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Abstract 
The purpose of this thesis is to design a classifier for artefact detection in microelectrode 

recording signals that were recorded during deep brain stimulation surgeries. Firstly, the issues 

of Parkinson’s disease treatment, deep brain stimulation, microelectrode recording signals and 

existing artefact detection and segmentation methods are discussed. Secondly, two methods for 

artefact detection are designed. The first method is designed for power artefact detection in the 

time-domain using segments that are one second long. Its results are compared with the current 

annotation, questioning the convenience of the annotation. Then another – more general – 

method for artefact detection that uses machine-learning principles is suggested. Three features 

based on the spectrogram of the signal are designed and classifiers are created using the 

AdaBoost and the RUSBoost algorithms. The results are compared to a simple decision tree 

method and several existing methods based on the change-point detection. The final classifier 

based on the RUSBoost model working with one-second intervals proved capable of detecting 

artefacts with its 88.61% accuracy and balanced precision and specificity.  

 

 

 

 

 

 

 

 

 

Abstrakt 
Tato práce se zabývá navrhováním klasifikátorů pro detekci artefaktů v signálech 

nahraných mikroelektrodami v průběhu procedury hloubkové mozkové stimulace. Nejprve je 

nastíněna problematika léčby Parkinsonovy choroby, hloubkové mozkové stimulace, 

mikroelektrodových záznamů a současných způsobů detekce artefaktů a segmentace. Navrženy 

byly dvě metody pro detekci artefaktů. První metoda detekce je navržena pro detekci artefaktů 

v amplitudě signálu za použití jednovteřinových segmentů. Její výstup je porovnán se 

současnou anotací s výsledky zpochybňujícími vhodnost použití anotace. Následně je navržena 

metoda pro obecnou detekci všech pozorovaných typů artefaktů s využitím principů strojového 

učení. Navrženy jsou tři příznaky vycházející ze spektrogramu signálu a výsledné klasifikátory 

jsou vytvořeny pomocí algoritmů využívajících boosting. Výsledky jsou porovnány 

s jednoduchou metodou rozhodovacích stromů a existujícími metodami, založenými na detekci 

stacionárních oblastí. Konečný klasifikátor je založen na modelu RUSBoost. Výsledky po 

následné filtrování detekce na jednovteřinové intervaly jsou dostačující a klasifikátor 

s přesností 88.61% může být použit jako značná pomoc při odstraňování artefaktů. 
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1 Introduction 
Microelectrode recording (MER) is an important technique that helped 

neurophysiological scientists with breakthrough discoveries about the function of the nervous 

system. One of its important applications is the deep brain stimulation (DBS), a surgical 

procedure that reduces the symptoms of Parkinson’s disease (PD) by delivering voltage into 

certain areas of the brain, e.g. subthalamic nucleus (STN). This is accomplished with 

microelectrodes leading from neurostimulator to the target area of the the brain. DBS is also 

tested to help with other chronic conditions, such as chronical pain, depression and Tourette 

syndrome. During the DBS surgery, MER recordings are used to distinguish between different 

nuclei based on their neuronal activity and also for various research purposes. The amount of 

researchers working with MER data is growing and all tools that help with processing extensive 

MER signal databases are beneficial for the future of this field of research. 

This thesis is focused on offline detection of artefacts in MER signals. This detection 

should help researchers with the removal of contaminated segments from their database in order 

to improve any process performed with data. At the beginning I studied and described 

Parkinson’s disease and its treatment (Section 2.1 and 2.2), deep brain stimulation (Section 2.3) 

and properties of MER signals (Chapter 3). I have studied existing solutions and pointed out 

their drawbacks (Section 3.5), then I suggested my own solutions. Firstly, I designed and tested 

a simple method using an elementary feature but an adaptive threshold (Chapter 4). Then I used 

a more sophisticated machine learning method that involved an annotation of 500 signals, 

extracting and selecting features, choice of the proper model and evaluation (Chapter 5). 

The DBS toolbox for MATLAB® by Departments of Cybernetics, FEE, CTU was used 

for processing the database. The official Statistics and Machine Learning Toolbox was also 

extensively used during the whole process. 
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2 Deep brain stimulation in Parkinson’s disease 
In human bodies, MER signals are recorded during invasive brain surgeries, thus there 

are not many possibilities to obtain this data. Recordings from DBS surgeries for patients with 

Parkinson’s disease are the most frequent source of MER signals. 

2.1 Parkinson’s disease 

Parkinson’s disease is an incurable movement disorder characterized by rigidity, tremor, 

bradykinesia and akinesia [1]. The prevalence of this most common serious disorder in the 

world is 0.3% in industrialized countries. The disorder affects 1% of people who are older than 

60 years and 4% of highest age groups [2]. 

Cells forming basal ganglia have great influence on motoric skills. They communicate 

using a chemical compound called dopamine, which is produced in the part of brain that is 

called substancia nigra. The basal ganglia works improperly if neurons are dying in the 

substancia nigra which causes the lack of dopamine [3]. 

2.2  The history of PD treatment 

The existence of electricity inside living organisms is known since the 18th century. The 

brief electric discharge - action potential - was discovered in the 19th century by Emil du Bois-

Reymond and Ludimar Hermann. It took some time before a sufficient measuring device was 

invented. In 1921 Ida Henrietta Hyde invented the intracellular microelectrode. This led to 

many important discoveries about the nervous system and it generally shifted further studies of 

neurophysiology. 

MER became widely used during stereotactic movement disorder surgeries. In 1968, the 

standard L-DOPA (chemical) therapy for PD was introduced and replaced stereotactic surgery 

in late-stage patients. This therapy delivers lacking dopamine into the brain. However L-DOPA 

therapy has several drawbacks. The effect weakens during long-time usage, thus higher doses 

administrated more frequently are necessary. L-DOPA can also cause side-effects among which 

sickness and mental problems are listed. 

In 1982 several drug addicts used heroin batches contaminated with MPTP, 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine. This neurotoxin was synthesized in 1947 as an analgesic. 

All the drug addicts developed main symptoms of PD. This was the beginning of a great 

development in PD research. Scientists could study the disease on primates administered with 

MPTP. In the late 1980s, STN was identified as a potential therapeutic target for the 

assuagement of PD symptoms [4]. 

2.3 Deep brain stimulation 

The deep brain stimulation is a surgical procedure for PD patients. It is done by the 

insertion of a permanent electrode to the target nucleus. This electrode is connected to a 

pacemaker and stimulates the targeted area. To precisely select the trajectory for the electrode, 

magnetic resonance imaging is done before the operation. During the DBS surgery, the surgeon 

is visually evaluating MER signals by examining its time-domain and listening to the signal to 

determine the accurate location of the microelectrode. 
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DBS is very successful in assuagement of PD symptoms. It is used mostly for patients 

who do not respond to chemical therapy anymore. Patients have to visit their doctors 

periodically after the surgery so that the doctor can correct the pacemaker’s settings. Amplitude, 

length and frequency of stimulating pulses can be adjusted. Figure 2.1 shows diagram of patient 

with DBS. 

 

FIGURE 2.1: A DIAGRAM OF PATIENT WITH DBS 

Patient after DBS surgery with implanted electrodes and a pacemaker for settings and control [5]. 
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3 MER signals 
This chapter describes properties of MER signals and their recording. It also discuss 

different origin and types of artefacts that occurs during recording and current methods of said 

contaminated signal removal.  

3.1 Recording 

MER signals are recorded during the DBS surgery by microelectrodes with a tip diameter 

of about 1-10 μm. Most suitable materials for microelectrodes are tungsten and platinum-

iridium alloy. Microelectrode wire follows the calculated trajectory through the brain and stops 

at several positions where the signal is recorded. Most of the recordings use from 1 to 5 channels 

(in parallel inserted electrodes). Our data is recorded using the Leadpoint recording system by 

Medtronic, sampled with 24 kHz and filtered with 500 Hz to 5 kHz band-pass filter during the 

recording. The effect of this filter can be seen in Figure 3.1. With this filter, maximum 

frequency 𝑓𝑚𝑎𝑥 of signal is 5 kHz (upper cutoff frequency). According to sampling theorem, 

perfect reconstruction of signal is possible if 

 
𝑓𝑠 > 2𝑓𝑚𝑎𝑥, (1) 

where 𝑓𝑠 is the sampling frequency. Our data meets this condition by a wide margin. The data 

is oversampled by factor of 2.4, because it is 2.4 times higher than the Nyquist rate (2𝑓𝑚𝑎𝑥). 

3.2 Signal properties 

MER recordings are also called μEEG, but they are different from EEG signals. Unlike 

EEG, MER signals are not recorded on the surface of the head, but directly inside the brain. 

The diameter of microelectrode’s tip is comparable to the size of the neuron which allows the 

microelectrode to accurately record the activity of several closely positioned neurons. 

The MER signal consist of two main components: background (noise) and spikes (action 

potentials). In most studies, background is considered to be an unwanted element generated by 

the activity of distant neurons. However, for other purposes – such as nuclei identification in 

 

FIGURE 3.1: POWER SPECTRAL DENSITY OF CLEAN SIGNAL 

Effects of band-pass filter are visible although the change is gradual. The maximum 

frequency is only a half of the sampling frequency because the frequency spectrum of 

real function is symmetrical. 
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PD – background activity may be an important and investigated signal property. The spike is 

an event in which the electrical membrane potential of a neuron rapidly grows and decreases. 

Several neurons can contribute on the spike activity in the signal, but their position relative to 

the electrode defines the shape and the amplitude of the spike, thus they can be divided into 

clusters. In Figure 3.2, we can see two cluster of spikes detected by the spike sorting algorithm 

from clean signal recorded in STN and their mean. In the figure one can also see a part of this 

signal with red arrows pointing at detected spikes from cluster 1 and green arrows pointing at 

spikes from cluster 2. The red line represents the threshold evaluated by the algorithm – 

everything exceeding this threshold is considered a spike. 

 

3.3 The impact of artefacts on MER processing 

As mentioned in Section 2.3, the surgeon determines the accurate location of the 

microelectrode during the DBS surgery. There is a research working with enormous amount of 

raw data that is trying to automatize this decision. To do this, they need to design a classifier 

using data features (e.g. average power). However, 

raw data can contain a large number of artefacts that 

make valid feature extraction hard or even 

impossible. This problem does not apply to brain 

navigation only but also to many other researches in 

which scientists work with MER data. 

One of the basic operations with MRE data is 

the spike sorting, a procedure that tries to separate 

t=(0,5)∪(6,10) 

[Hz] 

t=(0,10) 

[Hz] 

34.6 43.5 

TABLE 3.1: SPIKE FREQUENCY DISPARITY 

Detected changes in neuronal mean firing 

rate if we ignore/include part of the signal 

with artefact. 

 

FIGURE 3.2: DETECTED SPIKES AND THEIR CLUSTERS 

Short stretch of a signal recorded in STN, detected and clustered spikes. Each cluster is 

generated by a different neuron. 
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action potentials (spikes) from background noise. See Figure 3.3. As we can see in Figure 3.4 

and Figure 3.5, the power artefact affects the spike detection algorithm and introduces an error 

in its results. For example, using this signal to determine spike frequency can cause major 

inaccuracy. See Table 3.1. 

Detecting and labelling or filtering artefacts in MER signals is a complex task. An 

algorithm [7][8] that should be able to select stationary (clear) parts of the signal has already 

been developed, but it has some problems that are discussed in Section 3.5.3. 

The goal of this thesis is to design a classifier for automatic detection of artefacts that 

could help anyone who is working with MER data to effectively identify raw data that are 

applicable for further use from unusable data in the sense of quality. This classification should 

be precise enough to label most of the basic artefacts without the need for more detailed 

distinction of artefact types. There should also be as few false positive classifications as possible 

to preserve most parts of clean signals.  

 

FIGURE 3.3: SPIKE DETECTION DEMONSTRATION 

The red stems with a circle at the top represents detected spikes. 

 

FIGURE 3.4: SPIKE DETECTION IN A SIGNAL WITH POWER ARTEFACT 

Artefacts clearly affect the spike detection. The frequency of spikes in the short segment 

where the artefact occurs is greatly increased. 
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FIGURE 3.5: A SIGNAL WITH ARTEFACTS AND DETECTED SPIKES 

The algorithm only detected spikes when artefacts occurred. Artefacts affected this 

spike detection highly. 
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3.4 MER artefacts 

When inspecting the signals in our database, we encounter artefacts varying in both 

temporal and spectral properties. For the evaluation of a detection system, it may be useful to 

divide the artefacts into several groups based on their properties. This way we can identify 

weaknesses of our algorithms and have an overview of how frequent different artefacts are in 

the data. According to the catalogue of artefact types that was made for the research at CTU 

FEE there are 5 types of artefacts. I only used 3 categories in this thesis because I found out 

that they often overlap. Also, it is not as critical to recognize the type of an artefact as to find 

it. 

3.4.1 Power artefacts 

This type of artefact is described as a change in the 

signal amplitude. Typically they are about 100 

milliseconds to 2 seconds long and the amplitude change 

is large, occasionally clipping out of the range. Using a 

spectrogram, they can be easily spotted as an 

amplification in the wide frequency spectrum as can be 

seen in Figure 3.6. 

Sources of these artefacts are mainly the patient’s 

movements during the recording. They are very 

common in MER and have great influence on most 

signal features. Having them labelled and excluded is 

necessary. 

3.4.2 Technical artefacts 

Technical or frequency artefacts are represented 

by a long-term constant frequency in the signal’s 

frequency spectrum, thus they cannot be physiological. 

They might not be easily spotted in the time-domain, 

especially if the artefact lasts for the whole recording, 

but they are easily identified in the spectrogram as long 

amplifications of certain frequency in time. This can be 

seen in Figure 3.7. In this figure we can also see that there is no significant effect on the 

amplitude of signal apart from the 8th second where the artefact intensifies. 

Technical artefacts mostly originate from the electromagnetic interference of other 

equipment such as lights and motors in the surgery room 

3.4.3 Baseline artefacts 

Baseline artefacts are the results of interferences of low frequencies that cause fluctuation 

in the baseline of the signal. They can be spotted as fluctuations in the detailed time-domain 

view of the signal and in its spectrogram as an amplification at the lowest frequencies. See 

Figure 3.8. Filters mentioned in Section 3.1 should eliminate these low frequency artefacts, but 

 

FIGURE 3.6: SHORT POWER ARTEFACT 

A very short power artefact and its 

effect on the spectrogram – a narrow 

stain in a wide frequency range. 
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the high-pass filter is very gradual and it is possible that very strong amplitudes retain in the 

filtered signal.  

 

FIGURE 3.7: A TECHNICAL ARTEFACT LASTING FOR THE WHOLE RECORDING. 

A technical artefact at frequency around 500 Hz. This artefact is very strong and has 

constant power during the whole recording. 

 

FIGURE 3.8: A BASELINE ARTEFACT IN THE SIGNAL. 

The fluctuation of the signal’s baseline is easy to observe. A dark stain of low 

frequency and long period can be observed in the spectrogram. 
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3.5 MER artefacts and existing detection methods 

During the recording, some phenomena, either of an electrical or biological origin, can 

interfere with the signal thus decreasing its signal-to-noise ratio. These interferences can be 

reduced with proper preparation and common pre-processing. Decent grounding of the 

equipment in the operating room can eliminate common ambient electrical noise. Other 

common artefacts are caused by the movement of brain in the cerebrospinal fluid which 

displaces neurons relative to the electrode. This movement is caused by respiration, pulse or 

the movement of other body parts that causes changes in the blood circulation and possibly in 

the intracranial pressure [4]. 

Despite all the precautions and care, artefacts are common in MER signals. As shown in 

Section 3.3, removing artefacts from signals is important in basic operations performed with 

MER data. Several methods are currently used.  

3.5.1 Manual detection 

The simplest and the most often used method is manual detection performed by trained 

evaluators. Generally this method can lead to good results, but it is highly dependent on the 

evaluator’s experience and the quality of the software. A visual inspection of signals at different 

levels of detail can reveal artefacts highly affecting waveform of the signal, but long-lasting 

artefacts can be easily overlooked. If a spectrogram, PSD or other visual representation is added 

the recognisability of artefacts is improved, but the evaluator’s interaction with the visualisation 

is increased thus time demands are raised as well. This can be a great drawback for vast 

databases like ours. The reliability of this method can be increased by the duplicity of detection 

of the same data, the comparison of the results among evaluators and the construction of the 

final database with the use of a decision based on the majority vote or something similar. 

3.5.2 ANOVA statistical comparison 

A simple algorithm for the detection of signals contaminated with artefacts is used in [6]. 

The authors reject the whole recording based on two conditions. Firstly, signals with an 

amplitude greater than the threshold of 300 μV are rejected. Secondly, root mean square (RMS) 

values of non-overlapping 20 ms windows for the first and the last two seconds of the signal 

are calculated. Then ANOVA (analysis of variance) is used to determine whether RMS values 

of the first and the last two seconds come from the same distribution at the statistical 

significance level 0.005. This method can be successful especially in their study that uses 

mainly RMS values, but is still unable to detect long-lasting artefacts or artefacts occurring 

between the first and the last two seconds of the signal. Also rejecting the whole signal may be 

an unnecessary waste of the signal in the case of short artefacts that are also common in MER 

signals. 

3.5.3 Stationary segmentation 

A more advanced method was developed by Aboy and Falkenberg in [7][8]. MER data is 

used during the DBS surgery as a reliable tool for the surgeon. It helps him to accurately 

determine the position of the microelectrode. It is believed that 3 second is the minimum length 

needed to accurately determine the position. The algorithm is designed to find the longest 

stationary segment in the signal to help the surgeon with his decisions. 
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Standard score (normalization) is evaluated from signal x as 

 
𝐲 =

𝒙−𝜇𝒙

𝜎𝒙
, (2) 

where 𝜇𝒙 is the mean of x and 𝜎𝒙 is the standard deviation of x. Then the signal is divided into 

N non-overlapping segments 𝐬  with equal length t, 

 𝐬 = {𝑠1, 𝑠2, … , 𝑠𝑁}. (3) 

Autocorrelation function r is evaluated for every segment of vector 𝐬 forming vector 𝐚 as 

 𝑎𝑖 = 𝑟(s𝑖), 𝑖 ∈ 〈1, 𝑁〉, (4) 

 

 𝐚 = {𝑎1, 𝑎2, … , 𝑎𝑁}. (5) 

Variance of every autocorrelation function is evaluated into vector 𝒗 as 

 𝑣𝑖 = 𝑣𝑎𝑟(𝑎𝑖), 𝑖 ∈ 〈1, 𝑁〉, (6) 

 
𝒗 = {𝑣1, 𝑣2, … , 𝑣𝑁}. (7) 

From the vector of variances 𝒗, the algorithm calculates the vector of ratios (distances) 𝒓 of all 

adjoining elements as 

 
𝑟𝑖 =

𝑚𝑎𝑥(𝑣𝑖, 𝑣𝑖+1)

𝑚𝑖𝑛(𝑣𝑖 , 𝑣𝑖+1)
, 𝑖 ∈ 〈1, 𝑁 − 1〉, (8) 

 
𝒓 = {𝑣1, 𝑣2, … , 𝑣𝑁−1}, (9) 

where the nominator is always the higher value and the denominator is always the smaller value. 

The vector 𝒓  represents the distance between neighbouring segments. When this distance 

is higher than a certain threshold, time boundary between those neighbouring segments is 

considered to be a transition. A part of the signal with the greatest difference between the start 

and the end of this part is the longest stationary segment and is returned as the result. 

My colleagues from the Neuroscience research group at the Department of Cybernetics 

further extended this algorithm to find a non-contiguous stationary segment in the signal which 

reduces the wastage of clean parts of the signal discarded by the original version. It is more 

suitable for the comparison with a manual annotation. The ratio of variances (distance) is 

evaluated for every possible pair, not only for the adjoining elements, forming a distance 

matrix 𝑅 as 

 
𝑟𝑖,𝑗 =

𝑚𝑎𝑥(𝑣𝑖, 𝑣𝑗)

𝑚𝑖𝑛(𝑣𝑖 , 𝑣𝑗)
, 𝑖 ∈ 〈1, 𝑁 − 1〉, 𝑗 ∈ 〈1, 𝑁 − 1〉, (10) 

 

𝑅 = (

0 𝑟1,2 ⋯ 𝑟1,𝑁−1

𝑟2,1 0 ⋯ ⋮

⋮ ⋮ ⋱ ⋮
𝑟𝑁−1,1 𝑟𝑁−1,2 ⋯ 0

). (11) 

Values of R higher than the threshold are replaced by ones and other values are replaced 

by zeros. Greedy algorithm searching for longest sequence of zeros is applied in graph created 
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from transition matrix R – 0 is a transition, 1 is not a transition. The outcome of this process is 

represented by the indexes of the segment that does not have to be contiguous.  

The main drawback of these methods is that they do not use prior information about the 

data other than the search of an ad-hoc threshold. As a result, if a long-lasting stationary artefact 

is present, it might be the longest stationary segment and thus it would be returned as the result. 

Another problem are signals with large variability such as signals recorded in STN. Its 

variability causes false transitions and greatly shortens the final segment although the signal is 

clean. 
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4 Power artefact detection in time-domain 
The first out of the two designed artefact classifiers is focused on power artefacts 

detection, i.e. the changes of amplitude in time-domain. This method is based solely on the time 

course of MER signals and it uses an iteratively adaptive threshold. The results were not 

sufficient, therefore I developed another, more sophisticated method in Chapter 5. 

4.1 Database 

Our actual database consist of 18384 MER signals from 71 patients with the total length 

of almost 50 hours. The standard length of signals is 10 seconds but there is a small percentage 

of shorter signals. The term “exploration” means one trajectory performed by electrodes and 

“positions” are the places where the electrode stops for recording. The medical nomenclature 

distinguishes several types of electrodes: central, anterior, posterior, lateral, and medial 

according to their position in the brain. All these signals were obtained in the Na Homolce 

Hospital in collaboration with the Department of Neurology, 1st Faculty of Medicine, Charles 

University in Prague. The database is structured as follows: 

 Patients – 71 patients 

 Explorations – 0 to 4 explorations, mean 1.9 

 Positions – 18 to 62 positions, mean 36.7 

 Electrodes – 1 to 5 electrodes, mean 3.7 

Every signal has its own ID structured [patient id]t[exploration id]p[position id][first 

letter of electrode name]. For historical reasons and its backwards compatibility the exploration 

is not from 1 to 4 as expected, it is rather an exploratory id. The information about the nucleus 

was annotated by the neurophysiologist during the surgery and thus it is now available for each 

signal. 

Artefacts of about 31% of signals were annotated manually by 5 trained evaluators from 

the Department of Cybernetics, FEE, CTU. They judged signals by the visual inspection of the 

time-domain and the spectrogram and by listening to the signal trough headphones. The 

annotation was divided into 5 categories according to the type of the one-second segments.  

4.2 Test and training set 

The test and the training set were selected from our signal database. 100 training and 50 

test signals were selected randomly, except for the distribution of nuclei where the signals were 

recorded. The distribution was defined to fit the nuclei distribution of the whole database. The 

artefact annotation was also used from the database but it was filtered to only contain power 

artefacts, thus other artefacts were considered clean signals. Also, one special dataset where 

technical artefacts were not filtered was created for comparison in Figure 4.1. 

4.3 Feature 

The feature used for the detection is simply a standard deviation (STD) of signal segment. 

The STD is a root mean square deviation from mean [9], computed according to 
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𝑦 = 𝑆𝑇𝐷(𝒙) = √
1

𝑁 − 1
∑(𝑥𝑖 − �̅�)2

𝑁

𝑖=1

, (12) 

where 𝒙 is the signal, �̅� is the mean of the signal 𝒙 and 𝑁 is the number of samples of the signal 

𝒙. 

For its properties this feature is good for detecting power artefacts assuming sufficiently 

long intervals from which it is calculated. However, it is not very suitable for the detection of 

technical artefacts which do not have a great impact on the amplitude of the signal. This can be 

observed in Figure 4.1. For this figure, feature vector of every signal was normalized by 

dividing it by its own sum to become comparable between signals with different power. This 

was necessary because unlike my algorithm, ROC uses a constant threshold for the whole 

dataset. 

4.4 Algorithm 

The idea for this algorithm came from a simple observation of the signal which showed 

that there can be power artefacts of different sizes in one signal. The algorithm simply repeats 

the threshold evaluation until no artefact is detected. 

Firstly, the signal is divided into N segments of the same length forming the vector 𝒙. The 

feature (STD) is evaluated for every segment forming the vector 𝐬 as 

 

FIGURE 4.1: ROC CURVES COMPARISON 

A comparison of several ROC curves of the STD feature. It is clear that 

the feature is better for detecting the power artefacts. 
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 𝒙 = {𝒙1, 𝒙2, … , 𝒙𝑁}, (13) 

 s𝑖 = 𝑆𝑇𝐷(𝒙𝑖), 𝑖 ∈ 〈1, 𝑁〉, (14) 

 
𝐬 = {𝑠1, 𝑠2, … , 𝑠𝑁}. (15) 

The vector of classifications 𝒓 for every segment is generated and filled with zeros, 

 
𝒓 = {0,0, … ,0}, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝒓 = 𝑁. (16) 

Then the threshold 𝑇 is evaluated as 

 
𝑇 = 𝑠𝑡𝑑(𝐱) × 𝐶, (17) 

where 𝐶 is an ad-hoc constant evaluated in Section 4.5. 

Every segment with a feature s𝑖 higher than the threshold 𝑇 is considered an artefact and 

removed from the vector 𝐬. The elements of the vector 𝒓 with the same indexes as segments 

considered to be artefacts are changed from 0 to 1. If no artefact is found, the algorithm ends. 

If an artefact is found, the algorithm goes back to the threshold 𝑇 calculation which is, as before, 

evaluated from the vector 𝐬  but without segments labelled as artefacts. The result of this 

algorithm is a logical vector where 1 stands for the artefact in the segment and 0 stands for the 

clean segment. The MATLAB code of this detection can be seen in Figure 4.3. 

 

FIGURE 4.2: A DETECTION WITH SEVERAL DIFFERENT THRESHOLDS 

An example of a successful detection with 3 thresholds. The first threshold detected the highest 

artefacts, the second threshold detected a smaller artefact and the last threshold detected nothing 

and the algorithm ended. 
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One instance of detection can be observed in Figure 4.2. The first iteration detected 3 

segments with a very significant power artefact. After leaving out the segments with detected 

artefacts, the second threshold was evaluated and detected a 4th segment with an artefact. The 

third threshold was above the STD of all remaining segments, thus they were considered clear. 

4.5 Training ad-hoc constant 

To fit with our annotation, one-second segments were used during the training, thus 𝑁 =

10 . The threshold  𝑇  is calculated from the STD of the whole vector 𝐬  multiplied by the 

constant  𝐶  which had to be higher than 1 because we are trying to find segments with a 

relatively higher STD than the STD of other segments. For example if 𝐶 = 1.4 we say that 

every segment with STD 1.4 times or more the whole signal’s STD is an artefact. 

To find the ideal value of this constant the training set was periodically classified with 

the values of 𝐶 from 1.01 to 2 with 0.01 step. The confusion matrix, the precision, the sensitivity 

and the F1 score were evaluated as 

% Data - signal 
% Interval - number of wanted intervals (recommended 10) 
% C - Ad-Hoc constant (recommended 1.18) 
% create the vector for the features 
s=zeros(1,intervals);  
% length of every segment 
intSamples=int32(length(data)/intervals);  
for i=1:intervals 
    % divide the signal into segments 
    x(i,:)=data((i-1)*intSamples+1:i*intSamples-intervals); 
    % evaluate the feature for every segment 
    s(i)=std(x(i,:));  
end 
% create the vector for classifications 
r=zeros(1,intervals); 
newArtif=1; 
% while new artefact is found 
while(newArtif==1) 
    % evaluate the threshold from the vector x 
    T=nanstd(reshape(x, [1 size(x,1)*size(x,2)]))*C; 
    newArtif=0; 
    % go through all segments 
    for i=1:intervals 
        % ignore the segments with an artefact 
        if(r(i)==1) 
            continue; 
        end 
        % if segments STD is higher than the threshold 
        if(s(i)>T) 
            % label as an artefact 
            r(i)=1; 
            % new artefact was found 
            newArtif=1; 
            % ignore this segment next iteration 
            x(i,:)=NaN; 
        end 
    end 
end 

FIGURE 4.3: THE MATLAB CODE OF THE CLASSIFIER 

The code of power artefact detection with a commentary. 
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𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 = (

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

), (18) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
, (19) 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
, (20) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
. (21) 

The maximum 𝐹1 𝑠𝑐𝑜𝑟𝑒  of 0.319  was reached for constant  𝐶 = 1.18 . Its confusion 

matrix can be seen in Table 4.1. 

4.6 Results 

After fitting the constant on the training data we evaluated the classifier performance on 

the test set. The test set’s results were better than the results obtained during the training as can 

be seen in Table 4.2. 

The results do not look well if we only focus on the numbers. There are not many cases 

in which the classifier labelled the signal as clean even though the annotation indicated there 

was an artefact. However, there are many cases where the signal was labelled as an artefact by 

the classifier but not by the annotation. 

 
Artefact 

Clean 

signal 

Classified as 

artefact 

15 

(36%) 

27 

(64%) 

Classified as 

clean signal 

37 

(4%) 

921 

(96%) 

Accuracy 

93.6% 

Sensitivity 

29% 

Specificity 

97% 

TABLE 4.1: CONFUSION MATRIX AT 

THRESHOLD LEVEL C = 1.18 

 
Artefact 

Clean 

signal 

Classified as 

artefact 

20 

(51%) 

19 

(49%) 

Classified as 

clean signal 
9 

(2%) 

452 

(98%) 

Accuracy 

94.4% 

Sensitivity 

69% 

Specificity 

96% 

TABLE 4.2: CONFUSION MATRIX OF TEST SET 
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If we look at the plots of all detections compared to the annotation, we find that the 

problem might be in the annotation. The annotation often misses an artefact that was detected 

by my classifier (Figure 4.4). I also encountered segments that do not meet the definition of a 

power artefact but were still considered artefacts in the annotation (Figure 4.6).  

To conclude, the classifier is not able to fit on the training data adequately which resulted 

in a high bias. However, the visual inspection of the signals shows much better results than the 

ones that can be seen in the numbers. This might be because of the poor annotation of the 

training and testing datasets. The classifier is designed only to find power artefacts, thus long 

technical artefacts and other artefacts that do not affect the amplitude of the signal are not 

detected as seen in Figure 4.5. 

 

FIGURE 4.4: AN ARTEFACT DETECTED BY THE CLASSIFIER, BUT MISSED BY THE ANNOTATION 

An example of an error in the annotation. The obvious artefact is unlabelled. 
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FIGURE 4.6: A WRONG ANNOTATION OF THE ARTEFACT 

An example of an error in the annotation. This segment has no significant variations in amplitude 

and it is clearly not a power artefact. 

 

 

 

FIGURE 4.5: THE TECHNICAL ARTEFACT IS NOT DETECTED 

A perfect detection of a power artefacts in the signal. The technical artefact that lasted for the 

whole recording and was not detected. 
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5 Machine-learning method 
Machine learning is a comprehensive subfield of computer science that deals with 

algorithms that are able to learn from data and then make predictions on new samples. In the 

supervised paradigm, the algorithm is building a model – classifier – from data given as a 

training set. Machine learning is divided into two main groups. The first one is called supervised 

learning. The training set is provided with labels or costs of each sample. The information about 

the cost or the label is given usually by manual labelling of the training data. The second group 

is called unsupervised learning. It uses no prior knowledge about the data in the training set. 

The algorithm is trying to build a model using clustering – grouping data samples with similar 

properties. Supervised learning is suitable for example for weather forecasting. The model can 

be based on previous observations of weather in the past, for example the atmospheric pressure, 

humidity, wind direction and strength, the season, the weather in previous years and other. 

Unsupervised learning is suitable for data mining, thus searching for patterns and structures in 

the data. 

The design cycle of the classifier with supervised learning includes data collection and 

annotation, feature extraction and selection, model selection, training, testing and evaluation 

[10]. 

5.1 Basic idea for this method 

All methods mentioned above used large segments (from 0.5 to 1 second). My intention 

was to create a classifier that could be more precise than that. As seen before, not every artefact 

is easy to spot in the time-domain of the signal but most are clearly visible in the spectrogram. 

Therefore, my classifier is based on features extracted from the spectrogram. This means that 

the signal is divided into segments – there is no other way to extract the features from the signal, 

only if the signal itself was considered to be a feature. We selected a fast Fourier transform 

(FFT) calculated from 1000 samples windows with 50% overlap from which we got 479 

segments for a 10 second signal sampled at 24 kHz. Every segment is approximately 21 ms 

long which is fine enough for our intentions. 

Every feature mentioned further in this chapter is defined to start with the vector 𝒔, 

 𝒔 = {𝒔𝟏, 𝒔𝟐, … , 𝒔𝑵}, (22) 

evaluated from vector 𝒙, 

 𝒙 = {𝒙1, 𝒙2, … , 𝒙𝑁}, (23) 

of N 50% overlapping segments created from the input signal. The elements of the vector 𝒔 are 

evaluated as  

 
𝒔𝒊 = |𝑭𝑭𝑻(𝒙𝑖)|𝟐, 𝑖 ∈ 〈1, 𝑁〉, (24) 

where 𝑭𝑭𝑻(𝒙𝑖) is the fast Fourier transform of signal 𝒙𝑖. 

 

FIGURE 5.1: THE DESIGN CYCLE OF THE CLASSIFIER WITH SUPERVISED LEARNING 

Data collection and 
annotation

Feature 
extraction 

and selectrion

Model 
selection

Training Evaluation
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We can also define the vector 𝒂 as a vector of annotations related to segments from the 

vector 𝒙, where 1 at position with the index 𝑖 means that the segment 𝒙𝑖  contains an artefact 

and 0 at position with the index 𝑖 means that the segment 𝒙𝑖 does not contain an artefact. 

5.2 Data collection and annotation 

The data was selected from the database of 18384 MER signals described in Section 4.1 

and the test and the training set were obtained the same way as in Section 4.2 – keeping the 

distribution of the nuclei where the signals were recorded similar to the distribution of the whole 

database. The only difference from Chapter 4 is that a larger database of 350 training and 150 

test signals was selected for this method. Also this method uses a much finer signal annotation 

than the 10 segments used previously. Therefore a new, more accurate annotation had to be 

made. 

5.2.1 Annotation 

The annotation was performed using a MATLAB function written by my supervisor Ing. 

Eduard Bakštein. This function provided a visualization of the time-domain and the 

spectrogram of the signal with fixed x axis, thus zooming affected both graphs. The artefacts 

were labelled simply by typing the number of the artefact types and then clicking into the time-

 

FIGURE 5.2: THE COMPARISON OF THE ANNOTATION 

Differences in the annotation between three evaluators. Because it is hard to tell whether an artefact is 

present or not, it is impossible for several different evaluators to come to the same conclusion. In situations 

like this, majority vote helps to improve the reliability of the annotation. 
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domain of the signal. Three evaluators – I, my supervisor and my colleague Tomáš Grubhoffer 

– labelled the same data. Figure 5.3 shows the tool during the annotation. 

I have ignored the types of the artefacts to preserve this problem as a binary classification 

and used a majority vote: two or more evaluators had to agree on the matter of labelling a part 

of the signal as an artefact to create the final training and test set. 

The results of the annotation were sufficient. Both in the training set and in the test set all 

3 evaluators agreed on only about 40% of the artefacts and the other 60% were usually agreed 

on by me and one of the other evaluators. This might have been caused by the difficulty of the 

definition of the artefact’s borders. However, with the final annotation the total agreement 

(clean and artefacts) of the evaluators was 86% for me and 96% for the other 2 evaluators. The 

comparison of the annotation of different evaluators can be seen in Figure 5.2. 

 

FIGURE 5.3: THE ANNOTATION TOOL 

The cyan part of the graph represents the annotated power artefact. The black cross is used to define the 

start and the end of the artefact. The tool is operated in the command line. 
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One of the problems I encountered during the inspection of the results was labelling the 

constant frequency artefacts that lasted for the whole recording. Some of them were labelled 

and some of them were not. Because of the previously mentioned problem with the artefact’s 

border definition, the surroundings of the artefact might also be annotated as an artefact. This 

introduces an error that might make the separation of the 2 classes – clean signal and artefact – 

impossible. 

5.3 Feature extraction and selection 

The complexity and difficulty of our problem inheres in the feature extraction. In the 

example of the weather forecast we could instantly get the information from sensors that could 

be used as features but in our classification we only have signals. That means that we have to 

find the properties of the signal or the properties of something derived from the signal - such as 

the spectrogram. As mentioned above in Section 5.1, all features in our classifier were evaluated 

from the spectrogram. The spectrogram is also cut from the top at about 4790 Hz because 

everything above 5 kHz is filtered by the band-pass filter mentioned in Section 3.1. 

The selection of the features is crucial for the final classifier. For example, in weather 

forecasting we probably would not care about the actual dollar exchange rate. Bad features can 

introduce noises to our classifier and therefore have a negative impact on the results. 

5.3.1 ROC and AUC 

One of the ways of measuring the performance of features is using the Receiver Operating 

Characteristic (ROC) curve and the Area Under Curve (AUC). The ROC curve is calculated 

from the true positive and the false positive rate of different thresholds in the classifier. In the 

case of feature selection the threshold is simply shifted between the minimum and the maximum 

value of the feature. The area under the ROC curve (AUC) is also a good representation of the 

feature performance. If the AUC is less than 0.5, the feature is worse than chance and if the 

AUC is 0.5 it is exactly the same as chance. Generally the AUC should be at least 0.7 or more 

to be able to say that the feature is good. 

5.3.2 Feature 1: Standard deviation of frequency spectrum 

The first feature is very similar to the feature used in Section 4.3 but instead of the 

standard deviation (STD) of amplitude, the STD of frequency spectrum is evaluated. The idea 

of this feature is based on an observation that showed that the frequency spectrum of 

contaminated parts of the signal contains high values at contaminated frequencies, thus the STD 

is higher. 

The vector of features 𝒓 is evaluated as the STD of every element of the vector 𝒔 defined 

in Section 5.1 as 

 𝑟𝑖 = 𝑆𝑇𝐷(𝒔𝒊), 𝑖 ∈ 〈1, 𝑁〉, (25) 

 𝒓 = {𝑟1, 𝑟2, … , 𝑟𝑁}. (26) 

Figure 5.4 shows feature values in relation with the spectrogram. The values are 

significantly higher during the time period of the artefact. 
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5.3.3 Feature 2: Kolmogorov-Smirnov difference from mean frequency spectrum 

During the evaluation of this feature, the mean power spectrum 𝒎𝑭𝑺 first has to be 

calculated from the training data. The segments of the signal labelled as clean are selected and 

the normalized power spectral density is computed for each segment according to Equation 

(24). 𝒎𝑭𝑺 is the mean of all evaluated power spectrums. The spectrum of the tested segment 

is then compared to the 𝒎𝑭𝑺 using Kolmogorov-Smirnov test.  

The two-Sample Kolmogorov-Smirnov test (KS2 test) is a non-parametric statistical test 

used to determine whether two datasets differ significantly. It is done by testing the maximum 

difference between the empirical cumulative distribution functions (CDFs) of the two datasets. 

The CDF is the probability that the value of a random variable is less than the given value. 

The CDF function �̂�(𝑥, 𝒚) for the function (vector) 𝒚 is defined [11] as 

 

�̂�(𝑥, 𝒚) = �̂� =
1

𝑁
∑ 𝛾{𝑦𝑖 < 𝑥}

𝑁

𝑖=1

, (27) 

where 𝑦𝑖 is i-th element of function 𝒚, 𝑁 is number of elements of function 𝒚 and 

 
𝛾{𝑦𝑖 < 𝑥} = {

1    𝑖𝑓 𝑦𝑖 < 𝑥   
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

. (28) 

 

FIGURE 5.4: FEATURE 1 CALCULATED FROM A SIGNAL WITH A GREAT ARTEFACT 

This figure shows the behaviour of the feature. It is obvious that its value is significantly higher during the 

artefact. 
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As an analogy we can see the relationship between the probability density function (PDF) 

and the CDF in Figure 5.5.  

After evaluating the CDF of both functions, the KS2 test finds the maximal difference 

between those functions 𝐷(�̂�1, �̂�2) as 

 𝐷(�̂�1, �̂�2) = max
𝑥

(|�̂�1(𝑥, 𝒚) − �̂�2(𝑥, 𝒚)|). (29) 

The KS2 test now uses the table to determine the statistical significance of this value in 

order to reject or pass the null hypothesis. However, this feature uses only the maximal 

difference D. 

 The vector of features 𝒓 is evaluated using the vectors 𝒔 and 𝒂 defined in Section 5.1. 

Before any feature evaluation can start, the 𝒎𝑭𝑺 is evaluated from the training set as described 

above. 

Firstly, every element of  𝒔 is normalised by being divided by its sum and stored back in 

the vector 𝒔. Then every element of the vector 𝒔 is compared with the 𝒎𝑭𝑺 using the KS2 test 

taking the difference 𝐷(�̂�1, �̂�2) as the result and storing it into the vector of features 𝒓 as 

 𝑟𝑖 = 𝐷(�̂�1(𝑥, 𝒔𝒊), �̂�2(𝑥, 𝒎𝑭𝑺)), 𝑖 ∈ 〈1, 𝑁〉, (30) 

 𝒓 = {𝑟1, 𝑟2, … , 𝑟𝑁}. (31) 

Figure 5.6 shows feature values in relation with the spectrogram. The values are 

significantly higher during the time period of the artefact. 

 

FIGURE 5.5: PDF AND CDF OF THE FUNCTION WITH NORMAL 

DISTRIBUTION 

This figure shows that CDF is an integral of PDF 
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5.3.4 Feature 3: Maximal difference from the mean frequency spectrum 

This feature is based on the presumption that the frequency spectrum of segments with a 

clean signal have a similar shape and the frequency spectrums of segments with artefacts greatly 

differs. This feature uses the mean of the frequency spectrums of clean signals 𝒎𝑭𝑺 evaluated 

in Section 5.3.3.  

The vector of features 𝒓 is evaluated from the vector 𝒔 defined in Section 5.1 as 

 
𝑟𝑖 = max (|

𝒔𝒊

∑ 𝒔𝒊
− 𝒎𝑭𝑺|) , 𝑖 ∈ 〈1, 𝑁〉, (32) 

 
𝒓 = {𝑟1, 𝑟2, … , 𝑟𝑁}. (33) 

Figure 5.7 shows feature values in relation with the spectrogram. The values are 

significantly higher during the time period of the artefact. 

 

FIGURE 5.6: FEATURE 2 CALCULATED FROM A SIGNAL WITH A GREAT ARTEFACT 

This figure shows the behaviour of the feature. It is obvious that its value is higher during the artefact. 
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5.3.5 Feature selection 

The performance of features of certain problems can be measured using the ROC and the 

AUC mentioned in Section 5.3.1. ROC curves and AUC values in Figure 5.8 are calculated 

from all of the 3 features evaluated from the training data. Feature 3 performed the best. All 3 

features will be used during the modelling. 

 

FIGURE 5.7: FEATURE 3 CALCULATED FROM A SIGNAL WITH A GREAT ARTEFACT 

This figure shows the behaviour of the feature. It is obvious that its value is higher during the artefact. 
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5.4 Model selection 

The model selection is one of the most crucial parts of the classifier designing. Every 

model has its advantages and disadvantages. To properly select the model we have to consider 

the properties of our data. Our problem is binary, thus it does not need models specialised for 

multiclass classification. One of the most important properties of our data is that our classes are 

imbalanced. According to the annotation, we only have 16.7% of samples with artefacts and 

83.3% of clean samples. That means that if everything was classified as a clean signal, we 

would still get the accuracy of 83.3%. 

5.4.1 Boosting 

The boosting is a technique that improves the accuracy of any learning algorithm. It is 

based on creating an ensemble of weak learners [10]. For better understanding, an example of 

boosting with 3 component classifiers for a binary problem is presented. 

We start with the training set 𝐷 with 𝑛 samples. Firstly, the algorithm creates a subset of 

𝑛1 random samples from the training set 𝐷  and creates training set 𝐷1 . The classifier 𝐶1  is 

trained from the training set 𝐷1. The decision trees, kNN and discriminant analysis are mostly 

used as component classifiers. These classifiers are called weak learners because they have 

minimum requirements for having an accuracy higher than chance. If this learner has a high 

 

FIGURE 5.8: ROC CURVES AND THE AUC OF ALL FEATURES 
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accuracy, the problem is too simple and there is no need for boosting. A new training set 𝐷2 is 

created from the remaining samples in the training set 𝐷 to satisfy the condition that half of the 

samples in 𝐷2 are misclassified by 𝐶1 and half of them are classified correctly. The classifier 

𝐶2 is trained from the training set 𝐷2. The last training set 𝐷3 is created from the remaining 

samples in the training set 𝐷 that have different classifications in both previously evaluated 

classifiers 𝐶1  and 𝐶2 . The last classifier 𝐶3  is trained from the training set  𝐷3 . During the 

classification, the new sample is first classified with the classifiers 𝐶1 and 𝐶2. If they return the 

same class, the class is taken as the result. If they disagree, the sample is classified by the 

classifier 𝐶3. 

One of the questions is how to choose 𝑛1 to use as many samples from the training set 𝐷 

as possible. The answer varies according to the difficulty of the problem. In practice, this 

problem is solved by running this boosting method several times and adjusting 𝑛1. The boosting 

method described above can be modified to use with any number of component classifiers and 

it can also be applied to multiclass problems.  

5.4.2 AdaBoost 

The AdaBoost is the most popular variant of boosting methods. Its name stands for 

“adaptive boosting”, because it allows adding weak learners until some cost (for example a 

training error) is minimised under the defined value and every iteration weights the samples 

from the training set to select problematic samples for the next component classifier [10]. 

The algorithm starts with the training set  𝐷  with 𝑁  samples. The samples from the 

training set 𝐷 have uniformly distributed weights at the beginning of the algorithm. On each 

iteration 𝑘, the classifier 𝐶𝑘 is trained from the training set 𝐷𝑘 which is randomly selected from 

the training set 𝐷 according to the vector of the weight of samples 𝑾𝒌 – the greater the weight 

 

FIGURE 5.9: THE WEIGHT OF A COMPONENT CLASSIFIER BASED 

ON A TRAINING ERROR 

It is clear from this figure that if the classifier has a training error 

higher than 0.5, the weight of the classifier is negative. 
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of ith sample 𝑊𝑘(𝑖), the higher the probability that sample will be chosen. The training error 𝐸𝑘 

of 𝐶𝑘 is measured on the training set 𝐷. The weight of the component classifier 𝛼𝑘 is calculated 

from the training error 𝐸𝑘 as 

 
𝛼𝑘 =

1

2
ln (

1 − 𝐸𝑘

𝐸𝑘
). (34) 

The weights of samples are updated as 

 
𝑊𝑘+1(𝑖) = 𝑊𝑘(𝑖)𝑒𝛼𝑘, 𝑖 ∈ 〈1, 𝑁〉, (35) 

if ith sample was not correctly classified by 𝐶𝑘 and  

 
𝑊𝑘+1(𝑖) = 𝑊𝑘(𝑖)𝑒−𝛼𝑘, 𝑖 ∈ 〈1, 𝑁〉, (36) 

if ith sample was classified correctly. The vector of the sample weights 𝑾𝒌+𝟏 is then normalized 

by being divided by its own sum. This procedure is repeated until the training error 𝐸𝑘 is smaller 

than the defined threshold or until 𝑘 reaches the defined 𝑘𝑚𝑎𝑥 value. 

This way the algorithm constructs classifiers on difficult samples. The final classification 

of the binary problem 𝐻(𝒙) of the sample 𝒙 is determined as 

 

𝐻(𝒙) = sign [ ∑ 𝛼𝑘ℎ𝑘(𝒙)

𝑘𝑚𝑎𝑥

𝑘=1

], (37) 

where ℎ𝑘(𝒙) is the class label (1 or -1) defined given to the sample 𝒙 by the classification of 

𝐶𝑘. 

The MATLAB implementation of the AdaBoost introduces another parameter – the 

learning rate 𝜇. This parameter has values from the interval (0, 1⟩ and represents the “speed” of 

learning. It simply multiplies 𝛼𝑘 in every iteration to lower its influence. Even though there are 

some studies [13]  that contradict this opinion, it is said that a lower learning rate should prevent 

overfitting. The value 0.1 (which is used often, for example it is default value in the MATLAB’s 

Classification Learner) means that it is slowing down the learning process 10 times. 

5.4.3 RUSBoost 

Although the methods mentioned above are models for building very efficient classifiers, 

they do not solve the problem with skewed data – such as in our dataset, where the clean signal 

class is heavily prevalent. This problem is usually solved with so-called oversampling or 

undersampling. 

Oversampling is a method based on generating samples from the minority class to 

compensate its lack. One of these methods is called SMOTE, described in [14]. It is using 

extrapolation to generate new samples to the minority class. Its drawback is a computational 

complexity, especially when used in the boosting algorithm. Also, great attention has to be paid 

to the extrapolation method so that the simulated samples are sufficiently representative of their 

class and no additional noise is introduced. 

Undersampling is a method based on removing samples from the majority class. Simply 

removing a part of the training data set would be a great loss of information, but in conjunction 

with the boosting algorithm, the loss can be minimal. This is how the RUSBoost, based on 
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random undersampling (RUS) was created. Random undersampling randomly removes samples 

from the majority class to balance the classes. 

The RUSBoost expands the AdaBoost so that at the beginning of every iteration 𝑘 the 

dataset 𝐷𝑘 is created using random undersampling, but it still respects weights of samples [15]. 

This way all samples have a chance to be used during the whole procedure – in one of the 

component classifiers. The computational complexity is also much smaller and according to 

[15] the overall performance on skewed databases is better. 

5.4.4 Decision trees 

Weak learners used by the AdaBoost and the RUSBoost are decision trees. Decision trees 

are classifying samples by a sequence of questions. The “tree” is an oriented or disoriented 

graph which does not contain a circle. A tree with 𝑛 nodes has 𝑛-1 edges [16]. The “decision 

tree” is a disoriented tree whose edges stands for decisions (except from the edges that lead 

from the previous node) and nodes stands for questions except nodes that have only 1 edge. 

Those are called leafs – classes. Decision trees used for classification are mostly binary – every 

question has only 2 decisions. For example, a question in a problem with weather classification 

can be “Is humidity more than 64%?” and decisions are yes and no. Such decision leads to 

another question or to a leaf that labels the sample with a class – in this case for example if the 

answer is yes, the next node can be a leaf labelling sample as rain. 

During the formation of the three from the training set we need to decide what feature we 

should ask first. Should we ask about the atmospheric pressure or humidity first? There are 

several measurements of impurity (a decision that separates samples with only 1 class is 

completely “pure”). The most popular is the entropy impurity 𝑖(𝑁) of node 𝑁 evaluated as 

 𝑖(𝑁) = − ∑ 𝑃(𝜔𝑗) log2 𝑃(𝜔𝑗)

𝑗

, (38) 

where 𝑃(𝜔𝑗) is a fraction of samples in the node 𝑁 from the class 𝜔𝑗 [10]. As we can see, 

if 𝑃(𝜔𝑗) = 1, impurity 𝑖(𝑁) = 0, thus the node is completely pure. 

Several more techniques such as pruning – elimination of branches with too few samples 

to prevent overfitting – are used in decision tree classifications, but more details are beyond the 

focus of this work. 
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5.5 Results 

I selected the decision trees, the AdaBoost and the RUSBoost and compared their results. 

The decision trees were selected because they are used in both boosting algorithms as weak 

learners, thus we can see the impact of boosting on our problem. The RUSBoost is selected so 

that we can see the impact of improvements for the training using a skewed training set against 

the AdaBoost. The decision trees are trained with default settings in the MATLAB, the 

AdaBoost and the RUSBoost are trained twice with a different learning rate LR – 0.1 and 1. All 

bosting algorithms use 200 weak learners. The results can be seen in Table 5.1. The AUC of 

these results is calculated from the ROC curves in Figure 5.10. There is no way to adjust the 

thresholds during the classification of training data, thus the curves are only a weak 

approximation – the real AUC would be slightly higher. However, the AUC from those curves 

gives similar result as the F1 score. 

Model Parameters 
True 

positive 
False 

positive 
False 

negative 
True 

negative 
Accuracy AUC 

F1 
score 

Decision Trees None 3799 7843 3301 54814 84.02% 0.635 0.405 

AdaBoost LR = 0.1 3198 8444 361 57754 87.38% 0.634 0.421 

AdaBoost LR = 1 3591 8051 556 57559 87.66% 0.649 0.455 

RUSBoost LR = 0.1 4893 6749 2374 55741 86,92% 0.690 0.518 

RUSBoost LR = 1 4850 6792 2252 55863 87.03% 0.689 0.517 

TABLE 5.1: THE RESULTS OF THE CLASSIFICATION OF THE TEST SET 

The best results of every column are bold and underlined, the second best results are only bold. RUSBoost is giving 

the best results for the positive class (artefact) detection at the price of more false negative (artefacts labelled as 

clean signals) detections. 

 

FIGURE 5.10: ROC OF THE TRAINING SET 

The approximation of ROC for all classifiers 
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We can see that as the robustness and specialization of algorithm grows, the results are 

getting better. The influence of the learning rate parameter is questionable. It has no significant 

effect on the RUSBoost results and it actually deteriorates the results of the AdaBoost. 

The results are not very satisfying, mainly because of the higher occurrence of false 

positive detections than the true positive ones. There are several possibilities that might 

contribute to this failure. The annotation has some problems as mentioned in Section 5.2.1, 

especially there is a problem with artefact borders that cause great problems during learning. 

After some investigation, I found out that the biggest problem is the length of the segments. 

Their length is about 20 ms, which is too small for a realistic prediction. This problem manifests 

itself as many small peaks in a great amount of signals, especially the signals recorded in STN. 

See Figure 5.11. However, we can simply take the current annotation and the classification, 

look at every second of the signal and every second that contains more than 12% of artefacts 

label as artefacts. The percentage at which the second is considered to be an artefact was found 

by gradual testing of values from 1% to 30% on classifications of the RUSBoost.  The 

percentage with the best F1 score was selected. 

As we can see from the new results in Table 5.2, they are much more positive. That is 

mainly because most of those undesired peaks were filtered during the detection as can be seen 

in Figure 5.11. The true positive classifications occur much more often and the F1 score rises 

significantly. In comparison to the sensitivity and the precision of classifiers in Table 5.3, we 

can see that the AdaBoost has the best sensitivity, but the RUSBoost has both precision and 

Model Parameters 
True 

positive 
False 

positive 
False 

negative 
True 

negative 
Accuracy AUC 

F1 
score 

Decision Trees None 10830 4263 5123 49541 86.54% 0.812 0.698 

AdaBoost LR = 0.1 7767 7326 334 54330 89.02% 0.754 0.670 

AdaBoost LR = 1 8726 6367 573 54091 90.05% 0.784 0.715 

RUSBoost LR = 0.1 11072 4021 3924 50740 88.61% 0.831 0.736 

RUSBoost LR = 1 11072 4021 3924 50740 88.61% 0.831 0.736 

Stat. Segments TH = 1.3 6673 5631 9631 51046 79.09% 0.692 0.467 

TABLE 5.2: THE RESULTS OF THE CLASSIFICATION OF THE TEST SET USING ONE-SECOND INTERVAL 

The best results of each column are bold and underlined, the second best results are bold. The order of the 

results stayed intact but both RUSBoost models are now the same regardless the learning rate. 

LR – Learning rate, TH – Ad-hoc threshold 

Model Precision Sensitivity 

Decision Trees 0.718 0.679 

AdaBoost 0.515 0.959 

AdaBoost 0.578 0.938 

RUSBoost 0.734 0.738 

RUSBoost 0.734 0.738 

TABLE 5.3: PRECISION AND SENSITIVITY OF THE 

RESULTS 

Even though the sensitivity of RUSBoost is lower, it is 

well balanced with the precision. 



34 

sensitivity well balanced. This way the detection might be useful in practice even though some 

improvements should still be made. 

The results of the stationary segmentation method described in Section 3.5.3 are also 

included in Table 5.3. The segments were set to one second and the ad-hoc threshold was set to 

1.3 after the optimization on the training data. We can see that this method fails in our 

annotation. The main reason for this might be that it is more suitable for power artefact detection 

and it ignores most of the frequency artefacts that do not affect the amplitude.  

  

 

FIGURE 5.11: RESULTS OF THE CLASSIFICATION 

The results of the detection using RUSBoost with LR = 0.1.The detection is blue and the 

annotation is yellow. The peaks are most frequent at the 6th second where the artefact is 

present but they are creating a lot of false detections in the rest of the signal. The 

filtered classification shows how the results were improved. 
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6 Conclusion 
The main goal of this thesis was to design new methods for MER signal segmentation 

and artefact detection that could help researchers working with MER signals. Current methods 

are inadequate for large databases. 

To gain basic knowledge of the issue, I have studied Parkinson’s disease and its treatment, 

the deep brain surgery and the recording and properties of MER data. After this I have designed 

a method focused on the detection of power artefacts. This method proved to be too simple and 

inaccurate at first, however, a visual inspection of the results showed that it was sufficiently 

accurate and might be useful for further studies. 

The second method I have designed followed common procedures of classifier designing 

and focused on a spectrogram of signals. At first, the annotation of artefacts was performed in 

cooperation with my colleagues on a database of MER signals. Then I have developed three 

features. Unfortunately not all of them were capable of separating the data according to the 

annotation precisely enough. After the feature extraction, I have selected models according to 

properties of training data. The RUSBoost, a boosting algorithm based on the AdaBoost and 

specialized for skewed data, performed the best. However, the classification showed errors that, 

as I believe, resulted from the size of the segments. It is problematic to agree on what is and 

what is not an artefact, it depends on the further usage of the data. Some applications might not 

be influenced by technical artefacts. Another and a much more difficult problem is determining 

the exact borders of artefacts. 

The classification was then filtered to fit into one-second intervals and the results were 

very satisfying. I also proved that this method surpassed the performance of current automatic 

methods. The final classifier using the RUSBoost algorithm reached the accuracy of 88.61% 

and the F1 score of 0.736, which is a significant shift compared to the stationary segments 

method with the accuracy of 79.09% and the F1 score of 0.467. The suggested method shows 

good results and is usable for data preprocessing. 

To improve this method further, I suggest to perform a more rigorous annotation and to 

add a higher number of stronger features that would capture other aspects of the MER artefacts 

and could potentially improve the classification results. 
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8 Appendix: CD contents 
Folders: 

 TomasNovak_BachelorsThesis2015.pdf – this thesis in the pdf format 

 scripts: scripts and functions, require the DBS toolbox created by the Computational 

Neuroscience research group (http://neuro.felk.cvut.cz/) 

o artifactAnnotationFunc: scripts for the annotation and for logical vector 

corresponding to feature/signal length. 

 segmentsDatabaseAnnotate.m – the script for the annotation 

 ids.mat – IDs of signals selected for the annotation 

 test.mat, train.mat – the output of the annotation 

 changeAnnotToLogicalMajorityVote.m – change annotation to a logical 

vector with the length of the signal/feature and applies majority vote for 

the final annotation 

 database_final.mat, database_final_spectrosize.mat – database of IDs 

and the corresponding annotation 

 makeLogVector.m– create a logical vector, from the given annotation 

o powerArtefactDetection: the scripts used during the designing and testing 

power artefact detection. 

 powerDatabaseSelectTN.m – selects random signals with given nuclei 

distribution 

 rawDatabase.mat – the output of signal selection, IDs of selected signals 

 findAnnotation.m – adds the annotation from the database to selected 

signals and filters them to only contain only power artefacts 

 adHocTest.m – tests different values of the constant C and saves the 

results 

 databaseWithAnnotation.mat, databaseWithAnnotationOnlyPow.mat – 

the database of the signal IDs with the annotation 

 databaseIdAnnotFeatResult.mat – the database with the annotation 

(power and technical artefacts), evaluated feature and result of the 

detection 

 databaseIdAnnotFeatResultOnlyPow.mat – the database with the 

annotation (power artefacts only), evaluated the features and results of 

the detection 

 detectionTestFigures.m – plots the visualisation of the detection on all 

signals from the test set 

 detectPowerArtPow.m – returns a classification for the given signal, a 

number of intervals and an ad-hoc constant C 

 evaluateFeaturePow.m – evaluates features and the results of the 

detection for the whole database 

o MLclassifier: the scripts used during the classifier’s designing and testing using 

machine learning principles 

 createDataForClassifFromDatabase.m - creates a vector of all samples 

with the annotation, usable for classifier learning 

 database_base.mat – a database of IDs of signals with the annotation 
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 database_with_features.mat – a database with evaluated features 

 database_withFullLen.mat – a database of IDs of the signals with the 

annotation with length of the signal (for the stationary segments method) 

 databaseForClassif_FullLen.mat – the vectors of the annotation for the 

test and training set, usable for classifier learning 

 evaluateFeatures.m – evaluates features for the database of IDs with the 

annotation 

 feature1.m, feature2.m, feature3.m – evaluates features for given ID 

 feature2and3mFSCalculate.m – calculates the mFS for feature 2 and 3 

 getFeatForId.m – evaluates all 3 features for a given signal ID 

 mFS.mat – calculated mFS used during feature 2 and 3 evaluation 

 plotClassifForId.m – plots classification for given signal id, classifier 

and features used by the classifier 

 plotCompareToAnnotation.m – plots a comparison of detection and the 

annotation for all signals from the test set 

 plotSigWithFeature.m - plots a vector of the selected feature for the 

selected signal 

 rougherVector.m – filters the annotation or the detection to one-second 

segments 

 segmentsDatabaseSelectTN.m – selects random signals with given 

nuclei distribution 

 showFeature.m – plots a vector of the selected feature for 10 selected 

signals or the ROC curves for all features 

 trainAndStatRUSBoost.m – trains the RUSBoost classifier and tests it on 

the test set 

 testStatSegments.m – tests stationary segments method on the test set 

 traindAndStatTreeAdaRus.m – trains and tests several classifiers and the 

saves results 

 wholeSpectro.m – plots a spectrogram and the PSD of the signal 

 finalClassifier.mat – final RUSBoost classifier, can be applied to new 

data as is 

o utils 

 dbsGetArtifData.m – returns the annotation (integrated into database) for 

the given signal 

 dbsGetDataSel.m – returns the dataSel for given information about the 

signal (patient, exploration, electrode, position) 

 dbsGetExplTrajectory4patientId – a script converting the trajectory ID 

to the exploration ID 

 otsuThreshold – an implementation of threshold selection method from 

the grey-level histogram by N. Otsu 

 


