
User's Guide for CFSQP Version 2.5:

A C Code for Solving (Large Scale) Constrained Nonlinear

(Minimax) Optimization Problems, Generating Iterates
Satisfying All Inequality Constraints1

Craig Lawrence, Jian L. Zhou, and Andr�e L. Tits

Electrical Engineering Department

and

Institute for Systems Research

University of Maryland, College Park, MD 20742

(Institute for Systems Research TR-94-16r1)

1This research was supported in part by NSF's Engineering Research Centers Program No. NSFD-

CDR-88-03012, by NSF grant Nos. DMC-88-15996, DMI-9313286 and by a grant from the Westinghouse

Corporation.

Abstract

CFSQP is a set of C functions for the minimization of the maximum of a set of smooth

objective functions (possibly a single one, or even none at all) subject to general smooth

constraints (if there is no objective function, the goal is to simply �nd a point satisfying

the constraints). If the initial guess provided by the user is infeasible for some inequality

constraint or some linear equality constraint, CFSQP �rst generates a feasible point for

these constraints; subsequently the successive iterates generated by CFSQP all satisfy these

constraints. Nonlinear equality constraints are turned into inequality constraints (to be

satis�ed by all iterates) and the maximum of the objective functions is replaced by an exact

penalty function which penalizes nonlinear equality constraint violations only. When solving

problems with many sequentially related constraints (or objectives), such as discretized semi-

in�nite programming (SIP) problems, CFSQP gives the user the option to use an algorithm

that e�ciently solves these problems, greatly reducing computational e�ort. The user has the

option of either requiring that the objective function (penalty function if nonlinear equality

constraints are present) decrease at each iteration after feasibility for nonlinear inequality

and linear constraints has been reached (monotone line search), or requiring a decrease

within at most four iterations (nonmonotone line search). He/She must provide functions

that de�ne the objective functions and constraint functions and may either provide functions

to compute the respective gradients or require that CFSQP estimate them by forward �nite

di�erences.

CFSQP is an implementation of two algorithms based on Sequential Quadratic Pro-

gramming (SQP), modi�ed so as to generate feasible iterates. In the �rst one (monotone

line search), a certain Armijo type arc search is used with the property that the step of

one is eventually accepted, a requirement for superlinear convergence. In the second one

the same e�ect is achieved by means of a \nonmonotone" search along a straight line. The

merit function used in both searches is the maximum of the objective functions if there is no

nonlinear equality constraints, or an exact penalty function if nonlinear equality constraints

are present.

Conditions for External Use

1. The CFSQP routines may not be distributed to third parties. Interested parties should

contact the authors directly.

2. If modi�cations are performed on the routines, these modi�cations will be commu-

nicated to the authors. The modi�ed routines will remain the sole property of the

authors.

3. Due acknowledgment must be made of the use of the CFSQP routines in research

reports or publications. Whenever such reports are released for public access, a copy

should be forwarded to the authors.

4. The CFSQP routines may only by used for research and development, unless it has

been agreed otherwise with the authors in writing.

User's Guide for CFSQP Version 2.5 (Released April 1997)

Copyright c 1993-1997 by Craig T. Lawrence, Jian L. Zhou, and Andr�e L. Tits

All Rights Reserved.

Enquiries should be directed to

Prof. Andr�e L. Tits

Electrical Engineering Dept.

and Institute for Systems Research

University of Maryland

College Park, Md 20742

U. S. A.

Phone : 301-405-3669

Fax : 301-405-6707

E-mail : andre@eng.umd.edu

1

Contents

1 Introduction 2

2 Description of the Basic Algorithms 4

3 Re�nements for the Case of Many Objectives/Constraints 12

4 Speci�cation of CFSQP 16

5 User-Accessible Stopping Criterion and Flags 22

6 Description of the Output 23

7 User-Supplied Functions 27

7.1 Function obj() : 27

7.2 Function constr() : 28

7.3 Function gradob() : 29

7.4 Function gradcn() : 30

8 Organization of CFSQP and Main Functions 31

8.1 Main Functions : 31

8.2 Other Functions : 32

9 Examples 33

10 Results for Test Problems 59

11 Programming Tips 61

12 Portability 62

13 Trouble-Shooting 62

14 Acknowledgments 63

15 References 63

2

1 Introduction

CFSQP (C code for Feasible Sequential Quadratic Programming) is a set of C functions for

the minimization of the maximum of a set of smooth objective functions (possibly a single

one, or even none at all) subject to nonlinear equality and inequality constraints, linear

equality and inequality constraints, and simple bounds on the variables. In addition, CFSQP

contains special provisions for e�ciently handling problems with many sequentially related

objectives/constraints, for example discretized Semi-In�nite Programming (SIP) problems.

In the case when no sequentially related constraints or objectives are present, CFSQP

tackles optimization problems of the form

(P) minimize max
i2If

ffi(x)g s.t. x 2 X

where If = f1; : : : ; nfg (If = ; if nf = 0) and X is the set of points x 2 IRn satisfying

bl � x � bu

gj(x) � 0; j = 1; : : : ; ni

gj(x) � hcj�ni; xi � dj�ni � 0; j = ni + 1; : : : ; ti
hj(x) = 0; j = 1; : : : ; ne

hj(x) � haj�ne; xi � bj�ne = 0; j = ne + 1; : : : ; te

with bl 2 IRn; bu 2 IRn; fi : IR
n ! IR; i = 1; : : : ; nf smooth; gj : IR

n ! IR; j = 1; : : : ; ni

nonlinear and smooth; cj 2 IRn, dj 2 IR, j = 1; : : : ; ti � ni; hj : IR
n ! IR; j = 1; : : : ; ne

nonlinear and smooth; aj 2 IRn, bj 2 IR, j = 1; : : : ; te � ne. Note that it is allowed to have

nf = 0, in which case problem (P) is one of �nding a point that satis�es a given set of

constraints.

In full generality, i.e. including sequentially related objectives and constraints, CFSQP

handles problems of the form

(Psr) minimize maxfmax
i2If

fi(x);max
i2Isr

max
!2
fi

fi(x; !)g s.t. x 2 X

where If = f1; : : : ; nf � nfsrg (If = ; if nf = 0), Isr = fnf � nfsr + 1; : : : ; nfg (Isr = ; if

nfsr = 0),
fi is an index set for objective functions that are somehow sequentially related,

and X is now the set of points x 2 IRn satisfying

bl � x � bu

gj(x) � 0; j = 1; : : : ; ni � nsr

gj(x; �) � 0; 8� 2 �gj ; j = ni � nsr + 1; : : : ; ni

gj(x) � hcj�ni; xi � dj�ni � 0; j = ni + 1; : : : ; ti � `sr
gj(x; �) � hcj�ni(�); xi � dj�ni(�) � 0; 8� 2 �gj ; j = ti � `sr + 1; : : : ; ti
hj(x) = 0; j = 1; : : : ; ne

hj(x) � haj�ne; xi � bj�ne = 0; j = ne + 1; : : : ; te

3

with bl 2 IRn; bu 2 IRn; fi : IR
n ! IR; i 2 If smooth; fi : IR

n�
fi ! IR; i 2 Isr continuously

di�erentiable with respect to the �rst argument for each ! 2
fi ; gj : IRn ! IR; j =

1; : : : ; ni� nsr nonlinear and smooth; gj : IR
n��gj ! IR; j = ni� nsr +1; : : : ; ni nonlinear,

continuously di�erentiable with respect to the �rst argument for each � 2 �gj ; cj�ni 2 IRn,

dj�ni 2 IR, j = ni+1; : : : ; ti� `sr; cj�ni : �
gj ! IRn, dj�ni : �

gj ! IR; j = ti� `sr+1; : : : ; ti;

hj : IR
n ! IR; j = 1; : : : ; ne nonlinear and smooth; aj 2 IRn, bj 2 IR, j = 1; : : : ; te � ne.

From this point forward, in order to ease the presentation of the algorithm, we discuss

problem (P), postponing discussion of the algorithm used to solve (Psr) until x 3. If the

initial guess provided by the user is infeasible for linear constraints, CFSQP generates a point

satisfying these constraints by solving a strictly convex quadratic program (QP). Next, if the

initial guess, or the newly generated initial guess, is infeasible for the nonlinear inequality

constraints, CFSQP generates a point x0 satisfying all constraints (other than nonlinear

equality constraints) by iterating on the problem of minimizing the maximum of the nonlinear

inequality constraints. Then, using a scheme due to Mayne and Polak [1] and adapted to the

FSQP framework in [2], nonlinear equality constraints are turned into inequality constraints2

hj(x) � 0; j = 1; : : : ; ne

and the original objective function maxi2Ifffi(x)g is replaced by the modi�ed objective

function

fm(x; p) = max
i2If

ffi(x)g �
neX
j=1

pjhj(x);

where pj, j = 1; : : : ; ne, are positive penalty parameters that are iteratively adjusted. If

nf = 0, the \max" is de�ned to be identically zero. The resulting optimization problem

therefore involves only linear constraints and nonlinear inequality constraints. The successive

iterates generated by CFSQP all satisfy these constraints. The user has the option of either

requiring that the exact penalty function (the maximum value of the objective functions if

no nonlinear equality constraints are present) decrease at each iteration (after feasibility for

original nonlinear inequality and linear constraints has been reached), or requiring a decrease

within at most four iterations. He/She must provide functions that de�ne the objectives and

constraints, and may either provide functions to compute the respective gradients or require

that CFSQP estimate them by forward �nite di�erences.

Thus, CFSQP solves the original problem with nonlinear equality constraints by solv-

ing a modi�ed optimization problem with only linear constraints and nonlinear inequality

constraints. For the transformed problem, it implements algorithms that are described and

analyzed in [3], [4], [5], [6] and [7], with some additional re�nements. These algorithms are

based on a Sequential Quadratic Programming (SQP) iteration, modi�ed so as to generate

feasible iterates. The merit function is the objective function. An Armijo-type line search

2For every j for which hj(x0) > 0, \hj(x) = 0" is �rst replaced by \�hj(x) = 0" and �hj is renamed hj .

4

is used (along the arc described below for the monotone line search) when minimizing the

maximum of the nonlinear inequality constraints to generate an initial feasible point. After

obtaining feasibility, either (i) an Armijo-type line search may be used, yielding a monotone

decrease of the objective function at each iteration [3]; or (ii) a nonmonotone line search

(inspired from [8] and analyzed in [4] and [5] in the present context) may be selected, forc-

ing a decrease of the objective function within at most four iterations. In the monotone

line search scheme, the SQP direction is �rst \tilted" to yield a feasible direction if non-

linear constraints are present, then possibly \bent" to ensure that close to a solution, the

step of one is accepted (a requirement for superlinear convergence). The nonmonotone line

search scheme achieves superlinear convergence with no bending of the search direction, thus

avoiding function evaluations at auxiliary points and subsequent solution of an additional

quadratic program.

When sets of many sequentially related objectives or constraints are present (e.g., when

the problem at hand involves �nely discretized semi-in�nite objectives or constraints), the

user may request that, at each iteration, CFSQP select a small subset of these objec-

tives/constraints for inclusion in the quadratic programming subproblems, thus possibly

saving considerable time and computational e�ort. The method of selecting appropriate

subsets of the sequentially related constraints and objectives is outlined and analyzed in [6]

and [7].

For the solution of the quadratic programming subproblems, CFSQP is set up to call a C

version of QLD [9], converted from Fortran via f2c (see [10]) and provided with the CFSQP

distribution for the user's convenience.

2 Description of the Basic Algorithms

The algorithms described and analyzed in [3], [4], [2], and [5] are as follows. For simplicity

of exposition, we describe the algorithms as they pertain to solving problem (P), deferring

the discussion of the algorithm described in [6] and [7] for the solution of (Psr) until x 3.
Given a feasible iterate x, the basic SQP direction d0 is �rst computed by solving a standard

quadratic program using a positive de�nite estimate H of the Hessian of the Lagrangian.

d0 is a direction of descent for the objective function; it is almost feasible in the sense that

it is at worst tangent to the feasible set if there are nonlinear constraints and it is feasible

otherwise.

In [3], an essentially arbitrary feasible descent direction d1 = d1(x) is then computed.

Then for a certain scalar � = �(x) 2 [0; 1], a feasible descent direction d = (1 � �)d0 + �d1

is obtained, asymptotically close to d0: Finally a second order correction ~d = ~d(x; d;H) is

computed, involving auxiliary function evaluations at x + d; and an Armijo type search is

performed along the arc x + td + t2 ~d: The purpose of ~d is to allow a full step of one to be

5

taken close to a solution, thus allowing superlinear convergence to take place. Conditions are

given in [3] on d1(�), �(�) and ~d(�; �) that result in a globally convergent, locally superlinear

convergent algorithm.

The algorithm in [4] is somewhat more sophisticated. An essential di�erence is that

while feasibility is still required, the requirement of decrease of the max objective value is

replaced by the weaker requirement that the max objective value at the new point be lower

than its maximum over the last four iterates. The main payo� is that the auxiliary function

evaluations can be dispensed with, except possibly at the �rst few iterations. First a feasible

direction d1 = d1(x) is computed, which is nonzero even at Karush-Kuhn-Tucker points (and

thus is not everywhere a descent direction). Then for a certain scalar �` = �`(x) 2 [0; 1]; a

\local" feasible direction d` = (1��`)d0+�`d1 is obtained, and at x+d` the objective functions
are tested and feasibility is checked. If the requirements pointed out above are satis�ed, x+d`

is accepted as next iterate. This will always be the case close to a solution. Whenever x+d`

is not accepted, a \global" feasible descent direction dg = (1� �g)d0 + �gd1 is obtained with

�g = �g(x) 2 [0; �`]: A second order correction ~d = ~d(x; dg; H) is computed the same way as

in [3], and a \nonmonotone" search is performed along the arc x+tdg+t2 ~d: Here the purpose

of ~d is to suitably initialize the sequence for the \four iterate" rule. Conditions are given in

[4] on d1(�), �`(�), �g(�), and ~d(�; �) that result in a globally convergent, locally superlinear

convergent algorithm. In [5], the algorithm of [4] is re�ned for the case of unconstrained

minimax problems. The major di�erence over the algorithm of [4] is that there is no need

for d1. As in [4], ~d is required to initialize superlinear convergence.

The CFSQP implementation corresponds to a speci�c choice of d1(�), �(�), ~d(�; �), �`(�),
and �g(�) with some modi�cations as follows. If the �rst algorithm is used, d1 is computed

as a function not only of x but also of d0 (thus of H), as it appears bene�cial to keep d1

relatively close to d0. The quadratic program that yields ~d involves only a subset of \active"

functions, thus decreasing the number of function evaluations. The details are given below.

The analysis in [3], [4], and [5] can be easily extended to these modi�ed algorithms. Also

obvious simpli�cations are introduced concerning linear constraints: the iterates are allowed

(for inequality constraints) or are forced (for equality constraints) to stay on the boundary

of these constraints and these constraints are not checked in the line search. Finally, CFSQP

automatically switches to a \phase 1" mode if the initial guess provided by the user is not

in the feasible set.

Below we call FSQP-AL the algorithm with the Armijo line search, and FSQP-NL the

algorithm with nonmonotone line search. Given I � If , we make use of the following

notation:

fI(x) = max
i2I

ffi(x)g;

f 0(x; d; p) = max
i2If

ffi(x) + hrfi(x); dig � fIf (x)�
neX
j=1

pjhrhj(x); di;

6

and,

~f 0I(x+ d; x; ~d; p) = max
i2I

ffi(x + d) + hrfi(x); ~dig � fI(x)�
neX
j=1

pjhrhj(x); ~di:

If nf = 0 (If = ;) and ne > 0 then

f 0(x; d; p) = �
neX
j=1

pjhrhj(x); di;

~f 0I(x + d; x; ~d; p) = �
neX
j=1

pjhrhj(x); ~di:

At each iteration k, the quadratic program QP (xk; Hk; pk) that yields the SQP direction d0k
is de�ned at xk for Hk symmetric positive de�nite by

min
d02IRn

1
2
hd0; Hkd

0i+ f 0(xk; d
0; pk)

s:t: bl � xk + d0 � bu

gj(xk) + hrgj(xk); d0i � 0; j = 1; : : : ; ti
hj(xk) + hrhj(xk); d0i � 0; j = 1; : : : ; ne

haj; xk + d0i = bj; j = 1; : : : ; te � ne:

Let �k;j's with
Pnf

j=1 �k;j = 1, �k;j's, �k;j's, and �k;j's denote the multipliers, for the various ob-

jective functions, simple bounds (only n possible active bounds at each iteration), inequality,

and equality constraints respectively, associated with this quadratic program. De�ne the set

of active objective functions, for the �rst i such that �k;i > 0, by (if nf = 0, � is immaterial

and the following set is empty)

Ifk (dk) = fj 2 If : jfj(xk)� fi(xk)j � 0:2kdkk � krfj(xk)�rfi(xk)kg [fj 2 If : �k;j > 0g

and the set of active constraints by

Igk(dk)=fj2f1; : : : ; tig : jgj(xk)j � 0:2kdkk � krgj(xk)kg [fj 2 f1; : : : ; tig : �k;j > 0g:

Algorithm FSQP-AL.

Parameters. � = 0:1, � = 0:01, � = 0:1, � = 0:5, � = 2:1, �1 = �2 = 2:5, t = 0:1, �1 = 1,

�2 = 2, � = 2.

Data. x0 2 IRn, � > 0, �e > 0 and p0;j = �2 for j = 1; : : : ; ne.

Step 0: Initialization. Set k = 0 and H0 = the identity matrix. Set nset = 0. If x0 is

infeasible for some constraint other than a nonlinear equality constraint, substitute a feasible

7

point, obtained as discussed below. For j = 1; : : : ; ne, replace hj(x) by �hj(x) whenever
hj(x0) > 0.

Step 1: Computation of a search arc.

i. Compute d0k, the solution of the quadratic program QP (xk; Hk; pk). If kd0kk � � andPne
j=1 jhj(xk)j � �e, stop. If kd0kk � minf0:5�; 0:01p�mg (where �m is the machine

precision) and
Pne

j=1 jhj(xk)j > �e, go directly to Step 3 iii. If ni + ne = 0 and nf � 1;

set dk = d0k and
~dk = 0 and go to Step 2. If ni + ne = 0 and nf > 1, set dk = d0k and

go to Step 1 iv.

ii. Compute d1k by solving the strictly convex quadratic program

min
d12IRn;2IR

�

2
hd0k � d1; d0k � d1i+

s:t: bl � xk + d1 � bu

f 0(xk; d
1; pk) �

gj(xk) + hrgj(xk); d1i � ; j = 1; : : : ; ni

hcj; xk + d1i � dj; j = 1; : : : ; ti � ni

hj(xk) + hrhj(xk); d1i � ; j = 1; : : : ; ne

haj; xk + d1i = bj; j = 1; : : : ; te � ne

iii. Set dk = (1��k)d
0
k+�kd

1
k with �k = kd0kk�=(kd0kk�+vk), where vk = max(0:5; kd1kk�1):

iv. Compute ~dk by solving the strictly convex quadratic program

min
~d2IRn

1
2
h(dk + ~d); Hk(dk + ~d)i+ ~f 0

I
f
k
(dk)

(xk + dk; xk; ~d; pk)

s:t: bl � xk + dk + ~d � bu

gj(xk + dk) + hrgj(xk); ~di � �min(�kdkk; kdkk�2); j 2 Igk(dk) \ fj : j � nig
hcj�ni; xk + dk + ~di � dj�ni; j 2 Igk(dk) \ fj : j > nig
hj(xk + dk) + hrhj(xk); ~di � �min(�kdkk; kdkk�2); j = 1; : : : ; ne

haj; xk + dk + ~di = bj; j = 1; : : : ; te � ne:

If the quadratic program has no solution or if k ~dkk > kdkk, set ~dk = 0.

Step 2. Arc search. Let �k = f 0(xk; dk; pk) if ni + ne 6= 0 and �k = �hd0k; Hkd
0
ki otherwise.

Compute tk, the �rst number t in the sequence f1; �; �2; : : :g satisfying
fm(xk + tdk + t2 ~dk; pk) � fm(xk; pk) + �t�k

gj(xk + tdk + t2 ~dk) � 0; j = 1; : : : ; ni

hcj�ni; xk + tdk + t2 ~dki � dj�ni; 8j > ni & j 62 Igk(dk)

hj(xk + tdk + t2 ~dk) � 0; j = 1; : : : ; ne:

8

Speci�cally, the line search proceeds as follows. First, the linear constraints that were not

used in computing ~dk are checked until all of them are satis�ed, resulting in a stepsize, say,
�tk. Due to the convexity of linear constraints, these constraints will be satis�ed for any

t � �tk. Then, for t = �tk, nonlinear constraints are checked �rst and, for both objectives and

constraints, those with nonzero multipliers in the QP yielding d0k are evaluated �rst. For

t < �tk, it may be more e�cient to �rst check the function that caused the previous trial

value of t to be rejected (intuitively, it may be more likely to fail the test again). If this

function is a constraint, it will always be checked �rst, followed by all other constraints, then

objectives. If it is an objective however, there are two alternatives available to the user (see

mode in x 4): (i) the \problem" objective is checked �rst, followed by all other objectives,

then constraints; or (ii) all constraints are checked �rst, followed by the \problem" objective,

then the other objectives. The former is likely more e�ective; the latter is helpful when some

objectives are not de�ned outside the feasible set.

Step 3. Updates.

i. If nset > 5n and tk < t, set Hk+1 = H0 and nset = 0. Otherwise, set nset = nset + 1

and compute a new approximation Hk+1 to the Hessian of the Lagrangian using the

BFGS formula with Powell's modi�cation [11].

ii. Set xk+1 = xk + tkdk + t2k
~dk.

iii. Solve the unconstrained quadratic problem in ��

min
��2IRne

nfX
j=1

�k;jrfj(xk+1) + �k +
tiX
j=1

�k;jrgj(xk+1)+

teX
j=ne+1

�k;jrhj(xk+1) +
neX
j=1

��jrhj(xk+1)

2

;

where the �k;j's, �k, �k;j's and the �k;j's are the K-T multipliers associated with

QP (xk; Hk; pk) for the objective functions, variable bounds, linear equality constraints,

and inequality constraints respectively.3 Update pk as follows: for j = 1; : : : ; ne,

pk+1;j =

8>><
>>:

pk;j if pk;j + ��j � �1
and kd0kk > minf0:5�; 0:01p�mg

maxf�1 � ��j; �pk;jg otherwise.

iv. Increase k by 1.

3This is a re�nement (saving much computation and memory) of the scheme proposed in [1].

9

v. Go back to Step 1.

2

Algorithm FSQP-NL.

Parameters. � = 3:0, � = 0:01, � = 0:1, � = 0:5, � = 0:2, �� = 0:5, = 2:5, C = 0:01,

d = 5:0, t = 0:1, �1 = 0:1, �2 = 2, � = 2.

Data. x0 2 IRn, � > 0, �e > 0 and p0;j = �2 for j = 1; : : : ; ne.

Step 0: Initialization. Set k = 0, H0 = the identity matrix, and C0 = C: If x0 is infeasible for

constraints other than nonlinear equality constraints, substitute a feasible point, obtained

as discussed below. Set x�3 = x�2 = x�1 = x0 and nset = 0. For j = 1; : : : ; ne, replace

hj(x) by �hj(x) whenever hj(x0) > 0.

Step 1: Computation of a new iterate.

i. Compute d0k, the solution of quadratic program QP (xk; Hk; pk).

If kd0kk � � and
Pne

j=1 jhj(xk)j � �e, stop. If kd0kk � minf0:5�; 0:01p�mg (where �m is

the machine precision) and
Pne

j=1 jhj(xk)j > �e, go directly to Step 2 iii. If ni + ne = 0

and nf � 1; set dk = d0k and
~dk = 0 and go to Step 1 viii. If ni + ne = 0 and nf > 1;

set �`k = �gk = 0 and go to Step 1 v.

ii. Set vk = minfCkkd0kk2; kd0kkg. If
gj(xk) + hrgj(xk); d0ki � �vk;

for j = 1; : : : ; ni, and

hj(xk) + hrhj(xk); d0ki � �vk;
for j = 1; : : : ; ne, then set �`k = 0, d1k = 0, and go to Step 1 v. Otherwise, compute d1k
by solving the strictly convex quadratic program

min
d12IRn;2IR

�

2
kd1k2 +

s:t: bl � xk + d1 � bu

gj(xk) + hrgj(xk); d1i � ; j = 1; : : : ; ni

hcj; xk + d1i � dj; j = 1; : : : ; ti � ni

hj(xk) + hrhj(xk); d1i � ; j = 1; : : : ; ne

haj; xk + d1i = bj; j = 1; : : : ; te � ne

iii. De�ne values �gk;j for j = 1; : : : ; ni by �gk;j equal to zero if

gj(xk) + hrgj(xk); d0ki � �vk

10

or equal to the maximum � in [0; 1] such that

gj(xk) + hrgj(xk); (1� �)d0k + �d1ki � �vk
otherwise. Similarly, de�ne values �hk;j for j = 1; : : : ; ne. Let

�`k = max
�

max
j=1;:::;ni

f�gk;jg; max
j=1;:::;ne

f�hk;jg
�
:

iv. De�ne �gk as the largest number � in [0; �`k] such that

f 0(xk; (1� �)d0k + �d1k; pk) � �f 0(xk; d
0
k; pk):

If (k � 1 & tk�1 < 1) or (�`k > ��), set �`k = minf�`k; �gkg:
v. Construct a \local" direction

d`k = (1� �`k)d
0
k + �`kd

1
k:

Set M = 3, �k = f 0(xk; d
0
k; pk) if ni + ne 6= 0, and M = 2, �k = �hd0k; Hkd

0
ki otherwise.

If

fm(xk + d`k; pk) � max
`=0;:::;M

ffm(xk�`; pk)g+ ��k

gj(xk + d`k) � 0; j = 1; : : : ; ni

and

hj(xk + d`k) � 0; j = 1; : : : ; ne;

set tk = 1, xk+1 = xk + d`k and go to Step 2.

vi. Construct a \global" direction

dgk = (1� �gk)d
0
k + �gkd

1
k:

vii. Compute ~dk by solving the strictly convex quadratic program

min
~d2IRn

1
2
h(dgk + ~d); Hk(d

g
k +

~d)i+ ~f 0
I
f
k
(dg

k
)
(xk + dgk; xk;

~d; pk)

s.t. bl � xk + dgk +
~d � bu

gj(xk + dgk) + hrgj(xk); ~di � �min(�kdgkk; kdgkk�); j 2 Igk(d
g
k) \ fj : j � nig

hcj�ni; xk + dgk +
~di � dj�ni; j 2 Igk(d

g
k) \ fj : j > nig

hj(xk + dgk) + hrhj(xk); ~di � �min(�kdgkk; kdgkk�); j = 1; : : : ; ne

haj; xk + dgk +
~di = bj; j = 1; : : : ; te � ne:

If the quadratic program has no solution or if k ~dkk > kdgkk, set ~dk = 0.

11

viii. Set M = 3, �k = f 0(xk; d
g
k; pk) if ni + ne 6= 0, and M = 2, �k = �hd0k; Hkd

0
ki otherwise.

Compute tk, the �rst number t in the sequence f1; �; �2; : : :g satisfying
fm(xk + tdgk + t2 ~dk; pk) � max

`=0;:::;M
ffm(xk�`; pk)g+ �t�k

gj(xk + tdgk + t2 ~dk) � 0; j = 1; : : : ; ni

hcj�ni; xk + tdgk + t2 ~dki � dj�ni; j > ni & j 62 Igk(d
g
k)

hj(xk + tdgk + t2 ~dk) � 0; j = 1; : : : ; ne

and set xk+1 = xk + tkd
g
k + t2k

~dk:

Speci�cally, the line search proceeds as follows. First, the linear constraints that were

not used in computing ~dk are checked until all of them are satis�ed, resulting in a

stepsize, say, �tk. Due to the convexity of linear constraints, these constraints will be

satis�ed for any t � �tk. Then, for t = �tk, nonlinear constraints are checked �rst and,

for both objectives and constraints, those with nonzero multipliers in the QP yielding

d0k are evaluated �rst. For t < �tk, either the function that caused the previous value

of t to be rejected is checked �rst and all functions of the same type (\objective" or

\constraint") as the latter will then be checked �rst; or constraints will be always

checked �rst (if it is a constraint that caused the previous value of t to be rejected,

that constraint will be checked �rst; see mode in x 4).
Step 2. Updates.

i. If nset > 5n and tk < t, set Hk+1 = H0 and nset = 0. Otherwise, set nset = nset + 1

and compute a new approximation Hk+1 to the Hessian of the Lagrangian using the

BFGS formula with Powell's modi�cation [11].

ii. If kd0kk > d, set Ck+1 = maxf0:5Ck; Cg: Otherwise, if gj(xk + d`k) � 0; j = 1; : : : ; ni,

set Ck+1 = Ck. Otherwise, if �
`
k < 1, set Ck+1 = 10Ck.

iii. Solve the unconstrained quadratic problem in ��

min
��2IRne

nfX
j=1

�k;jrfj(xk+1) + �k +
tiX
j=1

�k;jrgj(xk+1)+

teX
j=ne+1

�k;jrhj(xk+1) +
neX
j=1

��jrhj(xk+1)

2

;

where the �k;j's, �k, �k;j's and the �k;j's are the K-T multipliers associated with

QP (xk; Hk; pk) for the objective functions, variable bounds, linear equality constraints,

and inequality constraints respectively.4

4See footnote to corresponding step in description of FSQP-AL.

12

Update pk as follows: for j = 1; : : : ; ne,

pk+1;j =

8>><
>>:

pk;j if pk;j + ��j � �1
and kd0kk > minf0:5�; 0:01p�mg

maxf�1 � ��j; �pk;jg otherwise.

iv. Increase k by 1.

v. Go back to Step 1.

2

Remark: The Hessian matrix is reset in both algorithms whenever stepsize is very small

and the updating of the matrix has gone through 5n iterations. This is helpful in some

situations where the Hessian matrix becomes singular.

If the initial guess x0 provided by the user is not feasible for some inequality constraint

or some linear equality constraint, FSQP �rst solves a strictly convex quadratic program

min
v2IRn

hv; vi
s.t. bl � x0 + v � bu

hcj; x0 + vi � dj; j = 1; : : : ; ti � ni

haj; x0 + vi = bj; j = 1; : : : ; te � ne:

Then, starting from the point x = x0 + v, it will iterate, using algorithm FSQP-AL, on the

problem

min
x2IRn

max
j=1;:::;ni

fgj(x)g
s.t. bl � x � bu

hcj; xi � dj; j = 1; : : : ; ti � ni

haj; xi = bj; j = 1; : : : ; te � ne

until max
j=1;:::;ni

fgj(x)g � 0 is achieved. The corresponding iterate x will then be feasible for all

constraints other than nonlinear equality constraints of the original problem.

3 Re�nements for the Case of Many Objectives/Constraints

As mentioned in the introduction, CFSQP is equipped to handle in an e�cient manner

problems involving many sequentially related objectives or constraints, e.g., �nely discretized

problems from Semi-In�nite Programming (SIP). The algorithm employed is described and

analyzed in [6] and [7]. Below we describe the algorithm as implemented in CFSQP, omitting

\isolated" objectives and constraints for simplicity of exposition. The essential di�erence to

13

the algorithm in the previous section is that at iteration k only subsets
fi
k �
fi and �gi

k �
�gi of the sets of sequentially related objectives and constraints are considered when solving

the quadratic programming subproblems used to construct the search direction, possibly

saving considerable time and computational e�ort. The \active" sets are updated in such a

way that global and fast local convergence is still assured.

In order to further simplify the exposition we consider a problem with one \set" of

sequentially related constraints and one \set" of sequentially related objectives (CFSQP can

handle problems with multiple such sets, as well as many isolated objectives and constraints).

For example, the problem presented below could correspond to a discretized semi-in�nite

program with one functional objective and one functional constraint. To ease notation, we

let
 :=
f1 and � := �g1. Hence, the problem we will address is

min
x2IRn

max
!2

f(x; !)

s.t. g(x; �) � 0 8� 2 �:

We present here the algorithm corresponding to FSQP-AL, i.e. the Armijo-type line

search. The nonmonotone line search (algorithm FSQP-NL) is also available for these prob-

lems, and the corresponding algorithm is a parallel modi�cation of the algorithm FSQP-NL

presented in x 2. Given x 2 IRn, let

�(x) = max
!2

f(x; !):

Additionally, given
̂ �
, de�ne

�
̂(x) = max
!2
̂

f(x; !):

Further, given a direction d 2 IRn, let

�0

̂
(x; d) = max

!2
̂
ff(x; !) + hrxf(x; !); dig � �
̂(x);

which is a �rst order approximation to �
̂(x+ d)� �
̂(x). Finally, given
~d 2 IRn de�ne

~�0

̂
(x + d; x; ~d) = max

!2
̂
ff(x+ d; !) + hrxf(x; !); ~d ig � �
̂(x + d):

At each iteration k, subsets
k �
 and �k � � will be used to compute the search

direction. Let �0k;! denote the multiplier from the QP for the computation of d0k associated

with the objective indexed by ! at the kth iteration, and let �0k;� denote the multiplier from

the QP for the computation of d0k associated with the constraint indexed by � at the kth

iteration. Similarly de�ne �1k;! and �1k;� as the multipliers from the QP for the computation

of d1k. Given x 2 IRn, we de�ne the following sets to be included in
k and �k:

max(x) = f! 2
 : f(x; !) = �(x)g

14

�act(x) = f� 2 � : g(x; �) = 0g;
and the \binding" objectives and constraints from the previous iteration:

b
k = f! 2
k : �

0
k;! > 0 or �1k;! > 0g

�b
k = f� 2 �k : �

0
k;� > 0 or �1k;� > 0g:

In addition, some heuristics are used to increase the number of constraints and objectives

in
k and �k, with the hopes that performance will be improved while still maintaining

lower computational e�ort. Speci�cally, for some � > 0, we consider the \�-active left local

maximizers" at xk, which, for the objectives, we shall denote

llm
� . Using the notation and

de�nitions from [6], a discretization point !i 2
 := f!1; : : : ; !j
jg is called �-active if it is

in the set

�(x) = f!i 2
 : f(x; !i) > �(x)� �g:
We call the point a left-local maximizer if it satis�es one of the following three conditions:

(i) i 2 f2; : : : ; j
j � 1g and
f(x; !i) > f(x; !i�1) (1)

and

f(x; !i) � f(x; !i+1); (2)

(ii) i = 1 and (2); (iii) i = j
j and (1). The equivalent set for constraints, �llm
� is de�ned in

an analogous way, except that the �(x) in the de�nition of
�(x) should be replaced with a

0 in the de�nition of ��(x).

At each iteration k, the SQP direction d0k is computed as the solution of the quadratic

program QP0(xk; Hk;
k;�k), de�ned at xk for Hk symmetric and positive de�nite by

(QP0(xk; Hk;
k;�k))
min
d02IRn

1
2
hd0; Hkd

0i+ �0

k
(xk; d

0)

s:t: g(xk; �) + hrxg(xk; �); d
0i � 0; 8� 2 �k:

Finally, we need to slightly modify the de�nitions of Ifk (dk) and Igk(dk) (used in the

computation of ~d) from those presented in the last section. Speci�cally, de�ne the set of

active objective functions

Ifk (dk) = f! 2
 : jf(xk; !)� f(xk; !̂)j � 0:2kdkk�krxf(xk; !)�rxf(xk; !̂)kg;

where !̂ is the �rst element of
 such that �k;!̂ > 0. The set of \active" constraints is

re-de�ned as

Igk(dk) = f� 2 � : jg(xk; �)j � 0:2kdkk�krxg(xk; �)kg:
We are now ready to present the simpli�ed algorithm.

15

Algorithm FSQP-SR.

Parameters. � = 0:1, � = 0:01, � = 0:1, � = 0:5, � = 2:1, �1 = �2 = 2:5, t = 0:1, �1 = 1,

�s = 1, � = 5, 0 < �s � 1.

Data. x0 2 IRn, � > 0, �e > 0.

Step 0: Initialization. Set k = 0, H0 = the identity matrix and nset = 0. If x0 is infeasible

for some constraint other than a nonlinear equality constraint, substitute a feasible point,

obtained as described at the end of x 2. Set
0 =
max(x0) [
llm
� (x0) [f!1g [f!j
jg and

�0 = �act(x0) [�llm
� (x0) [f�1g [f�j�jg.

Step 1: Computation of a search arc.

i. Compute d0k, the solution of the quadratic program QP0(xk; Hk;
k;�k). If kd0kk � �

stop. If � = ; set dk = d0k and go to Step 1 iv.

ii. Compute d1k by solving the strictly convex quadratic program

min
d12IRn;2IR

�

2
hd0k � d1; d0k � d1i+

s:t: �0

k
(xk; d

1) �

g(xk; �) + hrxg(xk; �); d
1i � ; 8� 2 �k

iii. Set dk = (1��k)d
0
k+�kd

1
k with �k = kd0kk�=(kd0kk�+vk), where vk = max(0:5; kd1kk�1):

iv. Compute ~dk by solving the strictly convex quadratic program

min
~d2IRn

1
2
h(dk + ~d); Hk(dk + ~d)i+ ~�0

I
f
k
(dk)[
k

(xk; dk; ~d)

s:t: g(xk + dk; �) + hrxg(xk; �); ~d i � �min(�kdkk; kdkk�2); 8� 2 Igk(dk) [�k

If the quadratic program has no solution or if k ~dkk > kdkk, set ~dk = 0.

Step 2. Arc search. Let �k = �0

(xk; dk) if � 6= ; and the constraints are nonlinear in x. Let

�k = �hd0k; Hkd
0
ki otherwise. Compute tk, the �rst number t in the sequence f1; �; �2; : : :g

satisfying

�(xk + tdk + t2 ~dk) � �(xk) + �t�k

g(xk + tdk + t2 ~dk; �) � 0; 8� 2 �:

The speci�cs of the line search are precisely the same as given in x 2, and will not be repeated
here.

Step 3. Updates.

16

� Set

k+1 =
max(xk+1) [
b

k [
llm
� (xk+1)

and

�k+1 = �act(xk+1) [�b
k [�llm

� (xk+1)

If tk < 1 and the last stepsize reduction was due to a sequentially related objective

with index �!, then set

k+1 =
k+1 [f�!g:
If tk < 1 and the last stepsize reduction was due to a sequentially related constraint

with index ��, then set

�k+1 = �k+1 [f��g:

� If nset > 5n and tk < t, set Hk+1 = H0 and nset = 0. If tk � �s and the discretization

point causing a violation during the line search was not in
k or �k, set Hk+1 = Hk.

Otherwise, set nset = nset+1 and compute a new approximation Hk+1 to the Hessian

of the Lagrangian using the BFGS formula with Powell's modi�cation [11].

� Set xk+1 = xk + tkdk + t2k
~dk.

� Increase k by 1.

� Go back to Step 1.

2

In the case where there is more than one set of sequentially related objectives or con-

straints, the above algorithm is modi�ed only slightly. In particular, for each objective set

we compute
fi
max(x),

b;fi
k , etc., and each set
fi

k is constructed as
k in the above algorithm

(i.e., now there is an \
k" for each objective set). Likewise for multiple constraint sets. The

de�nitions of the various �(�) functions have to be modi�ed accordingly, as well. The main

idea is that once we have determined the subsets of constraints and objectives to use in the

computation of the search directions, the algorithm is the same whether we originally had

one set, or many sets.

4 Speci�cation of CFSQP

The speci�cation of CFSQP is as follows (an ANSI compliant de�nition is automatically

used on compilers that expect such a de�nition):

17

void

cfsqp(nparam,nf,nfsr,nineqn,nineq,neqn,neq,ncsrl,ncsrn,mesh_pts,

mode,iprint,miter,inform,bigbnd,eps,epseqn,udelta,bl,bu,x,

f,g,lambda,obj,constr,gradob,gradcn,cd)

int nparam,nf,nfsr,neqn,nineqn,nineq,neq,ncsrl,ncsrn,mode,

iprint,miter,*mesh_pts,*inform;

double bigbnd,eps,epseqn,udelta;

double *bl,*bu,*x,*f,*g,*lambda;

void (* obj)(),(* constr)(),(* gradob)(),(* gradcn)();

void *cd;

Important: all real variables (arrays) must be declared as double precision (pointers to

double precision arrays) in the routine that calls CFSQP.

nparam (Input) Number of free variables, i.e., the dimension of x.

nf (Input) Number of objective functions (nf in the algorithm description, possi-

bly equal to zero).

nfsr (Input) Number (possibly zero) of sets of sequentially related objective func-

tions (nfsr in the problem description).

nineqn (Input) Number (possibly zero) of nonlinear inequality constraints (ni in the

algorithm description).

nineq (Input) Total number (possibly equal to nineqn) of inequality constraints (ti
in the algorithm description).

neqn (Input) Number (possibly zero) of nonlinear equality constraints (ne in the

algorithm description).

neq (Input) Total number (possibly equal to neqn) of equality constraints (te in

the algorithm description).

ncsrl (Input) Number (possibly zero) of sets of linear sequentially related constraints

(`sr in the problem description).

ncsrn (Input) Number (possibly zero) of sets of nonlinear sequentially related con-

straints (nsr in the problem description).

18

mesh pts (Input) Pointer to an array of integers of dimension

maxf1; nfsr + ncsrn + ncsrlg
indicating the number of objectives/constraints in each speci�c set of sequen-

tially related objectives/constraints (j
fi j and j�gj j in the problem description).

Elements 0; : : : ; nfsr � 1 should contain the number of objectives in each se-

quentially related objective set, the next ncsrn elements should contain the

number of constraints in each nonlinear sequentially related constraint set, and

the �nal ncsrl elements should contain the number of constraints in each linear

sequentially related constraint set.

mode (Input) mode = CBA with the following options:

A = 0 : (P) is to be solved.

A = 1 : (PL1) is to be solved. (PL1) is de�ned as follows

for problem (P)

(PL1) min max
i2If

jfi(x)j s.t. x 2 X

where X is the same as for (P): It is handled by

splitting jfi(x)j as fi(x) and �fi(x) for each i: The

user is required to provide only fi(x) for i 2 If . If

sequentially related objectives are present, equiva-

lent modi�cations are made to (Psr).

B = 0 : Algorithm FSQP-AL is selected, resulting in a de-

crease of the (modi�ed) objective function at each

iteration.

B = 1 : Algorithm FSQP-NL is selected, resulting in a de-

crease of the (modi�ed) objective function within

at most four iterations.

C = 1 : For t < �tk (see the end of algorithm statement)

during the line search, the function that caused the

previous value of t to be rejected is checked �rst

and then all functions of the same type (\objec-

tive" or \constraint") as the latter will be checked.

(Recommended for most users.)

C = 2 : Constraints will be always checked �rst at each

trial point during the line search. If it is a con-

straint that caused the previous value of t to be

19

rejected, that constraint will be checked �rst. (Use-

ful when objective functions are not de�ned or are

di�cult to evaluate outside of the feasible region;

not however that if gradients are evaluated by �-

nite di�erences, in rare instances, objectives func-

tions may be evaluated at infeasible \perturbed"

points).

iprint (Input) Parameter indicating the desired output (see x 6 for details):
iprint = 0 : No information is displayed. This value is imposed

during phase 1.

iprint = 1 : Objective and constraint values at the initial fea-

sible point are displayed. At the end of execu-

tion, status (inform), iterate, objective values,

constraint values, number of evaluations of objec-

tives and nonlinear constraints, norm of the Kuhn-

Tucker vector, sum of feasibility violation, and if

appropriate, the total number of individual con-

straints/objectives used from the sets of sequen-

tially related constraints/objectives used during

the �nal iteration are displayed.

iprint = 2 : At the end of each iteration, the same information

as with iprint = 1 is displayed.

iprint = 3 : At each iteration, the same information as with

iprint = 2, including detailed information on the

search direction computation, on the line search,

and on the update, is displayed.

iprint = 10�N +M : N any positive integer, M=2 or 3. Infor-

mation corresponding to iprint=M is displayed

at every (10�N)th iteration and at the last iter-

ation.

miter (Input) Maximum number of iterations allowed by the user before termination

of execution.

inform (Output) Parameter indicating the status of the execution of CFSQP:

inform = 0 : Normal termination of execution in the sense that

either kd0k � eps and (if neqn 6= 0)
Pne

j=1 jhj(x)j �

20

epseqn or one of the user-supplied stopping criteria

is satis�ed (see x 5).
inform = 1 : The user-provided initial guess is infeasible for lin-

ear constraints and CFSQP is unable to generate

a point satisfying these constraints.

inform = 2 : The user-provided initial guess is infeasible for non-

linear inequality constraints and linear constraints,

and CFSQP is unable to generate a point satisfying

these constraints. This may be due to insu�cient

accuracy of the QP solver.

inform = 3 : The maximum number miter of iterations has

been reached before a solution was obtained.

inform = 4 : The line search fails to �nd a new iterate (trial

step size being smaller than the machine precision

epsmac computed by CFSQP).

inform = 5 : Failure of the QP solver in attempting to construct

d0. A more robust QP solver may succeed.

inform = 6 : Failure of the QP solver in attempting to construct

d1. A more robust QP solver may succeed.

inform = 7 : Input data are not consistent (with printout indi-

cating the error when iprint > 0).

inform = 8 : New iterate is numerically equivalent to the previ-

ous iterate, though the stopping criterion is not yet

satis�ed. Relaxing the stopping criterion should

solve this problem.

inform = 9 : One of the penalty parameters exceeded bigbnd.

The algorithm is having trouble satisfying a non-

linear equality constraint.

bigbnd (Input) (see also bl and bu below) Plays the role of \in�nity."

eps (Input) Final norm requirement for the Newton direction d0k (� in the algorithm

description). It must be bigger than the machine precision epsmac (computed

by CFSQP). (If the user does not have a good feeling of what value should be

chosen, a very small number could be provided and iprint = 2 selected so that

the user could keep track of the process of optimization and terminate CFSQP

at an appropriate time.)

21

epseqn (Input) Maximum violation of nonlinear equality constraints allowed by the

user at an optimal point (�e in the algorithm description). It is in e�ect only

if ne 6= 0 and must be bigger than the machine precision epsmac (computed by

CFSQP).

udelta (Input) The perturbation size the user suggests to use in approximating gra-

dients by �nite di�erence. The perturbation size actually used is de�ned by

sign(xi) � maxfudelta; rteps � max(1; jxij)g for each component xi of x

(rteps is the square root of epsmac). udelta should be set to 0.e0 if the user

has no idea how to choose it.

bl (Input) Array of dimension nparam containing lower bounds for the compo-

nents of x. To specify a non-existent lower bound (i.e., bl[j] = �1 for some

j), the value used must satisfy bl[j] � �bigbnd.
bu (Input) Array of dimension nparam containing upper bounds for the compo-

nents of x. To specify a non-existent upper bound (i.e., bu[j] =1 for some j),

the value used must satisfy bu[j] � bigbnd.

x (Input) Initial guess.

(Output) Iterate at the end of execution.

f Array of dimension

maxf1; nf� nfsr +
nfsr�1X
i=0

mesh pts[i]g:

If no sequentially related objectives are present, this becomes maxf1; nfg.
(Output) If nf � 1, value of functions fi(x); i 2 If , and fi(x; !), 8! 2
fi ; i 2
Isr at x at the end of execution.

g Array of dimension

maxf1; nineq + neq� (ncsrl + ncsrn) +
ncsrn�1P

i=0
mesh pts[i + nfsr]

+
ncsrl�1P

i=0
mesh pts[i + nfsr + ncsrn]g:

If no sequentially related constraints are present, this becomes maxf1; nineq+
neqg.
(Output) If ni + ne � 1, values of all constraints at x at the end of execution.

22

lambda Array of dimension nparam+dim(f)+dim(g), where dim(f) and dim(g) denote

the dimensions of the arrays f and g respectively.

(Output) Values of the Lagrange multipliers at x at the end of execution.

They are stored in the same order as speci�ed in the problem formulation, with

those corresponding to simple bounds �rst (only nparam simple bounds could

be active, thus only nparam multipliers are returned), next are the constraint

multipliers, and �nally the objective multipliers. (Note that, if appropriate, a

multiplier is returned for each member of each of the sets of sequentially related

constraints and objectives.)

obj (Input) A pointer to the user-de�ned function that computes the value of the

objective functions fi(x) and fi(x; !). The detailed speci�cation is given in x 7.1
below.

constr (Input) A pointer to the user-de�ned function that computes the value of the

constraints. The detailed speci�cation is given in x 7.2 below.
gradob (Input) A pointer to the function that computes the gradients of the objec-

tive functions. The user must pass the function pointer grobfd (declared in

the header cfsqpusr.h) if he/she wishes that CFSQP evaluate these gradients

automatically, by forward �nite di�erences. The detailed speci�cation is given

in x 7.3 below.
gradcn (Input) A pointer to the function that computes the gradients of the con-

straints. The user must pass the function pointer grcnfd (declared in the header

cfsqpusr.h) if he/she wishes that CFSQP evaluate these gradients automati-

cally, by forward �nite di�erences. The detailed speci�cation is given in x 7.4
below.

cd (Input) A void pointer which may be used by the user to pass \client data"

between their main program and the objective and constraint functions (and

their gradients). This pointer is left untouched by CFSQP and is passed as is to

the user-de�ned objective and constraint functions (as well as the gradient func-

tions if �nite di�erencing is not being used). See the second example program

for an example of the use of client data.

5 User-Accessible Stopping Criterion and Flags

As is clear from the description of the two algorithms, the optimization process normally

terminates if both kd0kk � � and
Pne

j=1 jhj(xk)j � �e are satis�ed. A very small value of

23

either of these two parameters may require exceedingly long execution time, depending on

the complexity of the underlying problem and the nonlinearity of various functions. If the

user wishes, CFSQP allows speci�cation of three additional parameters that control three

pre-selected stopping criteria via the following three globally de�ned variables (de�ned and

initialized in the header �le cfsqpusr.h): objeps, objrep, and gLgeps. If the user does

not assign any of these values, CFSQP will never terminate on the corresponding test.

CFSQP will perform the corresponding tests at appropriate places during the optimization

process and will terminate when either the default stopping criterion is satis�ed or one of

the following conditions is met:

1. neqn = 0 and jfprev� fj � objeps, where fprev and f are the value of the objective

function at the previous and current iterates respectively (for mode B=1, fprev is the

maximum value of the objective over the last four iterates).

2. neqn = 0 and jfprev� fj=jfprevj � objrep.

3. krxLk � gLgeps and
Pne

j=1 jhj(xk)j � �e, where L is the Lagrangian (see the descrip-

tion of ktnorm in Section 6 for the de�nition of rxL).

Using one of the �rst two stopping criterion listed above may lead to a warning message

concerning the norm of the Kuhn-Tucker vector, i.e. krxLk, at the �nal iterate. This

indicates that the norm is above a certain threshold, and even though the stopping criterion

has been satis�ed, the �nal iterate may not be a local minimizer.

In addition to these alternative stopping criterion, there is a globally de�ned logical

variable x is new (declared and initialized in the header �le cfsqpusr.h) that is initially

set to TRUE (= 1) and reset to TRUE whenever CFSQP changes the value of x that is to

be sent to one of the user-de�ned functions. The user may test this and do all function

evaluations at once, when x is �rst changed, and then set x is new to FALSE. On subsequent

calls, while x is new is still FALSE, the user need only return the already computed function

value (remember to declare the storage set aside for this as static so that the data is not

lost when control is returned to CFSQP). See also x 11.

6 Description of the Output

No output will be displayed before a feasible starting point is obtained. The following

information is displayed at the end of execution if iprint = 1 or during execution if iprint >

1:

iteration Total number of iterations (iprint = 1) or iteration number (iprint > 1).

inform See x 4. It is displayed only at the end of execution.

24

|Xi k| (displayed only if ncsrl + ncsrn > 0) Total number of individual constraints

from the sets of sequentially related constraints used for computation of the

direction during the �nal iteration (i.e.,
P

j2Igsr j�
gj
k j where Igsr is the set of indices

for all sets of such constraints).

|Omega k| (displayed only if nfsr > 0) Total number of individual objectives from

the sets of sequentially related objectives used for computation of the direction

during the �nal iteration (i.e.,
P

i2Isr j
fi
k j).

x Iterate.

objectives Value of objective functions fi(x); 8i 2 If , and �
fi (x); 8i 2 Isr at x (see

algorithm description for de�nitions).

objmax (displayed only if nf > 1) The maximum value of the set of objective functions.

i.e.,

maxfmax
i2If

fi(x);max
i2Isr

max
!2
fi

fi(x; !)g
or

maxfmax
i2If

jfi(x)j;max
i2Isr

max
!2
fi

jfi(x; !)jg
at x, depending upon the way mode was set.

objective max4 (displayed only if B = 1 in mode) Largest value of the maximum of the

objective functions over the last four iterations (including the current one).

constraints Values of the constraints at x. As with objectives, only the maximum

constraint value for each set of sequentially related constraints is displayed.

ncallf Number of evaluations (so far) of the individual (scalar) objective functions.

Note that for nfsr > 0, every evaluation of an individual objective from a set of

sequentially related objectives is considered as a function evaluation.

ncallg Number of evaluations (so far) of individual (scalar) nonlinear constraints. Once

again, if nsr + `sr > 0, then every evaluation of an individual constraint from a

set of sequentially related constraints is considered as a constraint evaluation.

d0norm Norm of the Newton direction d0k.

ktnorm Norm of the Kuhn-Tucker vector at the current iterate. The Kuhn-Tucker

vector is given by (in its most general form, i.e., assuming sequentially related

25

constraints and objectives are presesnt)

rL(xk; �k; �k; �k; �k; pk) =
P
j2If

�k;jrfj(xk) + P
j2Isr

P
!2
fj

�!k;jrxfj(xk; !) + �k

+
P

j2Igreg

�k;jrgj(xk) + P
j2Igsr

P
�2�gj

��k;jrxgj(xk; �)

+
neP
j=1

(�k;j � pk;j)rhj(xk) +
teP

j=ne+1
�k;jrhj(xk);

where Igreg is an index set of regular inequality constraints and Igsr is an index

set for all sets of sequentially related inequality constraints.

SNECV Sum of the violation of nonlinear equality constraints at a solution.

For iprint = 3 (or 10�N +3), in addition to the same information given when iprint = 2,

the following is printed at each iteration (or at selected iterations).

Details from the computation of a search direction:

d0 Quasi-Newton direction d0k.

d1 First order direction d1k.

d1norm Norm of d1k.

d (B = 0 in mode) Feasible descent direction dk = (1� �k)d
0
k + �kd

1
k.

dnorm (B = 0 in mode) Norm of dk.

rho (B = 0 in mode) Coe�cient �k used in constructing dk.

dl (B = 1 in mode) Local direction d`k = (1� �`k)d
0
k + �`kd

1
k.

dlnorm (B = 1 in mode) Norm of d`k.

rhol (B = 1 in mode) Coe�cient �`k used in constructing d`k.

dg (B = 1 in mode) Global search direction dg = (1� �gk)d
0
k + �gkd

1
k.

dgnorm (B = 1 in mode) Norm of dgk.

rhog (B = 1 in mode) Coe�cient �gk used in constructing dgk.

dtilde Second order correction ~dk.

dtnorm Norm of ~dk.

26

Details from the line search:

trial step Trial step parameter t.

trial point Trial iterate along the search arc with trial step.

trial objectives This gives the indices i and the corresponding values of the functions

fi(x) � Pne
j=1 pjhj(x) for i 2 If and fi(x; !) � Pne

j=1 pjhj(x) for ! 2
fi and

i 2 Isr up to the one which causes the line search to fail at the trial point.

The indices i are not necessarily in the natural order (see remark at the end of

Step 2 in FSQP-AL and of the end of Step 1 viii in FSQP-NL).

trial penalty term This gives the value of the penalized objective function when there

is no objective function, i.e. �Pne
j=1 pjhj(x).

trial constraints This gives the indices j (as de�ned in the user-supplied constraint

function), and the corresponding values of nonlinear constraints up to the one

which is not feasible at the trial point. The indices j are not necessarily in

the natural order (see remark at the end of Step 2 in FSQP-AL and of the end

of Step 1 viii in FSQP-NL).

Details from the updates:

delta Perturbation size for each variable in �nite di�erence gradients computation.

gradf Gradients of functions fi(x); 8i 2 If and fi(x; !); 8! 2
fi ; 8i 2 Isr; at the

new iterate.

gradg Gradients of constraints at the new iterate.

P Penalty parameters for nonlinear equality constraints at the new iterate.

psmu Solution �� of the least squares problem estimating the K-T multipliers for the

nonlinear equality constraints. These values are used to update the penalty

parameters.

multipliers Multiplier estimates ordered as �'s, �'s, �'s, and �'s (from quadratic pro-

gram computing d0k) for the modi�ed problem (i.e. nonlinear equality con-

straints turned into inequality constraints). �j � 0 8j 2 f1; : : : ; tig and

�j � 0 8j 2 f1; : : : ; teg. �i > 0 indicates that xi is at an upper bound and

�i < 0 indicates that xi is at a lower bound. When (in mode) A = 0 and nf > 1

or nfsr > 0, �i � 0. When (in mode) A = 1, �i > 0 (resp. �i(!)) refers to +fi(x)

(resp. +fi(x; !)) and �i < 0 (resp. �i(!) < 0) to �fi(x) (resp. �fi(x; !)).

27

hess Estimate of the Hessian matrix of the Lagrangian.

Ck The value Ck as de�ned in Algorithm FSQP-NL.

7 User-Supplied Functions

At least two of the following four C subroutines, namely obj and constr, must be provided

by the user in order to de�ne the problem. The name of all four routines may be changed

at the user's will, as they are passed as arguments to CFSQP.

7.1 Function obj()

The function obj(), to be provided by the user, computes the value of the objective functions.

If nf = 0, at least a NULL pointer to a void function must be passed (This may happen

when the user is only interested in �nding a feasible point). The speci�cation of obj() for

CFSQP is

void

obj(nparam,j,x,fj,cd)

int nparam,j;

double *x,*fj;

void *cd;

{

/*

for given j, assign to *fj the value of the jth objective

evaluated at x

*/

return;

}

Arguments:

nparam (Input) Dimension of x.

j (Input) Number of the objective to be computed.

x (Input) Current iterate.

fj (Output) Pointer to value of the jth objective function at x.

cd (Input/Output) Void pointer which may be recast and used by the user to

pass data from their main program (that which called CFSQP) to, and between,

user-de�ned objective, constraint, and gradient functions.

28

Sequentially related objectives must always follow the regular objective function de�ni-

tions. If sets of sequentially related objectives are present, a single value of j is assigned

to every individual objective function in each of the sets. For instance, given a problem

with two isolated objective functions and one set of sequentially related objective functions

with 100 members, when CFSQP needs the value of a particular member of the sequentially

related objective set, it will send the corresponding index j between j = 3 and j = 102. It is

up to the user, in the function obj(), to translate this value of j into an appropriate value

of ! 2
fj in order to evaluate fj(x; !).

7.2 Function constr()

The function constr(), to be provided by the user, computes the value of the constraints.

If there are no constraints, a NULL pointer to a void function should be provided anyway.

The speci�cation of constr() for CFSQP is as follows

void

constr(nparam,j,x,gj,cd)

int nparam,j;

double *x,*gj;

void *cd;

{

/*

for given j, assign to *gj the value of the jth constraint

evaluated at x

*/

return;

}

Arguments:

nparam (Input) Dimension of x.

j (Input) Number of the constraint to be computed.

x (Input) Current iterate.

gj (Output) Pointer to value of the jth constraint at x.

cd (Input/Output) Void pointer which may be recast and used by the user to

pass data from their main program (that which called CFSQP) to, and between,

user-de�ned objective, constraint, and gradient functions.

29

If only isolated constraints are present, the order of the constraints must be as follows.

First the nineqn (possibly zero) nonlinear inequality constraints. Then the nineq� nineqn

(possibly zero) linear inequality constraints. Finally, the neqn (possibly zero) nonlinear

equality constraints followed by the neq� neqn (possibly zero) linear equality constraints.

If there are sequentially related constraints present, each individual constraint is assigned

its own value of j. The order of the constraints is as follows. First the nineqn � ncsrn

(possibly zero) regular nonlinear inequality constraints. Next are the ncsrn (possibly zero)

nonlinear sets of sequentially related constraints. As with objectives, the user must recognize

a particular value of j as representing a particular constraint from a set and translate this

accordingly to the appropriate � 2 �gj . Next are the nineq � nineqn� ncsrl (possibly

zero) isolated linear inequality constraints, followed by the ncsrl (possibly zero) sets of

sequentially related linear constraints. Finally, the neqn (possibly zero) nonlinear equality

constraints followed by the neq� neqn (possibly zero) linear equality constraints.

7.3 Function gradob()

The function gradob() computes the gradients of the objective functions. The user may

omit this routine and require that forward �nite di�erence approximation be used by CFSQP

via calling grobfd() instead (see argument gradob of CFSQP in x 4). The speci�cation of

gradob() for CFSQP is as follows

void

gradob(nparam,j,x,gradfj,dummy,cd)

int nparam,j;

double *x,*gradfj;

void (* dummy)();

void *cd;

{

/*

for i=1 to nparam assign to gradfj[i-1] the value of the partial

derivative of the jth objective function with respect to the

ith parameter evaluated at x

*/

return;

}

Arguments:

nparam (Input) Dimension of x.

j (Input) Number of objective for which gradient is to be computed.

30

x (Input) Current iterate.

gradfj (Output) Pointer to array containing the gradient of the jth objective function

at x.

dummy (Input) Used by grobfd().

cd (Input/Output) Void pointer which may be recast and used by the user to

pass data from their main program (that which called CFSQP) to, and between,

user-de�ned objective, constraint, and gradient functions.

Note that dummy is passed as an arguments to gradob to maintain compatibility between

the calling sequences of the user-de�ned objective gradient function and the internal CF-

SQP function grobfd() (used when forward �nite di�erence computation of the gradient is

requested by the user). The parameter j is expected to index the gradient of the objective

for which the same j would index in obj().

7.4 Function gradcn()

The function gradcn() computes the gradients of the constraints. The user may omit this

routine and require that forward �nite di�erence approximation be used by CFSQP via

calling grcnfd() instead (see argument gradcn of CFSQP in x 4). The speci�cation of

gradcn() for CFSQP is as follows

void

gradcn(nparam,j,x,gradgj,dummy,cd)

int nparam,j;

double *x,*gradgj;

void (* dummy)();

void *cd;

{

/*

for i=1 to nparam assign to gradgj[i-1] the value of the partial

derivative of the jth constraint with respect to the ith

parameter evaluated at x

*/

return;

}

Arguments:

nparam (Input) Dimension of x.

31

j (Input) Number of constraint for which gradient is to be computed.

x (Input) Current iterate.

gradgj (Output) Pointer to array containing the gradient of the jth constraint eval-

uated at x.

dummy (Input) Used by grcnfd().

cd (Input/Output) Void pointer which may be recast and used by the user to

pass data from their main program (that which called CFSQP) to, and between,

user-de�ned objective, constraint, and gradient functions.

Once again, note that dummy is passed as an argument to gradcn() to maintain compat-

ibility between the calling sequences of the user-de�ned constraint gradient function and the

internal CFSQP function grcnfd() (used when forward �nite di�erence computation of the

gradient is requested by the user). The parameter j is expected to index the gradient of the

constraint for which the same j would index in constr().

8 Organization of CFSQP and Main Functions

8.1 Main Functions

CFSQP �rst checks for inconsistencies in the input parameters using the function check().

Next, feasibility for the linear constraints of the user-supplied initial point is checked, and if

not satis�ed CFSQP generates a point satisfying these constraints via the function initpt().

If necesssary, cfsqp1() is then called to generate a point satisfying all nonlinear inequality

constraints while maintaining feasibility for linear constraints. Finally, CFSQP again calls

cfsqp1() in an attempt to generate a point satisfying the optimality conditions for the

original problem.

check Check that all upper bounds on variables are no smaller than lower bounds;

check that all input integers are nonnegative and appropriate (nineq � nineqn,

etc.); and check that eps (�) and (if neqn 6= 0) epseqn (�e) are at least as large

as the machine precision epsmac (as computed by CFSQP).

initpt Attempt to generate a feasible point satisfying simple bounds and all linear

constraints.

cfsqp1 Main subroutine used possibly twice by CFSQP, �rst for generating a feasible

iterate (as explained at the end of x 2) and second for generating an optimal

iterate from that feasible iterate.

32

cfsqp1 calls the following functions:

dir Compute the directions d0k, d
1
k and

~dk.

step Perform a \line" search along the search arc. It is also called to check if xk+ d`k
is acceptable in Step 1 v of Algorithm FSQP-NL.

hessian Perform the Hessian matrix updating.

update omega Called only when sequentially related constraints or objectives are present

(i.e. nfsr + nsr + `sr > 0). Updates the \active" constraint and objective sets

fi
k and �

gj
k .

out Print the output for iprint = 1 or iprint = 2.

grobfd (optional) Compute the gradient of an objective function by forward �nite

di�erences with perturbation size equal to sign(xi) � maxfudelta; rteps �
max(1; jxij)g for each component xi of x (rteps is the square root of epsmac,

the machine precision computed by CFSQP).

grcnfd (optional) Compute the gradient of a constraint by forward �nite di�erences

with perturbation size equal to sign(xi)�maxfudelta; rteps�max(1; jxij)g for

each component xi of x (rteps is the square root of epsmac, the machine pre-

cision computed by CFSQP).

8.2 Other Functions

In addition to the QP solver QLD (see the end of x1), the following functions are used (all

functions other than cfsqp, grobfd, and grcnfd are statically de�ned within CFSQP, and

should not cause a clash with user-de�ned functions of the same name):

diagnl di1 dqp error estlam fool fuscmp indexs matrcp

matrvc nullvc resign sbout1 sbout2 scaprd shift slope small

element

Finally, the following memory management utilities are used within CFSQP:

make_dv free_dv convert

make_iv free_iv

make_dm free_dm

33

9 Examples

The �rst problem is borrowed from [12] (Problem 32). It involves a single objective func-

tion, simple bounds on the variables, nonlinear inequality constraints, and linear equality

constraints. The objective function f is de�ned for x 2 IR3 by

f(x) = (x1 + 3x2 + x3)
2 + 4(x1 � x2)

2

The constraints are

0 � xi; i = 1; : : : ; 3

x31 � 6x2 � 4x3 + 3 � 0

1� x1 � x2 � x3 = 0

The feasible initial guess is: x0 = (0:1; 0:7; 0:2)T with corresponding value of the objective

function f(x0) = 7:2. The �nal solution is: x� = (0; 0; 1)T with f(x�) = 1. A suitable

main program is as follows.

#include "cfsqpusr.h"

void obj32();

void cntr32();

void grob32();

void grcn32();

int

main() {

int i,nparam,nf,nineq,neq,mode,iprint,miter,neqn,nineqn,

ncsrl,ncsrn,nfsr,mesh_pts[1],inform;

double bigbnd,eps,epsneq,udelta;

double *x,*bl,*bu,*f,*g,*lambda;

void *cd;

mode=100;

iprint=1;

miter=500;

bigbnd=1.e10;

eps=1.e-8;

epsneq=0.e0;

udelta=0.e0;

nparam=3;

34

nf=1;

neqn=0;

nineqn=1;

nineq=1;

neq=1;

ncsrl=ncsrn=nfsr=mesh_pts[0]=0;

bl=(double *)calloc(nparam,sizeof(double));

bu=(double *)calloc(nparam,sizeof(double));

x=(double *)calloc(nparam,sizeof(double));

f=(double *)calloc(nf+1,sizeof(double));

g=(double *)calloc(nineq+neq+1,sizeof(double));

lambda=(double *)calloc(nineq+neq+nf+nparam,sizeof(double));

bl[0]=bl[1]=bl[2]=0.e0;

bu[0]=bu[1]=bu[2]=bigbnd;

x[0]=0.1e0;

x[1]=0.7e0;

x[2]=0.2e0;

cfsqp(nparam,nf,nfsr,nineqn,nineq,neqn,neq,ncsrl,ncsrn,mesh_pts,

mode,iprint,miter,&inform,bigbnd,eps,epsneq,udelta,bl,bu,x,

f,g,lambda,obj32,cntr32,grob32,grcn32,cd);

free(bl);

free(bu);

free(x);

free(f);

free(g);

free(lambda);

return 0;

}

Following are the functions de�ning the objective, constraints, and their gradients.

void

obj32(nparam,j,x,fj,cd)

int nparam,j;

double *x,*fj;

35

void *cd;

{

*fj=pow((x[0]+3.e0*x[1]+x[2]),2.e0)+4.e0*pow((x[0]-x[1]),2.e0);

return;

}

void

grob32(nparam,j,x,gradfj,dummy,cd)

int nparam,j;

double *x,*gradfj;

void (* dummy)();

void *cd;

{

double fa,fb;

fa=2.e0*(x[0]+3.e0*x[1]+x[2]);

fb=8.e0*(x[0]-x[1]);

gradfj[0]=fa+fb;

gradfj[1]=fa*3.e0-fb;

gradfj[2]=fa;

return;

}

void

cntr32(nparam,j,x,gj,cd)

int nparam,j;

double *x,*gj;

void *cd;

{

switch (j) {

case 1:

*gj=pow(x[0],3.e0)-6.e0*x[1]-4.e0*x[2]+3.e0;

break;

case 2:

*gj=1.e0-x[0]-x[1]-x[2];

break;

}

return;

36

}

void

grcn32(nparam,j,x,gradgj,dummy,cd)

int nparam,j;

double *x,*gradgj;

void (* dummy)();

void *cd;

{

switch (j) {

case 1:

gradgj[0]=3.e0*x[0]*x[0];

gradgj[1]=-6.e0;

gradgj[2]=-4.e0;

break;

case 2:

gradgj[0]=gradgj[1]=gradgj[2]=-1.e0;

break;

}

return;

}

The �le containing the user-provided main programs and functions is then compiled together

with cfsqp.c and qld.c. After running the algorithm on a SUN 4/SPARC station 1, the

following output is obtained:

CFSQP Version 2.5 (Released April 1997)

Copyright (c) 1993 --- 1997

C.T. Lawrence, J.L. Zhou

and A.L. Tits

All Rights Reserved

The given initial point is feasible for inequality

constraints and linear equality constraints:

1.00000000000000e-01

7.00000000000000e-01

2.00000000000000e-01

objectives

37

7.20000000000000e+00

constraints

-1.99900000000000e+00

5.55111512312578e-17

iteration 3

inform 0

x -9.86076131526265e-32

0.00000000000000e+00

1.00000000000000e+00

objectives

1.00000000000000e+00

constraints

-1.00000000000000e+00

0.00000000000000e+00

d0norm 1.39452223873684e-31

ktnorm 1.06098265851897e-30

ncallf 3

ncallg 5

Normal termination: You have obtained a solution !!

Our second example is taken from example 6 in [13]. We will use two methods to solve

this problem. First we solve the problem considering all objective functions as isolated

and unrelated. Next we will solve the problem considering the objectives as a single set of

sequentially related functions. The problem is as follows.

min
x2IR6

max
i=1;:::;163

jfi(x)j

s.t.

� x1 + s � 0

x1 � x2 + s � 0

x2 � x3 + s � 0

x3 � x4 + s � 0

x4 � x5 + s � 0

x5 � x6 + s � 0

x6 � 3:5 + s � 0;

38

where
fi(x) =

1
15
+ 2

15
(
P6

j=1 cos(2�xjsin�i) + cos(7�sin�i));

�i =
�
180

(8:5 + 0:5i); i = 1; : : : ; 163;

s = 0:425:

The feasible initial guess is: x0 = (0:5; 1; 1:5; 2; 2:5; 3)T with the corresponding value of the

objective function max
i=1;:::;163

jfi(x0)j = 0:22051991555531. A suitable main program that treats

all objectives as isolated and unrelated is as follows. Note that for demonstration purposes

we use this example as a sample of the use of the client data feature of CFSQP.

#include "cfsqpusr.h"

void objmad();

void cnmad();

int

main() {

int nparam,nf,nineq,neq,mode,iprint,miter,neqn,nineqn,

ncsrl,ncsrn,nfsr,mesh_pts[1],inform;

double bigbnd,eps,epsneq,udelta;

double *x,*bl,*bu,*f,*g,*lambda;

double *cd;

mode=111;

iprint=1;

miter=500;

bigbnd=1.e10;

eps=1.e-8;

epsneq=0.e0;

udelta=0.e0;

nparam=6;

nf=163;

neqn=0;

nineqn=0;

nineq=7;

neq=0;

ncsrl=ncsrn=nfsr=mesh_pts[0]=0;

bl=(double *)calloc(nparam,sizeof(double));

bu=(double *)calloc(nparam,sizeof(double));

x=(double *)calloc(nparam,sizeof(double));

39

f=(double *)calloc(nf+1,sizeof(double));

g=(double *)calloc(nineq+neq+1,sizeof(double));

lambda=(double *)calloc(nineq+neq+nf+nparam+1,sizeof(double));

bl[0]=bl[1]=bl[2]=bl[3]=bl[4]=bl[5]=-bigbnd;

bu[0]=bu[1]=bu[2]=bu[3]=bu[4]=bu[5]=bigbnd;

x[0]=0.5e0;

x[1]=1.e0;

x[2]=1.5e0;

x[3]=2.e0;

x[4]=2.5e0;

x[5]=3.e0;

cd=(double *)calloc(2,sizeof(double));

cd[0]=3.14159265358979e0;

cd[1]=0.425e0;

cfsqp(nparam,nf,nfsr,nineqn,nineq,neqn,neq,ncsrl,ncsrn,mesh_pts,

mode,iprint,miter,&inform,bigbnd,eps,epsneq,udelta,bl,bu,x,

f,g,lambda,objmad,cnmad,grobfd,grcnfd,cd);

free(bl);

free(bu);

free(x);

free(f);

free(g);

free(lambda);

return 0;

}

We choose to compute the gradients of functions by means of �nite di�erence approximation.

Thus only functions that de�ne the objectives and constraints are needed as follows. (These

functions will not change when we consider the problem as a sequentially related set of

objectives, hence we only list them once.)

void

objmad(nparam,j,x,fj,cd)

int nparam,j;

40

double *x,*fj;

double *cd;

{

double pi,theta;

int i;

pi=cd[0];

theta=pi*(8.5e0+j*0.5e0)/180.e0;

*fj=0.e0;

for (i=0; i<=5; i++)

*fj=*fj+cos(2.e0*pi*x[i]*sin(theta));

fj=2.e0(*fj+cos(2.e0*pi*3.5e0*sin(theta)))/15.e0

+1.e0/15.e0;

return;

}

void

cnmad(nparam,j,x,gj,cd)

int nparam,j;

double *x,*gj;

double *cd;

{

double ss;

ss=cd[1];

switch (j) {

case 1:

*gj=ss-x[0];

break;

case 2:

*gj=ss+x[0]-x[1];

break;

case 3:

*gj=ss+x[1]-x[2];

break;

case 4:

*gj=ss+x[2]-x[3];

break;

41

case 5:

*gj=ss+x[3]-x[4];

break;

case 6:

*gj=ss+x[4]-x[5];

break;

case 7:

*gj=ss+x[5]-3.5e0;

break;

}

return;

}

After running the �rst algorithm on a SUN 4/SPARC station 1, the following output is

obtained (the results for the set of objectives have been deleted to save space)

CFSQP Version 2.5 (Released April 1997)

Copyright (c) 1993 --- 1997

C.T. Lawrence, J.L. Zhou

and A.L. Tits

All Rights Reserved

The given initial point is feasible for inequality

constraints and linear equality constraints:

5.00000000000000e-01

1.00000000000000e+00

1.50000000000000e+00

2.00000000000000e+00

2.50000000000000e+00

3.00000000000000e+00

objectives

objmax 2.20519865065595e-01

constraints

-7.50000000000000e-02

-7.50000000000000e-02

-7.50000000000000e-02

-7.50000000000000e-02

-7.50000000000002e-02

42

-7.50000000000002e-02

-7.50000000000002e-02

iteration 7

inform 0

x 4.25000000000000e-01

8.50000000000000e-01

1.27500000000000e+00

1.70000000000000e+00

2.18407631966882e+00

2.87327550964478e+00

objectives

objective max4 1.14218413252211e-01

objmax 1.13104727498258e-01

constraints

0.00000000000000e+00

0.00000000000000e+00

0.00000000000000e+00

0.00000000000000e+00

-5.90763196688169e-02

-2.64199189975961e-01

-2.01724490355223e-01

d0norm 1.56621622756395e-10

ktnorm 2.05641104350305e-11

ncallf 1141

Normal termination: You have obtained a solution !!

We now list the appropriate modi�cations of the above main program that will tell

CFSQP to exploit the structure of the problem and treat the objectives as a sequentially

related set. Thus, CFSQP will use the algorithm FSQP-SR. The majority of the code remains

unchanged, we list here the initialization portion only. Note that the parameters nf, nfsr,

and mesh pts[0] have been changed. Note also that the amount of memory allocated for

the appropriate arrays has changed.

mode=111;

43

iprint=1;

miter=500;

bigbnd=1.e10;

eps=1.e-8;

epsneq=0.e0;

udelta=0.e0;

nparam=6;

nf=1; /* One SR objective set with 163 */

nfsr=1; /* sequentially related members. */

mesh_pts[0]=163;

neqn=0;

nineqn=0;

nineq=7;

neq=0;

ncsrl=ncsrn=0;

bl=(double *)calloc(nparam,sizeof(double));

bu=(double *)calloc(nparam,sizeof(double));

x=(double *)calloc(nparam,sizeof(double));

f=(double *)calloc(mesh_pts[0]+1,sizeof(double));

g=(double *)calloc(nineq+neq+1,sizeof(double));

lambda=(double *)calloc(nineq+neq+mesh_pts[0]+nparam+1,

sizeof(double));

After running the problem using algorithm FSQP-SR on a SUN 4/SPARC station 1, the

following output is obtained

CFSQP Version 2.5 (Released April 1997)

Copyright (c) 1993 --- 1997

C.T. Lawrence, J.L. Zhou

and A.L. Tits

All Rights Reserved

The given initial point is feasible for inequality

constraints and linear equality constraints:

5.00000000000000e-01

1.00000000000000e+00

1.50000000000000e+00

44

2.00000000000000e+00

2.50000000000000e+00

3.00000000000000e+00

objectives

2.20519865065595e-01

objmax 2.20519865065595e-01

constraints

-7.50000000000000e-02

-7.50000000000000e-02

-7.50000000000000e-02

-7.50000000000000e-02

-7.50000000000002e-02

-7.50000000000002e-02

-7.50000000000002e-02

iteration 7

inform 0

|Omega_k| 7

x 4.25000000000000e-01

8.50000000000000e-01

1.27500000000000e+00

1.70000000000000e+00

2.18407631958035e+00

2.87327550951555e+00

objectives

1.13104727457934e-01

objective max4 1.13659863034301e-01

objmax 1.13104727457934e-01

constraints

0.00000000000000e+00

0.00000000000000e+00

0.00000000000000e+00

0.00000000000000e+00

-5.90763195803512e-02

-2.64199189935201e-01

-2.01724490484449e-01

d0norm 4.33218838740540e-12

ktnorm 2.09600754392242e-12

45

ncallf 1141

Normal termination: You have obtained a solution !!

We should mention that it is actually unusual to get the same results for both methods

in terms of function evaluations and number of iterations. Usually, computing the search

direction based on a small subset of objectives and constraints causes an increase in the

number of iterations and function evaluations. For this example, since only a small subset

of the objectives were used to construct the QP subproblems at each iteration, algorithm

FSQP-SR executed in signi�cantly less time, and required far fewer gradient evaluations.

Our third example is borrowed from [12] (Problem 71). It involves both equality and

inequality nonlinear constraints and is de�ned by

min
x2IR4

x1x4(x1 + x2 + x3) + x3

s.t. 1 � xi � 5; i = 1; : : : ; 4

x1x2x3x4 � 25 � 0

x21 + x22 + x23 + x24 � 40 = 0:

The feasible initial guess is: x0 = (1; 5; 5; 1)T with the corresponding value of the objective

function f(x0) = 16. A suitable program that invokes CFSQP to solve this problem is given

below.

#include "cfsqpusr.h"

void obj71();

void cntr71();

void grob71();

void grcn71();

int

main() {

int nparam,nf,nineq,neq,mode,iprint,miter,neqn,nineqn,

ncsrl,ncsrn,nfsr,mesh_pts[1],inform;

double bigbnd,eps,epsneq,udelta;

double *x,*bl,*bu,*f,*g,*lambda;

void *cd;

mode=100;

46

iprint=1;

miter=500;

bigbnd=1.e10;

eps=1.e-7;

epsneq=7.e-6;

udelta=0.e0;

nparam=4;

nf=1;

neqn=1;

nineqn=1;

nineq=1;

neq=1;

ncsrl=ncsrn=nfsr=mesh_pts[0]=0;

bl=(double *)calloc(nparam,sizeof(double));

bu=(double *)calloc(nparam,sizeof(double));

x=(double *)calloc(nparam,sizeof(double));

f=(double *)calloc(nf+1,sizeof(double));

g=(double *)calloc(nineq+neq+1,sizeof(double));

lambda=(double *)calloc(nineq+neq+nf+nparam+1,sizeof(double));

bl[0]=bl[1]=bl[2]=bl[3]=1.e0;

bu[0]=bu[1]=bu[2]=bu[3]=5.e0;

x[0]=1.e0;

x[1]=5.e0;

x[2]=5.e0;

x[3]=1.e0;

cfsqp(nparam,nf,nfsr,nineqn,nineq,neqn,neq,ncsrl,ncsrn,mesh_pts,

mode,iprint,miter,&inform,bigbnd,eps,epsneq,udelta,bl,bu,x,

f,g,lambda,obj71,cntr71,grob71,grcn71,cd);

free(bl);

free(bu);

free(x);

free(f);

free(g);

47

free(lambda);

return 0;

}

Following are the functions that de�ne the objective, constraints and their gradients.

void

obj71(nparam,j,x,fj,cd)

int nparam,j;

double *x,*fj;

void *cd;

{

*fj=x[0]*x[3]*(x[0]+x[1]+x[2])+x[2];

return;

}

void

grob71(nparam,j,x,gradfj,dummy,cd)

int nparam,j;

double *x,*gradfj;

void (* dummy)();

void *cd;

{

gradfj[0]=x[3]*(x[0]+x[1]+x[2])+x[0]*x[3];

gradfj[1]=x[0]*x[3];

gradfj[2]=x[0]*x[3]+1.e0;

gradfj[3]=x[0]*(x[0]+x[1]+x[2]);

return;

}

void

cntr71(nparam,j,x,gj,cd)

int nparam,j;

double *x,*gj;

void *cd;

{

switch (j) {

case 1:

*gj=25.e0-x[0]*x[1]*x[2]*x[3];

48

break;

case 2:

*gj=x[0]*x[0]+x[1]*x[1]+x[2]*x[2]+x[3]*x[3]-40.e0;

break;

}

return;

}

void

grcn71(nparam,j,x,gradgj,dummy,cd)

int nparam,j;

double *x,*gradgj;

void (* dummy)();

void *cd;

{

switch (j) {

case 1:

gradgj[0]=-x[1]*x[2]*x[3];

gradgj[1]=-x[0]*x[2]*x[3];

gradgj[2]=-x[0]*x[1]*x[3];

gradgj[3]=-x[0]*x[1]*x[2];

break;

case 2:

gradgj[0]=2.e0*x[0];

gradgj[1]=2.e0*x[1];

gradgj[2]=2.e0*x[2];

gradgj[3]=2.e0*x[3];

break;

}

return;

}

After running the algorithm on a SUN 4/SPARC station 1, the following output is obtained

CFSQP Version 2.5 (Released April 1997)

Copyright (c) 1993 --- 1997

C.T. Lawrence, J.L. Zhou

and A.L. Tits

49

All Rights Reserved

The given initial point is feasible for inequality

constraints and linear equality constraints:

1.00000000000000e+00

5.00000000000000e+00

5.00000000000000e+00

1.00000000000000e+00

objectives

1.60000000000000e+01

constraints

0.00000000000000e+00

-1.20000000000000e+01

iteration 7

inform 0

x 1.00000000000000e+00

4.74299963046833e+00

3.82114999306416e+00

1.37940829194384e+00

objectives

1.70140172891565e+01

constraints

-4.05009359383257e-13

-4.05009359383257e-13

SNECV 4.05009359383257e-13

d0norm 1.12049770833730e-08

ktnorm 1.90658262018579e-08

ncallf 7

ncallg 30

Normal termination: You have obtained a solution !!

50

Our fourth example is borrowed from [14] (Problem TP374). It involves three sets of

sequentially related nonlinear inequality constraints and, given an integer r, is de�ned by

min
x2IR10

x10

s.t. z(ti)� (1� x10)
2 � 0; i = 1; : : : ; r

(1 + x10)
2 � z(ti) � 0; i = r + 1; : : : ; 2r

x210 � z(ti) � 0; i = 2r + 1; : : : ; 3:5r;

where

z(t) =

9X

k=1

xk cos(kt)

!2

+

9X

k=1

xk sin(kt)

!2

and

ti =

8>><
>>:

�(i� 1)0:025 i = 1; : : : ; r

�(i� 1� r)0:025 i = r + 1; : : : ; 2r

�(1:2 + (i� 1� 2r)0:2)0:25 i = 2r + 1; : : : ; 3:5r:

We let r = 100 and use the feasible initial guess: x0 = (0:1; : : : ; 0:1; 1)T with the correspond-

ing value of the objective function f(x0) = 1. We will use the algorithm FSQP-SR to solve

this problem. A suitable program that invokes CFSQP to do this is given below. Notice

that even though we really have 350 constraints, they are interpreted as being in 3 sets of

sequentially related constraints. Hence, nineq = nineqn = 3 and not 350. Note that the

problem has a large number of local minima and many active constraints.

#include "cfsqpusr.h"

#define r 100

void obj();

void cntr();

void grob();

int

main() {

int i,nparam,nf,nineq,neq,mode,iprint,miter,neqn,nineqn,

ncsrl,ncsrn,nfsr,mesh_pts[3],numc,inform;

double bigbnd,eps,epsneq,udelta;

double *x,*bl,*bu,*f,*g,*lambda;

void *cd;

mode=100;

51

iprint=1;

miter=500;

bigbnd=1.e10;

eps=1.e-7;

epsneq=0.e0;

udelta=0.e0;

nparam=10;

nf=1;

neqn=0;

nineqn=nineq=ncsrn=3;

ncsrl=0;

mesh_pts[0]=mesh_pts[1]=r;

mesh_pts[2]=3*r/2;

neq=nfsr=0;

numc=3.5*r;

bl=(double *)calloc(nparam,sizeof(double));

bu=(double *)calloc(nparam,sizeof(double));

x=(double *)calloc(nparam,sizeof(double));

f=(double *)calloc(nf+1,sizeof(double));

g=(double *)calloc(numc+1,sizeof(double));

lambda=(double *)calloc(numc+nf+nparam+1,sizeof(double));

bl[0]=bl[1]=bl[2]=bl[3]=bl[4]=bl[5]=bl[6]=bl[7]=bl[8]=bl[9]=-bigbnd;

bu[0]=bu[1]=bu[2]=bu[3]=bu[4]=bu[5]=bu[6]=bu[7]=bu[8]=bu[9]=bigbnd;

x[0]=x[1]=x[2]=x[3]=x[4]=x[5]=x[6]=x[7]=x[8]=0.1e0;

x[9]=1.e0;

cfsqp(nparam,nf,nfsr,nineqn,nineq,neqn,neq,ncsrl,ncsrn,mesh_pts,

mode,iprint,miter,&inform,bigbnd,eps,epsneq,udelta,bl,bu,x,

f,g,lambda,obj,cntr,grob,grcnfd,cd);

free(bl);

free(bu);

free(x);

free(f);

free(g);

free(lambda);

52

return 0;

}

Following are the functions that de�ne the objective, constraints and the objective gradients.

We use �nite di�erence approximations for the gradients of the constraints. Note that in the

constraint evaluation function the constraints, even though they are all of the same type,

must be ordered according to the ordering within the constraint \sets." The sets themselves

must be ordered as determined by the mesh pts[] array.

void

obj(nparam,j,x,fj,cd)

int nparam,j;

double *x,*fj;

void *cd;

{

*fj=x[9];

return;

}

void

grob(nparam,j,x,gradfj,dummy,cd)

int nparam,j;

double *x,*gradfj;

void (* dummy)();

void *cd;

{

gradfj[0]=0.e0;

gradfj[1]=0.e0;

gradfj[2]=0.e0;

gradfj[3]=0.e0;

gradfj[4]=0.e0;

gradfj[5]=0.e0;

gradfj[6]=0.e0;

gradfj[7]=0.e0;

gradfj[8]=0.e0;

gradfj[9]=1.e0;

return;

}

53

void

cntr(nparam,j,x,gj,cd)

int nparam,j;

double *x,*gj;

void *cd;

{

double t,z,s1,s2;

int k;

s1=s2=0.e0;

if (j<=r) t=3.14159265e0*(j-1)*0.025e0;

else {

if (j<=2*r) t=3.14159265e0*(j-1-r)*0.025e0;

else t=3.14159265e0*(1.2e0+(j-1-2*r)*0.2e0)*0.25e0;

}

for (k=1; k<=9; k++) {

s1=s1+x[k-1]*cos(k*t);

s2=s2+x[k-1]*sin(k*t);

}

z=s1*s1 + s2*s2;

if (j<=r) *gj=(1.e0-x[9])*(1.e0-x[9])-z;

else {

if (j<=2*r) *gj=z-(1.e0+x[9])*(1.e0+x[9]);

else *gj=z-x[9]*x[9];

}

return;

}

We should mention that this problem is apparently very sensitive to the choice of the pa-

rameter udelta, and on some platforms (in particular, the HP170) the program does not

terminate succesfully unless udelta is increased by the user. After running the algorithm

on a SUN 4/SPARC station 1, the following output is obtained

CFSQP Version 2.5 (Released April 1997)

Copyright (c) 1993 --- 1997

C.T. Lawrence, J.L. Zhou

and A.L. Tits

All Rights Reserved

54

The given initial point is feasible for inequality

constraints and linear equality constraints:

1.00000000000000e-01

1.00000000000000e-01

1.00000000000000e-01

1.00000000000000e-01

1.00000000000000e-01

1.00000000000000e-01

1.00000000000000e-01

1.00000000000000e-01

1.00000000000000e-01

1.00000000000000e+00

objectives

1.00000000000000e+00

constraints

-1.28661830051682e-04

-3.19000000000000e+00

-1.90000000000000e-01

iteration 26

inform 0

|Xi_k| 54

x 5.00000000065199e-01

-2.50585946189374e-10

-1.46757994384996e-11

2.29104435357056e-10

1.65938710894802e-10

-1.13048092092404e-11

-1.11009989148022e-10

-5.12778083977221e-11

9.90215478112359e-12

5.00000029897489e-01

objectives

5.00000029897489e-01

constraints

-2.93322754973957e-08

-2.00000008929736e+00

55

-2.95102605685216e-08

d0norm 2.99002061268652e-08

ktnorm 1.39205756738162e-08

ncallf 26

ncallg 12612

Normal termination: You have obtained a solution !!

Our �fth and �nal example is borrowed from [15] (Problem 2) and is an example of a

discretized semi-in�nite program. The original semi-in�nite programming problem is de�ned

by
min
x2IR2

1
3
x21 + x22 +

1
2
x1

s.t. x22 � x2 + x1t
2 � (1� x21t

2)2 � 0 8 t 2 [0; 1]:

In order to use the algorithm, we must choose a �nite subset � � [0; 1] (using the notation

introduced in x 3). There are, of course, many ways that we could do this. A suitable choice

for �, given a level of discretization q, is the uniform discretization

� =

(
0;
1

q
;
2

q
; : : : ;

(q � 1)

q
; 1

)
:

Thus we have the new discretized SIP problem with �nitely many constraints

min
x2IR2

1
3
x21 + x22 +

1
2
x1

s.t. x22 � x2 + x1�
2 � (1� x21�

2)2 � 0 8 � 2 �:

We chose q = 100 and the feasible initial guess: x0 = (�1;�2)T with corresponding value

of the objective function f(x0) = 3:833333. The �nal solution of the original problem

is: x� = (�0:75;�0:618034)T with f(x�) = 0:194466 and the constraint is active only at

the point t = 0. Though the normal algorithm will solve the problem, algorithm FSQP-SR

is speci�cally designed to exploit the structure the problem. A suitable main program that

will call CFSQP to do this is as follows:

#include "cfsqpusr.h"

void obj();

void cntr();

void grob();

void grcn();

56

int

main() {

int i,nparam,nf,nineq,neq,mode,iprint,miter,neqn,nineqn,

ncsrl,ncsrn,nfsr,mesh_pts[1],inform;

double bigbnd,eps,epsneq,udelta;

double *x,*bl,*bu,*f,*g,*lambda;

void *cd;

mode=100;

iprint=1;

miter=500;

bigbnd=1.e10;

eps=1.e-4;

epsneq=0.e0;

udelta=0.e0;

nparam=2;

nf=1;

neqn=0;

nineqn=nineq=1;

ncsrn=1;

ncsrl=0;

mesh_pts[0]=101;

neq=nfsr=0;

bl=(double *)calloc(nparam,sizeof(double));

bu=(double *)calloc(nparam,sizeof(double));

x=(double *)calloc(nparam,sizeof(double));

f=(double *)calloc(nf+1,sizeof(double));

g=(double *)calloc(nineq+(mesh_pts[0]-1)*(ncsrl+ncsrn)+neq+1,

sizeof(double));

lambda=(double *)calloc(nineq+(mesh_pts[0]-1)*(ncsrl+ncsrn)+neq+

nf+nparam,sizeof(double));

bl[0]=bl[1]=-bigbnd;

bu[0]=bu[1]=bigbnd;

x[0]=-1.e0;

x[1]=-2.e0;

57

cfsqp(nparam,nf,nfsr,nineqn,nineq,neqn,neq,ncsrl,ncsrn,mesh_pts,

mode,iprint,miter,&inform,bigbnd,eps,epsneq,udelta,bl,bu,x,

f,g,lambda,obj,cntr,grob,grcn,cd);

free(bl);

free(bu);

free(x);

free(f);

free(g);

free(lambda);

return 0;

}

Following are the functions that de�ne the objective, constraint, and their gradients.

void

obj(nparam,j,x,fj,cd)

int nparam,j;

double *x,*fj;

void *cd;

{

*fj=(1.e0/3.e0)*pow(x[0],2.e0)+pow(x[1],2.e0)+0.5e0*x[0];

return;

}

void

grob(nparam,j,x,gradfj,dummy,cd)

int nparam,j;

double *x,*gradfj;

void (* dummy)();

void *cd;

{

gradfj[0]=(2.e0/3.e0)*x[0]+0.5e0;

gradfj[1]=2.e0*x[1];

return;

}

void

58

cntr(nparam,j,x,gj,cd)

int nparam,j;

double *x,*gj;

void *cd;

{

double y;

y=(j-1)/100.e0;

*gj=pow((1.e0-pow(y*x[0],2.e0)),2.e0)-x[0]*y*y-pow(x[1],2.e0)

+x[1];

return;

}

void

grcn(nparam,j,x,gradgj,dummy,cd)

int nparam,j;

double *x,*gradgj;

void (* dummy)();

void *cd;

{

double y;

y=(j-1)/100.e0;

gradgj[0]=-4.e0*(1.e0-pow(y*x[0],2.e0))*y*y*x[0]-y*y;

gradgj[1]=-2.e0*x[1]+1.e0;

return;

}

After running the algorithm on a SUN 4/SPARC station 1, the following output was obtained

CFSQP Version 2.5 (Released April 1997)

Copyright (c) 1993 --- 1997

C.T. Lawrence, J.L. Zhou

and A.L. Tits

All Rights Reserved

The given initial point is feasible for inequality

constraints and linear equality constraints:

59

-1.00000000000000e+00

-2.00000000000000e+00

objectives

3.83333333333333e+00

constraints

-5.00000000000000e+00

iteration 6

inform 0

|Xi_k| 2

x -7.49999999972904e-01

-6.18033989004395e-01

objectives

1.94466011564684e-01

constraints

-5.69078895118480e-10

d0norm 2.55928300682528e-10

ktnorm 2.54322186261339e-10

ncallf 6

ncallg 623

Normal termination: You have obtained a solution !!

10 Results for Test Problems

These results are provided for the user to compare CFSQP with his/her favorite code (see

also [3{5,7]) and were all obtained with C = 1 in mode. The results listed in the �rst

three tables were all obtained without the use of the algorithm FSQP-SR. Table 1 contains

results obtained for some non-minimax test problems from [12] (the same initial points as

in [12] were selected). prob indicates the problem number as in [12], nparam the number

of free variables, nineqn the number of nonlinear (inequality) constraints, ncallf the total

number of evaluations of the objective function, ncallg the total number of evaluations of

the (scalar) nonlinear constraint functions, iter the total number of iterations, objective

the �nal value of the objective function, d0norm the norm of SQP direction at the �nal

iterate, and eps the norm requirement for the SQP direction (in the stopping criterion). In

most cases, eps was selected so as to achieve the same �eld precision as in [12]. Whether

60

FSQP-AL (0) or FSQP-NL (1) is used is indicated in column \B".

Results obtained on selected minimax problems are summarized in Table 2. Problems

bard, davd2, f&r, hettich, and wats are from [16]; cb2, cb3, r-s, wong and colv are from

[17; Examples 5.1-5] (more recent results on problems bard down to wong can be found

in [18]); kiw1 and kiw4 are from [19] (results for kiw2 and kiw3 are not reported due to

data disparity); mad1 to mad8 are from [13, Examples 1-8]; polk1 to polk4 are from [20].

Some of these test problems allow one to freely select the number of variables; problems

wat6 and wat20 correspond to 6 and 20 variables respectively, and mad810, mad830 and

mad850 to 10, 30 and 50 variables respectively. All of the above are either unconstrained

or linearly constrained minimax problems. Unable to �nd nonlinearly constrained minimax

test problems in the literature, we constructed problems p43m through p117m from problems

43, 84, 113 and 117 in [12] by removing certain constraints and including instead additional

objectives of the form

fi(x) = f(x) + �igi(x)

where the �i's are positive scalars and gi(x) � 0: Speci�cally, p43m is constructed from

problem 43 by taking out the �rst two constraints and including two corresponding objectives

with �i = 15 for both; p84m similarly corresponds to problem 84 without constraints 5 and 6

but with two corresponding additional objectives, with �i = 20 for both; for p113m, the �rst

three linear constraints from problem 113 were turned into objectives, with �i = 10 for all;

for p117m, the �rst two nonlinear constraints were turned into objectives, again with �i = 10

for both. The gradients of all the functions were computed by �nite di�erence approximation

except for polk1 through polk4 for which gradients were computed analytically.

In Table 2, the meaning of columns B, nparam, nineqn, ncallf,ncallg, iter, d0norm

and eps are as in Table 1 (but ncallf is the total number of evaluations of scalar objective

functions). nf is the number of objective functions in the max, and objmax is the �nal value

of the max of the objective functions.

Table 3 contains results of problems with nonlinear equality constraints from [12]. Most

columns are the same as described above. eps is not displayed in the table as it is set to

10�4 for all of the problems except p46, where it was 5.E-3, and p27, where it was 1.E-

3 (increased due to slow convergence). epseqn is the norm requirement on the values of

the equality constraints and is chosen close to the corresponding values in [12]. It can be

checked that the second order su�cient conditions of optimality are not satis�ed at the

known optimal solution for problems 26, 27, 46 and 47.

Table 4 contains the results for problems with a set (or sets) of sequentially related

contraints solved via the algorithm FSQP-SR. All problems in this table are discretized

semi-in�nite programs. Problems cw 2 through cw 7 are borrowed from [15], hu 1 through

hu 12 are from [21], hz 1 is from [22], oet 1 through oet 7 are from [23], pt 1 is from [24],

and sch 3 is from [14]. Columns prob, B, ncallf, ncallg, iter, objective, and d0norm

61

are as before. ncsrl is the number of linear sequentially related constraint sets, while ncsrn

is the number of nonlinear sequentially related constraint sets.
P j�gij indicates the total

number of constraints for the problem, i.e. the sum of the number of members in each

constraint set. Finally, j��j is the total number of individual constraints used to construct

the search direction during the �nal iteration. As in Table 3, we do not include eps in the

table since it was set to 10�4 for all problems.

Table 5 contains results for problems with sets of sequentially related objective functions

solved using the algorithm FSQP-SR. Most columns are as before, except nfsr is the number

of sequentially related objective sets,
P j
fi j is the total number of objective functions, and

j
�j is the number of objective functions used to construct the search direction during the

�nal iteration. Once again, the norm requirement for the SQP direction, eps, was set to

10�4 for all problems. All problems except for sch u3, which is taken from [14], are the same

as the corresponding problems in Table 4, except that they are rewritten in minimax form.

In other words, in the original reference they were posed in the form:

min
x2IRn+1

xn+1

s.t. fi(x; !)� xn+1 � 0 8! 2
fi i = 1; : : : ; nfsr:

For this table, we equivalently reformulate the problems as:

min
x2IRn

max
1�i�nfsr

max
!2
fi

fi(x; !):

Additionally, problems oet 1m to oet 7m have absolute value objective functions, i.e. A= 1

in mode. Finally, as before, we do not list the value of eps used for the stopping criterion,

as it was set to 10�4 for all problems.

11 Programming Tips

In both FSQP-AL and FSQP-NL, at each trial point in the arc search, evaluation of objec-

tives/constraints is discontinued as soon as it has been found that one of the inequalities

in the arc search test fails (see x 2). Other than a minor exception (see again x 2), ob-

jectives/constraints within a given type (linear equalities, linear inequalities, nonlinear in-

equalities, nonlinear equalities, objectives) are evaluated in the order they are de�ned in the

user supplied subroutines/functions. In consequence, the CPU-wise user will place earlier in

his/her list the functions whose evaluation is less expensive.

The order in which CFSQP evaluates the various objectives and constraints during the

line search varies from trial point to trial point, as the functions deemed more likely to cause

rejection of the trial steps are evaluated �rst. On the other hand, in many applications, it is

far more e�cient to evaluate all (or at least more than one) of the objectives and constraints

62

concurrently, as they are all obtained as by-products of expensive simulations (e.g., involving

�nite element computation). This situation can be accomodated by making use of the ag

x is new as outlined in x 5. Note, however, that this will not be of much help if the

gradients are computed via grobfd()/grcnfd(), as x is new will be set to TRUE by CFSQP

with every perturbation of a component of x. As an alternative to grobfd()/grcnfd(),

the user could provide his/her own �nite di�erence gradient computation functions (possibly

minor modi�cations to grobfd()/grcnfd()) with proper handling of x is new.

12 Portability

The CFSQP source code was designed to be as portable as possible. In order to satisfy a

broad range of users, the distributed source code contains both Kernighan & Richie and

ANSI compliant function de�nitions and prototypes. The users need not concern themselves

with which of these standards will be used, as the correct de�nitions and prototypes will

automatically be selected by the user's pre-compiler (all ANSI speci�c de�nitions, etc. are

separated via an #ifdef STDC).

13 Trouble-Shooting

It is important to keep in mind some limitations of CFSQP. First, similar to most codes tar-

geted at smooth problems, it is likely to encounter di�culties when confronted to nonsmooth

functions such as, for example, functions involving matrix eigenvalues. Second, because CF-

SQP generates feasible iterates, it may be slow if the feasible set is very \thin" or oddly

shaped. Third, concerning equality constraints, if hj(x) � 0 for all x 2 IRn and if hj(x0) = 0

for some j at the initial point x0, the strictly feasible set de�ned by hj(x) < 0 for such j

is empty. This may cause di�culties for CFSQP because, in CFSQP, hj(x) = 0 is directly

turned into hj(x) � 0 for such j. The user is advised to either give an initial point that is

infeasible for all nonlinear equality constraints or change the sign of hj so that hj(x) < 0

can be achieved at some point for all such nonlinear equality constraint.

A common failure mode for CFSQP, corresponding to inform = 5 or 6, is that of the

QP solver in constructing d0 or d1. This is often due to linear dependence (or almost

dependence) of gradients of equality constraints or active inequality constraints. Sometimes

this problem can be circumvented by making use of a more robust (but likely slower) QP

solver. The user may also want to check the Jacobian matrix and identify which constraints

are the culprit. Eliminating redundant constraints or formulating the constraints di�erently

(without changing the feasible set) may then be the way to go.

Finally, when CFSQP fails in the line search (inform=4), it is typically due to inaccurate

computation of the search direction. Two possible reasons are: (i) Insu�cient accuracy of the

63

QP solver; again, it may be appropriate to substitute a di�erent QP solver. (ii) Insu�cient

accuracy of gradient computation, e.g., when gradients are computed by �nite di�erences.

A remedy may be to provide analytical gradients or, more astutely, to resort to \automatic

di�erentiation".

14 Acknowledgments

The authors are indebted to Dr. E.R. Panier for many invaluable comments and suggestions.

Additionally, we would like to thank the many people who used previous versions of CFSQP

and took the time to point out problems and potential di�culties to us. There are a few who

deserve special recognition for going well above and beyond the call of duty. These include

Greg Anderson of Intel, Martin Wauchope of CRA, Australia, Steven Drucker of MIT, and

Adam Schwartz of Berkeley. Their e�orts went a long way to improving the robustness and

portability of the CFSQP code. Thanks to all!

15 References

[1] D.Q. Mayne & E. Polak, \Feasible Directions Algorithms for Optimization Problems with

Equality and Inequality Constraints," Math. Programming 11 (1976) , 67{80.

[2] C.T. Lawrence & A.L. Tits, \Nonlinear Equality Constraints in Feasible Sequential

Quadratic Programming," Optimization Methods and Software 6 (1996) , 265{282.

[3] E.R. Panier & A.L. Tits, \On Combining Feasibility, Descent and Superlinear Conver-

gence in Inequality Constrained Optimization,"Math. Programming 59 (1993) , 261{276.

[4] J.F. Bonnans, E.R. Panier, A.L. Tits & J.L. Zhou, \Avoiding the Maratos E�ect by Means

of a Nonmonotone Line Search. II. Inequality Constrained Problems { Feasible Iterates,"

SIAM J. Numer. Anal. 29 (1992) , 1187{1202.

[5] J.L. Zhou & A.L. Tits, \Nonmonotone Line Search for Minimax Problems," J. Optim.

Theory Appl. 76 (1993) , 455{476.

[6] J.L. Zhou & A.L. Tits, \An SQP Algorithm for Finely Discretized Continuous Minimax

Problems and Other Minimax Problems with Many Objective Functions," SIAM J. on

Optimization 6 (1996) , 461{487.

[7] C.T. Lawrence & A.L. Tits, \Feasible Sequential Quadratic Programming for Finely Dis-

cretized Problems from SIP," in Semi-In�nite Programming, in the series Nonconvex Op-

timization and its Applications, R. Reemtsen & J.-J. Ruckmann, eds., Kluwer Academic

Publishers, 1997, to appear.

64

[8] L. Grippo, F. Lampariello & S. Lucidi, \A Nonmonotone Line Search Technique for

Newton's Method," SIAM J. Numer. Anal. 23 (1986) , 707{716.

[9] K. Schittkowski, QLD : A FORTRAN Code for Quadratic Programming, User's Guide,

Mathematisches Institut, Universit�at Bayreuth, Germany, 1986.

[10] S. I. Feldman, D. M. Gay, M. W. Maimone & N. L. Schryer, \A Fortran to C Converter,"

AT & T Bell Laboratories, Computer Science Technical Report No. 149, 1990.

[11] M.J.D. Powell, \A Fast Algorithm for Nonlinearly Constrained Optimization Calcula-

tions," in Numerical Analysis, Dundee, 1977, Lecture Notes in Mathematics 630, G.A.

Watson, ed., Springer-Verlag, 1978, 144{157.

[12] W. Hock & K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture

Notes in Economics and Mathematical Systems (187), Springer Verlag, 1981.

[13] K. Madsen & H. Schj�r-Jacobsen, \Linearly Constrained Minimax Optimization,"Math.

Programming 14 (1978) , 208{223.

[14] K. Schittkowski, \Solving Nonlinear Programming Problems with Very Many Con-

straints," Mathematisches Institut, Universit�at Bayreuth, Report No. 294, Bayreuth, Ger-

many, 1991.

[15] I.D. Coope & G.A. Watson, \A Projected Lagrangian Algorithm for Semi-In�nite Pro-

gramming," Math. Programming 32 (1985) , 337{356.

[16] G.A. Watson, \The Minimax Solution of an Overdetermined System of Non-linear Equa-

tions," J. Inst. Math. Appl. 23 (1979) , 167{180.

[17] C. Charalambous & A.R. Conn, \An E�cient Method to Solve the Minimax Problem

Directly," SIAM J. Numer. Anal. 15 (1978) , 162{187.

[18] A.R. Conn & Y. Li, \An E�cient Algorithm for Nonlinear Minimax Problems," University

of Waterloo, Research Report CS-88-41, Waterloo, Ontario, N2L 3G1 Canada, November,

1989 .

[19] K.C. Kiwiel, Methods of Descent in Nondi�erentiable Optimization, Lecture Notes in

Mathematics#1133, Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo, 1985.

[20] E. Polak, D.Q. Mayne & J.E. Higgins, \A Superlinearly Convergent Algorithm for Min-

max Problems," Proceedings of the 28th IEEE Conference on Decision and Control,

Tampa, Florida (December 1989) .

[21] M. Huth, \Superlinear konvergente Verfahren zur L�osung semi-in�niter Optimierungsauf-

gaben," P�adagog. Hochsch. Halle, Ph.D. dissertation, 1987 .

[22] R. Hettich & P. Zencke, Numerische Methoden der Approximation und Semi-In�niten

Optimierung , Teubner Studienb�ucher, 1982.

65

[23] K. Oettershagen, Ein Superlinear Konvergenter Algorithmus zur Losung Semi-In�niter

Optimierungsprobleme, Ph.D. Thesis, Bonn University, 1982.

[24] E.R. Panier & A.L. Tits, \A Globally Convergent Algorithm with Adaptively Re�ned

Discretization for Semi-In�nite Optimization Problems Arising in Engineering Design,"

IEEE Trans. Automat. ControlAC-34 (1989) , 903{908.

66

prob B nparam nineqn ncallf ncallg iter objective d0norm eps

p12 0 2 1 7 14 7 �.300000000E+02 .17E-06 .10E-05
1 7 12 7 �.300000000E+02 .19E-06 .10E-05

p29 0 3 1 11 20 10 �.226274170E+02 .51E-06 .10E-04
1 11 15 10 �.226274170E+02 .25E-05 .10E-04

p30 0 3 1 18 35 18 .100000000E+01 .41E-07 .10E-06
1 24 24 24 .100000000E+01 .62E-07 .10E-06

p31 0 3 1 9 19 7 .600000000E+01 .10E-05 .10E-04
1 9 17 9 .600000000E+01 .22E-05 .10E-04

p32 0 3 1 3 5 3 .100000000E+01 .14E-30 .10E-07
1 3 4 3 .100000000E+01 .0 .10E-07

p33 0 3 2 4 11 4 �.400000000E+01 .16E-09 .10E-07
5 10 5 �.400000000E+01 .30E-10 .10E-07

p34 0 3 2 7 28 7 �.834032443E+00 .19E-08 .10E-07
1 9 24 9 �.834032445E+00 .39E-11 .10E-07

p43 0 4 3 10 46 8 �.440000000E+02 .71E-05 .10E-04
1 11 46 11 �.440000000E+02 .11E-05 .10E-04

p44 0 4 0 6 0 6 �.150000000E+02 .0 .10E-07
1 6 6 �.150000000E+02 .0 .10E-07

p51 0 5 0 8 0 6 .193107145E�15 .12E-06 .10E-05
1 9 8 .229528403E�17 .15E-08 .10E-05

p57 0 2 1 7 5 3 .306463061E�01 .26E-05 .10E-04
1 7 5 3 .306463061E�01 .26E-05 .10E-04

p66 0 3 2 8 30 8 .518163274E+00 .19E-08 .10E-07
1 9 24 9 .518163274E+00 .54E-08 .10E-07

p67 0 3 14 21 305 21 �.116211927E+04 .23E-05 .10E-04
1 62 868 62 �.116211927E+04 .25E-05 .10E-04

p70 0 4 1 44 34 31 .940197325E�02 .49E-08 .10E-06
1 39 38 36 .940197325E�02 .99E-07 .10E-06

p76 0 4 0 6 0 6 �.468181818E+01 .16E-04 .10E-03
1 6 6 �.468181818E+01 .16E-04 .10E-03

p84 0 5 6 4 30 4 �.528033513E+07 .0 .10E-07
1 4 29 4 �.528033513E+07 .19E-14 .10E-07

p85 0 5 38 46 1819 45 �.240503113E+01 .60E-03 .10E-02
1 28 1064 28 �.173019329E+01 .23E-03 .10E-02

p86 0 5 0 7 0 5 �.323486790E+02 .45E-06 .10E-05
1 7 6 �.323486790E+02 .45E-08 .10E-05

p93 0 6 2 15 58 12 .135075968E+03 .30E-03 .10E-02
1 13 36 13 .135076796E+03 .26E-03 .10E-02

p100 0 7 4 21 102 14 .680630057E+03 .20E-04 .10E-03
1 18 94 15 .680630106E+03 .86E-04 .10E-03

p110 0 10 0 9 0 8 �.457784697E+02 .77E-07 .10E-05
1 9 8 �.457784697E+02 .77E-07 .10E-05

p113 0 10 5 12 108 12 .243063768E+02 .13E-03 .10E-02
1 12 99 12 .243064566E+02 .14E-03 .10E-02

p117 0 15 5 20 219 19 .323486790E+02 .12E-04 .10E-03
1 18 93 17 .323486790E+02 .52E-05 .10E-03

p118 0 15 0 19 0 19 .664820450E+03 .42E-29 .10E-07
1 19 19 .664820450E+03 .42E-29 .10E-07

Table 1: Results for Inequality Constrained Problems with CFSQP

67

prob B nparam nineqn nf ncallf ncallg iter objmax d0norm eps

bard 0 3 0 15 168 0 8 .50816326E�01 .63E-10 .50E-05
1 105 7 .50816868E�01 .42E-05 .50E-05

cb2 0 2 0 3 30 0 6 .19522245E+01 .10E-06 .50E-05
1 18 6 .19522245E+01 .82E-06 .50E-05

cb3 0 2 0 3 15 0 3 .20000016E+01 .75E-06 .50E-05
1 15 5 .20000000E+01 .94E-09 .50E-05

colv 0 15 0 6 240 0 21 .32348679E+02 .66E-06 .50E-05
1 102 17 .32348679E+02 .16E-05 .50E-05

dav 0 4 0 20 342 0 12 .11570644E+03 .10E-05 .50E-05
1 220 11 .11570644E+03 .47E-06 .50E-05

fr 0 2 0 2 32 0 9 .49489521E+01 .28E-06 .50E-05
1 20 10 .49489521E+01 .16E-06 .50E-05

hett 0 4 0 5 125 0 13 .24593569E�02 .20E-06 .50E-05
1 75 11 .24593670E�02 .81E-06 .50E-05

rs 0 4 0 4 71 0 9 �.44000000E+02 .19E-06 .50E-05
1 68 12 �.44000000E+02 .30E-07 .50E-05

wat6 0 6 0 31 623 0 12 .12717343E�01 .19E-05 .50E-05
1 433 13 .12717091E�01 .18E-08 .50E-05

wat20 0 20 0 31 1953 0 32 .895507R08�07 .13E-05 .50E-05
1 1023 32 .89770948E�07 .15E-05 .50E-05

wong 0 7 0 5 182 0 19 .68063006E+03 .27E-05 .50E-05
1 171 26 .68063006E+03 .40E-05 .50E-05

kiwi1 0 5 0 10 159 0 11 .22600162E+02 .37E-06 .10E-05
1 130 13 .22600162E+02 .60E-06 .10E-05

kiwi4 0 2 0 2 40 0 9 .22204460E�15 .26E-07 .50E-07
1 23 9 .16254000E�08 .47E-07 .50E-07

mad1 0 2 0 3 24 0 5 �.38965952E+00 .40E-10 .50E-05
1 18 6 �.38965951E+00 .89E-10 .50E-05

mad2 0 2 0 3 21 0 5 �.33035714E+00 .42E-08 .50E-05
1 15 5 �.33035714E+00 .21E-07 .50E-05

mad4 0 2 0 3 24 0 5 �.44891079E+00 .85E-08 .50E-05
1 21 7 �.44891077E+00 .12E-07 .50E-05

mad5 0 2 0 3 31 0 7 �.10000000E+01 .91E-11 .50E-05
1 21 7 �.99999971E+00 .29E-06 .50E-05

mad6 0 6 0 163 1084 0 6 .11310473E+00 .20E-10 .50E-05
1 1141 7 .11310473E+00 .16E-09 .50E-05

mad810 0 10 0 18 291 0 10 .38117396E+00 .24E-15 .50E-05
1 234 13 .38117396E+00 .19E-09 .50E-05

mad830 0 30 0 * .50E-05
1 1044 17 .54762051E+00 .53E-08 .50E-05

mad850 0 50 0 98 2932 0 20 .57927622E+00 .42E-08 .50E-05
1 1986 20 .57927694E+00 .16E-06 .50E-05

polk1 0 2 0 2 42 0 11 .27182818E+01 .27E-05 .50E-05
1 22 11 .27182818E+01 .42E-05 .50E-05

polk2 0 10 0 2 217 0 45 .54598152E+02 .27E-05 .50E-05
1 133 46 .54598150E+02 .22E-09 .50E-05

polk3 0 11 0 10 236 0 17 .37034827E+01 .29E-05 .50E-05
1 180 17 .37034827E+01 .37E-05 .50E-05

polk4 0 2 0 3 45 0 8 .40993875E�06 .76E-08 .50E-05
1 24 8 .36460425E+00 .18E-05 .50E-05

p43m 0 4 1 3 67 32 13 �.44000000E+02 .18E-05 .50E-05
1 55 22 15 �.44000000E+02 .48E-05 .50E-05

p84m 0 5 4 3 17 20 4 �.52803351E+07 .0 .50E-05
1 9 12 3 �.52803351E+07 .17E-07 .50E-05

p113m 0 10 5 4 108 127 14 .24306209E+02 .39E-05 .50E-05
1 84 105 14 .24306210E+02 .41E-05 .50E-05

p117m 0 15 3 3 124 144 21 .32348679E+02 .16E-05 .50E-05
1 54 57 17 .32348679E+02 .39E-05 .50E-05

Table 2: Results for Minimax Problems with CFSQP

68

prob B nparam ncallf ncallg iter objective d0norm epseqn SNECV

p6 0 2 15 26 9 .795230184E�12 .19E-05 .40E-06 .87E-09
1 15 16 10 .933789794E�16 .10E-07 .40E-06 .22E-06

p7 0 2 35 49 12 �.173205081E+01 .26E-08 .35E-08 .29E-10
1 15 16 12 �.173205081E+01 .22E-08 .35E-08 .13E-12

p26 0 3 38 79 31 .265644172E�13 .86E-04 .16E-04 .11E-09
1 38 38 32 .234894106E�13 .83E-04 .16E-04 .36E-07

p39 0 4 14 56 13 �.100000000E+01 .52E-07 .75E-04 .48E-08
1 12 26 12 �.100000064E+01 .25E-04 .75E-04 .64E-06

p40 0 4 5 27 5 �.250000002E+01 .14E-05 .85E-04 .10E-07
1 5 21 5 �.250000822E+01 .48E-05 .85E-04 .43E-05

p42 0 4 9 15 6 .138578644E+02 .27E-05 .45E-05 .16E-08
1 7 12 6 .138578645E+02 .94E-05 .45E-05 .58E-07

p46 0 5 33 108 18 .143831290E�04 .14E-02 .50E-04 .14E-06
1 29 136 29 .324777175E�05 .19E-03 .50E-04 .45E-04

p47 0 5 21 146 20 .418148076E�11 .90E-05 .60E-04 .71E-08
1 24 88 24 .156450390E�11 .78E-04 .60E-04 .38E-07

p56 0 7 18 147 15 �.345600001E+01 .23E-04 .25E-06 .24E-07
1 14 60 14 �.345600000E+01 .47E-06 .25E-06 .11E-08

p60 0 3 8 18 8 .325682026E�01 .35E-04 .55E-04 .70E-07
1 10 15 10 .325682007E�01 .11E-05 .55E-04 .44E-07

p61 0 3 20 57 9 �.143646142E+03 .14E-08 .25E-06 .11E-09
1 10 24 8 �.143646142E+03 .87E-06 .25E-06 .10E-07

p63 0 3 9 17 8 .961715172E+03 .23E-06 .60E-05 .54E-08
1 5 7 5 .961715179E+03 .13E-04 .60E-05 .54E-05

p71 0 4 7 30 7 .170140173E+02 .11E-07 .70E-05 .41E-12
1 6 19 6 .170140173E+02 .16E-04 .70E-05 .28E-08

p74 0 4 16 93 17 .512649811E+04 .59E-05 .65E-05 .24E-06
1 41 123 42 .512649811E+04 .21E-04 .65E-05 .74E-09

p75 0 4 15 87 16 .517441270E+04 .11E-05 .10E-07 .53E-09
1 34 102 35 .517441270E+04 .12E-06 .10E-07 .16E-06

p77 0 5 13 51 12 .241505129E+00 .99E-05 .35E-04 .67E-09
1 14 42 13 .241505239E+00 .18E-04 .35E-04 .19E-05

p78 0 5 7 44 7 �.291970042E+01 .66E-05 .15E-05 .35E-07
1 8 30 8 �.291970041E+01 .33E-04 .15E-05 .10E-08

p79 0 5 12 77 12 .787768236E�01 .48E-04 .15E-03 .41E-08
1 9 35 9 .787768274E�01 .14E-04 .15E-03 .38E-06

p80 0 5 17 78 10 .539498478E�01 .13E-06 .15E-07 .46E-11
1 7 21 7 .539498474E�01 .49E-07 .15E-07 .11E-07

p81 0 5 24 108 13 .539498479E�01 .47E-04 .80E-06 .99E-09
1 8 24 8 .539498419E�01 .23E-04 .80E-06 .17E-06

p107 0 9 19 211 15 .505501180E+04 .28E-08 .10E-07 .60E-15
1 28 220 22 .505501180E+04 .85E-08 .10E-07 .22E-11

p325 0 2 6 23 6 .379134146E+01 .15E-07 .10E-07 .56E-07
1 6 19 6 .379134153E+01 .21E-07 .10E-07 .74E-09

Table 3: Results for General Problems with CFSQP

69

prob B nparam ncsrl ncsrn ncallf ncallg
P

j�gi j iter objective d0norm j��j
cw 2 0 2 0 1 5 3130 501 5 .261803401E+01 .49E-08 3

1 8 4008 8 .261817635E+01 .44E-04 2
cw 3 0 3 0 1 10 7972 501 14 .533468728E+01 .29E-04 2

1 12 9140 16 .533468729E+01 .95E-04 2
cw 5 0 3 1 0 47 0 501 47 .430118377E+01 .52E-04 2

1 47 0 47 .430118377E+01 .52E-04 2
cw 6 0 2 0 1 14 9008 501 15 .971588578E+02 .78E-04 1

1 16 9504 18 .971588525E+02 .20E-07 1
cw 7 0 3 21 0 4 0 441 3 .100000000E+01 .15E-04 21

1 4 0 3 .100000000E+01 .15E-04 21
hu 1 0 2 1 0 4 0 501 4 .500000000E+00 .39E-16 1

1 4 0 4 .500000000E+00 .39E-16 1
hu 2 0 2 1 0 2 0 501 2 .680000000E+00 .17E-16 2

1 2 0 2 .680000000E+00 .17E-16 2
hu 3 0 2 1 0 3 0 501 2 .367037444E+01 .50E-16 2

1 3 0 2 .367037444E+01 .50E-16 2
hu 4 0 2 0 1 4 2008 501 4 .686291568E+00 .40E-07 1

1 4 2006 4 .686291501E+00 .63E-12 2
hu 5 0 2 0 1 12 12068 501 14 .986130508E+00 .11E-07 3

1 9 6844 11 .986148997E+00 .27E-04 4
hu 6 0 2 0 1 22 17268 501 24 �.202500000E+02 .78E-05 1

1 30 17187 26 �.202499808E+02 .30E-04 3
hu 7 0 2 0 1 64 51240 501 64 .999998734E+00 .29E-04 2

1 20 11241 18 .999997609E+00 .31E-06 3
hu 9 0 2 0 1 8 7031 501 10 �.124953180E+02 .20E-04 4

1 10 7061 12 �.124983808E+02 .90E-04 5
hu 10 0 2 0 1 8 6101 501 10 �.100019728E+02 .59E-08 3

1 6 4788 8 �.999948868E+01 .35E-04 4
hu 11 0 2 0 1 2 1191 501 2 .200000000E+01 .0 501

1 2 1191 2 .200000000E+01 .0 501
hu 12 0 10 0 1 4 2008 501 4 .818219540E+01 .16E-09 1

1 3 1505 3 .818219553E+01 .23E-07 2
hz 1 0 2 0 2 4 5968 1002 6 .100000151E+01 .15E-05 1

1 3 4212 5 .100000100E+01 .10E-05 1
oet 1 0 3 2 0 18 0 1002 18 .538243119E+00 .10E-15 4

1 18 0 18 .538243119E+00 .10E-15 4
oet 2 0 3 0 2 6 6270 1002 6 .871596961E�01 .62E-07 3

1 6 6452 6 .871678945E�01 .83E-05 3
oet 3 0 4 2 0 15 0 1002 15 .450505289E�02 .80E-15 4

1 15 0 15 .450505289E�02 .80E-15 4
oet 4 0 4 0 2 19 26511 1002 21 .429543200E�02 .13E-08 4

1 10 11022 12 .433432033E�02 .39E-04 6
oet 5 0 5 0 2 24 39314 1002 23 .265008754E�02 .43E-04 4

1 29 31937 26 .272590628E�02 .77E-04 4
oet 6 0 5 0 2 23 35073 1002 21 .207188952E�02 .49E-05 9

1 20 26343 21 .207161814E�02 .19E-04 5
oet 7 0 7 0 2 109 149623 1002 73 .840120672E�04 .41E-04 10

1 658 279961 111 .589696960E�04 .71E-04 7
pt 1 0 2 1 0 15 0 501 15 .236067918E+00 .62E-14 2

1 15 0 15 .236067918E+00 .62E-14 2
sch 3 0 3 1 0 48 0 501 48 .430118377E+01 .35E-08 2

1 48 0 48 .430118377E+01 .35E-08 2

Table 4: Results for Sequentially Related Constraint Problems with CFSQP

70

prob B nparam nfsr
P

j
fi j ncallf iter objmax d0norm j
�j
hz 1m 0 1 1 501 1102 2 .100000000E+01 .14E-14 2

1 1002 2 .100000000E+01 .44E-14 2
oet 1m 0 2 1 501 5580 10 .538243119E+00 .48E-13 3

1 6513 13 .538243119E+00 .38E-16 3
oet 2m 0 2 1 501 2107 4 .871610589E�01 .16E-05 3

1 2505 5 .871636550E�01 .14E-04 3
oet 3m 0 3 1 501 4932 7 .450551698E�02 .23E-05 5

1 3507 7 .450551698E�02 .23E-05 5
oet 4m 0 3 1 501 6874 10 .429566474E�02 .11E-05 5

1 5010 10 .429567387E�02 .13E-05 5
oet 5m 0 4 1 501 16911 19 .265008668E�02 .27E-05 4

1 11526 19 .268822747E�02 .53E-04 4
oet 6m 0 4 1 501 11049 14 .206997910E�02 .17E-04 6

1 10029 16 .206974500E�02 .21E-07 5
oet 7m 0 6 1 501 27246 30 .132727016E�03 .32E-04 9

1 84938 97 .463302688E�04 .42E-04 9
pt 1m 0 1 1 501 5323 8 .236067918E+00 .0 2

1 6012 12 .236067918E+00 .0 2
sch u3 0 5 1 501 9531 11 .125766196E�03 .11E-04 10

1 6516 13 .125483347E�03 .10E-05 8

Table 5: Results for Sequentially Related Objective Problems with CFSQP

