 𝐼* ← 𝐼𝑘

9: 𝑀* ←𝑀𝑘

10: 𝑘* ← number of samples needed not to miss |𝐼*|+ 1 inliers (Eq. 17)
11: end if
12: end while

2.4.1 RANSAC variants

Some of RANSAC’s assumptions are not always valid, so there are many variants of
the algorithm, each dealing with some of the original algorithm’s shortcomings. Some
of them are described in the following section.

2.4.2 Sampling

Degensac

Degensac [9] is a modification for EG estimation dealing with dominant plane in scene.
If the scene contains such plane (as usual in architecture), there is a big probability
of drawing a sample with 5 or more coplanar correspondences. These samples are
degenerate and we cannot compute the correct epipolar geometry from them.

The Degensac algorithm checks for this kind of degeneracy by performing test on the
minimal sample. It can then reject these samples early and save lot of time by skipping
the resource-demanding verification phase of RANSAC.
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2.4 RANSAC

PROSAC

The main idea of PROSAC [10] is to utilize the a priori knowledge of the TCs quality.
It has been proposed to sort the TCs according to their first-to-second ratio. PROSAC

is then sampling from the set of the presumably best correspondences. This sampling
pool set is then progressively enlarged according to a grow function described in [10].
After predefined number of samples PROSAC converges to the standard RANSAC’s
uniform sampling.

While the sampling phase is altered, the verification phase does not change - i.e. the
hypothesis is verified on all of the data.

The PROSAC algorithm is designed in such a way that it essentially draws the same
samples as the standard RANSAC, but in other order. This means it should not effect
the quality of the estimation, only speed the process up.

2.4.3 Hypothesis verification
WaldSAC

There were numerous attempts to speed the verification step up. Notably, WaldSAC [11]
uses sequential probability ratio test to minimize the amount of TC evaluations.

Imagine verifying a hypothesis and not getting a single inlier after evaluating 600
out of 750 correspondences. It seems like the probability of this hypothesis being the
best one is very low and we can reject it without evaluating all the data. The idea
of WaldSAC is similar, but it addresses the problem in an exact statistical language
of Wald test - it is minimizing the number of the TCs being evaluated subject to
probability of rejecting good hypothesis staying under user-given limit.

This approach leads to rejecting some of the good samples thus leading to more
samples needed, but the speedup caused by discarding bad samples early is bigger.

LO-RANSAC

One of the important RANSAC’s assumptions - that every all-inlier sample generate a
good madel - is not entirely true as discussed in [12].

Locally optimized RANSAC [12, 13] uses local optimization after finding the support
set for the hypothesis in each RANSAC cycle. The inliers are then given to inner
RANSAC routine that does not use minimal samples, because the data should be
outlier-free at that point. It also performs a classic least-squares optimization in each
cycle in order to get better model with more inliers.

This local optimization is performed only on the best-so-far samples, because it is
computationally demanding. Moreover, the LO step is skipped for the first 30 samples.
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3 Utilizing many-to-many correspondences

The FTS test discussed in previous chapter leads to higher inlier ratio by sacrificing
absolute number of inliers in the TC set. This approach often pays of, but there is a
risk of discarding too many of them.

Moreover, a good correspondence is not always the first nearest neighbor in the SIFT
space.

We have analyzed the properties of inliers on our dataset and it turned out, that the
number of second nearest neighbor inliers usually stays roughly between 20 and 75%
of the number of first nearest neighbors. See Fig. 5 for the plot of the number of Kth
nearest neighbor inliers relative to the number of the first nearest neighbor. In some
cases, we have found even more second NN inliers than the first NN ones. Moreover,
after performing the FTS ratio test, the number of first neighbor inliers lowers and the
next nearest neighbors relative count becomes even higher.

This phenomenon can occur for example in a scene with lot of repetitive patterns,
very commonly found in man-made structures, especially in architecture, where there
are many similar features. For example all the windows on a facade may look very alike
and there may be even more than one mutually exclusive correct geometric model,
if there are not any unique discriminative features in the images. See Fig. 6 for an
example of such situation.

Zhang and Kosecka [14] proposed a generalized RANSAC algorithm in order to utilize
more tentative correspondences. They do not discard correspondences based on first-
to-second ratio and they do not keep just the first nearest neighbor. Instead they use
all the nearest neighbors as tentative correspondences and propose several sampling
strategies in order to both utilize the additional good correspondences and keep the
number of samples needed reasonably low.

They propose two stage sampling with a goal of not to getting more than one tentative
correspondence of the same feature in one image. First, they sample the features in
first image. After sampling the first points, the corresponding second image features
are sampled.

They then introduced a proportional sampling, where the probability of the first

Figure 5 Relative numbers of inliers for KNN, each line represents one image pair.

10



3.1 Matching

Figure 6 repetitive structures causing the standard matching to discard useful tentative corre-
spondences. Red lines represent the correct TCs, the solid lines are the first nearest neighbors,
the dotted lines are second nearest neighbors (standardly not used). Moreover, note that most
of these correspondences would not pass the FTS test.

image feature being sampled is proportional to number of the feature’s correspondences.
This approach prefers sampling of one-to-one correspondences and therefore is faster.

We propose a new approach to dealing with many-to-many correspondences.

3.1 Matching

Our method uses the standard best (in a sense of SIFT distance) matches passing the
first-to-second test. We denote this set of tentative correspondences as 𝒯𝑠 (standard).

We then create another set 𝒯𝑎 (additional), containing many-to-many correspon-
dences.
𝒯𝑎 contains up to 𝐾 nearest neighbors for each image feature. The 𝑖-th nearest

neighbor is included in 𝒯𝑎 if three conditions hold.

1. the first-to-second nearest neighbor ratio is bigger than threshold 𝜃𝑓𝑡𝑠 (i.e. the
feature is not included in standard 𝒯𝑠)

2. the first-to-𝑖-th NN ratio is bigger than 𝜃𝑓𝑡𝑠 (i.e. the 𝑖-th neighbor is still quite
similar to the first one)

3. the absolute SIFT distance of the 𝑖-th nearest neighbor is lower than some thresh-
old 𝜃𝑎𝑏𝑠 (i.e. the two features are not too dissimilar).

We set the relative threshold 𝜃𝑓𝑡𝑠 the standard 0.8 and we use 230 as the absolute
threshold 𝜃𝑎𝑏𝑠. Our choice is based on a statistics of a good correspondences SIFT
distances done by Mikulik et al. [15].

The last step is to create the union of these two sets, 𝒯𝑚 = 𝒯𝑠 ∪ 𝒯𝑎

This set of correspondences imposes a new constraint on the RANSAC support set.
Any combination of the TCs can be a support set in the standard scenario with only
one-to-one correspondences. However, this does not hold with the many-to-many 𝒯𝑚

set, since the TCs relating one point in the first image with multiple points in the
second image can never be present in a support set at the same time.
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3 Utilizing many-to-many correspondences

3.2 Proposed LO-RANSAC variants
Standard LO-RANSAC performs very well on most of the image pairs. In such case
the standard TC set 𝒯𝑠 contains so many good tentative correspondences, that it is
sufficient to estimate a good model. Therefore, the best application for the additional
set of correspondences 𝒯𝑎 is to increase the number of inliers of the correct model.

We assume that the noise on the good TCs from 𝒯𝑎 has the same distribution as the
noise on the standard 𝒯𝑠. If this assumption holds, getting more inliers is beneficial for
the accuracy of the estimated geometry.

In the case that there are enough good correspondences in the 𝒯𝑠 set, it is not rea-
sonable to sample from the whole 𝒯𝑚 as the generalized RANSAC would do on these
images, because there are enough inliers in 𝒯𝑠 to find a good model and the inlier ratio
of 𝒯𝑠 is much bigger than the one of 𝒯𝑚. Therefore, the number of samples needed and
the overall running time would be very high if we were sampling from the bigger set
𝒯𝑚.

However when the number of inliers on 𝒯𝑠 is very small, it may become reasonable
to sample from 𝒯𝑚.

Tentative correspondences from 𝒯𝑚 can be employed at various phases of the LO-
RANSAC - in sampling, verification or local optimization and in several combinations
of these RANSAC phases.

We propose three LO-RANSAC-based algorithms ranging from minimal to maximal
amount of use of the many-to-many TCs. The first one works on 𝒯𝑠 and only the LO is
done on the 𝒯𝑚 set, the second one computes the hypothesis verification on 𝒯𝑚 on top
of that. The last one works on the whole 𝒯𝑚 in all of the phases of the LO-RANSAC.
We describe all of them and their purposes in the following sections.

3.2.1 Many-to-many TCs only inside LO

The first of our proposed algorithms is the most lightweight one. It is purposed for
situations that the standard LO-RANSAC can solve, but its solution has low number
of inliers.

The aim of introducing the 𝒯𝑎 correspondences is to enhance the good model by
supporting it by more inliers and to stabilize the solution.

The problem can be solved by LO-RANSAC and therefore it would not be reason-
able to sample from the bigger 𝒯𝑚 set as discussed above. Hence, the first proposed
algorithm samples and verifies only on 𝒯𝑠 and it uses the whole 𝒯𝑚 only inside the local
optimization.

The LO step with 𝒯𝑚 involved is entered after getting a best-so-far sample on 𝒯𝑠. We
assume that there are enough good 𝒯𝑠 TCs for the good hypothesis to be recognized.

The stopping sample count is computed in a standard way from the number of inliers
on 𝒯𝑠 in accordance with the inequality 17, with

𝑃𝐼 = |𝒮 ∩ 𝒯𝑠|
|𝒯𝑠|

where 𝒮 is the best model’s support set.
This algorithm version is efficient, because the number of samples needed should be

the same as the original LO-RANSAC. However, the use of additional inliers from 𝒯𝑎

introduces a slowdown as there are more TCs entering the computation demanding
local optimization step. This loss of the speed should not be very significant, as the
number of LO steps performed is usually very low (usually staying under 5).
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3.2 Proposed LO-RANSAC variants

3.2.2 Many-to-many TCs in verification and LO

The first algorithm relies on the assumption that the 𝒯𝑠 set contains so many good
TCs that it is not only possible to take an all-inlier sample, but that it is also possible
to distinguish a hypothesis generated by such sample from a hypothesis generated by
contaminated minimal sample (i.e. containing at least one outlier) based only on the
information provided by 𝒯𝑠.

Our second proposed algorithm is intended for situations where there is at least one
good minimal sample present in 𝒯𝑠, but the above assumption does not hold.

It still samples only from the 𝒯𝑠, because it is possible to take an all-inlier sample
from it. Nevertheless, in order to find the good model, the hypotheses have to be
verified on the whole 𝒯𝑚. Because of this, it is slower than the first algorithm, but it
enters the LO step at presumably better samples and it should be able to find a good
solution even when there are almost no good TCs present in 𝒯𝑠.

The stopping criterion is computed in the same way as in algorithm 1, i.e. only from
inliers on 𝒯𝑠.

3.2.3 Full many-to-many TCs use in all steps

The last proposed algorithm uses correspondences from the whole 𝒯𝑚 in all of the phases
of LO-RANSAC. It samples from all of the tentative correspondences in 𝒯𝑚, verifies
each hypothesis on the whole 𝒯𝑚 and performs the LO on it too.

It is much slower that the previous two versions because it not only has to process
more TCs in verification and LO phase, but mainly because the inlier ratio on 𝒯𝑚 is
usually much smaller, than the inlier ratio on just 𝒯𝑠, therefore the number of samples
needed is much higher than in the previous two versions and LO-RANSAC.

There are two scenarios when it pays off to use this algorithm. The first one is when
there is no all-inlier sample present in standard TC set 𝒯𝑠 at all. A one-to-one RANSAC
would have no chance of succeeding under such conditions.

The other use may be in the case when we cannot generate the one-to-one corre-
spondences in a first place. One example of such situation is the use of quantized
descriptors - the bag of visual words (BoW), because when we do not have the original
descriptors and only their quantization is available, creating one-to-one set of tenta-
tive correspondences in a standard way is not possible as the first-to-second ratios are
unknown.

The proposed algorithm samples uniformly from the 𝒯𝑚, i.e. each TC is equally likely
to be sampled. Proportional sampling from generalized RANSAC could be used when
the 𝐾 (number of nearest neighbors used in matching) is higher than 2 as not to prefer
big clusters of unlikely correspondences.

3.2.4 Switching the versions on the run

The proposed algorithm versions are each suitable for different situations as described
above. However, one of our goals is to design an universal algorithm, that would be
as fast as the standard LO-RANSAC in ’easy’ situations when it performs well and
still utilize the many-to-many correspondences in order to get better results on ’hard’
scenes.

We therefore propose a switching version, that works only on 𝒯𝑠 and switches to using
the 𝒯𝑚 set only when necessary. This change of the strategy is based on the stopping
criterion from equation 17.
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3 Utilizing many-to-many correspondences

Figure 7 Plot of the switching criterion with respect to |𝒯𝑠|

The stopping criterion for the hypothetical case that the standard TC set 𝒯𝑠 contains
only 𝜃𝑚𝑖𝑛 (we empirically set 𝜃𝑚𝑖𝑛 = 15) inliers is computed.

If this stopping criterion is reached and if the support set of the best model found so
far is smaller than 𝜃𝑚𝑖𝑛, the algorithm switches to our proposed version with many-to-
many correspondences in verification and LO phase, since in such case, the probability
of a success of the plain LO-RANSAC working on the 𝒯𝑠 is very low.

We can see from Fig. 7, that this approach can be useful only with relatively small
TC sets, since the amount of samples needed for a strategy switch to occur is over 10000
for a 𝒯𝑠 set with more than 100 TCs. However it can be concluded from the results of
our experiments, that there are scenes that both satisfy this condition and benefit from
switching the strategy.

3.3 Determining the support set

Introducing many-to-many correspondences leads to a problem of determining the sup-
port set while not violating the constraints of mutual exclusiveness of the many-to-many
correspondences.

Not checking the consistence of the support set can easily lead to impossible inlier
sets, which in turn can ruin the results of the whole procedure. The effect is well visible
in epipolar geometry estimation of urban scenes. When some of the repetitive structures
in the images are positioned on a line, there is chance that all tentative correspondences
containing that structure will be included in the support set since their reprojection
error fits under the error threshold.

3.4 Implementation details

3.4.1 Matching

We assign two numbers to each tentative correspondence, 𝑖𝑑𝐿 and 𝑖𝑑𝑅, representing the
identification numbers of left and right tentative correspondence’s features. We also
store the information about which set each TC belongs to (𝒯𝑠 or 𝒯𝑎).
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3.4 Implementation details

3.4.2 Sampling
When we sample from the whole 𝒯𝑚, we do so uniformly, storing the ids of the sampled
correspondence. When a TC is picked and at least one of its features is already in the
sample, it is moved aside and the random picking of the correspondence is repeated.

3.4.3 Verification
The problem of finding the hypothesis support set on many-to-many correspondences
set is a bipartite graph matching problem.

We have implemented a greedy algorithm that first sorts the conflicting inliers (inliers
in the naïve sense - passing the error threshold) by their reprojection errors and then,
starting from the lowest one, traverses the sorted list and allow each TC to be inserted
to the support set only if there is no TC with colliding feature id in there.
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4 Experiments

In this chapter we present the experimental results of our proposed algorithms used for
homography estimation in comparison with the Lebeda’s LO-RANSAC [13].

The results are summarized in tables containing statistics of the overall number of
inliers found (I ), the number of inliers found on the standard TC set 𝒯𝑠 (Isamp), the
inlier ratio on the used TC set (𝒯𝑠 for LO-RANSAC, 𝒯𝑚 for our proposed algorithms)
noted I(%), the number of samples needed (Samp), CPU time (time), mean error of
the ground truth correspondences (Error) and number of local optimizations (LO). All
the bold values are mean over 50 runs. The tables also contain standard deviations of
all of the quantities except for CPU time.

The error was computed by reprojecting hand-made ground truth correspondences
(about 8 of them for each image pair) by the model found by the algorithm used. The
smaller the error, the better the precision of the algorithms, but this holds only to some
extend, as the ground truth correspondences were obtained manually and thus their
precision is not perfect.

The 𝒯𝑚 set of many-to-many correspondences was generated from first two nearest
neighbors (both directions), the error threshold was set by using 𝜎 = 0.5 and the
RANSAC confidence was set to 0.95.

All of the results can be found in Appendix B. We divide the problems into three
types. First, scenes that can be solved well by the standard LO-RANSAC, second,
scenes hard for LO-RANSAC on which our proposed algorithms provide better results
and third, scenes on which all of the tested algorithms failed to provide good results.

Each of the types is discussed in detail on running examples in the following section.

4.1 Scenes handled well by LO-RANSAC
We have selected the Boston images (see Fig. 8), for the purpose of demonstrating the
properties of our proposed algorithms on images in which the standard LO-RANSAC
algorithm achieves stable results with low error and number of samples needed.

Solver→ LO-RANSAC m2m v1 m2m v2 m2m full m2m switch
Quantity ↓

B
os

to
n

I 280.8 ±0.4 580.7 ±1.5 580.9 ±1.4 581.2 ±1.6 280.8 ±0.4
Isamp 280.8 ±0.4 280.6 ±0.6 280.7 ±0.5 281.0 ±0.2 280.8 ±0.4
I(%) 87.5 ±0.1 74.0 ±0.2 74.0 ±0.2 74.0 ±0.2 35.8 ±0.1
Samp 9.3 ±4.7 9.3 ±4.7 9.3 ±4.7 181.1 ±0.6 9.3 ±4.7
Time 18.2 43.6 45.2 118.6 16.2
Error 0.53 ±0.04 0.55 ±0.04 0.55 ±0.04 0.55 ±0.04 0.53 ±0.04
LO 1.0 ±0.0 1.0 ±0.0 1.0 ±0.0 2.3 ±1.1 1.0 ±0.0

Table 1 results for the Boston pair (Fig. 8)

The achieved results are summarized in Tab. 1.
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4.2 Scenes hard for LO-RANSAC

Figure 8 Boston

Our proposed algorithms have found more than two times the amount of inliers that
the standard LO-RANSAC found as was expected. Also the number of inliers on the
𝒯𝑠 set stays the same. The inlier ratio is slightly lower on our proposed TC set 𝒯𝑚 in
agreement with our expectations.

The number of samples needed is consistent across the versions sampling only from
𝒯𝑠 and is much higher in the full many-to-many version, which samples from the whole
𝒯𝑚. Because so much samples are needed, the running time is almost ten times longer
in the full version. Our other proposed versions are about two times slower, because
more TCs are entering the demanding LO step than in the plain LO-RANSAC.

Note that the last proposed algorithm (strategy switching) did not switch the strategy
and therefore worked exactly like the standard LO-RANSAC. The measured time is
lower, but this is only due to matlab timing imperfections.

4.2 Scenes hard for LO-RANSAC

Figure 9 Notredame14

The sym_notredame14 Fig. 9 image pair is difficult to match mainly because of
the big difference of the illumination of the photos and because of the symmetry and
presence of repetitive structures.

The high difficulty of matching of the sym_notredame14 pair is visible on the small
number of inliers found by the standard LO-RANSAC algorithm as shown in Tab. 2.
Although the mean LO-RANSAC error is high, its median is 3.4 meaning that the
standard algorithm can sometimes deal with this situation, but its results are not stable.
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4 Experiments

Solver→ LO-RANSAC m2m v1 m2m v2 m2m full m2m switch
Quantity ↓

N
ot

re
da

m
e

I 11.1 ±1.3 45.7 ±6.4 47.2 ±1.7 48.6 ±0.6 47.4 ±1.7
Isamp 11.1 ±1.3 12.4 ±1.2 12.7 ±0.7 13.0 ±0.0 12.8 ±0.6
I(%) 18.1 ±2.1 14.6 ±2.1 15.1 ±0.6 15.6 ±0.2 15.2 ±0.5
Samp 4421.3 ±2384.4 3460.5 ±2542.8 1918.7 ±599.2 500000.0 ±0.0 3028.8 ±551.7
Time 64.2 93.2 68.0 5602.8 98.0
Error 24.84 ±55.39 7.80 ±32.52 1.16 ±0.50 0.95 ±0.05 1.12 ±0.44
LO 3.5 ±1.0 3.4 ±0.9 3.9 ±1.2 8.2 ±2.5 7.6 ±1.5

Table 2 results for the sym_notredame14 pair (Fig. 9)

This example also captures one of the cases described in the previous chapter - we
have enough inliers to find the correct model, but not enough to consistently recognize
that we have found it. We can see that the mean error of proposed algorithm version 2
is much smaller than that of the version 1, as we have assumed (although the medians
of both errors are equal to 1), the number of samples needed is also greatly reduced by
using the 𝒯𝑚 set in the verification phase as version 2 does.

The full many-to-many version achieves even smaller mean error for the price of
needing many samples (it had reached the maximal number of samples allowed in our
experiments) and entering more LO steps and thus being very slow.

In terms of the mean error, the last proposed algorithm (switching) achieved similar
results as algorithm 2, while needing smaller number of samples than the standard
LO-RANSAC.

4.3 Very hard scenes
The results on very hard image pairs are discussed in this section. We have found two
types of such scenarios, first, scenes with lot of repetition and multiple good models
and second, scenes with so small number of good tentative correspondences available,
that the correct model has support set smaller than random bad models.

4.3.1 Multiple good models
The first scenario is represented by the dlazdice pair that contains a lot of repetitive
patterns and the first image contains very little discriminative features. This causes
the pair to be difficult to match correctly even for a human.

Both the original LO-RANSAC and our proposed algorithms usually find a good
model, but it is often not the correct one.

The errors of all of the algorithms in Tab. 3 indicate that the correct model was
not found, however, the number of inliers is consistently high and the models found
were not random, as shown in Fig. 11. The images at the top of the figure contain
manually acquired ground truth. The reprojection of the mesh in the left image by
the homography found by LO-RANSAC is shown at the bottom. When we remove the
inliers of this homography from the TC set and run the LO-RANSAC again, we get
more models that are matching some of the tiles well, but the correct model is only
found after many iterations of this procedure and its support set is small.
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4.3 Very hard scenes

Figure 10 Dlazdice

Figure 11 dlazdice scene ground truth (top) and best model found by LO-RANSAC (bottom)

LO-RANSAC m2m v1 m2m v2 m2m full m2m switch
I 48.2 ±2.4 171.6 ±9.5 170.9 ±10.5 173.0 ±7.1 48.2 ±2.4

Isamp 48.2 ±2.4 48.3 ±2.2 48.2 ±2.4 48.6 ±1.6 48.2 ±2.4
I(%) 9.4 ±0.5 6.8 ±0.4 6.7 ±0.4 6.8 ±0.3 1.9 ±0.1

Samp(103) 42.1 ±13.0 41.4 ±12.0 41.6 ±12.1 500.0 ±0.0 42.1 ±13.0
Time 681.4 1025.0 1300.2 13666.6 460.2
Error 227.46 ±76.20 218.08 ±52.17 221.86 ±57.56 210.46 ±37.43 227.46 ±76.20
LO 5.5 ±1.5 5.5 ±1.5 5.8 ±1.8 8.8 ±2.1 5.5 ±1.5

Table 3 results for the dlazdice pair (Fig. 10)

Introducing the 𝒯𝑚 and our proposed algorithms did not solve this issue. The algo-
rithm that would be able to find the correct homography relating this pair of images
would have to somehow emphasize the influence of the small part of doors visible in
the bottom left corner of the left image and the tiny part of the leg of the stool visible
near the upper right corner.

Despite the fact that our algorithms were not able to find the correct model, the
additional correspondences in the 𝒯𝑎 can still be utilized as they allow more good
models to be found, which, in turn, can serve to recognize that there are more than one
possible solutions.
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4 Experiments

Figure 12 LePoint3

4.3.2 Not enough inliers
The scenario with too small number of inliers, where no good model can be found, are
represented by the LePoint3 pair (Fig. 12).

The viewpoint change is so massive, that the local feature detection, description and
matching phases fail to provide good set of tentative correspondences.

The results are summarized in Tab. 4. All of the algorithms have found models with
similar errors, but unlike the dlazdice scene, the found model was completely wrong
every time.

LO-RANSAC m2m v1 m2m v2 m2m full m2m switch
I 9.2 ±0.4 15.6 ±2.6 17.3 ±0.9 18.1 ±1.0 17.4 ±1.0

Isamp 9.2 ±0.4 8.3 ±1.4 9.1 ±0.6 9.6 ±0.5 9.2 ±0.6
I(%) 32.7 ±1.3 25.5 ±4.3 28.3 ±1.5 29.7 ±1.6 28.5 ±1.6
Samp 279.1 ±43.5 293.6 ±61.6 298.5 ±80.9 5872.9 ±1349.6 323.8 ±70.6
Time 8.8 22.2 18.2 99.2 28.4
Error 72.26 ±7.68 71.67 ±9.41 71.03 ±8.60 71.48 ±10.27 71.35 ±7.54
LO 1.8 ±0.7 1.8 ±0.7 2.0 ±0.9 3.1 ±1.2 3.6 ±1.2

Table 4 results for the LePoint3 pair (Fig. 12)

4.4 Experiments summary
We have found three types of scenes, first solvable well by LO-RANSAC, second, where
our proposed algorithm achieves better results, and last, not solved well by either of the
algorithms used. We did the experiments on over 50 image pairs from various datasets
and our own photos and we came to the conclusion that most of the scenes fall into the
first and the last category and only very little of the image pairs could not be solved by
the standard LO-RANSAC and still were solved successfully by some of our proposed
algorithms.
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5 Conclusions

In this thesis, we have investigated the possibility of utilizing many-to-many correspon-
dences inside the RANSAC robust estimator.

We have justified the use of many-to-many tentative correspondences and proposed
a new algorithm for generating the tentative correspondences.

We have then proposed three LO-RANSAC-based algorithms each focused on differ-
ent scenario and an ’universal’ algorithm, that keeps the properties of the state-of-the-
art LO-RANSAC while still being able to utilize many-to-many correspondences and
outperform the standard version on some of the difficult scenes.

We have then tested all of our proposed algorithms on a dataset consisting of more
than 50 image pairs collected from various public datasets and enriched by our own
images. The proposed algorithms were compared to the state-of-the-art LO-RANSAC
and their assumed properties were confirmed.

The last proposed strategy switching algorithm has proved to perform at least as
good as the standard, while providing better results in situations, where LO-RANSAC
fails to find the correct model and/or shows a big instability. It does so while not
introducing any additional cost for the image pairs already well solvable by the standard
LO-RANSAC.

We have found only few image pairs on which our proposed algorithms could gain an
advantage over the standard one-to-one approach, but it is possible, that the algorithms
can be utilized for major improvement of the image matching in some specialized field.
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A Implementation

The implementation is based on Lebeda’s LO-RANSAC [13].
The proposed algorithms are written in C, but Matlab mex functions are provided

too. The installation, the library API and the user manual are provided in the following
sections.

A.1 Installation

The ransac library depends on LAPACK [16], which should be available via packaging
systems on most Linux distributions (package liblapack).

The src directory contains a Makefile for an easy building. Running it compiles all
the source codes and creates a file libransac.a which can then be linked with other
software.

Please change the MEXEXT variable inside the Makefile to the string returned by
running Matlab command mexext. It is also necessary to set the LAPACK_INCL variable
to point to your Matlab extern/include directory.

Running make in the src directory builds the library, compiles the matlab mex func-
tions and installs everything into the build directory.

A.2 The C library API

The libransac.a library provides both the standard LO-RANSAC (ransacH) and our
proposed many-to-many RANSAC variants (m2m_ransacH). Their headers are listed
in Tab. 5.

All of their parameters are summarized in Tab. 6. There are four modes that the
m2m_ransac can be working in, as described in Tab. 7.

All of the matrices are stored column-wise as to keep compatibility with Matlab.
Each tentative correspondence is represented by 6-dimensional vector obtained by

concatenating the homogeneous coordinates of the corresponding points. The ids have
to be positive and the maximal id should be as low as possible (sparse numbering would
cause unnecessary memory and CPU usage).

Score ransacH (double *u, int len, double th, double conf,
int max_sam, double *H, unsigned char *inl,
int *data_out, int do_lo, int inlLimit);

Score m2m_ransacH (double *u, int len, int len_first, int *ids,
int mode, double th, double conf, int max_sam,
double *H, unsigned char *inl, int *data_out,
int do_lo, int inlLimit);

Table 5 ransac functions headers
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A.3 Using the library inside Matlab

Name I/O type size content
H out double 3×3 the estimated homography

inl out unsigned char len inliers (1) and outliers (0)
data_out out int 3 # of samples, # of LOs and

# of rejected models
u in double 6×𝑙𝑒𝑛 the tentative correspondences

set
len in int scalar number of all tentative corre-

spondences used
th in double scalar squared inlier/outlier error

threshold
conf in double scalar confidence (1− 𝜂0)

max_sam in int scalar maximal number of samples
drawn

do_lo in int scalar LO switch (1/0)
inlLimit in int scalar maximal number of inliers

used in iterative least squares
(0 = no limit)

len_first in int scalar number of standard tentative
correspondences

ids in int 2×𝑙𝑒𝑛 left and right ids of the tenta-
tive correspondences

mode in int scalar m2m algorithm variants
(See Tab. 7

Table 6 ransacH and m2m_ransacH parameters

mode description
0 m2m version 1, the whole 𝒯𝑚 set is used only in LO
1 m2m version 2, the whole 𝒯𝑚 set is used in verification and LO
2 full m2m version, 𝒯𝑚 is used in sampling, verification and LO
4 switching m2m version, 𝒯𝑚 used only when 𝒯𝑠 contains too few inliers

Table 7 Description of m2m_ransac modes

A.3 Using the library inside Matlab

We provide a Matlab mex functions to use the libransac.a library inside Matlab.

A.3.1 Mass testing script

First, the paths have to be set up by running setpaths.m inside the matlab directory.
It is then possible to navigate to the data directory and run masstest.m to execute
the mass testing (run it once for each of the algorithms, configured at the beginning of
masstest.m). Its results are stored in the results directory.

Run $ ../generate_pdf ../data inside the results directory to create a results.mrt.pdf
report afterwards.
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A Implementation

GT.h 3 by 3 double ground truth homography
GT.tcs 6 by 𝑛 double ground truth correspondences
TC.std 6 by 𝑚 double standard 𝒯𝑠 set
TC.m2m.tcs 6 by 𝑘 double many-to-many 𝒯𝑚 set
TC.m2m.ids 2 by 𝑘 integer the 𝒯𝑚 correspondences ids
TC.m2m.std_len scalar integer number of 𝒯𝑠 correspondences

at the beginning of TC.m2m.tcs
DATA.imgs(1,2).data 𝑤 by ℎ by 3 integer the image data
DATA.dataset char string the name of the dataset

Table 8 The structure of mat files in the data directory

A.3.2 The dataset
The dataset is stored inside data directory in form of pairs of image files and corre-
spondent Matlab mat files (described in Tab. 8).

A.3.3 Mex functions
The provided mex functions have an API similar to the C libransac.a library and
their usage is straightforward. Run m2m_ransacH() and ransacH() to get the usage
help.
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B Complete experimental results

The following pages contain the results of all the discussed LO-RANSAC variants on
our dataset that consists of image pairs taken from the following sources:
∙ own - our own images
∙ lebeda - images from Lebeda’s homog dataset [13]
∙ sym - images from symbench dataset [17]
∙ zubud - images from ZuBuD dataset [18]
∙ sattler - unpublished images by Torsten Sattler
∙ chal - images used in [19]
∙ jav - images collected from the internet by Javier Aldana-Iuit

The experiments were conducted with the settings summarized in Tab. 9.

detector Hessian Affine (HAF)
descriptor SIFT

𝜎 0.5
1− 𝜂0 0.95

number of runs 100
sample limit 500000

Table 9 Experiments settings
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