
# CZECH TECHNICAL UNIVERSITY IN PRAGUE Faculty of Electrical Engineering

# **BACHELOR'S THESIS**



Jiří Fiedler

# Synchronized Control of Group of Helicopters Using Direct Communication

Department of Cybernetics Thesis supervisor: Dr. Martin Saska

# Prohlášení autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne.....

.....

### Katedra kybernetiky

# ZADÁNÍ BAKALÁŘSKÉ PRÁCE

 Student:
 Jiří Fiedler

 Studijní program:
 Kybernetika a robotika (bakalářský)

 Obor:
 Robotika

 .
 Synchronizované řízení skupiny helikoptér využívající přímou komunikaci

#### Pokyny pro vypracování:

Student v rámci své práce implementuje vhodný protokol umožňující komunikaci mezi řídící stanicí a jednotlivými helikoptérami pomocí XBee, což umožní měnit plán pohybu helikoptér za letu a zároveň analyzovat telemetrická data on-line.

Dále bude implementována přímá komunikace mezi helikoptérami, která umožní sdílení telemetrických dat a akčních zásahů získaných řídicí jednotkou na základě palubních senzorů. Student využije této sdílené informace k přesnější relativní stabilizaci letounů.

Chování navržené metody bude v reálných letových podmínkách porovnáno s chováním původního stabilizačního systému, který přímou komunikaci nevyužívá.

Robustnost metody bude ověřena sérií experimentálních letů formace 2-3 helikoptér.

#### Seznam odborné literatury:

- [1] Lee, T. Leoky, M. McClamroch, N.H. Geometric tracking control of a quadrotor UAV on SE(3), IEEE Conference on Decision and Control (CDC), 2010.
- [2] Krajník, T Nitsche, M Faigl, J. Vaněk, P. Saska, M. Duckett, T. Přeučil, L. Mejail, M.: A practical multirobot localization system. Journal of Intelligent & Robotic Systems, Vol. 76, Issue 3-4, pp 539-562, 2014.
- [3] Saska, M. Vonásek, V. Krajník, T. Přeučil, L. Coordination and navigation of heterogeneous MAV–UGV formations localized by a 'hawk-eye'-like approach under a model predictive control scheme. International Journal of Robotics Research, Vol. 33, Issue 10, pp 1393-1412, July 2014.
- [4] Daniel, K. Wolff, A. Wietfeld, C., Protocol Design and Delay Analysis for a MUAV-Based Aerial Sensor Swarm, IEEE Wireless Communications and Networking Conference (WCNC), 2010.
- [5] Saska, M. Kasl, Z. Přeučil, L.: Motion Planning and Control of Formations of Micro Aerial Vehicles. The 19th World Congress of the International Federation of Automatic Control (IFAC), 2014.

Vedoucí bakalářské práce: Ing. Martin Saska, Dr. rer. nat.

Platnost zadání: do konce letního semestru 2015/2016

L.S.

doc. Dr. Ing. Jan Kybic vedoucí katedry

prof. Ing. Pavel Ripka, CSc. děkan

V Praze dne 23. 1. 2015

#### Czech Technical University in Prague Faculty of Electrical Engineering

#### **Department of Cybernetics**

# **BACHELOR PROJECT ASSIGNMENT**

| Student:                   | Jiří Fiedler                                                            |
|----------------------------|-------------------------------------------------------------------------|
| Study programme:           | Cybernetics and Robotics                                                |
| Specialisation:            | Robotics                                                                |
| Title of Bachelor Project: | Synchronized Control of Group of Helicopters Using Direct Communication |

#### **Guidelines:**

A proper protocol will be implemented for communication between ground station and Micro Unmanned Vehicles (MAVs) with XBee modules. This enables to change plans of motion of MAVs during flight and to analyze telemetry from MAVs online.

Furthermore, a direct communication between MAVs will be implemented for sharing telemetric data and control inputs obtained based on onboard sensors by stabilization board. Student employs this kind of shared information for more precise relative stabilization of MAV groups.

The performance of the designed method will be compared with the original stabilization system, which does not use any direct communication.

The robustness of the method will be verified in various experiments of formation flying with 2-3 MAVs.

#### Bibliography/Sources:

- [1] Lee, T. Leoky, M. McClamroch, N.H. Geometric tracking control of a quadrotor UAV on SE(3), IEEE Conference on Decision and Control (CDC), 2010.
- [2] Krajník, T Nitsche, M Faigl, J. Vaněk, P. Saska, M. Duckett, T. Přeučil, L. Mejail, M.: A practical multirobot localization system. Journal of Intelligent & Robotic Systems, Vol. 76, Issue 3-4, pp 539-562, 2014.
- [3] Saska, M. Vonásek, V. Krajník, T. Přeučil, L. Coordination and navigation of heterogeneous MAV–UGV formations localized by a 'hawk-eye'-like approach under a model predictive control scheme. International Journal of Robotics Research, Vol. 33, Issue 10, pp 1393-1412, July 2014.
- [4] Daniel, K. Wolff, A. Wietfeld, C., Protocol Design and Delay Analysis for a MUAV-Based Aerial Sensor Swarm, IEEE Wireless Communications and Networking Conference (WCNC), 2010.
- [5] Saska, M. Kasl, Z. Přeučil, L.: Motion Planning and Control of Formations of Micro Aerial Vehicles. The 19th World Congress of the International Federation of Automatic Control (IFAC), 2014.

Bachelor Project Supervisor: Ing. Martin Saska, Dr. rer. nat.

Valid until: the end of the summer semester of academic year 2015/2016

L.S.

doc. Dr. Ing. Jan Kybic Head of Department prof. Ing. Pavel Ripka, CSc. **Dean** 

Prague, January 23, 2015

# Acknowledgements

Firstly, I would like to thank my supervisor Dr. Martin Saska for his kindly approach. Furthermore I thank to Tomáš Báča for a lot of technical advice and assistance during experiments. At last, I want to thank my family and girlfriend for the encouragement during my studies.

### Abstrakt

Tato práce se zabývá návrhem a implementací protokolu pro komunikaci mezi řídící stanicí a jednotlivými kvadrokoptérami pomocí XBee modulů. Za použití této komunikace je možné řídit kvadrokoptéry pomocí příkazů, měnit plán pohybu kvadrokoptér za letu a zároveň monitorovat telemetrická data. Dále je implementována příma komunikace mezi kvadrokoptérami, která je využita ke sdílení globálního souřadného systému. Počátky souřadných systémů kvadrokoptér ve formaci jsou sjednoceny a pozice kvadrokoptér ve formaci jsou měreny v jednom globálním souřadném systému. Globální souřadný systém je použit ke kompenzaci driftu pozice kvadrokoptér ve formaci. Každá kvadrokoptéra letí svou vlastní trajektorii v globálním souřadném systému nezávisle na ostatních kvadrokoptérách ve formaci, tudíž kvadrokoptéry mohou letět v různých tvarech formace. Tato metoda byla ověřena několika experimenty se skutečnými kvadrokoptérami.

**Klíčová slova**: XBee, Komunikace, Protokol, MAV, Telemetrie, Relativní stabilizace, Formace

### Abstrakt

This thesis deals with design and implementation of protocol for communication between the ground station and micro aerial vehicles (MAVs) using XBee modules. Using this communication, MAV can be controlled by commands, trajectory of MAVs can be changed during flight and telemetry from MAVs can be analyzed online. Furthermore, a direct communication between MAVs is implemented and used for global coordinate system distribution. Origins of the coordinate systems of MAVs in the formation are unified and positions of MAVs in the formation are measured in one global coordinate system. Global coordinate system is used to compensate relative position drift of MAVs in the formation. Each MAV flies its own trajectory in the global coordinate system independently from other MAVs in the formation, therefore various shapes of the formation can be flown. This method is verified by several experiments with real MAVs.

**Keywords**: XBee, Communication, Protocol, MAV, Telemetry, Relative stabilization, Formation

# Contents

| 1 |                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{1}{3}$                                                  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 2 | 2.1 Hardware overview                                                                                                                                                                                                                                                                                                                                                             | <b>6</b><br>6<br>8                                             |
| 3 | 3.1 AT mode                                                                                                                                                                                                                                                                                                                                                                       | .0<br>11                                                       |
| 4 |                                                                                                                                                                                                                                                                                                                                                                                   | . <b>5</b><br>15                                               |
| 5 | <b>5 0</b>                                                                                                                                                                                                                                                                                                                                                                        | . <b>8</b><br>18                                               |
| 6 | 6.1Previous work16.2New approach16.3Global coordinate system26.4Global coordinate system distribution2                                                                                                                                                                                                                                                                            | . <b>9</b><br>19<br>20<br>20<br>21                             |
| 7 | 7.1       Telemetry monitoring       2         7.2       MAV control       2         7.3       MAV states       2                                                                                                                                                                                                                                                                 | 23<br>25<br>26<br>27                                           |
| 8 | 8.1       Command Packets       2         8.1.1       Telemetry to Coordinator       2         8.1.2       Landing       3         8.1.3       Controllers       3         8.1.4       Trajectory set       3         8.1.5       Position slave set       3         8.1.6       Time       3         8.1.7       Position set       3         8.1.8       Report packets       3 | 28<br>29<br>30<br>31<br>31<br>32<br>33<br>34<br>34<br>35<br>36 |

|                                    | 8.3.2                               | Landing               | . 36 |  |  |  |  |
|------------------------------------|-------------------------------------|-----------------------|------|--|--|--|--|
|                                    | 8.3.3                               | Controllers           | . 36 |  |  |  |  |
|                                    | 8.3.4                               | Trajectory set        | . 37 |  |  |  |  |
|                                    | 8.3.5                               | Position slave set    | . 38 |  |  |  |  |
|                                    | 8.3.6                               | Time                  | . 38 |  |  |  |  |
| 8.                                 | 4 Messa                             | ge Packets            | . 38 |  |  |  |  |
| 9 E                                | xperime                             | nts                   | 40   |  |  |  |  |
| 9.                                 | 1 Telem                             | etry monitoring       | . 40 |  |  |  |  |
| 9.                                 |                                     | on change             |      |  |  |  |  |
| 9.                                 | 3 Positio                           | on drift compensation | . 42 |  |  |  |  |
| 9.                                 | 4 Flight                            | in the formation      | . 44 |  |  |  |  |
| 10 C                               | onclusio                            | n                     | 47   |  |  |  |  |
| App                                | endix A                             | Protocol Identifiers  | 53   |  |  |  |  |
| Appendix B Experimental figures 57 |                                     |                       |      |  |  |  |  |
| Appendix CCD Content59             |                                     |                       |      |  |  |  |  |
| App                                | Appendix D List of abbreviations 61 |                       |      |  |  |  |  |

# List of Figures

| 1                                      | An example of multicopters                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                      | Structure of MAVLink packet                                                                                                                                                                                                                                                                                                                |
| 3                                      | Experimental MAV                                                                                                                                                                                                                                                                                                                           |
| 4                                      | Blob detector                                                                                                                                                                                                                                                                                                                              |
| 5                                      | PX4Flow Smart Camera module                                                                                                                                                                                                                                                                                                                |
| 6                                      | Custom control board v.2                                                                                                                                                                                                                                                                                                                   |
| 7                                      | XBee PRO S2B                                                                                                                                                                                                                                                                                                                               |
| 8                                      | XBee PRO S2B                                                                                                                                                                                                                                                                                                                               |
| 9                                      | ZigBee mesh network                                                                                                                                                                                                                                                                                                                        |
| 10                                     | API frames                                                                                                                                                                                                                                                                                                                                 |
| 11                                     | ZigBee transmit request API frame                                                                                                                                                                                                                                                                                                          |
| 12                                     | ZigBee receive packet API frame                                                                                                                                                                                                                                                                                                            |
| 13                                     | Coordinate system of the MAV 15                                                                                                                                                                                                                                                                                                            |
| 14                                     | Position of the MAV in the MAV coordinate system and in the new coordi-                                                                                                                                                                                                                                                                    |
|                                        | nate system                                                                                                                                                                                                                                                                                                                                |
| 15                                     | An example of coordinate system distribution in the formation                                                                                                                                                                                                                                                                              |
| 16                                     | Configuration of the MAV for the experiment                                                                                                                                                                                                                                                                                                |
| 17                                     | Position of the MAV according to the Kalman filter and Blob detector 40                                                                                                                                                                                                                                                                    |
| 18                                     | Position of the origin of the MAV coordinate system in the new coordinate                                                                                                                                                                                                                                                                  |
|                                        | system                                                                                                                                                                                                                                                                                                                                     |
| 19                                     |                                                                                                                                                                                                                                                                                                                                            |
| 20                                     | Position of the MAV                                                                                                                                                                                                                                                                                                                        |
| 21                                     | Configuration of the MAVs for the experiment                                                                                                                                                                                                                                                                                               |
|                                        | Configuration of the MAVs for the experiment42Position of the slave MAV42                                                                                                                                                                                                                                                                  |
| 22                                     | Configuration of the MAVs for the experiment                                                                                                                                                                                                                                                                                               |
| $\frac{22}{23}$                        | Configuration of the MAVs for the experiment42Position of the slave MAV42                                                                                                                                                                                                                                                                  |
|                                        | Configuration of the MAVs for the experiment42Position of the slave MAV42Position of the slave MAV43                                                                                                                                                                                                                                       |
| 23                                     | Configuration of the MAVs for the experiment42Position of the slave MAV42Position of the slave MAV43Correction of the slave MAV position43                                                                                                                                                                                                 |
| 23<br>24                               | Configuration of the MAVs for the experiment42Position of the slave MAV42Position of the slave MAV43Correction of the slave MAV position43Position drift compensation experiment43Configuration of the MAVs for the experiment44Shape of the trajectories44                                                                                |
| 23<br>24<br>25                         | Configuration of the MAVs for the experiment42Position of the slave MAV42Position of the slave MAV43Correction of the slave MAV position43Position drift compensation experiment43Configuration of the MAVs for the experiment44Shape of the trajectories44Flight in the formation45                                                       |
| 23<br>24<br>25<br>26                   | Configuration of the MAVs for the experiment42Position of the slave MAV42Position of the slave MAV43Correction of the slave MAV position43Position drift compensation experiment43Configuration of the MAVs for the experiment44Shape of the trajectories44Flight in the formation45                                                       |
| 23<br>24<br>25<br>26<br>27             | Configuration of the MAVs for the experiment42Position of the slave MAV42Position of the slave MAV43Correction of the slave MAV position43Position drift compensation experiment43Configuration of the MAVs for the experiment44Shape of the trajectories44Flight in the formation45                                                       |
| 23<br>24<br>25<br>26<br>27<br>28       | Configuration of the MAVs for the experiment42Position of the slave MAV42Position of the slave MAV43Correction of the slave MAV position43Position drift compensation experiment43Configuration of the MAVs for the experiment43Shape of the trajectories44Flight in the formation45Position of the master MAV45                           |
| 23<br>24<br>25<br>26<br>27<br>28<br>29 | Configuration of the MAVs for the experiment42Position of the slave MAV42Position of the slave MAV43Correction of the slave MAV position43Position drift compensation experiment43Configuration of the MAVs for the experiment44Shape of the trajectories44Flight in the formation45Position of the slave MAV45Position of the slave MAV45 |

## 1 Introduction

Micro aerial vehicles (MAVs) capable of vertical takeoff are very popular nowadays. Multicopters became low-cost easily accessible platform in past few years. They can be seen in various shapes and sizes. They cost from fifteen to thousands of euro. Smaller and cheaper multicopters are widely used among the hobbyist. Someone use them just as a toy for fun, others do first person view racing competitions with small, agile and really fast quadcopters. Toy quadcopter and basic hobby quadcopter are shown in figure 1. Amazing aerial videos and photos can be made with MAVs too. Aerial photography is usually made by professionals with expensive, large and reliable hexacopters or octocopters. Multicopters are also used in practical tasks. Amazon PrimeAir is one of the example [3]. Amazon use multicopters to deliver packages to the customers. Multicopters are even able to save lives. Ambulance drone is project about hexacopter carrying mobile defibrillator [5]. This MAV is able to carry 4 kg of payload and fly up to 100 km/h. MAVs are used for aerial observation and exploration, especially in places which were hit by natural disasters, which could be dangerous for a human and which are too small for an aircraft with human crew [2].



Figure 1: An example of multicopters

Multicopters are great platform for science and research due to its low cost and potential applications. Multicopters require certain level of automation for their purposes. The lowest automatic assistance is on toys and racing multicopters. This assistance enables pilot to control the multicopter and stabilize it in desired angle. Advanced level of automatic

#### 1 INTRODUCTION

assistance is used on multicopters designed for aerial photography. These multicopters use barometer, magnetometer and the global position system (GPS) to stabilize their position and altitude. They support features like return to home, when MAV autonomously flies to the take-off point and lands there. MAVs must be fully autonomous in applications like package delivery or aerial observation [3, 2]. For these purposes controllers must be developed [4, 13].

Single MAV is able to fly autonomously nowadays, Amazon PrimeAir and Ambulance drone are the examples. Next challenge is to create autonomous MAV formation. MAV formation can be used in applications, where carrying heavy load or monitoring large area is needed. MAVs can fly in heterogeneous formation with ground vehicles in order to monitor the environment from high perspective and navigate the formation [26].

Navigation and localization of MAVs are crucial for successful flight in the formation. External camera system such as Vicon in special laboratory room can be used for precise localization in indoor applications [1, 14]. Laboratory conditions are great for developing controllers, but external camera system is not available in scenarios like exploration and rescue. External camera system also limits the range of flight to environment, which is equipped with this expensive system. MAVs using onboard sensors for navigation are not limited in range of flight. GPS can be used for outdoor applications and formation with large spacing [28]. GPS lacks the required precision (up to 1 m) for compact formations of small MAVs, moreover GPS loses reliability in urban and indoor environments. Optical flow sensors can be used in both outdoor and indoor applications [6, 9]. Optical flow sensor is low-cost, lightweight, onboard sensor, which works similar as a typical optical mouse. Optical flow sensor is used in this work.

Swarm robotics is one of the research topics of Multi-robot System group (MRS) at Czech Technical University in Prague. The goal of MRS is to develop distributed autonomous system, which can control MAV groups with height precision. The MAV groups should be independent on the environment and capable of indoor and outdoor flight. It should be fully self-contained without using any external localization system, external cameras or external computation power. MAV should rely purely on the on-board sensors and on-board computation power [10]. MAVs used by MRS are equipped with XBee 2.4 Ghz modules used for wireless communication.

Communication between MAV and ground station (laptop) enables ground station operator to monitor MAV telemetry and progress of the mission. Online mission progress monitoring is one of the key features in applications like aerial observation. Telemetry monitoring helps to avoid mission failure and MAV crashes. Ground station operator is able to identify fault and stop the MAV before accident. It is possible to control the MAV by sending its commands. The whole MAV formation can be controlled at once. When an unexpected situation occurs, the ground station operator is able to land with the whole formation to prevent the damage on MAVs and surrounding environment. MAVs are able to communicate between themselves in formation. MAVs can share telemetry and adjust their trajectory in order to adapt to a new situation [28].

The goal of this thesis is to design and implement a protocol for communication between MAVs and ground station via XBee modules. Using this communication, the ground station operator is able to monitor MAV telemetry online, moreover MAVs can be controlled by commands from the operator. Using these commands, it is possible to dynamically change trajectory of MAVs in order to adapt the shape of the formation to the environment, land at once with the whole MAV formation in case of danger, synchronize time on MAVs with the ground station and change positions of MAVs. The position of the MAV can be set in a new coordinate system. The position change is used for navigation of MAVs by external devices like other MAVs, ground vehicles or dock station. Communication between MAVs is implemented and used to improve relative stabilization of MAVs in formation. All MAVs in formation share one global coordinate system. All positions and trajectory waypoints (section 5) are measured in this system. Global coordinate system is periodically distributed in formation. Periodical distribution compensates position drift caused by noisy optical flow sensor measurement. Each MAV is independent unit and can fly its own trajectory in formation, therefore various shapes of formation can be flown. Designed protocol and it usage is verified by experiments with real MAVs.

All goals of this thesis are fulfilled. Overview of the experimental platform used by MRS is described in section 2. The XBee modules used for communication are described in section 3. The MAV coordinate system and position change are described in section 4. Position change is crucial for navigation of MAVs in the formation. Trajectory waypoints and setpoints calculation are described in section 5. The setpoint calculation is remade in order to support dynamic changes of trajectory waypoints and time measurement. The new approach to flight in formation is described in section 6. This section describes global coordinate system and its distribution. The MAV communication capability is described in section 7. The designed protocol used for communication is described in section 8. This section serves as a reference book for new protocol.

### **1.1** State of the art

MAVLink Micro Air Vehicle Communication Protocol is protocol widely used among the MAVs. MAVLink is lightweight, header-only message marshalling library for MAVs. It is used for communication between the ground station and MAVs and for inter-communication between the subsystem of the MAV. It can pack C-structure over serial channels with high efficiency. It is used in PX4, Pixhawk, APM and Parrot AR Drone commercial platforms [19].

The protocol is designed to be transferred via serial link, hence MAVLink packets have header consisting of length of the packet, component ID, message ID, checksum and more. The structure of MAVLink packets is shown in figure 2. The minimum packet length is

### 1 INTRODUCTION

8 bytes for acknowledgement packets. The maximum packet length is 263 bytes for full payload. MAVLink supports integer and float data types and arrays of these data types. The payload of the packet are MAVLink messages. Each MAVLink message is identified by its ID. ID defines type of the MAVLink message. MAVLink supports up to 256 types, where IDs 150-240 are reserved for extensions (personal messages). Each type has its own defined structure.

| Byte<br>Index | Content                | Value                                                                                                                                     | Explanation                                                                                                                      |  |  |  |  |
|---------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0             | Packet<br>start sign   | v1.0: 0xFE<br>(v0.9:<br>0x55)                                                                                                             | Indicates the start of a new packet.                                                                                             |  |  |  |  |
| 1             | Payload<br>length      | 0 - 255                                                                                                                                   | Indicates length of the following payload.                                                                                       |  |  |  |  |
| 2             | Packet<br>sequence     | 0 - 255                                                                                                                                   | Each component counts up his send sequence. Allows to detect packet loss                                                         |  |  |  |  |
| 3             | System ID              | 1 - 255                                                                                                                                   | ID of the SENDING system. Allows to differentiate different<br>MAVs on the same network.                                         |  |  |  |  |
| 4             | Component<br>ID        | 0 - 255                                                                                                                                   | ID of the SENDING component. Allows to differentiate different<br>components of the same system, e.g. the IMU and the autopilot. |  |  |  |  |
| 5             | Message<br>ID          | 0 - 255                                                                                                                                   | ID of the message - the id defines what the payload "means" and how it should be correctly decoded.                              |  |  |  |  |
| 6 to<br>(n+6) | Data                   | (0 - 255)<br>bytes                                                                                                                        | Data of the message, depends on the message id.                                                                                  |  |  |  |  |
| (n+7)<br>to   | Checksum<br>(low byte, | ITU X.25/SAE AS-4 hash, <b>excluding packet start sign, so bytes 1(n+6)</b><br>Note: The checksum also includes MAVLINK CRC EXTRA (Number |                                                                                                                                  |  |  |  |  |
| (n+8)         | high byte)             | computed from message fields. Protects the packet from decoding a different version of the same packet but with different variables).     |                                                                                                                                  |  |  |  |  |

Figure 2: Structure of MAVLink packet Source: http://qgroundcontrol.org/mavlink/start

There are several reasons why we decided not to use MAVLink Micro Air Vehicle Communication Protocol and develop a new protocol. The main reasons are to set the size of transferred packets to minimum and reach the maximum efficiency of XBee modules. Communication with MAVs and ground station is always done via XBee modules using API frames 3.2 hence the protocol does not need to support features like checksum or packet length, because these are implemented in XBee API frames. MAVLink trajectory waypoint format is designed for GPS navigation and the operation of reading and writing waypoints is complicated. Waypoints are read and written one by one and transfer is confirmed by acknowledge packets. That requires a lot of XBee communication capacity. In the new protocol, all trajectory waypoints are sent in one packet, which increases the payload/header ratio and is frugal to XBee communication capacity. MAVLink protocol has wide range of use. It supports helicopters, multicopters, fixed wings, rockets, submarines and others, hence it offers features which are not needed for our work. The new protocol is designed just for our needs and therefore is more efficient.

## 2 Experimental platform

### 2.1 Hardware overview

MAVs used in this thesis are based on L4-ME quadcopter kit designed by MikroKopter company. This platform includes brushless 110 W motors equipped with 10" propellers, speed controllers BL-Ctrl V2.0 and stabilization board FlightCtrl V2.5 ME [15]. The MAV is shown in figure 3. We have created a custom landing gear, propeller guards and LED lights.



Figure 3: Experimental MAV [15]

Each MAV is equipped with camera module. The camera module is Caspa<sup>TM</sup> camera and Overo<sup>®</sup> computer made by Gumstix. The camera module is used for relative visual localization of MAVs [7, 8]. The camera module is shown in figure 4a. The camera module software is able to detect a circular pattern (further referred as Blob) shown in figure 4b and calculate its 3D relative position to the MAV from its position in the camera frames and knowledge of its absolute dimensions. The camera module is able to calculate the position at the rate from 33 Hz to 60 Hz. This system is further referred as Blob detector [12].

Each MAV is equipped with Pixhawk PX4Flow Smart Camera module extended with Maxbotix HRLV-EZ4 ultrasonic range finder [17]. The PX4Flow is shown in figure 5. Ultrasonic range finder is used for measuring distance from the ground. The distance is measured from 0.3 m to 4 m. The smart camera module is pointing to the ground. It calculates velocity along the two horizontal axes relative to the ground surface from the two consecutive images from the camera. The module includes 3-axis gyroscope that is used for compensating rotation motion of the sensor. Data is send over UART (universal asynchronous receiver-transmitter) using MAVLink protocol.





(a) Caspa camera with Overo computer [7, 8]

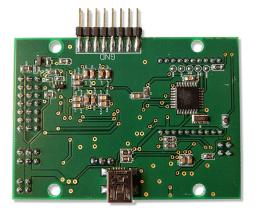
Figure 4: Blob detector



Figure 5: *PX4Flow Smart Camera module* [17]

The brain of the MAVs is a custom control board version 2. The custom control board is shown in figure 6. The custom control board contains two microcontrollers, OpenLog module, XBee socket and micro SD card socket. The board supports connection of external sensors and modules via UART and  $i^2c$ . The board has square mounting pattern (45 x 45 mm) [4].

The main microcontroller is 8-bit AVR, ATxMega128a3u. This MCU (microcontroller unit) is used to handle communication, compute trajectory and compute altitude, speed and position controllers. Trajectory is described in section 5. Controllers are described in section 2.2. The main microcontroller has 32 MHz clock, 8 kB of SRAM memory, 7 separate UARTs, where 3 of them are used for communication with other onboard modules and 4 UARTs are used for communication with external modules, two i<sup>2</sup>c lines and PPM (pulse position modulation) input/output for communication with RC receiver and FlightCtrl V2.5 ME.


The second MCU is 32-bit ARM device, STM32F415RGT6. This MCU is used for computing MPC controller and Kalman filter described in thesis [4]. It has 168 MHz clock and 192 kB of RAM. It serves as a coprocessor for xMega. It communicates with xMega via UART.

OpenLog is an open source solution for data logging. It is an SD card logging device

connected by UART to the xMega. It logs as many telemetry data as possible and serves as a black box [27]. Using OpenLog, logs with telemetry data are available for post-processing and flight evaluation.



(a) Custom control board top



(b) Custom control board bottom

Figure 6: Custom control board v.2 [4]

XBee modules are used for communication between MAVs and ground station. XBee is ZigBee module made by Digi [11]. XBee Pro S2B is shown in figure 7. XBee modules are described in section 3.



Figure 7: XBee PRO S2B [11]

### 2.2 Software overview

Altitude, velocity, position and MPC controllers are available for MAV control. Altitude, velocity and position controller are computed on xMega MCU. These controllers are closely described in thesis [6]. MPC controller is computed on the ARM MCU. This controller is closely described in thesis [4]. Altitude controller is a PID controller using relative distance from the ground surface from Maxbotix HRLV-EZ4 ultrasonic range finder. This controller is computed simultaneously with the rest of the controllers. Speed controller is a PID

controller using relative speed to the ground from Pixhawk PX4Flow. Speed controller is used in autonomous landing task. Position controller is a PID controller using position of the MAV. Position is calculated from the MAV speed. This controller has been replaced by MPC controller on experimental platform, but it is still available. Model predictive controller (MPC) is calculated on ARM MCU on custom control board. MPC controller is robust and reliable controller which is used for trajectory following. Trajectory is described in section 5.

MAVs are able to land autonomously. Trajectory following is stopped and the MAV smoothly lands if landing is turned on. The MAV takes off to the desired altitude and continue with trajectory following if landing is turned off. Trajectory is described in section 5. Speed controller and altitude controller are used for autonomous landing. Autonomous landing is done in several steps. These steps are also called landing states. Landing states are described in table 1. Landing state is switched to stabilization if landing is turned on. Landing state is switched to take off if landing is turned off.

| Landing state | Description                                                                                                                                                                                                                                                                   |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Stabilization | Speed setpoints are set to zero. Altitude setpoint is set to 35cm<br>Landing state is switched to <i>landing</i> if altitude deflection is lowe<br>than 10cm for 0.5 second.                                                                                                  |  |  |  |
| Landing       | In <i>landing</i> phase, the MAV is 35cm above the ground surface.<br>Throttle output is fluently decreasing and the MAV smoothly lands<br>on the ground surface. Landing state is switched to <i>on ground</i> if<br>throttle output reaches altitude controller saturation. |  |  |  |
| On ground     | The MAV is on the ground surface and throttle output is equal to<br>the lower altitude controller saturation.                                                                                                                                                                 |  |  |  |
| Take off      | Speed setpoints are set to zero. Altitude setpoint is set to desired al-<br>titude calculated from trajectory waypoints. Landing state is switch<br>to <i>flight</i> if altitude deflection is lower than 10cm for 0.5 second.                                                |  |  |  |
| Flight        | The MAV is in the air and is controlled by active controller.                                                                                                                                                                                                                 |  |  |  |

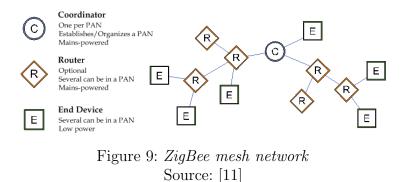
### Table 1: Landing states

Time is measured on MAVs. Time measurement starts from zero when the MAV is turned on because of absence of real time clock module. Time is measured with precision of milliseconds using crystal oscillations and microcontroller interruption. Time can be changed and synchronized with the ground station using MAV communication protocol (MCP). MCP is described in section 8.

## 3 XBee

XBee is ZigBee module made by Digi. XBee Pro S2B is used in this project. XBee modules are used for communication between MAVs and the ground station. XBee Pro S2B is low-cost, low-power wireless mesh network module, that operates within the 2.4 GHz frequency band designed to operate within the ZigBee protocol. XBee PRO S2B is shown in figure 8. XBee Pro S2B communicates with xMega MCU via UART. XBee Pro S2B has transmission distance up to 90 meters in indoor or urban environment and data throughput is up to 35kbps. XBees are typically used in a low data rate applications like wireless control and monitoring. They are not suited for real-time critical data transfer. Two modes are available for communication with XBee. AT mode is described in section 3.1 and API (application programming interface) mode is described in section 3.2 [11].





Figure 8: XBee PRO S2B [11]

ZigBee is based on an IEEE 802.15.4 standard. ZigBee devices can transmit data over long distances using a mesh network. Each ZigBee module has an unique MAC address. This address is used for identification. ZigBee mesh network is shown in figure 9. Three device types are used in ZigBee mesh network.

ZigBee coordinator is the most capable device in ZigBee mesh network. The coordinator forms the network. Exactly one coordinator is in each network. Coordinator is able to route data from other devices, communicate with all devices in network, allow routers and end devices to join the network and buffer RF data packets for sleeping end device children.

ZigBee router must join a ZigBee mesh network before it can transmit, receive and route data. Router is able to route data from other devices, communicate with all devices in network, allow routers and end devices to join the network and buffer RF data packets for sleeping end device children.

ZigBee end device must join a ZigBee mesh network before it can transmit and receive data. End device is able to communicate just with the parent node (either the coordinator or a router). End device can not route data from other devices and allow devices to join the ZigBee mesh network. Relationship between end device and parent node enables end device to be asleep which increases battery life.



### 3.1 AT mode

AT mode is synonym to Transparent mode. Any data sent to the XBee is sent to the remote ZigBee module identified by the destination MAC address in memory. AT mode is useful for very simple networks, where is not necessary to change destination MAC address very often. Command sequence must be sent to XBee module in order to switch it to command mode. Module operating in AT mode can be configured in command mode using AT commands. The biggest disadvantage is that receiving module is not able to distinguish the source of the data.

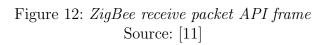
### 3.2 API mode

API operation requires that communication must be done through a structure interface (API Frames). Overview of API frames is shown in figure 10. Sending data to different ZigBee modules using API mode is simple, because destination MAC address is part of the API frame. Module operating in API mode is able to distinguish the source of the received data. API mode is used in this project.

ZigBee transmit request API frame is send to the XBee module via UART in order to send data to another ZigBee device. Structure of the ZigBee transmit request API frame is shown in figure 11. Frame type is identifier of the ZigBee transmit request API frame. Frame ID is used to identify ACK (acknowledgement) packets. ACK packets are not used in this thesis. 64-bit destination address is MAC address of the XBee to which the data should be delivered. 16-bit destination address is address of ZigBee module in current network. If 16-bit address is set as unknown, XBee module is able to find that address and store it in its memory. XBee module is able to retry sending packet in case of failure. This feature

| API Frame Names                          | API ID |
|------------------------------------------|--------|
| AT Command                               | 0x08   |
| AT Command - Queue Parameter Value       | 0x09   |
| ZigBee Transmit Request                  | 0x10   |
| Explicit Addressing ZigBee Command Frame | 0x11   |
| Remote Command Request                   | 0x17   |
| Create Source Route                      | 0x21   |
| AT Command Response                      | 0x88   |
| Modem Status                             | 0x8A   |
| ZigBee Transmit Status                   | 0x8B   |
| ZigBee Receive Packet (AO=0)             | 0x90   |
| ZigBee Explicit Rx Indicator (AO=1)      | 0x91   |
| ZigBee IO Data Sample Rx Indicator       | 0x92   |
| XBee Sensor Read Indicator (AO=0)        | 0x94   |
| Node Identification Indicator (AO=0)     | 0x95   |
| Remote Command Response                  | 0x97   |
| Over-the-Air Firmware Update Status      | 0xA0   |
| Route Record Indicator                   | 0xA1   |
| Many-to-One Route Request Indicator      | 0xA3   |

Figure 10: API frames Source: [11]


can be disabled by setting the option field to value 0x01. Retries should be disabled in real-time applications like online telemetry monitoring. RF data are payload which is sent to target ZigBee device. MAV communication protocol (MCP) is transferred as a payload of ZigBee transmit request API frame. MCP is described in section 8.

ZigBee receive packet API frame is received from the XBee module, when XBee module receives packet. ZigBee receive packet API frame is shown in figure 12. Frame type is identifier of the ZigBee receive packet API frame. 64-bit and 16-bit addresses are addresses of the source ZigBee module. Received data contain the MCP packet.

| Fram                       | e Fields           | Offset | Example      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|--------------------|--------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start Delimiter            |                    | 0      | 0x7E         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length                     |                    | MSB 1  | 0x00         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            | -                  | LSB 2  | 0x16         | Number of bytes between the length and the checksum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Frame-specific Data        | Frame Type         | 3      | 0x10         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            | Frame ID           | 4      | 0x01         | Identifies the UART data frame for the host to correlate with a subsequent ACK (acknowledgement). If set to 0, no response is sent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                            |                    | MSB 5  | 0x00         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                    | 6      | 0x13         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                    | 7      | 0xA2         | Set to the 64-bit address of the destination device. The following addresses are also supported:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            | 64-bit Destination | 8      | 0x00         | 0x000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                            | Address            | 9      | 0x40         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                    | 10     | 0x0A         | 0x000000000000FFFF - Broadcast address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                            |                    | 11     | 0x01         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                    | LSB 12 | 0x27         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            | 16-bit Destination | MSB 13 | 0xFF         | Set to the 16-bit address of the destination device, if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            | Network Address    | LSB 14 | 0xFE         | known. Set to 0xFFFE if the address is unknown, or if sending a broadcast.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A<br>P                     | Broadcast Radius   | 15     | 0x00         | Sets maximum number of hops a<br>broadcast transmission can occur.<br>If set to 0, the broadcast radius will<br>be set to the maximum hops value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P<br>a<br>c<br>k<br>e<br>t | Options            | 16     | 0x00         | <ul> <li>Bitfield of supported transmission options. Supported values include the following:</li> <li>0x01 - Disable retries and route repair</li> <li>0x20 - Enable APS encryption (if EE=1)</li> <li>0x40 - Use the extended transmission timeout</li> <li>Enabling APS encryption presumes the source and destination have been authenticated.</li> <li>I also decreases the maximum number of RF payload bytes by 4 (below the value reported by NP).</li> <li>The extended transmission timeout is needed when addressing sleeping end devices. It also increases the retry interval between retries to compensate for end device polling.See Chapter 4, Transmission Timeouts, Extended Timeout for a description.</li> <li>Unused bits must be set to 0.</li> </ul> |
|                            |                    | 17     | 0x54         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            | RF Data            |        | 0x78         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                    |        | 0x44         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            |                    |        | 0x61         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                    |        | 0x74         | Data that is sent to the destination device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                    |        | 0x74<br>0x61 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            |                    |        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                    |        | 0x30         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                    |        | 0x41         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Checksum                   |                    | 25     | 0x13         | 0xFF - the 8 bit sum of bytes from offset 3 to this byte.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

### Figure 11: ZigBee transmit request API frame Source: [11]

|                  | Frame Fields        |                                  | Offset | Example | Description                                                                                                                                                                                                                      |
|------------------|---------------------|----------------------------------|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Start Delimiter     |                                  | 0      | 0x7E    |                                                                                                                                                                                                                                  |
|                  | Length              |                                  | MSB 1  | 0x00    | Number of bytes between the length and the checksum                                                                                                                                                                              |
|                  |                     |                                  | LSB 2  | 0x11    |                                                                                                                                                                                                                                  |
|                  |                     | Frame Type                       | 3      | 0x90    |                                                                                                                                                                                                                                  |
|                  |                     |                                  | MSB 4  | 0x00    |                                                                                                                                                                                                                                  |
|                  |                     |                                  | 5      | 0x13    |                                                                                                                                                                                                                                  |
|                  |                     |                                  | 6      | 0xA2    |                                                                                                                                                                                                                                  |
|                  |                     | 64-bit Source                    | 7      | 0x00    | 64-bit address of sender. Set to 0xFFFFFFFFFFFFFFFFFF                                                                                                                                                                            |
|                  |                     | Address                          | 8      | 0x40    | (unknown 64-bit address) if the sender's 64-bit address is                                                                                                                                                                       |
|                  |                     |                                  | 9      | 0x52    | unknown.                                                                                                                                                                                                                         |
| A<br>P           |                     |                                  | 10     | 0x2B    |                                                                                                                                                                                                                                  |
| 1                |                     |                                  | LSB 11 | 0xAA    |                                                                                                                                                                                                                                  |
| Р                |                     | 16-bit Source<br>Network Address | MSB 12 | 0x7D    | 10 kit address of sources                                                                                                                                                                                                        |
| a                | Frame-specific Data |                                  | LSB 13 | 0x84    | 16-bit address of sender                                                                                                                                                                                                         |
| c<br>k<br>e<br>t |                     | Receive Options                  | 14     | 0x01    | 0x01 - Packet Acknowledged<br>0x02 - Packet was a broadcast packet<br>0x20 - Packet encrypted with APS encryption<br>0x40 - Packet was sent from an end device (if known)<br>Note: Option values can be combined. For example, a |
|                  |                     |                                  |        |         | 0x40 and a 0x01 will show as a 0x41. Other possible values 0x21, 0x22, 0x41, 0x42, 0x60, 0x61, 0x62.                                                                                                                             |
|                  |                     | Received Data                    |        | 0x52    |                                                                                                                                                                                                                                  |
|                  |                     |                                  | 16     | 0x78    |                                                                                                                                                                                                                                  |
|                  |                     |                                  | 17     | 0x44    | Received RF data                                                                                                                                                                                                                 |
|                  |                     |                                  | 18     | 0x61    |                                                                                                                                                                                                                                  |
|                  |                     |                                  | 19     | 0x74    |                                                                                                                                                                                                                                  |
|                  |                     |                                  | 20     | 0x61    |                                                                                                                                                                                                                                  |
|                  | Checksum            |                                  | 21     | 0x0D    | 0xFF - the 8 bit sum of bytes from offset 3 to this byte.                                                                                                                                                                        |



### 4 Coordinate system

It is important to define the coordinate system in which position of the MAV is measured. The quadcopter is set in "X" configuration as shown in figure 13. The z axis is perpendicular to axes x and y and is oriented downwards. Roll, pitch and yaw are angles of rotation of the body around the axes x, y, z. Distances are measured in meters and angles are measured in degrees in Cartesian coordinate system. Elevator position and aileron position terms are used in this thesis for measuring positions in the coordinate system of the MAV. Elevator position is position along the x axis. Aileron position is position along the y axis.

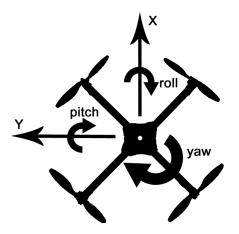



Figure 13: Coordinate system of the MAV

Each MAV has its own coordinate system. Let's call this system the MAV coordinate system. Origin of the MAV coordinate system is set to the current position of the MAV if the MAV is turned on and if MPC controller set as active. Position of the MAV in the MAV coordinate system is calculated by Kalman filter from speed measurement. Position of the MAV in a new coordinate system can be set using MAV communication protocol (MCP).

### 4.1 Coordinate system change

Position of the MAV in a new coordinate system can be set using *MCP Position set* command packet (section 8.1.7). New elevator position and aileron position must be set in meters. The new coordinate system in which the new position of the MAV is measured must be Cartesian and axes of the new coordinate system must be parallel with axes of the MAV coordinate system.

If the position of the MAV in the new coordinate system differs from the position of the MAV in the MAV coordinate system, the coordinate systems have different origins. MAV states including its position are estimated by Kalman filter. These states are unchangeable. Because origin of the MAV coordinate system can not be changed, transformation between the MAV coordinate system and the new coordinate system is done. Let's consider position as a vector

$$\mathbf{P} = \begin{pmatrix} elevator \ position \\ aileron \ position \end{pmatrix}.$$
 (1)

Position of the origin of the MAV coordinate system in the new coordinate system is calculated by equation

$$\mathbf{P}_{\mathbf{org}} = \mathbf{P}_{\mathbf{new}} - \mathbf{P}_{\mathbf{MAV}},\tag{2}$$

where  $\mathbf{P_{new}}$  is position of the MAV in the new coordinate system and  $\mathbf{P_{MAV}}$  is position of the MAV in the MAV coordinate system. Schematic picture is shown in figure 14.  $\mathbf{C_{new}}$  is origin of the new coordinate system and  $\mathbf{C_{MAV}}$  is origin of the MAV coordinate system.

It is possible to transform points from the MAV coordinate system to the new coordinate system and back using the position of the origin of the MAV coordinate system in the new coordinate system. Position transformation is described by equations

$$\mathbf{P}_{\mathbf{MAV}}^{\prime} = \mathbf{P}_{\mathbf{new}}^{\prime} - \mathbf{P}_{\mathbf{org}},\tag{3}$$

$$\mathbf{P}_{\mathbf{new}}^{'} = \mathbf{P}_{\mathbf{MAV}}^{'} + \mathbf{P}_{\mathbf{org}},\tag{4}$$

where  $\mathbf{P}'_{MAV}$  is point in the MAV coordinate system,  $\mathbf{P}'_{new}$  is point in the new coordinate system and  $\mathbf{P}_{org}$  is the position of the origin of the MAV coordinate system in the new coordinate system.

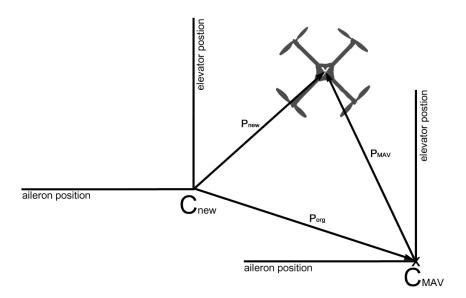



Figure 14: Position of the MAV in the MAV coordinate system and in the new coordinate system

Change of the MAV position is important for navigation. Elevator position and aileron position of trajectory waypoints are set in the new coordinate system. Setpoints calculated from the trajectory waypoints are then transformed to the MAV coordinate system using equation (3). Trajectory waypoints are described in section 5. Position of the MAV monitored by the ground station operator and used for global coordinate system distribution is transformed to the new coordinate system using equation (4). Telemetry monitoring is described in section 7.1. Global coordinate system distribution is described in section 6.4. Coordinate system change is verified in experiment in section 9.2.

## 5 Trajectory

Movement of the MAV is defined by trajectory waypoints. Position setpoints for position PID controller and MPC controller are calculated from the trajectory waypoints. Trajectory waypoint is defined by time, altitude, elevator position and aileron position. Waypoint time is desired time, when the MAV should be on elevator and aileron position in a desired altitude. Time is set in a POSIX time format. Up to ten waypoints can be stored in the MAV memory. These waypoints are designed to be changed dynamically using MAV communication protocol (MCP), hence more waypoints are not needed. Waypoints must be sorted by time for proper functionality of setpoints calculation. MCP is described in section 8.

### 5.1 Setpoints calculation

Setpoints are calculated from trajectory waypoints. Trajectory is calculated with frequency of 70 Hz. Elevator and aileron position setpoints and altitude setpoint are calculated from current setpoints, current time and the selected waypoint. The selected waypoint is the first in MAV memory. If the current time is equal or grater than the selected waypoint's time, next waypoint in memory is selected. If there are no more waypoints to fly trough, setpoints are set to last waypoint positions and altitude. The calculation is described by equations

$$\Delta t = t - t_w,\tag{5}$$

$$E_s(t+t_s) = E_s(t) + \frac{E_w - E_s(t)}{\Delta t} t_s,$$
(6)

$$A_s(t+t_s) = A_s(t) + \frac{A_w - A_s(t)}{\Delta t} t_s,$$
(7)

$$At_s(t+t_s) = At_s(t) + \frac{At_w - At_s(t)}{\Delta t} t_s,$$
(8)

where t is the current time,  $t_w$  is the waypoint time,  $E_s$  is elevator position setpoint,  $A_s$  is aileron position setpoint,  $At_s$  is altitude setpoints,  $E_w$  is waypoint elevator position,  $A_w$  is waypoint aileron position,  $At_w$  is waypoint altitude,  $t_s$  is the sampling time of trajectory calculation.

# 6 Flight in Formation

The main goal of this project is to design and implement a system for MAVs flying together in desired formation. Shape of the formation can be changed dynamically. MAVs rely purely on the on-board sensors and computation power.

#### 6.1 Previous work

Previous work on control of MAVs in formation is described in thesis [6]. No communication between the MAVs neither between the MAV and the ground station was employed. The whole trajectory was programmed in the custom control board. The leaderfollower strategy was used in the formation. The leader MAV was following trajectory using PX4Flow sensor data. The follower MAV was following the leader MAV using data from Blob detector. The follower MAV had a constant position setpoint. The position of the follower MAV was determined by its relative position to the Blob attached to the leader MAV. The Blob was the origin of the follower MAV coordinate system. This approach has specific limitations. Just one shape of the formation is available. The follower MAV follows the leader MAV with a certain lag. Oscillations of the leader MAV has negative impact on performance of the follower MAV.

### 6.2 New approach

In the new approach presented in this thesis, each MAV flies its own trajectory independently of the other MAVs, hence various shapes of the formation can be flown. Each MAV has its own coordinate system, which complicates navigation of MAVs in the formation and trajectory waypoints calculation. Global coordinate system is introduced in order to simplify navigation of MAVs in the formation. Origins of MAVs coordinate systems are changed and united. Positions of MAVs can be measured absolutely in the global coordinate system. Blob detector and XBee are used to distribute global coordinate system between MAVs in the formation.

This approach enables possibility of flying in various shapes of the formation, because each MAV is an independent unit, which flies its own trajectory in the global coordinate system independently of the other MAVs. Moreover imperfect trajectory following of other MAVs in the formation can not impair performance of the MAV, because trajectory of the MAV in the global coordinate system is not affected by other MAVs. The new approach is verified by experiment in section 9.4.

### 6.3 Global coordinate system

Each MAV has its own coordinate system. One of the coordinate systems has to be chosen as the global coordinate system in order to unify the MAVs coordinate systems. Positions of the MAVs are measured in the global coordinate system and trajectory waypoints are set in the global coordinate system. Change of the coordinate system of the MAV is described in section 4.1.

Origins of MAVs coordinate systems drift relatively to the ground, because position of the MAV is not measured directly, but is calculated from speed, which is noisy. The position drift is measured in experiment in section 9.1. If this drift would not be compensated, after a while MAVs would not be in a place in the formation in which they supposed to be and can crash with other MAVs. The MAV formation drifts as one unit if global coordinate system exists and MAVs do not crash with each other. Drift of the formation can be removed if the formation is heterogeneous and other vehicle with drift-less position measurement participate, for example vehicle using SLAM for its localization.

MAVs are able to distribute the global coordinate system and compensate position drift using MAV communication protocol (MCP) and Blob detector. MCP is described in section 8.

#### 6.4 Global coordinate system distribution

Two MAVs participate on the global coordinate system distribution. The coordinate system of the first MAV (master MAV) is considered as the global coordinate system, the coordinate system of the second MAV (slave MAV) is changed. The master MAV must know the address of the slave MAV. The address is set using MCP *Position slave set command packet* (section 8.1.5). The master MAV has known position in the global coordinate system. It is possible to measure relative distance between the master MAV and the slave MAV using the Blob detector. Let's consider position as a vector

$$\mathbf{P} = \begin{pmatrix} elevator \ position \\ aileron \ position \end{pmatrix}.$$
(9)

Position of the slave MAV in the global coordinate system is calculated by equation

$$\mathbf{P}_{slave} = \mathbf{P}_{master} + \mathbf{P}_{relative},\tag{10}$$

where  $\mathbf{P_{slave}}$  is position of the slave MAV in the global coordinate system,  $\mathbf{P_{master}}$  is position of the master MAV in the global coordinate system and  $\mathbf{P_{relative}}$  is relative distance between the master MAV and the slave MAV.

Calculated position of the slave MAV in the global coordinate system is sent to the slave MAV using MCP *Position set command packet* (section 8.1.7). Position of the slave MAV is then set in the global coordinate system as described in section 4.1.

The position of slave MAV in global coordinate system is set with error caused by XBee packet transfer delay. This error can be calculated by equation

$$\Delta p = t_d * v, \tag{11}$$

where  $\Delta p$  is position error,  $t_d$  is XBee packet transfer delay and v is speed of the slave MAV. According to section 3.3 in paper [18], XBee packet transfer delay is lower than 0.075 second. Speed of the MAV is limited to 0.4 m/s. According to the equation (11), error is lower than 0.03 m for both x and y axes.

Global coordinate system can be distributed through the whole formation using position master-slave distribution method. MAVs just need to be linked in pairs and have blob in sight. An example of MAVs configuration for global coordinate system distribution in the formation is shown in figure 15.

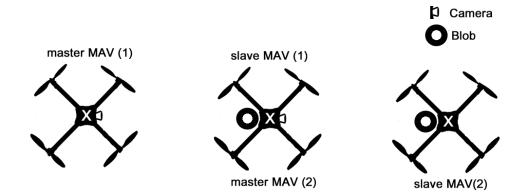



Figure 15: An example of coordinate system distribution in the formation

The global coordinate system must be distributed periodically in order to compensate position drift. Periodically distributed global coordinate system also corrects position error caused by MAVs different yaw angle in the formation. The global coordinate system distribution is made every two seconds. This period has been found sufficient for position drift correction and is frugal to XBee channel transfer capacity. Performance of two MAVs with and without periodically distributed coordinate system is tested in experiment in section 9.3.

## 6.5 Preparation of the flight in the formation

Several steps must be followed to perform flight of MAVs in the formation. For safety reasons, each MAV is controlled by human pilot who can take control over the MAV in case of danger. The steps for performing the flight of MAVs in the formation may be summarized as follows:

- 1. Place MAVs on the ground in the desired starting shape of the formation. All MAVs in the formation must be oriented the same way. All MAVs in the formation must be at positions in which Blobs are visible due to proper function of main coordinate system distribution.
- 2. Turn the MAVs on
- 3. Turn on position PID controller or MPC controller. Turn on landing
- 4. Turn main coordinate system distribution on. Upload starting position of the trajectories to the MAVs
- 5. Check if positions and setpoints of the MAVs are correct. Pilots of the MAVs set throttle on RC controller to middle position
- 6. Turn off landing. All MAVs hover in the air on a starting place of their trajectory
- 7. Upload trajectories to the MAVs. MAVs start to fly automatically
- 8. Change and upload new trajectories dynamically when needed

# 7 MAV Communication

MAV is able to communicate with the ground station and other MAVs. Communication is done via XBee Pro S2B using MAV communication protocol (MCP). Each XBee has specific MAC address. Each MAV is identified by MAC address of XBee, which is mounted on it. MAVs are equipped with router XBee. The ground station is equipped with coordinator XBee. This distribution of XBees must be abide in order to proper functionality of telemetry monitoring. The ground station operator is able to monitor MAV states and telemetry. The MAV can be controlled by MPC commands. XBee is described in section 3. MCP is described in section 8.

Autonomous machines have to be under human control especially in phase of development. In case of failure, the ground station operator is able to stop the whole formation at once. On-line telemetry monitoring allows to prevent accidents and can save health and money.

Communication between MAVs is used to increase precision of relative stabilization of the MAVs in the formation. XBee is not suited for critical real-time data transfer, because of its transfer delay and low transfer capacity. Therefore, real-time sharing of control outputs from controllers is not appropriate. Moreover the MAV is unstable system with disturbances. Controllers compensate these disturbances and stabilize the MAV. Disturbances can not be predicted and differ on every MAV. Hence, it is not possible to obtain useful information from control outputs, which can be used for improving relative stabilization of the MAVs. Communication between MAVs is used to share positions of the MAVs in the global coordinate system distribution. Global coordinate system distribution is described in section 6.4.

## 7.1 Telemetry monitoring

Each MAV is able to send telemetry to the ground station. Telemetry is send periodically with frequency of 20 Hz. Specific telemetry data sent by the MAV can be chosen by ground station operator using *MCP Telemetry to coordinator command packet* (section 8.1.1). Telemetry is received as a *MCP telemetry packet* (section 8.2). Telemetry monitoring is used to observe progress of the MAV mission and check if the mission continues as expected. Failure of sensor or a bug in code can be revealed by the ground station operator and accidents can be prevented. Telemetry data which can be monitored are shown in table 2.

## 7 MAV COMMUNICATION

| Telemetry                   | Description                                      |  |  |
|-----------------------------|--------------------------------------------------|--|--|
| Altitude                    | Ground distance obtained from <i>PX4Flow</i>     |  |  |
| Estimated altitude          | Filtered altitude                                |  |  |
| Altitude speed              | Derivation of estimated altitude                 |  |  |
| Elevator speed              | Speed obtained from $PX4Flow$                    |  |  |
| Aileron speed               | Speed obtained from <i>PX4Flow</i>               |  |  |
| Estimated elevator speed    | Elevator speed filtered by Kalman filter         |  |  |
| Estimated aileron speed     | Aileron speed filtered by Kalman filter          |  |  |
| Elevator position           | Position estimated by Kalman filter              |  |  |
| Aileron position            | Position estimated by Kalman filter              |  |  |
| Elevator acceleration       | Acceleration estimated by Kalman filter          |  |  |
| Aileron acceleration        | Acceleration estimated by Kalman filter          |  |  |
| Elevator acceleration error | Acceleration error estimated by Kalman filter    |  |  |
| Aileron acceleration error  | Acceleration error estimated by Kalman filter    |  |  |
| Elevator acceleration input | Acceleration input estimated by Kalman filter    |  |  |
| Aileron acceleration input  | Acceleration input estimated by Kalman filter    |  |  |
| Altitude controller output  | Output value of altitude controller              |  |  |
| Elevator controller output  | Output value of currently active controller      |  |  |
| Aileron controller output   | Output value of currently active controller      |  |  |
| Altitude setpoint           | Desired altitude                                 |  |  |
| Elevator position setpoint  | Desired elevator position                        |  |  |
| Aileron position setpoint   | Desired aileron position                         |  |  |
| Valid Blob                  | If data from Blob detector are valid             |  |  |
| Blob elevator               | Blob elevator distance                           |  |  |
| Blob aileron                | Blob aileron distance                            |  |  |
| Blob altitude               | Blob altitude distance                           |  |  |
| Pitch angle                 | Pitch angle of the MAV                           |  |  |
| Roll angle                  | Roll angle of the MAV                            |  |  |
| Output throttle             | Value of throttle output from control board      |  |  |
| Output elevator             | Value of elevator output from control board      |  |  |
| Output aileron              | Value of aileron output from control board       |  |  |
| Output rudder               | Value of rudder output from control board        |  |  |
| Elevator shift              | Deflection between MAV and new coordinate system |  |  |
| Aileron shift               | Deflection between MAV and new coordinate system |  |  |

Table 2: MAV telemetry

# 7.2 MAV control

MAVs can be controlled by MCP commands. The ground station operator is able to sent those commands and manage the MAV. MPC commands are described in section 8.1. The main advantage is possibility to control several MAVs at once. This ability is helpful if MAVs fly in the formation and flight plan is changed and if the MAVs in the formation need to land. MAV control is shown in table 3.

| MAV control              | Description                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Telemetry to Coordinator | Specific telemetry data which are sent to the ground station<br>for monitoring can be chosen by <i>MPC telemetry to coordinator</i><br><i>command</i> (section 8.1.1). Telemetry monitoring is described<br>in section 7.1                                                                                                                                    |
| Landing                  | Autonomous landing can turned on and off by <i>MCP land-</i><br><i>ing request command</i> (section 8.1.2). Autonomous landing is<br>described in section 2.2.                                                                                                                                                                                                |
| Controllers              | Active controller can be switched by <i>MCP controllers request command</i> (section 8.1.3). Controllers are described in section 2.2.                                                                                                                                                                                                                        |
| Trajectory set           | Movement of the MAV is controlled by trajectory waypoints.<br>Trajectory waypoints can be set by $MCP$ trajectory set com-<br>mand (section 8.1.4). Trajectory is described in section 5.                                                                                                                                                                     |
| Position set             | Position of the MAV can be set in a new coordinate system<br>using <i>MPC position set request command</i> (section 8.1.7). Po-<br>sition of MAV must be set in meters. Position change is de-<br>scribed in section 4.1.                                                                                                                                     |
| Position slave set       | The MAV is able to distribute its coordinate system to another MAV. Address of the MAV, whose coordinate system should be changed, can be set by <i>MPC position slave set request command</i> (section 8.1.5). Coordinate system distribution is described in section 6.4.                                                                                   |
| Time set                 | Ground station operator is able to set time to the MAV. Time<br>must be synchronized with ground station every time when<br>the MAV is turned on because of absence of real time clock<br>module on MAV. Time on the MAV can be set by <i>MCP time</i><br><i>request command</i> (section 8.1.6). Time measurement on the<br>MAV is described in section 2.2. |

Table 3: MAV control

## 7.3 MAV states

The ground station operator is able to monitor MAV states. Landing state and controllers state are automatically sent to the ground station when changed. All states can be obtained by MCP status request command (section 8.1). States are received as MCPreports (section 8.3). MAV states are described in table4.

| MAV States                     | Description                                                                                                                                                                                                                                                                     |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Telemetry to Coordinator state | Telemetry to Coordinator state informs whether chose<br>telemetry type is send to ground station. Telemetry to<br>Coordinator state is obtained from <i>MCP telemetry</i> of<br><i>coordinator report</i> (section 8.3.1). Telemetry monitoring<br>is described in section 7.1. |  |  |
| Landing state                  | Ground station operator is able to monitor current land-<br>ing state. Landing state is obtained from <i>MCP land-</i><br><i>ing report</i> (section 8.3.2). Landing states are states de-<br>scribed in section 2.2.                                                           |  |  |
| Controllers state              | Controllers state informs which controller is active. Con-<br>trollers state is obtained from $MCP$ controllers report<br>(section 8.3.3). Controllers are described in section 2.2.                                                                                            |  |  |
| Trajectory waypoints state     | Trajectory waypoints state informs about trajectory waypoints in the MAV memory. It describes theirs desired altitude, elevator, aileron and time. Trajectory waypoints are obtained from $MCP$ trajectory set report (section 8.3.4). Trajectory is described in section 5.    |  |  |
| Position slave state           | Ground station operator is able to monitor current slave<br>MAV address using position slave state. Position slave<br>state is obtained from <i>MCP position slave set report</i><br>(section 8.3.5). Position slave is described in section 6.4.                               |  |  |
| Time state                     | Time state informs about MAV time. Time is obtained<br>from $MCP$ time report (section 8.3.6). MAV time mea-<br>surement is described in section 2.2.                                                                                                                           |  |  |

Table 4: MAV States

# 7.4 Messages

It is possible to send text messages between devices equipped with XBee. Text messages can be used for debugging. Text messages are simple string messages up to 256 characters long. Sending messages is described in section 8.4.

# 8 MAV communication protocol (MCP)

The new protocol designed for MAV communication called MCP is implemented. MCP provides packets for MAV control and monitoring. MCP is used for communication between MAVs and between the MAV and the ground station. The ground station operator is able to monitor MAV telemetry. The MAV can be controlled by commands. MCP is designed for communication via XBee modules (section 3). API frames must be used for communication with XBee. MCP packets are transferred as a payload of the *ZigBee Transmit Request API frame* and *ZigBee Receive Packet API frame*. MCP does not need to support packet checksum, because checksum is calculated in XBee API frames. Length of MCP command is calculated from length of XBee API frames.

Several packet types are available. Packet types have tree-like architecture. Packets are divided into packet categories by the value of the first byte (category identifier). Packet categories are shown in table 5.

| Packet category | Identifier | Description                                 |  |
|-----------------|------------|---------------------------------------------|--|
| Command         | 0x63 (c)   | Choose telemetry, which should be monitored |  |
| Telemetry       | 0x74 (t)   | Enable and disable landing                  |  |
| Report          | 0x72 (r)   | Turn on and off controllers                 |  |
| Message         | 0x6D (m)   | Add way-points to trajectory                |  |

Table 5: Packet categories

## 8.1 Command Packets

Command packets are designed for MAV control. Command packets start with the command category identifier (0x63 - c). Command type identifier is the second byte of the packet. Command types are shown in table 6. Report packets can be obtained by status request commands. Each command type have its own status request command. Each status request command has Get Status identifier (0xFF) on the third byte of the packet.

| Command type             | Identifier | Description                                         |  |  |
|--------------------------|------------|-----------------------------------------------------|--|--|
| Telemetry to coordinator | 0x01       | Choose telemetry, which should be monitored         |  |  |
| Landing                  | 0x02       | Enable and disable landing                          |  |  |
| Controllers              | 0x03       | Turn on and off controllers                         |  |  |
| Trajectory set           | 0x04       | Add way-points to trajectory                        |  |  |
| Position slave set       | 0x05       | Set the slave MAV in coordinate system distribution |  |  |
| Time                     | 0x06       | Set time                                            |  |  |
| Position set             | 0x07       | Set new position of the MAV                         |  |  |

Table 6: Command types

## 8.1.1 Telemetry to Coordinator

Telemetry to coordinator command is used to set which telemetry types are send to the ground station for online monitoring. Each telemetry type has specific identifier. MCP supports up to 256 different telemetry types. Identifiers are shown in table 33. Telemetry to coordinator command packet consists of four bytes. The structure of the telemetry to coordinator command packet is shown in table 7.

| Packet Fields        | Byte | Value     | Description                   |
|----------------------|------|-----------|-------------------------------|
| Packet category      | 1    | 0x63      | Command category              |
| Command type         | 2    | 0x01      | Telemetry to coordinator type |
| On/Off               | 3    | 0x01/0x00 | Turn sending on or off        |
| Telemetry identifier | 4    | 0x00-0xFF | Identifier of telemetry data  |

Table 7: Telemetry to coordinator command packet

Telemetry to coordinator status request command is used to obtain telemetry to coordinator report packet (section 8.3.1). The Telemetry to coordinator status request command packet consists of four bytes. The structure of the telemetry to coordinator status request command packet is shown in table 8.

| Packet Fields         | Byte | Value            | Description                   |
|-----------------------|------|------------------|-------------------------------|
| Packet category       | 1    | 0x63             | Command category              |
| Command type          | 2    | 0x01             | Telemetry to coordinator type |
| Get Status identifier | 3    | $0 \mathrm{xFF}$ |                               |
| Telemetry identifier  | 4    | 0x00-0xFF        | Identifier of telemetry data  |

Table 8: Telemetry to coordinator status request command packet

## 8.1.2 Landing

Landing request command is used to turn on and off autonomous landing. Autonomous landing is described in section 2.2. Landing request command packet consists of three bytes. The structure of the landing request command packet is shown in table 9.

| Packet Fields   | Byte | Value     | Description            |  |
|-----------------|------|-----------|------------------------|--|
| Packet category | 1    | 0x63      | Command category       |  |
| Command type    | 2    | 0x02      | Landing type           |  |
| On/Off          | 3    | 0x01/0x00 | Turn landing on or off |  |

Table 9: Landing request command packet

Landing status request command is used to obtain landing report packet (section 8.3.2). Landing status request command packet consists of three bytes. The structure of the landing status request command packet is shown in table 10.

| Packet Fields         | Byte | Value            | Description      |
|-----------------------|------|------------------|------------------|
| Packet category       | 1    | 0x63             | Command category |
| Command type          | 2    | 0x02             | Landing type     |
| Get Status identifier | 3    | $0 \mathrm{xFF}$ |                  |

| Table 10: Landing status | s request command | packet |
|--------------------------|-------------------|--------|
|--------------------------|-------------------|--------|

#### 8.1.3 Controllers

Controllers request command is used to switch between active controller. Controllers are described in section 2.2. Each of controller has its own identifier. Controller identifiers are shown in table 32. MCP supports up to 255 controllers. Controllers request command packet consists of three bytes. The structure of the controllers request command packet is shown in table 11.

| Packet Fields         | Byte | Value     | Description                      |
|-----------------------|------|-----------|----------------------------------|
| Packet category       | 1    | 0x63      | Command category                 |
| Command type          | 2    | 0x03      | Controllers type                 |
| Controller identifier | 3    | 0x00-0xFE | Identifier of desired controller |

Table 11: Controllers request command packet

Controllers status request command is used to obtain controllers report packet (section 8.3.3). Controllers status request command packet consists of three bytes. The structure of the controllers status request command packet is shown in table 12.

| Packet Fields         | Byte | Value            | Description      |
|-----------------------|------|------------------|------------------|
| Packet category       | 1    | 0x63             | Command category |
| Command type          | 2    | 0x03             | Controllers type |
| Get Status identifier | 3    | $0 \mathrm{xFF}$ |                  |

Table 12: Controllers status request command packet

#### 8.1.4 Trajectory set

Trajectory set request command is used to set trajectory waypoints. Trajectory waypoints are described in section 5. To set more than one waypoint, repeat time, elevator position, aileron position and altitude in packet multiple times. More waypoints are transferred in one packet in order to increase payload/header ratio of the XBee API frames. MCP supports up to 255 waypoints in one packet. Trajectory set request command packet consists of 3 + 16k bytes, where k is number of trajectory waypoints. The structure of the trajectory set request command packet is shown in table 13.

| Packet Fields     | Byte  | Value     | Description                              |
|-------------------|-------|-----------|------------------------------------------|
| Packet category   | 1     | 0x63      | Command category                         |
| Command type      | 2     | 0x04      | Telemetry set type                       |
| Size              | 3     | 0x00-0xFE | Number of trajectory waypoints in packet |
| Time              | 4-7   | uint32    | Unsigned 4-byte integer in binary form   |
| Elevator position | 8-11  | float     | 4-byte float in binary form              |
| Aileron positon   | 12-15 | float     | 4-byte float in binary form              |
| Altitude          | 16-19 | float     | 4-byte float in binary form              |
| Time              | 20-23 | uint32    | Unsigned 4-byte integer in binary form   |
| Elevator position | 24-27 | float     | 4-byte float in binary form              |
| Aileron positon   | 28-31 | float     | 4-byte float in binary form              |
| Altitude          | 32-35 | float     | 4-byte float in binary form              |
|                   |       |           |                                          |

Table 13: Trajectory set request command packet

Trajectory set status request command is used to obtain trajectory set report packet (section 8.3.4). Trajectory set status request command packet consists of three bytes. The structure of the trajectory set status request command packet is shown in table (sec. 14).

| Byte | Value            | Description        |
|------|------------------|--------------------|
| 1    | 0x63             | Command category   |
| 2    | 0x04             | Telemetry set type |
| 3    | $0 \mathrm{xFF}$ |                    |
|      | 1<br>2           | 2 0x04             |

Table 14: Trajectory set status request command packet

#### 8.1.5 Position slave set

Position slave set request command is used to set the slave MAV address for coordinate system distribution. Coordinate system distribution is described in section 6.4. Position slave set request command packet consists of ten bytes. The structure of the position slave

| Packet Fields   | Byte | Value                  | Description              |
|-----------------|------|------------------------|--------------------------|
| Packet category | 1    | 0x63                   | Command category         |
| Command type    | 2    | 0x05                   | Position slave set type  |
| Slave address   | 3-10 | 0xXXXXXXXXXXXXXXXXXXXX | 8-byte slave MAV address |

set request command packet is shown in table 15.

Table 15: Position slave set request command packet

Position slave set status request command is used to obtain position slave set report packet (section 8.3.5). Position slave set status request command packet consists of three bytes. The structure of the position slave set status request command is shown in table 16.

| Packet Fields         | Byte | Value            | Description             |
|-----------------------|------|------------------|-------------------------|
| Packet category       | 1    | 0x63             | Command category        |
| Command type          | 2    | 0x05             | Position slave set type |
| Get Status identifier | 3    | $0 \mathrm{xFF}$ |                         |

Table 16: Position slave set status request command packet

#### 8.1.6 Time

*Time request command* is used to set time on the MAV. Time is set in seconds in POSIX format. Time measurement is described in section 2.2. *Time request command packet* consists of six bytes. The structure of the *time request command packet* is shown in table 17.

| Packet Fields   | Byte | Value  | Description                            |
|-----------------|------|--------|----------------------------------------|
| Packet category | 1    | 0x63   | Command category                       |
| Command type    | 2    | 0x06   | Time type                              |
| Current time    | 3-6  | uint32 | Unsigned 4-byte integer in binary form |

Table 17: Time request command packet

Time status request command is used to obtain time report packet (section 8.3.6). Time status request command packet consists of three bytes. The structure of the time status request command packet is described in table 18.

| Packet Fields         | Byte | Value            | Description      |
|-----------------------|------|------------------|------------------|
| Packet category       | 1    | 0x63             | Command category |
| Command type          | 2    | 0x06             | Time type        |
| Get Status identifier | 3    | $0 \mathrm{xFF}$ |                  |

Table 18: Time status request command packet

#### 8.1.7 Position set

*Position set request command* is used to set position of the MAV in the new coordinate system. Setting position of the MAV in the new coordinate system is described in section 4.1. *Position set request command packet* consists of ten bytes. The structure of the *position set request command packet* is shown in table 19.

| Packet Fields         | Byte | Value | Description                 |
|-----------------------|------|-------|-----------------------------|
| Packet category       | 1    | 0x63  | Command category            |
| Command type          | 2    | 0x07  | Position set type           |
| New elevator position | 3-6  | float | 4-byte float in binary form |
| New aileron positon   | 7-10 | float | 4-byte float in binary form |

Table 19: Position set request command packet

Position set type does not have status request command, because position of the MAV is one of the telemetry data.

## 8.2 Telemetry packets

Telemetry packets are used to transfer telemetry from MAV to ground station. These packets are sent by MAV periodically and consume most of the XBee transfer capacity. Telemetry monitoring is described in section 7.1. Telemetry packets start with telemetry

category identifier (0x74 - t). Telemetry packet consist of 1 + 5k bytes, where k is number of transferred telemetry data. The structure of the telemetry packet is shown in table 20. All monitored telemetry data are transferred in one packet in order to increase payload/header ratio of the XBee API frames. Telemetry identifier and telemetry data are repeated in packet. Telemetry identifiers are shown in table 33.

| Packet Fields        | Byte | Value     | Description                  |
|----------------------|------|-----------|------------------------------|
| Packet category      | 1    | 0x74      | Telemetry category           |
| Telemetry identifier | 2    | 0x00-0xFF | Identifier of telemetry data |
| Telemetry data       | 3-6  | float     | 4-byte float in binary form  |
| Telemetry identifier | 7    | 0x00-0xFF | Identifier of telemetry data |
| Telemetry data       | 8-11 | float     | 4-byte float in binary form  |
|                      |      |           |                              |

Table 20: Telemetry packet

## 8.3 Report packets

Report packets are used to transfer MAV states. MAV states are described in section 7.3. Report packets start with report category identifier (0x72 - r). Report type identifier is the second byte of the packet. The report type identifiers correspond with command type identifiers (tab. 6). The report types are shown in table 21.

| Report type              | Identifier | Description                 |
|--------------------------|------------|-----------------------------|
| Telemetry to Coordinator | 0x01       | Monitored telemetry types   |
| Landing                  | 0x02       | Current landing state       |
| Controllers              | 0x03       | Currently active controller |
| Trajectory set           | 0x04       | Trajectory way-points       |
| Position slave set       | 0x05       | Current slave address       |
| Time                     | 0x06       | Current MAV time            |



#### 8.3.1 Telemetry to Coordinator

Telemetry to coordinator report is used to check whether chosen telemetry type is send to the ground station. Telemetry to coordinator report packet consists of four bytes. The structure of the telemetry to coordinator report packet is shown in table 22. Each telemetry type has specific identifier. Identifiers are shown in table 33.

| Packet Fields   | Byte | Value     | Description                   |
|-----------------|------|-----------|-------------------------------|
| Packet category | 1    | 0x72      | Report category               |
| Report type     | 2    | 0x01      | Telemetry to coordinator type |
| On/Off          | 3    | 0x00/0x01 | If telemetry data are send    |
| Telemetry type  | 4    | 0x00-0xFF | Identifier of telemetry data  |

Table 22: Telemetry to coordinator report packet

#### 8.3.2 Landing

Landing report is used to monitor current landing state. Landing states are described in section 2.2. Each landing state has specific identifier. Landing state identifiers are shown in table 31. Landing report packet consists of three bytes. The structure of the landing report packet is shown in table 23.

| Packet Fields            | Byte | Value     | Description           |
|--------------------------|------|-----------|-----------------------|
| Packet category          | 1    | 0x72      | Report category       |
| Report type              | 2    | 0x02      | Landing type          |
| Landing state identifier | 3    | 0x00-0x04 | Current landing state |

Table 23: Landing report packet

#### 8.3.3 Controllers

*Controllers report* is used to check which controller is currently active. Controllers are described in section 2.2. *Controllers report packet* consists of three bytes. The structure of the *controllers report packet* is shown in table 24. Each controller has specific identifier. Controller identifiers are shown in table 32.

| Packet Fields         | Byte | Value     | Description                 |
|-----------------------|------|-----------|-----------------------------|
| Packet category       | 1    | 0x72      | Report category             |
| Report type           | 2    | 0x03      | Controllers type            |
| Controller identifier | 3    | 0x00-0xFE | Currently active controller |

| Table 24: | Controllers | report | packet |
|-----------|-------------|--------|--------|
|-----------|-------------|--------|--------|

### 8.3.4 Trajectory set

Trajectory set report is used to monitor current trajectory waypoints. Trajectory set report packet consists of 3 + 16k bytes, where k is number of trajectory waypoints. The structure of the trajectory set report packet is shown in table 25. All trajectory waypoints are in one packet in order to increase payload/header ration of the XBee frames.

| Packet Fields     | Byte  | Value     | Description                              |
|-------------------|-------|-----------|------------------------------------------|
| Packet category   | 1     | 0x72      | Report category                          |
| Command type      | 2     | 0x04      | Telemetry set type                       |
| Size              | 3     | 0x00-0xFE | Number of trajectory waypoints in packet |
| Time              | 4-7   | uint32    | Unsigned 4-byte integer in binary form   |
| Elevator position | 8-11  | float     | 4-byte float in binary form              |
| Aileron positon   | 12-15 | float     | 4-byte float in binary form              |
| Altitude          | 16-19 | float     | 4-byte float in binary form              |
| Time              | 20-23 | uint32    | Unsigned 4-byte integer in binary form   |
| Elevator position | 24-27 | float     | 4-byte float in binary form              |
| Aileron positon   | 28-31 | float     | 4-byte float in binary form              |
| Altitude          | 32-35 | float     | 4-byte float in binary form              |
|                   |       |           |                                          |

Table 25: Trajectory set report packet

#### 8.3.5 Position slave set

Position slave set report is used to monitor current address of the slave MAV. Position slave set report packet consists of ten bytes. The structure of the position slave set report packet is shown in table 26.

| Packet Fields         | Byte | Value                                  | Description              |
|-----------------------|------|----------------------------------------|--------------------------|
| Packet category       | 1    | 0x72                                   | Report category          |
| Command type          | 2    | 0x05                                   | Position slave set type  |
| Current slave address | 3-10 | 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 8-byte slave MAV address |

Table 26: Position slave set report packet

#### 8.3.6 Time

*Time report* is used to monitor time on the MAV. *Time report packet* consists of six bytes. The structure of the *time report packet* is shown in table 27.

| Packet Fields   | Byte | Value  | Description                            |
|-----------------|------|--------|----------------------------------------|
| Packet category | 1    | 0x72   | Report category                        |
| Command type    | 2    | 0x06   | Time type                              |
| MAV time        | 3-6  | uint32 | Unsigned 4-byte integer in binary form |

Table 27: Time report packet

## 8.4 Message Packets

Messages are described in section 7.4. Message packets are used to send string messages. Message packets start message with the message category identifier (0x6D - m). Size of the message packet is 1 + k, where k is length of the message. Chars in message are coded in 8-bit ascii. Example of a message packet is shown in table 28.

| Packet Fields   | Byte | Value | Description      |
|-----------------|------|-------|------------------|
| Packet category | 1    | 0x6D  | Message category |
| Char 1          | 2    | 0x48  | Н                |
| Char 2          | 3    | 0x65  | е                |
| Char 3          | 4    | 0x6C  | 1                |
| Char 4          | 5    | 0x6C  | 1                |
| Char 5          | 6    | 0x6F  | 0                |
| Char 6          | 7    | 0x20  | space            |
| Char 7          | 8    | 0x77  | W                |
| Char 8          | 9    | 0x6F  | 0                |
| Char 9          | 2    | 0x72  | r                |
| Char 10         | 3    | 0x6C  | 1                |
| Char 11         | 2    | 0x64  | d                |

Table 28: Example of a message packet

# 9 Experiments

## 9.1 Telemetry monitoring

Telemetry monitoring feature is verified by measuring and logging MAV position drift. The MAV is equipped with Blob detector measuring position of the Blob as shown in figure 16. The Blob is on fixed position. The MAV is regulated to stay on its position. Elevator position and Blob elevator telemetry data are monitored. Telemetry monitoring is described in section 7.1. Position of the MAV estimated by Kalman filter is compared to the position of the MAV calculated from relative distance between the MAV and the Blob. Position drift of the MAV caused by noisy speed measurement is shown in figure 17. This drift is about 3,5 centimeters per second.



Figure 16: Configuration of the MAV for the experiment

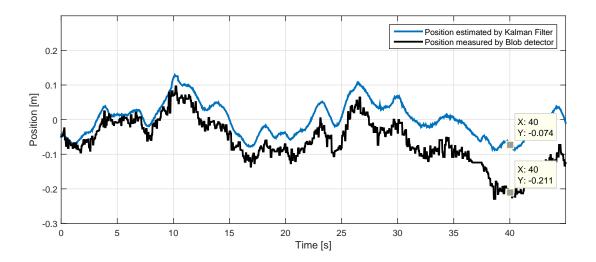



Figure 17: Position of the MAV according to the Kalman filter and Blob detector

## 9.2 Position change

Coordinate system change described in section 4.1 is verified by this experiment with one MAV. The MAV is hovering on a place using MPC controller. Elevator and aileron position setpoints are set to zero. Position of the MAV in the new coordinate system is set in 6th second and in 15th second. Position of the origin of the MAV coordinate system in the new coordinate system is shown in figure 18. This position is used to transform position of the MAV and the setpoint from the MAV coordinate system to the new coordinate system and back. In the MAV coordinate system, position of the MAV is not changed, the setpoint is changed. The position of the MAV and the setpoint in the MAV coordinate system are shown in figure 19a. Position of the MAV is transformed from the MAV coordinate system to the new coordinate system for monitoring. Position of the MAV and the setpoint in the new coordinate system are shown in figure 19b.

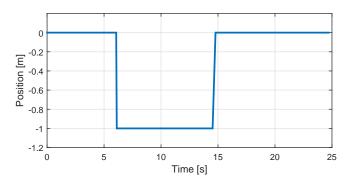



Figure 18: Position of the origin of the MAV coordinate system in the new coordinate system

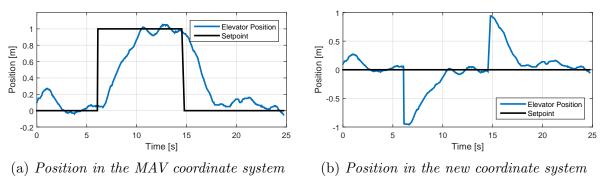



Figure 19: Position of the MAV

### 9.3 Position drift compensation

Coordinate system distribution and drift compensation described in section 6.4 are verified by this experiment. Two MAVs participate in the experiment. The MAVs are hovering on stable positions. Master MAV has elevator and aileron position setpoints set to zero. Slave MAV has elevator position setpoint set to two meters and aileron position setpoint to zero. The master MAV is equipped with Blob detector. The slave MAV is equipped with Blob. Configuration of the MAVs in this experiment is shown in figure 20. Photos from the experiment are shown in figure 24.



Figure 20: Configuration of the MAVs for the experiment

Global coordinate system is set to the slave MAV just once, and therefore position drift is not compensated. Position drift caused by noisy speed measurement and different yaw angles of the MAVs in the formation is shown in figure 21. Position of the slave MAV estimated by Kalman filter is compared to the position of the slave MAV calculated from the position of the master MAV estimated by Kalman filter and relative distance between the MAVs computed by the Blob detector.

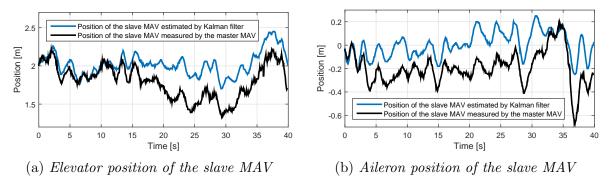



Figure 21: Position of the slave MAV

Global coordinate system must be distributed periodically in order to compensate po-

sition drift caused by noisy speed measurement and different yaw angles of the MAVs in the formation. Global coordinate system is distributed every two seconds. Position of the slave MAV is shown in figures 22 and 31. Position of the slave MAV estimated by Kalman filter is changed and corrected, therefore the relative position drift between the slave MAV and the master MAV is compensated. Drift correction shown in figure 23 is position of the origin of the slave MAV coordinate system in the global coordinate system.

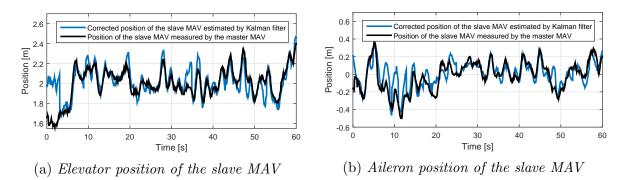



Figure 22: Position of the slave MAV

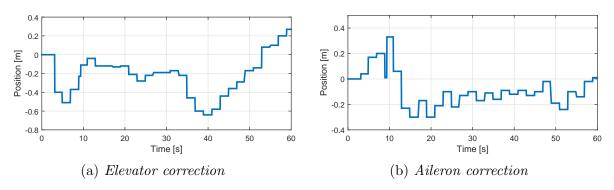



Figure 23: Correction of the slave MAV position



Figure 24: Position drift compensation experiment

#### 9.4 Flight in the formation

Flight in the formation described in section 6 is verified by this experiment. Master and slave MAVs participate in the experiment. The master MAV is equipped with Blob detector. The slave MAV is equipped with Blob. Configuration of the MAVs is shown in figure 25. Because of technical issues with Gumstix Blob detector, the master MAV is replaced by tricopter platform. This MAV is equipped with Blob detector based on Raspberry Pi [16].



Figure 25: Configuration of the MAVs for the experiment

The master MAV distributes the global coordinate system to the slave MAV every two seconds, hence compensate the relative drift between the MAVs. Each MAV flights its own trajectory independently of the other MAVs in the global coordinate system, hence different shapes of the formation is flown. Shape of desired trajectories of the MAVs is shown in figure 26. Desired trajectory and real trajectory of the MAVs are shown in figure 32. The progress of trajectory following in the formation can be seen in photos from the experiment in figure 27. MPC regulator is used for trajectory following. Trajectory is described in section 5.

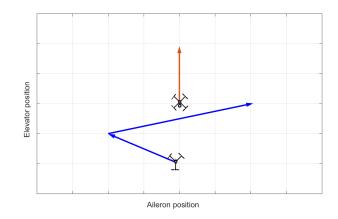



Figure 26: Shape of the trajectories



Figure 27: Flight in the formation

The progress of trajectory following of the master MAV is shown in figure 28. The progress of trajectory following of the slave MAV is shown in figure 29. Drift correction shown in figure 30 is the position of the origin of the slave MAV coordinate system in the global coordinate system.

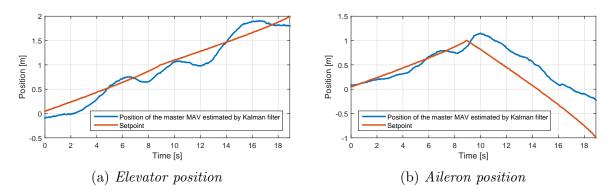



Figure 28: Position of the master MAV

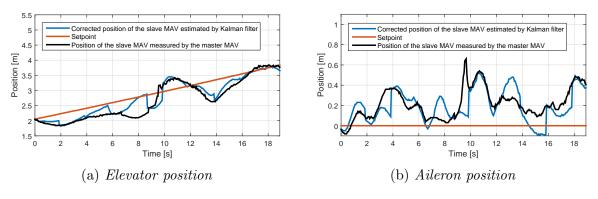



Figure 29: Position of the slave MAV

#### 9 EXPERIMENTS

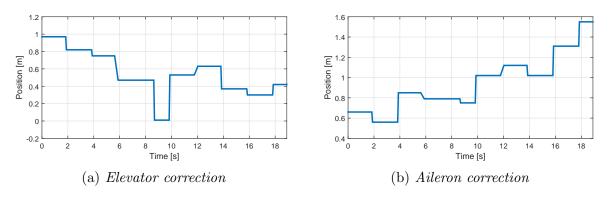



Figure 30: Correction of the slave MAV position

Video from the experiment is on attached CD and can be seen on youtube (www.youtube.com/watch?v=76oemQtmwoM).

# 10 Conclusion

All goals of this thesis are fulfilled. A new protocol for MAV communication called MCP is implemented. MAVs are able to communicate with each other and with the ground station using the MCP. The ground station operator is able to monitor the MAV telemetry online. MAV can be controlled by command packets. MAV movement can be dynamically changed by uploading new trajectry waypoints. The ground station operator is able to land with the whole group of MAVs at once in case of danger. Time on MAVs can be synchronized with the ground station. Position of the MAV can be set in a new coordinate system. The direct communication between MAVs is used for more precise relative stabilization of the MAVs in the formation. One of MAVs coordinate systems is chosen as the global coordinate system. The global coordinate system is distributed in the formation using the direct communication between MAVs, therefore coordinate systems of all MAVs in the formation are unified. The position drift of the MAVs in the formation caused by noisy speed measurement is compensated if the global coordinate system is distributed periodically. MAVs positions and trajectory waypoints are measured in the global coordinate system. Each MAV is independent unit which flies its own trajectory in the global coordinate system independently from the other MAVs, hence various shapes of formation can be flown. System presented in this work is verified by several indoor and outdoor experiments with real MAVs.

The system is ready to be used for experimental verification of other developed algorithms of MAV control and multi-robot systems. Relevant information and results in the field of MAV control and multi-robot systems in general, which were achieved by other members of Multi-robot Systems group, can be found in [20, 21, 22, 23, 24, 25].

## 10 CONCLUSION

# References

- [1] Vicon. http://www.vicon.com/.
- [2] Mohamed Abdelkader, Mohammad Shaqura, Christian G Claudel, and Wail Gueaieb. A uav based system for real time flash flood monitoring in desert environments using lagrangian microsensors. In Unmanned Aircraft Systems (ICUAS), 2013 International Conference on, pages 25–34. IEEE, 2013.
- [3] Amazon. Amazon prime air. http://www.amazon.com/b?node=8037720011.
- [4] Tomáš Báča. Model predictive control of micro aerial vehicle using onboard microcontroller. Master's thesis, Czech technical university in Prague, Faculty of Electrical Engineering, 2015.
- [5] TU Delft. Ambulance drone. http://www.tudelft.nl/en/current/latestnews/article/detail/ambulance-drone-tu-delft-vergroot-overlevingskans-bijhartstilstand-drastisch.
- [6] Václav Endrych. Control and stabilization of an unmanned helicopter following a dynamic trajectory. Master's thesis, Czech technical university in Prague, Faculty of Electrical Engineering, 2014.
- [7] Gumstix. Gumstix caspa vl. https://store.gumstix.com/index.php/products/260/.
- [8] Gumstix. Gumstix overo. https://store.gumstix.com/index.php/category/33/.
- [9] Cheng Hui, Chen Yousheng, and Wong Wing Shing. Trajectory tracking and formation flight of autonomous uavs in gps-denied environments using onboard sensing. In *Guidance, Navigation and Control Conference (CGNCC), 2014 IEEE Chinese*, pages 2639–2645. IEEE, 2014.
- [10] Czech Technical University in Prague. Multi-robot systems group. http://mrs.felk.cvut.cz/research/micro-aerial-vehicles.
- [11] Digi International Inc. XBee®/XBee-PRO® ZB RF Modules, 2014.
- [12] Tomas Krajnik, Matias Nitsche, Jan Faigl, Petr Vanek, Martin Saska, Libor Preucil, Tom Duckett, and Marta Mejail. A practical multirobot localization system. *Journal* of Intelligent & Robotic Systems, 76(3-4):539–562, 2014.
- [13] Taeyoung Lee, Melvin Leoky, and N Harris McClamroch. Geometric tracking control of a quadrotor uav on se (3). In *Decision and Control (CDC)*, 2010 49th IEEE Conference on, pages 5420–5425. IEEE, 2010.
- [14] Sergei Lupashin, Markus Hehn, Mark W Mueller, Angela P Schoellig, Michael Sherback, and Raffaello D'Andrea. A platform for aerial robotics research and demonstration: The flying machine arena. *Mechatronics*, 24(1):41–54, 2014.

- [15] MikroKopter. Mk basicset l4-me. https://www.mikrocontroller.com/.
- [16] Raspberry Pi. https://www.raspberrypi.org/.
- [17] Pixhawk. Px4flow smart camera. https://pixhawk.org/modules/px4flow.
- [18] Rajeev Piyare and Seong-ro Lee. Performance analysis of xbee zb module based wireless sensor networks. International Journal of Scientific & Engineering Research, 4(4):1615–1621, 2013.
- [19] QGroundControl. Mavlink micro air vehicle communication protocol. http://qgroundcontrol.org/mavlink/start.
- [20] M. Saska, J. Chudoba, L. Preucil, J. Thomas, G. Loianno, A. Tresnak, V. Vonasek, and V. Kumar. Autonomous Deployment of Swarms of Micro-Aerial Vehicles in Cooperative Surveillance. In *Proceedings of 2014 International Conference on Unmanned Aircraft Systems (ICUAS)*, volume 1, pages 584–595, Danvers, 2014. IEEE Computer society.
- [21] M. Saska, Z. Kasl, and L. Preucil. Motion Planning and Control of Formations of Micro Aerial Vehicles. In Proceedings of The 19th World Congress of the International Federation of Automatic Control, pages 1228–1233, Pretoria, 2014. IFAC.
- [22] M. Saska, T. Krajnik, J. Faigl, V. Vonasek, and L. Preucil. Low Cost MAV Platform AR-Drone in Experimental Verifications of Methods for Vision Based Autonomous Navigation. In Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 1, pages 4808–4809, Piscataway, 2012. IEEE.
- [23] M. Saska, T. Krajnik, V. Vonasek, Z. Kasl, V. Spurny, and L. Preucil. Fault-Tolerant Formation Driving Mechanism Designed for Heterogeneous MAVs-UGVs Groups. *Journal of Intelligent and Robotic Systems*, 73(1-4):603–622, January 2014.
- [24] M. Saska, T. Krajnik, V. Vonasek, P. Vanek, and L. Preucil. Navigation, Localization and Stabilization of Formations of Unmanned Aerial and Ground Vehicles. In *Proceedings of 2013 International Conference on Unmanned Aircraft Systems*, pages 831–840, New York, 2013. Springer.
- [25] M. Saska, J. Vakula, and L. Preucil. Swarms of Micro Aerial Vehicles Stabilized Under a Visual Relative Localization. In *ICRA2014: Proceedings of 2014 IEEE International Conference on Robotics and Automation*, pages 3570–3575, Piscataway, 2014. IEEE.
- [26] M. Saska, V. Vonasek, T. Krajnik, and L. Preucil. Coordination and Navigation of Heterogeneous MAV-UGV Formations Localized by a hawk-eye-like Approach Under a Model Predictive Control Scheme. *International Journal of Robotics Research*, 33(10):1393–1412, September 2014.
- [27] SparkFun. Openlog. https://github.com/sparkfun/OpenLog.

[28] Gábor Vásárhelyi, Cs Virágh, Gergő Somorjai, Norbert Tarcai, T Szorenyi, Tamás Nepusz, and Tamás Vicsek. Outdoor flocking and formation flight with autonomous aerial robots. In *Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on*, pages 3866–3873. IEEE, 2014.

# Appendix A Protocol Identifiers

| Packet category | Identifier |
|-----------------|------------|
| Command         | 0x63 (c)   |
| Telemetry       | 0x74 (t)   |
| Report          | 0x72 (r)   |
| Message         | 0x6D (m)   |
| Warning         | 0x77 (w)   |

Table 29: Packet category identifiers

| Command type             | Identifier |
|--------------------------|------------|
| Telemetry to coordinator | 0x01       |
| Landing                  | 0x02       |
| Controllers              | 0x03       |
| Trajectory set           | 0x04       |
| Position slave set       | 0x05       |
| Time                     | 0x06       |
| Position set             | 0x07       |

Table 30: Command type identifiers

| Landing state | Identifier |
|---------------|------------|
| On ground     | 0x00       |
| Landing       | 0x01       |
| Stabilization | 0x02       |
| Take off      | 0x03       |
| Flight        | 0x04       |
| Take off      | 0x03       |

Table 31: Landing state indetifiers

| Controller          | Identifier |
|---------------------|------------|
| Manual control      | 0x01       |
| Speed controller    | 0x02       |
| Position controller | 0x03       |
| MPC controller      | 0x04       |
|                     |            |

Table 32: Controllers identifiers

| TelemetryIdentifierEstimated altitude0x00Altitude0x01Elevator speed0x02Aileron speed0x03Estimated elevator speed0x05Elevator position0x06Aileron position0x07Altitude controller output0x08Altitude speed0x09Aileron controller output0x08Altitude speed0x09Aileron controller output0x08Altitude setpoint0x00Elevator position setpoint0x00Aileron position setpoint0x00Aileron acceleration0x01Aileron acceleration0x11Output throttle0x13Output aileron0x14Output rudder0x15Blob altitude0x17Blob altitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1BAileron shift0x1CElevator acceleration input0x16                                                                                                                                                                                                                                                                                                        | Tolorest                    | I.l.       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|
| Altitude0x01Elevator speed0x02Aileron speed0x03Estimated elevator speed0x04Estimated aileron speed0x05Elevator position0x06Aileron position0x07Altitude controller output0x08Altitude speed0x09Aileron controller output0x08Altitude speed0x00Altitude setpoint0x0CElevator position setpoint0x0DAltitude setpoint0x0DAileron position setpoint0x0DAileron acceleration0x11Output throttle0x12Output elevator0x13Output aileron0x14Output rudder0x15Blob elevator0x17Blob aileron0x17Blob altitude0x18Pitch angle0x1AElevator shift0x1DAileron shift0x1D                                                                                                                                                                                                                                                                                                                                                                | Telemetry                   | Identifier |
| Elevator speed0x02Aileron speed0x03Estimated elevator speed0x05Elevator position0x06Aileron position0x07Altitude controller output0x08Altitude speed0x09Aileron controller output0x08Altitude setpoint0x002Elevator position setpoint0x002Altitude setpoint0x002Altitude setpoint0x002Altieron position setpoint0x002Aileron acceleration0x10Valid Blob0x11Output throttle0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x18Pitch angle0x18Aileron shift0x10Elevator shift0x10                                                                                                                                                                                                                                                                                                                                                                                    |                             |            |
| Aileron speed0x03Estimated elevator speed0x04Estimated aileron speed0x05Elevator position0x06Aileron position0x07Altitude controller output0x08Altitude speed0x09Aileron controller output0x08Altitude setpoint0x00Elevator controller output0x08Altitude setpoint0x00Elevator position setpoint0x00Aileron position setpoint0x00Aileron acceleration0x10Valid Blob0x11Output throttle0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1BAileron shift0x1CElevator acceleration input0x11                                                                                                                                                                                                                                                                                                                                          | Altitude                    |            |
| Image: A strength0x04Estimated elevator speed0x05Elevator position0x06Aileron position0x07Altitude controller output0x08Altitude speed0x09Aileron controller output0x08Altitude setpoint0x00Altitude setpoint0x00Altitude setpoint0x00Altitude setpoint0x00Altitude setpoint0x00Altitude setpoint0x00Aileron position setpoint0x01Aileron acceleration0x07Aileron acceleration0x10Valid Blob0x11Output throttle0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x14Elevator shift0x18Aileron shift0x1CElevator acceleration input0x1DElevator acceleration input0x1A                                                                                                                                                                                                                                                                                                | Elevator speed              | 0x02       |
| Estimated aileron speed0x05Elevator position0x06Aileron position0x07Altitude controller output0x08Altitude speed0x09Aileron controller output0x0AElevator controller output0x0BAltitude setpoint0x0CElevator position setpoint0x0EAileron position setpoint0x0FAileron acceleration0x10Valid Blob0x11Output throttle0x13Output aileron0x14Output aileron0x17Blob aileron0x17Blob aileron0x19Roll angle0x14Elevator scieleration0x12Output rudder0x13Output sileron0x16Elob aileron0x17Blob aileron0x17Blob altitude0x18Pitch angle0x1AElevator shift0x1CElevator acceleration input0x1DElevator acceleration input0x1EAileron acceleration input0x1D                                                                                                                                                                                                                                                                    | Aileron speed               | 0x03       |
| Image: Provide the sector position0x06Aileron position0x07Altitude controller output0x08Altitude speed0x09Aileron controller output0x0AElevator controller output0x0CElevator controller output0x0CElevator position setpoint0x0CAileron position setpoint0x0CAileron acceleration0x10Valid Blob0x11Output throttle0x13Output aileron0x14Output aileron0x17Blob altitude0x17Blob altitude0x18Pitch angle0x1AElevator shift0x12Cultar shift0x10Ox1C0x12Elevator shift0x17Blob and error0x17Blob and error0x18Aileron shift0x10Cultar shift0x10Cultar shift0x10Cultar shift0x10Cultar shift0x10Cultar shift0x10Cultar shift0x10Cultar shift0x10Elevator acceleration input0x11Cultar shift0x10Elevator acceleration error0x12Cultar shift0x10Cultar shift0x10Cultar shift0x10Cultar shift0x10Cultar shift0x11Cultar sceleration input0x11Cultar sceleration input0x11Cultar sceleration input0x11Cultar sceleration input | Estimated elevator speed    | 0x04       |
| Aileron position0x07Altitude controller output0x08Altitude speed0x09Aileron controller output0x0AElevator controller output0x0BAltitude setpoint0x0CElevator position setpoint0x0DAileron position setpoint0x0FAileron acceleration0x10Valid Blob0x11Output throttle0x12Output aileron0x13Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x1AElevator shift0x1BAileron shift0x1CElevator acceleration input0x1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Estimated aileron speed     | 0x05       |
| Altitude controller output0x08Altitude speed0x09Aileron controller output0x0AElevator controller output0x0BAltitude setpoint0x0CElevator position setpoint0x0DAileron position setpoint0x0EElevator acceleration0x0FAileron acceleration0x10Valid Blob0x11Output throttle0x12Output elevator0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x1AElevator shift0x1BAileron shift0x1CElevator acceleration input0x1DElevator acceleration input0x1A                                                                                                                                                                                                                                                                                                                                                                                                                   | Elevator position           | 0x06       |
| Altitude speed0x09Aileron controller output0x0AElevator controller output0x0BAltitude setpoint0x0CElevator position setpoint0x0DAileron position setpoint0x0EElevator acceleration0x0FAileron acceleration0x10Valid Blob0x11Output throttle0x12Output elevator0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x18Aileron shift0x1CElevator acceleration input0x1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aileron position            | 0x07       |
| Aileron controller output0x0AElevator controller output0x0BAltitude setpoint0x0CElevator position setpoint0x0DAileron position setpoint0x0EElevator acceleration0x0FAileron acceleration0x10Valid Blob0x11Output throttle0x12Output elevator0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x1AElevator shift0x1BAileron shift0x1CElevator acceleration input0x1DElevator acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Altitude controller output  | 0x08       |
| Elevator controller output0x0BAltitude setpoint0x0CElevator position setpoint0x0DAileron position setpoint0x0EElevator acceleration0x0FAileron acceleration0x10Valid Blob0x11Output throttle0x12Output elevator0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x1AElevator shift0x1BAileron shift0x1CElevator acceleration input0x1DElevator acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Altitude speed              | 0x09       |
| Altitude setpoint0x0CElevator position setpoint0x0DAileron position setpoint0x0EElevator acceleration0x0FAileron acceleration0x10Valid Blob0x11Output throttle0x12Output elevator0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1CElevator acceleration input0x1DElevator acceleration error0x1EAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aileron controller output   | 0x0A       |
| Elevator position setpoint0x0DAileron position setpoint0x0EElevator acceleration0x0FAileron acceleration0x10Valid Blob0x11Output throttle0x12Output elevator0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1CElevator acceleration input0x1DElevator acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Elevator controller output  | 0x0B       |
| Aileron position setpoint0x0EElevator acceleration0x0FAileron acceleration0x10Valid Blob0x11Output throttle0x12Output elevator0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1CElevator acceleration input0x1DElevator acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Altitude setpoint           | 0x0C       |
| Image: Angle of the sector acceleration0x0FAileron acceleration0x10Valid Blob0x11Output throttle0x12Output elevator0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob alitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1CElevator acceleration input0x1DElevator acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Elevator position setpoint  | 0x0D       |
| Aileron acceleration0x10Valid Blob0x11Output throttle0x12Output elevator0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x19Roll angle0x1AAileron shift0x1CElevator acceleration input0x1EAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aileron position setpoint   | 0x0E       |
| Valid Blob0x11Output throttle0x12Output elevator0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1BAileron shift0x1DElevator acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Elevator acceleration       | 0x0F       |
| Output throttle0x12Output elevator0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob alitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1BAileron shift0x1DElevator acceleration input0x1EAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aileron acceleration        | 0x10       |
| Output elevator0x13Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob alitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1CElevator acceleration input0x1DAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Valid Blob                  | 0x11       |
| Output aileron0x14Output rudder0x15Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1BAileron shift0x1CElevator acceleration input0x1EAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Output throttle             | 0x12       |
| Output rudder0x15Output rudder0x16Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1BAileron shift0x1CElevator acceleration input0x1DElevator acceleration error0x1EAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Output elevator             | 0x13       |
| Blob elevator0x16Blob aileron0x17Blob altitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1BAileron shift0x1CElevator acceleration input0x1DElevator acceleration error0x1EAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Output aileron              | 0x14       |
| Blob aileron0x17Blob altitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1BAileron shift0x1CElevator acceleration input0x1DElevator acceleration input0x1EAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Output rudder               | 0x15       |
| Blob altitude0x18Pitch angle0x19Roll angle0x1AElevator shift0x1BAileron shift0x1CElevator acceleration input0x1DElevator acceleration error0x1EAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Blob elevator               | 0x16       |
| Pitch angle0x19Roll angle0x1AElevator shift0x1BAileron shift0x1CElevator acceleration input0x1DElevator acceleration error0x1EAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Blob aileron                | 0x17       |
| Roll angle0x1AElevator shift0x1BAileron shift0x1CElevator acceleration input0x1DElevator acceleration error0x1EAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Blob altitude               | 0x18       |
| Elevator shift0x1BAileron shift0x1CElevator acceleration input0x1DElevator acceleration error0x1EAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pitch angle                 | 0x19       |
| Aileron shift0x1CElevator acceleration input0x1DElevator acceleration error0x1EAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Roll angle                  | 0x1A       |
| Elevator acceleration input0x1DElevator acceleration error0x1EAileron acceleration input0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Elevator shift              | 0x1B       |
| Elevator acceleration error 0x1E<br>Aileron acceleration input 0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aileron shift               | 0x1C       |
| Aileron acceleration input 0x1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Elevator acceleration input | 0x1D       |
| I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elevator acceleration error | 0x1E       |
| Aileron acceleration error 0x20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aileron acceleration input  | 0x1F       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aileron acceleration error  | 0x20       |

Table 33: Telemetry identifiers

# Appendix B Experimental figures

This appendix is described in section 9.

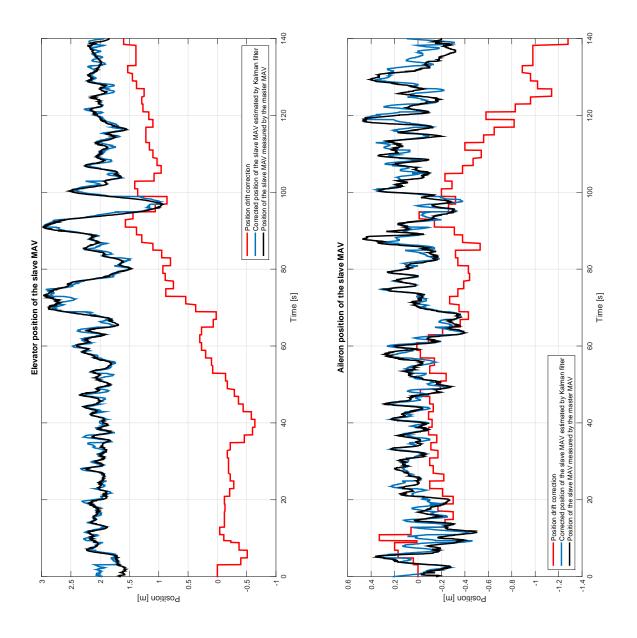



Figure 31: Position of the slave MAV

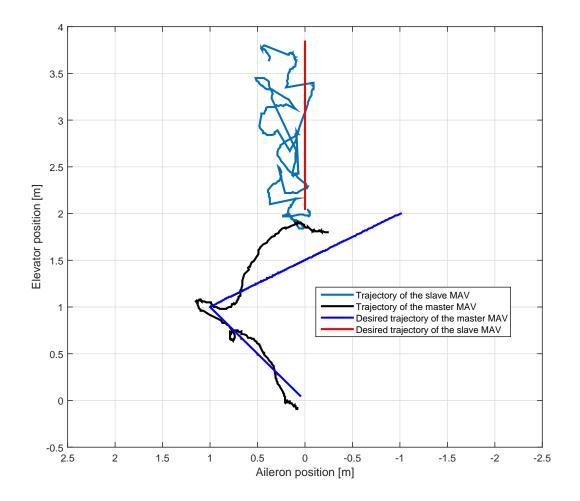



Figure 32: Trajectory following

# Appendix C CD Content

In Table 34 are listed names of all root directories on CD.

| Directory name    | Description                                       |
|-------------------|---------------------------------------------------|
| thesis            | Bachelor's thesis in pdf format.                  |
| $thesis\_sources$ | latex source codes                                |
| video             | Video from the flight in the formation experiment |
|                   |                                                   |

Table 34: CD Content

APPENDIX C CD CONTENT

# Appendix D List of abbreviations

In Table 35 are listed abbreviations used in this thesis.

| Abbreviation | Meaning                                     |
|--------------|---------------------------------------------|
| API          | application programming interface           |
| MAV          | micro aerial vehicle                        |
| MCP          | MAV communication protocol                  |
| MPC          | model predictive control                    |
| UART         | universal asynchronous receiver-transmitter |
| MCU          | microcontroller unit                        |
| PPM          | pulse position modulation                   |
| ACK          | acknowledgement                             |
| GPS          | global position system                      |
| SLAM         | simultaneous localization and mapping       |

Table 35: Lists of abbreviations