
CZECH TECHNICAL UNIVERSITY IN PRAGUE

BACHELOR THESIS

Integration of IEC 61499 with OPC
UA

Author:
Slavomír KOŽÁR

Supervisor:
Ing. Petr KADERA, Ph.D.

January 11, 2016

http://www.cvut.cz

iii

Declaration of Authorship
I, Slavomír KOŽÁR, declare that this thesis titled, “Integration of IEC 61499
with OPC UA” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a
bachelor degree at the Czech Technical University in Prague.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.

Signed:

Date:

iv

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Abstract

Faculty of Electrical Engineering

Bachelor

Integration of IEC 61499 with OPC UA

by Slavomír KOŽÁR

Today, in the time of fast changes on the global market and decreasing life-
time of the product, industry is forced into the philosophical shift. Manu-
facturing has to be quickly moved from the mass production to the mass
customization. The physical changes in the production resources mean a
need for dynamic reconfiguration at the control level. In order to achieve
the real-time reconfiguration of the manufacturing systems, we need new
software architectures and support from the execution environment.

The aim of this integration is to transform industrial control systems from
the standard pyramide toplogy into the reconfigurable systems. 4DIAC,
framework created according to the IEC 61499, allows a developer to cre-
ate an industrial control application and brings them the feature of recon-
figurating this application by creating and modifying FBs and connections
among them. However, this reconfigurable application runs on only one
industrial pyramide layer. The problem of this reconfiguration in control
application is, that the systems on other layers do not react to this reconfig-
uration, because they are not capable of automatic detecting of this kind of
reconfiguration. This problem was solved by using OPC UA as data sharing
protocol. The information model of OPC UA which allows not only to store
data, but also to store them in the structured web of interconnected nodes.
Developped solution uses OPC UA not only to share values, but also struc-
ture of FBs with other systems in network. This brings new possibilities to
the systems on other layers of the pyramide with detecting reconfiguration
in 4DIAC application.

Acknowledgements
I would like to thank Dr. Techn. Alois ZOITL, author of 4DIAC framework
for his consultations and assistance with this project. Last but not least, I
would like to thank my supervisor Ing. Petr KADERA, Ph.D.for guidance
with this paper and letting me to use this issue for my thesis.

HTTP://WWW.CVUT.CZ
http://fel.cvut.cz

v

List of Figures

1.1 Internet of Things in industry 1
1.2 Change of industrial pyramide 2
1.3 OPC UA Data Model . 3

2.1 IEC 61499 Function Block . 6
2.2 IEC 61499 Basic FB’s ECC . 7
2.3 IEC 61499 Composite FB . 8
2.4 IEC 61499 Base Model . 9
2.5 4DIAC IDE System Perspective 11
2.6 4DIAC IDE System Perspective - Resource 11
2.7 4DIAC IDE Type Management Perspective 12
2.8 4DIAC IDE Deployment Perspective 12

3.1 Service oriented architecture 13

4.1 OPC_UA_WRITE . 17
4.2 OPC_UA_READ . 18
4.3 OPC_UA_SUBSCRIBE . 21
4.4 OPC_UA_PUBLISH . 22

A.1 CMake step 1 . 28
A.2 CMake step 2 . 29
A.3 CMake step 3 . 30
A.4 CMake step 4 . 30

vi

List of Abbreviations

IPCMCS Industrial Process Measurement and Control Systems
FB Function Block
BFB Basic FB
CFB Composite
SIFB Service Interface FB
ECC Execution Control Chart
FBDK Function Block Development Kit
FBRT Function Block Run-Time
WSDL Web Services Description Language
OPC UA OPC Unified Architecture

1

Chapter 1

Introduction

Nowadays, we are standing in the time, when the fourth round of the in-
dustrial revolutions starts. Each of these revolutions was caused by the
technological improvements. First one was caused by the change from la-
bor work to the mechanization. The second one was started by the electrifi-
cation. In this revolution, electric machines were used instead of the steam
based motors. The third revolution was the last one, and it was caused by
the digitization and the invention of the logical circuits. When we realize
how much did the computers evolve, it’s logical that also industry has to
undergo another revolution. The upcoming revolution is caused by the in-
troduction of the Internet of Things into the industry. [Brettel et al., 2014]

FIGURE 1.1: Change of industrial toplogy by introducing
IoT

1.1 Reconfiguration

Today, in the time of fast changes on the global market and decreasing life-
time of the product, industry is forced into the philosophical shift. Manu-
facturing has to be quickly moved from the mass production to the mass
customization. In order to rise to the challenge of these trends, the new
operation methods are necessary. Production facilities need to be flexible,

Chapter 1. Introduction 2

adaptable and allow fast changes at little cost. [Zoitl, 2008] Flexible pro-
duction systems nowadays come with the higher cost, because these plants
have higher initial costs, but even more important are the costs of down-
times needed to reconfigure such plant. Reconfiguration without the need
to stop production is necessary.

This requires the reconfiguration of manufacturing plants at all levels, even
the physical reconfiguration.

The physical changes in the production resources mean a need for dynamic
reconfiguration at the control level. In order to achieve the real-time recon-
figuration of the manufacturing systems, we need new software architec-
tures and support from the execution environment.

On the figure below, the change needed to be done in the industry is shown.
In the current approach, control system is divided into the layers which are
horizontally configurable and the connection of the layers is declared in
a static way. Reconfiguration of this kind of the control system requires
the rebuilding of the whole pyramide from the bottom. While the new ap-
proach is also verticaly and horizontaly configurable.

FIGURE 1.2: Change from strict layers into vertically and
horizontaly configurable pyramide.

This thesis deals with the reconfiguration of the software of the control sys-
tem. Whatever the solution for software able to reconfigure is, it must be
simple, flexible, and have limited space requirements.

It is not so difficult to create reconfigurable software, when talking about
huge applications running on the server clusters. However, different story
is in the industrial control systems, which has to be runnable on small, often
only 16 bit computers.

The simpliest theoretical solution is to create complex system capable of any
function. To reconfigure this system, only the change of system parameters
is needed. [Saad, 2003] This kind of solution can’t be practically realized.
System would be too large, consumpting too much of memory and storage,
which makes this kind of system unable to run on the control system hard-
ware. In case the technological advance would solve the lack of hardware
resources, another serious problem occurs. In order to create such a system,
developers would need to know all needed configurations of the system in
advance. This is not real in the fast changing industrial world.

Chapter 1. Introduction 3

1.2 The aim of thesis

The aim of this thesis is to integrate OPC UA communication protocol into
the system 4DIAC - controlling framework based on IEC 61499 standard.

Controll system created in 4DIAC framework is composed by the function
blocks and connections among them. These function blocks and connec-
tions can be added, changed and removed from application on fly - during
the run of application. By this ability to change the structure of the applica-
tion while it is running, the reconfiguration on the control devices layers is
achieved. To gain the reconfiguration on all of the layers, there is a need to
destroy the hard boundaries between the layers.

In one or two layer systems (physical layer of actuators and control device
layer), this would be enought to fulfill the aim of the reconfiguration. How-
ever, today in the large industrial systems, these two layers are not enough.
As can be seen on 1.2, there is need to reconfigure also the connection be-
tween the layers, not only the layers themselves. To reconfigure the whole
pyramide, not just single layers, need to change the comunication system
arises.

OPC UA communication protocol allows user to create topologically or-
dered web of nodes called OPC UA Data Model. This nodes can contain
object, value, of function which can modify this structure, or values.

FIGURE 1.3: Data Model containing web of nodes.

This data model makes OPC UA technology suitable for transformation
of idustrial pyramide from layer system into the system, where layers are
stored in Data Model shared by all devices and technologies in control ap-
plication.

Task of this thesis is to implement the communication stack inside of 4DIAC
function blocks. Including client and also the server.

This thesis also aims to create data topology on the server based on a struc-
ture of the control system developped using a 4DIAC framework. By the

Chapter 1. Introduction 4

integration of these two technologies, creates a system in which all elements
of distributed control system could load structure and status of every other
element using OPC UA protocol.

1.3 Chapters overview

Following second chapter contains a brief dive into the IEC 61499 stan-
dard and 4DIAC framework based on this standard. Basic principles of this
framework as creating application, function blocks, deploying applications
are described. Important part of using 4DIAC framework is the compiling
of your own version of 4DIAC runtime environment dedicated for your
device. The whole appendix is dedicated to this topic.

The third chapter is dedicated to communication protocol OPC UA, ways
of using this protocol and its information model. Stacks based on OPC UA
protocol are mentioned, focusing on OPEN 62541 stack, which was chosen
to be used in this thesis.

In the fourth chapter, the solution of the integration problom described in
the previous sections of this chapter is explained. Progress in the solution
is divided into two stages. In the first stage, the basic principles of using
4DIAC and OPC UA stack are tested. The analysis of the best way of the
integration of OPC UA with 4DIAC precedes second stage defining meth-
ods and function blocks in order to fill the aim of thesis and also to create
interface suitable for use in the real control systems.

5

Chapter 2

IEC 61499

IEC 61499 is a new family of standards for Industrial Process Measurement
and Control Systems (IPCMCS). This family consist of four parts:

1. IEC 61499-1 : Function Blocks - Part 1: Architecture

2. IEC 61499-2 : Function Blocks - Part 2: Software tools requirements

3. IEC 61499-3 : Function blocks for industrial-process measurement
and control systems - Part 3: Tutorial information

4. IEC 61499-4 : Function Blocks - Part 4 : Rules for compliance profiles

Main topic of all these standards is defining Function Block (FB) and con-
nections among them. This is also most important topic of this standards
family, so there is no need to reference all of this individual standards and
in this Thesis term IEC 61499 refers all four parts of this family.

IEC 61499 is based on an older IEC 61311 (1993) family of standards, which
is the most common adopted standard in domain of IPMCS. [Zoitl, 2008]
This makes IEC 61499 easy to adopt. There are also another key features
which makes IEC 61499 easy to adopt standard like its modularity, dis-
tribution support, reconfiguration support and event-triggered execution
model.

2.1 Introduction to IEC 61499

The IEC 61499 standard defines several models, which a developer uses to
create a distributed control application in a graphical manner.

This brief introduction provides insight into the IEC 61499 standard for
purposes of this thesis. A full description of architecture may be found
in IEC61499-1 [Commission et al., 2005].

Models which are defined in IEC 61499 are (in hierarchical order, from the
global model to atomic one): the application model, the system model, the
device model, the resource model, the FB model.

The application model consists of the multiple system models, each of these
system models consists of multiple device models etc.

The Base and most important model of IEC 61499 is FB. FB is indepen-
dent, self-contained software component with the interface through which

Chapter 2. IEC 61499 6

FIGURE 2.1: Standard FB IEC 61499 FB interface

it provides specific functions. This model was taken from IEC 61131-3 stan-
dard. In contrast to IEC 61131-3 FB definition in IEC 61499 event interface is
added. The function block function is triggered by one of the input events.
During the execution FB processes input data, set output data. When the
processing is done FB generates triggers output event.

When comparing IEC 61131-3 and IEC 61499 the biggest difference is in the
even-driven execution, while in IEC 61131-3 function was triggered by the
cyclic execution.

Cyclic execution was problematic. It does not allow mass using of IEC
61131-3 in distributed systems. This type of execution is reliant to the sys-
tem clock. This approach is not problematic in the scope of one device
system. However, in a system with multiple devices there is a problem
of sharing the system time. It is practically impossible to run this kind of
system synchronously. In case of the cyclic execution every 1ms and not
precise synchronous system it can take up to 1ms to handle any kind of
change. In some kind of applications this time delay can lead to the de-
struction of product, machine or even whole manufacturing system. This
problem can be solved by decreasing time between two executions. How-
ever this solution of delay problem is causing need of bandwidth for data
transfer. It leads to the cost of data transport layer increase and also scale
up data transfer error rate possibility.

In IEC 61499 standard this problem was solved by changing cyclic to event
driven execution. Function Blocks are not executed cyclically, but are trig-
gered by events. This solution prevents the problem with the central time
and its sharing and caused also rapid decrease of needed bandwidth. In
this approach the data are transferred only when an event is triggered. For
example function block handling the end switch of machine does not have
to propagate its state every 1ms like in the previous example. It propagates
its state only when change state event occurs.

There is no support in IEC 61499 for cyclic execution anymore, but for pur-
poses of back compatibility there is a solution of implementing IEC 61131

Chapter 2. IEC 61499 7

function into IEC 61499 system. The situation of a program is simply de-
picted by triggering of the cyclic execution by the use of an E_CYCLE FB.
[Sunder et al., 2008] This function block triggers regular event to start exe-
cution of IEC 61131-3 compatible applications.

2.2 Types of FB in IEC 61499

2.2.1 Basic FB

FIGURE 2.2: Example of basic FB’s ECC

Basic FB (BFB) contains a state machine controlling internal execution called
Execution Control Chart (ECC). ECC consists of three parts: ECC states
with associated ECC actions and ECC transitions, which connects the states.
ECC transitions are typically guarded by Boolean logical statements.

When an input event arrives, the first transition with true condition results
in state change. With state entry also action associated with this state is
executed. Algorithm can access only data input, data output and inner
variables [Commission et al., 2005].

Chapter 2. IEC 61499 8

2.2.2 Composite FB

FIGURE 2.3: Example of composite FB structure

Composite FBs (CFBs) are containers for FB dedicated to generate cleaner
design. Using Composite FBs, developer can create one FB for more com-
plex, many times repeating function consisting of many basic or composite
FBs. This allows designer to re-use his design. Incomming events and data
connections are connected to the internal FBs and also outgoing connections
are connected to internal FBs.

2.2.3 Service Interface FB

Service Interface FB (SIFB) is dedicated to function out of scope of IEC
61499. Typical function is the access to the device’s hardware, I/O inter-
face or communication interface. There are two general types of SIFBs in
IEC 61499. Requester SIFB and responder SIFB. The requester SIFB remains
passive, until it is application-triggered at one of its event inputs. The re-
sponder type is a resource or hardware triggered FB. It can trigger events by
detecting actions of the hardware (e.g. interrupts) without need to trigger
this FB from application.

2.3 IEC 61499 Base Model

Modeling of IEC 61449 system can be divided into two phases. In the first
phase, designer creates Function Block Network by interconnecting of the
FBs with data and event connection. In this phase, developer has in mind
only the functionality and it does not depend on any device or control in-
frastructure. In the second phase, parts of the system model created in the
first phase are mapped to control devices. For example, in Figure 2.4a, Ap-
plication 1 is mapped to Devices 2, 3, 4, and 5, whereas Application 2 is
mapped only to device 2.

IEC 61499 is executed on devices. Every device consists of device manage-
ment component, communication iterface - provides communication be-
tween devices, process interface - provides services for accessing the sen-
sors, actuators and other physical devices needed to control the process.
Device can also contain resource.

Resources are functional units which contain applications or the parts of
applications. Resources in device are independend. This means resources

Chapter 2. IEC 61499 9

FIGURE 2.4: [iec61499Model]

can be added, modified, removed in any particular device without inter-
ferring any other resource. This approach is very important to reach the
goal of reconfiguration. The task of the resource is to provide execution
environment, delivering event notifications.

2.4 IEC 61499 applications

The current applications of IEC 61499 can be devided into the research and
industrial sector. IEC 61499 standard exists since January 2005. Before stan-
dardization, in 2000 it was available in form of so-called Public Available
Specification. Although IEC 61499 has been available in some forms for a
long time, most published work on the standard up to now has been aca-
demic or only prototypical industrial test cases.[Strasser et al., 2008]

In industry sector the adoptions of IEC 61499 were mainly case studies and
prototypes. A lot of case studies had a starting point via the Function Block
Development Kit (FBDK) / Function Block Run-Time (FBRT) package from
Rockwell Automation. FBRT is implemented in Java and IEC 61499 ele-
ments are implemented as Java Classes. This package is a reference imple-
mentation and was used to test models and standard. In FBRT the event
notification is handeld by function call. The source FB calls notification
function of the event connection object and this object triggers event on
destination FB by calling his event function. This approach creates delays
and is also one of the greatest reasons why FBRT has never been adopted by
industry sector. Another reason is also that this Java implementation was
not able to run on small industrial control platforms (8/16/32b computers).

Chapter 2. IEC 61499 10

2.5 The 4DIAC initiative

In July 2007 the 4DIAC open source initiative was founded by PROFAC-
TOR GmbH and the Automation and Control Institute of Vienna University
of Technology. Nowadays this initiative is conducted with and supported
by international automation network O3NEIDA.

Aim of 4DIAC initiative is to create an open-source framework based on
IEC 61499 standard which will provide reference implementation of execu-
tion model for IEC 61499.

4DIAC initiative is currently developing two projects IEC 61499 compliant
:

• 4DIAC IDE - engineering tool

• FORTE - runtime environment

To work with 4DIAC framework you have to use both of this parts.

You can find instructions how to install and run this project on your own
computer in Appendix A. In the next sections brief informations about
4DIAC IDE and FORTE are introduced. These are just the minimal amount
of necessary informatios in needs of this thesis.

2.6 4DIAC IDE

4DIAC IDE is IEC 61499 development evironmen based on the Eclipse open
tool framework. Eclipse base makes 4DIAC IDE multiplatform open source
IDE.

As all other IDEs based on Eclipse work in 4DIAC IDE is divided into per-
spectives. Every user can create his own perspective, but there are three
perspectives which are created by default in 4DIAC IDE.

This perspective is dedicated to the basic creation of application. FBs can
be added, created event and data connection. Below system configuration
of one of the example supplied with 4DIAC IDE can be seen.

Application of figure consist of two devices, connected via Ethernet. Every
of this device includes two resources. One of the resources is management
resource allways named MGR and read-only.

By double clicking on resource you can edit Function Block Network run-
ning on this resource.

Type Management Perspective is dedicated to editing and creating of devel-
opers’ own FBs. On the figure below, there are shown tools which can be
applied on the function block. In the case of the basic FB you can edit also
function of this FB by editing its EEC or Algorithm writen in pseudocode.
The function of the Composite FB can by modified or created by editing
Composite Network. Only Service Interface FBs function is not allowed to
change in 4DIAC editor. Function of SIFBs can be modified only by editing
forte source.

Chapter 2. IEC 61499 11

FIGURE 2.5: Perspective dedicated to basic creation of ap-
plication

FIGURE 2.6: Editing Function Block Network in resource

All changes made in Type Management Perspective have to be exported
into the forte code. To use this modified FBs in control system it is necessary
to recompile the FORTE with these updated function block.

Deployment Perspective is dedicated to the deployment and upload appli-
cation into the control system devices by clicking on Download button.

There is also possibility to run local FORTE and FBRT directly from Deploy-
ment Perspective. In case of local FORTE runtime, all its output are shown
in Console window.

2.7 4DIAC RUNTIME ENVIRONMENT - FORTE

The FORTE is a portable C++ implementation of an IEC 61499 runtime en-
vironment. It is focused on the small embedded control devices (also 16/ 32

Chapter 2. IEC 61499 12

FIGURE 2.7: Editing or Creating FBs

FIGURE 2.8: Uploading application into devices

bit controllers) and provides execution of all IEC 61499 types of functions
blocks. Currently is forte available for Windows, Posix (Cygwin, Linux),
NET+OS 7, eCos. It can be also used on small embedded boards like Rasp-
berryPi, BeagleBone or even Lego Mindstroms nxt.

2.7.1 Function Blocks in the FORTE

Basic and composite FBs are easy to create and edit in 4DIAC IDE. However
Service Interfaces FBs, which are most important, because serves connec-
tion to the physical devices in control system, are defined twice. In 4DIAC
IDE only outer interface, like event and data inputs outputs are defined
function of these function blocks is defined in C++ function generated to
every function block. Creating of function block will be discussed in the
next chapters.

13

Chapter 3

OPC Unified Architecture

3.1 Service Oriented Architecture

Service Oriented Architecture is the family of principles which recommends
the assembling of the composite application and any other systems from the
independend parts servicing any kind of the service.

Nowadays, most of the information technologies are moving from mono-
litic closed systems into distributed system. With incomming Internet of
Things into industry, this section is not an exception.

There is a tendency to connect industrial applications together to create
larger systems, despite the fact, that they may differ a lot from each other,
work on different platforms in different locations.

SOA principles forms connection among different systems

Main connection between different systems is the SOA, principles which
can connect technologies on different platforms. This technology transfers
alone control and regulation systems into the global solutions.

FIGURE 3.1: SOA effects on the e-shop application.

Chapter 3. OPC Unified Architecture 14

On the figure above it is obvious how SOA converts monotlitic and not-
scalable system into the much more clear solution. Creating of the same ap-
plication using single atomic services leads into the system which is much
more scalable, reconfigurable and independent modules servicing data sup-
ports also much more debugging abilities of service without need to shut
down the whole system.

This approach brings re-usability feature, which is common in the other IT
sectors, into the industrial systems.

3.2 Web service

Web service is a software system for the communication of two computers
in the network. It is described in a Web Services Description Language
(WSDL). A Web service supports direct interactions with the other software
agents using XML-based messages exchanged via Internet-based protocols.
Alonso et al., 2004 Often the web port 80 is used to transfer data. This port
is used mainly by web http protocol, so is opened on every firewall. That is
the huge advantage against any kind of proprietal ports.

3.3 OPC Unified Architecture

Information system exceeds the borders of plant or event company, when
companies are working together on common projects and products. Due to
the huge demand of integration and interconnecting different control sys-
tem, the standardization is needed. Standardization of information systems
reduces cost and time of integration. With standards, also possibility to cre-
ate generic adapters between any kind of systems comes.

OPC Foundation answers this need of standardization. In the begining, the
OPC standed for OLE for Process Control. The OLE itself is proprietary
technology called Object Linking and Embedding. This technology is used
to create references between the data objects in Windows OS. Microsoft later
published SDK for this technology, which leads to creation of the OPC.

OPC Foundation decided to redesign OPC components and technologies
with modern, vendor independent solutions.Hannelius, Salmenpera, and
Kuikka, 2008

The new specification is called OPC Unified Architecture (OPC UA). Nowa-
days the OPC means Openness, Productivity and Colaboration.

Currently, OPC is the communication standard in automation technology.
Migration to OPC UA is needed to increase possible types of the integration
solutions for which UPC can be used. This is achieved by using standard
technologies to implement SOA and WS.

Chapter 3. OPC Unified Architecture 15

3.3.1 SOA in OPC UA

OPC UA is based on SOA. OPC UA server contains set of services which
are used by clients. These services provides all OPC UA functionality. Set
of services available in any particular OPC UA server is defined in profiles
that are described in OPC UA specification.

Each service call in IPC UA consist of a request and response message. In
OPC UA there is a huge difference between services and methods. Services
are strictly defined in the standard and user cannot change it, methods are
user defined. To invoke user-defined method on OPC UA server using of
the service is needed.

3.3.2 OPC UA communication stacks

All the OPC UA standards are published by the OPC UA Foundation, but
no official communication stack has been published yet. OPC Foundation
published just the example code in Java and Ansi C, but no complete SDK
or even documentation.

However there are few open source or proprietary stacks available. On
OPCConnect website [OPC UA stacks overview] you can find Overview of
Available SDKs and toolkits.

There are also some open stacks for OPC UA. However these stacks are of-
ten published under license which is not compatible with 4DIAC license. I
can mention OpenOpcUa which is open source, but to use it there is need to
pay the one time fee. I can also mention FreeOpcUa hosted by the GitHub,
but this sdk is not fully working and lack of documentation makes it al-
mous impossible to use it for purpose of this thesis. However FreeOpcUa
is C/C++ and Python SDK and in Python version much bigger progress is
made. This SDK serves great open-source Python GUI interface for discov-
ering the OPC UA server.

Considering two important parameters license and documentation, open62541
stack seems to be optimal. This stack is used to integrate OPC UA into
FORTE and will be described more in the below sections.

3.4 open62541 stack

Open 62541 is communication stack based on OPC UA standards published
as IEC 62541 licensed under LGPL and free available on GitHub.

This stack is fully scalable, supports multi-threaded architecture, where ev-
ery connection or session is operated by separate thread.

Open 62541 is written in C99 with POSIX support, so it is able to run on
Windows, Linux, MacOS and Android. POSIX Linux support means open62541
stack can also run on small embedded machines like raspberryPi, PLCs, etc.

Chapter 3. OPC Unified Architecture 16

3.4.1 Building sdk

After downloading open62541 stack sources from GitHub, it is necessary
to build them into header files. Also pre-generated sources and header
files are available to downlaod. This pre-generated sources are just some
demo with only basic functions like server, client and its basic functionality
like read and write data. In this thesis also another functions like brows-
ing across nodes on server and creating, editing and deleting nodes were
needed, so in order to fullfil the aim of this thesis specific sources were
build.

To build open62541 stack for use in this project it is necessary to set
UA_ENABLE_NODEMANAGEMENT option during build configuration.

For detailed information about building library visit oficial documentation
of open62541. [OPEN61541 stack building]

17

Chapter 4

The Realization of Integration

Integration of OPC UA and IEC 61499 can be divided into two separate
stages.

During the first stage module for 4DIAC framework and simple OPC UA
server and client using open62541 stack were created. This stage was very
important, because there has not been any comprehensive guide for 4DIAC
modules creating publshed yet.

While in the stage one the module for OPC UA integration into 4DIAC
framework used only dummy client and server, the second phase is pre-
ceded by an of options of integration usable in industrial practice.

In the second stage the choosen way of integration was developped.

In the first stage of the integration of OPC UA features into the frame-
work 4DIAC consisted of creating simple FBs called OPC_UA_READ and
OPC_UA_WRITE in OPC_UA module, which is an organizational unit of
FBs in 4DIAC FB library. In these function blocks, the basic functions of
open62541 stack were used. OPC_UA_WRITE is the function block capa-
ble of writing value into the information model of OPC UA server, running
on a remote host.

FIGURE 4.1: OPC_UA_WRITE FB interface.

OPC_UA_READ is the function block in which the function to read a value
from a OPC UA server on remote host is implemented. These both FBs
have, except data input / output and event input and output, also inputs
to select remote host IP address and port and node in which the value will
be stored / from which the value will be read.

Chapter 4. The Realization of Integration 18

Any developer could use these function blocks to transfer any kind of data
values among any resources, devices or applications in the same network.

4DIAC framework already features simplier method of data transfer in net-
work using PUBLISH and SUBSCRIBE FBs, but this connection is just peer-
to-peer. This means only transfer between two resources, devices, or appli-
cations is possible. So while build-in solution in 4DIAC allows only connec-
tion between two points, both running 4DIAC runtime, OPC_UA_WRITE
and OPC_UA_READ can write and read values from any distant or local
server, which can create connection among multiple devices, not necessar-
ily using 4DIAC. In conclusion, these function blocks can find their pur-
pose, e.g. in centralized data collecting.

Even that FBs can be used to trasfer data, this solution does not use the OPC
UA information model in full range. The goal of this stage was discovering
possibilities of the open62541 stack, its elementary functions like read and
write values stored in pre-defines information model.

4.1 Module and FBs development

The first stage was very important stepping-stone to understand the work
with 4DIAC framework, developing the own function block and source
codes of C++ implementation 4DIAC runtime environment - FORTE.

There are basic tutorials for developing basic and also composite FBs on
the official web sites of 4DIAC [4DIAC Help]. However, no complex doc-
umentation for FORTE sources exists, so also no documentation into the
SIFBs, which were necessary for this implementation. Therefore the aim of
this thesis is to provide the summary of the important information and ap-
proaches, which were used in the realisation of practical part of this thesis.
The most common source of the information was the FORTE code analysis,
consultation with authors of the FORTE project, or via discussion boards
on the internet.

Default installation of 4DIAC framework already contains the library of
FBs dedicated to the creating of simple, but also complex distributed con-
trolling systems. Because of the simplier implementation in FORTE sources
(differen groups of FBs requires different libraries, header files), and also
higher clarity of FBs, the library is divided into the modules associating
FBs with simmilar functionality. Module CONVERT, for example, contains
FBs, which purpose is to convert variable from one type to another. The

FIGURE 4.2: OPC_UA_READ FB interface.

Chapter 4. The Realization of Integration 19

xample of FB from this module is FB called INT2BOOl, which converts in-
teger variable into logic boolean variable using standard convention - value
0 for log. 0 and any other value for log. 1.

Designer, who decides to create a new FB, can add this FB into existing
module of tool library - in case that the created FB fits logically and also
with functionality in any existing module. Another recommended option,
in the case developer creates whole family of function blocks, is to create
own module.

The same way as the whole framework is divided into two main projects,
which are developped by 4DIAC initiative, also the creation of modules and
FBs is divided into the creation in 4DIAC IDE and also their interpretation
in the runtime environment.

4.1.1 Creating module in 4DIAC IDE

Creating of the new module in 4DIAC IDE tool library means the creating of
single folder in the file structure of this library. Folder in which the modules
are stored in folder ’typelibrary’ in root of 4DIAC project. Change in the
library - the creation of a new module will have effect after the 4DIAC IDE
restart. New created module will occur in every new created project.

Already existing projects content the own copy of this tool library form
IDE in their workspace. It means that all new created modules need to be
manually copied into this project library. However, this feature also gives a
designer the oportunity to create module just for concrete project by creat-
ing a folder in this projects library in its own workspace. This feature is also
necessary for the team development of 4DIAC projects. In case the project
will not have its own library of FBs, it might happen, that every developer
has different FBs in their libraries and it will lead to the disfunction of the
project.

4.1.2 Creating module in FORTE

In the forte file structure, modules are interpreted as folders, too, and stored
in /src/modules. Creating new module in forte sources means the creating
single folder. However, just creating the folder does not mean that sources
in this folder are included into the compilation process. Forte project uses
CMake makefiles, so the next step in creating module is the setting propriet
CMake files. First of all, all folders are mentioned in /src/modules/C-
MakeLists.txt, in which compiler looks for the sources. It is necessary to
add this module folder into this list.

Another step to include this module into the forte compilation process is
the creating of CMakeLists.txt inside the new module folder. The example
of this file, with necessary and properly commented content is shown in the
A.

Chapter 4. The Realization of Integration 20

4.1.3 Creating SIFB in 4DIAC IDE

As it was mentioned in the chapter dedicated to IEC 61499 and 4DIAC
framework, 4DIAC IDE has a whole perspective dedicated to the creating
and editing of FBs.

In the case of a SIFB creation, in this perspective only interface for connec-
tion with other FBs and properties needed for identification of FB (name,
authorship) could be designed.

Every FB must have at least one input event and should have at least one
output event (even when has no data output).

This part of the FB design is common for all kind of FBs. In 4DIAC help
[4DIAC Help] is this part of design mentioned in Basic FB tutorial.

To define function of SIFB, there is need to export this interface into FORTE
sources in 4DIAC IDE.

To show export dialog, click on the function block in the left window called
Type Navigator with right button and select export option.

In the Export dialog, select 4DIAC Type Export and continue to select Ex-
port Destination.

In case you are creating new FB into existing module, select folder of this
module in forte sources. In other case, follow instructions in the previous
subsection.

4.1.4 Creating SIFB in FORTE

By exporting FB interface from 4DIAC IDE, IDE creates .c source and .h
header file with prepared functions and definitions to handle triggered events,
trigger output events, obtain the values of data inputs values and provide
the values of data outputs.

For every input and output there is function handling its value defined in
FB header file. For example, in case of input called property, to read this
value in FB source code, only call of its function is needed.

value = PROPERTY();

Very important part of FB source is input event handler. In FB source ex-
ported from 4DIAC IDE function to handle this events is defined. This
one function is dedicated to handle all input events. In parameter of this
function is passed id of input event. There are symbolic names for this ids
defined in FB header file.

Another very important part of FB source code is to trigger output events.
To do this, just call function sendOutputEvent(event_id).

Chapter 4. The Realization of Integration 21

4.2 The second stage

In the second stage of integration, it was important to use the information
model of OPC UA protocol in a development. The analysis of the required
functions to be used preceeded the creating of OPC_UA_PUBSLISH and
OPC_UA_SUBSCRIBE in order to use the potential of OPC UA in its full
range.

As a part of this thesis, a new approach, in which every device runs its own
OPC UA server, was developed. On this OPC UA server, a tree stucture
is implemented where every published function block will be presented by
one node and children of this node will represent published output values
of this FB.

Developer publishes ouput of FB by connectiong simple OPC_UA_PUBLISH
FB. This FB creates node with the unique name of FB as ID and saves value
as variable child of this node.

Another resources, or devices, using OPC_UA_SUBSCRIBE FB can gain in-
formation from the server of the other devices, and also the information
about structure and status of another devices.

4.3 The implementation of the FB OPC_UA_SUBSCRIBE

FIGURE 4.3: OPC_UA_SUBSCRIBE FB interface.

OPC_UA_SUBSCRIBE is a very simple FB. In its functionality, it tends to
follow OPC_UA_READ FB. In OPC_UA_SUBSCRIBE inputs, developer de-
fines remote server to which DB connects, name of FB and its output he
wants to subscribe. When input event triggers, FB connects to OPC_UA
server, it reads the value of selected node output and readed value is set
into the output buffer of FB and it triggers output event.

In case of error during reading from the remote server, FB triggers output
error event, which can developer detect and treat. This feature of
OPC_UA_SUBSCRIBE FB is very important in the real industrial systems.
Invalid data on output, without a possibility to treat these data the special
way, may lead to the destruction of the product, or even the machine.

Chapter 4. The Realization of Integration 22

4.4 The implementation of the FB OPC_UA_PUBLISH

In comparison with the FB OPC_UA_PUBLISH, which is with the excep-
tion of the function for the asynchronous subscribe practically the same
as the FB OPC_UA_READ, the new FB OPC_UA_PUBLISH is much dif-
ferent from its predecesor. The functions of this FB consist of various parts.
OPC_UA_PUBLISH detects the connection and from the information gained
about the FB connected to the OPC_UA_PUBLISH, it finds or creates the
node in the informational moded of the server adn it writes the actual value
of the connected item.

The activity of OPC_UA_PUBLISH can be divided into four important di-
visions:

• Information model exploration

• Node representation of FB creating

• Writing of the values

• Deleting node representaion of the FB

First three divisions create an input event with every trigger action. As one
of the most importat functions of the 4DIAC framework is the support of
the reconfiguration of the FB with the OPC_UA_PUBLISH connected, and it
can change between the two event triggers, the parameters of the FB and of
the information model have to be checked with every different input event
and when needed, nodes in the information model have to be created.

The information model exploration is the most complicated and time con-
suming part of the function of this FB. This function is important because
of the knowing if the node for data input exists or not. During the flow
through the nodes of the information model, ID nodes are compared to the
name of the FB connected to the OPC_UA_PUBLISH. It is possible to save
the list of these nodes directly to the implementation of this FB. However,
any duplicity of data causes the inconsistency of the data in case of delet-
ing, renaming of the node on the server. These changes are not detectable,
therefore it is difficult to find out how often the list needs to be renewed.

The last part - a deleting node representation is done before the deleting of
the FB OPC_UA_PUBLISH.

Deleting of nodes is necessary because variable type may be changed dur-
ing the proces of reconfiguration. This may cause, that variable type in

FIGURE 4.4: OPC_UA_PUBLISH FB interface.

Chapter 4. The Realization of Integration 23

4DIAC application would differ from variable type on OPC UA server. De-
tection of this process is not possible in current version of FORTE. Most
secure solution is to delete and create variable node on OPC UA server ev-
ery time, instead of trying to write value into this node.

This approach brings out also the risk of the inconsistency in data. In case of
the renaming of the FB or of its item connected to the OPC_UA_PUBLISH,
this FB does not detect the change and it will not delete the node represent-
ing the connected FB in the information model, but it will create the node
according to the actual FB.

As the actual version of the runtime environment does not allow any mean
how to detect such a change in the functional implementation of the
OPC_UA_PUBLISH, the solution for the developpers would be to delete
and recreate the FB of the OPC_UA_PUBLISH within each reconfiguration
of the FB network.

4.5 The implementation of OPC UA Server

The solution, coming at first sight from the IEC 61499 standard, positions
the implemenation of OPC UA server into the SIFB source. This solution is
intuitive, because all functions of application should be placed into the FBs
and runtime environment should only transfer data and events among FBs.
The main advantage of this solution is that the developer has the absolute
control over the server. Disadvantage is the possibility to input more FB of
the OPC UA Servers to one appliction. This solution is neither developer
friendly nor ergonomic. In case that the developer decides to publish the
values into th server, need to use the OPC UA server FB occurs. This solu-
tion is the most straightforward for the implementation. However, accord-
ing to cons mentioned above, this approach was not chosen in this thesis.

Another approach is to position the OPC UA server to the implementation
of the resource in runtime environment Forte. This solution comes from the
idea of the absolutely independant resources in the system IEC 61499. This
server would exists in every resource.

This approach seems ideal from the point of IEC 61499 standard and also
from developer ergonomy. However, the biggest disadvanteg of this ap-
proach is the possibility of more resources running on 1 device with the
same IP address. That means also more servers running on 1 device, which
causes a problem with addressing of more servers. This problem is being
solved in the net OSI ISO model in the transport layer y introducing ports.
In the chapter dedicated to OPC UA, there is a note, why it is convenient,
that OPC UA server runs on the standard HTTP port 80.

The problem with multiple servers on 1 device is solved by the implemen-
tation of the OPC UA server into the device. In every device, there is the
OPC UA server implemented. This approach eliminates the problem with
the need for the setting of the server ports in each resource. Also this ap-
procah has its disadvantages. As the resources containing the FB of the
OPC_UA_PUBLISH are independant from the device, the approach de-
fined in the IEC 61499 allows the switching off and restart of one of the

Chapter 4. The Realization of Integration 24

resources in the device without having the affect on other resources or the
device itself. After the switching off the resource, the server still contains
the nodes interpreting the FBs in the source, which is already switched
off. This problem can be solved in a so-called destructor function of the
OPC_UA_PUBLISH. This function is automatically triggered before end-
ing of the FB and OPC_UA_PUBLISH deletes the nodes in the information
model of the server.

The OPC UA server itself is just simple implementation created using tu-
torial on open 62541 website. [First steps with open62541-server] The server
started in the device runtime is just blank server with default data model.
There is no need to create any nodes in the moment the server is starting,
because OPC_UP_PUBLISH creates all needed nodes.

All sources created while working on this thesis, and also needed changes
in the FORTE sources are available at public GitHub repository. [Integration
of IEC 61499 with OPC UA source codes]

25

Chapter 5

Conclusion

The objective of this thesis is the integration of IEC 61499 with OPC UA.
This objective was met by creating FBs in 4DIAC framework dedicated to
transmitting data using the OPC UA communication protocol. These FBs
use OPC UA information model to exchange data among 4DIAC applica-
tion and also among 4DIAC application and other industrial application.

The aim of this integration is to transform industrial control systems from
the standard pyramide topology mentioned in the first chapter, into the
reconfigurable systems. 4DIAC, framework created according to the IEC
61499, allows a developer to create an industrial control application and
brings them the feature of reconfiguration this application by creating and
modifying FBs and connections among them. However, this reconfigurable
application runs on only one industrial pyramide layer. The problem of this
reconfiguration in control application, is that the systems on other layers do
not react to this reconfiguration, because they are not capable of automatic
detecting of this kind of reconfiguraton. This problem was solved by us-
ing OPC UA as data sharing protocol. The information model of OPC UA
which allows not only to store data, but also to store them in the structured
web of interconnected nodes.

The integration of these two standards developed during working on this
thesis, came with the solution to the problem. Using UPC_UA_PUBLISH
developer shares not only value, but also the structure of FBs with other
systems in network. This brings new possibilities to the systems on other
layers of the pyramide with detecting reconfiguration in 4DIAC applica-
tion. Also, it replaces the static way of transfering data between layers.
Using OPC_UA module in 4DIAC framework allows other layers to read
any data from 4DIAC application developer decides to publish. Using the
one large information model for all the layers of the application results in
merging layers into one complex system.

Solution created during working on this thesis is platform independent.
4DIAC framework can be executed on every platform (even 16b comput-
ers). In this solution, the usage of the OPC UA stack is limiting. Open62541
stack is available for Windows, OSX and Linux (debian, ubuntu). That
means, that these are also the systems on which this solution works. The
solution was developped on the Microsoft Windows platform , it was also
compiled and executed on debian linux. The ability to run this solution on
debian means, that it can be run also on most of small open source comput-
ers, like RaspberryPi, BeagleBone, CubieBoard, which use debian.

Chapter 5. Conclusion 26

In the assignment of the work,creating a configuration dialog in 4DIAC
IDE is included. This dialog was mentioned to configure OPC_UA_WRITE
FB’s target to write data. However, during the work on the thesis, the ap-
proach of publishing data used in the OPC_UA_PUBLISH FB was devel-
oped, which has no need for the configuration, because it gains the infor-
mation from the structure of application.

The thesis fulfilled the assignment. However, there are also other posibil-
ities how to improve a IEC 61499 and OPC UA integration. OPC UA has
many features, which were not used in this thesis.

First of all, OPC UA includes techniques of the authentification and the au-
torization. The increase of the security is necessary to allow this integration
usage in the real control systems.

OPC UA contains the ability of asynchronous subscription. Server can an-
nounce client, value on server has been changed. This feature could be
used in the future version of OPC_UA_SUBSCRIBE FB. FB with enabled
assynchronous subscription would automatically wait for this announce-
ment from server, download actual value and trigger output event. In this
use case, there is no need to trigger input event.

Another important feature of the OPC UA is the method calls. In some
cases, this methods executed on the OPC UA server may process the data
instead of complicated networks of the function blocks. The advantage of
the creating method calls is also in the fact, that methods can be executed
also from de remote device and can be re-used by another systems con-
nected to the same OPC UA server.

27

Appendix A

Installation of 4DIAC-IDE

A.1 4DIAC IDE installation

The installation of 4DIAC-IDE is independent from the used operating sys-
tem. In order to run 4DIAC-IDE you require Java 1.7 SDK or later, whereas
it is currently NOT recommended to use Java 8.

To install 4DIAC-IDE you simply download the latest version for your op-
erating system from https://eclipse.org/4diac/. Unzip it to any desired
folder and start the 4DIAC-IDE. It already contains a function block library,
some sample applications and also pre-build versions of FORTE. If you only
want to use available Function Blocks you are ready to go.

Building your own 4DIAC-IDE from source: Running 4DIAC-IDE from
source has the great advantage that you can easily keep up with the devel-
opments performed in the Mercurial repository. In case you want to run
4DIAC-IDE from source follow the Installation steps at [4DIAC Help].

A.2 FORTE compilation

For conducting first experiments with 4DIAC, you can use the pre-build
version of FORTE which comes along in the runtimes directory of the 4DIAC-
IDE package. However if you want to develop your own Function Blocks or
you want to run FORTE on different control devices you have to download
and build FORTE from source.

The compiling and debugging of FORTE consists of few steps:

Download source code You can download the latest Version of FORTE on
http://www.eclipse.org/4diac/. Extract the file into your desired working
directory. You can also use Mercurial Hg like TortoiseHG to get FORTE
from http://hg.code.sf.net/p/fordiac/forte.

Prepare compilation and linking tools In case you want to create own
function blocks, or edit existing one you are going to compile your own
version of FORTE. According to your operating system, you have several
options to choose. In Linux – like systems required packages to compile
are:

• binutils

Appendix A. Installation of 4DIAC-IDE 28

FIGURE A.1: Selection of source data and output folder

• gcc

• gdb

• make

In case you are Mac user, you can compile FORTE in X-Code. Compiling
on Windows is more complicated. There are few possibilities:

• Compiling and Debbugging FORTE with MS Visual Studio Express

• Compiling using Cygwin

• Compiling using MinGW – I have used this option. Whole subsection
is dedicated to this option

CMake for generating the make file

CMake helps you to configure FORTE for compilation with your desired
development environment or hardware device. For starters, it is recom-
mended to use the GUI tool that comes with CMake.

When starting the CMake-GUI you have to select the source directory, which
is the main FORTE directory and the bin directory (e.g.FORTE/bin/posix)
which is the output directory. There CMake will put the build project files
(e.g., the makefiles) as well as any configuration data.

After that you will need to press the configuration button. A window will
pop up that lets you to select the kind of project you would like to build. In
this step, you have to have installed compillers. Select MSYS Makefiles as
the generator for this project.

Appendix A. Installation of 4DIAC-IDE 29

FIGURE A.2: Specifing the generator

Windows POSIX
FORTE_ARCHITECTURE_WIN32 FORTE_ARCHITECTURE_POSIX

FORTE_MODULE_CONVERT FORTE_MODULE_CONVERT
FORTE_MODULE_IEC61131 FORTE_MODULE_IEC61131
FORTE_MODULE_OPC_UA FORTE_MODULE_OPC_UA

FORTE_MODULE_Test FORTE_MODULE_Test
FORTE_MODULE_UTILS FORTE_MODULE_UTILS

FORTE_SUPPORT_MONITORING FORTE_SUPPORT_MONITORING

For the correct Project Setting please have a look at the next step. In the
CMake main window a list of red marked options will appear. These op-
tions allow you to configure your FORTE build. The minimal configu-
ration you have to perform is to select the architecture you like to build
for (e.g., FORTE_ARCHITECTURE to POSIX / WIN32) and the modules
with the function block libraries you like to use. You should also keep
FORTE_SUPPORT_MONITORING enabled for Debugging and FB-Testing.

Then you need to press again the configure button and depending on your
selection in the previous step new options (marked in red) may appear.
Press configure until no new options are appearing and then the generate
button for generating the project files.

After that you can start the build process.

Configuration of CMake for different OS:

IDE to work with the FORTE code You can use different development En-
vironments, whereas the C++ Compiler you can use to build FORTE not

Appendix A. Installation of 4DIAC-IDE 30

FIGURE A.3: Configuring architecture of compilled FORTE

FIGURE A.4: Configuration done.

Appendix A. Installation of 4DIAC-IDE 31

only depends on this environment but also on your operating system. For
compiling FORTE under Windows you can use either Visual Studio (Ex-
press or full edition) or Eclipse. When using Eclipse for development and
debugging under Windows you will need to use a Posix emulation envi-
ronment like cygwin or minGW.

• Compiling and Debugging FORTE with MS Visual Studio Express

• Compiling and Debugging FORTE with Eclipse

• Compiling and Debugging FORTE with CodeBlocks

For the development with FORTE, the understanding of the general file
structure is helpful. Therefore the essential parts as well as the Makefiles
which are important for the configuration and compilation of FORTE are
listed in the following:

• src/modules this folder contains the source code (cpp, h) of all Func-
tion Blocks available for FORTE

• bin/<yourSystem>/src contains the forte executable after compila-
tion with Makefile all

• bin/<yourSystem>/src_gen contains the object files generated dur-
ing compilation with Makefile all

• all this Makefile generates the object files for all FORTE core files and
Function Block source code files

• clean this makefile removes all generated object files.

A.3 Installing and Settipg up MinGW for FORTE De-
velopment

Download and install MinGW from http://www.mingw.org/ Launch MinGW
installer and install default setting and add following packages:

• Mingw32-gcc

• Mingw32-gcc-g++

• mingw32-make

• msys-make

• mingw32-libz (newer version of windows doesn’t include libraries)

• mingw32-gmp (newer version of windows doesn’t include libraries)

After installing, go to the Control Panel/System/Advanced/Environment
Variables. Change PATH variable (click on it) add path where your MinGW
binaries have been installed in e.g., C:\MinGW\bin\;. Add C:\MinGW\bin;
C:\MinGW\msys\1.0\bin; in the Windows file PATH. Test MinGW Open
command prompt window by pressing Windows button and entering cmd.
Enter bash, if bash prompt appears it was successful.

32

Appendix B

Appendix Title Here

Example of CMakeLists.txt in module folder.

//name and d e s c r i p t i o n of module
forte_add_module (OPC_UA "OCP Unif ied A r c h i t e c t u r e Function Blocks ")

##
OPC UA FB
##
f o r t e _ a d d _ i n c l u d e _ d i r e c t o r i e s ($ {CMAKE_CURRENT_SOURCE_DIR})

for te_add_source f i l e_hcpp (OPC_UA_READ)
for te_add_source f i l e_hcpp (OPC_UA_WRITE)
for te_add_source f i l e_hcpp (OPC_UA_PUBLISH)
for te_add_source f i l e_hcpp (OPC_UA_SUBSCRIBE)

//include posix l i b r a r i e s
i f (" $ {FORTE_ARCHITECTURE} " STREQUAL " Posix ")

f o r t e _ a d d _ l i n k _ l i b r a r y (libmodbus . so)
f o r t e _ a d d _ i n c l u d e _ d i r e c t o r i e s ($ {CMAKE_CURRENT_SOURCE_DIR})
f o r t e _ a d d _ l i n k _ d i r e c t o r i e s ($ {CMAKE_CURRENT_SOURCE_DIR})

//include Win32 l i b r a r i e s
e l s e i f (" $ {FORTE_ARCHITECTURE} " STREQUAL " Win32 ")

f o r t e _ a d d _ l i n k _ l i b r a r y (l ibopen62541 . d l l)
f o r t e _ a d d _ i n c l u d e _ d i r e c t o r i e s ($ {CMAKE_CURRENT_SOURCE_DIR})
f o r t e _ a d d _ l i n k _ d i r e c t o r i e s ($ {CMAKE_CURRENT_SOURCE_DIR})

endi f ()

33

Bibliography

4DIAC Help. URL: http://www.eclipse.org/4diac/documentation/
help.html.

Alonso, Gustavo et al. (2004). “Web Services”. English. In: Web Services.
Data-Centric Systems and Applications. Springer Berlin Heidelberg, pp. 123–
149. ISBN: 978-3-642-07888-0. DOI: 10.1007/978-3-662-10876-5_5.
URL: http://dx.doi.org/10.1007/978-3-662-10876-5_5.

Brettel, Malte et al. (2014). “How virtualization, decentralization and net-
work building change the manufacturing landscape: An Industry 4.0 Per-
spective”. In: International Journal of Science, Engineering and Technology 8
(1), 37 44.

Commission, International Electrotechnical et al. (2005). “IEC 61499-1: Func-
tion Blocks-Part 1 Architecture”. In: International Standard, First Edition,
Geneva 1.

First steps with open62541-server. URL: http://open62541.org/doc/
current/tutorial_server_firstSteps.html.

Hannelius, T., M. Salmenpera, and S. Kuikka (2008). “Roadmap to adopt-
ing OPC UA”. In: Industrial Informatics, 2008. INDIN 2008. 6th IEEE In-
ternational Conference on, pp. 756–761. DOI: 10.1109/INDIN.2008.
4618203.

Integration of IEC 61499 with OPC UA source codes. URL: https://github.
com/slavokozar/Integration-of-IEC61499-with-OPC-UA.

OPC UA stacks overview. URL: http://www.opcconnect.com/uakit.
php#overview.

OPEN61541 stack building. URL: http://open62541.org/doc/current/
building.html.

Saad, Sameh M. (2003). “The reconfiguration issues in manufacturing sys-
tems”. In: Journal of Materials Processing Technology 138.1–3. {IMCC2000},
pp. 277 –283. ISSN: 0924-0136. DOI: http://dx.doi.org/10.1016/
S0924-0136(03)00085-2. URL: http://www.sciencedirect.
com/science/article/pii/S0924013603000852.

Strasser, T. et al. (2008). “Framework for Distributed Industrial Automation
and Control (4DIAC)”. In: Industrial Informatics, 2008. INDIN 2008. 6th
IEEE International Conference on, pp. 283–288. DOI: 10.1109/INDIN.
2008.4618110.

Sunder, C. et al. (2008). “Considering IEC 61131-3 and IEC 61499 in the con-
text of component frameworks”. In: Industrial Informatics, 2008. INDIN
2008. 6th IEEE International Conference on, pp. 277–282. DOI: 10.1109/
INDIN.2008.4618109.

Zoitl, Alois (2008). Real-Time Execution for IEC 61499. ISA. ISBN: 1934394270,
9781934394274.

http://www.eclipse.org/4diac/documentation/help.html
http://www.eclipse.org/4diac/documentation/help.html
http://dx.doi.org/10.1007/978-3-662-10876-5_5
http://dx.doi.org/10.1007/978-3-662-10876-5_5
http://open62541.org/doc/current/tutorial_server_firstSteps.html
http://open62541.org/doc/current/tutorial_server_firstSteps.html
http://dx.doi.org/10.1109/INDIN.2008.4618203
http://dx.doi.org/10.1109/INDIN.2008.4618203
https://github.com/slavokozar/Integration-of-IEC61499-with-OPC-UA
https://github.com/slavokozar/Integration-of-IEC61499-with-OPC-UA
http://www.opcconnect.com/uakit.php#overview
http://www.opcconnect.com/uakit.php#overview
http://open62541.org/doc/current/building.html
http://open62541.org/doc/current/building.html
http://dx.doi.org/http://dx.doi.org/10.1016/S0924-0136(03)00085-2
http://dx.doi.org/http://dx.doi.org/10.1016/S0924-0136(03)00085-2
http://www.sciencedirect.com/science/article/pii/S0924013603000852
http://www.sciencedirect.com/science/article/pii/S0924013603000852
http://dx.doi.org/10.1109/INDIN.2008.4618110
http://dx.doi.org/10.1109/INDIN.2008.4618110
http://dx.doi.org/10.1109/INDIN.2008.4618109
http://dx.doi.org/10.1109/INDIN.2008.4618109

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Reconfiguration
	The aim of thesis
	Chapters overview

	IEC 61499
	Introduction to IEC 61499
	Types of FB in IEC 61499
	Basic FB
	Composite FB
	Service Interface FB

	IEC 61499 Base Model
	IEC 61499 applications
	The 4DIAC initiative
	4DIAC IDE
	4DIAC RUNTIME ENVIRONMENT - FORTE
	Function Blocks in the FORTE

	OPC Unified Architecture
	Service Oriented Architecture
	Web service
	OPC Unified Architecture
	SOA in OPC UA
	OPC UA communication stacks

	open62541 stack
	Building sdk

	The Realization of Integration
	Module and FBs development
	Creating module in 4DIAC IDE
	Creating module in FORTE
	Creating SIFB in 4DIAC IDE
	Creating SIFB in FORTE

	The second stage
	The implementation of the FB OPC_UA_SUBSCRIBE
	The implementation of the FB OPC_UA_PUBLISH
	The implementation of OPC UA Server

	Conclusion
	Installation of 4DIAC-IDE
	4DIAC IDE installation
	FORTE compilation
	Installing and Settipg up MinGW for FORTE Development

	Appendix Title Here
	Bibliography

