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Abstract

One of the common problems in machine learning from gene expression data is the scarcity
of samples — these datasets usually have around tens of thousands of features but only
several dozens of samples at best. Moreover, samples obtained using microarray technology
are often very noisy. Therefore models built solely from measured data often suffer from
overfitting. One of possible methods dealing with overfitting is to use prior knowledge for
regularization. This work analyzes network-constrained forest (NCF) method proposed by
Anděl and Kléma and proposes generalization of this method using other types of weak
classifiers. The proposed method is analysed in terms of diversity and accuracy over several
datasets. Moreover, this work empirically tests proposed convergence of NCF for increasing
length of random walk used for feature sampling.
Keywords: ensemble, prior knowledge, diversity

Abstrakt

Jedním z běžných problémů strojového učení na datech genové exprese je nedostatek
vzorků — tyto datasety mají obvykle několik desítek tisíc atributů ale v nejlepším případě
jen několik desítek vzorků, navíc, vzorky získané pomocí technologie microarray obsahují
velké množství šumu. Z těchto důvodu modely postavené výhradně z naměřených dat ob-
vykle trpí přeučením. Jednou možnou metodou řešící problém přeučení je použití apriorní
znalosti k regularizaci. Tato práce analyzuje metodu network-constrained forest (NCF)
navrženou Andělem a Klémou a dále předkládá zobecnění této metody používající jiné
typy slabých klasifikátorů. Navržená metode je analyzována z pohledu diverzity a přes-
nosti na několika datasetech. Navíc, tato práce empiricky testuje teoretickou konvergenci
NCF pro zvyšující se délky náhodné procházky použíté pro vzorkování atributů.
Klíčová slova: sdružené klasifikátory, apriorní znalost, diverzita
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Chapter 1

Introduction

In recent years, the field of genomics was strongly influenced by progress in technology
which made sequencing DNA much simpler and cheaper. Moreover, the amount of data
led to creation of a new discipline - bioinformatics. The goal of this thesis is to show how
ensemble classifiers with prior knowledge can be used for better predictions of the onset
and progression of heterogenous multifactorial diseases such as myelodysplastic syndrome.

Ensemble methods train multiple classifiers and use these classifiers to create a com-
pound classifier for a single task. These compound ensemble classifiers usually outperform
each of the base classifiers, from which they are created, in most classification tasks [19,
39, 40, 99, 134, 195]. They are among state-of-art machine learning approaches. Ensemble
methods represent many different approaches with different advantages and disadvantages.
The key assumption of ensemble classifiers is that the underlying classifiers are diverse, i.e.,
that they make different errors, and thus they can together achieve higher predictive per-
formance than could be obtained from any of the individual constituent classifiers [40, 158,
178]. The theoretical introduction to ensembles together with their taxonomy is in Chap-
ter 3 Ensemble classifiers where there are described various ensemble approaches together
with references to many examples of their use or to their latest extensions proposed in the
literature. As every ensemble is compounded of few or many weak classifiers, Chapter 4
Weak classifiers describes several weak classifiers that are of particular interest to this work
— Decision trees, Logistic regression and Naïve Bayes.

As was stated above, the diversity is crucial for ensembles of weak classifiers, thus
the concept of diversity and explanation why the diversity is so important is presented
in Chapter 5 Diversity. Moreover, this chapter also contains the description of various
ensemble diversity measures that were developed over the years — several of these measures
are used in the Chapter 7 Experiments.

The potential of ensemble methods with prior knowledge is demonstrated in Chapter 7
Experiments using gene expression profile data related tomyelodysplastic syndrome (MDS).
The chapter also contains thorough discussion of obtained experimental results and shows
the relationship between diversity and ensembles with prior knowledge and also that the
use of other types of weak classifiers such as Logistic regression or Naïve Bayes in network-
constrained ensembles is beneficial as well.
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Chapter 2

Related work

This work is an intersection of several various fields — e.g., biology, or genetics, however
the main focus of the work is on the machine learning field, therefore the reader is as-
sumed to know basic facts about genetics, DNA–protein relationships, etc., however for
further information about genetics, the Principle of Genetics by Snustad and Simmons
is recommended as comprehensive source about the field [161] (Czech translation is also
available [160]).

Moreover, since this work is divided into several, dissimilar chapters, related work is
always in the appropriate chapter. Being that said, there are still several works that are
very significant to this work and they are worth mentioning here. The works of Rokach [154,
155], Kuncheva [95] and Dietterich [40] were very significant for the Chapter 3 Ensemble
classifiers. Another work by Kuncheva [97] and Brown’s work [27] were important source
for the Chapter 5 Diversity. However, probably the most important is the work by Kléma
and Anděl [9, 10] because this thesis is a continuation of their work and the proposed
Network-constrained random subspace method is a direct extension of Anděl’s and Kléma’s
network-constrained forest.

3



4 CHAPTER 2. RELATED WORK



Chapter 3

Ensemble classifiers

Ensemble methods create a predictive model by integrating multiple models and several
studies show that ensemble methods very often outperform single classifier method in terms
of prediction performance [24, 49, 154, 155]. Ensemble methods and classifier are exten-
sively studied over past two decades and represent state-of-art method for classification.

The idea of ensemble methods has been researched since Tukey combined two linear
regression models in 1977 [155]. However, the main development of ensemble methods
begun in the 1990 when Hansen and Salamon published an ensemble of artificial neural
networks [60] and foundations for well known Adaboost ensemble method were laid in
Schapire’s work The strength of weak learnability [157]. The algorithm itself was pub-
lished six year later by Freund and Schapire [49] and it produced a strong classifiers using
combination of weak classifiers. In the same year, Breiman used Bagging predictors for
improving accuracy of tree classifiers [25]. This method can be used generally for any type
of classifiers but its tree version led to development of the popular random forest classifier
in 2001 [26]. Many different and sophisticated ensemble methods were developed since
then and a review of those methods can be found in [154] or [192].

3.1 Ensemble terminology

We used terminology presented in [155]. According to the work, an ensemble classifier is
made up from several building blocks — a training set, an inducer, an ensemble generator
and a combiner.

1. Training set — it is a labeled dataset used for training the ensemble classifier in the
supervised learning. It is made up from samples described by an attribute-valued
vectors. The dataset contains both labeled and unlabeled instances in the semi-
supervised learning.

2. Inducer — it obtains a training set and uses it for forming a base classifier which
represents the generalized relationship between the input attributes and the target
attribute [155].

5
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3. Ensemble generator — it creates diverse base classifiers for the ensemble

4. Combiner — it combines the decisions of various base classifiers and produces final
decision (classification)

3.2 Ensemble taxonomy

Ensemble classifiers have many things in common and there were several attempts to
categorize them. These attempts include [27, 40, 95, 141]. However, the most complete
taxonomy was presented in [155] and [154]. This taxonomy was be used for purposes of
this work and its brief description is be presented in this chapter, however, several new
sections and examples were added (e.g., rotation forest , confidence based method) and some
sections from the taxonomy were excluded.

The focus of the taxonomy is on several dimension in which a classifier might be cate-
gorized:

1. Combiner usage — it represents the relationship between base classifiers and the
combiner.

2. Classifiers dependency — determines how base classifiers affect each other during
training phases.

3. Diversity generator — if base classifiers are diverse, they may be more effective.
Whole Chapter 5 Diversity will discuss diversity and its influence.

4. Ensemble size — it represents the number of base classifiers in the ensemble and also
methods how undesirable classifiers are removed from the ensemble

5. Cross-inducer — determines whether the ensemble method was built for one type of
inducer or it might be used for different inducers

Each of these dimensions of Rokach’s taxonomy is described further in following sections.

3.3 Combiner usage

There are two main categories in this dimensions — named weighting and meta-learning
in [155] but named as trainable and nontrainable ensembles in [6, 95] or as fixed combiners
and trained combiners in [44]. The trainability specifies whether the ensemble is trained
to make final decision from its base classifiers’ decisions in or whether some fixed rule is
used for combining those outputs such as majority voting or weighted voting. Moreover,
the trainable ensembles might be trained after all base classifiers are trained or it might
be trained during the training of individual base classifier — example of the latter is
AdaBoost [49] and its derivations [50]. Another important feature in this dimension is
whether the ensemble generator is combiner specific or it is combiner independent and the
combination method is provided as an input to the framework [155].
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In following sections, there is a brief description of several frequently used combiners,
more complete list of combiners is available in [6, 24, 44, 95, 154, 155]. Also, an empirical
comparison of some of the combiners on biological data is in [6].

3.4 Fixed combiners

3.4.1 Majority voting

This method is probably one of the most used combiners, for example, it is used in [5, 24,
26, 164]. Ensemble using majority voting selects the class that receives the highest number
of votes among the base classifiers where each vote has the same weight:

class(x) = arg max
cj∈dom(y)

(∑
k

g(yk(x), ci)

)

where g(y, c) is an indicator function defined as:

g(y, c) =

{
1 y = c

0 y 6= c

and yk(x) is the classification of the k’th base classifier.
Further analysis of majority voting is in [6, 27, 95, 99]. Its empirical performance is

compared with weighted voting and other combining methods in [24], double layer voting
is used in [186].

3.4.2 Weighted voting

This method can be both in Fixed combiner and Trained combiners because the category
depends on the origin of the weights. These weights can be set apriori or can be trained as
well — both during and after training separate base classifiers. The most known example
is AdaBoost which learns weights when training base classifiers [49]. The mathematical
expression is very similar to majority voting:

class(x) = arg max
cj∈dom(y)

(∑
k

αkg(yk(x), ci)

)

where g(y, c),yk(x) are same as in majority voting and αk is the weight of k’th classi-
fier [95]. These weights might be set apriori — for example based on known characteristics
of classifiers. In case of binary classification, the voting can be further simplified to

(x) = sign

(∑
k

αkhk(x)

)
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where hk(x) returns the predicted class by k’th classifer for x:

hk(x) =

{
1 classifed as class 1
−1 classified as class -1

as presented for example in [49]. More detailed description and analysis are available in [95,
125].

3.4.3 Performance weighting

Performance weighting is a special case of weighted voting where weights are assigned
on the basis of base classifiers’ performance on the validation set [155]. One possible
performance weighting mentioned in [95, 133] is:

αi =
1− Ei∑
k (1− Ek)

where 1− Ek is classifer k’s validation set accuracy (or training-set accuracy if validation
set is not used). Other possible weightings [95]:

αi = EEii (1− Ei)(1−Ei)

αi =
1

Ei

These weights could be normalized so they sum up to one as in the first weighting example
but it is not necessary as division by a constant does not affect the ordering.

3.4.4 Distribution summation

Very simple combiner that requires probabilistic output from classifiers instead of just
class [154, 155]:

class(x) = arg max
cj∈dom(y)

∑
k

P̂Mk
(y = cj |x)

3.4.5 Naïve Bayes

The Naïve Bayes combiner (also called independence model, simple Bayes or idiot’s Bayes)
is very similar to Distribution notation mentioned above and it assumes that the classifiers
are mutually conditionally independent given a class label [95, 155]:

class(x) = arg max
cj∈dom(y)

P̂ (y=cj)>0

∑
k

P̂ (y = cj) ·
∏
k=1

P̂Mk
(y = cj |x)

P̂ (y = cj)

Further description is in [95].
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3.4.6 Confidence based method

Sometimes the underlying base classifiers can supply not only class but also the confidence
of the class, which might be better for using in the ensemble than just the class output.
These methods are very similar to methods above and can be generalized as [95]:

µj(x) = F(d1,j(x), . . . , dL,j(x))

Several often used choices of F :

Simple mean(average)

µj(x) =
1

L

L∑
i=1

di,j(x)

Minimum
µj(x) = min

i
di,j(x)

Maximum
µj(x) = max

i
di,j(x)

Median
µj(x) = medianidi,j(x)

Product

µj(x) =

L∏
i=1

di,j(x)

Generalized mean The generalized mean may represent arithmetic mean,harmonic mean,
geometric mean, and many others means with correct use of α [95]:

µj(x, α) =

(
1

L

L∑
i=1

di,j(x)α

) 1
α

3.5 Trained combiners

3.5.1 Weighted Average

This method is similar to confidence fixed methods but it adds weights. There are two
main types of weighted average combiners [47, 95]:

• L weights. This model uses one weight per classifier (similarly to Weighted voting)

µj(x) =

L∑
i=1

αidi,j(x)
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• L× c weights. This model uses one weight per classifier and class:

µj(x) =

L∑
i=1

αijdi,j(x)

For this kind of model, linear regression is usually used for deriving the weights
αij [95].

3.5.2 Stacking

In stacking, another classifier is used for creating decision from multiple decisions made by
base classifiers. It can be viewed as creation of a new dataset, where with same number
of instances as in original dataset, but instead of original attributes, its attributes are
decisions of base classifiers — one attribute per base classifier [154, 155]. Stacking can
be used both for classifiers induced by one inducer or for classifier induced by different
inducers. Special stacking method are even suitable for online learning [74].

3.6 Classifier dependency

Another dimension from Rokach’s taxonomy [154, 155] is whether the base classifiers are
dependent or independent. If they are dependent, output from one classifier affects the
creation of the next classifier.

3.7 Dependent methods

These method are also called successive because training of one classifier influence the
training of the following classifier. It is possible to distinguish two classes of dependent
methods [144]. First is Model-guided instance selection where the classifiers from previous
iterations are used for manipulating the training set for the following iteration while the
other is called Incremental batch learning method — it uses classification from previous
iteration as prior knowledge to the algorithm in following iteration [144, 154, 155]. Because
the output of the previous classifiers is not captured by weighting of the training samples
and the classifiers but used directly as a feature of an instance, this method does not use
any combiner but directly uses the output of the last classifier.

3.7.1 Boosting

One of the most popular method of model-guided instance selection is called boosting also
known as Adaptive Resampling and Combining or briefly arcing. Boosting approach evolved
from online learning algorithm called Hedge(β) [95] and the most known boosting classifier
is Adabost, which reweights instances in the training set in each iteration based on the
classification from previous iteration — the weights of misclassified instances are increased
and the weights of correctly classified instances are decreased [49, 153]. Consequently, it
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tries to create classifiers that complement each other and then combines their decisions
using weighted voting.

The key assumption of model-guided instance selection boosting is that all used weak
inducers can work with weighted instances. If it is not the case, a possible workaround
is generating unweighted dataset using a resampling technique where instances are chosen
with probability according to their weights [154, 155].

It was showed that boosting can greatly improve classifier’s accuracy [19, 40, 49, 91,
134, 145], however it can sometimes lead to a loss of generalization, mostly when the
algorithm over-fits [145] which is expected because noisy examples tend to be misclassified
which will result in an increase of the weight of the instance [91].

3.8 Independent methods

In the independent methods, the classifiers are trained independently of each other, the
training dataset is usually partitioned into several subsets which are then used for training
classifiers. These subset may be either mutually exclusive (disjoint) or overlapping [155].

3.8.1 Bagging

One of the most known independent methods is called bagging, which is just abbreviation
for bootstrap aggregating. It was first used by Breiman in 1996 in [25]. It is a method
for generating multiple versions of a predictor and using them to get an aggregated pre-
dictor [25, 95, 135, 153–155, 192]. Each classifier is trained using new training set that
is created by taking instance from original training with replacement and thus some in-
stances from original dataset may be more than once in the new dataset or not included
at all [155]. Bagging ensembles usually use majority voting for combining decisions of base
classifiers which are independently trained on their new datasets.

The bagging approach work best with unstable classifiers — that is with classifiers for
which a small change in training instances can result in large changes in the classifier [19,
25, 95, 145, 154, 155]. Bagging is usually best suited for middle sized datasets because a
single classifier can be very accurate given large dataset and if the dataset is tiny, then
the gains achieved by using bagging cannot recompense for the decrease in accuracy of
individual base classifiers [91].

Several empirical studies show that bagging almost always increased the accuracy of
base classifier and in no cases it led to worse performance than the performance of base
classifier on the original dataset [19, 40, 91, 134, 145, 195]. Also several new algorithms
based on bagging were produced — for example SubBag in [135], FuzzyBagging in [127] or
bagging based algorithms in [178].

3.8.2 Wagging

Less known but very useful method is called wagging. In this method, each base classifier
is trained on the entire training set, however each instance is stochastically assigned a
weight [153–155]. Traditionally, wagging is described as a variant of bagging [19, 154, 155],
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but more accurate is to view bagging as a variant of wagging because bagging is a wagging
with allocation of weight from the Poisson distribution where each instance is represented in
the sample a discrete number of times [153–155, 185]. Continuous equivalent of bagging can
be modeled by using the exponential distribution instead of discrete Poisson distribution.
Individual random instance weights from the Poisson distribution can be easily generated
using following well known formula:

T = − log(Ui)

λ
(3.1)

where Ui is a uniformly distributed random number on (0, 1). Since pseudo-random gen-
erators sampling uniform distribution over (0, 1) are common, it is very easy to implement
continuous equivalent of bagging.

3.8.3 Random subspace

The random subspace method (also called attribute bagging) creates subspaces from the
input feature spaces. Each subspace is created by randomly picking features from the entire
input feature space and each base classifier is trained using one of these subspaces [65, 154,
155, 202]. This method is very useful especially when the dimension of the feature space
is very high and most other classification methods suffers from the curse of dimensional-
ity [65]. This method can be applied to many different inducer, e.g., decision trees [26,
65], nearest neighbor classifiers [65, 154, 155] or linear discriminators [154, 155].

3.8.4 Random forest

The random forest ensemble method was first proposed by Breiman in 2001 in [26] and
became very popular since then. The random forest ensemble is very similar to random
subspace method but it is tree-specific. Instead of subspacing features space for each base
classifier, the entire feature space is sampled at each node of each decision tree in the
ensemble. Hence the tree does not choose the best split among all features but only among
features from subspace of the entire feature space [26, 154, 155]. These base classifiers’
decision are then combined using majority vote combiner. Another advantage of random
forest is that they can be also used for regression [15, 26, 40] where the outputs of base
classifiers are combined by averaging combiner instead of majority vote.

The random forest is also popular because it provides both accurate classification and
insight regarding the discriminative ability of individual features as it provides a feature
importance measure and also out-of-bag estimates of generalization error [12, 26, 61, 62,
154]. Moreover, random forests can also be used for feature selection as a pre-processing for
other classifiers [14, 52, 61, 62]. Unlike other feature selection methods, random forests can
implicitly deal with missing values [62]. Furthermore, it it possible to interpret nonlinear
relationships between process variables by using of random forests whereas the current
most popular tool for modeling complex nonlinear system — neural networks — do not
provide explicit insight into the relationships between process and target variables. [15].
However, forest variable importance measures are less accurate when some input features
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are correlated [14], more detailed study of tree ensemble variable importance measures is
available in [14], where there are also compared importance measures from boosting trees
and conditional inference forest.

3.8.5 Rotation forest

Rotation forest is another independent method specific for trees and it is an important
enhancement of random forest first introduced in 2006 in [152]. While this method is very
similar to random forest, rotation forests outperform random forests on many datasets [7,
152]. Rotation forest aims at building accurate and diverse base classifiers. Similarly to
bagging, bootstrap samples are used for training the individual base classifiers but the
rotation forest also transforms the data into a new feature space [96, 152]. For each base
classifier, the input data are split to several disjoint subsets on which a transformation
method such as Principal component analysis (PCA) is consequently applied. The classifier
was first proposed with PCA as the transformation method [152] but its behavior was later
analysed with other transformation method such as non-parametric discriminant analysis
(NDA), Random projections (RP), Sparse random projections [96] or with Independent
component analysis (ICA) [46]. However, Kuncheva and Rodriguez stated in [96] that the
PCA gave the highest results and it also preserves the discriminatory features, second best
transformation was found to be the NDA.

The rotation forest offers good trade-off between the accuracy and the diversity, which
are considered to be contradictory [27, 46], because it provides good accuracy through
gathering results and it uses the rotation process to create diversity [46].

However, the rotation forest has one big disadvantage in comparisons with its biggest
rival random forest because while it often provides better accuracy than random forest, it
cannot be used for assessment of feature importance due to the transformation of feature
space [152]. The absence of implicit feature importance measure makes rotation forest less
suitable for application where explicit insight into the relationships between process and
target variables is needed.

Another disadvantage comes from the use of PCA as the transformation method be-
cause rotation forests, unlike the random forests, cannot implicitly deal with missing data
because the PCA itself fails to process missing elements and moreover, it is very sensitive
to outliers [37]. Even though several robust PCA have been proposed and tested over the
years [37], their use in rotation forests was not well analysed. Moreover, the use of PCA
in rotation forests significantly increases computational difficulty in comparison with the
random forest.

3.8.6 Cross-validated committees

This method is very similar to bagging but uses different strategy: it creates k classifiers by
dividing the training set into k-equal-sized sets and trains them on all but the ith set [154,
155]. However, this method is less favoured than the similar bagging method. Some
interesting recent applications are Graph-Based Cross-Validated Committees from 2012
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in [115] and Crossboost from 2006 in [173] that combines Adaboost and cross-validated
committees with neural networks.

3.9 Ensemble diversity

The ensemble provides higher accuracy, only if the ensemble members disagree about some
inputs [27, 97, 154, 155, 176]. The concept of diversity is further described in Chapter 5
Diversity. This section is focused on the taxonomy of methods for diversity creation based
mostly on [27, 154, 155].

3.9.1 Manipulating the inducer

Diversity can be gained by manipulating the inducer that creates the base classifiers. The
inducer can be manipulated in several possible ways.

3.9.1.1 Manipulating parameters

Most of the base inducers used for ensemble can by controlled by a set parameters. In
the context of artificial neural networks, number of layers and number of nodes in a layer
can be such parameters or more generally, the whole topology for the network can be the
manipulated parameter. Variation of number of nodes was used in [77, 137], variation
of parameters and learning algorithm with selection of diverse members using clustering
algorithm was used in [110] and varying number of hidden neurons, types of activation
functions and learning rate using genetic algorithms was used in [126]. Another common
example, where the diversity is obtained using different parameters, is an ensemble of
decision trees [155] where, for example, the trees might be prunned early.

3.9.1.2 Starting point in hypothesis space

It is possible to achieve higher diversity by setting different point in hypothesis space where
the individual base learners starts the search. The change of origin influences where in space
the learner converges to [27]. In context of neural networks, it is possible to manipulate
the back-propagation inducer by assigning different initial weights to the network [155].

3.9.1.3 Traversal of hypothesis space

The way of searching the hypothesis space greatly influences the final ensemble [27, 155].
According to Rokach, there are two methods of manipulating the space traversal — Random-
based strategy and Collective performance strategy [155]

Random-based strategy
Randomness can lead to higher diversity, one of the most common examples is a random
forest, in which each classifiers is selecting not the best feature in each node but selecting
only the best feature from a subset of nodes [26]. Different forest randomization strategy
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was used in [39],where, for each tree, "the 20 best candidate splits are computed, and
then one of these is chosen uniformly at random". This randomization was comparable to
bagging but might be more accurate in setting with low noise [39].

Collective Performance based strategy
This type of strategy creates the ensemble as a whole while trying to increase its accuracy
by various means. The base classifiers might cooperate with each other in order to special-
ize, i.e., be diverse from others [155]. There are two main approaches — penalty method
and evolutionary methods [27].

Penalty methods
When using penalty, a penalty term is added to the error function of an ensemble to
encourage diversity among base classifiers [27, 154, 155]. Several penalty methods were
proposed and analysed in the literature — e.g., Negative Correlation Learning [27, 155] or
Root Quartic Negative Correlation Learning [27]

Evolutionary methods
Using this family of methods, the ensemble is evolved from initial population of classi-
fiers [27]. One of the examples is [126], where an evolutionary algorithm was used for
adding diverse members to the ensemble. Three-level evolutionary algorithm was used
in [31]. The multi-objective evolutionary algorithm was used in [30] for finding a good
trade-off between diversity and accuracy, another example of use of multi-objective evolu-
tionary algorithms is available in [122]. Another possible approach was used in [71, 199],
where they created ensemble by selecting diverse classification rules obtained by genetic
programming [71].

3.9.2 Manipulating the training samples

One possible method for gaining diversity is to train the base classifiers on a variation of
a subset of the original dataset [155]. This method is especially used of unstable classi-
fiers such as neural networks and decision trees [155] Most known examples are bagging,
boosting or wagging.

3.9.2.1 Resampling

The dataset is resampled into datasets on which the base classifiers are trained, the most
common resampling scheme is random sampling as used in bagging or proportional that
distributes samples based on the class distribution in the original datasets in such a way
that the class distribution in each subset is approximating the distribution in the original
dataset [155].
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3.9.2.2 Partitioning

This method is useful when the number of training instances is very high and the training
could become a bottleneck [154] Partitioning divides the training set into disjoint subsets
and can both improve speed and diversity when training on massive datasets [154]. More-
over, it has has been empirically shown that the performance of this approach is equivalent
to the bagging and other frequently used ensemble methods [154].

3.9.2.3 Reweighting

This method is similar to resampling, in certain cases both method can be equivalent [153–
155, 185]. Instead of resampling, this method manipulates the weight of instances in the
training set, most known examples are AdaBoost (boosting) and wagging [155].

3.9.2.4 Creation

Another possible method is to dynamically create new datasets on which the members of
the ensemble are trained. One of the most known example is DECORATE algorithm pre-
sented in 2003, it is a dependent method in which members are added iteratively and they
are trained on artificial datasets combining original instances with fabricated instances [154,
155].

Similar approach was used in [3], where neural network ensemble was trained on arti-
ficial dataset with fabricated instances to maximize diversity among neural networks.

3.9.3 Manipulating the target attribute representation

According to Rokach [155], methods using this approach usually work with several clas-
sifiers with different and simpler representations of target attributes instead of using a
single complicated classifier. There are two main types: Concept Aggregation, in which the
manipulation is based on an aggregation of original target’s values, and Function Decom-
position, which is based on more complicated functions than Concept Aggregation [154,
155]

3.9.4 Partitioning the search space

When using this approach, every ensemble member explores a different part of the search
space, i.e., the original space is divided into several sub-spaces and each of these sub-
spaces is considered independently from the rest of sub-spaces. Subspaces can overlap or
could disjoint, the total model is then a union of simpler models [154]. Rokach in [154]
distinguishes two main types of partitioning — Divide and conquer and Feature subset-
based methods.

3.9.4.1 Divide and conquer

This approach divides the instance space into several subspaces and for each of the sub-
spaces, a model is created. Such model is called an expert and decision of experts is then
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combined to create final decision [154, 155]. The subspaces might divided apriori or using
a partitioning algorithm such as K-Means or Decision tree. Further details about this
approach are available in [155] in section Horizontal partitioning and in [154] in section
Divide and conquer.

3.9.4.2 Feature subset-based methods

Using this method, also called Vertical partitioning in [155], each ensemble member is
created by manipulating the original feature set, i.e., each ensemble member is trained using
a different projection of the training set [154]. It can be very useful for datasets with high
dimensionality [155] as it can even alleviate the curse of dimensionality [80], furthermore
it reduces the correlation among the classifiers and thus it can improve performance of the
whole ensemble [154], moreover the reduced size of the dataset leads to faster induction
of classifiers [154]. Most of strategies for creating feature subset-based ensembles can be
divided into three main categories — random-based,reduct-based and collective performance
based strategy [155].

Random-based strategy
A simple and often very efficient strategy in which the subsets are created using a random
selection or a random projection [155]. Random subsets of the feature space are used for a
creation of a forest of decision trees in [65]. The most known random-based strategy is the
Random Subspace method (RSM) which creates a random subspace of the whole feature
subspace. Currently, it is one of the most popular method for creating ensembles [51],
especially in the image recognition [56, 63, 80, 170, 171], moreover, several extensions were
proposed in the literature, e.g., weighted RSM with automatic dimensionality reduction
in [98], Directed RSM in [63] or RSM with Canonical Correlation Analysis in [208]. More-
over, several novel applications of the idea of RSM were proposed, for example RSM for
Co-training in [182], RSM for creation of artificial training data in [2] or RSM for Gene
ranking in [28].

Reduct-based strategy
The smallest feature subset with the same predictive power as the original feature set is
called a reduct [155]. The ensembles created using reducts are limited in size because
reducts are limited to the number of features [155]. Reducts are often used for a feature
selection for training a single classifier (e.g., [13, 118], however, they can also be used for
ensembles, e.g., reduct based K-Means in [76] or reduct-based ensemble of UCS in [38].
Moreover, several different classifiers can be used for construction of the reduct as in [124].
In comparison with bagging and the random subspace method, reduct based ensembles
have more opportunities to get good generalization [38].

Collective Performance based strategy
The idea is the same as in the collective performance based strategy in Section 3.9.1 —
firstly, features are sampled into subsets, usually randomly, then an iterative scheme is
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introduced to refine this selection in order to improve the accuracy of the ensemble. The
iterative scheme can be based on a hill-climbing search [155] or it can be based on a genetic
search [132, 155, 175]

3.9.5 Multi-Inducers

Each type of inducers contains bias that results in preferring certain generalizations over
others [154, 155], therefore, it is possible to obtain higher diversity using different types
of inducers. The goal of this method is to produce synergistic effects that would lead to
higher performance "that neither atomic approach by itself would be able to achieve" [155].



Chapter 4

Weak Classifiers

Various classifiers were proposed in the literature over the decades, hence it is greatly out of
the scope of this work to categorize and thoroughly describe even just one particular class
of classifiers (e.g., neural networks). This chapter will therefore describe only classifiers
that are of particular interest to this work.

4.1 Decision tree

Decision tree (DT) classifiers are one of the most simple and yet most successful techniques
in machine learning. They are even more useful because they are easily interpretable for
humans — even if they are not from the machine learning community. The decision
tree iteratively splits the input space in each node, the target classification is represented
by a leaf. However, there are many methods how to create the decision tree — they
vary from simple, greedy ones to more complex methods. There were several earliest
algorithms such as AID, THAID, MAID, ELISEE and others — their review is available
in [151]. One of latter algorithms was ID3 proposed by Quinlan in 1986 [146], it uses greedy
approach and splits the subsets using the attribute with maximum information gain. He
later extended the method into new C4.5 algorithm [88], which, unlike ID3, handles both
continuous and discrete attributes, it also handles missing data, attributes with differing
costs and prunes the tree after its creation. Another often used algorithm is CART, which
uses a generalization of the binomial variance called the Gini index for finding suitable
splits [116]. Unline THAID, both CART and C4.5 first grow a large tree and then prune it
to a smaller size [116]. However, many different algorithms were proposed over the years,
e.g., Optimized Very Fast Decision Tree (OVFDT) [191], fuzzy decision trees [34, 106,
121, 166], fuzzy SLIQ decision trees [33], and moreover, decision trees are used in other
complex methods, e.g., decision tree growing with genetic programming [78, 85] or other
evolutionary algorithms [17, 58]. Moreover, decision trees may be combined with other
algorithms, for example combination of SVM and decision tree [93, 183].

Furthermore, decision trees are one of the most favourite types of weak classifiers, their
use in ensembles is well researched — more details in [1, 2, 14, 39, 83, 108]. Comparison
of some decision tree algorithms are available in [128, 151, 166] and reviews of various
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decision tree algorithms are provided in [90, 116], survey of evolutionary algorithms for
decision trees is available in [18].

4.2 Logistic regression

Logistic regression (LR) is a well known method of statistical learning but its description is
not provided here as it is out of the scope of this work, however the description is available
almost in any statistical learning or econometrics textbook, for example in Introductory
Econometrics: A Modern Approach by Wooldridge [188].

This method is not used only in econometrics but also in bioinformatics as it can
achieve comparable performances to decision trees or neural networks [84],e.g., predict-
ing In-Hospital-Death [59], hypertension prediction [181], or classifying heart disease pa-
tients [84]. The logistic regression was also used for a gene–gene interaction analysis for
genome-wide studies using a CUDA accelerated LR [102]

Many extensions of logistic regression or algorithms based on LR were proposed in
literature — Class Imbalance Oriented Logistic Regression (CILR) [43], or Choquet integral
logistic regression [112], moreover, the logistic regression may also be combined with other
classifiers, for example combination of logistic regression and SVM for influenza host clas-
sification [113], or hybrid classifier using logistic regression with evolutionary RBF neural
network [57].

4.3 Naïve Bayes Classifier

This classifiers is called Naïve because its crucial assumption is unrealistic and greatly
simplifying — the Naïve Bayes assumes that all features all conditionally independent
given class. However, despite this assumption, the classifier is often unexpectedly effective
in practice [150]. Even though the independence assumption does not hold in nature in
most cases, the Naïve Bayes classifiers often shows great performance on various biomed-
ical taks — e.g., detection of abnormal gait patterns in Parkinson Disease [117], mature
miRNA identification [54], classification of proteomics data [111], or classification of gene
expression data [32, 48]. Moreover, the Naïve Bayes classifier is often used in ensem-
bles [109, 129] In last decades, many extensions to the basic classifiers were proposed, for
example Extended Naïve Bayes [86], Fuzzy Naïve Bayes [130, 169], Repeat Based Naïve
Bayes Classifier (RBNBC) [147] for biological sequences, iterative Naïve Bayes learning
with missing data [103], Link-Based Naïve Bayes Classifier (LNBC) [22], Randomly Se-
lected Naive Bayes (RSNB) for feature extraction [79], or novel method for Naïve Bayes
with continuous variables (NBC4D) [196].



Chapter 5

Diversity

5.1 Ensembles and diversity

The ensemble of classifiers can be only more accurate when the base classifiers differ and
disagree about some inputs [154] , if it was not the case, the ensemble would be the same as
a single base classifier. The ultimate goal is to have an ensemble with many base learners
whose errors are independent of each other because then the ensemble would approach,
in a classification context, the Bayes error, which is the minimal error that is achieved
given the optimal decision boundary. If we had classes a and b with posterior probabilities
P (a|x) and P (b|x) respectively and a classifier i whose outputs are estimates of posterior
probabilities P̂i(c|x), c ∈ {a, b} so that

P̂i(c|x) = P (c|x) + µi(c|x) (5.1)

where µi(c|x) is the estimation error of base classifier i, then, assuming that the estimation
errors on different classes are independent and identically distributed random variables with
zero mean and variance σ2µi , the expected added error of base classifier i satisfies

Ei,add =
σ2µi

P ′(a|x)− P ′(b|x)
(5.2)

where P ′(a|x) and P ′(b|x) are the derivatives of true posterior probabilities of classes a
and b [27]. Moreover, if the decision is made by an ensemble of classifier instead of only one
classifier with combiner averaging estimates of posterior probabilities, it can be shown [27,
97] that

Eave
add = Eadd

(
1 + δ(L− 1)

L

)
(5.3)

where Eadd is the added error of base classifiers (assuming all have the same error) and δ is
the correlation coefficient computed as the sum of averaged pairwise correlations between
Pi(ck|x) and Pj(ck|x), i, j = 1, . . . , L calculated for every class ck weighted by the prior
probabilities P̂ (ck) [97]:

δ =
∑
ck

P̂ (ck) ·
(

2δi,j
L(L− 1)

)
(5.4)
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where δi,j is the correlation between Pi(ck|x) and Pj(ck|x).

5.2 Diversity measures

Over the years, there were many diversity measures proposed in the literature (e.g., [53,
136, 159, 201]) however good review and comparison was made in [27, 97]. The diversity can
be measured for both classification and regression ensembles, however, since our research
is focused on the classification context, the diversity theory for continuous-valued outputs
is out of the scope of this work.

There are two main approaches of measuring the diversity, pairwise and non-pairwise [27,
97]. The non-pairwise measures mostly compare the output of base classifiers with the av-
eraged output of the whole ensemble or are based on the idea of entropy whereas the
pairwise measures calculates the average of a particular measure of all possible pairings of
ensemble members [27].

5.2.1 Used notation

Let S = {s1, . . . , sN} be a labeled dataset, sj ∈ RN , D = {D1, . . . , DL} be an ensemble of
classifiers and yj,i := 1 if Di classifies sj correctly and yj,i := 0 otherwise.

Also, for two classifier Di and Dk, let Nab be the number of samples sj ∈ S for which
yj,i = a and yj,k = b [97] as shows Table 5.1. Also N = N00 +N01 +N10 +N11, however,
these relationships are sometimes stated in probabilities, not absolute numbers, as in [27].
For the estimates of such probabilities, we can divide Nab by the number of samples N ,
i.e., pab = Nab

N and then p00 + p01 + p10 + p11 = 1.

Dk correct Dk wrong
Di correct N11 N10

Di wrong N01 N00

Table 5.1: A table of relationships between a pair of classifiers taken from [97].

5.2.2 Non-pairwise measures

5.2.2.1 The entropy measure E

There are several entropy based measures in the literature [27, 97], one possible measure
is from [97]. It is based on the concept that the highest diversity among classifiers for
a particular sample si,i = 1, . . . , L, from the dataset is when

⌊
L
2

⌋
votes of the ensemble

produce same value (0 or 1) and the other L−
⌊
L
2

⌋
produce the alternative value [97].

E =
1

N

N∑
j=1

1(
L−

⌈
L
2

⌉) min {l(sj), L− l(sj)} . (5.5)
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where l(sj) is the number of classifiers from the ensemble that correctly classifies the sj :

l(sj) =
L∑
i=1

yj,i (5.6)

where yj,i = 1 if classifier Di classifies correctly sj and 0 otherwise.

5.2.2.2 Kohavi-Wolpert measure

This measure is based on a decomposition formula for the error rate of classifier derived by
Kohavi and Wolpert, which gives the variability of the predicted class label y for x across
training sets for a specific classifier model [89, 97] .

varx =
1

2

(
1−

c∑
i=1

P (y = ωi|x)2

)
(5.7)

Based on this formula, the Kohavi-Wolpert measure was derived in [97]:

KW =
1

NL2

N∑
j=1

l(sj)(L− l(sj)) (5.8)

Moreover, the Kohavi-Wolpert measure is closely linked with the pairwise averaged
disagreement measure Disave defined in following section:

KW =
L− 1

2L
Disave (5.9)

This equivalence was proved in [97].

5.2.2.3 Measurement of interrater agreement κ

It was first introduced in 1960 by Cohen [16],however since then many modification and
extensions were made, especially for the use in biostatistics. For the purpose of this
work, by κ we will mean the pairwise and non-pairwise measures described in [97], more
information about κ statistic is available in [16, 92, 193, 194]

κ is another measure closely related to the Kohavi-Wolpert measure and the disagree-
ment measure, it was developed as a measure of interrater reliability κ, i.e., to measure
the level of agreement while correcting for chance [97]:

κ = 1−
1
L

∑N
j=1 l(sj)(L− l(sj))

N(L− 1)p̄(1− p̄)
(5.10)

where p̄ is the average individual classification accuracy:

p̄ =
1

NL

N∑
j=1

L∑
i=1

yj,i (5.11)
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The κ is related to KW and Disave [97]:

κ = 1− L

(L− 1)p̄(1− p̄)
KW = 1− 1

2p̄(1− p̄)
Disave (5.12)

5.2.2.4 Coincident failure diversity

Coincident failure diversity is a modification of another diversity measure called Gener-
alized diversity. It is designed in a such way so it reaches minimum value of 0 when all
classifiers are simultaneously either correct or wrong and it reaches its maximum of 1 when
all misclassifications are unique, i.e., at most one classifier fails on any randomly chosen
sample [97, 136].

CFD =

{
0 p0 = 1

1
1−p0

∑L
i=1

L−i
L−1pi p0 < 1

(5.13)

where pi is the probability that i of L classifiers are incorrect on randomly drawn object
x ∈ Rn.

5.2.2.5 Other diversity measures

Other pairwise diversity measures were also proposed in the literature - generalized diver-
sity [97, 136], measure of difficulty θ described in [97] or classification Ambiguity [27] and
others.

5.2.3 Pairwise measures

This type of measures is calculated for every possible pair of classifiers from the ensemble
and then averaged, e.g.,

Qave =
2

L(L− 1)

L−1∑
i=1

L∑
k=i+1

Qi,k (5.14)

where Qi,k is the Q statistic defined in following section 5.2.3.1 but the same approach is
used for all pairwise measures.

5.2.3.1 Q statistic

The statistics was used by Yule in 1900 in [201] and the Q statistic for a pair of classifiers
Di and Dk is [97, 201]:

Qi,k =
N11N00 −N01N10

N11N00 +N01N10
(5.15)

The Q takes values between -1 and 1, and for statistically independent classifiers Di and
Dk the expected value is 0, i.e., E[Qi,k] = 0. If both classifiers tend to classify the same
samples correctly, they will have positive values of Qi,k whereas if classifiers tend to fail on
different samples, the Qi,k will be negative.
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5.2.3.2 Correlation coefficient ρ

This measure is related to the Q statistics, for any two classifiers Di and Dk, Qi,k and ρi,k
have the same sign and moreover, |ρi,k| ≤ |Qi,k| [97].

ρi,k =
N11N00 −N01N10√

(N11 +N10)(N01 +N00)(N11 +N01)(N10 +N00)
(5.16)

5.2.3.3 κ statistic

The pairwise κ statistics from [97]:

κi,k =
2(N11N00 −N01N10)

(N11 +N10)(N01 +N00) + (N11 +N01)(N10 +N00)
(5.17)

however, this statistic is not equivalent to the interrater agreement κ defined in Sec-
tion 5.2.2.3 because it can be shown that κ is not equal to the average pairwise κave [97].

Dietterich defines multi-class κ statistic in [39] and uses it for drawing κ-error diagrams
for graphical visualization of diversity. The multi-class κ statistic is defined as follows. Let
C be an L× L matrix such that Cr,s, r, s = 1, . . . , L is the number of samples assigned to
class r by the classifier i and into class s by the classifier k, then

κi,k =
θ1 − θ2
1− θ2

(5.18)

where

θ1 =

∑L
r=1Crr
N

(5.19)

and

θ2 =

L∑
r=1

(
L∑
s=1

Crs
N

L∑
s=1

Csr
N

)
(5.20)

This κ statistic equals 0 when the agreement of the two classifiers Di and Dk equals the
one expected by chance and it equals 1 when Di and Dj agree on every sample.

5.2.3.4 The double-fault measure

The double-fault measure is defined as the percentage of cases that have been misclassified
by both classifiers [53, 97] and it was used for selecting diverse neural network classifiers
in [53].

DFi,k =
N00

N00 +N01 +N10 +N11
=
N00

N
(5.21)
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5.2.3.5 The disagreement measure

This measure is defined as the percentage "of test instances for which the base and comple-
mentary classifiers make different predictions but for which one of them is correct" [159].
The same measure, but in the form of agreement measure was used in [65] for measuring
the tree agreement. Using notation from [97], the disagreement measure is defined in a
following way [65, 97, 159]:

Disi,k =
N01 +N10

N00 +N01 +N10 +N11
=
N01 +N10

N
(5.22)



Chapter 6

Ensembles using prior knowledge for
omics task

During the last two decades, microarray technology has become an important part of mod-
ern genomics and the technology has stimulated new research line in bioinformatics and
in machine learning. DNA microarrays allows parallel analysis of thousands of genes and
their research, moreover they can be useful for disease diagnosis, especially in connection
with bioinformatics and machine learning, for the diagnosis of heterogenous multifactorial
diseases. One possible task is to distinguish patients with certain disease from healthy
patients using their gene expression profile. Microarray technology can potentially allow
to classify many diseases by simply obtaining one sample, however, to be able to do this,
we need reliable classifiers with a high degree of accuracy and a low computational com-
plexity [119].

However, building such classifier is a very difficult task for many microarray datasets
because the sample size n is typically much smaller than the number of measured features
p [9], n � p, also called the curse of dimensionality [81], which often leads to overfit-
ting [10]. This problem can be addressed using several possible approaches. The most
straightforward one is to use a robust classifier with good generalization such as support
vector machines (SVMs) or other SVM based methods, which are capable of dealing with
large dimensionality [10, 11, 21, 73, 123, 163, 170]. Several types of ensembles also im-
prove generalization — such as bagging [155]. Ensembles might be well used for prediction
functional proteins [172, 189], more information about classifiers for functional genomic is
available in survey in [172]. Even though the SVM is not typical classifier for ensembles, it
can be efficiently used in ensembles as well, e.g., bagged ensembles of SVM for gene expres-
sion data analysis [177]. Another common approach is regularization, which restrains the
space of all hypotheses to improve generalization [9, 64]. One of the common regularizing
methods is feature selection that tries to select the most discriminating features and then
use these features for building a classifier in feature space with lower dimension [41, 42,
100, 107, 114, 119, 123, 139, 168, 197, 198]. Another regularizing approach is to use prior
knowledge [4, 9, 10, 104, 148, 149, 167, 184], — e.g., biological network constrained regular-
ization of linear models [104], inductive logic programming using gene ontology [156, 174],

27
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statistical learning [75, 131], learning based on Markov random field [105, 203, 204]. Also,
several works attempt to predict protein-protein interaction and analyse PPI networks us-
ing random walks [29, 36], other use decision trees for prediction genetic interaction by
integrating genomic and proteomic information [187].

Furthermore, these approaches to the curse of dimensionality are often combined to-
gether. One possible combination is using prior knowledge together with feature selection
— for example using prior knowledge for feature selection and then building a single SVM
classifier [55], feature selection with Markov random field and MCMC algorithm [165]
— thorough review of incorporating prior knowledge into feature selection in omics do-
main is available in [142]. Also it is possible to use SVM-based methods for feature se-
lection, for example P-SVM feature selection [123], Least-Square SVM (LSSVM) with
swarm optimization [168], Recursive Feature Elimination SVM (RFE-SVM) and Greedy
Correlation-Icorporated SVM (GCI-SVM) feature selection [162] or SVM with Iterative
Reduced Forward Selection (SVM-IRFS) [205]. Several researchers modified SVMs to incor-
porate prior knowledge. First among them (to the extent of our knowledge), Zhu introduced
Network-based SVM in 2009 and compared it with other SVM methods(e.g., STD-SVM,
L1-SVM) in [207], then various network based SVMs were introduced — e.g., Network ker-
nel SVM [190] or Network-Induced Classification Kernel SVM (NICK-SVM) [101], which
utilises the protein network topology and relations between the different features.

However, another approach is crucial for the purpose of this work — utilising prior
knowledge in ensembles of weak classifiers. Zhou et al. used prior knowledge in the form
of modules defined as miRNAs which regulate the same context, then detected modules
with distinguishing abilities and each of them was used for building a weak classifier sepa-
rately and then created an ensemble using these weak classifiers and voting combiner [206].
Another ensemble — Module-Guided Random Forest — was introduced in [35] and it iter-
atively builds random forests using weighted sampling of features taken from modules of
correlated genes [9, 35].

Finally, there is the network constrained forest(NCF), on which is this work based.
This algorithm was first proposed in [10] and was produced as a part of wider research
concerning the use of machine learning in omics field. This research includes many topics
— e.g., integration of mRNA and miRNA profiles [8, 87],cross-genom analysis[66], gene
expression classification [68–70, 94] — and its many results are integrated in online tools
XGENE and miXGENE which is further described in [67] and [66] respectively.

The NCF forest is further analysed in [9] and it allows to integrate prior knowledge
from three different sources — a network of gene interactions,a network of miRNA and gene
interaction and also known causal genes for certain diseases. Because of the importance of
NCF to this work, the algorithm will be described further in following section.

6.1 Network-Constrained Forest

This algorithm combines two approaches for solving the n � p problem common in the
omics field, it utilises prior knowledge for creation of an ensemble of decision trees. While
it achieves similar performance as SVM classifiers, it has a great advantage unlike the

http://xgene.org
http://mixgene.felk.cvut.cz
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black-box SVM — forest of decision tree also provides insight into the problem because it
is possible to use them for feature importance ranking based on prior knowledge, more-
over, the decision trees in the forest might be utilised for interaction extraction with prior
knowledge, more details are available in Section 3.8.4 Random forest and in the context
of NCF in [9]. Unlike Random Forest, the NCF biases "the feature sampling process to-
wards the genes and loci in general, which have been previously reported as candidates for
causing the phenomenon being studied (. . . ) and consequently the omics features which
directly or indirectly interact with those candidate genes" [9]. This sampling process is
driven by random walk on the biological interaction network integrating both mRNA and
miRNA prior knowledge and the process starts from the candidates causal genes called
seeds. When candidates causal genes are unknown, seeds are randomly sampled from the
entire set and the probability of a gene being sampled as a seed is proportional to its out
degree in the network. Further implementation details and pseudo-code are available in [9,
10].

The crucial assumption behind the NCF is that gene that are close in the biological
feature network are also correlated in their expression, therefore it is suitable to create
weak classifiers grouping these features because it leads to decorrelating the individual
weak classifiers and therefore to the creation of better diversity in the ensemble. The
diversity in ensemble is very important for its performance, further details are available
in Chapter 5 Diversity and in [97]. The biological background behind this method is
discussed in [9] and the conclusion presented is that the weak decision "trees may vaguely
correspond to the individual disease factors and their network-local manifestations" [9].
The individual trees are constructed using the features in the network neighbourhood of
a particular seed gene that was chosen for the tree. The neighbourhood is represented by
distribution function using which the feature set is sampled. This distribution is defined
as a random walk of length k from the seed gene — it is more dense when closer to the
seed gene and also it is not possible to reach genes that are further in the network than
k. Therefore, the NCF is parametrized by the walk length k whose optimal value may be
different for different tasks as it strongly influences the feature sampling [9]. A heuristic
based on incidence of underfitted trees for setting the parameter k was proposed in [10].
The influence of k on the accuracy and diversity of weak learners and the overall accuracy
of the ensemble is further analyzed in Chapter 7 Experiments. The NCF proposed in [10]
was implemented in Python 2 as modification of Random Forest from machine-learning
library Scikit-learn [138].

6.2 Proposed method NCRS

In this section, we propose a generalization of the NCF algorithm called network constrained
random subspaces(NCRS) or network constrained attribute bagging (NCAB) which applies
the idea of biased sampling of the feature set to the general ensemble random subspace
method (viz Section 3.8.3 Random subspace). The idea of NCF is not strictly related to
ensembles of decision trees and it is easily extensible to ensembles of other weak learn-
ers. Even though decision trees as weak classifiers of forest have many advantages as, for
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example, direct interpretability and possible use of such forest for feature selection, other
classifiers such as logistic regression or naïve Bayes might be used as well. Implementation
details are described in Chapter 7 Experiments as well as the experimental results. More-
over, the integration of NCF to general ensemble method allows simple modification of the
algorithm — e.g., modification of the feature sampling process without the need to modify
other functions as well. The relationship between RF, RS, NCF, and NCRS is depicted
in Figure 6.1 — the RF and the NCF both sample the feature space in each node of each
tree, however, the RS and the NCRS both sample the feature space only for each weak
learner. The sampling in the NCF and the NCRS is network-constrained, i.e., its sampling
procedure generates samples using random walks over the interaction network, while the
sampling procedure in the RF and the RS is random.

RF NCF

RS NCRS

network

network

Figure 6.1: The relationship between NCF and NCRS is the same as the relationship
between RF and RS — the RF samples features in each node (tree specific) while the RS
samples features only in each weak learner.



Chapter 7

Experiments

7.1 Myelodysplastic syndrome

Data related to myelodysplastic syndrome (MDS) were used for most of the experiments.
It is the same data that was used in the original experiment with NCF [9, 10]. A short
description is provided in following section, the full description is available in [9].

7.1.1 Used data

As in [9, 10], MDS datasets were used for experiments with the generalized NCF called
NCSR. The data were provided by a collaborative laboratory at the Institute of Hematology
and Blood Transfusion in Prague and "informed consent was obtained from all the subjects
whose samples were used for expression profiling, and the study was approved by Scientific
Board and Ethics Committee of the Institue of Hematology and Blood Transfusion in
accordance with the ethical standards of the Declaration of Helsinky" [9]. The data were
obtained for analysis of lenalidomide treatment of patients with myelodysplastic syndrome.

The data consist of two datasets — mRNA with 16,666 attributes measuring the gene
expression level and miRNA with 1,146 attributes measuring the expression level of partic-
ular miRNAs [9]. The samples were obtained from bone marrow (BM) CD34+ progenitor
cells and from peripheral blood (PB) CD14+ monocytes and were obtained either before
the treatment (BT) or during the treatment (DT). Moreover, the data can be further cate-
gorized by the partial deletion of the chromosome 5 (5q or non-5q). Using these categories,
the data consisting of 75 samples were divided into 10 related datasets. More details about
the biological background, preprocessing and profiling tools are available in [9]. The num-
ber of samples in datasets is shown in Table 7.1, and it is clear that with 17812 attributes,
we are indeed dealing with the n� p problem.

7.1.2 Prior knowledge

Again, for the coherence of experiments with [9, 10], same prior knowledge in form of
gene networks was used. Gene networks and candidates causal genes were obtained from
author of [9, 10], however, the are publicly available — in vitro validated miRNA-mRNA
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Dataset code number of samples
BMBT DT5q 16
BMH ABT5q 21

BMH ABTnon-5q 16
BMH ADT5q 15

BMnon-5q 5qBT 17
PBBT DT5q 22
PBH ABT5q 19

PBH ABTnon-5q 14
PBH ADT5q 23

PBnon-5q 5qBT 13

Table 7.1: Number of samples in individual MDS datasets

interactions are from TarBase 6.0 [179], in silico predicted interactions are from miRWalk
database [45], experimentally validated protein-protein interactions are from Human Pro-
tein Reference Database [143], predicted protein-protein interactions are from [23] and
MDS causal genes are from [200], according to [9].

7.1.3 Implementation

The NCSR ensemble classifier was implemented in Python 3 as a modification of both
the original NCF [9, 10] and general Bagging classifier from machine learning library
Scikit-learn [138] version 0.16.1 (older versions do not contain the Bagging classifier). The
implementation consist mostly of small changes of NCF because of porting from Python 2
to Python 3 and then using the NCF code in the modified Bagging classifier. Other used
libraries included Pandas [120], Scipy [82], Matplotlib [72], Cython [20], IPython [140] and
NumPy [180].

7.1.4 Purpose of experiments

Experiments with the MDS datasets had several objectives. First of all, the goal was to
replicate the results from [9] with the generalized ensemble NCRS. The second objective
was to analyze the impact of different values of the parameter k defining the length of
a random walk on the accuracy of both the whole ensemble and also of the individual
weak classifiers. Moreover, [9, 10] implies that the diversity of weak classifiers should be
strongly influenced by the parameter k and in most cases, a longer walk should lead to
smaller diversity among the weak classifiers in the ensemble as they become less specialized.
The parameter k was analysed for similar values as used in [9, 10] but also for more extreme
values — e.g., for a random walk of length 100.

Another objective is to experimentally validate the convergence of NCRS (NCF) as
k → ∞. The NCF does not converge to Random forest, rather it converges to the sta-
tionary distribution of random walk [9] — i.e., to π∞(v) = deg(v)

|I| , where I is the the set
of edges in the biological network, viz [9] for details. However, the NCF converges to
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the stationary distribution only if there are no miRNA interactions present because such
interactions are handled in a special way — when encountering the miRNA node in the
walk, the walk always ends there, details are again available in [9]. The convergence was
not experimentally validated in [9].

And last objective of experiments with MDS data was to determine whether the use of
different weak classifiers could useful as well. For this reason, not only Decision trees were
used as in [9, 10] but also ensembles with Logistic Regression and Naïve Bayes as weak
classifiers. Each of these objectives are not present in [9, 10] and they represent unique
experiments.

7.1.5 Experimental Protocol

As mentioned in Section 7.1.3 Implementation, Python 3 with Scikit-learn [138] machine
learning library was used for experiments. 10 times repeated Stratified m-fold cross-
validation was used for MDS experiments, where m := min{10, c}, where c is the number
of samples in the smallest class. Exact number of folds for each task is in Table 7.2.

Dataset code number of folds
BMBT DT5q 5
BMH ABT5q 10

BMH ABTnon-5q 6
BMH ADT5q 5

BMnon-5q 5qBT 6
PBBT DT5q 9
PBH ABT5q 9

PBH ABTnon-5q 4
PBH ADT5q 10

PBnon-5q 5qBT 4

Table 7.2: Number of fold used in cross-validation

All ensembles were built from 1000 weak classifiers using the Random Subspace method,
each weak classifier had access to 100 features. The number of weak classifiers was strongly
limited by computational costs of both learning period and calculating pairwise diversity
measures.

Matthew’s correlation coefficient (MCC) was chosen as a measure of quality of classifi-
cation because it provides a balanced quality measure with respect to classes with different
sizes. It returns values from the interval [−1, 1], where +1 represents a perfect classification,
0 a random classification and −1 indicates total disagreement between predicted classes
and annotated classes. The MCC was calculated for predictions for the whole dataset, not
for individual folds, and then averaged over repetitions — in contrast to [9], where median
was used instead of averaging. The random walk length k was set to k ∈ {1, 2 . . . , 14, 15}
for most experiments, different sets were used only for several experiments, in which it is
explicitly noted which set of k was used.
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7.1.6 Results

The results can be divided into several parts — comparison of the NCRS with the unbiased
Random Subspace method, the analysis of diversity, and the analysis of convergence of
NCRS.

7.1.6.1 NCRS and unbiased Random Subspace method

In the original study [10], the NCF was compared to the Random Subspace forest of
Decision trees, however, our generalization NCRS allows the use of different weak classifiers
in the ensemble. For this part of experiment, we have use NCRS with Decision trees
(CART), Logistic Regression and Naïve Bayes Classifiers. In most tasks, the NCRS was
better in terms of MCC for some values of k than the unbiased RS with the same type of
weak classifiers. For each datasets, there are three possible results — NCRS was better
for some vales of the parameter k (win, NCRS had exactly the same performance as RS
for some values of k and worse for the rest (tie) and NCRS was worse than RS for all k
(loss). The tie happens only when both classifier are perfect and have MCC equal +1.
Table 7.3 displays results for different types of weak classifiers in the NCRS compared

Classifier Type wins ties losses
Decision Tree 8 1 1
Logistic Regression 5 4 1
Naïve Bayes 7 1 2

Table 7.3: Performance of three different types of weak classifiers in terms of wins, ties,
and losses

with the unbiased RS. The goal of this comparison is not to choose the best type of weak
classifier for NCRS for this task but to determine whether the biased feature sampling
process in the NCRS provides better accuracy than unbiased feature sampling in RS. The
NCRS had only a minority of losses, while most of the times it was better than the RS
method or both NCRS and RS made perfect classification (tie). However, this comparison
is optimistically biased because NCRS was considered to be the winner if it was better
for any value of k — in real case scenario, the parameter k could be either determined
using internal cross-validation or by heuristic proposed in [10]. On the other hand, the
NCRS was better in terms of MCC for any k ∈ {1, 2, . . . , 14, 15} for many tasks — the
k independent results are displayed in Table 7.4 — therefore, the optimistic bias is not
present in those experiments as this table only contains results that hold for any value of
k ∈ {1, 2, . . . , 14, 15}.

However, the results displayed in Table 7.3 and Table 7.4 are just to compare whether
the NCRS with the particular type of weak classifiers is better than the random subspace
(RS) method with the same type of weak classifiers, they do not compare the suitability
of used weak classifiers for the task as they do not show the absolute accuracy over the
datasets. Better picture is provided by Figure A.5 from Appendix A , where there are
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Classifier Type wins ties losses
Decision Tree 5 1 1
Logistic Regression 3 1 1
Naïve Bayes 6 1 2

Table 7.4: Performance of three different types of weak classifiers in terms of wins, ties,
and losses, which were consistent for any k ∈ {1, 2, . . . , 14, 15}

compared NCRSs with these three types of weak classifiers for k ∈ {1, 2, . . . , 14, 15} and
also with the unbiased RS method with the same type of weak classifiers. The suitability
of the particular type of weak classifiers for the NCRS differs from dataset to dataset,
different types were dominating for different datasets, there is no clear winner, however,
the NCRS with Logistic Regression classifier performs very well as is depicted in Table 7.5.

Task NCRS DT NCRS LR NCRS NB RS DT RS LR RS NB
BMBT DT5q 0.76 0.36 0.38 0.34 0.46 0.10
BMH ABT5q 1.00 1.00 1.00 1.00 1.00 1.00
BMH ABTnon-5q 1.00 1.00 1.00 0.87 0.90 0.87
BMH ADT5q 0.72 0.79 0.81 0.75 0.66 0.71
BMnon-5q 5qBT 1.00 1.00 0.75 0.66 0.79 0.62
PBBT DT5q 0.57 0.79 0.33 0.57 0.62 0.14
PBH ABT5q 0.99 1.00 0.82 1.00 1.00 0.84
PBH ABTnon-5q 0.83 1.00 0.84 0.81 1.00 0.65
PBH ADT5q 1.00 0.93 0.56 0.92 1.00 0.66
PBnon-5q 5qBT 0.96 1.00 0.82 0.86 1.00 0.64
Average MCC 0.88 0.89 0.73 0.79 0.84 0.62
Average rank 2.85 2.20 3.85 4.00 2.70 5.40

Table 7.5: Comparison of performance of different types of weak classifiers for both
NCRS and RS ensembles. The MCC values are taken as the maximum MCC for
k ∈ {1, 2, . . . , 14, 15} for given classifier

According to Table 7.5, the best classifier for these tasks is NCRS with Logistic Regres-
sion weak classifiers. However, the original NCRS with Decision Trees is also very close to
the NCRS LR — both in the rank and the average MCC. These two classifiers performs
similarly for most tasks but there is a significant difference in their performance for several
tasks. From the unbiased RS classifiers, the RS with Logistic Regression weak classifiers
performs also very well, thus it seems that this type of task is very suitable for ensembles
with Logistic Regression classifiers. On the other hand, the ensembles with Naïve Bayes
classifiers did not perform as well as the others, the NCRS NB was the best only in one
task and the difference between the NCRS LR was only 2 percentage points in that task.
However, the NCRS NB still outperformed both RS DT and RS NB in terms of ranks.
Also, the RS NB was consistently the worst from tested classifiers, it seems that Naïve
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Bayes ensembles are not as suitable as other ensembles for this type of tasks.
These experiments were biased because the best value of k based on the performance

on the test set was chosen, better approach would be use internal cross-validation for
determining the optimal value of k and then use this value on the test set, however, the
dasasets are very small — from 13 to 23 samples — and another cross-validation would
reduce the training or testing set even further. Even though it would still be possible, for
example using Leave-one-out cross-validation, the experiments would be computationally
too costly, moreover, the k is to be set using proposed heuristic in [9, 10], therefore the
cross-validation would not simulate the real use of the method. The heuristic also cannot
be used for comparison as it is tree specific — modification of the heuristic for other learners
is part of possible future work. Furthermore, the purpose of this experiment was to show
that other weak classifiers are also suitable alternative to Decision tree.

The conclusion arising from this part of experiments is clear — the NCRS method is
suitable also for other types of weak classifiers than just the Decision tree. The NCRS
method outperformed the RS method in most tasks for any of the three tested types of
weak classifiers. In terms of absolute performance, the NCRS with Logistic Regression
weak classifiers outperformed other ensemble classifiers both in ranks and average MCCs.

7.1.6.2 Analysis of diversity

The analysis of the relationships between the parameter of the walk length k and the diver-
sity among classifiers in the ensemble is difficult because there are two main characteristics
that are dependent on the parameter k — diversity and weak classifiers accuracy — and
they cannot be analysed individually. For these reason, four diversity measures were chosen
— two non-pairwise measures entropy and Kohavi-Wolpert measure(KW) and two pairwise
measures average Q statistics(Qave) and double-fault measure(DF), all of them are further
described in Section 5.2.

However, the diversity is very desirable for obtaining more accurate ensembles, yet if
the diversity is gained by having less accurate weak classifiers, it is not better to have more
diverse ensemble. For example, lets have an ensemble with 100 weak classifiers whose errors
are not correlated, if all the weak classifiers had accuracy 0.9, the ensemble would be less
diverse then if the weak classifiers had accuracy 0.6, even though the ensemble with more
accurate weak classifiers would be also more accurate. Because of this reason, the double-
fault pairwise measure is very important because it represents the percentage of samples
that have been misclassified by both of the weak classifiers, therefore, the percentage tends
to be smaller with more accurate weak classifiers and it is equal 0 in the extreme case of
an ensemble with perfect weak classifiers. However, the double-fault measure has also a
disadvantage — in the extreme case, it would not recognize that all weak classifiers are
perfect and that therefore we do not need the computationally costly ensemble. Thus, we
employ other three diversity measures as well and in same cases, also the average MCC of
weak classifiers (AWMCC).

As proposed in [9, 10], the diversity indeed seems to decrease with the length of random
walk k as the weak classifiers become less and less specialized. It is nicely shown in
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figures A.1j, A.3j and A.4j, where there are plotted four different diversity measures. The
measures can represent higher diversity with higher values (entropy measure) or with lower
values (Kohavi-Wolpert measure, Average Q statistics, double-fault measure), thus for some
measures the axis are reversed so all diversity measures show increasing diversity when they
are increasing. On the other hand, the average MCC of weak classifiers is increasing with
the length k in most cases. Therefore, the overall MCC of the ensemble is based on the
proportion between the diversity growth and the weak classifiers accuracy growth. In many
cases, the optimal value of k in terms of MCC performance lies in the extreme cases —
either for low values of k or high values of k — i.e., the MCC line is either decreasing or
increasing with growing k ∈ {1, 2, . . . , 14, 15}. However, for several task, even the weak
classifier accuracy is decreasing with increasing k, which, together with decreasing diversity,
leads usually to a worse ensemble than would be the unbiased RS ensemble.

Moreover, for many task, the MCC values rocket between k = 1 and k = 2 — this hap-
pens when the seeds from which the random walk begins, have less immediate neighbours
in the network than is the desirable number of features. This leads to ensemble whose weak
classifiers may be fitted using less features than the ensemble generated for higher values
of k — e.g., when a seed has edges only to 50 neighbouring nodes, the random walk for
k = 1 can sample only 50 features, moreover, these features will all be the same 50 features
for all walks from this particular seed. When the length is k = 2, the biological network is
usually dense enough around the seed and all 100 features may be sampled. Therefore the
weak classifier get smaller feature subspace for k = 1 than for k = 2 and higher. For k > 1,
the feature subspace has usually the same dimension for all weak classifiers, possibly only
containing different features. This effect is the most present in Figure 7.1 (Taken from
A.1i) but it is visible, for example, in Figure A.3b, A.3c, A.3i or A.3j. On the other
hand, this effect might be sometimes positive – as in Figure A.3d. However, this effect
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Figure 7.1: The effect caused by smaller number of obtained features for k = 1. The graph
represents task PBH_ADT5q classified using NCRS with Decision trees weak classifiers.

is not the only one influencing the behavior around k = 2 — if it was the case, other
characteristics such as weak classifiers’ accuracy or diversity measure would change mostly
between k = 1 and k = 2. In Figure A.3c other values steadily change for k > 2, which
means that the processes inside the ensemble are more complicated and the only reason
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Figure 7.2: The tradeoff between the weak classifiers’ diversity and the accuracy. The
graph represents task BMH_ABT5q classified using NCRS with Logistic Regression weak
classifiers.

they are not visible in MCC line is that the ensemble made perfect classification. On the
other hand, this effect might be also visible in other measures while it is not shown in the
MCC line — e.g., Figure A.3f, where the entropy and KW measures significantly increase
between k = 1 and k = 2 and only then they begin their steady decrease as the weak
classifiers becomes less and less diverse while there is no significant change in the MCC
line between k = 1 and k = 2.

The overall MCC of the ensemble is therefore the result of proportion of its weak clas-
sifiers accuracy and diversity. This is nicely shown in Figure 7.2 where the ensemble starts
with diverse weak classifiers with lower accuracy for k = 1, then the diversity is decreasing,
however, the weak classifiers’ accuracy is steeply increasing, therefore the overall MCC of
the ensemble reaches 1.0 and holds there while the diversity is still decreasing and the weak
classifiers’ accuracy slowly increasing. However, even though the weak classifiers accuracy
is increasing, they tend more and more to have correlated errors — these errors have bigger
influence than the increasing accuracy and the double fault measure starts to decrease. At
some point the accuracy of weak classifiers begin to slowly decrease but since the ensemble
diversity is very low at this point, the overall ensemble MCC plummets — the decrease in
MCC is not proportional to the decrease in the AWMCC — roughly 1.5 % for the AWMCC
while about 9 % for the MCC.

Another example is in Figure 7.3. In the 7.3a, the overall diversity is decreasing while
the AWMCC is increasing steeply, however, because of the loss of diversity, the weak clas-
sifiers tend to misclassify the same samples — the double fault measure is increasing only
slowly in contrast with the significant increase in the average accuracy of weak classifiers,
thus the overall ensemble MCC, unsurprisingly, is only a bit higher than the average weak
classifiers’ accuracy — 36 % MCC compared to 31 % AWMCC for k = 15. However, for
lower values of k, it seems that the ensemble contains few accurate weak classifiers pulling
the AWMCC up while the majority of weak classifiers have lower accuracy and also lower
diversity, which results that the ensemble MCC can be actually lower than the AWMCC
— e.g., 17 % MCC compared to 24 % AWMCC for k = 5. A possible explanation for this
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Figure 7.3: These are examples of two possible behavior of DF and AWMCCC.

phenomenon might be that specifically for this particular task, only several seeds are actu-
ally important while others provide too much noise, thus there are accurate weak classifiers
started from several seeds but the rest is much less accurate, however, this hypothesis needs
a further analysis. The situation is different in 7.3b, where the double fault measure rises
more steeply than the average accuracy of weak classifiers, which causes the MCC rocket
because the weak classifiers get accurate enough while having comparably high diversity.
Therefore the ensemble works much better than a single weak classifier — it reaches 79 %
MCC while having only 42 % AWMCC in the peak for k = 5. Even though this peak
might be just caused by a chance, the situation is still very good for k = 6: 74 %MCC
with 44 % AWMCC. A similar situation is in Figure A.3b, where the MCC is 100 % while
the AWMCC is just 78 %, or in Figure A.3j with the overall MCC 100 % and the AWMCC
81 %.

As a whole, the NCRS algorithm manages the diversity nicely, in most cases, it starts
with specialized and diverse weak classifiers and with increasing value of the parameter
k, the diversity usually decreases and the average accuracy of weak classifiers increases.
Tuning the random walk length k may allow to find the optimal trade-off between the
diversity and the AWMCC resulting in high MCC of the whole ensemble. Only in several
cases, the NCRS ends up with unexpected distribution of weak classifiers with higher
AWMCC than the overall MCC, this phenomenon requires further analysis. However,
it occurs only for particular combination of the dataset and the type of weak classifier,
moreover it is often occurs only for particular values of k.

7.1.6.3 Analysis of the convergence of NCRS

As was described in Section 7.1.4, the NCRS converges to a stationary distribution of
a random walk for k → ∞ where no miRNA nodes are present in the network. The
goal of this experiment was to empirically validate the convergence, therefore this exper-
iments utilises only candidate causal genes and mRNA interactions as prior knowledge.
Parameter k was chosen from {2, 4, 6, 8, 10, 15, 20, 30, 40, 60, 80, 100, 150, 200}. The NCRS
algorithm was also modified in such a way that it samples the features with a probability
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π∞(v) = deg(v)
|I| — i.e., the probability of feature being sampled is the proportional prob-

ability of its degree in the biological network. The results of this experiment are depicted
in Figure A.6 , where the dotted lines represent values of measures for the k independent
degree proportional sampling NCRS, while the full lines represent the k dependent random
walk sampling NCRS. In contrast to other plots, the scale of axis is very important in anal-
ysis of the convergence — e.g., seemingly unconverging lines might be just caused by small
fluctuations caused by the stochastic nature of the classifier as, for example, in Figure 7.4
(Taken from Figure A.6c), where the values seemingly do not converge for increasing values
of k, however, the scales of axes are very small, therefore the observed chaotic behavior is
just small fluctuations around the desirable values.

On the other hand, the convergence is ideally depicted in Figure 7.5 (Taken from
Figure A.6g), where all measures nicely converge to values obtained by the modified NCRS
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for higher values of k. The convergence is also shown in other task, albeit not as nicely,
however, it seems that the values are converging to different values in several tasks or that
the convergence is biased a bit for some reason, e.g., Figure A.6h. However even though
it is possible that there is some bias, there are also other other two possible explanation
for such phenomenon — first it might be just a fluctuation of the stochastic based original
NCRS but secondly, more importantly, it might be caused by the stochastic nature of
the modified NCRS as well. When there are changes due to the stochastic nature of the
original NCRS, random fluctuation are expected as we fit the classifiers for different values
of k and these fluctuations show in the smoothness of the measured points, however when
dealing with stochastic nature of the modified NCRS, only one value is obtained and in
spite of 10 repeated n-fold cross-validation, the obtained averaged values might still be
significantly different from the hidden true expected values of the modified NCRS.

This experiment strongly suggests that the proposed convergence of NCRS (NCF)
holds, even though there are still several tasks which would need further analysis as the
values seem to converge to a slightly biased point — e.g., all measures converge properly
in Figure A.6e except for the MCC line which seems to converge to different value but, as
discussed above, this might be caused by the stochastic nature of the modified NCRS, or
by low values of k that were used for the empirical verification.

7.2 Benchmark datasets

This experiments contain multiple dataset, the same as in [94]. These datasets are con-
sidered to be benchmark datasets in the field of classification using gene expression [94].
However, these datasets are different from the MDS datasets — they do not contain miRNA
data and also the prior knowledge does not utilise candidate causal genes. The thorough
description of used datasets is in [94], the following section contains only a short, simplified
description.

7.2.1 Used data

The benchmark data are from a different biological domain, they do not include a miRNA
data. The were obtained from two different platforms — GPL80 and GPL96. The number
of features used for the classification was reduced from the original number because several
genes were not present in the biological network and their inclusion would give significant
advantage to classifiers not utilizing prior knowledge as these genes could be important for
classification, therefore only the genes present in the interaction network were used for the
classification. The number of features per platform is depicted in Table 7.6.

Table 7.6: Used platforms and the number of used features

Platform Full number Used number
GPL80 7129 6065
GPL96 22283 19931
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Table 7.7: Number of samples in individual datasets

Dataset Platform Number of samples
ALL/AML GPL80 72

Gastric cancer GPL80 30
Hypertension GPL80 20

Smoking GPL80 44
AML GPL96 64

Breast cancer GPL96 29
Glioma GPL96 85
MGCT GPL96 27

Prostate cancer GPL96 20
Sarcoma/Hypoxia GPL96 54

Furthermore, used datasets have very different sizes — from 20 samples to 85 samples.
Therefore, validations of different datasets have different accuracy — e.g., one outlier in a
dataset with 20 samples do much more harm than an outlier in a dataset with 80 samples.
The number of samples in individual datasets is available in Table 7.7.

7.2.2 Prior knowledge

As in MDS experiments, experimentally validated protein-protein interactions are from Hu-
man Protein Reference Database [143], predicted protein-protein interactions are from [23].
However, no miRNA prior knowledge was used because these datasets do not contain
miRNA expression levels. Moreover, no candidate causal genes were used as seeds for the
NCRS algorithm from two main reasons — the NCF outperforms the RS DT even with-
out the miRNAs [9] and for several datasets, e.g., smoking, no candidate causal genes are
available.

7.2.3 Implementation

This experiment uses the same implementation as the MDS experiment, however, only
three diversity measures were computed due to computation costs of pairwise measures —
the entropy, the Kohavi-Wolpert measure, and the average Q statistics. Furthermore, three
different parametrization of NCRS were used: NCRS 1000:100 with 1000 weak classifiers
having access to 100 features, NCRS 100:100 with 100 weak classifiers accessing to 100
features each and NCRS 500:50 with 500 weak classifiers and 50 features per classifier.
These k dependent classifiers were compared to RS 1000:100. All classifiers were using
decision trees as weak classifiers in order to be equivalent with original NCF from [9, 10].

7.2.4 Purpose of experiments

This experiment was set up to evaluate whether the NCRS (NCF) is also suitable to this
more general domain. However, this datasets do not have as extensive prior knowledge
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as the MDS datasets therefore the evaluation cannot be complete, however, datasets with
both mRNA, miRNA and candidate causal genes are much less frequent than just datasetes
with mRNA gene expression profiles.

7.2.5 Experimental Protocol

The protocol was the same as with MDS datasets — 10 times repeated Stratified m-fold
cross-validation was used, where m := min{10, c}, where c is the number of samples in the
smallest class.

7.2.6 Results

These datasets were not as suitable for NCRS algorithm as MDS datasets, the performance
of NCRS was nearly k independent, therefore the NCRS algorithm mostly performed sim-
ilarly as the RS method. There were only small changes in the MCC or diversity measures
for any k ∈ {1, 2, . . . , 14, 15}, only with exception for k = 1. For this value of k, the feature
sampling process of NCRS might end up with less features than demanded due to limited
number of neighbouring nodes.

However, the NCRS slightly, but consistently, outperformed the RS DT for several
datasets — breast cancer, glioma and prostate cancer, moreover, it significantly outper-
formed RS on the hypertension datasets, while being worse only for one dataset — smoking
— but not very significantly. Furthermore, to the extent of our knowledge, there are no
underlying biological causes behind smoking, which makes the NCRS method less suitable
for such datasets.

The NCRS method is not therefore as useful for these datasets as for the MDS datasets,
however, it slightly outperforms the RS method in most cases. Moreover, the prior knowl-
edge was not complete for these datasets —no miRNA data and candidate causal genes
were used in the experiment.
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Chapter 8

Conclusion

The analysis of omics domain is very important because it may allow researchers and
doctors to further understand and predict the onset and progression even of heterogenous
multifactorial diseases such as myelodysplastic syndrome (MDS). However, this task is very
difficult and has many pitfalls. One of those pitfall is overfitting, which can be addressed
in several different ways. One possible method for achieving better generalization is the
use of ensemble of classifiers, however, there are many ways to combine classifier to an
ensemble, therefore a brief review and description of the basic ensemble taxonomy was
provided in Chapter 3. This taxonomy described many different ways of ensemble creation
with many references to complicate and state-of-art methods proposed in the literature and
it gives readers an introduction into the ensemble problematic. In following Chapter 4,
a short description of used weak classifiers was provided. Chapter 5 provided theoretical
foundations and an insight into the problematic of diversity in ensembles, showed why the
diversity is crucial for ensembles and that it is the diversity that allows ensembles synergy,
to be more accurate than are its individual weak classifiers. Furthermore, this chapter
defined several diversity measures proposed in the literature and referenced a few more
different measures.

In Chapter 6, the problem of overfitting caused by the n � p problem in machine
learning from genomics data was described and review of approaches to this problem in
literature was provided. Afterwards, the chapter focused on one particular way to deal
with the problem — combing ensembles with the use of prior knowledge, which represents
approach that is not well researched in the literature, there were only several attempts
before the NCF was proposed in [9, 10] as far as we know. The NCF was also shortly
described in this chapter and on top of that we have proposed a simple generalization of
NCF called network-constrained random subspace method (NCRS), which utilises the idea
from NCF but extends it to a general ensemble approach suitable even for other weak
classifiers than just decision trees as in original NCF. Finally, in Chapter 7, the NCRS
was empirically validated using same datasets as in the original study [9, 10]. It was
conclusively shown that the generalized method NCRS is suitable for different types of
weak classifiers — the experiment tested Logistic Regression and Naïve Bayes classifiers
as well as Decision trees that were used in [9, 10]. Furthermore, the NCRS with Logistic
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Regression weak classifiers outperforms the originally proposed NCF (NCRS DT) on most
MDS datasets. Importantly, both Naïve Bayes and Logistic regression classifiers provide
insight into to problem as they allow to easily analyze feature importance — this is very
important in this field and it is the reason why are such methods preferred over black-box
models such as SVM [10]. Furthermore, the role of diversity in NCRS (NCF) was observed
using theory and diversity measures from Chapter 5. As the feature sampling process in
NCRS is parametrized by the length of random walk k, we have analysed its influence on
the diversity and accuracy for the MDS datasets. Moreover, we have empirically shown that
the diversity usually decreases with increasing the length k as was hinted, but not tested,
in [9, 10]. The last experiments for the MDS datasets were validating the convergence
of NCF (NCRS) for k → ∞ proposed in [9]. After that, we have tested the behavior of
NCRS on benchmark datasets from [94], which, in contrast with MDS datasets, do not
have miRNA data and candidate causal genes. The NCRS performed similarly as RS on
most of these datasets but it slightly outperformed the RS on several datasets and was
outperformed by the RS method on only one datasets.



Chapter 9

Future work

There are many things that will be done in the future work. First, as the gene expression
data together with miRNA data will be cheaper and more common, the experiments will
be replicated using more data, therefore the results will be more statistically relevant
and moreover, it will be possible to validate obtained results using different datasets for
different tasks and on top of that it will be possible to analyse the influence of the size
of the training set on the performance of NCRS compared to the unbiased RS — it is
expected that with more data, the prior knowledge will be less and less important as it
will be possible to obtain the knowledge from the data, however, datasets in near future
are expected to have at most several hundreds sample, which, in comparison with 20,000
features, might still represent a too small training set and the prior knowledge might be
still very useful. Moreover, the future work will integrate other types of data and prior
knowledge into the NCRS method —- such as DNA methylation arrays — however, the
datasets with complete information (GE, miRNA, DNA methylation...) are still very rare
or non-existing. Moreover, the biological domain is not the only one where the prior
knowledge is available in the form of networks, therefore the future work will also modify
the NCRS method for other tasks, e.g., document topic prediction or click prediction, and
analyse its performance on such datasets. Also future work will contain a modified heuristic
for finding the optimal length of random walk k that would applicable for ensembles of
general weak classifiers, not just the NCF.

And, as was stated in [97], the effect of diversity on ensembles is not yet well researched,
therefore further analysis of the diversity in the NCRS will be needed.
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Appendix A

MDS experiment plots

All these plots depict MCC and several diversity measures, however, even though they
are depicted for discrete values of k, they are depicted by a line without markers because
the graphs would become even less readable that way. Moreover, all diversity measures
are drawn in a such way that if the line that represents them is decreasing, the diversity
is also decreasing, which results in reversed axes for several measures but it enhance the
readability of the plot. Also, axes are not in the same scale in order to show the relationship
in change between various diversity measures and the accuracy.

73



74 APPENDIX A. MDS EXPERIMENT PLOTS

A.1 NCSR with Decision Trees
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Figure A.1: Relationships between Matthew’s correlation coefficient and 4 diversity mea-
sures - entropy, average Q statistics, Kohawi-Wolpert, and Double Fault measure — for
NCRS with Decision trees. The dotted line represents values obtained from Random Sub-
space method with Decision trees. Computed for k ∈ {1, 2, . . . , 14, 15}.
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Figure A.2: Relationships between Matthew’s correlation coefficient and 4 diver-
sity measures - entropy, average Q statistics, Kohawi-Wolpert, and Double Fault
measure — for NCRS with Decision trees. The dotted line represents values ob-
tained from Random Subspace method with Decision trees. Computed for k ∈
{1, 2, . . . , 15, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100}.
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A.2 NCSR with Logistic Regression
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Figure A.3: Relationships between Matthew’s correlation coefficient and 4 diversity mea-
sures - entropy, average Q statistics, Kohawi-Wolpert, and Double Fault measure — for
NCRS with Logistic regression weak classifiers. The dotted line represents values obtained
from Random Subspace method with Logistic regression weak classifiers. Computed for
k ∈ {1, 2, . . . , 14, 15}.
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A.3 NCSR with Naïve Bayes
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Figure A.4: Relationships between Matthew’s correlation coefficient and 4 diversity mea-
sures - entropy, average Q statistics, Kohawi-Wolpert, and Double Fault measure —
for NCRS with Naïve Bayes weak classifiers. The dotted line represents values ob-
tained from Random Subspace method with Naïve Bayes weak classifiers. Computed for
k ∈ {1, 2, . . . , 14, 15}.
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A.4 Comparison of different types of weak classifiers
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Figure A.5: Comparison of MCC performance of NCRS with three different types of weak
classifiers. Values taken from Figure A.1,Figure A.3, and Figure A.4 (i.e., with Decision
trees (red), Logistic Regression (green) and Naïve Nayes (blue) weak classifiers).
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A.5 NCSR without miRNAs prior knowledge
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Figure A.6: Relationships between Matthew’s correlation coefficient and 4 diversity mea-
sures - entropy, average Q statistics, Kohawi-Wolpert, and Double Fault measure —
for NCRS with Decision trees and without miRNAs prior knowledge. The dotted line
represents values obtained from NCRS with modified sampling function — samples fea-
tures with probability proportional to their degree in the feature network. Computed for
k ∈ {2, 4, 6, 8, 10, 15, 20, 30, 40, 60, 80, 100, 150, 200}.
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Appendix B

Benchmark datasets

These are results for several benchmark datasets for gene expression profiles. Unlike the
MDS datasets, they do not contain miRNA and the NCRS was trained without miRNA
prior knowledge or candidate causal genes. Table B.1 contains the information about
platform type and number of samples for each dataset, more about datasets is available in
Section 7.2 Benchmark datasets.

Table B.1: Number of samples in individual datasets

Dataset Platform Number of samples
ALL/AML GPL80 72

Gastric cancer GPL80 30
Hypertension GPL80 20

Smoking GPL80 44
AML GPL96 64

Breast cancer GPL96 29
Glioma GPL96 85
MGCT GPL96 27

Prostate cancer GPL96 20
Sarcoma/Hypoxia GPL96 54
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Figure B.1: Relationships between Matthew’s correlation coefficient and 4 diversity mea-
sures — entropy, average Q statistics, Kohawi-Wolpert — for NCRS with decision trees
compared to RS DT
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Appendix C

Content of the CD

The attached CD contains the electronic version of this work, all graphs from this work,
implementation of the NCRS and original datasets.

• /Codes/ contains codes for both the implemented NCRS and the original NCF

– /Codes/NCF/ contains the code of the original NCF proposed by Anděl and
Kléma

– /Codes/NCRS/ contains the implementation of NCRS together with several scripts
that were used for the experiments
∗ /Codes/NCRS/example.py contains simple example of usage of the NCRS

general classifier
∗ /Codes/NCRS/meas.py contains implementation of diversity metrics used in

Chapter 7
∗ /Codes/NCRS/ncrs.py the actual implementation of the NCRS ensemble.

The implementation is based on the code of NCF and BaggingClassifier
from [138]

• /Data/ contains datasets for experiments

– /Data/Benchmark/ contains 10 benchmark datasets
– /Data/MDS/ contains the data related to the myelodysplastic syndrome (MDS)
∗ /Data/MDS/datasets/ contains the actual datasets together with candidate

causal genes
∗ /Data/MDS/interactions/ contains the prior knowledge in the form of

interaction networks

• /Graphs/ contains all graphs from this work

• /Raw_Results/ contains raw results returned by scripts in the form of log files

• /kuncvlad_BP_2015.pdf the electronic version of this work
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