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Abstract
The paper presents description of muscle model for animation used to do motion cap-
ture worked out as a master thesis project. The model allows one to animate virtual
character by small number of parameters, and capture procedure makes possible anima-
tion based on performance. Thesis starts with brief introduction, followed by historical
overview and background information. The theoretical description of model and per-
formance tracking procedure comprise core of the paper, consequently supported by
implementation details and experiments. The paper ends with conclusion highlighting
possible future direction of improvements for the model.

Keywords
muscle animation model; facial animation; motion capture; single camera tracking

ix





Contents

1 Introduction 1
1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 5
2.1 Anatomy of the head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Skull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Skin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Muscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Optical flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Lukas-Kanade method . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Theoretical part 11
3.1 Muscle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Linear muscle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Parallel muscle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 Sphincter muscle . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Face model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Implementation 21
4.1 Visualization/Editing tool . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Muscle object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Muscle modifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 Muscle set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.4 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Load muscle keyframes from file . . . . . . . . . . . . . . . . . . 23
Save muscles positions . . . . . . . . . . . . . . . . . . . . . . . . 23
Load muscles from file . . . . . . . . . . . . . . . . . . . . . . . . 23
Save muscles absolute positions . . . . . . . . . . . . . . . . . . . 24
Save keypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Experiments 27
5.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Experiments setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Opticalflow parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Model analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Setups analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.6 Per muscle error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.7 Rendering virtual avatar . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusion 37
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Appendices

xi



A Documentation 39
A.1 Blender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.1.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.3.1 Exporting model from Makehuman . . . . . . . . . . . . . . . . . 41
A.3.2 Importing model, creating muscles . . . . . . . . . . . . . . . . . 42
A.3.3 Exporting data from Blender for tests . . . . . . . . . . . . . . . 42
A.3.4 Creating test file . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.3.5 Running test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3.6 Importing animation to Blender . . . . . . . . . . . . . . . . . . 43

Bibliography 45

xii



Abbreviations
FACS Facial Action Coding System
GPL General Public License, a popular free software license
LK Lukas-Kanade optical flow method
PC Personal Computer
PNP Perspective-n-Point, a technique in computer vision which estimates a

camera pose from given n 3D points and their projections in an image
RAM Random Access Memory
RGBD in context of camera - camera which is capable of measuring distance

per pixel as well as capturing color data
UI User Interface

xiii





1 Introduction
This work is a master thesis written by Mramornov Andrey during study on master
program Open Informatics in Faculty of Electrical Engineering of Czech Technical Uni-
versity in Prague. It deals with muscle representation of the facial animation. It is a
good way for solving many related tasks, for example animating virtual character by
hand or based on performance, face expression analysis. It is considered good for these
tasks because it is a natural representation which has understandable effect on face.
The work itself is focused on building muscle model of face and finding its parameters
from actor performance recorded on a single camera without any depth information.
Such setup is different from many of state of the art methods which use either multiple
cameras [1] or cameras with depth information [2], [3]. It is generally cheaper and
easier to use single camera setup and sometimes 2D video is the only available data,
for example in forensics or on mobile devices.

The paper is structured as follows. This chapter gives overview of previous work fol-
lowed by definition of thesis goals. Second chapter gives background information for the
reader to understand further description better. Subsequent chapters describe theoreti-
cal muscle model, derivation of tracking procedure, implementation details of proposed
model, tracking method, experiment procedure and discuss their results. Last chapter
summarizes the study, provides conclusions and lists possible future improvements.

1.1 State of the art
Computer facial models have a long history, first parametric model of face was presented
by Parke in 1974 [4]. In 1981 Platt and Badler in their work created first muscle based
facial animation, they represented muscles and skin as different layers and used springs
to simulate muscles [5]. In 1987 Waters presented muscle model for facial animation
which, in contrast to model of Platt and Badler, did not distinguished muscle and
skin layers [6]. Wilhelms in 1994 [7] proposed an ellipsoid muscle model which she
and Gelder in 1997 generalized into deformable cylinder model [8]. Scheepers et al.
also took Wilhelms ellipsoid model as basis for their multi-belly muscle model which
represent each muscle as a number of ellipsoids instead of three as in Wilhelms model
[9]. In 1998 Nedel and Thalmann modeled facial animation as set of particles connected
by springs [10].

Facial motion capture was developed in parallel with animation models. Williams
in 1990 presented first facial motion tracking approach [11]. In 1996 Essa et al. used
muscle model with physically-based face model to capture performance [12]. Blanz and
Vetter in 1999 represented faces and facial animations by blendshapes [13]. They then
used probabilistic approach to find optimal model parameters for a given image. Chai
et al. in 2003 proposed to use 2d video motion data to extract 3d landmark positions
and retarget them to virtual avatar [14].

At present, majority of the methods use blendshapes as a model for facial animation
along with 3D information acquired from different sources: 3D reconstruction from
multi-camera array, depth cameras, 3d-scanners. Blendshapes usually represent FACS
(Facial Action Coding System) action units.

1
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In a study of Weise RGBD data from Microsoft Kinect camera with blendshape model
and a probabilistic animation model is used to produce realistic animation [2]. Such
model, however requires training of user-specific blendshapes expression model which
limits use of such approach. Bouaziz improved such model by combining tracking with
user-specific expression learning which removes training or calibration steps [3].

Approach presented by Bradley uses array of calibrated cameras with uniform light-
ning to reconstruct noise-free dense 3D model [1]. This model with texture information
is then tracked to further enhance resulting model and texture. Their approach pro-
duces a very detailed models preserving even small texture details, however requires a
complex setup and does not present any way to transfer animation to virtual character.

In paper “Facewarehouse” authors propose to train 3D shape regressor for each user
and use it to infer 3D data from 2D video, according to authors experiments this
approach outperforms RGBD-based technique from Weise [15]. Weng et al. reduced
computational costs of that algorithm by directly regressing head poses and expression
coefficients which allowed them to produce real-time performance based facial animation
on mobile device [16]. However, both approaches still require training step for each
user.

Modification of such regression approach called Displaced Dynamic Expression was
proposed by Cao et al. [17]. Its improvement was removal of training step while
keeping quality. According to authors experiments their solution, which only uses 2D
video information, achieve same level of robustness, accuracy and efficiency in face
tracking as technique using RGBD information Weise.

To sum up a variety of animation models were proposed, but for motion capture most
authors use blendshapes. In capture new methods were proposed after widespread of
RGBD cameras, large focus is on building fast and robust methods to be used in limited
and noisy environment for wide use on consumer devices.

1.2 Goals

As it was mentioned above, most of state of the art methods use blendshapes to model
facial animation. Blendshapes serve well for this purpose, however they have a number
of drawbacks.

First of all blendshapes set is fixed and in most methods can not be changed without
retraining. Change to the set can be required, for example, if current set is not able
to produce some desired animation. This problem is not that severe if blendshapes
represent FACS action units because they are known to describe almost all possible
face expressions, but can still be an issue.

Second, blendshapes should be made either by hand which is tedious, or by learning
from some input set which can be erroneous or require special setups.

Finally blendshapes do not directly correspond to physiological processes and thus
their effect on face may be not that understandable as in muscle based approaches.

To cope with these problems a muscle based parametric model which has a physio-
logical basis will be proposed, along with technique to derive model parameters from
user performance. To be more precise goals are:
∙ Propose muscle model for facial animation which is capable of producing different

facial emotions.
∙ Such model should be easily retargetable from one virtual character to another.
∙ Design and implement approach for tracking of model parameters from user per-

formance captured on a single RGB camera.
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∙ Tracking technique should be as robust as possible to user and camera position
changes.
∙ Tracking should be made as fast as possible, desirable be able to work real-time.
∙ It should require small amount of hand input.
∙ Implement visualization and editing tool for tracked data so it can be used in

render/game.
To sum up, to solve drawbacks of blendshape animation model, in this work we will

propose a muscle model for facial animation as well as approach to track such model
parameters based on performance.
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2 Background

This section gives reader required background knowledge for understanding this work.

2.1 Anatomy of the head
Human head has a lot of different parts in it, we will focus only on those parts which
deal with facial animation, that is skull, skin and muscles.

2.1.1 Skull

Human skull (figure 1) is a bone structure which forms shape of the head and serves as
rigid basis for skin and muscles. It consist of three bone areas: skull proper (neurocra-
nium), facial area (viscerocranium) and associated bones (6 ear bones and the hyoid).
Skull also includes a single joint: the mandible, which can open and slightly move to
left and right. Mandible opening is important in animation since it moves large part of
face.

Figure 1 Skull

In this work we will not represent skull as a part of the model, but we will use the
fact that it is rigid to fix muscles positions.

2.1.2 Skin

Skin (figure 2) covers body and protects deeper layers of human body from foreign
organisms, injuries and drying. It also serves as tactile sensor. Skin consist of two
parts: epidermis and dermis, hypodermis lying below them is usually not seen as part
of the skin.

Epidermis - the first layer of skin is important for us since it is the visible part and
determines appearance of human. It consist of several layers, where bottom (closest
to the body) one stratum basale produces cells and push them to the upper levels.
These cells reach upper levels dead, they renew every two weeks making soft, glowing
appearance [18]. Skin has following properties important for animation:
∙ Non-linearity on strain - skin response to low strains is linear, on average strains

it loses linearity and on high strains again becomes linear [19].
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2 Background

Figure 2 Skin model

∙ Plasticity which means that skin shows combination of time-dependent fluid and
solid object properties. For example it recovers with time after strain.
∙ Quasi-Incompressible - some parts of skin are incompressible which means that

they do not change volume after deformations. This property results, for example,
in wrinkles.

2.1.3 Muscles

Muscles serve for moving different parts of body, they connect to skin, bones, ligaments
and cartilages. Connection can be direct or via tendon. Muscles fill almost all space
between bones and skin and weight about half of the whole body of an adult. Muscle
fibers are usually with one side connected to bone (that is origin of muscle) and with
other to skin (insertion of muscle). When contracting, muscles shorten and since origin
is connected to bone which is rigid and thus can not move, insertion is pulled towards
origin.

Muscles are composed of fascicles which are in turn composed of muscle fibers. All
fibers in fascicle are parallel to each other, different types of muscles are formed by
different alignment of fascicles: There are different types of muscles (figure 3) [20]:
∙ Parallel or fusiform muscles have fibers in parallel directions.
∙ Convergent muscles converge on the insertion point to maximize force of muscle

contraction.
∙ Pennate muscles have many fibers per unit area.
∙ Circular muscles fibers surround opening to act as a sphincter (close opening).
Face has 25 muscles (figure 4), we will list muscles important for animation from each

group:
∙ Scalp - the only important muscle for animation is frontalis which moves eyebrows

up and creates wrinkles on forehead.
∙ Mouth - almost all muscles from that group significantly affects animation. No-

table one is orbicularis oris which is a circular muscle and serve for closing of the
mouth.
∙ Eye - muscles of that group closes eyelids and move eyeball which is an important

part of facial animation, however we will not use represent their action using
muscles, but simulate through other means.
∙ Neck - the only muscle of that group slightly moves corners of the mouth, we will

use muscles from mouth to simulate that movement.
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2.2 Optical flow

Figure 3 Muscle types [20]

∙ Nose - this group has a small effect on nostrils, we will not use it our model.
∙ Muscles of mastication - main effect of these muscles is opening of mandible.

2.2 Optical flow
In this work we use optical flow to track facial landmarks between frames. In this
section we briefly overview optical flow estimation task and selected method that will
be used in implementation.

Optical flow is the pattern of apparent motion of objects in visual scene caused by
relative motion between observer and scene [22]. Given an ordered sequence of images
one can estimate displacements of image objects between pairs of frames. Since for
general case objects present in scene are unknown, general optical flow methods try to
calculate motion vector at each voxel position. Formally, a voxel at location (𝑥, 𝑦, 𝑡)
with intensity 𝐼(𝑥, 𝑦, 𝑡) modified by Δ𝑥, Δ𝑦, Δ𝑡 between two image frames, following
constraint should hold:

𝐼(𝑥, 𝑦, 𝑦) = 𝐼(𝑥 + Δ𝑥, 𝑦 + Δ𝑦, 𝑧 + Δ𝑧)

Assuming that movement was small, using Taylor expansion we can gen:

𝐼(𝑥 + Δ𝑥, 𝑦 + Δ𝑦, 𝑡 + Δ𝑡) = 𝐼(𝑥, 𝑦, 𝑡) + 𝜕𝐼

𝜕𝑥
Δ𝑥 + 𝜕𝐼

𝜕𝑦
Δ𝑦 + 𝜕𝐼

𝜕𝑡
Δ𝑡

From these equations it follows that:

𝜕𝐼

𝜕𝑥
Δ𝑥 + 𝜕𝐼

𝜕𝑦
Δ𝑦 + 𝜕𝐼

𝜕𝑡
Δ𝑡 = 0

Dividing by Δ𝑡 we can get:

𝜕𝐼

𝜕𝑥
𝑉𝑥 + 𝜕𝐼

𝜕𝑦
𝑉𝑦 + 𝜕𝐼

𝜕𝑡
= 0
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Figure 4 Face muscles [21]

Where 𝑉𝑥, 𝑉𝑦 are optical flow velocity components. Replacing 𝜕𝐼
𝜕𝑥 , 𝜕𝐼

𝜕𝑦 , 𝜕𝐼
𝜕𝑡 by 𝐼𝑥, 𝐼𝑦, 𝐼𝑡

we get:
𝐼𝑥𝑉𝑥 + 𝐼𝑦𝑉𝑦 = −𝐼𝑡

Which is a single equation with two unknowns. Different optical flow methods then
add constraints to be able to solve such equation [23] [24].

2.2.1 Lukas-Kanade method

In this work we will use Lukas-Kanade method. It assumes that the displacement
of the image contents between two frames is small and almost constant within some
neighborhood of the pixel under consideration. Thus the optical flow equation can be
assumed to hold for all pixels within a window centered at p. This adds following
constraints:

𝐼𝑥(𝑞1)𝑉𝑥 + 𝐼𝑦(𝑞1)𝑉𝑦 = −𝐼𝑡(𝑞1)
𝐼𝑥(𝑞2)𝑉𝑥 + 𝐼𝑦(𝑞2)𝑉𝑦 = −𝐼𝑡(𝑞2)

...
𝐼𝑥(𝑞𝑛)𝑉𝑥 + 𝐼𝑦(𝑞𝑛)𝑉𝑦 = −𝐼𝑡(𝑞𝑛)

where 𝑞1, 𝑞2, . . . , 𝑞𝑛 are the pixels inside the window, and 𝐼𝑥(𝑞𝑖), 𝐼𝑦(𝑞𝑖), 𝐼𝑡(𝑞𝑖) are the
partial derivatives of the image 𝐼 with respect to position 𝑥, 𝑦 and time 𝑡, evaluated

8
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at the point 𝑞𝑖 and at the current time. These constraints can be rewritten in matrix
form as

𝐴𝑣 = 𝑏

where 𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼𝑥(𝑞1) 𝐼𝑦(𝑞1)

𝐼𝑥(𝑞2) 𝐼𝑦(𝑞2)

...
...

𝐼𝑥(𝑞𝑛) 𝐼𝑦(𝑞𝑛)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑣 =

⎡⎣𝑉𝑥

𝑉𝑦

⎤⎦ , and 𝑏 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝐼𝑡(𝑞1)

−𝐼𝑡(𝑞2)

...

−𝐼𝑡(𝑞𝑛)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Now we have more

constraints than unknowns (given that window contains more than 2 points) and can
be over determined. To end up with some solution, Lucas-Kanade method uses least
squares principle obtaining solution:

𝑣 = (𝐴𝑇 𝐴)−1𝐴𝑇 𝑏

Since pixel closer to the current point may be more correlated then one on border of
the window, weight version of least squares can be used:

𝑣 = (𝐴𝑇 𝑊𝐴)−1𝐴𝑇 𝑊𝑏

Where 𝑊 is a diagonal matrix of weights [25].
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3 Theoretical part

3.1 Muscle model
Proposed muscle model which is used as the basis for animation and performance anal-
ysis consist of three different types of muscles:
∙ Linear muscle
∙ Parallel muscle
∙ Sphincter muscle

All muscle types are animated same way - by multiplying disposition of vertex by
contraction factor ranging from 0 to 1:

𝑃𝑛𝑒𝑤 = 𝑃 + 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 * (𝑃 ′ − 𝑃 )

Where 𝑃𝑛𝑒𝑤 is new position of muscle, 𝑃 is original vertex position, 𝑃 ′ is position of
vertex 𝑃 deformed by muscle, 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is contraction of the muscle.

If more then one muscle affects some point 𝑃 their effects sum:

𝑃𝑛𝑒𝑤 = 𝑃 +
∑︁
𝑖∈𝑀

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 * (𝑃 ′
𝑖 − 𝑃 )

where 𝑀 is mucsle set, 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 is contraction of muscle 𝑖, 𝑃 ′
𝑖 is position of vertex

𝑃 deformed by muscle 𝑖.
Each type of muscle is described in detail in following subsections.

3.1.1 Linear muscle
Linear muscle model was first described by Waters [6] and is defined by following
equations:

𝐴 = 𝑐𝑜𝑠(𝜇

𝜋
* 𝜋

2 ) (1)

𝑅 =

⎧⎨⎩𝑐𝑜𝑠( 𝐷−𝑅𝑠
𝑅𝑓 −𝑅𝑠

* 𝜋
2 ) 𝑖𝑓𝐷 > 𝑅𝑠

𝑐𝑜𝑠(1−𝐷
𝑅𝑠
* 𝜋

2 ) 𝑖𝑓𝐷 ≤ 𝑅𝑠

(2)

𝑃 ′ = 𝑃 + 𝐾 *𝐴 *𝑅 * (−−→𝑃𝑉1)𝑛𝑜𝑟𝑚 (3)

Where (see figure 5):
∙ 𝑉1 is muscle origin
∙ 𝑉2 is muscle insertion
∙ 𝑃 is original vertex position
∙ 𝑃 ′ is deformed vertex position
∙ 𝑅𝑠 is start of effect distance
∙ 𝑅𝑓 is end of effect distance
∙ 𝜇 is angle between −−→𝑃𝑉1 and −−→𝑉1𝑉2
∙ 𝐾 is elasticity coefficient

11



3 Theoretical part

Figure 5 Linear muscle model

Figure 6 Wrinkles

∙ 𝐷 = |−−→𝑃𝑉1|
However such model does not produce wrinkles and thus does not look very realistic.

An extension proposed by Bui [26] adds them to the model. In this extension wrinkles
are created by raising vertices in effect area 𝑝𝑙𝑝𝑘𝑝𝑟𝑝𝑡 (before applying muscle) to a
defined height 𝐻 (see figure 6):

𝑃 ′ = 𝑃 + 𝐻 * 𝑢(𝑙) * −→𝑁 (4)

𝑢(𝑙) = 𝑙 −
⌊︁ 𝑙

𝑏

⌋︁
𝑏 (5)

𝑏 = 𝐿

2𝑁𝑤
(6)

𝐿 = 3
4𝑅𝑓 𝑐𝑜𝑠(𝜃) (7)

Where 𝑁𝑤 is desired number of wrinkles, 𝑁 is vertex normal at point 𝑃 . You can see
effect of activating linear muscles with two wrinkles on figure 7.

3.1.2 Parallel muscle

Parallel muscle is used to simulate same physiological muscle which may be seen as set
of thin linear muscles with very small 𝜇. When contracting parallel muscle moves all

12



3.1 Muscle model

Figure 7 Wrinkles effect

vertices on same distance from line −→𝑜𝑐 towards this line on the same amount (see figure
8).

In model parallel muscle is defined by three control points: origin 𝑜, insertion 𝑖 and
control point 𝑐. These points define muscle plain, however muscle is not absolutely
thin so there is a ℎ𝑒𝑖𝑔ℎ𝑡 parameter (see figure 8). Each vertex 𝑃 in zone of effect has
following new coordinates 𝑃 ′:

𝑃 ′ = 𝑃 + 𝐾 *𝑅 * (−→𝑜𝑖)𝑛𝑜𝑟𝑚 (8)

𝑅 =

⎧⎨⎩𝑐𝑜𝑠( 𝐷−𝑅𝑠
𝑅𝑓 −𝑅𝑠

* 𝜋
2 ) 𝑖𝑓𝐷 > 𝑅𝑠

𝑐𝑜𝑠(1−𝐷
𝑅𝑠
* 𝜋

2 ) 𝑖𝑓𝐷 ≤ 𝑅𝑠

(9)

Where:
∙ 𝑅𝑠 is start of effect distance
∙ 𝑅𝑓 is end of effect distance
∙ 𝐾 is elasticity coefficient
∙ 𝐷 = −→𝑜𝑃 · −→𝑜𝑖 is distance of point from line −→𝑜𝑐

3.1.3 Sphincter muscle
Even though most of the facial muscles can be described by linear and parallel muscles,
Orbicularis Oris - muscle around mouth - works differently and thus requires special

13



3 Theoretical part

Figure 8 Parallel muscle

Figure 9 Sphincter muscle

type in model. With contraction this muscle rounds lips and move them closer to each
other. To simulate that behavior Sphincter muscle type was created. It is defined by
three control points, one in the center of mouth, one in the middle of upper lip and last
one in the right corner of the mouth. Last 2 points should be orthogonal. These points
define an ellipse which approximate mouth shape. Sphincter muscle moves vertices
inside ellipse so that they form circle of defined radius raised to the given height 𝐻.
New vertex position is given by (see figure 9):

𝑃 ′ = 𝑃 + 𝐷1 + 𝐷2 + 𝐷3 (10)

𝐷1 = 𝑐𝑜𝑠(𝜇1) *
−−→
𝑃 ′

1𝑉1𝑛𝑜𝑟𝑚 * (1− 𝑅

|
−−−→
𝑉 1𝑉 3|

) (11)

14



3.2 Face model

𝐷2 = 𝑐𝑜𝑠(𝜇2) *
−−→
𝑃 ′

2𝑉1𝑛𝑜𝑟𝑚 * (1− 𝑅

|
−−−→
𝑉 1𝑉 2|

) (12)

𝐷3 = 𝐻 *𝑚𝑖𝑛( 𝑅

𝑚𝑎𝑥(|−−−→𝑉 1𝑉 3|, |−−−→𝑉 1𝑉 2|)
, (1− 𝐷2

𝑅𝑓 *𝑅𝑠
)) * −→𝑁 (13)

Where 𝑁 is a normal to the plane 𝑉1𝑉2𝑉3 in direction out of the head.

3.2 Face model
Described muscle model is applicable to any polygonal face model, but during this work
only Makehuman [27] face model is used. Makehuman model allows one to model a wide
variety of human bodies and faces using exactly same mesh topology, which effectively
means that same vertices on different meshes represent same body entities, for example
vertex #5178 is always a nose tip. This makes it possible to retarget muscle set from
one model to another using simple algorithm (see algorithm 1). This algorithm uses
nearest mesh vertex as attachment point of the muscle. Since muscle can be lying off
the vertex by small displacements, it is also used during retargeting. This may be a
problem if size of the mesh or edges changes significantly, however that never happened
during experiments.

input : Muscle set 𝑀 , source mesh 𝑆, target mesh 𝑇
output: Retargeted muscle set 𝑀2

foreach muscle 𝑚 in 𝑀 do
𝑚′ ← copy of 𝑚;
foreach control point 𝑝 of 𝑚 do

𝑣 ← closest vertex of 𝑆 to 𝑝;
𝑣2 ← position of vertex 𝑣 in 𝑇 ;
𝑝′ ← 𝑣2 + 𝑝− 𝑣;

end
𝑀2 ← 𝑈𝑛𝑖𝑜𝑛(𝑀2, {𝑚′});

end
Algorithm 1: Retargeting algorithm

Makehuman model has also a skeleton which can be used to rig the body. We only use
jaw bone from that skeleton since jaw opening is an important part of facial animation.
Jaw opening was simulated in model by rotating jaw bone over X axis.

3.3 Tracking
Now, having muscle and face models defined, general model parameters tracking pro-
cedure can be introduced.

We define 𝐼(𝑝, 𝑥, 𝑀, 𝑃 ) as image of 3D point 𝑝 affected by muscle set 𝑀 with con-
traction values 𝑥 and projected by camera with projection matrix 𝑃 . Then having two
images 𝐼𝑝,1 = 𝐼(𝑝, 𝑥1, 𝑀, 𝑃1) and 𝐼𝑝,2 = 𝐼(𝑝, 𝑥2, 𝑀, 𝑃2) for each point 𝑝 from set of points
𝐷 task of the tracking is to find such 𝑥2 and 𝑃2 that total error 𝐸 =

∑︀
𝑝∈𝐷 ||𝐼𝑝,1 − 𝐼𝑝,2||

is minimum and 𝑥2, 𝑃2 are feasible.
To ease that minimization task, estimation of 𝑃2 and 𝑥2 is separated. Assuming that

camera is calibrated, 𝑃2 can found by solving PNP (Persepctive-n-Point) task for set
of points of face that is not affected by muscles at all (for example. nose tip, corners of
eyes).
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3 Theoretical part

Having this estimated 𝑃2, optimal 𝑥2 can be found by bounded gradient-descent
method. To use gradient-descent one can either approximate gradient numerically which
would require more computations, or compute it analytically. Since muscle displacement
functions are linear to contraction we can derive first-order derivative. First we define
image function

𝑃2

⎡⎢⎢⎢⎣
𝑝𝑥 + 𝑥2 · 𝐶𝑋(𝑀, 𝑝)
𝑝𝑦 + 𝑥2 · 𝐶𝑌 (𝑀, 𝑝)
𝑝𝑧 + 𝑥2 · 𝐶𝑍(𝑀, 𝑝)

1

⎤⎥⎥⎥⎦ =

⎡⎢⎣𝐴𝑥

𝐴𝑦

𝐴𝑧

⎤⎥⎦
𝐼(𝑝, 𝑥2, 𝑀, 𝑃2) =

[︃
𝐴𝑥
𝐴𝑧
𝐴𝑦

𝐴𝑧

]︃

Where 𝐶𝑥, 𝐶𝑦 and 𝐶𝑧 are muscle displacements coefficients on each axis for muscle set
𝑀 and point 𝑝. Values 𝐴𝑥, 𝐴𝑦 and 𝐴𝑧 are used to shorten further derivation. Now we
can define error for single point

𝐸𝑝 = ||𝐼𝑝,1 − 𝐼(𝑝, 𝑥2, 𝑀, 𝑃2)||
𝐸𝑝 = 𝐸2

𝑝,𝑥 + 𝐸2
𝑝,𝑦

𝐸2
𝑝,𝑥 =

(︂
𝐼𝑝,1,𝑥 −

𝐴𝑥

𝐴𝑧

)︂2

𝐸2
𝑝,𝑦 =

(︂
𝐼𝑝,1,𝑦 −

𝐴𝑦

𝐴𝑧

)︂2

And we can find derivative

𝑃2

⎡⎢⎢⎢⎣
𝐶𝑥(𝑀, 𝑝)
𝐶𝑦(𝑀, 𝑝)
𝐶𝑧(𝑀, 𝑝)

0

⎤⎥⎥⎥⎦ =

⎡⎢⎣𝐶 ′
𝑋(𝑀, 𝑝)

𝐶 ′
𝑌 (𝑀, 𝑝)

𝐶 ′
𝑍(𝑀, 𝑝)

⎤⎥⎦
𝜕

𝜕𝑥
𝐸2

𝑝,𝑥 = 2
(︂

𝐶 ′
𝑍(𝑀, 𝑝) *𝐴𝑥

𝐴2
𝑧

− 𝐶 ′
𝑋(𝑀, 𝑝)

𝐴𝑧

)︂(︂
𝐼𝑝,1,𝑥 −

𝐴𝑥

𝐴𝑧

)︂
𝜕

𝜕𝑥
𝐸2

𝑝,𝑦 = 2
(︂

𝐶 ′
𝑍(𝑀, 𝑝) *𝐴𝑦

𝐴2
𝑧

− 𝐶 ′
𝑌 (𝑀, 𝑝)

𝐴𝑧

)︂(︂
𝐼𝑝,1,𝑦 −

𝐴𝑦

𝐴𝑧

)︂
𝜕

𝜕𝑥
𝐸𝑝 = 𝜕

𝜕𝑥
𝐸2

𝑝,𝑥 + 𝜕

𝜕𝑥
𝐸2

𝑝,𝑦

𝜕

𝜕𝑥
𝐸 =

∑︁
𝑝∈𝐷

𝜕

𝜕𝑥
𝐸𝑝

Such formulation could be used if face mesh would match closely real-world face of
the user, otherwise absolute difference in pixels would be result of inaccurate 3D points,
not muscle contraction values, and thus solution would be wrong. Constructing close
face mesh is not always possible so some solution is required.

Using fact that input is a video sequence we propose to minimize difference in image
positions between two consecutive frames instead of absolute image distances. Since
such minimization can be imperfect, resulting error from previous iterations 𝐸𝑝𝑟𝑒𝑣

𝑝
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3.3 Tracking

should be respected. Formally, having two images

𝐼𝑝′,1 = 𝐼(𝑝′, 𝑥1, 𝑀, 𝑃1)
𝐼𝑝′,2 = 𝐼(𝑝′, 𝑥2, 𝑀, 𝑃2)

for each point 𝑝 from set of points 𝐷 where 𝑝′ is unknown real world 3D point corre-
sponding to the same face keypoint 𝑝, previous muscle state 𝑥1 and projection matrix
𝑃1 are known, task of the tracking is to find such 𝑥2 and 𝑃2 that total error

𝐸 =
∑︁
𝑝∈𝐷

||(𝐼𝑝′,1 − 𝐼𝑝′,2 + 𝐸𝑝𝑟𝑒𝑣
𝑝 )− (𝐼(𝑝, 𝑥1, 𝑀, 𝑃1)− 𝐼(𝑝, 𝑥2, 𝑀, 𝑃2))||

is minimum and 𝑥2, 𝑃2 are feasible.
That modified task can be solved same way, error and derivative change slightly

𝐸𝑝 = ||(𝐼𝑝′,1 − 𝐼𝑝′,2 + 𝐸𝑝𝑟𝑒𝑣
𝑝 )− (𝐼(𝑝, 𝑥1, 𝑀, 𝑃1)− 𝐼(𝑝, 𝑥2, 𝑀, 𝑃2))||
𝐸𝑝 = 𝐸2

𝑝,𝑥 + 𝐸2
𝑝,𝑦

𝐸2
𝑝,𝑥 =

(︂
(𝐼𝑝′,1,𝑥 − 𝐼𝑝′,2,𝑥 + 𝐸𝑝𝑟𝑒𝑣

𝑝,𝑥 )− (𝐼(𝑝, 𝑥1, 𝑀, 𝑃1)𝑥 −
𝐴𝑥

𝐴𝑧
)
)︂2

𝐸2
𝑝,𝑦 =

(︂
(𝐼𝑝′,1,𝑦 − 𝐼𝑝′,2,𝑦 + 𝐸𝑝𝑟𝑒𝑣

𝑝,𝑦 )− (𝐼(𝑝, 𝑥1, 𝑀, 𝑃1)𝑦 −
𝐴𝑦

𝐴𝑧
)
)︂2

𝜕

𝜕𝑥
𝐸2

𝑝,𝑥 = 2
(︂

𝐶 ′
𝑍(𝑀, 𝑝) *𝐴𝑥

𝐴2
𝑧

− 𝐶 ′
𝑋(𝑀, 𝑝)

𝐴𝑧

)︂
(︂

(𝐼𝑝′,1,𝑥 − 𝐼𝑝′,2,𝑥 + 𝐸𝑝𝑟𝑒𝑣
𝑝,𝑥 )− (𝐼(𝑝, 𝑥1, 𝑀, 𝑃1)𝑥 −

𝐴𝑥

𝐴𝑧
)
)︂

𝜕

𝜕𝑥
𝐸2

𝑝,𝑦 = 2
(︂

𝐶 ′
𝑍(𝑀, 𝑝) *𝐴𝑦

𝐴2
𝑧

− 𝐶 ′
𝑌 (𝑀, 𝑝)

𝐴𝑧

)︂
(︂

(𝐼𝑝′,1,𝑦 − 𝐼𝑝′,2,𝑦 + 𝐸𝑝𝑟𝑒𝑣
𝑝,𝑦 )− (𝐼(𝑝, 𝑥1, 𝑀, 𝑃1)𝑦 −

𝐴𝑦

𝐴𝑧
)
)︂

Here 𝐴𝑥, 𝐴𝑦, 𝐴𝑧, 𝐶 ′
𝑋 , 𝐶 ′

𝑌 and 𝐶 ′
𝑍 are same as in previous derivation.

As one can notice, 𝑥1 is required to use such method, to get an initial value we assume
that user starts interaction with neutral face which is when 𝑥1 is zero in each element.

There is still one part missing in that solution, that is effect of jaw opening which has
a big effect on face. To simplify solution, jaw opening is specified by single parameter
- rotation of jaw bone in face model skeleton around X axis. This model parameter
can be as well as projection matrix be estimated separately from muscle contractions
by minimizing difference error of some static point. Formally, we define 𝐽(𝑝, 𝑥𝑟𝑜𝑡, 𝑏, 𝑃 )
as image of 3D point 𝑝 modified by jaw rotation 𝑥𝑟𝑜𝑡 around point 𝑏 and projected by
matrix 𝑃 . Then given two images 𝐽1 = (𝑝′, 𝑥𝑟𝑜𝑡1, 𝑏, 𝑃1) and 𝐽2(𝑝′, 𝑥𝑟𝑜𝑡2, 𝑏, 𝑃2) we need
to find such 𝑥𝑟𝑜𝑡2 that

𝐸𝑗𝑎𝑤 = ||(𝐽1 − 𝐽2 + 𝐸𝑝𝑟𝑒𝑣
𝑗𝑎𝑤 )− (𝐽(𝑝, 𝑥𝑟𝑜𝑡1, 𝑏, 𝑃1)− 𝐽(𝑝, 𝑥𝑟𝑜𝑡2, 𝑏, 𝑃2))||

Here the same method is used to minimize difference between frames instead of absolute
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positions. Image function is defined as

𝑃

⎡⎢⎢⎢⎣𝑏 +

⎡⎢⎣1 0 0
0 𝑐𝑜𝑠(𝑥𝑟𝑜𝑡

2 ) −𝑠𝑖𝑛(𝑥𝑟𝑜𝑡
2 )

0 𝑠𝑖𝑛(𝑥𝑟𝑜𝑡
2 ) 𝑐𝑜𝑠(𝑥𝑟𝑜𝑡

2 )

⎤⎥⎦ * (𝑝− 𝑏)

1

⎤⎥⎥⎥⎦ =

⎡⎢⎣𝐴𝑥

𝐴𝑦

𝐴𝑧

⎤⎥⎦
𝐽(𝑝, 𝑥𝑟𝑜𝑡, 𝑏, 𝑃 ) =

[︃
𝐴𝑥
𝐴𝑧
𝐴𝑦

𝐴𝑧

]︃

which can be derived to:

𝑝− 𝑏 =

⎡⎢⎣𝑑𝑥

𝑑𝑦

𝑑𝑧

⎤⎥⎦
𝑃 =

[︁
𝑝𝑇

1 𝑝𝑇
2 𝑝𝑇

3 𝑝𝑇
4

]︁
1
2
[︁
𝑝𝑇

2 𝑝𝑇
3

]︁ [︃−𝑑𝑦 * 𝑠𝑖𝑛
(︀

𝑥
2
)︀
− 𝑑𝑧 * 𝑐𝑜𝑠

(︀
𝑥
2
)︀

𝑑𝑦 * 𝑐𝑜𝑠
(︀

𝑥
2
)︀
− 𝑑𝑧 * 𝑠𝑖𝑛

(︀
𝑥
2
)︀ ]︃ =

⎡⎢⎣𝐴′
𝑥

𝐴′
𝑦

𝐴′
𝑧

⎤⎥⎦
𝐸𝑗𝑎𝑤 = 𝐸2

𝑗𝑎𝑤,𝑥 + 𝐸2
𝑗𝑎𝑤,𝑦

𝜕

𝜕𝑥
𝐸2

𝑗𝑎𝑤,𝑥 = 2
(︂

𝐴′
𝑧 *𝐴𝑥

𝐴2
𝑧

− 𝐴′
𝑥

𝐴𝑧

)︂(︂
(𝐽1,𝑥 − 𝐽2,𝑥 + 𝐸𝑝𝑟𝑒𝑣

𝑗𝑎𝑤,𝑥)− (𝐽(𝑝, 𝑥𝑟𝑜𝑡1, 𝑏, 𝑃1)𝑥 −
𝐴𝑥

𝐴𝑧
)
)︂

𝜕

𝜕𝑥
𝐸2

𝑗𝑎𝑤,𝑦 = 2
(︃

𝐴′
𝑧 *𝐴𝑦

𝐴2
𝑧

−
𝐴′

𝑦

𝐴𝑧

)︃(︂
(𝐽1,𝑦 − 𝐽2,𝑦 + 𝐸𝑝𝑟𝑒𝑣
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Same way as for the muscle contraction values, we assume that jaw is initially closed
(𝑥𝑟𝑜𝑡1 = 0).

These error functions and derivatives can be plugged into some minimization method.
We use truncated Newton Conjugate-Gradient [28] which bounds variable by limiting
step size so that variable would never exceed given bounds.

We can now use such minimization task to find optimal model parameters by perfor-
mance. However performance in our setup is just video frames set, while error functions
require images of points 𝐼2, 𝐽2. We use optical flow to estimate new positions of points
𝐼1 and 𝐽2.

3.4 Workflow
As all parts of tracking process were described, we can now present workflow of the
application on figure 10. Given initial positions of keypoints in first frame, for each
next frame we compute their new positions by optical flow, solve PNP task to get 𝑃2,
then minimize 𝐸𝑗𝑎𝑤 and 𝐸 given 𝑥1, 𝑥2, 𝑃1, 𝑃2 using bounded gradient descend. 𝑃2
and 𝑥2 are then used to display virtual avatar and replace 𝑥1 and 𝑃1 for the next frame.

Display of the avatar can be replaced by any other consumer of model parameters,
for example one can classify model parameters to several expression classes and thus
have sentiment analysis application, or model parameters can be used to detect visemes
on face to assist speech-to-text.
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3.4 Workflow

Figure 10 Workflow
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4 Implementation

Proposed model was implemented in two parts:
∙ Visualization/Editing tool - provides user interface to edit, retarget and animate

meshes using muscles sets.
∙ Model parameters tracker - handles all steps required to track model parameters

following workflow described in 3.4.
Each of them is described in detail in following sections.

4.1 Visualization/Editing tool

We used Blender - an open source (GPL) 3D computer graphics software which can
serve for 3D modeling, rendering and some other 3D related tasks, as a basis for Visual-
ization/Editing tool because it already has integration with Makehuman project which
allows simple importing of makehuman mesh. It also has powerful editing, rendering
and animation tools which can be used instead of recreating them in custom applica-
tion. Open source nature of Blender will also allow to share created tools with other
users of Blender.

Blender has support for python addons, however they are limited in functions, for
example it is not possible to create new type of mesh modifier which is a straightfoward
way of representing muscle animation. Unfortunately there is no binary addons support
in Blender, so adding some functionality requires modification of Blender source code.

We added to Blender a new object type called Muscle which purpose is to be placed
in 3D scene to define one control point of some muscle and also store muscle parameters.
We also added new modifier type for meshes called Muscle modifier which is used with
muscle objects to deform mesh.

4.1.1 Muscle object

Muscle object is based on ID structure which represents basic properties of object in
Blender. It contains parameters for all types muscles and type:

typedef struct Muscle {
// b l ender data
ID id ;
struct AnimData *adt ;

// type o f the muscle
short type ;

// padding requ i r ed by b l ender
char pad [ 2 ] ;

// l i n e a r muscle parameters
f loat omega ;
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4 Implementation

Linear Parallel Sphincter

Figure 11 Muscle parameters UI

// h e i g h t f o r p a r a l l e l muscle
f loat he ight ;
//common parameters f o r l i n e a r / p a r a l l e l muscles
f loat Fs ;
f loat Ff ;
f loat K;
f loat wrinkle_h ;
int wrinkle_n ;
// parameters f o r s p h i n c t e r muscle
f loat R;
f loat H;

} Muscle ;

Which is displayed and can be edited in UI using some code written in python (see
figure 11). Since each muscle object define only one control point, there should be a
way to link several muscle objects to form one muscle. We used parenting for this,
root node is always the origin of muscle and its child or children (depending on type
of muscle) define control points. Such way also is good for editing muscle set since you
can move whole muscle by moving only origin.

4.1.2 Muscle modifier

Muscle modifier in terms of Blender modifiers is non-desctructive deforming modifier
which means that it only deforms vertices positions without adding or removing them.
Modifier is parametrized by list of entries. Each entry contain:
∙ Reference to muscle origin object which give parameter of muscles as well as control

points locations
∙ Optional vertex group used to limit or decrease effect of muscle
∙ Contraction value used to control contraction of the muscle

Which in code is defined as:

typedef struct MuscleModi f i erListData {
struct MuscleModi f i erListData *next , *prev ;
char defgrp_name [ 6 4 ] ; /* Name of v e r t e x group to modify/ we igh t . MAX_VGROUP_NAME. */
struct Object *muscle ; /* Assoc ia ted muscle */
f loat con t ra c t i on ; /* Contract ion o f t h a t muscle */
char pad [ 4 ] ; /* r e qu i r ed padding */

} Musc leModi f i erListData ;

Modifier works by for each vertex walking through all muscles and summing their
displacement which are calculated as described in section 3.1. You can see effect of the
modifier on two different meshes on figure 26.
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4.1 Visualization/Editing tool

Neutral Effect of 3 muscles active:
both Cheek with
contraction 0.7 and
EyebrowForehead fully
contracted

Same contraction values on
retargeted model

Figure 12 Example renders

Modifier can be animated by standard blender animation system thus having all of
its wide possibilities, for example one can use simplify-curves plugin to automatically
clean animation curves from tracker which sometimes are noisy.

4.1.3 Muscle set

We developed a muscle set which can represent different facial animations. It consist
of 11 muscles (see figure 13), 5 types mirrored for both left and right sides of face, and
one for the lips:

1. Cheek muscles - linear muscles, make smile expression
2. Lips1 muscles - linear muscles, make sad expression
3. Lips3 muscles - linear muscles, pull middle of the upper lip up
4. NoseForehead muscles - linear muscles, pull eyebrows close to nose
5. EyebrowForehead muscles - parallel muscles, pull eyebrows up
6. Lips muscle - sphincter muscle, closes mouth and push lips away from face

4.1.4 Tools

We also added several commands to Blender to work with muscle objects and transfer
data between Blender and tracking application. All commands are bundled as one
python addon called Muscle tools and are accessible through space menu.

Load muscle keyframes from file

This operator loads keyframe data for animation of muscles and jaw from csv file
produced by tracking application. Operator animates currently selected object using
keyframes using loaded keyframes starting from currently selected frame.

Save muscles positions

This operator saves muscles positions in format suitable for retargeting. To do so, for
each muscle object it finds closest mesh vertex and saves its id along with disposition.

Load muscles from file

This operator loads file produced by Save muscles positions operator and uses it to add
muscle set based on currently selected mesh.
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Muscles only Muscles with mesh

Figure 13 Muscle set

Save muscles absolute positions

This operator saves muscle data to file similar to Save muscles positions operator, but
it stores only absolute coordinates of muscle objects. This file is then used by tracking
application.

Save keypoints

This operator saves to file positions of vertices that are in keypoints vertex group. This
simplifies creation of keypoints file for tracking tool because keypoints can be chosen
visually and saved all at once.

4.2 Tracker
Tracking tool is implemented in separate python file which can be used outside of
Blender and has no dependency on it. It is written for python version 2.7 and uses
numpy, opencv and scipy.optimize packages.

Input to tracker is following data:
∙ Muscle set data (may be produced by Save muscles absolute positions tool in

Blender)
∙ Mesh keypoints 3D locations (may be produced by Save keypoints tool in Blender)
∙ Calibration matrix
∙ Jaw bone origin location
∙ Video file
∙ Positions of all keypoints in first frame
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4.2 Tracker

∙ Scale and window size options for optical flow
Tracker follows workflow decribed in section 3.4. It uses first frame and provided

positions of static keypoints to evaluate initial projection matrix 𝑃 by using opencv
function solvePNP with CV_EPNP method. Initial 𝑥 as well as 𝑥𝑟𝑜𝑡 for jaw are
assumed to be zero (meaning that all muscles of face are relaxed and jaw is closed).

For each consecutive frame it then goes through several steps as depicted in Algorithm
2. As one can note, muscle error is minimized not globally, but point-by-point. This is
done intentionally, because during experiments we found out that global minimization
produces similar results but requires much more iterations to converge.

For optical flow we use Lucas-Kanade tracking algorithm implementation from opencv
using function calcOpticalFlowPyrLK. Model parameters for each frame are then writ-
ten to csv file for further processing. This file can be used as input for Load muscle
keyframes from file Blender command to import animation to Blender scene.

input : previous contraction 𝑥1, previous projection matrix 𝑃1, previous jaw
angle 𝑥𝑟𝑜𝑡1, mesh keypoints 𝐷, calibration matrix 𝐾, previous frame 𝑓1,
current frame 𝑓2, previous frame image locations 𝐼1

output: new contraction 𝑥2, new projection matrix 𝑃2, new jaw angle 𝑥𝑟𝑜𝑡2, new
image locations 𝐼2

𝐼2 ← OpticalFlow (𝑓1, 𝑓2, 𝐼1);
𝑃2 ← solvePNP (𝐷, 𝐾, 𝐼2);
𝑥𝑟𝑜𝑡2 ← minimize 𝐸𝑗𝑎𝑤;
𝑥2 ← 𝑥1;
foreach point 𝑝 in 𝐷 do

𝑥2 ← minimize 𝐸𝑝 starting from 𝑥2
end

Algorithm 2: Tracking algorithm
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5 Experiments

5.1 Evaluation

During following experiments we will evaluate quality of algorithm by comparing its
output with ground truth values provided by user. Since there are many frames in each
video and providing user input for each would require too much labor work, we limit
evaluation to several keyframes. We then define error function as

𝐸 =
∑︀

𝑓∈𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠 ||𝑥𝑓,𝑒𝑣𝑎𝑙 − 𝑥𝑓,𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ||
|𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠| * |𝑥|

(14)

where 𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠 is set of keyframes, 𝑥𝑓,𝑒𝑣𝑎𝑙 is muscle contraction vector concatenated
with jaw rotation divided by 𝜋/4 (for normalization) produced by algorithm for frame
𝑓 and 𝑥𝑓,𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ is the same vector for the same frame ground truth values provided
by user, |𝑥| is length of vector 𝑥.

5.2 Experiments setup

All experimental videos were recorded by Canon PowerShot SX40 HS camera with
smallest zoom level without flashlight. Camera was calibrated using opencv calibration
function calibrateCamera. All tests were conducted on PC with Intel i7-3630QM CPU,
8GB RAM, Windows 8.1, python v.2.7.9 with numpy v.1.9.2, scipy v.0.15.1, opencv-
python v.2.4.11 acquired from [29].

For experiments we recorded five similar performances by two people (we further
refer to them as setups, see figure 15):

1. Person was asked to produce expression which contract only one pair of muscles,
one by one, returning to neutral position after each, with camera looking straight
on face and not moving. Following order of expressions was asked (figure 14):
∙ Smile - activate both Cheek muscles in our model
∙ Sad - activate both Lips1 muscles in our model
∙ Open jaw
∙ Frown - activate both NoseForehead muscles in our model
∙ Raise eyebrows - activate both EyebrowForehead muscles in our model
∙ Push lips forward - activate Lips muscle in our model

2. The person was asked to do same expressions again, but this time time camera
was looking from some angle.

3. In third setup same expressions were asked but camera looked completely from
side.

4. Fourth setup again used same expressions, but this time camera was moved and
rotated around the person.

5. Person was asked to produce random facial expressions involving several muscles.
Tests are named as “m%is%j” where “%i” is person number (1, 2) and “%j” is number
of setup (from 1 to 5).
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5 Experiments

Figure 14 Experimental poses

Figure 15 Experimental setups

For each video file we then marked keypoints locations on first frame and some frames
with groundtruth contraction and jaw opening values. For third setup where we see
only half of the face, we assumed absolute symmetry on the face and thus setup right
face part keypoints locations to the same spots as left.

As keypoints we used following facial landmarks (see figure 16):
1. Eyebrows corners
2. Eyes corners
3. Nose tip
4. Left and right most points of the nostrils
5. Lips cupid bow
6. Lips left and right corners
7. Forehead middle point

5.3 Opticalflow parameters

We started experiments by looking for good parameters of optical flow that would result
in fastest calculation but robust. To do so we added scaling factor which was used to
scale input frame before performing optical flow, parameter to control window size used
by LK tracker (window was also square). We used 1.0, 0.75, 0.5, 0.25 as possible values
for scale and 60, 50, 40, 30, 20, 15, 10, 5 as possible window sizes.

We then run our tracking program on all test videos using all combinations of scale
and window size. Average time for each frame (figure 17) as well as average error (figure
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5.4 Model analysis

Figure 16 Landmarks

18) for all tests were calculated. As one can see window of size 5 is significantly faster
then others but also produce larger error. From other options, 𝑠𝑐𝑎𝑙𝑒 = 0.5 is fastest
and has lowest error with 𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒 = 20, larger window sizes produce very close
error on all scales without significantly slowing down. One can also notice that selected
options have average processing time per frame around 42 msec which is almost enough
to process 24 frames per second. This shows that our approach can be used in real-time
applications. For further experiments we will use 𝑠𝑐𝑎𝑙𝑒 = 0.5, 𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒 = 20.

5.4 Model analysis
We captured input for different persons which have dissimilar faces (one Caucasian,
other Asian) and we have an option to choose different facial meshes to use for algorithm.
We have prepared three different facial meshes (figure 19), two of them were made
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5 Experiments

Figure 17 Effect of different optical flow parameters on error

similar to the real faces, and the third one was made dissimilar to both. We then run
tracker with different facial mesh as basis for each person and calculated error for each
setup (figures 20a, 20b). One can see that mesh does not affect error significantly, that
shows robustness of method to dissimilarity in mesh and real face.

For further experiments we used error produced by using similar face mesh for each
person.

5.5 Setups analysis
On figure 21 you can see error for each setup averaged for both persons.

First setup, which may be seemed as simplest, shows that model tracker actually
works as intended producing low (smaller than 0.12) error on average.

Second setup has the same performance as first, showing that camera position can
vary on some angles without losing any quality.

Third setup produced larger error, however it is still reasonable. That proves that
method works even for extreme angles if facial landmarks image positions are correct.

Fourth setup for both persons shows worse performance compared to others. This
is primarily caused by inaccurate optical flow results (see figure 24) which in turn has
large impact on the model parameters. On figure 22 we show what maximum distance
in pixels that muscle can move keypoints (in frontal view), we can see that it is about
35 pixels for most of the muscles, which is quite small if whole image is 1920x1080
pixels large and thus small error in optical flow results can have big impact on the
model parameters. On figure 23 you can see that quality of results degrades as more
movement happens.
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5.6 Per muscle error

Figure 18 Effect of different optical flow parameters on processing time

m1 m2 random

Figure 19 Meshes used in experiments

Fifth setup also shows reasonable error (smaller than 0.2) even when several muscles
are contracted which proves that tracker is working not only for simple cases.

5.6 Per muscle error
On figure 25 we present error per each muscle for each test. One can see that lips
muscles have worse results then other. That can be caused by their flexibility and
worse optical flow results then other facial landmarks.

5.7 Rendering virtual avatar
We then used resulting animation data and loaded it to blender and rendered some
chosen frames, you can see input frame and corresponding rendered frames on figures
26 and 27.
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a) Person one b) Person two

Figure 20 Error for different meshes and tests

Figure 21 Error for each setup
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5.7 Rendering virtual avatar

Figure 22 Maximum displacement of each muscle for frontal view

Figure 23 Error for selected keyframes in test m1s4
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Figure 24 Incorrect optical flow results

Figure 25 Per muscle error averaged for all setups and persons
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5.7 Rendering virtual avatar

Figure 26 Renders for first person performance

Figure 27 Renders for second person performance
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6 Conclusion

6.1 Results
This thesis proposes a muscle model along with technique for facial capture based on
that model. Proposed model was tested on five performances produced by two persons.
During testing it has been shown that such model can be successfully used for real-time
motion capture with adequate error and further animation of virtual character using
a single consumer-level camera. Animation data can be easily retargeted to another
virtual characters created in Makehuman.

6.2 Future Work
Although the proposed tracker is functional there are a lot of possible improvements:
∙ Method suffer from inaccurate opticalflow results, in further work ot can be re-

placed by a better alternative, for example Cascaded Pose Regression method
[30].
∙ Current implementation uses only one core for computations, with modern pro-

cessor having up to 8 cores rewriting code to multithreaded version can result a
significant speed improvement.
∙ User is required to enter landmarks positions on first frame, that makes almost

impossible to use method online. This issue can be solved by using some method
to automatically detect landmarks, it would also help to recover from situation
where tracking fails or provide inadequate results.
∙ Better integration with Blender may reduce number of steps required to do whole

process from motion capture to rendering.
The thesis provides necessary framework for continuing elaborations.
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Appendix A

Documentation

This appendix describes how to use tools created during this thesis.

A.1 Blender
As was described, muscle object and modifier for Blender were created by patching its
source code. You may try to use compiled version (for Windows) available on CD in
archive “blender/Release.zip”, you should be able to run it after unpacking, without any
additional steps. If you wish to build it yourself, there is a full source code available on
CD in archive “blender/blender_src.zip”. For compile instruction please visit blender
website [31].

Most of the operations can be done only through space menu. Space menu is a
blender menu which appears if you press space on keyboard when you are not inputting
text you can see example on figure 28, there are a lot of commands available, their list
can change depending on context (for example selected object, mode). You can type
to filter commands by name.

Muscle objects can be added through space menu command Add muscle which adds
two Linear muscles on some distance from each other. You can then use any blender
tools to move them around scene. You can find muscle parameters under tab with
camera sign (see figure 29).

Muscle modifier can be added to mesh as any other modifier on tab Modifiers and
configured there (see figure 30). It has a list of muscle, vertex group, contraction items
in it and initially is empty. You can add and delete items from that list by plus and

Figure 28 Blender space menu
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Figure 29 Muscle properties

Figure 30 Adding modifier
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A.2 Tracker

minus buttons on the right side of the list. For each item you should choose origin of
the muscle, that should always be parent. If you choose wrong muscle (for example it
does not have enough or have too much children) modifier will just skip it.

A.1.1 Tools

To use tools you will probably need to enable plugin, you can do that by going into
File -> User preferences in main menu. Then on tab Addons you should select Testing
support level, and Muscles category. You should then see single addon on the right, to
enable it tick the checkbox. All following operations are available through space menu,
their actions were described in section 4.1.4:
∙ Load muscle keyframes from file
∙ Save muscles positions
∙ Load muscles from file
∙ Save muscles absolute positions
∙ Save keypoints

A.2 Tracker

To run tracker you will need python interpreter version 2.7 with numpy, scipy, opencv
packages installed. Please follow instructions on websites of these project to do that
[32] [33] [34].

Tracker is represented as a single python file muscles.py in directory tracker and
provides several classes. One may use Tracker class to track proposed model parameters
directly, or can use class MTest which handles loading of required data from test files.
You can also run the file directly which will run set of predefined tests. If you would like
to change some parameters, or add/delete tests to the process list, you can edit code
in the bottom of the file. Commented parts in the end of file can be used to produce
data which was used to generate experimental results.

There is also a script named runtest.py which you can use to run single test by passing
test name (without extension), scale, and window size as arguments.

A.3 Example

This section will guide you through all steps from Makehuman model to rendering
animation in Blender. You may skip some steps and use provided data instead of
making your own.

A.3.1 Exporting model from Makehuman

There are three mhx files provided on CD in directory testdata, you can use them if you
wish to skip that step.

After you have create model in Makehuman, you should export it in MHX format,
to do that you should go to Files -> Exports tab, select Blender Exchange (mhx) as
mesh format with all other settings in their default values. After specifying filename
and clicking export it should be done.
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A.3.2 Importing model, creating muscles

There are three blend files with models imported, muscles and muscle modifier configured
on CD in directory testdata, you may use them if wish to skip that step.

Next step is to import Makehuman model to Blender. This can be done using Import
MHX space command or through menu File -> Import -> Makehuman(.mhx). If you
do not have such options you need to install Makehuman plugin to Blender, please
follow instructions on Makehuman website [35] to do that. After that step you should
see human mesh in Blender 3d window.

You should now add some muscles to the face. If your model have eyebrows, you
can use provided muscles file and retarget them to your mesh. You should first join
eyebrows mesh with body. To do so first select eyebrows, then while holding shift select
body mesh, next use operator Join (Ctrl+J or through space menu). Now load muscle
data from file using operator Load muscles from file, provide file is in directory testdata
and is called muscles.txt. Muscle objects across face should appear.

If your model does not have eyebrows, or you want to use your own muscle set, you
can build it by adding some muscle objects. You can save it and then retarget using
operator Save muscle to file.

Next we should add muscle modifier. You can test it by adding some muscles to its
list and changing contraction parameter. If you use proposed muscle set, you would
probably want to limit effect of Lips3 muscles using vertex group because they deform
nose otherwise. Please look in provided blend files for example of vertex group.

A.3.3 Exporting data from Blender for tests

There are three pairs of files on CD in directory testdata called muscles_m1, key-
points_m1, muscles_m2, keypoints_m2, muscles_m3, keypoints_m3 which correspond
to models m1, m2, m3 respectively. You can use these files if you want to skip this step
or you use one of the provided models. Next step is to export muscle data and keypoints
information from Blender for test application. To do that, choose body mesh and run
operator Save muscles absolute positions to save muscle data. To save keypoints you
should create vertex group called keypoints and add keypoint vertices on mesh to it.
Then you can save their locations using operator Save keypoints. However you will
need to modify that file by specifying if the keypoint is static, dynamic or is it used for
jaw opening estimation (there should be only one jaw point). It is hard if you save all
points at once so we suggest to add them one by one, or use provided data.

A.3.4 Creating test file

There are several tests in directory testdata, you can use them if you wish to skip that
part

All filenames in following are relative to tests directory and for simplicity should be
placed there.

After you acquired video from some camera, you may prepare test file. Its first and
second lines should be a file name with muscles data and file name of keypoints produced
on previous step. On third line there should be name of video file. Forth line should be
a name of file with calibration matrix. This file may be numpy saved data (it should
end in .npy) or text file with matrix rows on lines and columns separated by single
space. Next line should be coordinates of jaw bone origin, you can see that in Blender
by selecting jaw bone, going to edit mode and in tab Bone you can see coordinates.
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Next line contains 𝑛 number of keypoints, it should equal number of keypoints spec-
ified in keypoints file. Next 𝑛 lines should contain image coordinates of corresponding
keypoints on the first frame. You can use script choose_points.py to simplify that step.

After keypoints image locations there should be two numbers on the line separated
by space: number of tested muscles 𝑚 and ground truth frames 𝑙. Next line should
contain exactly integer 𝑙 numbers separated by space - ground truth keyframes numbers.
Next 𝑚 * 2 lines should contain name of muscle on one line followed by 𝑙 float ground
truth values for that muscle and corresponding frames. Please refer to provided test
for examples.

A.3.5 Running test
To run test you may either add it to the list of tests in muscles.py file, or use runtest.py
passing test name, scale, and window size as arguments. Window should appear showing
currently tracked positions of landmarks and current estimation of model parameters.
You may end test processing by pressing Escape on keyboard. After test has completed,
two files should appear in tests directory: %testname%_%scale%_%windowsize%_error.csv
a file with error information for each muscle in csv format and average time required to
process frames, %testname%_%scale%_%windowsize%_result.txt also a csv file which
contains tracked model parameters, can be imported to Blender.

A.3.6 Importing animation to Blender
You can import model parameter data produced by tracker to Blender by selecting body
mesh and running operator Load muscle keyframes from file. It should add keyframes
starting from currently chosen. You should be able now to render animation or selected
frames with corresponding model parameters.
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