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Abstract

The goal of the thesis to study the effects of random disturbances on var-
ious distributed control systems and to prepare and run simulations re-
quired to do so. The simulations focus mainly on the overall behavior of
the systems subjected to random disturbances as well as the scaling of the
output variances of these systems. Thesis verifies and compares scaling in
distributed systems with optimal and suboptimal localized control. The
effect of various communication structures as well as the influence of static
nonlinearities is assessed.

Key Words: distributed control, vehicle platoons, scaling, optimal control,
static nonlinearities

Abstrakt

Cilem préce je studovat efekty ndhodného Sumu na rizné systémy s dis-
tribuovanym fizenim a pripravit a provést k tomu potiebné simulace.
Simulace jsou zaméteny hlavné na celkové chovani systému vystavenych
nahodnému Sumu a na skalovani rozptylu vystupu téchto systému. Prace
oveéiuje a porovnavd Skalovani u systému distribuovaného fizeni s op-
timalnimi a neoptimélnimi regulatory. Déle je ovéfovan vliv ruznych struk-
tur komunika¢niho grafu, statickych nelinearit a okrajovych podminek.

Klicova slova: distribuované tizeni, kolony vozidel, skalovani, optimalni
tizeni, statické nelinearity
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1 INTRODUCTION

1 Introduction

The control of the vehicle platoons has been a popular field of study in recent decades. Be-
sides the extensive theoretical research on the subject, there are several projects utilizing the
findings in practice. Among these projects are California Partners for Advanced Transporta-
tion Technology (PATH), a research and development program of the University of California,
Berkeley focused on Intelligent Transportation Systems research, founded in 1986 [13], or the
Safe Road Trains for the Environment (SARTRE) project, funded by the European Commis-
sion under the Framework 7 programme, whose goal is to develop strategies and technologies
to allow vehicle platoons to operate on normal public highways [I].

One of the results of the studies is that in order to achieve satisfactory results, it is
necessary to broadcast some global information, ie. state of the leader, to the whole formation
2].

According to [2], if all vehicles of the communication network are exposed to random
disturbances, it is not possible to maintain a large coherent formation using only localized
feedback.

If we achieve the best localized feedback, the behavior of the formation is reasonable
on ”microscopic” level. That is, distances between vehicles and their velocity are maintained.
However, if the formation is inspected as a whole, we can observe slow, long spatial wavelength
modes. The formation then exhibits an ”accordion-like” motion going through the whole
formation [2].

The goal of this thesis is firstly to prepare and run simulations that replicate the results
in [2]. Secondly, to test the behavior of the systems with optimal control, systems with static
nonlinearities and other types of systems subjected to random disturbances and compare
these results to results in [2].

Thesis is divided into four main chapters. First chapter studies the effect of random dis-
turbances on linear systems with localized feedback. Second chapter is focused on system with
localized optimal control. Third chapter examines the behavior of selected systems from the
first chapter with added static nonlinearities and finally, fourth chapter takes the simulations
from previous chapters and runs them on second order system with PI controller.

Note that the fourth chapter was originally supposed to be focused on systems with the
model predictive control. However, after an agreement with the supervisor of the thesis it was
decided to change the topic of the chapter.

As previously mentioned the simulation-focused parts examine results published in [2].

The theoretical parts of the project mainly draw from works targeted on distributed
control and vehicle platoons [9, 2, [4], [§].




2 LINEAR SYSTEMS LOCALIZED CONTROL

2 Linear systems localized control

This chapter examines behavior of large-scale interconnected systems, with communication
structure similar to vehicular formations, subjected to random disturbances [2]. Ideally, the
vehicles match each others velocity and positioning with constant spacing.

2.1 System descriptions

Before we describe the formation and structure of the systems, we need to define the
subsystem representing one vehicle. The vehicle is represented by double integrator with
state space control. We define two states for each vehicle, its position and velocity. We can
describe the system by equations and .

J:’i = V; (1)
Ui = kp((Ti1 — 2 + A) — (7 — 2ip1 + A)) + ky((vie1 — vi) — (v — vig1)) (2)
= kp(zi—1 — 22 + xig1) + ko(vie1 — 205 + vig1). (3)

where x; represents position of i-th vehicle, v; velocity of i-th vehicle, k, position feedback
gain and k, velocity feedback gain. The goal is to control the system so that intervals between
vehicle positions remain constant. Position of adjacted vehicles is compared and the result is
weighed by position feedback gain. In ideal case the actual position difference d; = z;—1 — x;
is equal to desired spacing with interval A. As for velocity, the aim is for all vehicles in the
platoon to have the same velocity, so that the difference v;_1 — v; equals zero.

Vo(t) —>

Rt [T s (O
'»'4

Xo(t) X4(t) Xo(t)

Figure 1: Platoon of vehicles with leader [11].

Figure (1] represents the platoon of vehicles with leader. It is one of the communication
structures we describe later in this chapter. States of each vehicle are illustrated in the picture
as well as the distances between adjacted vehicles.

The state space model:

x = Ax+ Bu (4)
y =Cx (5)




2 LINEAR SYSTEMS LOCALIZED CONTROL

for state vector x, inputs u and outputs y we get matrices A, B, C, D:

ey -0

C=(k k) D=(0) @

As for the values of k, and k,, in this chapter they were chosen empirically as k, = 1 and
k, = 1. This chapter focuses on reproducing the results presented in [2] on various types of
systems. While creating a state space controller using one of control theory metods might
change some behaviour of the system (ie. amplitude of the oscilations) it should not affect
quality of the results. This is examined more in following chapter where we simulate systems
with optimal state space control.

Subsystems are linked together to create required communication structure.

s

Random_Noise

Integrator

I(k)B

-(L (k) BC) M

1(k) A

1(k)C

L Ir
Laplacian

Figure 2: Block representation of the created system

Regardless of chosen structure, final system can be described by following equation (see

figure [2)
t=(UInN®A—-L®BC)x (8)

where communication structure of the system is described by the graph Laplacian L. [9]

2.1.1 Graph theory basics

Before we explain meaning of the graph Laplacian, we need to present some basic graph
theory concepts. A Graph is a pair G = (V, E) with V = {vy,...,un} being a set of N nodes

37




2 LINEAR SYSTEMS LOCALIZED CONTROL

and E a set of edges. Elements of E are denoted as (v;, v;) which is termed an edge from v; to
v; and represented as an arrow with tail in v; and head in v;. In-degree of v; is a number of
edges having v; as a head. For our purposes, we can represent the communication structure
of the system as communication graph. In that case vehicles are represented as nodes in the
graph and communication between two vehicles is depicted by edges [9].

2.1.2 Laplacian matrix

Laplacian matrix (Laplacian) is a matrix representation of the communication graph.
If we define in-degree matrix D = diag(d;) and adjacency matrix A = [a;;] with weights
a;j > 0if (vi,v;) € E, where E is the set of edges of the communication graph. Then we
define Laplacian matrix as L = D — A. The properties of the graph and therefore the system
can be studied in terms of its Laplacian. The Laplacian matrix is of extreme importance in
the study of dynamic multi-agent systems [9].

2.1.3 Kronecker product

Kronecker product (®) is an operation on two matrices with following definition:
Let us have two matrices A = [a;;], B, we define the kronecker product A® B as A® B =
la;jB], where [a;; B] is a matrix with block elements a;;B [6]. The example of Kronecker
product for two matrices:

2 6 1 3
2 1 13 412 2 6
M1_<0 3> MQ_<2 6> MioM2=|, & 3 ¢
0 0 6 18

2.1.4 1-D torus

1-D Torus [2] is the simplest of communication structures studied in this thesis. It repre-
sents 1-D cyclical structure, where each vehicle recieves information only from the adjacent
vehicles.

All models of vehicles in this network are equal and each one communicates only with two
neighboring vehicles.
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Figure 3: Picture of 1-D toroidal communication structure [3].

Because of this, we obtain symmetrical Laplace matrix with twos on main diagonal @D

I -1 2 -1 0 (9)
4 p—
o -1 2 -1
-1 0 -1 2
3
2t MK K K 3¢
* % * x *
*
*

_ 1 ***
2 %
=
50
g }
£ ***

1 *

*
*
5 *

2t oekox K % K K X K

3 . . . . .

25 2 15 -1 0.5 0 05

Real

Figure 4: Eigenvalues of 1-D torus

Graph in the figure 4| displays eigenvalues of 1-D torus system created according to (8.
We can observe that all eigenvalues are situated in left half-plane of the complex plane. This
ensures the stability of the system.

2.1.5 2-D and 3-D torus

These systems are multidimensional analogies of the 1-D torus. It means that each vehicle
draws information from 2d other vehicles adjacent to it in the communication graph, where
d is dimension of the network.

/T



2 LINEAR SYSTEMS LOCALIZED CONTROL

Figure 5: Picture of 2-D toroidal communication structure [3].

It is important to note that while these vehicles are adjoining in the communication
structure, they are not necessarily next to each other in the physical platoon. The Laplacian
is a representation of the communication structure of the platoon. This structure however
can be completely different than platoon’s physical layout. Laplace matrix for this type of
structure is symmetrical, with 2d on the main diagonal. Example of the Laplacian for 2-D
torus consisting of 9 vehicles ([10).

4 -1 -1 -1 0 0 -1 0 0
-1 4 -1 0 -1 0 0 -1 0
-1 -1 4 0 0 -1 0 0 -1
-1 0 0 4 -1 -1 -1 0 0
Lsxs=|0 -1 0 -1 4 -1 0 -1 0 (10)
0 0 -1 -1 -1 4 0 0 -1
-1 0 0 -1 0 0 4 -1 -1
0 -1 0 0 -1 0 -1 4 -1
0 0 -1 0 0 -1 -1 -1 4

2.1.6 1-D leader-follower

In previously described systems all vehicles were equal. In leader-follower structure, there
is a vehicle called leader, in our case the first vehicle, that is not controlled by feedback from
the other vehicles. The leader drives independently of the platoon and acts as a referential
agent. Other vehicles of the system - the followers work the same way as in 1-D torus system,
with the exception of the last follower. The last vehicle of the platoon communicates only
with the previous follower and is not connected to the leader.

TN = UN (11)
vy =kp(zn_1 — 2N + A) + ky(vn—1 — ON). (12)

As a result, the communication graph is not circular as it was in case of 1-D torus. This fact
is evident when we look at Laplacian for this type of structure. Also note that in this case

ofiT




2 LINEAR SYSTEMS LOCALIZED CONTROL

Laplacian is no longer symmetric because of the zeros in the first row representing the leader

@).

Ly = (13)

mx*********
* %
*
15} ****
*x
*x
1 Hx. :
*%&

> 0.5 *%’
s 3
£ 0
5 :
E

T

K
1 2K
sk
x¥*
15¢ sk XX
* kKK
kR KKK KET .
2 -1.5 -1 0.5 0
Real

Figure 6: Eigenvalues of 1-D leader-follower structure

Graph in the figure [6] displays eigenvalues of 1-D leader-follower structure. Similarly to
torus, eigenvalues of leader-follower structure also lie in the left half-plane of the complex
plane, ensuring the stability of the system.

2.1.7 1-D leader-follower with asymmetric control

The leader-follower structure with asymmetric control is a variant of a leader-follower
structure from previous section. Followers in both structures draw feedback from the adjacent
vehicles. In system with symmetric control, the feedback gain in both directions, towards the
leader and away from it, is the same. This is not the case for asymmetric control. In system
with asymmetric control feedback gain in one direction is stronger. Here we can see two
types of asymmetric control: control with stronger gain towards the leader (forward) and
control with stronger gain in direction opposite than the leader’s (backward). In this thesis
we will only simulate system with forward asymmetric control because the transient period
for systems with backward asymmetric control is too long for the purpose of our simulations.
For example for system of 100 vehicles with bacward control it can take up to 10° seconds
before the last car moves at speed comparable to that of the leader [12].

The equation shows an example of Laplacian of the leader-follower structure with

7T




2 LINEAR SYSTEMS LOCALIZED CONTROL

forward asymmetric control (forward gain g, = 1, backward gain gf,, = 0.5)

0 0 0 0
1 15 —05 0
Lai=l g 1 15 _o05 (14)

0 0 -1 1

2.2 Vehicle trajectory simulation

All vehicles are subjected to random disturbances. We study vehicle position trajectories
relative to vehicle number one both on ”macroscopic” and ”microscopic” scale [2].

Firstly, we created model of the desired system according to . The creation of the
system in Matlab enviroment is fairly straightforward. The only problem is the creation of
the laplace matrix for desired system. Scripts used to create laplace matrix for 1-D system
were provided by supervisor of the project Ivo Herman. In simulations of 2-D a 3-D structures
we utilized script [7].

For the purposes of this simulation we created systems of 50 vehicles (64 for 2-D and 3-D
torus). Random disturbances were created by function randn(), which generates normally
distributed random numbers. For toroidal structures the random disturbances variance was
set to Var = 0.11, for leader-follower structures the variance was set to Var = 0.01. The
required distance between vehicles was set to A = 1. The initial conditions for starting
positions were set to match desired spacing of the platoon and initial velocities were set to
ZETOo.

2.2.1 Results of the simulation

Relative Position

/

s
7
%
\/ /)

N /\m/\J\/"\/-/\\/\_,_\/\/\/\/f’\rJ /\’

0 50 100 150 200 250 300 350 400 450 500
t[s]

Figure 7: Vehicle position trajectories of a 50 vehicle 1-D toroidal communication structure.
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2 LINEAR SYSTEMS LOCALIZED CONTROL

The figure [7] displays vehicle position trajectories of a 50 vehicle 1-D toroidal commu-
nication structure. The vehicles in the middle of the graph, that is positions 15 to 35, are
the furthest in the communication structure from the vehicle nubmer 1 used as reference for
position. Here we can observe the strongest accordion-like motion in the formation.

70

60
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Figure 8: Vehicle position trajectories of a 64 (8x8) vehicle 2-D toroidal communication struc-
ture.
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Figure 9: Vehicle position trajectories of a 64 (4x4x4) vehicle 3-D toroidal communication
structure.

As we can see in figures [§]and [9 2-D and 3-D communication structures are more robust
than previously examined 1-D structure. It is clear that 2-D and 3-D structures are much less
volatile when exposed to random disturbances. The accordion-like motion is not observable.
We need to take into consideration that graph radius of 2-D and 3-D structures is much

offi
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smaller than radius of 1-D structures with comparable number of vehicles. Unfortunately due
to insufficient computing capacity we were not able to run the simulations for 2-D and 3-D
structures with equivalent graph radius.
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Figure 10: Vehicle position trajectories of a 50 vehicle 1-D leader-follower communication
structure.

In figure[I0]are the results of simulation with 50 vehicle 1-D leader-follower communication
structure. In contrast to the previous structures, the leader follower structure is not circular
but linear. It means maximum distance between two vehicles is N and not N/2. As a result
of this, despite the lower variance of random disturbances (0.01 instead of 0.11 for torus), the
accordion-like motion in the system is more pronounced.
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Figure 11: Figure is a zoomed in version of the graph in figure The graph is showing the
well regulated distances between vehicles.
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The figure [I1] shows a "zoomed in” version of the graph in figure[I0] Here we can see that
despite the sizable slow oscillation of the entire system, vehicle to vehicle distances in the
platoon are stable and well regulated.
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Figure 12: Vehicle position trajectories of a 50 vehicle 1-D leader-follower communication
structure with forward asymmetric control.

Figure [12] displays results of the simulation for system with forward asymmetric control
with forward gain g, = 1 and backward gain gy, = 0.9. The graph shows an accordion-like
oscillation similar to that in figure For asymmetric control however, there is an overshoot,
where the last vehicles of the platoon cross the position of the leader. This more volatile
behavior is caused by the fact that feedback between vehicles in the direction of the leader is
stronger than feedback in the opposite direction [5].

2.3 Performance measures

In following subchapters we will focus on scaling of various performance measures with
system size for previously described systems. Please note that performance measures described
in this subchapter are the same as the performance measures defined in [2]. Some of these
measures can be considered steady state variances of outputs of linear systems [2]. Let us
have a linear system

T = Az + Bu
y=Cx.

In all examined cases outputs y of the system have finite variances. That means the output
has a finite steady state variance V', which is quantified by the square of the Hs norm of the

system [2]:
V= 3 lim By} (15)
keN
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where k ranges over all vehicles IV of the system and y; is the output of the k-th vehicle.
Symbol * represents complex conjugate transpose and FE is expected value.

We then define the individual output variance [2] as

Bl = 3 Jim B ()} = 1 (16)
leN

Below we describe three performance measures: local error, deviation from average and
disorder. Local error is considered microscopic measure because it describes local variables
associated with any given state. Disorder and deviation from average are considered macro-
scopic measures as they involve quantities associated with whole network or nodes that are
far apart in the network [2].

2.3.1 Local error

Local error measures the difference between neighboring vehicles. When inspecting vehic-
ular formations, local error is the difference Z; of actual positions of the neighbooring vehicles
from their proper spacing [2].

Yk ‘= .fk — ii‘k_l [2] (17)

2.3.2 Deviation from average

Deviation from average corresponds with the difference between each vehicle’s position
error and average of these errors [2].

Y = Tk — %Ei’l [2] (18)
leN

2.3.3 Long range deviation (disorder)

Long range deviation matches the error of the distance between the two most distant
vehicles from what it should be. If we were to look for the most distant vehicle from vehicle
k it would be the vehicle with index k + % Then the distance between these vehicles would
be AL where A is desired distance between two vehicles [2].

N
Yk ::mk—kar%—A?:xk—le% [2]. (19)

The description above is only true for systems with 1-D toroidal communication structure.
It is possible to expand the definition for multidimensional systems [2]. However, it has proven
difficult to define disorder for systems with leader-follower structure. We have decided to use
disorder as defined in for all types of tested systems. Due to this the performance measure
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refered to as disorder in this thesis is different from disorder described in [2] for all studied
communication structures with the exception of 1-D torus.

Despite mentioned difference, disorder used in this thesis still meets the requirements to
be considered macroscopic performance measure and therefore all findings concerning macro-
scopic measures should still apply.

2.4 H; norm and Lyapunov equation

Previous subchapter mentions that we can quantify variances of our performance measures
as Hy norm squared of the system. We compute Hs norm as:

Gl = \//_OO tracelg*(t)g(t)] dt [14] (20)

where ¢(t) is the impulse response. Moreover, we can write
|G| = trace| B*QB] = trace[C PC*| (21)

where Q and P are observability and controllability Gramians. To obtain the Gramians we
solve following Lyapunov equations for P and Q [14]:

AP+ PA*+BB =0 A'Q+QA+C"C=0 (22)

2.5 Performance measures simulation

The simulation aplying previously described performance measures consists of two sepa-
rate parts. Firstly, we took systems created for vehicle trajectory simulations, altered their
output matrices (C') so that they correspond with output described in the performance mea-
sures subchapter and tried to compute their Hy norm squared by solving Lyapunov equations.
Secondly, we tried to compute the steady state variance of the system outputs from simula-
tions described in chapter

2.5.1 Variance using Laypunov equation

To solve Lyapunov equations matlab function lyap() was used. This function is part
of Control System Toolbox. First, we tried to solve Lyapunov equation for @} to get the
observability gramian, from which variance can be easily computed using trace [2]. This has
proven to be unsuccessful due to the fact that the equation could not be solved by lyap()
function for our systems. We tried using the same approach for controllability gramian. This
way it was possible to compute variances for 1-D and 2-D torus. To compute variance for
3-D torus, we were forced to use different feedback gain k, = 1.1, k, = 1 to successfully
solve Lyapunov equation. Note that the feedback gain k, = 1.1, k, = 1 was only utilized
in performance measure simulation for 3-D torus, all other simulations in this chapter use
feedback gain k, = 1, k, = 1 as stated previously.
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The described problem with solving Lyapunov equation however presisted for systems with
leader. Due to this we were not able to compute variances for these systems using Lyapunov
equation and compare them to variances obtained by simulation described below.

2.5.2 Variance using vehicle trajectory simulation

To compute variances by simulation, the vehicle trajectory simulation described in chapter
2.2 was used. Here the variance of random disturbances was set to Var = 1 for all commu-
nication structures. According to [2] the system outputs have finite steady state variance. To
obtain it we run the vehicle trajectory simulation for chosen number of iterations (in this case
300) and computed the variance for selected times. After a period of time the result settled
on the output variance for selected performance measure.

2.5.3 Results of the simulation
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Figure 13: Comparison between values of performance measure variances obtained via simu-
lation and variances computed from Hs norm for 1-D torus.
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In figure [13| we can see the results of our simulation compared to variance computed using
Hs norm. Figure shows variance of 1-D torus structure of 48 vehicles. From the graph
it is clear that after certain period of time (here approximately after 250 seconds) variance
obtained from vehicle trajectory simulation settles on the same value that we gained by
computing Hs norm squared of the system. This was the case not only for the 1-D toroidal
structure but for all other structures the simulation was performed on.

This is an expected result consistent with the theory provided above as well as the findings
published in [2].

For the results of this simulation for other communication structures please see appendix
Note that the simulations and the results can be found on attached CD.

2.6 Scaling verification

According to [2], upper bounds of performance measures individual output variances for
toroidal structures asymptotically scale in terms of vehicle quantity N and number of dimen-
sions of the comunication network d. We assume that these two factors are the only ones that
affect the type of the scaling. Following this line of thought all tested 1-D systems should fall
to the same category.

The table [1| below describes different scaling of d-dimensional systems of N vehicles for
both microscopic (local error) and macroscopic (disorder and deviation from average) perfor-
mance measures.

Microscopic | Macroscopic

d=1 N N3
d=2 log(N) N
d=3 1 N1/3

Table 1: Scaling of different communication structures [2]

To verify this we run the vehicle trajectory simulation, previously used to compute per-
formance measure individual output variances for our communication structures, with
various numbers of vehicles, plotted the results and compared them to expected scalings ac-
cording to table[l} As we can see in the table[l], all macroscopic measures should scale the same
way. Scaling of both deviation from average and disorder was only included for 1-D torus.
For scaling of disorder variance for other communication structures please see appendix [C] or
attached CD.
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2.6.1 Results of the simulation
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Figure 14: Scaling of local error individual output variance for 1-D torus.
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Figure 15: Scaling of deviation from average individual output variance for 1-D torus.
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Figure 16: Scaling of disorder individual output variance for 1-D torus.
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Graphs in figures and [16|show the scaling of performance measure variances for 1-D
torus. The results of the simulations are in each graph compared to corresponding function
to illustrate expected scaling. Note that the added mathematical functions are only supposed
to represent the type of scaling (linear, cubic) and scaling rate itself is not supposed to be
the same (that is, for example variance of local error can scale linearly but with lower slope
than added linear function).

Graphs on the left depict the variance in linear axes. For more convinient comparison of
the scaling, graphs on the right have logarithmic y axes. In semi-logarithmic axes we can see,
that both curves are of the same shape and are only vertically displaced. This means that
depicted functions differ only in coefficient and not qualitatively.

Graphs in figure show scaling of local error for 1-D torus. The scaling of local error
variance is clearly linear, which is consistent with table

Graphs in figures [I5] and [I6] represent the scaling of macroscopic performance measures,
that is deviation from average and disorder. The type of scaling in both figures is consistent
with added cubic function. This also corresponds with table

Since it is clear that the type of scaling for deviation from average and disorder is the same,
from this point forward we will only include figures showing scaling of deviation variance. As
for the simulations showing scaling of disorder variance, results for this chapter are included
in the appendix [C] Results of the simulations for this and all following chapters are viewable
on attached CD.

Local error individual output variance

Local error individual output variance | ‘

a*log(N) a*log(N)
0.06 ; : ; 10° ; ; ; ;
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N N
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Figure 17: Scaling of local error individual output variance for 2-D torus.
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Figure 18: Scaling of deviation from average individual output variance for 2-D torus.

Graphs in figure [17] depict the scaling of local error variance for 2-D toroidal communica-
tion structure. According to the table [I] the scaling for 2-D structure is logaritmical. In the
graph we can see that the results of the simulation follow displayed logaritmical function.

The scaling of macroscopic measure variance for 2-D structure is supposed to be linear.

Figure [18] shows that this is clearly the case.
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Figure 19: Scaling of local error individual output variance for 3-D torus.
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Figure 20: Scaling of deviation from average individual output variance for 3-D torus.

Results of the simulation for 3-D torus are shown in figures [19 and 20} For 3-D communi-
cation structure microscopic scaling should be constant. Macroscopically the system should
scale with aN'/3. From mentioned graphs it is clear that variances scale appropriately.

During the course of the simulations for 1-D leader-follower structures, we discovered that
the simulation time needed for performance measure variances to settle for leader-follower
structures is many times longer than for toroidal structures with comparable vehicle count
(figure 21). As mentioned in for these systems we were also not able to confirm the
performance measure variances using Lyapunov equation.
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Figure 21: Deviation from average variance settling time of 80 vehicle 1-D torus and 1-D
leader-follower structure.

The prolonged settling may be caused by different communication structure of leader-
follower systems, mainly by their double communication graph radius.
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Figure 22: Scaling of local error individual output variance for 1-D leader-follower structure.
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Figure 23: Scaling of deviation from average individual output variance for 1-D leader-follower
structure.

Figures [22] and 23] show scaling of variances for 1-D leader-follower structure. Despite the
fact that this communication structure is one dimensional, we can see that the type of scaling
does not match the scaling for 1-D toroidal structures according to table [Il The reasons for
this may be similar to the reasons for longer settling time of the variances. Another reason
may be that there is a wave reflection on the rear end of the platoon (reflection on the free-end
boundary with the same polarity) [13] that causes variances to scale faster.
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Figure 24: Scaling of local error individual output variance for 1-D leader-follower structure

with asymmetric control.
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Figure 25: Scaling of deviation from average individual output variance for 1-D leader-follower

structure with asymmetric control.

In figures [24] and [25| we can see that system with asymmetric control scales even worse than
leader-follower system with symmetric control. Systems with asymmetric control are much
more volatile than systems with symmetric control. For systems with asymmetric control
certain oberved characteristics scale exponentially with the number of vehicles [12], which
may cause worse variance scaling. Graphs in figure [26| show individual output variances
for system with asymmetric control fitted with exponential function. We can see, that the

type of scaling is indeed exponential.
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Figure 26: Variances for 1-D leader-follower system with asymmetric control fitted with ex-
ponential function a - eV,
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3 Linear systems with optimal localized state space control

This chapter focuses on systems with optimal state space control. Our goal is to find an
optimal state space controller with control effort comparable to the controller used in previous
chapter using LQR criterion.

Then we run the simulations described in chapter |2| on selected system with created
optimal controller and compare the results to those from previous chapter. The simulations
will be run for two communication structures: 1-D torus and 1-D leader-follower structure, as
these two structures had most significant results in previous simulations.

As was already mentioned in chapter [2, using optimally designed controller should not
drastically change the behavior of the system (accordion-like motion) nor should it change
the type of scaling of the preformance measure variances [2]. That is for selected 1-D toroidal
system microscopic measures should still scale linearly and macroscopic measures should have
cubic scaling. The difference in the controllers might however change the rate of scaling. We
expect that the performance of the optimal controller will be better and the variances will,
with increasing number of vehicles, scale slower.

3.1 Linear Quadratic Regulatory (LQR)

Let us consider a system model

i=Ax+Bu, >0 (23)

The system has infinite-horizon performance index

1

70) = /0 " (@ Qe + u"Ru) dt ] (25)

where ) > 0 is positive semi-definite matrix, R > 0 is positive definite matrix and both @
and R are symmetric. Then for optimal feedback control we get [8]

0=A*S+SA—-SBR'B*S+Q (26)
K =R'B*S (27)
u=—Kz (28)

3.2 Controller creation

To design the optimal state space controller, Control System Toolbox function lgr() was
used. The function minimalizes system performance index (25)).

To ensure the comparability of simulation results in this chapter with those in chapter
we compared control efford of these two controllers on system with double integrator.

2347



3 LINEAR SYSTEMS WITH OPTIMAL LOCALIZED STATE SPACE CONTROL

1 a1
s s

Integrator1 Integrator2 y

K-

Kv

K-

Kp

Figure 27: Schema of the system used to compare optimal controller and empirically chosen
controller.
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Figure 28: Comparison of the control effort of the optimal controller and empirically chosen
controller.

Using the lgr() function we created optimal controller with following gains:
k, = 1.0000 k, = 17321 (29)

From the graph in the figure 2§ it is clear that the control effort of the optimal and the
suboptimal controller is very similar. Due to this, it should be possible to evaluate the results
of the following simulation and compare them to results from chapter [2] without factoring in
the difference in control effort of the controllers.

3.3 Inverse optimality

When we designed the optimal regulator for our vehicle model, we first selected the crite-
rion and then we designed the controller accordingly. Inverse optimality works on the opposite
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principle. We have designed the controller and we test if it is optimal for a criterion [4].

This can be used in case of localized feedback. In general, if we design an optimal controller
for entire network, we obtain centralized feedback [2]. We can however design an optimal
controller for one vehicle and then use inverse optimality to see whether there is a criterion
for which the controller is optimal in terms of entire network.

Let us have a system
t=In®A)z+ (Iy @ B)u. (30)

We have the control law
u=—c(L® Kz (31)

where coupling gain ¢ > 0, and K3 represents local feedback matrix. We get global closed
loop system.

t=(InN®A—cL® BKs)x [4] (32)

Following theorem was taken from [4, Theorem 2]:
Consider system

i=(Iy®A)z+ (In ® B)u. (33)

Suppose there are matrices Py, P, where P = P;" > 0 is a positive semi-definite matrix and
P, = P35 > 0 is positive definite matrix that satisfy

Py = cRyL, (34)

A*Py+ PyA+ @, — P,BR;'B*P, =0, (35)

for some Q2 = Q5 > 0,R; = R} > 0,Ry = R5 > 0 and a coupling gain ¢ > 0. Define the
feedback gain matrix Ky as
Ky = R;'B*P, (36)

Then the control ©u = —cL ® Kox is optimal with respect to the performance index

J(wo,u):/ P [A(L® Ky) (R ® Ro) (L& Ka) — cRAL® (A" Py + PyA)]a+u* (Ry ® Ro)u dt.
0
(37)

J(xo,u) = / z*Qx + u* Ru dt. (38)
0

Let us apply the inverse optimality principle on our 1-D toroidal structure of four vehicles.
The Laplacian of 1-D toroidal structure has eigenvalues equal to zero. Due to this, we can not
stabilize the system. To prevent this problem we add a virtual leader that leads the formation
but is not part of it .
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(39)

This ensures that laplacian has only positive eigenvalues. The laplacian is symmetric,
which means we can choose ¢ = 1 and R; = Iy. Ky was previously determined as Ky =
[1.0000 1.7321]. Matrices QQ2, Ro are the same we used with {gr() to determine the feedback
gain matrix Ko and matrix P, is one of the outputs of lgr() function. We have everything
needed to determine the performance index (37).

33.0 416 —-15.0 —20.8 6.0 104 —15.0 —20.8

416 81.0 -208 -39.0 104 18.0 —-20.8 —-39.0

-15 =208 180 20.8 —-12.0 -156 6.0 10.4 3000
Q= -20.8 —-39.0 20.8 420 -156 -30.0 104 18.0 R = 03 00

6.0 104 —-12.0 -15.6 180 208 —12.0 —-15.6 0030

104 180 -15.6 -30.0 20.8 42.0 -15.6 -30.0 000 3

—-15.0 —-20.8 6.0 104 —-12.0 -15.6 18.0 20.8

-20.8 —-39.0 104 180 —-156 -30.0 20.8 42.0

(40)

Now we can use the lgr() function with our performance index on the entire network. We
recieve the feedback gain matrix K for the network that equals to L ® Ko , , which
confirms the optimality of the designed feedback controller.

3.000 5.196 —1.000 -1.732 0.000 0.000 —1.000 -—1.732
—-1.000 -1.732 2.000 3.464 —1.000 —-1.732 0.000  0.000

K= 0.000 0.000 —1.000 -—1.732 2.000 3.464 —1.000 —1.732
—1.000 —-1.732 0.000 0.000 —-1.000 -1.732 2.000 3.464
(41)
3.000 5.196 —1.000 —1.732 0.000 0.000 —1.000 -—1.732
(L 2 K») —1.000 —-1.732 2.000 3.464 —1.000 —1.732 0.000 0.000
lead 2) =

0.000 0.000 -1.000 -1.732 2.000 3.464 —1.000 —1.732
—-1.000 —-1.732 0.000  0.000 —1.000 —-1.732 2.000 3.464

(42)

Equation shows the criterion for our optimal localized feedback. As we can see from
the @ matrix, this criterion is very unintuitive. Usually, to design feedback, one would use
diagonal criterion. However, obtained matrix () is not diagonal. In fact it has all elements
nonzero. This means that the criterion penalizes even products of states that are not othervise
related in terms of the network.
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3.4 Vehicle trajectory simulation

We run the vehicle trajectory simulation described in chapter for selected systems
with newly created optlimal state space controller to see, whether the change of the controller
significantly alters system behavior in terms of relative vehicle position.

3.4.1 Results of the simulation

Relative Position
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tls]
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Figure 29: Comparison of vehicle position trajectories of a 50 vehicle 1-D torus with optimal
and suboptimal control.

Relative Position
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Figure 30: Comparison of vehicle position trajectories of a 50 vehicle 1-D leader-follower
structure with optimal and suboptimal control.

The figures [29] and [30] show that using optimal controller does not change the results of
our simulation on large scale. This is an expected result as the accordion-like motion should
manifest in all systems representing large formations with only localized feedback [2].

3.5 Comparison between system with optimal and suboptimal control

Similarly to the previous subchapter, here we run the simulation used to verify scaling of
the performance measure , individual output variances described in chapter
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on selected systems with optimal controller.

The results of the simulation are compared with the results from chapter [2| This way it is
possible to determine whether our assumptions from the begining of the chapter were correct
or not.

3.5.1 Results of the simulation
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Figure 31: Comparison of the scaling of local error individual output variance for 1-D torus
with optimal and suboptimal control.
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Figure 32: Comparison of the scaling of deviation from average individual output variance for
1-D torus with optimal and suboptimal control.

Figures [31| and [32| show the difference in scaling of the 1-D toroidal systems with optimal
and suboptimal state space control.

Firstly, we see whether the types of scaling in the graphs in figures [31| and [32] correspond
to those stated in table(l] It is clear from the graphs, that the type of scaling has not changed
by adding optimal controller. This is consistent with [2].
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3 LINEAR SYSTEMS WITH OPTIMAL LOCALIZED STATE SPACE CONTROL

Secondly, we want to verify our assumption that scaling will be slower with the optimal
controller. From the graphs above it is clear that while type of scaling remains the same,
linear for local error and cubic for deviation from average, systems with optimal controller
scale with number of vehicles at lower rate than system with suboptimal state space control.

While the decrease in scaling rate is noticable, it is not significant enough to considerably
affect the overall behavior of the system. This was alreary shown in previous experiment (see
chapter [3.4)).
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Figure 33: Comparison of the scaling of local error individual output variance for 1-D leader-
follower structure with optimal and suboptimal control.
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Figure 34: Comparison of the scaling of deviation from average individual output variance for
1-D leader-follower structure with optimal and suboptimal control.

Figures [33] and [34] show the difference in scaling of the 1-D leader-follower systems with
optimal and suboptimal state space control.

It is clear that despite the fact that the variances of leader-follower systems do not scale
according to our initial assumption, using optimal state space controller lowers the scaling
rate of the variances similarly to those of 1-D torus.
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4 SYSTEMS WITH STATIC NONLINEARITIES

4 Systems with static nonlinearities

While chapters [2| and |3] focused on linear systems, in this chapter we study systems non-
linear. Similarly to the previous chapter the simulations will be run on 1-D toroidal commu-
nication structure and on 1-D leader-follower structure.

Our goal is to evaluate the effect of static nonlinearities (we will focus on saturation) on
the behavior of the system and scaling of the variances from chapter

Simulated systems are subjected to random disturbances. These disturbances will be af-
fected by the saturation. Our assumption is that the saturation may diminish the effects of
these disturbances and the performance measure variances might scale at slower rate. The
type of scaling should however remain the same [2] as the nature of the system is not changed.

4.1 System Description

For the purpose of simulations in this chapter we used system described in figure [2[ and
added saturation.

. 1
Random_Noise +_x 7‘[ W o s W

Integrator

Saturation 1(k) B 1(k)C

-(L (k) BQ) @

1(k) A

L |’<
Laplacian

Figure 35: Block schema of the system with added saturation.

To determine the bounds of saturation we used the leader-follower communication struc-
ture. We removed random disturbances and changed the initial condition for leader velocity
from zero to nonzero value. We run vehicle trajectory simulation and observed control effort
for individual vehicles in time.
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Figure 36: Saturation bounds selection - control effort of the 1-D leader-follower communica-
tion structure.

The saturation bounds value was determined so that it affects the states during the entire
simulation and not only for the first spike (see figure . In line with previous statement we
chose the saturation bounds as +0.5.

4.2 Vehicle trajectory simulation

The goal of this simulation is to compare the behavior of system with added saturation
to that of system without saturation.

4.2.1 Results of the simulation

Relative Position
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Figure 37: Comparison of vehicle position trajectories of a 50 vehicle 1-D torus with and
without saturation.
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4 SYSTEMS WITH STATIC NONLINEARITIES
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Figure 38: Comparison of vehicle position trajectories of a 50 vehicle 1-D leader-follower
structure with and without saturation.

From figures[37]and [38)it is clear that systems with saturation still retain the accordion-like
behavior of systems without saturation.

4.3 Comparison between system with and without static nonlinearities

This simulation is focused on the effect of added saturation on scaling of performance
measure , individual output variances . Variances of systems with saturation are
compared to those of systems without saturation.

4.3.1 Results of the simulation
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Figure 39: Comparison of the scaling of local error individual output variance for 1-D torus
with and without saturation.
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Figure 40: Comparison of the scaling of deviation from average individual output variance for
1-D torus with and without saturation.

Figures [39] and [40] depict the scaling of performance measure variances for 1-D torus with
and without saturation.

The original assumption was that saturation will diminish the scaling rate of the variances.
This is clearly not the case. In fact variances of system with saturation scale slightly faster
than those of system without saturation. The explanation for this can be that while saturation
affects random disturbances it also limits the control effort and therefore diminishes the effect
of the controller on the behavior of the system.
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Figure 41: Comparison of the scaling of local error individual output variance for 1-D leader-
follower structure with and without saturation.
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Figure 42: Comparison of the scaling of deviation from average individual output variance for
1-D leader-follower structure with and without saturation.

The performance measure variances for 1-D leader-follower structure are shown in the

figures [41] and

It is important to note that the amount of time as well as computing power required to
run the simulations for systems with saturation was several times higher than for systems
without saturation. This together with very long settling time for variances of leader-follower
systems mentioned in chapter |2l meant that we were only able to run the simulation for counts
of vehicles up to 50. This should not however affect the result of the simulation.

In the figures [A1] and 2] we can see that the results for 1-D leader-follower are similar
to those of 1-D torus. The explanation for faster scaling rate of system with saturation will
therefore be the same.
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5 SECOND ORDER SYSTEM WITH PI CONTROLLER

5 Second order system with PI controller

In previous chapters we studied the behavior of the systems with state space model de-
scribed in @ and with either different type of state space controller or saturation. In this
chapter we created system with different state space model.

5.1 System description

The state space model:

x = Ax + Bu (43)
y=Cx (44)
62 0
C=(ky ky) D=(0) (46)

For the purpose of our simulations we chose the feedback gains k, = 1 and k, = 1, same as
in chapter

The state space model represents a vehicle similar to those from chapter [2| to which we
added resistance in the form of coefficient —a. To this system we added a PI controller. By
adding the PI controller we ensure that our system has the characteristics of system with
double integrator similarly to systems in previous chapters.

(i

PI Controller

1) B
p Stb 1 (L (k) BC)
s s2 +as
PI controller System
[kp kv] Laplacian
(a) vehicle model (b) entire system

Figure 43: Vehicle model and system block representation.

The vehicle model system with PI controller has two poles in 0. One originates from the
system itself and one is part of the controller. This secures the double integrator character.
Due to the added resistance, there is another pole in —a and the PI regulator adds zero in
—b. To ensure stability we need to make sure that b < a. For our purposes we have chosen
b=2, a=4.
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Figure 44: Zero-pole diagram of the system.
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Figure 45: Eigenvalues of system with resistance and PI controller with 1-D torus structure
and 1-D leader-follower structure.

Figure [45] shows eigenvalues of systems studied in this chapter. For both 1-D torus and
1-D leader-follower structure eigenvalues lie in the left half-plane of the complex plane. This
ensures the stability of the systems.

This series of simulations is motivated by assumption that, espetially for high vehicle
counts NN, the influence of the nonzero pole will be negligible, that is, the behavior of the
systems will be comparable to that of systems from chapter

Similarly to chapters [3]and [4] all simulations will be performed on 1-D toroidal structure
and 1-D leader-follower structure.
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5 SECOND ORDER SYSTEM WITH PI CONTROLLER

5.2 Vehicle trajectory simulation

Despite the differences of system studied in this chapter to those from previous chapters,
we belive that overall behavior of the system will be the same. That is, it will be possible to
observe the accordion motion in the results of the vehicle trajectory simulation of the platoon.

5.2.1 Results of the simulation
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Figure 46: Comparison of vehicle position trajectories of a 50 vehicle 1-D torus for system
with resistance and PI controller and double integrator system.
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Figure 47: Comparison of vehicle position trajectories of a 50 vehicle 1-D leader-follower
structure for system with resistance and PI controller and double integrator system.

In both figures [46 and [7] we can see that systems with resistance and PI controller retained
the accordion-like behavior of the double integrator systems from chapter 2 This confirms the
assumption that the characteristics of double integrator contained in the systems outweigh
the influence of nonzero pole of the system.
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5 SECOND ORDER SYSTEM WITH PI CONTROLLER

5.3 Comparison between system with resistance and PI controller and dou-
ble integrator

In line with assumptions and results presented above, we expect systems with resistance
and PI controller to have the same type of performance measure ((17)), (18)) individual output
variance (|16]) scaling as respective double integrator systems.

5.3.1 Results of the simulation
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Figure 48: Comparison of the scaling of local error individual output variance for 1-D torus
system with resistance and PI controller and double integrator system.
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Figure 49: Comparison of the scaling of deviation from average individual output variance for
1-D torus system with resistance and PI controller and double integrator system.
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Figure 50: Comparison of the scaling of local error individual output variance for 1-D leader-
follower system with resistance and PI controller and double integrator system.
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Figure 51: Comparison of the scaling of deviation from average individual output variance for
1-D leader-follower system with resistance and PI controller and double integrator system.

Figures [48 and [49] show scaling of variances of 1-D torus structures, figures [50]and [51] show
scaling of variances of 1-D leader-follower structures.

From the graphs it is clear that, while the systems with resistance scale at a lower rate, the
type of scaling is the same. This is true for both 1-D torus and 1-D leader-follower structure.

The results support our theory that the double integrator in the system has much larger
impact on its overall behavior than the nonzero pole.
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6 CONCLUSION

6 Conclusion

The theoretical part of the thesis was focused on desriptions of simulated systems. The
state space model was described as well as various communication structures that were later
implemented in Matlab enviroment. Theoretical findings, necessary to understand the moti-
vation of the simulations performed in the thesis, were presented. There were three types of
slimulations performed: Vehicle trajectory simulation, Performance measures simulation and
Scaling verification.

It is clear from the results of the simulations for 1-D, 2-D and 3-D communication struc-
tures, that the more dimensional the structure is the less pronounced is the accordion like
motion (the effect of the random disturbances on the formation) [2]. The results verify the
type of output variance scaling for 1-D, 2-D and 3-D toroidal structures from [2]. Simulations
for 1-D leader-follower structures show that these sctructures are more affected by random
disturbances than toroidal structure of the same dimension.

Systems with optimal state space control were compared to those with suboptimal state
space control. Optimal control slightly diminishes the influence of random disturbances. How-
ever, qualitatively results remain the same.

Saturation was added to the 1-D torus and 1-D leader-follower systems and its influance
on system behavior was studied. The addition of saturation only slightly increases the scaling
rate of the output variances of the systems.

We introduced new type of system representing vehicle with resistance controlled by PI
controller. Simulations for this type of system verify the assumption that characteristics of
the system, resulting from it containing two integrators, outweigh the influance of nonzero
pole.

This thesis satisfies first three tasks from the bachelor project assignment. After the agree-
ment with thesis supervisor the fourth task, the local Model Predictive Control, was changed
and the part studying second order system with PI controller was added instead.

I belive that the simulation results in this thesis provide useful data in the field of lo-
cal feedback control of large networked systems. The results in this thesis can be expanded
in several directions. Firstly, the fact that leader-follower system variances do not scale the
same way as variances of systems with toroidal structure is worth following upon. Addition-
ally, studying the scaling of other types of systems or systems with different communication
structure might bare valuable results.
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APPENDIX A CD CONTENT

Appendix A CD Content

Names and contents of all root directories are listed in table

Directory name Description

pdf this thesis in pdf format.

sources latex source code

figures matlab figures containing results of the simulations
scripts matlab scripts created during the course of this thesis

Table 2: CD Content

Folders figures and scripts contain subfolders corresponding with different simulations. For
scripts, in each subfolder there is one script that is fully commented for better understanding
of the simulation, other scripts contain only basic commentary. For more information see
readme.txt included on the CD.

42 /47



APPENDIX B ADDITIONAL PERFORMANCE MEASURE SIMULATIONS

Appendix B Additional performance measure simulations

Following figures show the comparison between performance measure , , (119) vari-
ances obtained via simulation and variances computed from Hy norm (20 for 2-D and
3-D torus.
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Figure 52: Comparison between local error variance of 2D torus obtained via simulation and
variance computed from Hs norm.
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Figure 53: Comparison between deviation from average variance of 2D torus obtained via
simulation and variance computed from Hy norm.
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Figure 54: Comparison between disorder variance of 2D torus obtained via simulation and
variance computed from Hy norm.
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Figure 55: Comparison between local error variance of 3D torus obtained via simulation and
variance computed from Hs norm.
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Appendix C Scaling of disorder for additional systems

Following figures show scaling of disorder ([19)) individual output variance for various
systems.
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Figure 58: Scaling of disorder individual output variance for 2-D torus.
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Figure 59: Scaling of disorder individual output variance for 3-D torus.
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Figure 60: Scaling of disorder individual output variance for 1-D leader-follower structure.
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Figure 61: Scaling of disorder individual output variance for 1-D leader-follower structure
with asymmetric control.
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