
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Visualization of Prague Castle

Bc. Antonín Smrček
Study Programme: Open Informatics
Field of Study: Computer Graphics and Interaction

January 2016
Supervisor: prof. Ing. Jiří Žára, CSc.

Acknowledgement / Declaration
I would like to thank prof. Ing. Jiří

Žára, CSc., for supervision of my the-
sis. He provided me with invaluable in-
sights, feedback on work in progress and
his guidance was especially important
in finishing stages of the project. My
thanks are also due to all friends who
helped me with the user testing. Finally,
I want to particularly thank my mother
for her support throughout my studies.

I hereby declare that I have completed
this thesis independently and that I have
listed all the literature and publications
used.

I have no objection to usage of this
work in compliance with the act §60
Zákon č. 121/2000Sb. (copyright law),
and with the rights connected with the
copyright act including the changes in
the act.

In Prague on January 11, 2016

. .

v

Abstrakt / Abstract
Tato diplomová práce se zabývá vý-

vojem webové aplikace která vizualizuje
prostředí Pražského hradu a umožňuje
3D virtuální procházku v rámci jeho
prostor. Důraz je kladen na grafic-
kou kvalitu a výkon aplikace. Obdobné
systémy pro vizualizaci měst jsou podro-
beny analýze a jsou diskutovány možné
volby technologií pro implementaci. Je
vysvětlen proces návrhu a implementace
uživatelského rozhraní, stejně tak jako
zvolený přístup ohledně modelování,
začlenění moderních vizuálních efektů
a dosažení výkonnostních optimalizací.
Finální aplikace je podrobena uživa-
telskému a výkonnostnímu testování
a je provedeno srovnání s obdobnými
vizualizačními aplikacemi.

Klíčová slova: Pražský hrad, webová
vizualizační aplikace, virtuální pro-
cházka, WebGL, Three.js

Překlad titulu: Vizualizace Pražského
hradu

This thesis describes a development
of the web-based 3D virtual walk ap-
plication which visualizes the Prague
Castle and provides the users with an
information about interesting objects
in the area, with focus on graphical
quality and performance of the ap-
plication. Similar city visualization
applications are analyzed and choice of
technologies used for the implementa-
tion is discussed. Process of the user
interface design and implementation is
explained, as well as the approach taken
in modeling, incorporating modern vi-
sual effects and achieving performance
optimizations. We have performed user
testing and also measured the applica-
tion’s performance. Finally, we compare
the application to other visualization
applications.

Keywords: Prague Castle, web-based
visualization, virtual walk, WebGL,
Three.js

vi

Contents /
1 Introduction .1
1.1 Thesis structure1

2 Visualization systems analysis3
2.1 Goals .3
2.2 Map services .4

2.2.1 Google Maps4
2.2.2 Google Earth.5
2.2.3 Mapy.cz 10
2.2.4 Here . 11
2.2.5 Comparison of map

services 12
2.3 Standalone presentations 15

2.3.1 Virtual Old Prague 16
2.3.2 Saint Jean Cathedral 18
2.3.3 Interactive demos by

Bitmanagement Soft-
ware . 20

2.3.4 3D tours by Internet
Dominion 24

2.3.5 3D Ancient Wonders. 27
2.3.6 Timewalk 28
2.3.7 Comparison of stan-

dalone applications 29
2.4 Conclusion of similar sys-

tems analysis 30
3 Technology analysis 32
3.1 Goals . 32
3.2 VRML . 33
3.3 X3D (X3DOM) 33
3.4 Adobe Flash. 34
3.5 Google Native Client 34
3.6 WebGL + JavaScript com-

pilable language 35
3.6.1 TypeScript 35
3.6.2 Dart . 36
3.6.3 Google Web Toolkit 36
3.6.4 Emscripten 36

3.7 Comparison of technologies. . . . 37
3.7.1 Choosing JavaScript-

compilable program-
ming language. 38

3.7.2 Middleware above We-
bGL . 38

3.8 Conclusion of technology
analysis . 40

4 Project specification 41

4.1 Choice of technology 41
4.2 Application requirements 41

4.2.1 Functional require-
ments . 41

4.2.2 Non-functional re-
quirements 42

5 Software structure 43
5.1 Architecture requirements 43
5.2 Components . 45

6 Virtual content creation 48
6.1 Goals . 48
6.2 Choosing the content cre-

ation programs 50
6.3 Extent of the content creation . 50
6.4 References for the content

creation . 51
6.5 Textures creation 51

6.5.1 Hardware limitations 51
6.5.2 Acquiring photographs

for textures 52
6.5.3 Creating textures from

photographs 53
6.5.4 Retouching textures in

GIMP . 54
6.5.5 Tileable textures 55
6.5.6 Approximating com-

plex objects by textures . 58
6.6 Models creation 60

6.6.1 Modeling process out-
line . 60

6.6.2 Creating details 60
6.6.3 Handling two-sided

faces . 61
6.6.4 Productivity tips 61
6.6.5 Environment modeling . . 62

6.7 Exporting from SketchUp 64
6.7.1 Issues with exporting 65

6.8 Statistics . 66
7 User interface . 67
7.1 Goals . 67
7.2 UI functionality 68
7.3 Implementation, design and

UI behavior . 70
7.3.1 Technologies and li-

braries . 70

vii

7.3.2 Left part of HUD and
virtual keyboard 73

7.3.3 Viewpoint change 73
7.3.4 Map . 74
7.3.5 Minimap. 76
7.3.6 Interaction with ob-

jects of interest. 77
7.3.7 Translation mechanism . . 79

8 Collision detection 83
8.1 Goals . 83
8.2 Collision detection ap-

proaches . 84
8.3 Heightmap implementation. . . . 88

8.3.1 Creation of the
heightmap 89

8.3.2 Using the heightmap. 90
8.3.3 Heightmap layers 92

8.4 Principles of the applica-
tion’s collision detection 93

8.5 Implementation of collision
detection . 95

9 Performance optimizations 99
9.1 Goals and considerations 99
9.2 Three.js and meshes 99
9.3 Rendering approaches 101

9.3.1 Naive rendering ap-
proach 101

9.3.2 Improved rendering
approach – Mesh merg-
ing . 105

9.3.3 Mesh merging – several
groups 112

9.4 Possible performance im-
provements in the future 114

10 Lighting and visual improve-
ment techniques 116

10.1 Goals . 116
10.2 Illumination models 116
10.3 Shadows . 119
10.4 Lighting and other tech-

niques. 122
10.5 Reducing rendering artefacts . 123

11 Testing . 125
11.1 Goals . 125
11.2 User testing 125

11.2.1 Testing scenario 125

11.2.2 Results 126
11.2.3 Conclusion 128

11.3 Performance testing. 129
11.3.1 Conclusion 130

12 Conclusion . 131
12.1 Future work 132

References . 133
A Abbreviations . 139
B Additional images 140
C Screenshots and comparisons . . 143
D Installation manual 150
D.1 Running the application 150

D.1.1 Running the applica-
tion locally 150

D.2 Requirements and trou-
bleshooting . 151

D.2.1 Minimum computer
configuration 151

D.2.2 Supported web
browsers 151

D.2.3 Graphic card drivers 151
E User manual . 152
F Contents of the enclosed

DVD-ROM . 158

viii

Tables / Figures
2.1. Comparison of map services . . . 12
2.2. Comparison of standalone

visualization applications 29
3.1. Comparison of technologies 37
3.2. Comparison of JavaScript-

compilable languages. 38
3.3. Comparison of middleware

above WebGL 39
6.1. Tileable vs single textures

comparison . 56
8.1. Collision events’ properties

summary. 98
9.1. Time complexity – naive ren-

dering approach 105
9.2. Time complexity – Mesh

merging . 111
9.3. Time complexity – Mesh

merging with groups 112
11.1. User testing – information

about participants. 126
11.2. Performance Testing –

HW&SW specification 129
11.3. Performance Testing – web

browser specifications 129
11.4. Performance test – descrip-

tion . 129
11.5. Desktop 2007 – measured

FPS . 130
11.6. Laptop 2009 – measured

FPS . 130

2.1. Google Maps 3D (bird’s eye)
– Prague Castle6

2.2. Google Earth – Prague Castle . . .8
2.3. Google Earth – virtual walk

in the Prague Castle9
2.5. Mapy.cz – Prague Castle 2 10
2.4. Mapy.cz – Prague Castle. 11
2.6. Here – Prague Castle 13
2.7. Visual comparison of map

services . 14
2.8. Virtual Old Prague 17
2.9. Virtual Old Prague – options. . 18

2.10. Saint Jean Cathedral. 19
2.11. 3D City Visualization 21
2.12. City visualization with night

simulation . 22
2.13. Cathedral . 23
2.14. Internet Dominion – interac-

tivity in 3D . 24
2.15. Internet Dominion –

Jerusalem . 25
2.16. Internet Dominion – UI win-

dow dialogs . 26
2.17. 3D Ancient Wonders 27
2.18. Timewalk . 28
5.1. Architecture of the applica-

tion . 44
6.1. Example of a building facade

in the Prague Castle 55
6.2. Virtual Old Prague texture 56
6.3. Our application texture 57
6.4. Problematic image for auto-

matic background separation . . 59
6.5. Tinted edges after back-

ground separation 59
6.6. Tinted edges removed by

shrinking. 59
6.7. Artefacts when scaling PNG

with a filter . 59
6.8. Difference between Digital

Surface Model and Digital
Terrain Model 63

6.9. DTM and corresponding
classical map of Prague 64

6.10. Terrain’s heightmap and its
render in L3DT 65

ix

7.1. Hierarchical task analysis di-
agram for the user interface . . . 69

7.2. HUD in the application 72
7.3. List of viewpoints 74
7.4. Orthophotomap and

heightmap comparison 75
7.5. Big map . 77
7.6. Area map . 78
7.7. Window with an article

about the object of interest 78
7.8. Regular draw vs Pick draw 79
7.9. Content translation mecha-

nism. 80
7.10. HTML page with a translat-

ed article. 82
8.1. Missed collision – bullet

through paper problem 85
8.2. Line segment vs triangle in-

tersection . 86
8.3. Example of an overhang –

passageway . 87
8.4. Area captured by the

heightmap – aerial view. 88
8.5. Encoding distance to a color

– vertex shader 89
8.6. Encoding distance to a color

– fragment shader 90
8.7. Decoding depth from a color

– JavaScript . 91
8.8. Computing world height

from a depth 91
8.9. Three layers of the heightmap . 93

8.10. Additional collison checking . . . 95
9.1. Three.js – structure of Mesh

class . 101
9.2. Naive scene loading code 102
9.3. Three.js render function 103
9.5. Render list – naive 103
9.4. Scene example (different ren-

dering approaches) 104
9.6. Examples of created meshes

– naive rendering 106
9.7. Mesh merging – pseudocode . . 108
9.8. Render list – Mesh merging . . 109

x

9.9. Render list – Mesh merging
with triangle rearrangement
by materials 109

9.10. Mesh merging – layout of big
Mesh buffer . 110

9.11. Dependency of FPS on draw-
ing calls . 113

9.12. Dependency of FPS on draw-
ing calls (logarithmic scale) . . . 113

10.1. Direct vs indirect illumina-
tion . 117

10.2. WebGL Path Tracing – ini-
tial render quality 118

10.3. Shadow Volumes – visualiza-
tion . 120

10.4. Shadow Mapping – advanced
method . 121

10.5. Shadow mapping 122
10.6. Lens Flare effect. 123
B.1. Runtime game engine archi-

tecture 1/2 . 140
B.2. Runtime game engine archi-

tecture 2/2 . 141
C.3. Color highlighting of inter-

esting objects 143
C.4. Reality vs our application 1 . . 144
C.5. Reality vs our application 2 . . 145
C.6. VSP vs our application 1 146
C.7. VSP vs our application 2 147
C.8. VSP vs our application 4 148
C.9. Mapy.cz vs our application . . . 149

E.10. User Guide 1/6 – Introduc-
tion, Controls. 152

E.11. User Guide 2/6 – Onscreen
buttons controls 153

E.12. User Guide 3/6 – Keyboard
controls . 154

E.13. User Guide 4/6 – Interaction,
Walking/Flying, Viewpoints . . 155

E.14. User Guide 5/6 – Maps 156
E.15. User Guide 6/6 – Language,

Main Menu, HW require-
ments . 157

xi

Chapter 1
Introduction

With the rise of computers’ performance and especially their 3D capabilities which has
happened over the last two decades, it became possible to create virtual “copies” of the
real world places and even walk around them. One of the notable projects from the
past which focused on the theme of virtual walks is the Virtual Old Prague project.
We consider it as the predecessor of our application, having the same theme and even
sharing part of visualized areas – the Prague Castle in this case. The Virtual Old Prague
project is originally from 1999 and times have changed since then. Internet connection
speed is significantly faster, performance of average PC has increased several-fold. The
things which were once crucial for realizing such application are not anymore, but
there are new things to consider. Web browser vendors have been gradually removing
browser plugin support in favor of standards-based web technologies, making some of
the popular technology choices for virtual walks such as VRML practically unusable;
on the other hand, there are much more technologies to choose from nowadays. The
web and 3D content generally is being accessed from more types of devices apart from
desktop computers – laptops, mobile phones, tablets etc., making it possible to broaden
the audience even further.

The goal of our project is to develop a modern web-based 3D virtual walk application
which visualizes the Prague Castle and provides users with information about interest-
ing objects in the area, with focus on graphical quality and performance. The aim of
the thesis is to provide insight into the area of virtual walk applications in the context
of present-day technologies. The current state of virtual walk applications is explored
and desirable traits are collected, and we show how we use this knowledge in design and
implementation of user interface for our application. We present the reader with our
approach to creation of the virtual world (modeling, physics simulation, visual effects)
and means used to achieve desired performance, including specific implementation de-
tails and explanation of reasoning behind. To verify performance of the application and
ensure its practical usability by regular users, we have also conducted performance and
user testing. It is also shown how our application fares in visual comparison with similar
visualization applications and, what is probably the most interesting comparison, how
much the technology has evolved over the last years by comparing same areas from our
application and Virtual Old Prague project against each other.

1.1 Thesis structure
The thesis is structured as follows: Chapter 2 deals with an analysis of related similar
visualization systems. Chapter 3 addresses pros and cons of technologies available for
a development of web-based 3D virtual walk application. The project specification is
given in Chapter 4, which focuses in closer detail on the particular goals and deci-
sions concerning the implementation and used technologies. Structure of the developed
virtual walk application is presented in Chapter 5. In Chapter 6, the process of 3D
content creation for the application is discussed. Chapter 7 is devoted to design and

1

1. Introduction .
implementation of the user interface. Implementation specifics are described in Chap-
ter 8 (collision detection) and Chapter 9 (performance optimizations), and Chapter 10
talks about the lighting and choice of visual effects used to improve the visual quality
of the application. The results of the user and performance testing are presented in the
Chapter 11. Finally, Chapter 12 concludes the thesis and outlines the possible future
work.

2

Chapter 2
Visualization systems analysis

In this chapter, we will introduce a number of existing web-based city visualization
systems (divided into the two main categories – map services and standalone presen-
tations), discuss their functionality with relation to virtual walks and compare them
against each other based on selected evaluation criteria.

2.1 Goals
Goal of our analysis is to gain an insight into the state of visualization applications
with a similar theme and collect desirable traits for a good virtual walk. We aim to
analyze applications’ strengths and weaknesses and use this information during the
development of our own application. The analysis consists of a text review and rating
of specified qualities. A quality can be rated using these marks (signs):.negative (-).quality is missing or on a poor level. in case of negative qualities (i.e. “missing models”), it means that the application

contains this negative quality (e.g. some models in the application are missing). zero/neutral (0).quality is considered acceptable (neither bad, nor very good).positive (+).quality is present (not missing) or very good. in case of negative qualities (i.e. “missing models”), it means that the application
does not possess this negative quality (e.g. it has no missing models)

Each quality has associated weight between 0 and 1 which signalizes its importance.
Sum of weights of all qualities is 1. Rated qualities are different for map services and
standalone presentations – specification is given at the beginning of associated sections.
In the end of the analysis, ratings of the applications are presented. Total rating for an
application is computed as a sum of additions from all rated qualities and this sum is
mapped from its [-1,1] range to the 0-100 % range. Addition of a quality is computed
as:

addition = sign(givenMark) ∗ weight

The applications are compared against each other according to their ratings. The
conclusion of our analysis is drawn based on the results of this comparison.

3

2. Visualization systems analysis .
2.2 Map services

Map services are applications where city visualization is not the sole purpose. They
provide wide range of services for users such as browsing of various 2D map types, route
planning, displaying public transport timetable in places of interest and so on. City
visualization is present in a form of panoramic views from positions along city streets,
and in recent years, also in a form of 3D models created computationally from an aerial
imagery. Four popular map services are introduced and compared – Google Maps,
Google Earth, Mapy.cz, and Here.

The rated qualities for map services were chosen as following:.Model quality.geometry – correct shape of objects without artefacts (holes, bends, ...). textures – visual quality (resolution, image deformations, ...).Missing objects.Are all objects 3D models? (some of them can be just photographs etc.).Fully 3D view. Is it possible to freely manipulate the view? (arbitrary angle and position).Special features.notable unique features, e.g. an ability to perform an actual virtual walk through
a city.User Interface.whether and how it provides the information about objects of interest, navigation
in the area and a way how to control the avatar/manipulate the application.well-arrangement, simplicity, visual appeal

2.2.1 Google Maps
Available at: https://www.google.com/maps

Google Maps is a web mapping service provided by Google since 2005. It offers
classic and satellite maps, as well as an option of functional layers above the maps, for
example visualization of the current area traffic. Satellite maps are often just 2D maps,
but in selected cities around the world1), sort of 3D view is present, which displays
layer containing 3D models of buildings (using WebGL) and lets user to manipulate
with the view.

The manipulation in this 3D view mode is severely limited; user can tilt the view
only in three fixed positions:.Orthogonal.Bird’s eye view.Almost parallel to the ground

Orthogonal view is the default one where the user is looking to the ground right
from the above. The experience is almost the same as with a normal 2D satellite map
– 3D models are not recognizable from such angle.
1) Cities mainly in USA and Europe, full list at http://support.google.com/maps/answer/2789536?hl=
en&ref_topic=6002888

4

https://www.google.com/maps
http://support.google.com/maps/answer/2789536?hl=en&ref_topic=6002888
http://support.google.com/maps/answer/2789536?hl=en&ref_topic=6002888

. 2.2 Map services

Probably the most interesting is the bird’s eye view from 45 ◦ angle, where a small
to medium portion of a city is viewed with a sense of plasticity from now clearly recog-
nizable 3D models. City structure is easy to see – this view is similar to the view from
a sightseeing flight above the city. Last view option is almost parallel to the ground
(approaching 90 ◦). Apart from that, it is similar to the previous and allows user to
see the whole (or at least very large) part of a city and its wide surroundings. Zoom
can be manipulated freely (although there is a limit of maximal zoom), but details on
the maximum zoom are very poor and the view is quite confusing, because satellite
photographs and 3D models are mixed together. For example, roads have photographs
containing objects (like cars) as textures; the objects of course do not appear 3D, in-
stead they appear “flat”, as if lying on the road. Rotation cannot be manipulated
freely and is limited (similarly to tilting) only to four positions, which are 90 ◦ apart
(i.e. North, East, South, West). Despite the fact that the view manipulation cannot be
fully controlled, 3D models in Google Maps provide a decent way of visualizing a city
structure and if they are not examined from a close distance, they look impressive.

Lets move further to the another mode of Google Maps called the Street View – this
popular mode with panoramic photographs is probably closest to the idea of a virtual
walk. But no matter how clever the idea behind panoramic photographs is, it can never
be a virtual walk in its “true” sense, because it is still just photographs and user cannot
move freely in all three dimensions of the world.

As for the user interface (see Figure 2.11), Google really uses its biggest trump card of
interconnection with the whole Google ecosystem (search engine and other applications)
to the maximum. On the left part of the screen, the information about objects of interest
is displayed, with a possibility to browse photographs or read reviews written by the
users. The photographs are also displayed in a form of a list in the lower part of the
screen. The icon for displaying the classical map has reserved small space on the left
of this list. Objects of interest are marked in the 3D virtual world (and classical map)
or can be searched in the database using the search bar above the information section.
The right lower part of the screen contains the control panel with tilting, rotation and
zoom controls plus a yellow icon of a sticky figure which can be placed into the map
and transition the mode into the Street View. All information and photographs are
presented in a concise (but sufficient) manner, the whole user interface is very well-
arranged, simple to use and nice to look at.

2.2.2 Google Earth
Google Earth is a geographical information program, virtual globe and map, currently
developed by Google. It is free for personal use, commercial license exists too. User
can view almost entire Earth in 3D, since it uses digital elevation model data collected
by NASA [1]. The graphics is rendered either by OpenGL or DirectX.

Google Earth requires internet connection and exists as a standalone application in
both desktop (Windows, OS X, Linux) and mobile versions (Android, iOS). First ver-
sion was released in 2005 and has gained big popularity since, reaching over one billion
downloads six years later [2]. In the early years of Google Earth, there were limited
means to explore cities in 3D – only a few ones from US contained 3D models, and
those were just gray blocky buildings. Google gradually improved quality of the models
and also allowed contribution from users via SketchUp2) modeling application, so with
1) All Figures in this section contain captions enclosed in [brackets] which point out important parts of
the user interface and possibly some other information – i.e. navigation within the world, information
about objects of interest, controlling the application
2) http://www.sketchup.com

5

http://www.sketchup.com

2. Visualization systems analysis .

Figure 2.1. Google Maps 3D (bird’s eye) – Prague Castle

6

. 2.2 Map services

a help of the community, new building models quickly appeared all around the world.
Despite that, there are still many buildings with no 3D models and only their satellite
photographs are present at such places. In 2013, Google discontinued user model con-
tributions [3], focusing on automatic creation using method of Stereo Photogrammetry
[4–5], where multiple photographs of same objects are taken at different perspectives.
Aircrafts are used for this task, making multiple flights over an area and capturing high
resolution photographs.

Google Earth allows user to freely zoom and rotate around the 3D building models,
and even a virtual walk from the first-person view is possible. However, there is no
collision detection with buildings and the avatar often walks “under the ground” during
walking around more complicated building structures (see Figure 2.3), because 3D
models are in fact just a layer placed over the main 3D world and model’s ground levels
usually do not match those of the main world. Google Earth allows the user to find a
lot more information about the area than Google Maps (more media, more text, more
geographical-related information, more everything), which is probably why the user
interface may be a bit complex sometimes. The arrangement of the user interface is
similar to Google Maps – there is a control panel in the right part of the screen which
allows manipulation with the zoom (unlimited), with the view and a sticky figure for
entering the Street View mode. The information is not presented in such a compact
way like in Google Maps, and objects of interest are not marked until the right option
is turned on in the options. Only experienced users would be able to comfortably use
the application.

The Prague Castle in Google Earth has still most of its models created by users
and only a few not so significant buildings were created automatically, and the results
are weird occasionally – see the textured blocks that are supposed to be castle walls
on Figure 2.2, highlighted in pink. We have also experienced that some buildings are
“flying” (again see Figure 2.2, highlighted in pink), which really does not make the best
impression. Some buildings do not have any models available and only their satellite
photograph is present. Because of the manual creation, buildings and surroundings
have nice details (e.g. gates, fountains), their models have precise geometric structure
that is very similar to the real one, and without artefacts from which automatically
generated models suffer, such as edgy walls or collapsed parts. The big downside are
textures, which are too much of a low quality for a visually appealing virtual walk – not
to mention ground and house roofs textures, which are obviously from satellite images
and of extremely low quality. On the bright side, looking at the castle from a distance
hides these flaws, providing a rather accurate and nice view.

7

2. Visualization systems analysis .

Figure 2.2. Google Earth – Prague Castle

8

. 2.2 Map services

Figure 2.3. Google Earth – virtual walk in the Prague Castle

9

2. Visualization systems analysis .
2.2.3 Mapy.cz

Available at: http://mapy.cz
Mapy.cz is a project focused mainly on the Czech Republic, developed by Czech

company Seznam. It has its own version of Google’s Street View called Panorama,
which works exactly the same. In 2014, Seznam launched 3D map project – 3D models
of a few cities were created (e.g. part of Prague, Brno, Kutná Hora) and became
available to explore. 3D maps run on WebGL technology and allow arbitrary rotation
of a city model to the side and view from desired height, along with an option of sight-
seeing flight, which makes the view rotate around the screen center. The user is allowed
to zoom freely, but the maximal zoom is limited.

The whole project is powered by Melown Maps1) – a software developed by Citation-
tech, Czech technology company focused on the applied research and development in
the field of computer vision. Melown Maps is a software system for creating 3D models
of landscape from aerial photographs. The input of the system are uncalibrated aerial
photographs, the output is a georeferenced 3D model. Data are processed automati-
cally, without manual assistance [6]. Automatic computation is the reason why data
processing takes a very long time – several years in general [7]. However, Vysoká Škola
Báňská2) has also participated in the project, lending power of their “supercomputer”
in order to speed up the computation process and cutting its length to one year. Seznam
aims to gradually add models for more than 250 towns and cities in the near future.

Figure 2.5. Mapy.cz – information about an object of interest is not visible in 3D mode

The quality of models is, as expected, not perfect. Buildings have usually more or
less distorted shape. The impression is very good from further distance where details
are not apparent, but the biggest zoom reveals a lot of imperfections. 3D maps are
great for an overall feeling of the area and a general idea how the place looks like. The
user interface (Figure 2.4) is simple and well-arranged. The lower part of the screen
contains the control panel where it is possible to manipulate with the zoom, rotate/tilt
the view or turn on/off the “sight-seeing flight”. The left part of the screen is reserved
for the display of a classical map where the current position in the 3D world is shown,

1) http://www.melown.com/maps
2) http://www.vsb.cz/cs

10

http://mapy.cz
http://www.melown.com/maps
http://www.vsb.cz/cs

. 2.2 Map services

Figure 2.4. Mapy.cz – Prague Castle

along with objects of interest. However, the execution is not handled very well – when
an object of interest is clicked, information window similar to Google Maps is displayed,
but the whole view into the 3D world disappears (Figure 2.5). Also, unlike in Google
Maps and Google Earth, objects of interest are not marked in the 3D virtual world.

2.2.4 Here
Available at1): https://www.here.com

Here is a mapping service developed by Nokia2), formerly known under the name Ovi
Maps/Nokia Maps. It has very similar functions to Google Maps and runs in WebGL.

1) 3D map function no longer available since the beginning of 2015
2) http://company.nokia.com/en

11

https://www.here.com
http://company.nokia.com/en

2. Visualization systems analysis .
Interesting feature is Maps 3D, launched in 2011 [8], which is extremely similar to those
of Mapy.cz, but contains 3D models for much more cities, mainly located in Europe.
The user interface (Figure 2.6) is pretty similar to Google Maps – info about objects
of interest appear in the left part of the screen when opened, objects of interests or
places can be searched in the database using the search bar in the top part of the
screen (however, just like in Mapy.cz, objects of interest are not marked in 3D), and
the lower part of the screen contains control elements for moving/tilting the view and
(limited) zoom. Upper right part of the screen contains panel with various options, e.g.
switching between map layers or teleporting to other cities.

2.2.5 Comparison of map services
The ratings for each application and their overall rating can be seen on Table 2.1.
Google Maps’ biggest disadvantage is absence of a full 3D view, which makes it really
suitable only for obtaining general feeling of a place. Otherwise, it has acceptable virtual
world qualities, especially quality of geometry is good. However, what shines the most is
the simple, well-arranged and visually appealing user interface which provides enough
information about the area and blends with the 3D view really well. Google Earth
shares a lot of good qualities with Google Maps, but in contrast, it contains a full 3D
view and even allows a virtual walk through a city; unfortunately this functionality
suffers from technology flaws, but the experience is enjoyable nevertheless. Sadly, what
brings overall feeling down is an absence of objects in certain areas, various artefacts
and the user interface, which is rather complicated and information about objects of
interest is not easily accessible. Mapy.cz and Here are very similar – Here models have
less geometry anomalies, but Mapy.cz has better textures. The user interface of Mapy.cz
is simple, 3D controls are quick to understand and easy to manipulate with; but the
interaction with objects of interest is not executed very well. Here has less appealing
controls, but the interaction with objects of interest is handled similar to Google Maps,
which is good.

Weight Criterion Google Maps Google Earth Mapy.cz Here
0.25 Model quality 0 0 0 0
0.05 Missing objects 0 - 0 0
0.20 Fully 3D view - + + +
0.05 Special features 0 + 0 0
0.45 User Interface + - 0 0

TOTAL SCORE 63% 35% 60 % 60%

Table 2.1. Comparison of map services

Based on the rated qualities, both Mapy.cz and Here placed on the same level, only
a little behind Google Maps, which has placed first – although it lacks a full 3D view,
it contains unparalleled user interface and interaction with objects of interest. The
last place belongs to Google Earth due to the overly complex user interface. Visual
comparison1) of Google Earth, Mapy.cz and Here is depicted on Figure 2.7 – as you
can see, the overall visual quality is similar and indistinguishable from a distance.

1) We have omitted Google Maps from the comparison as it does not contain full 3D view and we would
be unable to take the screenshot of the desired view where full castle area is clearly visible

12

. 2.2 Map services

Figure 2.6. Here – Prague Castle

13

2. Visualization systems analysis .

Figure 2.7. Visual comparison of map services with a full 3D view functionality

14

. 2.3 Standalone presentations

2.3 Standalone presentations
Standalone presentations focus on a very limited part of an area and visualization is
the major purpose. Visualized areas are very often places with some historical value
– both indoor (e.g. temples, chapels) and outdoor (e.g. squares, gardens), which
are sometimes even combined into one 3D virtual walk. Because of a limited spatial
range of a presented world, visualization can be more detailed and have better graphics
quality. User interactivity is usually higher and application lets the user to explore the
visualization freely, usually from the first-person view perspective.

There are very few standalone presentations which focus on a “true” city visualiza-
tion. The most suitable representative presented is, without a doubt, the Virtual Old
Prague, since it was the biggest inspiration to Visualization of Prague Castle and, in
a sense, its spiritual predecessor. Other than that, two demos from the developers
of BS Contact (popular VRML/X3D player) containing city visualization are intro-
duced, along with Timewalk, aspiring to be re-creation of the whole world in 3D. Since
Visualization of Prague Castle is somewhat hybrid between a city visualization and
visualization of a particular (rather small) area and its surroundings, some notable
applications of the latter type are reviewed too. These include two presentations of
cathedral interiors: first is Saint Jean Cathedral in France, second is generic unnamed
cathedral. Next, we look at yet another two virtual walk applications that are visual-
izing various interesting places with high historical value from antic times.

The rated qualities of standalone applications are:.Graphical quality.quality of models, textures, overall aesthetic feeling.Visual effects.Does the application contain some extra visual effects which make the application
appear as more realistic?.Performance. speed of the application (smooth vs lagging).Tourist Guide.Does the application provide some form of navigation for users within the virtual
world, possibly with information about surroundings?.User Interface.visual quality, possible actions, practicality.Quick to control. Is it possible to control the application naturally within a first few seconds?

15

2. Visualization systems analysis .
2.3.1 Virtual Old Prague

Available at: http://dcgi.felk.cvut.cz/cgg/vsp2
Virtual Old Prague (VOP), a web application that allows walking through a virtual

city stored in a remote database, was a student software project held on the Faculty
of Mathematics and Physics of the Charles University in Prague, conducted by prof.
Ing. Jiří Žára, CSc. and consisting of six students. The virtual world is implemented
in VRML and presented on a HTML webpage, utilizing PHP for communication with
mySQL database. The project started in November 1999 and was finished in 2001,
resulting in the first version of the Virtual Old Prague [9]. In the following years,
project continued to develop further on the Faculty of Electrical Engineering of the
Czech Technical University in Prague, and in 2009, the second version was released.
Last update to the VOP was in 2011.

User Interface is in the latest version of VOP divided into the two parts (see Figure
2.8):.Main frame.occupies a major part of the screen.displays contents of the virtual world through a VRML browser plugin. contains HUD.Guide. column on the right side of the screen.act as a virtual tourist guide.provides static HTML page with information (text and images) about all objects

of interest in the area.provides map (by Google) which shows current position of the user and his viewing
direction

The tourist guide column on the right part of the screen only displays static HTML
page with all (or rather some) objects of interest in the current area; it is not possible
to interact with objects in the virtual world. The user can change the current location
using the little navigation button which is situated above the tourist guide, which is a
little misleading. It is also unfortunate that even though the viewing direction of the
avatar is drawn in the map, it is not updated continuously, so it is not that useful and
can be even misleading.

HUD, which is at the lower bottom part of the screen, contains five icons: the first
one is for changing application options, but clicking on it closes the application and
redirects user to a static HTML page (Figure 2.9), which may be very confusing. On
the other hand, there is a help available for each option, which makes the process of
configuration quite easy and straightforward. The options which can be changed are:. switching between day/night.LOD quality.visibility range. instant location change

A guided tour option is also available, however, it appears to be no longer working.
It is possible to hide the map and the virtual guide from these options. The second
button in the HUD activates the flying mode, but it is not possible to change the avatar’s
altitude. The third button changes camera’s field of view and can be used for zooming.

16

http://dcgi.felk.cvut.cz/cgg/vsp2

. 2.3 Standalone presentations

Figure 2.8. Virtual Old Prague – Old Town Square

17

2. Visualization systems analysis .
The fourth button is for turning on the debug information intended for developers – it
is questionable whether such button shall be present in the HUD, where it can be seen
by regular users. The last button is for returning to the previous location, however,
the technical execution is not ideal – the application is closed and then opened again
(in the previous location). There are no elements in the user interface for controlling
the avatar. Controls (keyboard and mouse) are the default ones of the VRML player,
which is a good thing – controlling the avatar feels familiar.

The graphical impression is generally pleasing and it is obvious that the world was
designed very carefully, and with performance in mind. Models are not complicated
– they lack details which are often supplemented by textures (doors, windows, stairs,
balconies, ...), but the important thing is that their overall geometry structure is very
precise to their real world counterparts, thus leaving a good overall impression. Avail-
able locations have varying quality, though; for example the Prague Castle looks im-
pressive, but then there are locations which exhibit downsides such as unretouched
textures with trees on walls, lights in windows and similar artefacts. The resolution of
textures is low, which hurts the impression if the avatar is close to objects using them.
Although dated for today’s graphical standards and not containing any visual effects,
VOP is a great example of delivering good graphics using as little resources as possible.
Performance is fine, however application can suffer from several problems related to the
VRML browser which renders graphics, for example bugs in collision detection or even
random crashes.

Figure 2.9. Virtual Old Prague – options dialog

2.3.2 Saint Jean Cathedral
Available at: http://patapom.com/topics/WebGL/cathedral/intro.html

Despite the fact that the application is titled as a virtual walk, it is rather a tech-
nology demo from 2012, implemented in WebGL. It does not contain any information
about the cathedral, possible objects of interest or even anything related to the ac-
tual place. Model of the cathedral is made of more than 500 000 triangles and uses
many hires 2048×2048 diffuse and normal textures. Rendering features spherical har-
monics radiosity, light shafts, glow and light-scattering [10]. User can change various
parameters such as light and glow strength, diffuse and emissive characteristics etc.
using the user interface. The application contains a collision detection, overall graphics
impression is excellent and it runs smoothly.

18

http://patapom.com/topics/WebGL/cathedral/intro.html

. 2.3 Standalone presentations

Figure 2.10. Saint Jean Cathedral WebGL application

19

2. Visualization systems analysis .
2.3.3 Interactive demos by Bitmanagement Software

Available at: http://www.bitmanagement.com/en/cityshowcase, http://www.
bitmanagement . com / en / ellwangen, http: / / www . bitmanagement . de / demos /
cathedral/cathedral.wrl,

Online 3D City Visualization and Interactive city visualization with night simula-
tion are two interactive demos implemented in VRML and developed by Bitmanage-
ment Software1), known mainly for their cross-browser and cross-platform 3D engine
BS Contact, used often for displaying VRML/X3D worlds. Graphical quality of both
demos is not much visually pleasing, probably because of poor quality of textures.

In the night simulation demo, the user can adjust the settings of the application
via HUD icons in the top-left part of the screen (Figure 2.12) and switch time of the
simulation between day and night – the night scene looks noticeably better, but the
price is high: FPS drops significantly. Otherwise, both demos run smoothly. Controls
are the default ones of the VRML player, which is alright. On the other side, the user
interface (which is also more or less the one of the VRML player) is not that impressive
(Figure 2.11). Its visual quality is arguable. As for its layout, all buttons are in the
center of the screen. When the mouse is hovered over a button, its caption is displayed.
There are eight buttons in total:

. three for changing the avatar’s moving modes. two for jumping to the previous/next viewpoint

. it is not possible to choose specific viewpoint

.one which executes kind of “fly tour“

. the avatar is moved from a viewpoint to viewpoint in smooth transitions. cannot be turned off by clicking on its button, nor it can be turned off by clicking
on the button for changing the avatar’s moving modes, which is kind of confusing
(we have to press ESC keyboard button to turn off the fly tour)

.one for “fit to screen” functionality

.positioning avatar so that the entire virtual world is in his field of view. the practical use is questionable

.one for returning avatar’s view to the usual position (i.e. without any head tilt)

. the practical use is questionable

There are not buttons for navigation of the avatar in the virtual world. There are
also additional options available in the left part of the screen (can be shown or hidden)
mentioning sun position, tree animation and probably model quality, but none of these
options seem to actually affect anything at all.

1) http://www.bitmanagement.com

20

http://www.bitmanagement.com/en/cityshowcase
http://www.bitmanagement.com/en/ellwangen
http://www.bitmanagement.com/en/ellwangen
http://www.bitmanagement.de/demos/cathedral/cathedral.wrl
http://www.bitmanagement.de/demos/cathedral/cathedral.wrl
http://www.bitmanagement.com

. 2.3 Standalone presentations

Figure 2.11. Online 3D City Visualization – Bitmanagement

21

2. Visualization systems analysis .

Figure 2.12. Interactive city visualization with night simulation – Bitmanagement

22

. 2.3 Standalone presentations

Third VRML demo by Bitmanagement Software entitled Cathedral is looking way
much better than the city visualization demos. In fact, it is on par with the Saint Jean
Cathedral demo, with nice light effects, quality textures and smooth performance. That
being said, it also shares all downsides such as no tourist guide and no user interface.
Controls are standard depending on the VRML player.

Figure 2.13. Cathedral – Bitmanagement

23

2. Visualization systems analysis .
2.3.4 3D tours by Internet Dominion

Available at: http://jerusalem.com/tour, http://vatican.com/tour
Internet Dominion1), which describes itself as a corporation specializing in internet

related products that support and service individuals and companies, developed series
of over ten virtual 3D walks which show replicas of sites in Jerusalem and in Vatican.
The tours are implemented in Flash and have good performance. They are virtual
walks in their “true” sense – there is a professionally narrated voice tourist guide who
talks either about neighboring objects of interest or generally area where the avatar
currently is. The application has collision detection.

Some places contain an interactive 3D icon symbols (Figure 2.14) which can be clicked
on and used to play a so-called movies (= animated viewpoints), which are again voice
narrated. During a movie, the application performs a fly-over over the place when
playing it, occasionally rotates the view around and performs other similar movement
characteristic for animated fly-overs. Downside is an absence of a text version of the
voice-narrated tourist guide; only an extremely brief information about the area is
displayed in the right part of the screen. User can also display a map (bottom image
on Figure 2.16), which shows current location of the avatar and allows teleportation
to various places in the area. The last interesting option is called Autopilot, which is
mode where the user is passively watching as the avatar walks automatically by itself
over the whole place, visiting interesting places and triggering movies.

The user interface is nice looking and quite well arranged (Figure 2.15). The window
dialogs with the help and the map can be seen on Figure 2.16. The graphical impres-
sion is very good, and even shadows are present, although static. The environment is
carefully modeled with pretty textures, which creates great overall feeling about the
virtual world. The controls are quite common – moving with the keyboard, looking
with the mouse – and easy to pick up right away, but looking around can be confus-
ing at first, because the mouse axes are reversed, so moving the mouse in the left-top
direction actually moves the view to the right-bottom direction and it is not possible
to change this behavior; it also not possible to control the avatar other way than using
the keyboard or a mouse, and its moving speed is painfully slow.

Figure 2.14. Internet Dominion – interactivity in 3D

1) http://internetdominion.com

24

http://jerusalem.com/tour
http://vatican.com/tour
http://internetdominion.com

. 2.3 Standalone presentations

Figure 2.15. Internet Dominion – Jerusalem

25

2. Visualization systems analysis .

Figure 2.16. Internet Dominion – UI window dialogs

26

. 2.3 Standalone presentations

2.3.5 3D Ancient Wonders
Available at: http://www.3dancientwonders.com

3D Ancient Wonders is a series of virtual tours dedicated to recreating ancient relics
and buildings (Gaza pyramids, Stonehenge, ...) in 3D virtual reality. Developed by
Imigea1), the electronic learning material and online game development company. Ap-
plication can be seen as a sort of virtual museum, allowing the users to examine relics
and buildings as a virtual model or alternatively explore them by means of a virtual
walk. Sometimes, when entering a certain area or being near an object of interest,
a very brief text tourist guide in the lower part of the screen appears, telling bits of
information about the place. Application is from 2005 and implemented in Adobe
Shockwave.

Figure 2.17. 3D Ancient Wonders – Imigea

It runs smoothly, contains a collision detection and the feelings regarding its graphic
quality can be described as mixed – the application’s resolution is very low, some tex-
tures clearly did not survive ravages of time (e.g. skybox texture), but there are visual
effects such as (static) shadows or lens flare which make a nice impression. Unfor-
tunately, the user interface is exceptionally unpleasant, and becoming familiar with
controls takes a while. The user can only switch between an examination mode and
walking mode. Mouse look is not supported.

1) http://www.imigea.com

27

http://www.3dancientwonders.com
http://www.imigea.com

2. Visualization systems analysis .
2.3.6 Timewalk

Timewalk1) company works on the yet-to-be-released application that goes by the same
name, which resembles widely known and popular online virtual world Second Life2).
It aims to be a realistic and interconnected 3D virtual clone of every building and street
on Earth, and more importantly, a social media (and business) platform. Main method
for obtaining such a vast amount of models is similar to that which Google Earth used
in past – contribution of the users.

Since the application has not been released yet, further information is not available,
except a few trailers and short interview clips with developers available on YouTube
channel3) of the developers. The graphical quality is not very impressive and judging
from the interview4) with technical director of 3D modeling, it does not seem it will
ever be, since developers try to keep a polygon count very low so the Timewalk would
be able to run even on entry-level devices. Because the Timewalk is not playable at the
moment, it was not rated, nor included in the comparison of all standalone applications.

Figure 2.18. Timewalk [11]

1) http://timewalk.tw
2) http://secondlife.com
3) http://www.youtube.com/channel/UC8v8On-4fBurkGTL6gAXhig
4) http://www.youtube.com/watch?v=3AXNZ7UHrv8

28

http://timewalk.tw
http://secondlife.com
http://www.youtube.com/channel/UC8v8On-4fBurkGTL6gAXhig
http://www.youtube.com/watch?v=3AXNZ7UHrv8

. 2.3 Standalone presentations

2.3.7 Comparison of standalone applications

Weight Criterion VOP SJ City Night Cath DOM AW
0.25 Graphics quality 0 + - - + + 0
0.10 Visual effects 0 + - 0 + + +
0.20 Performance + + 0 - + + +
0.20 Tourist Guide 0 - - - - + 0
0.20 User Interface 0 - - - - + -
0.05 Quick to control + + + + + + -

TOTAL SCORE 63% 60 % 15% 10 % 60 % 100% 53%

Application Abbreviation
Virtual Old Prague VOP

Saint-Jean Cathedral SJ
Bitmanagement – City City

Bitmanagement – Night City Night
Bitmanagement – Cathedral Cath

Internet Dominion DOM
Ancient Wonders AW

Table 2.2. Comparison of standalone visualization applications

The ratings for each application and their overall rating can be seen on Table 2.2. The
first place undisputedly belongs to the 3D tours by Internet Dominion, which excelled
at every rated quality. The second place is occupied by the Virtual Old Prague; its
dated graphics and an average user interface were detrimental for its rating. The third
place is joint with Saint Jean Cathedral and Bitmanagement Software Cathedral –
although looking very good, they lack an appropriate user interface and a tourist guide.
Ancient Wonders demonstrate some advanced visual effects like shadows or lens flare,
and apart from some texture quality issues and low resolution of the application, it
looks nice. The user interface and controls are horrible, which is a shame, since it
has at least some tourist guide, compared to the better rated Saint-Jean Cathedral
or Bitmanagement Software Cathedral applications. The city visualization demos by
Bitmanagement Software placed last in the comparison, which is no surprise, since
they do not posses any impressive qualities.

29

2. Visualization systems analysis .
2.4 Conclusion of similar systems analysis

City visualization systems are currently dominated by map services applications and
focus on displaying maps in 3D, using methods of computer vision and automatic object
reconstruction from aerial images. Created worlds are suitable for exploring from a
distance; the user quickly obtains the idea how the place and the surrounding area
looks like in the real world. However, these worlds are not suitable for virtual walks
due to their lack of detail (low quality textures, geometric artefacts). The automatic
object reconstruction method cannot handle some objects very well – either because
of their position (they are not exposed enough), size (too small/thin) or complicated
geometry (statues).

It is certainly possible to create a virtual walk with small amount of manual work.
Street view-like photos could help with automatic reconstruction of finer details of ob-
jects, could be used for source of good quality textures and so on. There is quite a
probability that this will be the next step in city visualizations employed by developers
of map applications in the future. However, all inconveniences of the automatic re-
construction would appear again. Not to mention that the less ordinary the place is –
with many small/complicated objects and possibly with parts inaccessible by machine
carrying photographic equipment – the worse would be the output. For a high quality
virtual walk which aims to be as much realistic as possible, it is inevitable that some
manual work is performed.

In our concrete case of visualization of the Prague Castle area, even if we had means
to perform an automatic reconstruction from aerial photographs or had access to such
data, it would not help us that much. It would help with rough outline of models –
precise distances and ratios between objects would be kept, but other than that, there
would not be much benefits over classical photograph-assisted modeling, i.e. using
satellite photographs for creating outline and using manually taken photographs for
modeling details. Therefore, the manual work is a must in our case; we have to take
photographs of the castle which can be used for modeling and we have to model it
ourselves.

As for technology inspiration that can be picked up from 3D maps, an interesting
observation is that each 3D map functionality that has been reviewed is implemented
using WebGL, so we should definitely keep an eye on this technology (more on this in
the following Chapter 3).

We can certainly pick up some inspiration from the user interfaces and available
features of 3D maps. An ability to explore a city from a distance is very convenient one
and would make a nice addition for a classical virtual walk application. It is important
that this view is completely adjustable in this sort of “flying” mode, because as we
have learned by analyzing e.g. Google Maps, it is frustrating if the choices for view
customization are limited. Also, having marked objects of interest in the classical map
is a very convenient feature, and we cannot forgot to mention on-screen buttons which
allow controlling the view to the virtual world using just the mouse.

There are just a few standalone presentations concerning pure city visualization.
Exception to this is the Virtual Old Prague, the spiritual predecessor of our application,
which provides a priceless lesson about how a virtual walk around the area of Prague
Castle can be successfully realized, but also what could have been done better. The rest
of the standalone presentations revolving around city visualization are either company
showcase demos or business ventures. Presentations focusing on visualization of small
area or building are more common and some impressive visualizations such as the Saint

30

. 2.4 Conclusion of similar systems analysis

Jean Cathedral can be found. Nevertheless, presentations which are actually a virtual
walk (in a sense of guiding the user and providing various information) are rare to come
by. What is worse, a lot of these virtual walks are outdated technologically and probably
would not be able to visually satisfy nowadays users. Fortunately, there are exceptions
to this such as the Jerusalem and Vatican 3D tours by Internet Dominion, which provide
another valuable example what qualities should good virtual walk exhibit.

Analysis of standalone presentations has shown us several things. For the graphical
impression to be satisfying, the most important is having models with enough portion
of details and – even more importantly – quality textures. Extra visual effects such
as shadows bring the look even closer to the reality and certainly improve the overall
graphics quality. A well-designed user interface and virtual guide mechanism are vi-
tal for a good user experience. An application should strive to be easily controllable
right away; it is advisable that the user interface contains a HUD which provides an
alternative way of controlling the application to the usual keyboard option. A clickable
2D map of the virtual area is also a nice feature which helps the user with orientation
in the area. Lastly, more advanced users would certainly welcome if they can adjust
settings of the application (e.g. time of the simulation – day/night, controls, etc.).

31

Chapter 3
Technology analysis

This chapter deals with the choice of a technology which will be used for the application
implementation. A vast number of technologies available for the realization exists.
Most of them leaves us with a prescribed set of programming language and way how
to render graphics, but we have also an option of more custom approach using WebGL
for rendering with any programming language that can be compiled into JavaScript
(because WebGL has JavaScript API). We will evaluate analyzed technologies based on
specified criteria and decide which will be used for the implementation.

3.1 Goals
Our goal is to analyze available technologies for implementation of a 3D virtual walk
application running in a web browser and evaluate them. The technologies will be
evaluated based on the following criteria:.Necessity of a web browser plugin installation.Does an application implemented in a given technology require installation of an

external plugin by the user?.no installation is the best.Browser support. ideally, the majority of web browsers should be able to run the technology.Community, Future.Does the technology have an active community (discussion boards, tutorials, ...)?. the potential of technology to be “alive” in the future (e.g. maintain at least
non-decreasing amount of developers interested).Web integration.how easy/hard is to interlink the application written in the given technology with
the web environment (web page, existing JavaScript libraries, etc.).Performance.performance related mainly to the 3D graphics. the faster, the better.Programming. the similarity of programming language of the technology to the to the common
languages used for developing 3D applications (e.g. to the C/C++).Development tools. the quality of IDEs available

32

. 3.2 VRML

.overall experience during the development.Debugging.difficulty of debugging.Vendor dependence. Is the development and evolution of the technology itself tightly tied to one com-
pany or “anyone” can participate?

The system of rating (-, 0, +) and the total score computation is same as in Chapter
2. The ratings will be shown after all technologies are reviewed.

3.2 VRML
Virtual Reality Modeling Language is a standardized technology used for describing
3D world and aimed specifically for the web environment. The first version from 1994
allowed static worlds, and the second version from 1997 added interactive behavior and
scripting (Java, JavaScript). In order to execute VRML files, the user needs a program
called VRML browser such as BS Contact1) or Cortona3D Viewer2). It is also possible
to embed VRML files into web pages and run them from a web browser if a VRML
browser plugin (provided by vendors of VRML browsers) is installed. VRML worlds are
easy and quick to create, thanks to the simple syntax and the fact that developer does
not need to be concerned with rendering or things related to virtual walk mechanisms
(walking with the avatar, collision detection) – it is done automatically by the VRML
engine. It can be said that an emphasis is on a design rather than programming
and even a developer not skilled in computer graphics is able to create rich virtual
worlds. Unfortunately, this “design approach” has negative performance consequences,
developer does not have a control over the rendering process and integration of an
advanced application logic can be quite clumsy. On top of that, the users need to have
a browser plugin installed to see the VRML content and VRML browsers exhibit buggy
behavior, use a lot of computer resources and crash. Also, the ability to use them in
the future is uncertain, as web browser vendors have been gradually removing support
for external browser plugins [12–13].

3.3 X3D (X3DOM)
Extensible 3D is an open standards file format and run-time architecture to represent
and communicate 3D scenes and objects using XML, developed by X3D Working Group.
It is a successor to the VRML [14] and an ISO ratified standard (first version in 2003)
that provides a system for the storage, retrieval and playback of real time graphics
content embedded in applications. X3D aims to incorporate the latest advances in
graphics hardware features and architectural improvements and is fully compatible with
VRML 2.0. Scenes are usually encoded using XML, but syntax of VRML 2.0 or binary
encoding can be used as well. X3D supports multi-pass/multi-stage texture mapping,
pixel and vertex shaders, deferred rendering and many more graphical effects.

Embedding and execution of X3D files works same as in case of VRML files. Luckily,
developers of X3D came up with a concept allowing to run X3D application in browsers
1) http://www.bitmanagement.com/products/interactive-3d-clients/bs-contact
2) http://www.cortona3d.com/cortona3dviewer

33

http://www.bitmanagement.com/products/interactive-3d-clients/bs-contact
http://www.cortona3d.com/cortona3dviewer

3. Technology analysis .
without any plugin called X3DOM, where graphics are rendered by WebGL. X3DOM is
an open-source framework and runtime, a way how to integrate X3D into a webpage. It
includes X3D elements as a part of HTML DOM tree, allowing developer to manipulate
a 3D content just by adding, removing, or changing DOM elements, which brings many
nice features (e.g. support of onclick event on 3D objects) [15]. Sadly, not counting
academic and research use, X3DOM has not found its way to the users, just like VRML.
Apart from browsing the web and looking at number of search results (either in general
or at discussion servers like Stack Overflow1)), we can see its low popularity by looking
at the number of followers at GitHub2), where source code of X3DOM and other open
source technologies is available. X3DOM has around 300 followers, while a technology
for similar purpose called Three.js (will be mentioned later) has around 22 0003).

3.4 Adobe Flash
Adobe Flash is a platform for creating wide range of applications and content that run
across multiple operation systems and devices, with origins in 1996. Applications are
programmed in ActionScript, an enhanced superset of ECMAScript. A Flash Player
(runtime for browsers) needs to be installed on a device for an application to run. More
than 98% of internet users have Flash Player installed, however from November 2011,
Adobe has discontinued supporting it on mobile devices [16]. As for desktop computers
and laptops, although web browsers vendors have been removing support for external
plugins, they made an exception in case of Flash. Flash applications would still be able
to run – at least for now. When a Flash application is ready to deploy, it is compiled
into one SWF file which can be run in Flash Player.

3D hardware accelerated rendering can be achieved using Stage3D API, which is
more abstract than native APIs (e.g. OpenGL, DirectX) and thus more distant from
hardware itself [17]. Shaders written in Stage3D are intended to be rather simple.

It is also important to note that there is a strong vendor dependence on Adobe with
Flash, since there is no Flash player with source code publicly available and with a
license that permits reuse. There are projects like Gnash4) or LightSpark5) which try
to tackle the task, but they do not support all features and their updates are mostly
from over two years ago.

3.5 Google Native Client
Google Native Client, developed by Google since 2010, is an open-source technology for
running native compiled code in the browser, with the goal of maintaining portability
and safety. Developer can write application targeting multiple operating systems (Win-
dows, Linux, Mac, Chrome OS) and CPU architectures (x86, ARM), with code running
at near-native speed [18]. Applications can utilize threads, use low-level rendering API
(OpenGL ES 2.0) and other things similar to classic desktop application. A Native
Client web application consists of JavaScript, HTML, CSS, and a Native Client module
written in a language supported by the SDK provided by Google. Currently supported
languages are C/C++.
1) http://stackoverflow.com/
2) https://github.com
3) Statistics regarding followers can be seen on https://github.com/search?q=stars:%3E1&s=
stars&type=Repositories
4) http://gnashdev.org
5) http://lightspark.github.io

34

http://stackoverflow.com/
https://github.com
https://github.com/search?q=stars:%3E1&s=stars&type=Repositories
https://github.com/search?q=stars:%3E1&s=stars&type=Repositories
http://gnashdev.org
http://lightspark.github.io

. 3.6 WebGL + JavaScript compilable language

For compilation of C/C++ code into a module loadable by browser, SDK provides
either GCC or LLVM1). The latter one, which is recommended and being used more
frequently, produces one portable module. At the runtime, browser uses ahead-of-
time translator to translate produced module into a native code for architecture of the
user’s machine. Currently, the only browser capable of running Google Native Client
applications is Google Chrome, but at least no plugin installation is required. From
the statements of Mozilla’s vice president of products Jay Sullivan [19] and Opera’s
chief technology officer H̊akon Wium Lie [20], it is unlikely that other browsers will
ever support Google Native Client applications.

3.6 WebGL + JavaScript compilable language
A choice which provides the most freedom. WebGL is currently the only standardized
way how to render 3D on web pages, and JavaScript is the only client-side web scripting
language supported by virtually all browsers (unlike, for example, VBScript that is
supported only by Internet Explorer). It is natural that WebGL has JavaScript API,
thus combination of WebGL + JavaScript for running a 3D application is the most
straightforward option. But the development does not have to happen in JavaScript,
thanks to using a special type of compiler called transcompiler (alternatively source-to-
source compiler). Transcompiler is a type of compiler that takes a source code written
in one programming language as its input and outputs the very same source code, but
written in another programming language [21].

This brings many new possibilities and advantages such as reusing already written
code, developing in familiar programming language and even an ability to debug ap-
plication like a classic desktop one in the favorite IDE and so on. There are some
catches, though – language features from source (input) programming language which
are not available in JavaScript (output) must be emulated, which can hinder perfor-
mance. Needless to say, the integration with existing JavaScript libraries and APIs
becomes a significantly more difficult task. There are mechanisms allowing a developer
to call JavaScript from source programming language and vice versa, but getting it to
work and with a minimum performance overhead is not always easy or even possible.
Another disadvantage could be fine tuning performance-critical applications (such as
3D applications). Developer has to look at the code which actually runs rather than
the source code and since transcompiler produces JavaScript code which looks a lot dif-
ferent than the source code, it can be a grueling task to find a performance bottleneck.
It is fair to mention that tools for JavaScript performance tuning and debugging have
come a long way and are still improving, but they are yet to reach the maturity of tools
available for classical programming languages, so the less time spent in debugger and
profiler, the better.

A few relevant choices of source programming languages (frameworks) which sup-
port compilation into JavaScript are discussed. These are TypeScript (an extension of
JavaScript), Dart (a whole new scripting language), Google Web Toolkit (Java) and
Emscripten (C/C++).

3.6.1 TypeScript
TypeScript2) is a programming language developed by Microsoft in 2012 and it is a su-
perset of JavaScript, adding static typing and classes. Any program valid in JavaScript
1) http://llvm.org
2) http://www.typescriptlang.org

35

http://llvm.org
http://www.typescriptlang.org

3. Technology analysis .
is valid in TypeScript as well. It is also possible to use external JavaScript library
through definition files (resembling header files from C/C++), where types are as-
signed to variables and such. Then, all library objects can be treated like regular,
typed TypeScript objects [22]. The definition file making is quite an ordeal (it must be
done manually), but fortunately definition files for many popular JavaScript libraries
are already done and publicly available1).

3.6.2 Dart
Dart2) is an open source web programming language developed by Google, first ap-
peared in 2011, and can be seen as a JavaScript rival. It is an ECMA standard3) since
2014. Dart is an object-oriented, supports classes, single inheritance and static typing.
WebGL can be used through internal Dart library.

It can be transcompiled into JavaScript or run native in Dart Virtual Machine at
full speed. However, only Chromium browser4) (development version of Chrome) has
Dart VM included. Benchmarks from [23] show that execution in Dart VM is roughly
1, 5× faster than original JavaScript code, and transcompiled code runs usually about
just a bit slower. JavaScript can be called within Dart through special object JsObject
– a name of the desired function or variable is passed into its constructor and then
JsObject acts as a proxy to desired JavaScript object.

According to the [24], Dart VM will not be integrated into Chrome, ever. Brendan
Eich’s (former Mozilla CEO) statement [25] implying that neither other browser vendors
plan to integrate Dart VM then comes as no surprise.

3.6.3 Google Web Toolkit
Google Web Toolkit5) is a set of tools that allows creation of front-end applications in
Java, including the user interface. Originally developed by Google with initial release
in 2006, now fully open sourced project maintained by the GWT Steering Committee.
The communication with external JavaScript libraries (or execution of pure JavaScript
code) is handled similarly as in TypeScript. In order to use some external function,
developer has to create a “native” function, which acts as a wrapper. Return type of
a native function and type of its parameters must be specified. The body of a native
function is then written in JavaScript (and can also call external JavaScript code). The
usage of WebGL is possible through libraries which wrap JavaScript API for WebGL.

3.6.4 Emscripten
Emscripten is a transcompiler which compiles LLVM code to JavaScript, first version
released in 2011 and developed by Alon Zakai from Mozilla. Generated code is highly-
optimizable JavaScript in asm.js format [26].

Asm.js6) is a strict subset of JavaScript that can be used as a low-level, efficient
target language for compilers. The asm.js language provides an abstraction similar to
the C/C++ virtual machine: a large binary heap with efficient loads and stores, integer
and floating-point arithmetic, first-order function definitions, and function pointers [27].
It provides a major performance boost for web applications which are written in a

1) http://github.com/borisyankov/DefinitelyTyped
2) https://www.dartlang.org
3) http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-408.pdf
4) https://www.chromium.org/Home
5) http://www.gwtproject.org
6) http://asmjs.org

36

http://github.com/borisyankov/DefinitelyTyped
https://www.dartlang.org
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-408.pdf
https://www.chromium.org/Home
http://www.gwtproject.org
http://asmjs.org

. 3.7 Comparison of technologies

statically typed language such as C/C++, by limiting language features to those which
can be optimized in the process of ahead-of-time compilation.

With Emscripten and asm.js, it is possible to port C/C++ applications (even con-
taining OpenGL – calls are translated into WebGL equivalents) to the web and run
them at speed approaching their native performance – benchmark from [28] shows that
web version code is just 1, 5× slower. Moreover, since asm.js is nothing more than
JavaScript, it is already supported on all browsers (unlike e.g. Google Native Client).
Using Emscripten, some of the popular C/C++ games and engines were already ported
to web, such as Unreal Engine 4 [29].

There are several ways of interaction with JavaScript from Emscripten C/C++ ap-
plications. Most straightforward (and with an overhead) is calling special function
emscripten_run_script() with a JavaScript code as an argument. More efficient, yet
still simple is to declare desired JavaScript function in the C/C++ code with an extern
keyword.

3.7 Comparison of technologies
In this section, we shall analyze the rankings and decide which technologies will be used
for our implementation. The ranking of evaluated criteria for each technology and their
overall rating can be seen on Figure 3.1. The ranking can differ in the “WebGL + JS
compilable language” case based on which language is chosen. This is reflected by “/”
between the marks.

Weight Criterion VRML X3DOM Flash NaCL WebGL&JS
0.15 Plugin - + 0 + +
0.18 Browser support + + + - +
0.13 Community, Future - 0 0 - +
0.10 Web integration - + 0 0 +/0
0.18 Performance - 0 0 + +
0.08 Programming - 0 0 + 0/+
0.08 Development tools + 0 + + -/+
0.05 Debugging + - + - -
0.05 Vendor dependence + + - - +

TOTAL SCORE 36% 72% 63% 54 % 83-90 %

Table 3.1. Comparison of technologies

Considering the goal of a maximum performance, VRML is not an optimal choice,
plus there is the problem with an external plugin support in web browsers. X3D in the
form of X3DOM solved many shortcomings of VRML and runs in a browser without
external plugin. But unfortunately, it is not geared towards the goal of maximum per-
formance, it is intended for applications that just want to utilize some 3D functionality,
which was proclaimed even by its authors in X3DOM documentation [30]. Also, there
is not much of a community around it, which is another thing which keeps rating of
X3DOM from being higher. There is no objective advantage of using Adobe Flash over
other technologies, plus there is a vendor dependence on Adobe, since no up-to-date
public open source Flash player exists. And even though Flash web browser plugin got
an exception from browser vendors for now and is allowed to run (compared to other
external plugins), there is no guarantee for the future. Google Native Client with its

37

3. Technology analysis .
near native speed and possibility to use features common for desktop applications is
surely an interesting technology and more than a suitable candidate, however, the only
browser supporting it is Google Chrome and it will probably stay this way forever,
which puts this technology out of question.

The combination of WebGL and language which is capable of compilation into
JavaScript provides the highest performance and compatibility, which are both cru-
cial aspects. It is no surprise this option placed first in the overall ranking. But now
the question is: Which JavaScript-compilable programming language will be used with
WebGL?

3.7.1 Choosing JavaScript-compilable programming language
In this section, we will come to the decision about which JavaScript-compilable language
will be the most suitable for use with WebGL. The ranking of evaluated criteria for
each language and their overall rating can be seen on Figure 3.2.

Weight Criterion JS TS Dart GWT Emscripten
0.10 Programming - 0 0 + +
0.15 Development Tools 0 0 0 + +
0.05 Debugging 0 0 0 + +
0.25 Performance 0 0 0 0 +
0.20 Possible problems + 0 0 - -
0.10 Web integration + 0 0 - -
0.15 Community, Future + 0 - - -

TOTAL SCORE 68% 50% 43 % 43 % 55%

Table 3.2. Comparison of JavaScript-compilable languages

Dart has no advantages over the other choices – it is similar case as Google Native
Client. It does not run natively even in Chrome, only in Chromium. Google Web
Toolkit with Java would bring similar development advantages as using Emscripten
with C/C++, but the performance of generated JavaScript would not be so fast, making
it inferior choice. Emscripten has proven competent in the field of performance-critical
applications and the development experience would be hands down the best one with
the ability to use classic programming language and mature IDE like Visual Studio, but
there are other things to consider such as scale of the application. Our application is not
meant to be the next cutting-edge 3D game engine, so there is a chance that developing
in C/C++ and using Emscripten could bring more troubles than advantages, e.g. weird
behavior or bugs can occur in transcompiled JavaScript, which can be very hard to track
and even harder to fix.

Based on the evaluated criteria and the analysis above, the language chosen for
implementation is pure JavaScript. This choice provides easy interaction with external
JavaScript libraries and APIs, and full control over the application code, which will
be useful for searching speed bottlenecks during the performance tuning. The last
technology question to answer is: What middleware (framework) above WebGL will be
used?

3.7.2 Middleware above WebGL
It has been decided that the application will run under WebGL + JavaSript, but there
is one more choice left to be made – whether to work with WebGL directly or use some

38

. 3.7 Comparison of technologies

kind of middleware above it. It is possible to use one of many Javascript frameworks
which simplify interaction with WebGL, i.e. abstract away its low-level nature. Three
popular frameworks are briefly introduced, and along with raw WebGL, the decision
between these four choices are made, based on the following criteria:

.Performance

. the ability to achieve fastest performance possible

.Flexibility

. the ability to customize the system to a specific need

.Prepared solutions

.possibility of using parts of code (algorithms, mechanisms, classes, data structures)
which can be easily plugged into the application and used

.Community, Documentation, Examples

Lets now briefly introduce frameworks appearing in the comparison: Three.js1) is a
WebGL framework for general use, probably the most widespread one, very popular (20-
30th top interesting repository on GitHub with approx. 22 000 followers). Scene.js2)
is another popular framework, aimed toward doing high-performance 3D visualization,
and specialized towards fast rendering of large numbers of individually articulated ob-
jects [31]. Babylon.js3) is similar to Three.js, although more geared towards games.

Weight Criterion Raw Three.js Scene.js Babylon.js
0.25 Performance + 0 0 0
0.15 Flexibility + 0 0 0
0.40 Prepared solutions - + + +
0.20 Documentation, Examples, Community + + 0 0

TOTAL SCORE 60 % 80 % 70% 70 %

Table 3.3. Comparison of middleware above WebGL

The ranking of evaluated criteria for each framework and their overall rating can
be seen on Figure 3.3. Naturally, frameworks cannot reach such level of performance
and flexibility as raw WebGL tailored to specific application needs, so it can come as a
surprise that raw WebGL has placed last, but the reason is simple: it does not provide
any prepared solutions whatsoever, which is the most important rated quality. We
would have to do absolutely everything by ourselves, which is extremely time-demanding
when developing an application of scale which our application will have. Scene.js and
Babylon.js share the same place and both have one disadvantage compared to Three.js,
which has placed first – they do not have such strong community, thus also working
with them would be harder.

1) https://github.com/mrdoob/three.js
2) http://scenejs.org
3) http://www.babylonjs.com

39

https://github.com/mrdoob/three.js
http://scenejs.org
http://www.babylonjs.com

3. Technology analysis .
3.8 Conclusion of technology analysis

Various technologies available for the implementation of our virtual walk application
were discussed and evaluated based on the defined criteria (community and browser
support, performance, tools available, ...). WebGL was chosen as the technology for
displaying 3D graphics, mainly because it is a web standard and provides a good per-
formance, and JavaScript was chosen as the language in which will be the application
written, because apart from the fact that it is prototype-based language (not your aver-
age language in which 3D applications are written) and have “only” acceptable quality
of available tools, it is the lingua franca of the client-side web programming, making
integration with the web in general seamless. Similarly, several options of middleware
above WebGL were analyzed and evaluated as well. Because the emphasis in evaluation
was put on the feature of prepared solutions (which can greatly reduce development
time), Three.js was chosen as the middleware above WebGL.

40

Chapter 4
Project specification

The task of our project is to present the Prague Castle as a 3D model on the web in a
form of virtual walk, with focus on (balance between) the performance and graphical
quality. This means we have to create new models or possibly reuse already existing ones
from the Virtual Old Prague project1) and develop a web application which is able to
efficiently display these models and provide virtual walk functionality. In this chapter,
we will summarize the chosen technology approach and specify the requirements for the
application.

4.1 Choice of technology
Based on the analysis from the previous chapter, we have chosen JavaScript + WebGL
+ Three.js as the technologies which will be used for the development of the application
(along with HTML + CSS, which is given, since our application is web-based). Using
JavaScript instead of languages which are compiled into it reduces the potential sources
of bugs introduced by an added layer of abstraction and thus makes for easier process
of debugging and performance tuning as well. Hardware accelerated rendering inside
the browser is possible without any additional external plugins thanks to the fact that
WebGL is a standardized web technology; this is very important from both technical
and user standpoint, because browser vendors have been gradually dropping support
for external plugins ([12], [13]) and most of the users do not like to be bothered by a
plugin installation anyway. Using Three.js as the middleware above WebGL allows us
to save incredible amount of time by providing proven rendering solution which is still
flexible and can be mostly bent, one way or another, to suit our needs.

4.2 Application requirements
According to [32], the requirements are divided into the two distinct categories – Func-
tional (describe what the application should do) and Non-functional (characteristics
and potential constraints of the application). The main source of the requirements
is the knowledge obtained in similar visualization systems analysis (Chapter 2) and
technology analysis (Chapter 3).

4.2.1 Functional requirements
Apart from the already collected ones, requirements have been also enriched by the
recommendations from [33]. The functional requirements for our application follows;
please note that reasoning behind the inclusion of some listed requirements will be
explained later (mainly in Chapter 7 which discusses the User Interface).

1) Since the VOP project was held on the FEE CVUT and supervised by prof. Ing. Jiří Žára, CSc. as
well, we have been kindly granted an access to the data of the project

41

4. Project specification .
.Virtual walk functionality.application shall allow user to virtually visit the Prague Castle located in Prague,

Czech Republic.application shall provide users with an additional textual information about inter-
esting objects in a form of text articles, possibly containing images or hyperlinks.Navigation.avatar shall stop before obstacles and collide with the environment (e.g. walls,
terrain which is too steep).user shall be able to navigate the avatar in the two modes:.WALK: shall resemble walking like in the real world, the avatar falls down when

there is no ground below.FLY: shall allow flying (like a bird).avatar should be able to tilt its head at custom direction (in other words, the
application should support mouselook).application shall contain 2D map synchronized with the user’s movement in 3D.application shall allow direct choosing of target places (viewpoints) from a list or
a map.User Interface and Input.user shall be able to control the application with the keyboard or mouse.application shall contain graphical user interface with buttons for each possible
action.application shall provide help subsystem (hints, advices, ...). it should be possible to change the application’s settings (e.g. mouse sensitivity).application shall be available in Czech and English language localization.Graphics quality.application shall employ modern visual effects (shadows1), ...) and contain new,
improved 3D content (new models and high-resolution textures)

4.2.2 Non-functional requirements.The application shall run in majority of web browsers2) (Mozilla Firefox, Google
Chrome, Opera) and use technologies provided by HTML5 specification, without
need for installing any plugin.The development shall be carried out in JavaScript, with Three.js framework as
WebGL middleware.The application shall achieve playable framerates (30+ frames per second) on desktop
PCs manufactured in 2009+, and on laptops manufactured in 2011+. [35] claims that the average age of PC around the world is between 5 to 6 years,

so we consider this required hardware specification as fairly reasonable.The application should look similar on all resolutions which are likely to be present
at the user machine 3)

1) Affected by the time of the day
2) Firefox, Chrome and Opera covered 87,9% of the user base in October 2015 [34], which we consider as
enough
3) That being said, we do not expect any user machine to have a resolution lower than 480×320 – correct
appearance on smaller resolutions is not guaranteed

42

Chapter 5
Software structure

We begin this chapter with the discussion of software architecture requirements for our
virtual walk application and touch upon the subject of applied design principles. The
resulting structure is explained, providing brief explanations for concrete components
(classes).

5.1 Architecture requirements
Software architecture in general is focused on organizing components to support specific
functionality. The nature of our application is very different from applications which
fall into the categories of enterprise software, office suite software etc. and is more
similar to the category of games/game engines. Claiming that we can turn a virtual
walk into a 3D action game if we add some enemies and ability to shoot them is an
oversimplification, and our virtual walk application is certainly not as complex as a
game or an engine, but it nicely proves the point that they share a lot, which is why
we have decided to follow a component-based architecture employed in these kind of
applications. We have based our components on game engine architecture outlined in
[36] (visual representation can be seen in Appendix on Figure B.1 and B.2) and kept only
components relevant to our application. The visual representation of our application’s
component-based architecture can be seen on Figure 5.1, where components drawn with
blue background represent purely external libraries (not authored by us), components
with green background represent partly external code (some parts authored by us)
and finally components with white background represent purely internal code (code
completely authored by us).

In order to minimize costs and possibly maintenance requirements, and to promote
usability and extensibility, we stick to key principles of software design [37], mainly:.Separation of concerns.dividing application into distinct features with as little overlap in functionality as

possible.minimization of interaction points to achieve high cohesion and low coupling.Single Responsibility principle. each component or module should be responsible for only a specific feature or
functionality, or aggregation of cohesive functionality.Do not repeat yourself.we should only need to specify intent in one place, i.e. specific functionality should
be implemented in only one component; the functionality should not be duplicated
in any other component

Essentially, our goal is to make the design flexible so that when a change is made, only
the relevant portion of a code is replaced. Object-oriented programming paradigm is

43

5. Software structure .

Figure 5.1. Architecture of the application

used heavily. We should also mention that any modifications of used libraries (especially
Three.js) should be avoided if possible; potential upgrade to a newer version of library
is then deadly simple, comparing to a situation where custom added code has to be
merged with a newer version.

44

. 5.2 Components

5.2 Components
The classes of the application are divided into the several components based on their
purpose:.Core Systems.Main.js.application entry point.downloads all necessary assets and initializes the whole application. implements main loop (function repeating each frame, ensuring drawing and

virtual world updates).Preferences.js.holds various constants and setting options (e.g. shadows on/off, path to asset
directories, language, ...)

.Rendering.Three.js. external framework used for WebGL rendering. the reason why we do not have any Mesh/Model, Shader classes etc. – they are
already present in Three.js and we can extend them if necessary.Renderer.js. contains various methods associated with drawing on the screen.most of methods are utility methods (reading color of the pixel from an image,
making a snapshot of the screen, ...). the actual rendering of the virtual world is delegated to the Three.js renderer.VisualEffects.js. implements visual effects (shadows, ambient occlusion, ...). the code (including shaders) of individual visual effects is mainly external

(more on this in Chapter 10), with occasional modifications tailored for our
application. specifies the rendering process (i.e. configures rendering passes depending on

which effects are turned on/off)

.Optimizations.ModelLoadUtilities.js.optimizes models upon loading into the application for the best performance.Chapter 9 dedicated to the performance optimizations explains in a further
detail

.Front End.Gui.js.main class responsible for initialization and manipulation with the user interface

45

5. Software structure .
.ContentLibrary.js.manages all strings (including their translations) appearing in the application. explained in a greater detail in Chapter 7.Picking.js. implements the technique which allows finding out a 3D model which is currently

under the mouse.more on this in Chapter 7.Minimap.js. functionality related to the small (classical, paper-like) map that is permanently
visible on the screen.Bigmap.js. functionality related to the big map which can be opened from an on-screen
HUD.MainMenu.js. implementation of the application’s main menu.WindowDialog.js. implementation of a general window UI dialog. concrete dialog windows extend it with their specific needs.jQuery.js, jQueryUI.js. external libraries used for building the user interface

.Avatar Mechanics.Entity.js.used for representing the user’s avatar. contains reference to a Camera.js instance (how the avatar sees the world),
current mode (walking or flying) and methods for switching between, several
properties related to collision detection etc.

.Cameras.Camera.js. implements our application-specific camera behavior (mouse look). connected with the Three.js camera which takes care of standard camera com-
putations (computing projection and view matrices etc.)

.Human Interface Devices.Control.js.handles entire input processing from the user (keyboard, mouse, ...)

.Collision & Physics.Collision.js

46

. 5.2 Components

. specifies the interface for resolving collisions between the avatar and the virtual
world.will be discussed in Chapter 8.Heightmap.js. system used for collision detection implementing the interface of Collision.js.will be discussed in Chapter 8.Map.js. computations related to the projection of the avatar’s position from the virtual
3D world to a 2D image and vice versa.used by Heightmap.js and also by the Minimap.js and Bigmap.js

.Resources.Three.js.used for loading the scene and models (ColladaLoader.js).AssetLoader.js.used mainly for sophisticated downloading of files from the server.we can give it a task of downloading certain file, it allows us to specify depen-
dencies between the tasks (implemented as a directed acyclic graph and utilizing
topological ordering) and callbacks which shall be executed upon various events
(file has been downloaded, all task dependencies are finished, ...).a task can be anything (e.g. execution of some function), it does not have to be
some file downloading, although that is the usual case.because our application is a web application and data transfer is asynchronous,
the dependency functionality is absolutely vital; for example, we use this to make
sure that the application does not start before the data necessary for collision
detection to work are downloaded

47

Chapter 6
Virtual content creation

Virtual content – both 3D (models) and 2D (textures) – for a virtual world must be
somehow created. As for 3D content, although methods for an automatic reconstruction
from photographs (photogrammetry) have been gaining popularity in recent years, using
such methods for creating virtual content suitable for virtual walks is problematic – a
good reconstruction needs a lot of suitable photographs and a quality software which
performs the actual reconstruction. There are some free solutions, but they do not
produce such results as the commercial ones. In any case, a further manual processing
is usually needed, because the reconstruction produces unoptimized meshes with a lot
of polygons, some parts missing etc. Because of all these difficulties, it is no surprise
that modeling in a 3D modeling program is the gold standard for creating a content
suitable for interactive applications such as virtual walks and we will use this method
as well.

In the same way, personally taking photographs and editing them in an image editing
program is the gold standard for creating textures. This chapter will discuss available
choices for 3D modeling and image editing programs and present the reader with our
approach to virtual content creation in a form of a guide aimed at developers possessing
a beginner’s level of experience in these fields. The guide describes how to recreate a
real-world objects as fully textured 3D models using a popular 3D modeling program
SketchUp 2014 and an image editing program GIMP 2.8, and explains a reasoning
behind choosing these programs. How to recreate an environment around a virtual area
(i.e. terrain) using available elevation data from the real world will be described as well.
Other addressed topics include importing the created 3D content into the application by
choosing a suitable 3D format and investigation concerning possible reuse of the content
from the Virtual Old Prague project. In the very end of the chapter, we publish and
comment on time and file size statistics for the content creation of our application.

6.1 Goals
Our ultimate goal is to describe the process of capturing the real world place (in our
case, the Prague Castle) and recreating it virtually. We shall provide a guide covering
the most important steps (personal visit to the place and photographing, drawing in-
spirations from other sources than personal visit, creating textures, modeling the place)
and focus on possible pitfalls. The guide shall be drawn on our experience during cre-
ation of the content for the Visualization of Prague Castle, so it is not to be aimed
at experienced modelers (this also applies to creation of the 2D content – image edit-
ing), but rather at those with a beginner’s level of skill, i.e. typically developers who
are focused on the programming. We hope to provide those with a content-creation
knowledge that will help them with decisions regarding the programming part of a 3D
application (e.g. decisions about optimizations).

48

. 6.1 Goals

First, we shall decide on programs that will be used for creating the 3D and 2D
virtual content. The desired qualities for a 3D modeling program that will be used
for creating the 3D content are:.Active community.a lot of tutorials, discussion forums, an ability to find the solution to a problem

etc..Fast to learn.Easy manipulation.Export to a non-proprietary format (e.g. OBJ, Collada, ...)

While we are at the topic of choosing a 3D modeling program, lets also talk about
another important thing: choosing a 3D format which will be used for importing
the created virtual content into the application. We have decided on the following
requirements:.Non-proprietary format.Fast and simple to load by the application.As little additional processing of the 3D file(s) as possible. ideally, we shall be able to export the whole scene from a 3D modeling program

into one file that can be imported right away into the application

On the subject of 2D content creation, we shall choose a suitable image editing
program. We need for it to have:.Active community.a lot of tutorials, discussion forums, an ability to find the solution to a problem

etc..Standard advanced features. layer support.perspective correction.filters.plugins. retouching tools. color balance tools.ability to draw arbitrary thick lines or circles. etc...

Another thing which falls into the category of the 2D content creation are textures.
From support and performance reasons, we shall decide on the following requirements:.Resolution of a texture (maximum resolution, width and height restrictions).Approximate total graphics card memory occupied by all application textures

Lets also not forget that since the Prague Castle is not built in the middle of nowhere,
but it rises over the city of Prague, we shall account for this and recreate the environ-
ment around the castle at least to some degree and describe how to do that.

We shall also define the extent of our virtual content creation and investigate a
possibility of reusing the data from the Virtual Old Prague project.

49

6. Virtual content creation .
6.2 Choosing the content creation programs

Given our requirements for a 3D modeling program and the target audience of our
guide, the most suitable program, without any doubts, is the SketchUp1)2). Previ-
ously owned by Google and now by Trimble Navigation, a mapping and navigation
equipment company, it is aimed for a wide range of drawing applications (architectural,
civil/mechanical engineering, interior design). While other popular programs such as
Blender, 3ds Max etc. are certainly more powerful and have a strong community of
users, their learning curve is very steep and since they are aimed at general modeling,
manipulation with tools for the purpose of creating buildings (which is what we are
after) is not the most straightforward thing. On the other side, SketchUp is exactly
aimed at the buildings creation (so the manipulation with tools is fast), has a large
community as well and above all, is fast to learn and allows exporting to various for-
mats, including the non-proprietary ones. It is available in both free and commercial
version; the free version misses some advanced functionality, but fortunately no func-
tions needed by us. Furthermore, some missing functionality can be even supplemented
by using various available plugins. Choosing SketchUp has also another advantage: the
whole scene can be exported from SketchUp into Collada format (DAE), which can
be directly loaded by Three.js into our application. This meets all the requirements
set for choosing the 3D format used for importing the created virtual content into the
application. While it is true that Collada is generally not suited as a runtime format
but rather as an exchange format (in contrast to, for example, glTF3)), it is completely
sufficient for our application.

Choosing an image editing program suitable for the 2D content creation is a simple
matter. The most notable programs in this field are Adobe Photoshop and GIMP,
which both comply with the requirements we have set. With both being equal for
our purposes, we have chosen to go for GIMP4) (version 2.8), because we have more
previous experience with it.

6.3 Extent of the content creation
We have intended to reuse (at least some) data from the Virtual Old Prague project,
but upon a further investigation, we have concluded that it would be more efficient to
create brand-new models and textures. Virtual Old Prague data is exclusively in VRML
format. Importing VRML files directly into SketchUp is not supported and despite the
fact that various converters from VRML to other formats exist – e.g. meshconv 5), they
fail on most of the Virtual Old Prague VRML files. So automation of the process is
not possible. Although we theoretically could convert all the VRML files manually (or
write our own automation tool), we have decided that such ordeal would not be worth
the effort – the textures are most of the time unusable6) due to their low resolution
anyway and models do not contain any complex one (apart from the really well-done
model of the St. Vitus’ Cathedral) which would be hard to reproduce; moreover, since
1) http://www.sketchup.com
2) We have chosen the most recent version at the time of writing – which was version 2014 – but the
previous/next versions are expected to work for our purpose as well.
3) https://www.khronos.org/gltf
4) https://www.gimp.org
5) http://www.cs.princeton.edu/˜min/meshconv
6) With a few notable exceptions which we made use of, for example sprite of the gate in The First
Courtyard

50

http://www.sketchup.com
https://www.khronos.org/gltf
https://www.gimp.org
http://www.cs.princeton.edu/~min/meshconv

. 6.4 References for the content creation

models for a single object in Virtual Old Prague are often scattered through many files
and contain not negligible amount of duplicated textures under different names, even
further manual work would have to be performed for those models to work at least
somehow efficiently in our application. Under these circumstances, we have decided it
is better to create a whole new virtual Prague Castle instead. The disadvantage of this
approach lies in the fact that recreating the whole Prague Castle is not possible within
a time dotation allocated for the diploma thesis, so we have decided to limit the extent
of the content creation to the following areas of the Prague Castle:.Part of the Hradčany Square in front of the First Courtyard.The First Courtyard.The Second Courtyard.The Fourth Courtyard.The Garden on the Bastion

6.4 References for the content creation
Before we begin with the content creation, we have to gather some reference material
of the modeled area. In this day and age, we have the luxury of having a variety of
information sources. These include:.Personal visit. Images of the area found at the internet in general.Online maps.Panoramic images (street view).Aerial and bird eye images.3D model of the area

The availability of the listed sources differs depending on the area. In our case of the
Prague Castle, all listed sources are available. This is extremely handy and we shall
leverage this advantage during the creation of the area’s 3D representation. Anyway,
nothing beats a personal visit of the area, which should be the cornerstone of all content
creation. We recommend repeated visits (number depends on the size of the area) in
order to be familiarized with the place and to have the own imaginary 3D model of
the place in mind, because it is hard to get right the exact placement, distance ratios,
overall feeling etc. only from photographs or even 3D models (usually created using
photogrammetry) – they contain artefacts and generally do not display smaller objects
(e.g. fountains) in a way which would be of any use.

6.5 Textures creation

6.5.1 Hardware limitations
Quality of textures is vital to a pleasing visual experience from the application. A
good-looking texture must have sufficient resolution. The larger a texture can be, the
better, but we have to keep hardware limitations in mind:.Texture resolution

.Maximum supported resolution

51

6. Virtual content creation .
.we need to keep textures under the largest resolution which can still be dis-

played by most of the machines.we have decided for our limit to be 4096×4096px1), which is supported on
99,4 % machines according to [38].Width and height restrictions. textures which are not “power-of-two” are not recommended from perfor-
mance reasons (no mip-mapping, not as efficient storage in the memory, ...)[39]. thus we make sure that all textures have both width and height sizes equal
to some power of two

.Graphics card memory.unlike when stored on the HDD, textures take generally a lot more space when in
the memory of the graphics card. e.g. one 1024×256 texture may take just 60KB in the JPEG format, but 1024KB

in the graphics card memory (uncompressed RGBA8 format).we want to limit the amount of graphics memory used by our application.prevents performance drops (swapping, ...).we will try to keep the total application requirements under 128-256MB for textures. is reasonable even for older machines

6.5.2 Acquiring photographs for textures
We will focus on creating textures from our own photographs, which is a superior
method of textures creation – we do not have to worry about legal issues (license of
photographs) and we can take as many photographs as we want, and have them in high-
quality. Sadly, creating textures from photographs is a tedious and time-consuming
work. We shall stress the importance of taking photographs which require the least
amount of editing afterwards. It is better to spend a few more minutes trying to catch
the “perfect” photograph angle or even postpone taking the photograph to some other
time if the conditions are not in our favor (weather, too much people in front of the
object, etc.).

With that in mind, it is wise to think over the time of our arrival on the place
where the photographing will take place. Places like the Prague Castle are generally
full of tourists during the day. While this is not a problem when taking photographs
of some objects – for example statues, which are usually placed at higher places, it is a
serious problem when we need to photograph objects which can be easily occluded, e.g.
building facades. We recommend to arrive on these kind of places either late (generally
2 to 3 hours before the sunset) or early (after the sunrise) to avoid large groups of
people.

The photographing process itself is quite straightforward:.Setup the camera. either manually set ISO, exposition and other parameters
1) From now on, we will omit the px unit when talking about texture/image resolution

52

. 6.5 Textures creation

.or leave it to the automatic mode (not optimal, but acceptable most of the times
and faster).Position the camera. ideally, we want photographs of objects from the front view, i.e. an imaginary line
going from the camera is perpendicular to the plane where the object’s front is.Wait for good conditions. ensure that there are as little as possible people and animals in the view.Take photographs.better to take more photographs to counter accidental bad focus of the camera
etc.

Apart from taking photographs for the purpose of creating textures, it is also practical
to take photographs of the place for purposes of modeling reference. These are useful
later during the modeling of the place in a 3D software because they help with recalling
how the place looks (proximity of objects, overall appearance and feeling). Unlike
photographs for textures, these can have people in them, have bad lighting and so on,
since we will not be doing anything with them but looking. An useful practice is to
cleverly place some reference object in the view (e.g. a bottle) so we can eventually
roughly estimate distances/measurements from the photographs later – invaluable when
modeling objects like fountains or pillars, which sizes cannot be obtained from any other
sources (e.g. maps), because they are too small in comparison to the whole area.

6.5.3 Creating textures from photographs
Creation process of a texture has several steps:.Correcting the image (photograph) characteristics.perspective correction (always needed). lens distortion correction (sometimes needed). color correction (sometimes needed).Selecting an area of the image as the source for the texture. the result of this step will actually be the first (rough) version of the texture. in the following steps, we will work only on this area. try to select an area with a width:height ratio equal or close to a power of two.prevents distortions of the texture during the final resize and export. e.g. 2048×1024, but also 2448×1224 etc.

.Retouching. removing disturbing objects like wires, water drops, humans, animals, editing parts of the image which would not look good in the texture. e.g. reflections on/in windows

.Making the texture tileable (optional).almost all textures in the application are drawn as tiles

53

6. Virtual content creation .
.necessary to edit the texture so that the transitions between the tiles are not

visible (will be discussed later in 6.5.5)

.Exporting.preserve the original texture image. the texture image obtained so far, usually in a format used by image editing
program (e.g. *.XCF for GIMP), will not be modified during the export. the texture is scaled down to a reasonable resolution.make an effort to find the best price-performance ratio between the texture’s
visual quality and the resolution size.use either Lanczos3 or Cubic interpolation for scaling down. in case of PNG export, use no interpolation.building facades textures usually need bigger resolutions (e.g. 1024×256), ma-
terial textures look often good even in smaller resolutions (256×128).make sure that the scaled-down width and height size of the texture is a power
of two. choose the export format and finish the export.PNG for textures with transparency, otherwise JPEG.keep an eye on the exported texture file size so it does not go overboard.but generally, it is better to have a slightly bigger file with better image

quality. the file size itself is not an issue in these days and average connection speeds.a reasonable options are PNG quality around 7, JPEG quality above 90

.Testing.use the texture in a 3D modeling program (e.g. SketchUp) and see how it looks.Texture improving. if the texture needs further improvements, make them until not satisfied with
the result

6.5.4 Retouching textures in GIMP
The indispensable tool in our retouching arsenal is the Heal tool, which can remove
somewhat smaller disturbing objects from images such as wires, cracks, water drops
etc., and with some experience and patience, it can be used even to remove people or
bigger objects (e.g. benches).

Sometimes, the Heal tool is not enough, or the “ill” area is just too big to heal –
in that case, we can use the Rectangle tool and copy&paste a neighbor area which is
similar to the ill area. This causes visible transitions at edges between the pasted area
and rest of the image (apart from perhaps different level of the pasted area’s brightness,
which shall be adjusted immediately). To fix this and remove these transitions, we can
use the Smudge tool which blurs selected area, effectively removing sharp transitions.

54

. 6.5 Textures creation

6.5.5 Tileable textures
When discussing textures, we have to mention building facades. The appearance of
building facades are vital to a pleasing visual experience from the application. And
the most important part in making this happen is to create nice-looking textures for
facades. We have two options there – use either a single texture for a whole facade or
use a tileable texture, which is a texture which multiple copies can be placed repeatedly
right after each other, borders between the copies being indistinguishable, making the
copies look like a single texture rather than a collection of textures.

Using a tileable texture saves precious graphic card memory, since we can use a
small texture to cover a large real world area. A simple observation reveals that most
building facades are rather monotonous, repeating same elements again and again (i.e.
all windows look almost the same), with just a few differences, as can be seen on Figure
6.1, which is an unedited, real-world photograph of the Second Courtyard’s south side
(located in the area of the Prague Castle). This makes building facades ideal candidates
for usage of tileable textures. However, using a single texture for a whole facade has one
advantage over a tileable texture: preserving even the smallest-details and differences,
for example when there is a flaked plaster near one window but not near another. But
the problem is that with large facades, a single texture of such facade has to be large
too.

Figure 6.1. Example of a building facade in the Prague Castle (the Second Courtyard –
south side)

Lets compare both approaches on the example of texturing south side of the Second
Courtyard of the Prague Castle (real-world photograph was on Figure 6.1). This facade
is about 25 m long, with height about 17m. The comparison can be seen on Figure 6.1.

We suppose RGBA8 format of textures (32b per 1px). Mip-maps or any form of a
texture compression was not taken into the account. Real world coverage means how
big area in the real world is represented by the texture – it is obviously full size of the
facade for the single textures, and in case of the tileable texture, it is full size of the
facade as well, but after the tiling (repeating) is taken into the account. Centimeters
to pixel ratio tells us information about the texture quality (the smaller, the better)
– it shows how many centimeters from the real world are depicted by one pixel in the
image1). To illustrate differences between different texture qualities, the first entry in
1) The ratios in the table have been rounded

55

6. Virtual content creation .
Texture Tiling Resolution (px) Real world cm/1px GPU
type coverage (m) ratio memory (KB)
Single no 256×128 26,0×17,0 10,2×13,2 128
(VOP)
Single no 2048×1024 26,0×17,0 1,3×1,7 8192

(our application)
Tileable 7,03× 256×1024 3,7×17,0 1,4×1,7 1024

(our application) horizontally × (7,03×1)
Table 6.1. Tileable vs single textures comparison

the comparison contains a single texture with resolution which was used in the Virtual
Old Prague project for this very same texture of the south side of the Second Courtyard
(the texture in its original resolution is depicted on Figure 6.2).

Facades with texture quality similar to Figure 6.2 (1st table entry – single texture,
VOP) look acceptable when the avatar is far away from a facade (i.e. more than 60 m),
which is a problem, because usually there are facades near the avatar all the time and
they are often no longer than 25 m away. Figure 6.3 (2nd table entry, single texture –
our application) shows how a single texture look like in our application (although it is
depicted a lot smaller, otherwise it would not fit on the page) – if a facade has texture
quality similar to this texture, the avatar can stand even right in front of the facade
and the visual quality is still acceptable. Finally, the last column in the comparison
shows us that by using the tileable texture rather than the single one, the memory
requirements are 8× smaller (with the same level of quality). The tileable texture is
depicted also on Figure 6.3 – its image boundaries are colored in red, and we can see
that by repeating the texture roughly 7×, we get the same image as in the case of the
single texture1).

If we also consider the fact that for example the west side of the Second Courtyard
of the Prague Castle is around 100m long (height is still 17m), which would mean
over-the-limit 8096×1024 resolution in the case of a single texture (although we can
split the facade into more parts to overcome this), we have settled for the tileable
texture approach. The small individual differences occurring on a facade which cannot
be expressed using tileable texture are small price to pay, and besides, if there is a
feature on a facade which really stands out (e.g. the door in Figure 6.2), it can be
added separately for example in a form of a textured quad which lies almost in the
same plane as the facade or modeled as 3D element.

Figure 6.2. Virtual Old Prague texture (original resolution)

Lets now talk a little about creating tileable textures. Following types of tileable
textures exist:
1) Note that the actual single texture of this concrete facade would have a slighly better quality – this is
because the tileable texture repeated 7× yields a 1792×1024 texture, but 1792 is not a power of two; the
single texture would need to be 2048px wide

56

. 6.5 Textures creation

Figure 6.3. Our application texture (38% of the original resolution, i.e. 2,6× smaller),
red line delimeters texture tiles

.Horizontally tileable. textures can be placed side-by-side (e.g. texture tiles on Figure 6.3).Vertically tileable. textures can be placed above or below each other.Horizontally and vertically tileable. textures can be placed both side-by-side and above or below each other.appears in the application often – all natural and synthetic materials, ground cover
(plaster, grass, pavement, ...)

There are no cases of pure vertically tileable textures in the application, but there
are a lot of horizontally tileable textures in a form of building facades. When creating a
horizontally tiling texture for a building facade, it is a good practice to try not having a
lot of parallel lines (e.g. spaces between bricks) near edges of the image. The problem
is that in spite of all the effort given into the perspective correction, the image is almost
always a little bit distorted (the texture on Figure 6.3 is a rare exception), which is
why we have to make adjustments so that lines near both of its edges are in the same
position in order to have a visually pleasing repeat effect. If possible, it is better to
avoid this situation and pick a facade part which has a continuous area (e.g. plain,
undecorated part of the facade) near the edges instead. The last resort solution is to
copy the area near the left/right edge of the image, flip it horizontally and insert to the
other edge of the image. This produces sometimes less noticeable, sometimes obviously
noticeable seam between the newly inserted, flipped area and the original neighborhood
of the other edge. Fortunately, the seam can be made more or less disguised and very
hard to notice (if at all), for example by using blurring tools in an image program (e.g.
Smudge Tool in GIMP as discussed in 6.5.4).

57

6. Virtual content creation .
Horizontally and vertically tileable textures appear in the application very often in

a form of various materials such as marble, plaster, grass, sandstone, but also as roof
tiles and many more. Making tileable texture for a material is a lot easier than for
facades – because materials do not have such distinguishable features and are rather
monolithic, we can generate nice-looking tileable texture automatically in an image
editing program. In GIMP, we can use built-in function Make Seamless. However, the
function is rather simple and does not allow for any customization, so we get kind of a
hit-or-miss result. It is better to use advanced version of this function which goes under
the name Make Seamless Advanced and can be found in the GIMP Plugin Registry
[40]. The advanced version allows specifying both horizontal and vertical overlap and a
few more useful properties (gradient contrast etc.), so it is possible to experiment with
these until the result is satisfying.

6.5.6 Approximating complex objects by textures
When an object has a complex geometry (e.g. a statue), it can be advantageous to
approximate its 3D model by placing a texture with transparent background on a quad
instead (a.k.a. sprite). Sprites are used in the application in case of statues and similar
objects, because it would be very time-consuming to recreate them properly as 3D
models.

The creation of a sprite does not differ much from creating a standard texture. The
only extra step is to separate the target object from the background in the image and
luckily, modern image editors offer tools which make this a breeze in most of the cases.
In GIMP, we activate the Magic Wand tool (also called the Fuzzy Select Tool),
which is capable of an image segmentation. There are several options which can be
adjusted, but usually, it is sufficient to simply adjust the threshold option until the
Magic Wand’s contours are around the object. The unfortunate cases when the magic
of the Magic Wand does not work include images where the target object and its back-
ground visual separation is not clear enough – such image can be seen on Figure 6.4.
In this case, the color of the object and the background is very similar, which causes
problems for the Magic Wand algorithm. We are left with no choice than to separate
the object manually, e.g. by using the Free Select tool and drawing the contours
around the object ourselves. After the contours are drawn, we use the Magic Wand tool
which will take care of making the object selected (this is necessary for the next step).

When the object and background are separated, it is good to paint the background
in a few different colors to see how the object’s edges look. We often discover that they
are lightly tinted, which would not look good in the application (Figure 6.5). To fix this
in GIMP, with the object selected, we execute Select - Shrink and shrink the object
a little (value of 2px is usually a good choice), which will remove tinted edges (Figure
6.6). The sprite is now ready for scaling down and exporting into PNG. Unlike with
JPEGs, we use no interpolation when scaling down PNGs, because that would decrease
the visual impression by introducing artefacts (“teared” pixels) here and there, mainly
near the edges (see Figure 6.7, which is a part of the image from Figures 6.5 and 6.6).
Nevertheless, even with no filtering, we should always carefully check the scaled-down
image for tears – sometimes one or few pixels are looking off and should be fixed. With
this, the sprite is finished and ready to use. One last thing to consider is that if the
object in the sprite touches or is very near the image edges, it can happen that when
the sprite is placed on a quad, we can see artifacts at the quad edges, which is nothing
other than the sprite texture being repeated. To fix this, we add a blank space around
the edges in the image (4-8px) and fine-tune the texture placement in SketchUp.

58

. 6.5 Textures creation

Figure 6.4. Problematic image for the automatic background separation

Figure 6.5. White tinted edges after the background separation (an example highlighted
in red), shown on different backgrounds

Figure 6.6. Tinted edges removed by shrinking

Figure 6.7. Artefacts occurring when scaling down PNG with an interpolation filter

59

6. Virtual content creation .
6.6 Models creation

6.6.1 Modeling process outline
During a creation of a virtual world, we recommend sticking to the following outline
during the process of modeling:.Create a rough geometry of an entire object/area.do not create details or any complex geometry, because the geometry will likely

change (at least a little). create just the main geometry (facades etc.) and the “approximating” geometry
instead of the complex one (just mark the place where the complex geometry
will be)

.Progressively work on parts of an object/area.when the first rough version of the object’s texture is created, we will immediately
UV-map it to see if the geometry (or the texture itself) needs to change and perform
such changes if necessary. if no changes need to be made or when all changes are done, the whole texture is
created and mapped to the geometry and we proceed with the next part.Create details.when the main geometry is guaranteed not to change anymore, we can start to work
on details (i.e. adding plasticity) and create complex geometries (e.g. balustrades,
passageways, ...)

6.6.2 Creating details
Complex geometries such as balustrades, passageways, stairs, fountains and similar
objects are modeled exactly, using appropriate tools. We start by drawing a com-
plex geometry or part of it from the top view, most often by using the Line and the
2 Point Arc tool in SketchUp, and then use Push/Pull tool to extrude the created
“ground plan” and make it 3D.

Adding plasticity refers to making surfaces which are relatively flat (e.g. facades)
look 3D. When a facade has only a texture applied, it does not look quite convincing,
especially when looking at it from the side. The Push/Pull tool comes to rescue in
this case. When adding plasticity, for example to a facade, we will trace (again, using
mostly the Line and 2 Point Arc tool) shape of windows, their ledges, decorative arcs
and other protruding elements. When the tracing is completed, the Push/Pull tool
is used to extrude these elements and plasticity is achieved. Note that it is often
good to make elements extruded a little more than they do in the reality so the effect
is more noticeable in the virtual world. The good thing about adding plasticity is
that we can use the original facade texture for texturing of extruded elements, just
the UV coordinates need to be changed a little. This is great because the number of
overall textures is not increased, since as we will learn in Chapter 9, the performance
of our application depends mainly on the number of textures rather than the number
of triangles.

60

. 6.6 Models creation

6.6.3 Handling two-sided faces
Sometimes, faces of an object are visible from both inside and outside. Rendering faces
from both sides poses a performance penalty and we want to avoid that. Thus, when a
face should be two-sided, we use the Push/Pull tool to extrude it into the direction of
its back face by some small amount (but not too small in order to prevent a potential z-
fighting, 3-4cm works good) and create a second face, which will be used as the second
side (the second face is rendered as one-sided as well). A great care must be taken
during the extruding process, since SketchUp 2014 tends to maliciously flip the front
face direction of the original face after its extrusion.

6.6.4 Productivity tips
Creating a virtual world is a time consuming process, so it is for the best if the au-
thor adopts an effective working style which can save significant amount of time and
maybe more importantly, author’s level of concentration. We give following brief rec-
ommendation (tips are intended for SketchUp, but they are applicable in general as
well):.General settings (SketchUp).Switch to the larger tool buttons.For purpose of modeling a virtual world, the Architectural Design template works

best. If the cursor snapping is too aggressive, it can be adjusted or completely turned
off.Keyboard shortcuts.absolutely vital for an effective modeling process.Hide entities obstructing the view.useful when we want to work e.g. on the “inside” part of buildings.SketchUp zooms in/out with the center at the mouse cursor and the speed of

zooming depends on the distance from the camera center to the entity under
the mouse cursor – getting to a building inside becomes very slow as the camera
approach a facade through which we want to enter the building

.Use the camera options. it is hard to navigate in small/narrow areas (typically inside passageways) using
standard combo pan + orbit mode, so using some kind of “look around” camera
mode is better.Use different face visualization styles. check correct orientation of faces (front/back) by coloring their sides in different
color, switch to wireframe to identify unnecessary geometry (i.e. faces that are
not visible from the outside, typically a wall/face between a two distinct buildings
that touch each other)

61

6. Virtual content creation .
6.6.5 Environment modeling

Even if the Prague Castle is the main focus of our virtual world, we cannot afford to
ignore its surroundings. The environment around the castle create an atmosphere which
is an integral part of the Prague Castle experience. A simple solution is the usage of
sprites with photographs of the surroundings, cleverly placed in the areas from which
the avatar is expected to see the surroundings. This method is very time and labor
effective, and the result can be quite acceptable. It was used for example in the Virtual
Old Prague project. However, since our application contains the FLY mode, this kind
of trick would not work very well, because the avatar’s movement is not restricted only
to the ground.

For a convincing experience, we have to create the environment in 3D. The time
extent of this diploma thesis does not allow for precise environment modeling, and
since the environment is a complement of the application and not its main focus, we
have settled for a way how to create visually acceptable environment in a reasonable
time which involves the elevation data of the city. The elevation data is used for
recreating a fairly precise 3D model of natural environment around the castle. There
are several available source for such data. The most famous one is probably The Shuttle
Radar Topography Mission (SRTM) [41], which was an international research effort that
obtained digital elevation models (DEM) on a near-global scale to generate the most
complete high-resolution digital topographic database of Earth. DEM has no universal
definition, it is often used as a generic term for digital surface models (DSM) and
digital terrain models (DTM). DEM is a continuous (raster) representation describing
the shape of the surface where elevation is a function of latitude and longitude, and is
mostly used as a generic term for [42]:.Digital Surface Model (DSM).describes a surface including buildings, vegetation and other objects.Digital Terrain Model (DTM).describes a pure terrain surface without buildings and vegetation in a way terrain

elevation is given in topographic maps. can be obtained from DSM

The difference between DSM and DTM is depicted on Figure 6.8. The disadvantage
of the mentioned SRTM data is a fact that it takes quite a while to find an exact place
on Earth and the resolution of the data is not ideal for our purposes – it is still quite
large. Fortunately, in April 2015, Geographic portal of the Prague city1) published
various geographical data related to the whole city. Among them is also a DTM in a
form of a *.TIF image (see Figure 6.9), created from an aerial imaginery in 2010, with
a map scale of 1:5000. However, the image takes over 3GB, which complicates working
with it, since conventional image editors cannot handle such big files. For this reason,
the program called OpenEV2) was used to display the image. OpenEV is a software
library and application for viewing and analyzing raster and vector geospatial data and
is capable of handling our DTM image.

We choose subarea in the DTM image with castle area roughly in the center and about
2 km of space around. Then, we export the subarea using OpenEV export method. If
the option does not work, which is often the case, we must resort to taking screenshot
1) http://www.geoportalpraha.cz
2) http://openev.sourceforge.net

62

http://www.geoportalpraha.cz
http://openev.sourceforge.net

. 6.6 Models creation

Figure 6.8. Difference between Digital Surface Model and Digital Terrain Model[43]

e.g. with Print Screen button on the keyboard (it may be necessary to take several
screenshots and combine them together in an image editor).

Now that we have the image exported, which is essentially a heightmap, we can
generate the terrain. We have used a program called L3DT1), which is similar to the
popular Terragen2). The free version restricts resolution of the used heightmap to
2048×2048, but that proved to be enough for our purposes. We import the heightmap
and set its parameters:.Horizontal scale. smaller value = larger world, value of around 3 m is OK in our case. the program displays the heightmap along with the current map scale valid for the

chosen value (in kilometers), thus it is easily possible to fine-tune the value so it
roughly corresponds to the reality.Vertical range. the lowest and highest altitude in the heightmap (in meters). can be found using OpenEV which displays height information in meters for all
pixels of the heightmap (175 m and 370 m in our case)

In L3DT, we can preview the resulting terrain from the heightmap in 3D to see if it
looks acceptable (Figure 6.10 shows the heightmap used for generating the terrain and
its render from L3DT; the red area in the heightmap represents the Prague Castle and
the yellow triangle indicates viewing direction in the render image). It is also possible to
create and interactively edit the texture of the terrain, which comes in handy. Finally,
the process of incorporating the terrain into our virtual world has several steps:. Import the terrain into the SketchUp.L3DT can export the terrain mesh into Collada format, which can be imported

into SketchUp.Correctly place the terrain and virtual world models. correct placement of the 3D models onto the terrain is tedious, but that is un-
avoidable.Modify the terrain if needed.although we were careful during the heightmap creation, it is often the case that
the terrain needs to be altered so the models fit.L3DT provides us with a set of tools with which we can edit the terrain interactively
in 3D, and it works really nice

1) http://www.bundysoft.com/L3DT
2) http://planetside.co.uk/products/terragen3

63

http://www.bundysoft.com/L3DT
http://planetside.co.uk/products/terragen3

6. Virtual content creation .

Figure 6.9. DTM[44] and corresponding classical map of Prague[45]

6.7 Exporting from SketchUp
We export the whole scene into Collada format (DAE) using standard SketchUp export
functionality (File - Export - 3D Model). The exported file is then loaded into the
application using the Collada loader bundled with Three.js.

64

. 6.7 Exporting from SketchUp

Figure 6.10. Terrain’s heightmap and its render in L3DT

6.7.1 Issues with exporting
There is a major issue with exporting from SketchUp 2014 related to textures. When
a texture is scaled/sheared/rotated during UV coordinates mapping (i.e. green, blue
or yellow pins are being manipulated) on a face, which happens almost all the time,
SketchUp exports the texture multiple times, in different versions – one new image
file for each face which has UV mapping that involves a distorted texture. It goes
without saying this is extremely inefficient and must be dealt with, otherwise it could
cause a serious performance penalty for the application. The solution is to manually
triangulate all geometry prior to the export. Although there is often an option of
triangulating the geometry in the SketchUp built-in export dialogs, it does not solve
the issue. Fortunately, a SketchUp plugin for UV mapping called SketchUp UV1) offers
a function for triangulation which triangulates geometry in a way which solves the issue.
With SketchUV activated, we select all geometry and execute the Triangulate option.

1) https://extensions.sketchup.com/en/content/sketchuv

65

https://extensions.sketchup.com/en/content/sketchuv

6. Virtual content creation .
It is necessary to inspect the scene afterwards because a few of triangulated faces may
have now incorrect UV coordinates and thus must be adjusted manually. When we
conclude that all triangulated faces are UV-mapped correctly, we can export the scene
safely – SketchUp will not generate multiple versions of one texture anymore.

Another issue is related specifically to the export into the Collada format – faces are
always exported as two-sided, regardless of what options we choose in the export dialog.
We have decided to deal with this issue by a simple modification to the Collada loader
for Three.js: since back-faces have no texture coordinates assigned, they are easy to
identify and to ignore.

6.8 Statistics
There were 5 photographing sessions in the Prague Castle area, each taking 2,5 hours
in the average. Almost 1500 pictures were taken (full area of the castle). Most of the
sessions took place in the afternoon (2 P.M. to 8 P.M.) during the summer of 2015.
Some of the building facades have different colors although its is evident that they
should have identical colors, which is due to the fact that The Prague Castle is being
continuously reconstructed and repainted.

Time spent creating one texture varies greatly (between 15 to 60 minutes), the aver-
age is about 30 minutes. Modeling and UV mapping of textures typically take a lot of
time. For example, creation of the Matthias gate (for a screenshot, see Appendix C.8)
and the passageway behind which goes to the Second Courtyard took around 10 hours
of work; the balustrades on the rooftops of the First Courtyard took about 5 hours.
The total time spent creating the virtual content is around 120 hours.

Total size of created textures on HDD is about 7MB, their total area is around
10 000 000px, which would make them around 40MB when uncompressed on the GPU.
The whole exported scene with all models in Collada format and terrain mesh have
around 12MB in total.

66

Chapter 7
User interface

The User interface plays an important role in visualization applications, since it at-
tributes a lot to the overall experience. It is generally used as a mean to communicate
different types of information, to change various options affecting the visualization, or
even supply alternative controlling mechanisms for movement of the avatar. This chap-
ter will discuss how the Visualization of Prague Castle coped with development of a
suitable user interface which aims to accomplish these tasks. We will identify the target
audience, the users’ needs and important functionality for the user interface. The focus
will not be just at the design decisions – the implementation specifics will be explained
as well.

7.1 Goals
There are several things to consider before deciding on the course of the user interface
(UI) design and its capabilities. It is vital that we specify the target audience, think
about their motivation to use the application, and design an appropriate way for them
to control it. These concerns can be summarized into the following questions:.Who will use the application?.For which purpose?.How to make this easy for them?

Answer to the first question regarding the target audience is simple: anyone.
Tourism and curiosity about historical places is a thing which can be shared across
people of all age and origin. Thus, application aims to provide an experience which will
benefit both teenagers and those of our kind who were born even much earlier in the
previous century. To broaden the target audience, we have decided that the application
will be available in two languages, with a possibility to switch between them during
the runtime:.Czech.official language of the country where Czech Technical University and the Prague

Castle are located.English.one of the most widespread languages. especially prevalent in the information technologies and web in general

Purpose of visiting virtual places are consequent upon the already mentioned tourism
and historical curiosity – users want to know more about the place, and in this case,
mainly in terms of the visual experience. However, it must not be forgotten that when
they encounter some interesting object during their virtual walk, they may want to know
more about it, perhaps read a small article or obtain a web address where full info with

67

7. User interface .
all exhaustive details can be found. It follows that our visualization shall contain
a mechanism which allows user to educate themselves about the environment or
interesting objects in a further detail.

Since the users of the application are expected to have a varying computer skill and
experience with similar applications, it was decided that the user interface would be
rather simple, so even an inexperienced user will not be feeling lost and controlling the
application would be easy for him/her. Some kind of help shall be available to the
user at all times to prevent a confusion. We want to point out that mainly people
working in the 3D graphics field and gamers are able to navigate freely in the 3D.
Regular users who are not accustomed to the virtual environment are not usually very
proficient in controlling of the avatar in the standard way (i.e. using the keyboard or
mouse), but they seem to pick on the navigation using on-screen buttons [46] and
welcome lists of simply accessible viewpoints. We shall keep in mind these kind of
users when designing the user interface. Navigation could be also made easier for them
by adding a 2D map synchronized with the user’s movement as suggested in [33]. We
have decided to take this one step further and include a big map (resembling a classical
map) as well with marked positions of viewpoints and such. Taking our conclusions
from Chapter 2 into the account, we have decided to include possibility of flying with
the avatar; a mechanism for switching between regular virtual walk and flying will have
to be created. More advanced users may want to change settings of the application
(e.g. visual effects settings) and curious users may want to know who is responsible for
the application, so we shall somehow allow them to do these tasks e.g. by providing
some kind of menu.

To summarize the ultimate goal and the most important points – we want the in-
teraction between the user and the application to be easy and provide the user with
functionality expected from a virtual walk application. This means:. create the user interface that will be understood by the entire target audience.provide the users with help and navigation means within the virtual world.allow the users to educate themselves about interesting objects in the virtual world.allow the user to edit settings of the application

7.2 UI functionality
Based on the defined goals, a simple task analysis was performed. The hierarchical
task analysis diagram depicting these is shown on Figure 7.1. The explanation of the
provided functionality follows.

Edit settings is about changing application behavior and appearance. Settings are
split into the groups depending on their type:.General settings. control options (mouse sensitivity, ...).Visual settings. changing lighting conditions and turning effects on/off.Language settings. switching between Czech and English

68

. 7.2 UI functionality

Figure 7.1. Hierarchical task analysis diagram for the user interface

See help displays the information about the virtual walk controls and explains to
the user what is possible in the application and how to achieve it.

See application information displays the information about the application itself –
what is it, who made it and why, and provides means of contact to the involved people.

In Change viewpoint, the user is presented with a list of available interesting loca-
tions in the Prague Castle area. By choosing some of the viewpoint, avatar is instantly
teleported to the viewpoint location.

69

7. User interface .
Display object of interest info presents the user with a short description and histor-

ical information about objects.
Navigate avatar comprises of:.Switching back and forth between the walking and flying modes.Moving the avatar in the virtual world.Maps for easier orientation.Big map.an interactive map of the Prague Castle area, resembling a classic paper map.aims to help the user with the orientation. locations of the avatar, available viewpoints and objects of interest are marked

there.possible to choose a custom position and teleport the avatar there. the avatar can be teleported to the locations of viewpoints and objects of interest
as well.also possible just to display the information about any of the objects of interest.Minimap. smaller version of the Big map with less details and no interactivity. for quick orientation in the area. intended to be permanently visible

7.3 Implementation, design and UI behavior

7.3.1 Technologies and libraries
We have taken an advantage of the fact that Visualization of Prague Castle is a web
application and used HTML, CSS and JavaScript to create its user interface. The
UI layout (i.e. positions of buttons, text size, etc.) is defined via CSS using relative
positioning and relative size units, which makes the design flexible; it keeps its intended
look on a vast number of resolutions, making the application suitable not just for large
monitor screens, but also for a lot of smaller displays (mobile phones, tablets, ...).

jQuery UI1), a library which provides many visual widgets, is the main cornerstone of
the UI. The basis for color design was a jQuery UI provided theme called “Eggplant”,
a rather dark theme with shades of gray, blue and violet. Styling of the theme was
customized from both visual and coding perspective.

Colors were adjusted, background images were replaced and pure colors were used
instead (the background images did not look very good when the application was in
either very small or very big resolution). Each used image is in the SVG format (images
in other formats from libraries such as jQuery UI or similar were manually recreated as
SVG). These modifications ensure that scaling for different resolutions will not cause
any visual quality degradation. According to [47], SVG format is supported by all
current mainstream browsers, so there is no risk that the images will not be displayed
on some configuration.

The most used jQueryUI widget in our UI is the “Dialog”. This widget can create
a window (implemented as a <div> container in pure HTML/CSS/Javascript) which
1) https://jqueryui.com

70

https://jqueryui.com

. 7.3 Implementation, design and UI behavior

resembles a standard window appearing in an operating system, i.e. it has titlebar,
closing cross icon in the upper right corner, body with text and possibly some buttons
at the very bottom (e.g. OK, Close). However, its default styling had (again) problems
with scaling into small/big resolutions and some visual elements did not fit into the
intended application UI style, so its style has been heavily modified. Functionality has
been extended as well to add support for multiple languages.

Menu window, although looking similar to windows created with the Dialog widget,
is implemented using the modified jQueryUI “Tabs” widget which provides functionality
similar to tabs (panels) in web browsers. Both menu window and every dialog window
contain three buttons for manipulation with a window:

.Return / OK

. closes the window (and possibly returns to the virtual walk)

.Language switch

. switches application to another language

.Close cross button

. closes the window (and possibly returns to the virtual walk)

The goal which we had in mind when putting language switch button to the most
of the windows was that the button will be visible at all times. Application chooses
its language automatically based on the language settings of the user browser, but
nevertheless, it is important to provide the user with a clearly visible option of switching
between the languages.

The main part of the user interface is a head up display (HUD), which is always
visible (Figure 7.2). HUD is displayed in the lowest area of the screen, near the bottom
border, and is split into the three parts:

. left

.buttons for Menu, Help, Walk/Fly switch

.middle

.Virtual keyboard for moving

. right

.buttons for Viewpoint change, Map display.Minimap

The buttons have circular shape, with an icon inside (symbolizing their purpose) on
the partly transparent dark background. Each button also has its name written above it
so the users do not have to wonder what the button is for. Buttons’ colors are changed
slightly when the user hovers over them.

71

7. User interface .

Figure 7.2. HUD in the application

72

. 7.3 Implementation, design and UI behavior

7.3.2 Left part of HUD and virtual keyboard
First button on the left part of the HUD is for opening the application Menu, which
carries out See application information and Edit Settings functionality mentioned in
the previous section. The menu has 4 tabs (categories):.General settings.mouse sensitivity and orientation of Y axis (normal vs inverted). left and right arrow moving style (turning the avatar’s head vs moving sideways,

i.e. strafing) when using keyboard. collision detection.Display settings. turning visual effects on/off.Light settings. changing the current time of the day for the day/night simulation (more on this
in Chapter 10). switching lights in the castle area on/off.Credits. information about the application and the thesis. contact to the author and supervisor of the thesis

Second button in the left part of the HUD is for opening the window with Help.
Help section contains information about controlling the whole application, explains
what is possible and how to achieve it. Especially controls (keyboard, mouse, buttons
in the user interface) are explained carefully and with images for better and faster
understanding – see the User Manual in the appendix E.12.

Third button in the left part of the HUD is for changing avatar moving state
between walking and flying.

Virtual arrow keys are placed in the middle part of the HUD in order to draw the
user’s attention. They are clickable and serve as an alternative way of controlling
the avatar, since less experienced users may not be accustomed to moving with the
real keyboard arrow keys. On top of that, if the user tries to access an inaccessible
location (e.g. tries to walk forward in spite of the fact that a wall is in front the user),
the arrow keys are drawn in red shades, signalizing that the further movement in the
current direction is not permitted.

7.3.3 Viewpoint change
The first (leftmost) button in the right part of the HUD is for Viewpoint change.
When the button is clicked, the window with available viewpoints is opened (Figure
7.3). Available viewpoints are arranged in a grid and are represented by an image (with
their name written above it). We have chosen this approach to help the users with their
decision – seeing viewpoint images makes viewpoints less anonymous and the user can
decide which viewpoints interest him/her the most.

73

7. User interface .

Figure 7.3. Window with the list of viewpoints

7.3.4 Map
Second button in the right part of the HUD is for displaying a window with the inter-
active Big map. Lets briefly discuss the process of the map image creation. There are
generally two options when it comes to retrieving/displaying a 2D map:.use a map provider.Google Maps, OpenStreetMap,use an own map

It was decided that an own map will be used. Integration of a map from providers
in the desired form into the application is not trivial and there would be problems
with synchronization of position in the virtual 3D world and provided map, because
the virtual world does not match reality to the 100 %. And since The Visualization
of Prague Castle takes place on a rather small area, it is more efficient to use an
own map instead, which can be customized visually and its implementation is also
straightforward.

The process of creating the own map is manual, but not complicated. Previously
captured heightmap (will be discussed in the future chapters about collision detection,
namely in 8.3.1) image is used as a template for creating the map. This ensures that the
map image corresponds 100 % to the virtual world. The heightmap image1) looks very
much like a regular map, except for the colors. A picture is worth a thousand words, so
see Figure 7.4 where the real-world orthophoto map and our application’s heightmap
are drawn side-by-side2). Now that we see that the heightmap is not good just for the
collision detection, but also for displaying the map of the area, the goal is to change the
colors and also have the map in a vector format, which allows scaling without visual
degradations. This can be achieved with a vector image editor, e.g. Inkscape3). Using
a vector image editor, a new SVG image with the same dimensions as the heightmap
image is created, and vector outlines of buildings and important objects are drawn (the
heightmap image is displayed on the background, we draw “over” it). It is necessary
1) When we talk about the heightmap, we mean the “Largest height layer” if not specified otherwise
(explanation will be provided later in 8.3.3)
2) The heightmap matches the orthophotomap so well because we have been using aerial imaginery when
modeling the outline of Prague Castle (to get the building shapes and distance correctly)
3) https://inkscape.org

74

https://inkscape.org

. 7.3 Implementation, design and UI behavior

Figure 7.4. Real-world orthophotomap and heightmap – proof that they match together
and thus heightmap can be used for creating a map of the area

to strictly respect edges of objects, i.e. do not alter their positions. When this step is
finished, we have basis of our map.

In the next step, the map (currently containing only outlines of objects) is made
more visually appealing by addition of colors. Areas in the map which represent an
object of interest are colored in a way which especially stands out, and each such area
is given an ID in a vector image editor – later, when an area is clicked/hovered over in
the application, we know to which object of interest it relates to using this ID.

75

7. User interface .
Last step is the placement of location/street names (e.g. “The First Courtyard”,

“Garden on the Bastion”) into the map in a form of text captions. SVG Text element1)
is used as a caption, and just like with objects of interest areas, each such element has
an ID assigned. The ID is used for the name translation purposes – it would not be
possible to translate location/street names without it when switching the languages (the
translation mechanism will be discussed later in 7.3.7). Actually, it does not matter
which text is written in SVG Text elements in the map image (since this text will
be overwritten by the application’s translation mechanism), all that matters is that
SVG Text elements are placed correctly in the image and have correct ID. However,
we recommend to write location names into SVG Text elements in the image as well,
because then it is easy to spot if there is enough space for the name or not and in that
case the element should be moved a little bit.

When the area related to an object of interest is clicked/hovered over, a small window
with name and an image representing the object of interest appears, presenting the user
with two options (as can be seen on Figure 7.5, which depicts the Big map dialog):.Go to location. teleports the avatar to the location of the object of interest in the virtual world.Open object information.displays window with text information about the object of interest

Locations of the available viewpoints (i.e. those from the Change viewpoint window)
are marked in the map as well, in a form of icons (highlighted on Figure 7.5 in red). Just
like with areas representing objects of interest, these icons can be clicked/hovered over
and a small window similar to one described in case of objects of interest appears, though
this time, it contains only the option of teleporting to the viewpoint’s location. Icons
representing viewpoints are added into the map during the application runtime and
their exact placement in the map is computed from 3D positions of the corresponding
viewpoints (using projection from 3D to 2D – inverse process to computing 2D map
position from the avatar’s 3D position which will be discussed later in 8.3.2).

The avatar’s current location is represented as a sticky-figure (similar to Google
Maps). The figure can be dragged and dropped around the map – avatar is teleported
to the drop position (but only if the position is accessible, i.e. no teleporting outside of
the castle area is allowed).

7.3.5 Minimap
The last element in the right part of the HUD is the Minimap, which is intended to
visually resemble a compass; that is why there are also cardinal directions marks N, S,
E, W. A part of the Big map corresponding to the area in the immediate distance from
the avatar is displayed inside the compass. This effect is achieved by using CSS prop-
erty overflow: hidden along with a translation of the map image position. Avatar’s
position and viewing direction is symbolized by a red dot and a yellow triangle. Name
of the current location is displayed above the Minimap. Finding out the location name
is simple: we have an image where locations of the areas are drawn in different colors
(we call this the “Area map”) which is derived from the (height)map, as we can see on
the example on Figure 7.6. We look at the color of the pixel at the avatar’s position in
the Area map and based on that color, we know where the avatar is (no color means
that an area is not accessible, everything else corresponds to some area).
1) http://www.w3.org/TR/SVG/text.html

76

http://www.w3.org/TR/SVG/text.html

. 7.3 Implementation, design and UI behavior

Figure 7.5. Big map

7.3.6 Interaction with objects of interest
The interaction with interesting objects could be done from the Big map as was dis-
cussed earlier in 7.3.4, but it is more practical to interact with objects during the
walking itself – by hovering/clicking on an object of interest in its 3D representation.
And because it may not be apparent which objects are meant for interaction unless the
user hovers the mouse over them, we have decided to put a small 3D “info” spinning

77

7. User interface .

Figure 7.6. Area map

cube near all of them to suggest a possibility of an interaction. If the user hovers over
either an object or an info cube associated with it, the name of the object is displayed
near the mouse cursor; if the user clicks, the article for the object of interest is opened
(see Figure 7.7).

Figure 7.7. Window with an article about the object of interest

From the implementation standpoint, it is necessary to be able to find out object
which is currently under the mouse cursor. The process which determines this is called
the picking. The solution used for solving the picking problem is a common one,
described for example in [48]. The main idea is that each pickable object has assigned
different ID, which maps to a unique color (the mapping is bijective). The scene is
rendered to an off-screen buffer (we will refer to this as the “pick draw”), with only
pickable objects being drawn in their unique colors. Figure 7.8 shows the difference
between the scene rendered normally and in the pick draw1) (in this example, the
fountain and the chapel are the only visible pickable objects). Then, color of the pixel
which is currently under the mouse cursor is read – knowing color of this pixel, we know
which object was picked (if any), since each object has a different color assigned. From
the implementation reasons, we have to convert each (integer) ID to a (float) number

1) Actually, the real pick draw in the application would probably not look “pretty” like this with such
distinguishable colors for eyes, but that is not important for the correctness of the algorithm.

78

. 7.3 Implementation, design and UI behavior

Figure 7.8. Regular draw vs Pick draw

between 0 and 1 – details of encoding a number into a color will be explained further
in Chapter 8.3.1 regarding heightmaps.

The pick draw is not performed on each frame or mouse move – reading its pixels
that often would slow the application significantly down. However, the application
absolutely needs the information about object under the mouse, at all times. The
solution for this is easy; the pick draw is performed and its pixels are retrieved every
time when (after) the view is changed. So until the view changes again, off-screen
buffer with the picking information is up-to-date and it is possible to read the value of
the pixel under the mouse right away. The problem is when the avatar is changing its
position (i.e. when walking), because then the view changes continuously. This is why
a small delay (about 500ms) between the view change and the pick draw with pixels
reading has been introduced. In other words, the pick draw will be executed only if the
view has not changed in the last 500ms. Because the delay is so small, the user is not
capable of detecting the fact that he/she is not able to interact with objects for these
first 500 ms when the view changes.

7.3.7 Translation mechanism
Since the application supports multiple languages, with an option of switching between
them during the runtime, we had to find a way how to implement this feature. We set
following requirements for the implementation:. speed. switching between the languages should be fast (i.e. application should not restart

itself), the user should not have to wait for the translation of a text.practical separation of presentation and content.we want to be able to change how the content is displayed without affecting the
content itself.we want to prevent the code duplication.but at the same time, we do not want to sacrifice practicality just for the sake of
the separation

Naive solution would be to have different HTML pages for each language. We would
end up with several HTML pages for every article, menu etc. Then, for example
changing visual appearance of one caption, adding a paragraph, or modifying some
sentence would require editing of several HTML pages – that is very impractical and
chaotic, code is heavily duplicated. This is problem especially in case of pages related
to the UI (menu, dialog windows, ...), because they contain a lot of HTML markup
tags around.

79

7. User interface .
In our solution, we use a special class which acts as a content library: we give each

piece of content (i.e. caption, sentence, ...) unique string ID and we are able to store
translations for different languages along. It basically works as a table. Because the
application does not contain big amounts of text content, we have defined content ID’s
and their translations just in the special source code file, but obviously the application
can be extended to read text definitions and translations e.g. from a XML file if needed.
When we want to use a piece of content in a HTML page, we add the special attribute
“langcaption” which references the content’s ID to a <div> tag which is placed where
we want the content to appear. During the runtime, the application inserts the correct
translation of such content piece right to the place where the tag is. This allows us to
have a single HTML page for all languages (no code duplication) and since the content
is stored separately, it is easy to modify it. The solution flow is illustrated on the
example of a main menu button definition and can be seen on Figure 7.9.

Figure 7.9. Content translation mechanism

80

. 7.3 Implementation, design and UI behavior

However, assigning an ID to everything is not very practical. While there is no
problem with captions for the UI generally or with short text paragraphs, the situation
changes when we want to present longer articles, with a possibility of a different format-
ting for each article, including images etc. This is the case of articles with information
about some object of interest. For the sake of simplicity and practicality, content from
these articles has no ID assigned (is not present in the content library). The content is
stored in separate HTML pages (one page per article), each page includes translation
of content for all languages. This unfortunately introduces the problem that when we
want to change an appearance of one paragraph, we have to make this change in all
other corresponding paragraphs written in different languages, luckily the good thing
is that apart from some formatting tags there and here, there is no excessive markup
(which is common in pages related to the user interface) so it is not much of a hassle,
which makes this downside acceptable. A very simple example of such article with its
translation HTML page (some parts of the page were omitted) is depicted on Figure
7.10 (how this exact article looks like in the application was shown on Figure 7.7).
There are four attributes used in articles’ HTML pages to mark different parts of an
information within the page:.langtype.marks that everything inside its tag is related to the language specified by the

attribute.tourist_info_title.marks the title of an article.tourist_info_content.marks the translated article content (information about an object of interest).tourist_info_sources.marks translation of the section that lists sources used during creation of an article

As for the requirement of the fast translation speed: since the content is referenced in
HTML tags, the page’s document object model (DOM) has to be traversed in order to
find those tags and put correct translations inside them. We want to avoid a potentially
slow DOM traversal each time when the languages are switched. This is the reason why
for each page, we traverse the DOM only once and store found HTML tags with content
references into the special list. When the languages are switched, we retrieve those lists
for all pages which are currently visible and put translations into all stored tags, which
is fast.

81

7. User interface .

Figure 7.10. HTML page with a translated article

82

Chapter 8
Collision detection

Since the virtual world is an imitation of the real world, a virtual walk application
should aim to mimic its important characteristics in order to make the experience
“believable”. One of the most important characteristics of the real world relevant to
virtual walks is the impact of physic laws. This chapter deals with simulating physical
phenomena related mainly to walking and gravitation. Our simulation reduces to the
problem of collision detection between the user’s avatar and the virtual world. We will
discuss several collision detection approaches, evaluate their pros and cons, and describe
implementation of the chosen approach and incorporation of the gravitational law into
it.

8.1 Goals
Our goal is to simulate the most common physical phenomena that affect a position
of a human body during walking, but we also want to take an advantage of a virtual
environment and simulate phenomena which are not likely to happen in the real world,
such as flying.

We shall consider these physical phenomena in our simulation:.walking on an accessible terrain. collisions with objects.gravitation

Let us define them.
Walking on an accessible terrain is a phenomenon where the avatar’s imaginary leg

position copies a terrain, i.e. their position is the same as the height of the terrain at
particular place in the world. The decision if the place on the terrain in the virtual
world is accessible or not should correspond to the expectation one would have if trying
to walk on such terrain in the real world.

Collision with objects phenomenon should prohibit avatar to pass through solids,
e.g. it should not be possible to walk through walls, statues and such.

Gravitation phenomenon should resemble Newton’s law of universal gravitation [49]
under an assumption of constant gravitational attraction for a falling body near the
surface of Earth. In other words, if the avatar ends up in a situation when it is in the
air (e.g. when avatar walks/“slips off” down from a roof), it will fall with an increasing
speed and eventually stop falling when it lands on the nearest surface below, usually
the ground.

We should be able to turn simulation of the each mentioned phenomenon on or
off anytime. Imitating the real world is important, but simultaneous option of not
imitating is where virtual walks can really shine, giving the users a way how to go
beyond the physical limits of the real world through their virtual avatars. Probably the
most interesting usage of turning phenomenon simulation off is in case of the gravitation,
which enables avatar to fly, allowing for fly-through over the virtual world or just getting
to normally inaccessible locations such as buildings’ roofs.

83

8. Collision detection .
Since all named physical phenomena in our simulation reduce to the problem of

collision detection, we shall decide on the method of the collision detection for our ap-
plication and implement it. It was decided that the collision detection computation
demands should be as little as possible. We think there is no need for perfect simula-
tion in our application – we are willing to trade precision for speed and aim to create
an illusion which is just good enough.

8.2 Collision detection approaches
The main problem which needs to be solved in a case of the each physical phenomenon
simulation is some kind of collision detection, i.e. decide if two objects collide. In our
case, one object is always the avatar and the other one is an arbitrary model from
the virtual world. Thus, we shall investigate possible approaches for resolving collision
detection.

There are existing collision detection solutions available in JavaScript, but most of
them are targeted at 2D. Solutions available for 3D such as oimo.js1) or ammo.js2) are
more of a whole physics engines, very robust. Because collision detection necessary for
our application can be simple – we just need to handle avatar vs everything collisions,
and there are no moving objects – using such solution would cause more harm than good
(performance overhead, potentially complex integration with the application), which is
why we have decided to implement simple collision system by ourselves.

The first thing is to decide on the type of a collision detection which will be imple-
mented. There are two main types of a collision detection:.Continuous.based on a prediction of object trajectories.objects never intersect “physically”. it is known exactly if they are about to collide and the moment of collision, thus

their positions are updated accordingly so they will not collide with each other

.Discrete.advances the physical simulation by a small amount of time and then checks if any
of objects collide. in contrast to the continuous collision detection, objects do collide “physically”
during this method. the moment of collision is not known (it is “missed”).when the collision is detected, positions of objects are updated accordingly so

they will not collide with each other anymore

The main advantage of the continuous collision detection is its precision – we never
miss the exact moment of a collision, but the obvious disadvantage is the performance
along with a code complexity, since various non-trivial computational geometry meth-
ods have to be used. Because of that, discrete collision detection was chosen (the
simulation is advanced by elapsed time between the two consecutive frames, i.e. we
call the collision detection algorithm each frame). This can introduce the problem of
1) https://github.com/lo-th/Oimo.js/
2) https://github.com/kripken/ammo.js

84

https://github.com/lo-th/Oimo.js/
https://github.com/kripken/ammo.js

. 8.2 Collision detection approaches

potentially missed collisions. When objects move too fast, a collision may actually
occur between (two consecutive) time steps, which means we will not know about it;
this is commonly referred to as the “bullet through paper” problem (see Figure 8.1).
Fortunately, objects (papers) in our application are fairly large, so missed intersections
with the avatar (bullet) should not be an issue.

Figure 8.1. Missed collision – bullet through paper problem

We will consider two of the common collision detection solution types:.object-based.works with geometry of objects. transforms the collision detection into a computational geometry problem. e.g. point vs triangle intersection, point vs sphere intersection,heightmap-based.popular solution for representing a natural terrain, but works with urban areas as
well.2D matrix of values that determines height of the terrain (Y) for each location at
the ground plane (XZ plane in WebGL). collision detection carried out by a simple comparison of the avatar’s Y position
against the heightmap (terrain Y)

Since the avatar has a body (although invisible), we should not represent it just as
a point. Instead, we should use some type of a bounding volume (the most convenient

85

8. Collision detection .
being an Axis-Aligned Bounding Box – it provides a good approximation of a human
figure for purposes of the collision detection and is simpler to work with than e.g.
a more fitting cylinder) or at least a line segment. Virtual world models consist of
triangles, therefore the computational geometry problem which needs to be solved in
the object-based approach is AABB/line segment vs triangle intersection problem. Be
that as it may, it is not sufficient just to implement an intersection algorithm – if the
AABB/line segment (avatar) is colliding with a triangle (object boundary), we also
need to know how to update the position of the AABB/line segment so it will not
be colliding with the triangle anymore. For this, it is also necessary to compute the
“least translation vector”, representing the smallest amount of translation which needs
to be applied to the AABB/line segment position in order to stop it from colliding with
the triangle. Example is shown on Figure 8.2. The “platform” consisting of several
triangles is penetrated from above by the line segment AB. The least translation vector
is part of the line segment AB between the point A and the collision point C, directed
towards the point B. If we translate point A of the line segment AB by this vector, the
line segment will no longer collide with the platform and will “sit” on the penetrated
triangle. Also, we cannot forgot to mention that it is an absolute necessity to employ
some space-partitioning data structure to reduce number of triangles which will be
tested for a collision.

Figure 8.2. Line segment vs triangle intersection – the least translation vector

The other approach based on the heightmap requires a small pre-processing step (ren-
dering the scene using an orthographic projection from above), but no space-partitioning
data structure is needed. The main principle behind the collision detection is that we
find out which coordinates in the heightmap correspond to the current avatar’s 3D po-
sition, look up the height value at such coordinates and assign it as the new Y position
for the avatar. This takes care of walking around a terrain. Collisions with objects can
be detected as well, because coordinates where e.g. buildings are will have much larger

86

. 8.2 Collision detection approaches

height value than the ground, so when there is a sudden change in height, we know
that a collision has occurred.

Given the fact that we have to perform extremely similar pre-processing step for the
purpose of the current avatar’s area detection and map displaying (as was discussed in
Chapter 7), less complexity and certainly a faster performance, we have decided to go
with the heightmap-based approach. However, there is one particular disadvantage of
heightmaps which causes us trouble: not being able to handle “overhangs”. Passageways
between the castle courtyards are an example of such overhang cases – there are several
possible height values for a single XZ coordinate. Example of this situation is depicted
on Figure 8.3, where a building containing a passageway is shown from the two different
views, with points A and B having the same XZ coordinates, but different Y coordinate.
This situation is unpleasant, but we will describe how to deal with it.

Figure 8.3. Example of an overhang – passageway

87

8. Collision detection .
8.3 Heightmap implementation

Heightmap for the application is represented in the standard way – by a raster image
(texture). The area captured in the heightmap corresponds to the 600×600 m area in
the real world – the whole image on Figure 8.4 shows the exact captured rectangular
area from the aerial view, with the Prague Castle outlined in red. For the sake of
completeness, area which is accessible in the final application is colored in blue. The
resolution of the heightmap was chosen to be 1280×1280px, yielding a precision of
roughly about 0,5m per pixel1), which is sufficient enough.

Figure 8.4. Area captured by the heightmap – aerial view [50]

1) 1px in the heightmap represents 0,5m in the virtual world (and reality as well)

88

. 8.3 Heightmap implementation

8.3.1 Creation of the heightmap
Creation of the heightmap is a part of the pre-processing step. We use an orthographic
projection and set the camera parameters so that the area of the Prague Castle meant
for exploring is fully visible:

// orthographic projection parameters
left, right, bottom, top = 300
near = 0.1
far = 300

// camera parameters
position = vec3 (60, 150, 10)
rotation = vec3 (-PI/2, 0, 0)

Note that in our application, 1 WebGL unit equals 1m in the reality. The walking
area of the Prague Castle (i.e. ground) is for the most part flat – Hradčany Square, all
Courtyards, generally everything up to St. George’s Square have roughly the same alti-
tude; we have chosen this altitude to be 0 m in the application (i.e. meshes representing
the ground have their Y position around 0). We set all clipping planes to 300, which
makes desired area of the Prague Castle visible. Far plane is set to 300, which means
that we are able to capture vertical range of 300 m into the heightmap. Because the
camera is positioned at 150 m above the ground (position.y), it means we can capture
vertical range of 150m above and 150 m below the Prague Castle ground. Values of
position.x and position.z are most easily found by a short session of trial-and-error.
Camera rotation contains the standard setup for the top-down view.

The resulting projection-view matrix of the camera is saved. Then, all collidable
objects such as buildings, ground etc. are rendered with a special WebGL program
which encodes distance of a fragment from the camera into its color1) (also referred
to as “packing depth into a texture”). The vertex shader of the program can be found
on Figure 8.5 and does not do anything special – it just contains the classic line which
produces clip coordinates of a vertex. Fragment shader (Figure 8.6) is a little bit more
interesting – it takes depth of a fragment in window coordinates (i.e. distance from
the camera, ranging from 0 to 1) and produces a corresponding color by calling the
packDepth24 function from [51], which uses RGB portion for the encoding, thus we
have a precision of 24b available.

Figure 8.5. Encoding depth to a color – vertex shader

1) This program is also used for picking (as was discussed in 7.3.6)

89

8. Collision detection .

Figure 8.6. Encoding depth to a color – fragment shader

To save the result of the pre-processing, we can retrieve what is rendered by using
method of the <canvas> tag called canvas.toDataURL(), which produces base641)
encoded PNG file with the rendered image that can be saved on the disk.

8.3.2 Using the heightmap
At the beginning of the application, we load the image with the heightmap and save its
pixel data to a 1D array in the memory. To obtain height value from the heightmap, the
first thing to do is to convert the avatar’s 3D position in the world into the corresponding
2D position in the heightmap. Using the view-projection matrix which was saved during
the heightmap creation, it is possible to transform current 3D coordinates of the avatar
to the corresponding 2D coordinates in the heightmap similarly to as when transforming
vertices from a 3D world onto the screen:.Avatar’s 3D coordinates are transformed by the saved view-projection matrix into

the clip coordinates

1) https://en.wikipedia.org/wiki/Base64

90

. 8.3 Heightmap implementation

.Perspective division is not needed. that is because orthographic projection was used.normalized device coordinates are thus same as clip coordinates.Normalized device coordinates are mapped onto the heightmap image (viewport
transformation)

A color of the pixel at the obtained 2D position is retrieved and decoded into a num-
ber value using an inverse function unpackDepth24 (JavaScript) to the packDepth24
(GLSL) from Figure 8.6. The JavaScript code for the decoding function (again from
[51]) can be seen on Figure 8.7

Figure 8.7. Decoding depth from a color – JavaScript

As was explained in the previous section 8.3.1, the decoded number represents the
depth (“distance”) of the pixel from the camera that was used during the process of the
heightmap creation. The depth is expressed as a number in the range from 0 to 1, where
value of 0 means that the pixel was right at the camera’s near plane, 0.5 means that it
was exactly halfway between the near and far plane, 1.0 means it was at the far plane
etc. What we would like to know is: what world height (i.e. Y coordinate in the world
coordinates) corresponds to the given depth value? The formula is straightforward
and can be seen on Figure 8.8. By computing the camera’s nearToFarDistance, we
can convert depth value to meters (distanceInBox). The only catch is that to obtain
the correct world height, we must subtract the depth in meters not from the camera’s
position, but from the position of its near plane (nearPosition).

Figure 8.8. Computing world height from a depth

91

8. Collision detection .
8.3.3 Heightmap layers

The Prague Castle contains several passageways, mostly between the courtyards. This
poses a problem for a heightmap, being an “overhang” scenario, with more than one
height (Y) defined at single position (X,Z). Example was shown on Figure 8.3. We will
now discuss how to cope with this shortcoming.

Up until now, we have assumed the standard case when one pixel in a heightmap is
used for encoding one height value into its color. In such case, a pixel can utilize for
its depth encoding up to four RGBA channels (32b). One practical solution, assuming
that each height value require same amount of space, may be storing height values
either in separate color channels (8b per value, we could store four such values) or in a
pair of channels (16b per value, we could store two such values). Anyway, 8b are not
enough: even if we reduce our chosen vertical range from 300 m to the lowest possible
range which is about 100 m (the difference between the lowest and the highest point in
our virtual world, i.e. between the ground and the main tower of St. Vitus Cathedral),
we would not be able to store a height difference smaller than 100

28 m, which is about
39 cm. That would be a problem, because there are smaller objects than this appearing
in our virtual world – for example stairs are usually about 10 to 15 cm, so it would
cause problems with walking on them properly. 16b per one height value are sufficient,
but we can only have two such values stored in a pixel. The problem is that we need
to store three values in each pixel for passageways to work with a heightmap:

.Largest height

. the largest Y position of all triangles which project to the pixel. typically height of the ground, roofs, objects (fountain, ...).always defined

.Passageway area – ceiling height

.Y position of a passageway ceiling triangle, which is at the position that projects
to the pixel.undefined if the pixel is not in a passageway

.Passageway area – floor height

.Y position of a passageway floor triangle, which is at the position that projects to
the pixel.undefined if the pixel is not in a passageway

Since we cannot store all three values comfortably into one heightmap, it was decided
that three separate heightmaps (layers) will be used, each storing one type of the val-
ues mentioned above. This means triple memory requirements for the entire heightmap,
but that is an acceptable price to pay concerning the fact that the heightmap images do
not need to be on the GPU, but rather in the main memory. In the proposed system of
three layers, it is possible to move inside passageways the same way as everywhere else
(i.e. by walking, flying, ...), although the system cannot handle multiple passageways
above themselves. Fortunately, there are no constructions like that in the Prague Castle
area, so it is not a problem.

92

. 8.4 Principles of the application’s collision detection

Generating the layers is almost the same as generating the heightmap as was de-
scribed in 8.3.1. The only thing different in the generation of each layer is which
models are rendered:.Largest Height layer.all models are rendered. (the exact same process described in 8.3.1).Passageway area – ceiling height layer.only triangles which are part of some passageway’s ceiling are rendered. such triangles must be marked in the SketchUp (explained below).we have to render both front and back faces of ceiling triangles – otherwise a

ceiling would not be visible either by the user (if the direction of the front face
is positive Y) or the orthographic camera which is generating the heightmap (if
the direction is negative Y)

.Passageway area – floor height layer.only triangles which are part of some passageway floor and possibly any other
models standing inside them, e.g. small statues, are rendered

Triangles that belong to a floor or a ceiling must be manually marked in SketchUp.
This is done by selecting all triangles which are part of a floor/ceiling, creating a
new group from them and assigning it a name which starts with a prefix “floor_” or
“ceiling_”. How the different layers of the heightmap look like is shown on Figure 8.9.

Figure 8.9. Three layers of the heightmap

8.4 Principles of the application’s collision detection
Let us take a look at our simple collision system from a higher level. Each time when
the avatar’s position changes, the collision system checks if a collision has occurred. If
no collision has occurred, the avatar’s position can safely change and we are done. If
the collision does occur, the solution seems obvious at the first glance: reject the new
position and keep the old one. However, this could lead to the situation when the avatar
will stop its movement too far from an obstacle (e.g. wall) although it is clearly still
possible to move closer. It happens when an increase in the avatar’s position during

93

8. Collision detection .
the advancement of the simulation is bigger than the avatar-to-obstacle distance. It
is related to the bullet through paper problem which has been mentioned earlier (see
Figure 8.1), in which the collision is missed. In this situation, the collision is not
missed, it is detected like it should be, but that prevents the avatar from a further
movement in its direction. What would we like to know is the least translation vector
which we have talked about as well. The bad news are that computation of this vector
is far harder than in the case of AABB/line segment vs triangle intersection, because
we work with a different kind of information (image instead of a geometry).

One way of finding the least translation vector involves ray-casting in the heightmap.
To be precise, we are searching for the “opposite” of the least translation vector –
the “largest” translation vector, i.e. the largest vector by which we can translate
the avatar’s position without the avatar being in the collision. We know that there is
a sharp transition in the heightmap between places that have much different heights,
which allows us to check for collisions not just with the terrain, but also with walls and
such. By casting a ray from the avatar’s position to the rejected (colliding) position and
inspecting height values of intersected pixels along the ray, we can find the boundary
(= two pixels along the ray which heights differ too much) between e.g. the ground
and a wall, which is all we need for figuring out the largest translation vector. The
problem is that this position is in the 2D heightmap image space, but we need it in
the 3D object space. We can unproject this 2D position to obtain (X,Z) coordinates in
3D, however, we are limited by the precision of the heightmap. To put it simply, there
are several 3D positions which project into the given 2D position, but the given 2D
position unprojects just into one 3D position. While our heightmap precision of 0,5m
is enough for the general collision detection, it is not enough for figuring out the largest
translation vector, because being possibly off by 0,5 m does not solve our problem of
the premature stopping in front of obstacles at all.

We could increase the resolution of the heightmap to increase its precision, but there
is a simpler (and more memory-effective) solution which approximates the largest trans-
lation vector: each time when a collision occurs, we divide the avatar’s position in-
crement into smaller parts, and each time when the smaller increment is applied,
we try to detect the collision again. A specified number of these additional collision
checks are performed (we call this number the “collision budget”). The first additional
check moves the avatar with the amount equal to 1

21 of the avatar’s position increment,
the second additional check moves the avatar even further with the amount equal to 1

22

of the avatar’s position increment and so on. Formally, this can be written as:

checked position(n) = orig. avatar′s position + position increment ∗ 1
2n

where

n = number of an additional collision check

The additional collision checking is terminated when the currently checked position
is in the collision. The largest translation vector approximation is then obtained as the
vector between the original avatar’s position and previous additionally checked position
(that is the last one which has not been in any collision). Illustration of the additional
collision checking is shown on Figure 8.10. The collision budget of three additional
checks proved to be sufficient. The reason why we do not have the “infinite” collision

94

. 8.5 Implementation of collision detection

Figure 8.10. Additional collison checking – finding the largest translation vector approxi-
mation

budget is that there are special cases where too much of additional checks may be
performed – happens when the initially detected collision is right beyond the obstacle.

It is also important to mention that the value of the near camera plane may have to
be adjusted. If its value is too big, even though the collision detection is working like
it should, it will appear as if avatar is in the obstacle, colliding, since the obstacle’s
texture will not be visible and we will see through.

8.5 Implementation of collision detection
This section will cover implementation details of our simple collision detection system.
First, let us divide the avatar’s movement into the two main types:.Horizontal.moving along the terrain (walking).Vertical.moving along the Y direction (falling or flying)

95

8. Collision detection .
Because our application simulates gravitation, these movement often happen simul-

taneously. Let’s now take a look at which situations do collisions happen exactly. There
are several events related to them which take place in the application:.Walking on an uneven terrain.Walking into a wall.Falling.Flying.Walking through a passageway

We will now examine these events, what is similar for them and how are they handled
from the standpoint of our collision system.

Walking on an uneven terrain, walking into the wall: this is the most usual case,
where the avatar walks on the terrain, just like we do in the real world. The user
performs only horizontal movements with the avatar, i.e. only X and Z coordinates
can be changed by the user’s actions. The Y coordinate is always computed based on
the X and Z coordinates by a lookup into the heightmap. This simulates an effect of
walking on an uneven terrain, since the avatar is always at the highest point for its
current world position.

In any case, to correctly simulate the reality, we have to make sure that the avatar
cannot walk on a terrain which is too steep. The solution to this is the same as the
solution which prevents the avatar from walking through the walls – height at the
current avatar’s position and at his potentially new position is compared:

heightDiff = newHeightmapHeight - currentHeightmapHeight

If the value of heightDiff is greater than ε (we use ε = 1,0 m), it means the new
height is a lot bigger than the old height, so we can conclude that avatar cannot access
the new position. Note that it is not necessary to differentiate whether the avatar
cannot access the new position because the terrain is too steep or because there is a
wall (or other obstacle) in front of him, since from the collision system’s standpoint,
steep terrain and wall (obstacle) are one and the same thing. We shall point out that
the terrain in the context of our collision system is not just the ground, it can be also
roof or similar object – strictly speaking, it is simply the highest point at a certain
heightmap position.

Avatar falling: the usual scenario is that the avatar walks on the roof and then
“jumps” off it. Since our application simulates gravity, naturally, the avatar starts to
fall to the ground and after a certain amount of time, it will land.

Before we explain how we detect that the avatar should fall, let us introduce avatar’s
“air status”, which tells us whether the avatar is in the air. Avatar’s air status can
have one of these two (three) values:.not in air.walking on a terrain (ground, roof, etc.). in air. from implementation reasons (will be discussed), we further differentiate between

the two “in air” states:. in air for a long time. just got into air

96

. 8.5 Implementation of collision detection

Finding out value of the avatar’s air status is carried out by comparing avatar’s Y
position and value from the heightmap at the avatar’s (X,Z) position:

heightDiffAir = avatarY - currentHeightmapHeight

This equation is similar to when we were checking collisions with the terrain
and walls. If the difference (heightDiffAir) is greater than ε (this time, we use
a slightly smaller ε = 0,8 m), the avatar’s Y position is much bigger than the cur-
rent heightmap height, meaning that the avatar is far above the terrain and thus
air status = in air (otherwise, if the difference is smaller than ε, it is not in the
air and thus air status = not in air).

Now, when the air status = in air, we need to differentiate between two situ-
ations: whether the avatar just got into the air (e.g. user has “jumped” off a roof)
or whether the avatar is already falling, being in the air for a long time. Particularly
important is the former situation, since it is an instant when the avatar starts to fall.
When this situation happens, current avatar’s Y position and current time (obtained
e.g. by JavaScript function Date.now()) are saved:

avatarY_fallStart = avatarY
fallStartTime = Date.now()

The actual falling happens in the case of air status = in air for a long time.
The new Y position of the avatar, valid for the current frame, is computed by using the
previously saved avatarY_fallStart, and fallAmountY values:

newAvatarY = avatarY_fallStart - fallAmountY

The fallAmountY is computed based on the previously saved fallStartTime. We
consider uniform gravitational field without air resistance in our application and freefall
as a vertical motion of an object (avatar) falling a small distance close to the surface of
a planet (ground), which is a good approximation for our purposes. The equation used
for computing newAvatarY during the fall is following [52]:

y(t) = −1
2gt2 + v0t + y0

where:

v0 is the initial velocity (m

s
)

y0 is the initial altitude (m)

y(t) is the altitude with respect to time (m)

t is time elapsed (s)

g is the acceleration due to gravity (9.81 m

s2 near the surface of Earth)

Lets modify the equation so it matches our implementation. First, we rename the
variables:

y(t) = newAvatarY

t = Date.now() − fallStartTime

y0 = avatarY_fallStart

97

8. Collision detection .
Next, we can leave out the second term, since the avatar does not have any initial

velocity. Also, we will rearrange the terms, putting y0 at the start. This leaves us with
the modified equation used in the implementation:

newAvatarY = avatarY_fallStart - 0.5*g*(Date.now() - fallStartTime)ˆ2

The end of the avatar’s falling is given by the transition between the avatar’s
air state = in air to air state = not in air, which happens when the avatar’s
Y position is below the terrain’s Y position (heightmap height). The nice thing is that
the avatar will be placed correctly on the terrain (with no additional collision checks
needed, in contrast to the case of walking and walls) right away, because when the
air state becomes air state = not in air, avatar’s Y position will automatically
obtain the same value as terrain’s Y position.

Earlier, we have discussed the events of walking (which is a horizontal type of move-
ment). The walking and falling (vertical movement) can occur at the same time, e.g.
user can move the avatar wherever he likes during falling. Collisions against obstacles
will still be working like in the usual case when walking on the terrain.

In the Avatar flying event, the only difference compared to the walking is that avatar
can move not only horizontally, but vertically as well. Gravitation is turned off, so
consequently, avatar’s Y position is fully determined only by the user’s movements. In
other words, the user can move the avatar freely in all directions.

We intentionally mention the event of Walking through passageways as the last one,
because there is nothing very special to collisions inside passageways. What needs to
be done is the test if the avatar is in a passageway or not. This test is performed at
the very start of each collision detection call. After we obtain the avatar’s 2D position
in the heightmap, we look to the Passageway area floor height layer. If the pixel at the
position is undefined, we are not in a passageway, otherwise we are – in that case, we
start to use Passage area floor height layer for computation of the avatar’s Y position
during the collision events instead of the normally used Largest Height layer. Also,
the movement is limited from above by a passageway ceiling height (normally, it is not
limited).

Table 8.1 contains important collision events’ properties summary, where for each
situation, we can see in which directions can avatar move and based on which part of
the collision detection system is its Y position calculated.

Action Directions user can Avatar’s Y
control movement in calculcation

Walking X, Z heightmap
Falling X, Z freefall simulation
Flying X,Y,Z none

Table 8.1. Collision events’ properties summary

98

Chapter 9
Performance optimizations

Despite the fact that we have a quite powerful machines available today, even simpler
applications with 3D virtual worlds can run horribly slow. Similarly to other computer
science related problems, it is not sufficient to tackle the rendering process using a naive
approach. It is crucial to utilize effective approaches and apply optimized solutions to
get most out of the available hardware. Our application is no exception and running it at
smooth speed without efforts put into performance optimizations would be impossible.
This chapter will explore shortcomings of the naive approach to rendering (put into
the context of Three.js, but the principles apply generally) and explain how it can
be improved using the technique of “Mesh merging” along with the implementation
details. Usage of popular rendering optimization techniques such as LOD, texture
atlases, frustum and occlusion culling is discussed as well.

9.1 Goals and considerations
Our goal, according to the specified project requirements, is to achieve 30+ FPS on the
supported platforms. Moreover, even though the final application does not contain the
whole area of the Prague Castle, we shall design optimizations with it in mind to allow
for adding the remaining places without the fear of making the application slower due
to such addition. As for the implementation, we shall strive for approaches that do not
modify inner parts of Three.js. The discussed optimizations focus only on rendering
speed and reflect the virtual walk nature of our application – mainly the fact that it
has mostly static geometry and contains no animations of humans or animals.

9.2 Three.js and meshes
Before we start the actual discussion about optimizations, it is necessary to explain
how Three.js operates in regards to the rendering. Note that in the following text,
we assume that all faces are triangles. Also some class names etc. were altered and
behavior processes of Three.js were simplified a little so we can better focus on the
principles.

The most important class from Three.js in this matter is Mesh class, which holds
information about a 3D model – mainly its matrix transformations, used materials and
geometry. It is possible to classify meshes into the two categories, depending on the
number of materials they use:.One-material mesh.uses only one material.all its triangles must use this material

99

9. Performance optimizations .
.Multi-material mesh.uses multiple materials. triangles can have different materials

Geometry data of a Mesh is available in a form of an object. How the geometry
information is stored in the memory and used is determined by a Three.js class which
was used to instantiate such object. There are two such classes (types):.Geometry. standard data structure for storing a geometry information.holds all data necessary to describe a 3D model.possible to easily access individual data items.arbitrary vertex positions, texture coordinates, faces definitions, e.g. position of the 2nd vertex of the 27-th triangle of a model.data items are provided in an easy-to-work-with format and manner. e.g. we can retrieve position as Vector3

.BufferGeometry.an efficient alternative to Geometry, but harder to work with. stores all data within buffer(s). reduces cost of passing data to the GPU. rather than accessing position data as Vector3 objects, color data as Color objects
etc., we have to access raw data from the appropriate attribute buffer. faces definitions in Geometry are translated to DrawingCall objects.draws geometry directly from the buffer(s)

The types of geometries can be converted between each other. Three.js internally
uses BufferGeometry for rendering, so even if the application code explicitly uses only
Geometry, the BufferGeometry is created nevertheless (although it is not an optimal
conversion yielding the highest speed). So the difference is that with Geometry, data
is stored in a more “user-friendly” way, it occupies more memory and it is not re-
ally possible for us to speed up the rendering process. With BufferGeometry, it is
exactly the opposite. A simplified graphical overview of the explained hierarchy is
depicted on Figure 9.1. Especially important classes are Face, which instances fully
define one face (triangle), and DrawingCall class, which is a definition of one WebGL
drawing call which will be performed during the rendering process. The Attribute
class is a container holding information about mapping of per-vertex attributes (posi-
tion, normal, ...) and is resembling arguments of the classical OpenGL/WebGL method
glVertexAttribPointer1).

It is also worth to mention that we use a non-indexed geometry (i.e. glDrawArrays()
is used to render the data). Three.js allows a developer to render an indexed geometry
(rendering by glDrawElements()), but relevant available loaders (Collada loaders in
our case) do not create an indexed geometry. We would have to deal with it entirely on
our own. Implementation of the custom loading process, preparing such geometry and
working with it would bear a significant added complexity, thus we have settled with a
non-indexed geometry.
1) https://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttribPointer.xml

100

https://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttribPointer.xml

. 9.3 Rendering approaches

Figure 9.1. Three.js – structure of Mesh class

9.3 Rendering approaches
When a scene is loaded via Three.js “naively”, i.e. just by calling appropriate loader for
used 3D models, the performance can be downright terrible even for not very complex
scenes. In order to understand why the framerate is being so low and overcome this
problem, it is necessary to analyze the situation and see what Three.js is doing under
the hood.

9.3.1 Naive rendering approach
The testing scene which we have used for exploring different loading approaches is
actually an unfinished, development version of the scene appearing in the final applica-
tion. The content of the unfinished scene was copied multiply times and these copies

101

9. Performance optimizations .
were inserted alongside each other, forming the entire testing scene. The testing scene
consisted of:.304 000 triangles.140 materials (textures).one ambient and directional light source. shadows via shadow mapping.other than that, no visual effects

Lets assume that the whole scene is defined in some kind of a scene definition file (e.g.
a DAE file). The scene definition file is processed, using a loader of an appropriate 3D
type. It does not matter which loader is used (i.e. in which 3D format the models are),
the result is very much the same. There are some subtle differences, i.e. some loaders
create geometries as instances of Geometry, some as instances of BufferGeometry, but
as we have explained in the previous Section 9.2, apart from an increased memory
consumption etc. (and in this case, also increased load time), this does not matter
as far as the runtime performance goes if the loader does not optimize the created
BufferGeometry (and most of the loaders do not optimize at all, if any).

The loader creates a new instance of Mesh class for each collection of faces which
have same material and are connected to each other by edges (more on this later). The
process is described through pseudocode on Figure 9.2.

Figure 9.2. Naive scene loading code

When the loader finishes, the scene contains N meshes. Each such Mesh has its own
data buffer with the geometry data1). How the rendering process looks in Three.js can
be seen in the pseudocode on Figure 9.3.

1) Actually, it usually has one buffer for each attribute (position, normal, texture coordinates, ...), but we
try to keep it simple for our explanation.

102

. 9.3 Rendering approaches

Figure 9.3. Three.js render function (part)

Essentially, definitions of drawing calls are collected from each Mesh, sorted by ma-
terials (to reduce WebGL state changes) and then executed in such order. Example of
a sorted render list can be seen on Figure 9.5. This render list is related to the example
scene illustrated on Figure 9.4.

Figure 9.5. Render list – naive scene loading

103

9. Performance optimizations .

Figure 9.4. Scene example used for demonstration of different approaches to rendering

The breakup of a time complexity for the naive scene loading can be seen on Table
9.1. Buffers have to be switched O(n)-times in the rendering loop, because each Mesh
has its own buffer1), and drawing calls of a Mesh are scattered through the render list.
That is a lot of buffer switches, which heavily contributes to the poor performance.
Materials are switched just O(m)-times, because drawing calls are sorted by materials.
There are O(n) drawing calls performed – one draw call for each Mesh. The frustum
culling2) is performed on each Mesh, but even in the “best” case of camera position and
orientation, the application runs at just 25 FPS. Usually, the framerate is around 10
FPS. It is true that performing frustum culling on each individual Mesh without some
sort of acceleration data structure is certainly not optimal, but the thing is that even
with the culling off (or with the whole scene in the frustum), the performance is about
2 FPS.

From inspecting Table 9.1, we can see that the performance is greatly affected by the
number of created Meshes during the import. As for importing, it is really important
how a scene is defined and how the loader uses this information. 3D formats usually
contain some kind of “group” (alternatively called also “object”) definition, which allows
us to group faces together to form an object. If the scene definition file contains such
group/object definitions in a reasonable amount, then ideally, each found group is
imported by the loader into the application as a whole Mesh and all is good, since there

1) We once more remind that we made a simplification and assume that each mesh has only one buffer
(possibly interleaved), although in practice, it can very well have buffer for each of its attributes; the
principles which are explained apply in both cases
2) We made a rough assumption that it averagely culls about 50% of objects

104

. 9.3 Rendering approaches

Action Complexity Testing scene value
buffer switching O(n) * f 9 500
material switching O(m) 140
drawing calls O(n) * f 9 500
triangles rendered O(n) * f * trisAvg 152 000
FPS — 10

(min 2, max 25)

Symbol Meaning Testing scene value
f amount of meshes in the camera frustum 0.5

i.e. visible (normalized to [0,1])
n number of all created Mesh instances 19 000

during the scene import
m number of materials 140

trisAvg average number of triangles per Mesh 16
Table 9.1. Time complexity – naive rendering approach

are not that lot of groups, so we will not have a lot of Meshes, which means no excessive
buffer switching and drawing calls.

But, if the definition file does not contain any group definitions or the loader does
not support them, we are in for a trouble (which was exactly what happened in the
naive scene loading case). The precise result in this unfortunate situation depends
on the used 3D file format and the modeling program used for exporting the scene
definition file, and in our case with the scene definition file exported by SketchUp, we
can generally say that Meshes created by the Collada loader are one-material meshes,
and we end up with one Mesh instance per each collection of faces (triangles) which
have same material and are connected to each other by edges (i.e. loosely similar to a
triangle strip). In the theoretical worst case when no triangles share edges, we can end
up with T instances of Mesh class, where T = number of triangles in a scene. Figure
9.6 illustrates all these mentioned cases – there are three materials in total, triangles
are labeled by a letter and number (e.g. F1) and each case have written below itself
how many Meshes will be created and from which triangles they consist of.

The loader implementation is extremely important here – it must be able to prop-
erly read groups from the scene definition file and create corresponding multi-material
meshes. Implementation of the Collada loader used for importing our scene does not
support groups per se since it does not create multi-material meshes, but at least it
respects groups definitions made in SketchUp. All faces which belong to the same group
in SketchUp are imported as one-material meshes (in the manner discussed a moment
ago) and become children of an Object3D instance, which in this case can be thought of
as a container holding multiple Mesh instances together. The fact that we know which
meshes belong together and are forming a group will be useful a while later when we
will discuss improvement of the loading process.

9.3.2 Improved rendering approach – Mesh merging
To summarize, the bottlenecks of the naive scene loading process are:. state changes caused by switching buffers.number of drawing calls

105

9. Performance optimizations .

Figure 9.6. Examples of created meshes – naive rendering

Since there were so many meshes, the amount of both shot through the roof, making
the performance so bad. Lets look at the way how to fix the problem of buffer switching
first.

106

. 9.3 Rendering approaches

We have talked about the Collada loader and the fact that it does not create a
multi-material Mesh representing a group defined in the scene definition file. However,
it creates object groups in a form of Object3D container which contains all meshes
that belong to the group. The obvious improvement is to create a single big Mesh
representing each group (as was always meant to be), which would dramatically reduce
number of buffer switches. The big Mesh is multi-material, so it is possible to define
different materials for different faces, allowing us to store geometry data of each Mesh
from a group inside buffer(s) of the big Mesh.

But for now, in order to better explain the process of creating such single big Mesh
representing a group, suppose that we do not have any information about object groups,
i.e. the scene definition file contains no object groups at all. That is not an unrealistic
scenario at all, considering that working with groups in SketchUp can be quite trou-
blesome. We still want to create a single big Mesh, this time it will represent a whole
scene and contain every imported Mesh.

The technique of adding geometries of different meshes together is called the “Mesh
merging” (also known as the “Mesh combining”) and is very useful when dealing with
static geometry, which happens to be our case. In the following text, we will refer to the
Meshes which are being merged together as “small” Meshes, and the resulting merged
Mesh from all these will be referred to as the “big” Mesh. Three.js provides a built-in
function for merging Meshes, but we cannot just call it as it is; in brief, the function
does not account for the fact that materials occurring in Meshes repeat (e.g. there
are 19 000 Meshes, but only 140 materials), making it impossible to correctly remap
materialIndex of faces (recall Figure 9.1) of a small Mesh which is currently being
merged into the big Mesh. The materialIndex must be remapped, because it is valid
only in the context of a small Mesh (and its own list of materials), and we need it to be
valid in the context of the big Mesh (and its list of materials). As complicated as it may
sound, the solution is actually quite simple. How the whole Mesh merging procedure
could be carried out is described in the pseudocode on Figure 9.7.

107

9. Performance optimizations .

Figure 9.7. Mesh merging – pseudocode

After the remapping of materialIndex is finished in all small Meshes, we can safely
merge them together into the one big Mesh using the built-in Three.js function. For
example how a sorted render list can look now that we have all meshes’ data in one
buffer, see Figure 9.8 (same as with the previous example of a render list, this render
list is also related to the example scene on Figure 9.4).

108

. 9.3 Rendering approaches

Figure 9.8. Render list – Mesh merging

Lets move to the solution of the second problem with a high number of drawing
calls. During the merging of small Meshes into the big Mesh, geometries of small Meshes
were just being added one after another into the buffer of the big Mesh. If we take a
closer look at the example of a sorted rendering list obtained after the Mesh merging,
we see that except for the occasional and necessary material switches, there are no
other state changes happening between the drawing calls. It is thus possible to draw
all triangles of the current material in a single drawing call. However, it is not possible
in our current situation, as geometries of triangles with same materials are scattered
in the big Mesh buffer – we need triangles to be stored one after another. After we
perform triangle rearrangement and have triangles of same materials in contiguous
blocks of memory, we are able to draw all triangles with same material at once in a
single drawing call. How the sorted rendering list from previous examples (see Figure
9.5 and 9.8) looks now can be seen on Figure 9.9.

Figure 9.9. Render list – Mesh merging with triangle rearrangement by materials

To further illustrate the situation, we provide another example on Figure 9.10. Note
that the example operates on a different scene than previous examples; only objects
visible to the camera are depicted (the rest of the scene is omitted), the white num-
bers express how many triangles of a mesh are drawn in a corresponding material, e.g.
mesh1 consists of 8 blue (material1) triangles, 4 red (material2) triangles and 66 green
(material3) triangles. Next, the rendering list along with DrawingCall definitions is
shown. DrawingCall is a class which instances are used for defining a single WebGL
drawing call – count defines how many triangles will be drawn, start tells us from which
item (“triangle”) in a buffer should drawing start and is used to compute the actual

109

9. Performance optimizations .

Figure 9.10. Mesh merging – layout of big Mesh buffer

array index from which the data will be fetched (index = item * itemSize; itemSize
being 3 for positions and normals, 2 for texture coordinates etc.), materialIndex de-
fines which material will be used for the rendering. At the bottom, layout of the big
Mesh buffer for vertex coordinates is depicted. If the big Mesh contains buffers for an-
other attributes, their layout would be exactly the same e.g. for normals and in the case
of texture coordinates, we would multiply by itemSize of 2 instead of 3 to compute
the array indices.

The explained principle holds even for the case when the big Mesh contains
one big interleaved buffer with all attributes being together, interleaved e.g. like

110

. 9.3 Rendering approaches

VVVNNNTT|VVVNNNTT|VVVNNNTT|... (where V = vertex position, N = normal, T =
texture coordinate). The only different thing in case of interleaved buffers is a slightly
more complex and error-prone implementation, since the data rearrangement during
all the Mesh merging becomes trickier. Our application actually uses one interleaved
buffer for all attributes 1) rather than one buffer for each attribute, but we have
chosen not to include interleaved buffer in our explanations for the sake of simplicity.

The technique of Mesh merging, however, has its disadvantages as well, all coming
from its very nature. Above all, it is suitable for world containing mainly static geometry
which does not change (or changes very rarely); our application fits that perfectly. But
what is a problem that we end up (after this second phase – triangle rearrangement)
with a single instance of Mesh class, which makes some standard features of Three.js
(or of any other graphical framework/engine) noticeably harder or impractical to use.
One of the most painful case of this is frustum culling, which works with individual
Meshes (or their groups).

Time complexity is depicted on Figure 9.2. By merging meshes together, we have
reduced the time complexity of buffer switching to O(1), effectively eliminating it.
Number of material switches is still O(m) and by rearranging the individual triangles
by material, we have been able to cut the overall number of draw calls also to O(m). The
frustum culling is not performed as we do not treat Meshes individually anymore, so all
triangles in the scene are rendered. The result is 60 FPS, which is a huge improvement
and certainly an acceptable value for us.

Action Complexity Testing scene value
buffer switching O(1) 1
material switching O(m) 140
drawing calls O(m) 140
triangles rendered O(n) * trisAvg 304 000
FPS — 60

Symbol Meaning Testing scene value
n number of all created Mesh instances 19 000

during the scene import
m number of materials 140

trisAvg average number of triangles per Mesh 16

Table 9.2. Time complexity – improved rendering (Mesh merging)

1) Data from our scene loader is not interleaved; and since we always have to move data around during
the Mesh merging process anyway, we make use of this opportunity to make the data interleaved

111

9. Performance optimizations .
9.3.3 Mesh merging – several groups

Performance of 60 FPS achieved by the Mesh merging is satisfying, but the fact that
we cannot use frustum culling may bother us. We still have the geometry data of the
individual meshes (and their bounding volumes), so it would be certainly possible to
modify Three.js to frustum cull individual small Meshes (or even their subset visible
in the frustum, obtained by traversing some acceleration data structure) which were
merged into the big Mesh, but it is not very practical to do so if we want to stick to
the triangle rearrangement, because then we could not fully utilize its power (data of
all drawn triangles would no longer be in contiguous blocks of the memory).

Now, lets lift our assumption that there are no object groups defined in the scene
definition file. More effective and simpler solution to enable frustum culling is to use
group definitions from the scene definition file and create a big Mesh for each group.
That way, we would be able to use frustum culling on each big Mesh and still profit
from the Mesh merging and triangle rearrangement optimizations, albeit not for free.
Figure 9.3 shows time complexity of this approach.

Action Complexity Testing scene value
buffer switching O(1) 1
material switching O(m) 140
drawing calls f * O(g) * O(m) 700
triangles rendered (O(n) * trisAvg) - 152 000

((1-f) * O(g) * trisGroupAvg)
FPS — 40

Symbol Meaning Testing scene value
f amount of meshes in the camera frustum 0.5

i.e. visible (normalized to [0,1])
g number of object groups 10

in the scene
n number of all created Mesh instances 19 000

during the scene import
m number of materials 140

trisAvg average number of triangles per Mesh 16
trisGroupAvg average number of triangles per group 30 400

Table 9.3. Time complexity – improved rendering (Mesh merging, several groups)

Buffer switching can stay at O(1) if we make some modifications to Three.js, store
geometries of all big Meshes in one huge buffer (which does not belong to any Mesh)
and then just make sure that each big Mesh uses that buffer. The price to pay for the
ability to use frustum culling lies in an increased number of drawing calls: each group
in the frustum uses O(m) drawing calls. Number of rendered triangles depend on the
number of triangles which do not belong to any group (these are rendered every time,
since they cannot be culled) and on the sum of triangles of groups in the frustum.

112

. 9.3 Rendering approaches

The performance obviously depends most on the value of g, which is responsible for
the increased drawing call count. We have performed a benchmark in the testing scene
to see how much overhead an increased number of drawing calls pose. Mesh merging
with the triangle rearrangement (see Figure 9.2) was used to create a single big Mesh
representing the whole scene for this benchmark. The results are shown on Figure 9.11
and 9.12. The performance began to significantly drop down after about 400 draw calls
on the machine which ran the benchmark (see its HW specification in 11.2 – Desktop
2007). Naturally, this number will be different for each machine, but since the hardware
specification of the testing machine qualifies even below the worst configuration which
should still be able to run the application, we can consider the number to be quite
reliable for the general orientation.

Figure 9.11. Dependency of FPS on drawing calls

Figure 9.12. Dependency of FPS on drawing calls (logarithmic scale)

We have to keep the rough limit of approx. 400 draw calls in mind if we decide to
use the frustum culling. A reasonable solution is to keep the number of groups low
(so we do not reach the limit) and create a group only if the resulting big Mesh would
have “a lot of triangles”. Also, small Meshes which form a group (in other words, small
Meshes which form a big Mesh) should be close to each other, so there is a realistic

113

9. Performance optimizations .
probability that the big Mesh could be culled; if small Meshes are too far apart, the
bounding volume for the entire big Mesh (group) is too large, making our efforts vain.

What exactly is “a lot of triangles” is not easy to define, it depends on the concrete
application and shall be tested. In any case, it must be profitable to create a group
– if we create a group for a fountain which has 1 000 triangles, we may be able to
cull it sometimes or even display with a lower LOD, but it would not be worth the
added extra drawing calls which fountain mesh will produce. On the other side, if a
fountain has over 100 000 triangles and a complicated shader, then it may be worthy of
consideration.

As for our case: the basis for creating our testing scene (300 000 triangles, 140 materi-
als) was an unfinished version of the scene appearing in the application. The unfinished
version of the scene covers about 25 % of the Prague Castle area and contains around
20 000 triangles and 60 materials. We can estimate that even the whole Prague Castle
scene will not exceed 300 000 triangles and about 300 materials. It seems that creating
groups (and using the naive Three.js built-in frustum culling + LOD) in our current
situation is not worth it and may be even counterproductive – because solely by the
estimated number of materials, we are already approaching the draw call limit for sus-
taining 60 FPS. On the contrary, the estimated number of triangles is similar to our
testing scene and thus “safe”, so currently there does not seem to bee the need to “save
on” triangles. On that account, we stay with a solution of creating a single big Mesh for
the whole scene while employing triangle data rearrangement, i.e. the approach that
was exactly explained in 9.3.2).

Another alternative approach which we want to mention is giving up the whole tri-
angle rearrangement optimization which forces us to have a single big Mesh and instead
implement a more sophisticated culling process using an acceleration data structures
like kD-tree or Bounding Volume Hierarchy. Inseparable part in this approach would
be incorporating LOD as well, because even the best culling techniques are not of much
use if the avatar is in the FLY mode and the whole castle area is visible. However,
keeping the conclusion from the previous paragraph about the whole castle scene in
mind, we think that our application with its intended scale and graphics features
performs good enough with the triangle rearrangement.

9.4 Possible performance improvements in the future
The larger value of the estimated number of materials in the whole scene (see the end of
the previous section 9.3.3) may concern us – after all, we can say that the performance of
our application depends mostly on the number of drawing calls, which in our case equals
number of materials. Besides, the limit of 400 drawing calls is just an approximation
and apart from the sun and real-time shadows casted by it, the testing scene which was
used to derive this limit did not contain any effects or light sources, so the real limit
is certainly smaller. Moreover, if we want to, then exceeding “safe” parameters of the
scene (300 000 triangles, 300 materials) is a piece of cake. We will now quickly discuss
how to deal with this issue to some degree.

Concerning the material limit, it is important to note that almost each texture in
our application corresponds to a single image, no matter how small/big it is. This is
a very convenient during modeling (i.e. no pre-processing and easier manipulation),
but of course not the most effective way of handling textures, since when we use a
whole 4096×4096 texture (i.e. one whole material) on a 256×256 image, then 99,61 %
of texture’s area is left unused. Enter the technique of “Texture atlasing”, which can

114

. 9.4 Possible performance improvements in the future

help us to pack several images into one texture. Although there would still be some
unused area in textures, their overall number would be hugely decreased. The sheer
number of materials (textures) would no longer be a significant problem.

While the texture atlasing is an effective optimization, we still have to keep in mind
available memory on graphics card. Even if the number of materials (textures) may
not be a problem, the total image area covered by them still concerns us. Luckily, we
can use a texture compression algorithm like S3 (probably more known by the name
of DXT) [53], which is able reduce size of a texture on GPU about 4×.

115

Chapter 10
Lighting and visual improvement techniques

Having nice 3D models and textures in virtual worlds is crucial for a good impression,
but not enough on its own. Simulation of lighting has been always known as probably
the number one thing which brings a virtual scene closer to the reality and improves its
visual quality. We will briefly talk about illumination models and how they simulate
lighting and shadows, pinpoint their pros and cons and describe how the whole simu-
lation is done in our application which contains a day/night cycle. However, there are
also other ways how to improve the visual perception of a scene; we will particularly
focus on post-processing effects.

10.1 Goals
Our aim is to improve the visual quality of our application and making it appear more
realistic, yet still running at smooth speed. We shall:.decide on a suitable illumination model and algorithms. shall be applicable for a real-time rendering. shall involve little to none pre-processing work.keep in mind integration with the rendering engine (Three.js in our case) and its

limitations. choose a technique for including shadows. it should adapt to a real-time change of lighting conditions. employ methods for reducing rendering artefacts (aliasing etc.). incorporate graphics techniques that can further improve the visual experience

10.2 Illumination models
Illumination models are used to generate the color of an object’s surface at a given
point on that surface – it specifies how to compute intensity of light with respect to
the observer. The factors that govern the illumination model determine the visual
representation of that surface. It usually considers light attributes (position, color,
intensity, ...), surface properties (color, reflectivity, ...) and interaction among lights
and objects [54–55]. We can divide illumination models (techniques) into the two major
categories:.Local.only takes into the account the light which comes directly from a light source

(direct illumination). considers just light sources and surfaces properties

116

. 10.2 Illumination models

.modeled by using a Bidirectional Reflectance Distribution Function (BRDF). tells us the ratio of light coming from one direction that gets reflected in another
direction.no shadows. fast to compute. e.g. Phong, Cook-Torrance.Global.apart from direct illumination, it incorporates all light vs surface interactions in a

scene (indirect illumination).when a ray of light hits a surface, it affects the surface and is further reflected,
continuing its travel into another direction until it hits some surface again and
the cycle repeats. involves tracing of light paths.possible to simulate reflections, refractions, caustics,hard and soft shadows. slow to compute. e.g. Radiosity, Ray-tracing, Photon Mapping, Ambient Occlusion

Figure 10.1. Direct vs indirect illumination [56–57]

The difference between a direct and indirect illumination is shown on Figure 10.1.
Obviously, a global illumination model is superior as far as the visual quality goes – and
unfortunately a lot slower to compute than a local illumination model. The situation is
even worse due to the fact that WebGL cannot utilize full machine’s hardware potential
in contrast to, for example, its OpenGL counterpart. There have been a few experiments
involving global illumination and WebGL that are running real-time, e.g. “WebGL
Deferred Irradiance Volumes” [58] or “WebGL Path Tracing” [59], but it does not seem
that their results would be applicable to a more complex application. “WebGL Deferred
Irradiance Volumes” has actually trouble running real-time when rendered in the full
resolution on our testing machine (see Desktop 2007 in Table 11.2; running in half
of the resolution was smooth, but the visual quality took a hit) and its development
involved a lot of pre-processing. “WebGL Path Tracing”, although running smoothly,
has unacceptable render quality – the image starts off as very grainy (Figure 10.2) and

117

10. Lighting and visual improvement techniques .

Figure 10.2. WebGL Path Tracing – initial render quality [59]

it takes too long until the noise is cleared and the image starts to looks nice; such
approach would not be acceptable in a virtual walk application. And if we consider
hardware of machines targeted by our application, we are left with no other choice than
to forget global illumination models and stick with local ones, which are fast enough.

In the context of our application and its rendering engine Three.js, we can work with
Phong illumination model, which is an empirical model based on observations of its
author. This model decomposes BRDF into the following parts [60]:.Ambient.avoids the complexity of global illumination.approximates the reflection of all indirect illumination with a constant.Diffuse.assumes ideal diffuse reflectance (i.e. surface reflects light equally in all directions).view independent

118

. 10.3 Shadows

.Specular.assumes ideal specular reflectance (i.e. surface reflects only in mirror direction).view dependent. creates “highlights” on a surface

The final result is sum of these parts and looks acceptable, but the crude approxima-
tion of an indirect illumination by the ambient term is not really convincing. Despite the
fact that we have declared global illumination models as not being fit for our applica-
tion, there is actually one among them (with somewhat less performance requirements)
which can help us to salvage the situation: the Ambient Occlusion. It is a shading
and rendering technique used to calculate how exposed each point in a scene is to the
ambient light. The ambient occlusion is usually calculated by casting rays in every
direction from the surface.

Rays which reach the background increase the brightness of the surface, whereas a ray
which hits any other object contributes no illumination. As a result, points surrounded
by a large amount of geometry are rendered dark, whereas points with little geometry
on the visible hemisphere appear light. The main reason for using ambient occlusion is
to achieve nice-looking soft shadows, which make objects look real, without the effort
of a more complex global illumination model. It is typically stored in a texture map
or as vertex attributes [61]. Since we try to steer clear off pre-processing and strive for
real-time solution, we use variant of the technique called the Screen Space Ambient
Occlusion (SSAO). SSAO is performed as a post-processing effect and uses depth buffer
values to approximate the scene geometry. It has several advantages over its object-
space version [62]:.no pre-processing.not affected by the scene complexity. simpler to implement

The disadvantage of SSAO is that it is not physically correct and sometimes contains
artefacts, and the results can be view-dependent. Despite that, it is an improvement
for the visual quality of our application. While it is true that SSAO produces some
shadows, their impression is limited and not really enough for the impression we want
to make. And we want to have nice shadows, for they are an important visual and
depth cue and help with understanding of spatial relationships between models (relative
positions of objects, light positions, ...) and greatly improve overall feeling from a
scene. Unfortunately, they also belong to the family of Global illumination models
(techniques).

10.3 Shadows
We have considered two probably the most well-known algorithms for computing shad-
ows, as described in [63–64]: Shadow Volumes and Shadow Mapping.

Shadow Volumes is an object-space algorithm which produces pixel-perfect, hard
shadows. First, for each scene object, a Shadow Volume (see Figure 10.3) is constructed
such that object’s polygons are extruded to semi-infinite volumes by casting a ray from
a light’s point of view. In the rendering phase, after the scene is rendered normally
once and the depth buffer is filled, Shadow Volume is rendered twice (once with front-
faces culled and once with back-faces culled) and the stencil buffer is modified. Finally,
by testing values of the stencil buffer, it is possible to find out which fragments are

119

10. Lighting and visual improvement techniques .
not in the shadow and render them. The good thing about Shadow Volumes is that
unlike with Shadow Mapping, it can handle point lights very well. The disadvantage
of Shadow Volumes which is quite relevant for our case is that a shadow have to match
geometry of a mesh that casts it. This would be a problem for sprites that approximate
complex objects (e.g. tree, statues, ...), since their geometry consists of just one quad,
which means the shadows would be incorrect for those. They are also intensive on the
fill-rate of the GPU.

Figure 10.3. Shadow Volumes – visualization [65]

Shadow Mapping is a screen-space algorithm with a simple premise: first, the scene
depth map – a.k.a shadowmap – is rendered from light’s point of view, then the scene
is rendered from the current camera’s point of view and fragments are transformed into
the light space, where we can simply compare depths of the camera and light frag-
ments to see which camera fragments are in shadow and which are not. As usual with
screen-space techniques, also Shadow Mapping suffers from the anti-aliasing issues and
rendering artifacts. Producing shadows for point lights is also problematic in terms of
performance, since 6 shadowmaps have to be created; alternatively some more compli-
cated and faster techniques could be used (e.g. Dual-Paraboloid Shadow Mapping), but

120

. 10.3 Shadows

they are prone to another issues (quality degradation, distortions, ...). On the bright
side of things, Shadow Mapping is fast, no information about the scene geometry is
necessary and even soft shadows (though little unrealistic) can be produced by them.

While Shadow Volumes may be demanding to compute (depending on the scene
complexity), Shadow Mapping is not affected by a complexity of the scene at all, so
with Shadow Mapping, we would not need to worry about the scene becoming bigger
and the application slower because of that. An important thing to consider is also the
goal to offer a day-night cycle simulation. With the sun constantly moving around the
sky, the performance cost for repeated computation of the shadow volumes could be
significant. Another considerable advantage of Shadow Mapping lies in the support
of correct shadows for sprites. The Shadow Mapping is very GPU-friendly, we really
do not care about pixel-precise shadows and on top of that, Three.js provides internal
support for Shadow Mapping, so we have decided to incorporate Shadow Mapping
over Shadow Volumes as the choice for our shadow computing algorithm. Addressing
the disadvantages of the Shadow Mapping: aliasing issues can be remedied a lot by
using methods that can filter results of the depth comparisons; the example can be
seen on Figure 10.4, where a Percentage Close Filtering (PCF) is depicted. Three.js
solution that we use for shadows supports PCF, so all shadows in our application are
rendered using this method. We consider higher performance requirements in the case
of computing shadow for point lights as an acceptable downside.

Figure 10.4. Shadow Mapping – advanced method of Percentage Closer Filtering [64]

121

10. Lighting and visual improvement techniques .
10.4 Lighting and other techniques

One of our main goals related to visual effects was to incorporate a day/night cycle
into the application. Rendering the visual effect of sun glare and a corresponding
sky appearance for different positions of the sun is achieved using a shader from [66].
The sun itself is simulated by a directional light which has been synchronized with the
position of the sun at the mentioned shader. By computing the angle between the sun
and the standard up vector (0, 1, 0), we can distinguish between different sun phases
– we use this to identify when it is dusk/dawn, day or night. We have enriched the
simulation of day/night so that each sun phase has its own ambient light; the ambient
light of the scene is computed as a linear interpolation between the ambient lights of
relevant sun phases for the current sun position, so the transition is smooth.

During the day and dusk/dawn, the only active light is the sun, no other lights are
on. When the night comes, the situation is reversed and the lights in the castle area
are turned on. We have used point lights to simulate the outdoor lighting. Currently,
we do not perform shadow computations for these lights, because the impact would not
be significant in our scene, so we have decided to save up some performance. To make
the whole day/night simulation more believable, we have also incorporated a lens flare
effect – a light scattering phenomenon in lens systems which produces starburst/ring-
like elements on the image. The lens flare is especially prominent when the view is
directed at the sun (see Figure 10.6). It is implemented as a post-processing effect
using the implementation from [67].

Figure 10.5. Shadows via shadow mapping with PCF filter in our application

Another techniques used for improving visual appearance include bump mapping
and normal mapping. Both of these techniques modify the normal vector of a fragment
and are trying to create an illusion of a more detailed surface. Bump maps are usually
stored as grayscale images since they only represent scalar displacement along the (face)
normal, whereas normal maps are stored as RGB images since they store directly values
of normal vectors which are used as a displacement. These techniques do not modify
geometry at all, only the shading is affected. We use them to improve look of few
materials in the application.

122

. 10.5 Reducing rendering artefacts

Figure 10.6. Lens Flare effect in our application

10.5 Reducing rendering artefacts
There are situations during the rendering where it is more accurate to talk about fix-
ing things rather than improving them. The prime example of such is an everlasting
“enemy” appearing in various engineering-related fields – the aliasing. Aliasing is an
artefact caused by representing a high resolution signal at a lower resolution and hap-
pens when the sampling frequency used for sampling the original (continuous) signal is
too low. In computer graphics, the most prevalent manifestations of aliasing are jagged
lines of rendered models and texture aliasing.

As for texture aliasing, we will have to resample the signal to a different resolution.
During texture lookup when it is computed where pixels fall on the texture, it is often
the case that one pixel does not correspond to one texel (= no aliasing), but instead:.one texel corresponds to many pixels.when we are close to the texture. solved by magnification of texels (enlarging the texture) by “filtering”, i.e. com-

puting an average color for a texel using one or more of its neighbors (e.g. nearest-
neighbor or bilinear filtering).one pixel corresponds to many texels.when we are far away from the texture. solved by minification of texels (making the texture smaller), again by filtering. can introduce aliasing

The problem with filtering is that it can be expensive in terms of performance to
filter all texels. An effective solution addressing aliasing and keeping performance in
mind is a concept of Mipmaps. A mipmap is a collection of one texture in multiple
versions, each version is filtered in a different resolution and has half width and height
of the preceding version in the collection until it converges to a single pixel, e.g. for
a 8×8 texture, the collection will contain 4 versions of the texture: the original 8×8,
filtered 4×4, filtered 2×2 and finally filtered 1×1. The further the texture is from us,

123

10. Lighting and visual improvement techniques .
the smaller version from its mipmap collection is used for filtering. This reduces aliasing
and is performance-friendly. The concept of mipmaps is directly supported by WebGL,
which is also capable of their automatic generation for a texture upon our request; the
quality of automatic generated mipmaps are acceptable, so we use this feature for all
textures in the application. It is worth to mention that textures with mipmaps require
33 % more memory, but the results are completely worth it.

Fixing the problem of jagged lines is usually what is meant behind the term anti-
aliasing in context of computer graphics. We have mostly two (three) options there
[68]:. Increase the sample rate.Super Sample Anti-Aliasing (SSAA). the image is rendered to a much bigger resolution (2×SSAA = 2× bigger,

4×SSAA = 4× bigger, ...) and then downsampled to the displayed size, us-
ing the extra pixels for computing the average value for final displayed pixels. superior image quality, but terrible performance.Multi Sample Anti-Aliasing (MSAA).more performant variant of SSAA – some components of the final image are not
fully supersampled. smooths object outlines, but not internal areas of polygons.we can even request this type of AA to be performed by WebGL, but:.no guarantee that the AA will be actually turned on – there is a good chance

that browser will not allow AA for older graphics cards to prevent crash of
machine; a problem considering hardware which our application targets. even if the AA is allowed, it is available only on the main buffer – AA of
offscreen buffers or textures is not possible; that is a problem as well, since if
we are doing any post-processing (which we do – e.g. SSAO), we will be left
with no AA.Use a post-processing effects to blur jagged edges.Morphological Anti-Aliasing (MLAA).detects edges (either using color or depth information) and then finds specific

patterns in these.blends pixels in the edges intelligently, according to the type of pattern they
belong to and their position within the pattern.Fast Approximation Anti-Aliasing (FXAA). similar to MLAA. ...

The post-processing anti-aliasing approaches are comparable to the quality of
4×MSAA while running considerably faster, which makes them ideal candidates for
our application. Based on the conclusion from series of benchmarks [69] comparing
MSAA with MLAA and FXAA – where MLAA and FXAA produce images of compa-
rable quality, but MLAA is on average 37,1 % slower than FXAA – we have decided
that FXAA would be the best solution and incorporated FXAA implementation
available for Three.js from [70] into our rendering process.

124

Chapter 11
Testing

This chapter describes testing of the final application and is divided into the two parts.
The first part of the chapter focus on the user testing, which involved observation of
the users trying to complete a given scenario and a discussion of their observations and
opinions. The second part is devoted to the performance testing, where the application
was tested on various machines and web browsers.

11.1 Goals
Regarding the user testing, our goal is to find out any flaws in the application’s user
interface and the application in general, gather opinions of the users and suggest possible
improvements. The performance testing shall verify that we have accomplished the goal
of keeping smooth framerate on the specified target hardware.

11.2 User testing
The moderator presented participants with the testing scenario and instructed them
to read the description and follow specified tasks. User testing was performed using
thinking-aloud protocol, which is a direct observation method of user testing that in-
volves asking users to think out loud as they are performing a task. Users are asked to
say whatever they are looking at, thinking, doing, and feeling at each moment. This
method is especially helpful for determining users’ expectations and identifying what
aspects of a system are confusing [71].

11.2.1 Testing scenario
We have managed to kept the scenario for testing simple, with just a few tasks, however
they cover the whole functionality. Each task can be completed using more than just
one way in order to let the users put their inventiveness into the effect – we hoped to
see if different users will choose different approaches or if some approach will be more
prevalent, where users will have trouble etc. The description of the testing scenario
follows, with our commentary below each of the task:.You will control an application developed as diploma thesis project which visual-

izes the Prague Castle and allows you to go for a virtual walk in the area. Open
the application by clicking on the following link: http://leyfi.felk.cvut.cz/
prague-castle-3d.Task 1 (Explore): Explore the area freely. Do you recognize some of the buildings?
If yes, which ones?. (our aim is to let the user freely explore the world and control the application

without any pressure; also, we would like to know if the created 3D models resemble
their real counterparts in users’ opinions)

125

http://leyfi.felk.cvut.cz/prague-castle-3d
http://leyfi.felk.cvut.cz/prague-castle-3d

11. Testing .
.Task 2 (Fountain): There is a fountain somewhere in the area. Find out its name

and how old it is.. (we intend to evaluate how the user is able to navigate in the virtual world when
searching for something specific; the task is also focused on interaction between
the user and an object of interest).Task 3 (Supervisor): Find name of the thesis supervisor.. (we want to know if the user interface is well-arranged enough for the users to find
such information).Task 4 (Rooftops): Manage to get on the rooftops.. (we hope to see if the users are able to perform more difficult task and how they
will go about it)

11.2.2 Results
A total number of 3 users participated in the testing. One average user, one advanced
user and one user who does not use computer very much. It goes without saying that
participants do not work in IT related fields, and only one participant had a serious
experience with playing 3D games. The general information about the participants can
be seen on Table 11.1. A description of the course of the testing in each of the 3 testing
cases follows:

Name Gender Age IT/3D skills
Participant 1 Female 24 office work
Participant 2 Male 33 3D games
Participant 3 Male 70 email, news
Table 11.1. User testing – information about participants

Participant 1 became quickly accustomed to the controls; she was using only buttons
in the HUD and never used the mouse look. In the Task 1 (Explore), she immediately
identified the First Courtyard based on the statues of the battling giants. During the
Task 2 (Fountain), she used the Big map option to find out where the fountain is and
teleported her avatar to the fountain’s location, then she clicked on the fountain and
completed the task. The Task 3 (Supervisor) was successfully completed as well – she
opened the Help dialog using the HUD button and although she only skimmed over
the text, she found the passage mentioning the author and the supervisor and used
the provided link in this part to open the Credits section which contains the desired
information. At the beginning of the Task 4 (Rooftops), she was wondering how can
she do such thing, but quickly spotted the HUD button for turning on the flying mode;
however, since she has not been using the mouse look or keyboard (she later said she
did not know such thing exists), she was unable to take off the ground and thus did
not complete the task. She then continued to explore the area for a few minutes, which
was enough time for the day/night cycle to get into the night time; she especially liked
the appearance and atmosphere during the sunset. In the discussion, she voiced her
negative opinion about the flying controls and suggested that it shall be possible to
control the flying in the same way as walking – using the buttons in the HUD. She
praised the arrangement of the HUD, simplicity of the controls and clearly visible Help

126

. 11.2 User testing

button. She pointed out that when the avatar is looking into the sun, the captions
above the buttons1) are not visible because of the bright background.

Participant 2 was the only participant who had any serious experience with 3D
and games. This background immediately shown itself in the way how the participant
controlled the application – he was exclusively using the keyboard and mouse for the
navigation of the avatar. He did not recognized any buildings because he does not
remember how the castle looks. In the Task 1 (Explore), after a few steps and looking
with the mouse around, he quickly clicked on each HUD button and explored the content
behind it (Main Menu, Help section, Viewpoint Dialog, Big map). He praised the image
of the keyboard in the Help section where controls are written above the keys. In the
General settings of the application, he turned on the strafing with the keyboard arrows
and increased the mouse sensitivity. It is no surprise that he easily found the fountain
by navigating in the virtual world and clicked on it to complete the Task 2 (Fountain).
He also pointed out that he thinks that minimap should be interactive in a sense that
if he clicks on it, the big map appears. In the Task 3 (Supervisor), he opened the
Main Menu and the section with Credits in just a few seconds, completing the task
right away. The Task 4 (Rooftops) was completed without any problems as well; the
participant also found out that he can walk on the rooftops and spent a little while
entertaining himself jumping from one roof to another, and said that the jump feature
is the most exciting from the entire application. In the discussion, he said that he liked
the controls and especially the ability to jump and fly. He also positively commented
on the graphics and said it is a shame that the entire castle area is not modeled and it
is evident that some models were modeled better than others.

Participant 3 was the oldest participant in our testing and at the same time had the
least experience with computers in general – he generally uses computer just for email
communication and reading news. He was able to control the avatar using the arrows
on the keyboard, but when he discovered that he can click on the arrows in the HUD,
he abandoned the keyboard for the rest of the session, commenting that it is more
comfortable for him to handle everything with just mouse. As for the Task 1 (Explore),
the participant started with exploring the area of the First Courtyard and then walked
into The Second Courtyard. He identified all buildings and objects along the way. The
Task 2 (Fountain) was over before it could begin, since the participant recalled the
name of the fountain and even how old it is from memory. The Task 3 (Supervisor) was
harder for him – at the beginning, he was searching for the supervisor’s name on the
screen. After some time, he decided to click on the Help button in the HUD. He started
to read and eventually reached the image with the Menu button and its commentary
that information about the diploma thesis can be found there. He then proceeded with
the rest of the task with no problems. The Task 4 (Rooftops) was unsuccessful – he
searched the area for stairs and did know what to do otherwise. He was surprised when
he was told about the possibility of flying – he simply did not expect that it is possible
to fly, even in the virtual world. When he was searching for the stairs, he even opened
the list of Viewpoints from the HUD, but he overlooked the viewpoint on the roof a
instead proceeded to click on the Stag Moat viewpoint. He was a little surprised that
he was able to teleport there. In a short discussion after the session, the participant
said that he liked the experience a lot and did not know that something like virtual
walks are even possible and thus was a little shocked about the possibilities. However,

1) We have added captions above all the HUD buttons based on the testing done by the Participant 1.
More on this in the next section containing the conclusion.

127

11. Testing .
he would have welcomed if the interesting objects were marked better, because he did
not know which objects are interactive and which not.

11.2.3 Conclusion
The application was received well by the users who participated in the testing. We
have found that even the users with little to none experience regarding 3D and games
are able to control the main parts of the application. It has been shown that HUD
controls, especially the virtual keyboard, are very suitable for them and they like it.
It has proved to be a good idea to include various means of navigation within the
virtual world, aimed at both less experienced and more experienced users. The less
experienced users are able to use the Viewpoint list, and slightly more experienced are
even able to use the Big map. As was expected, very experienced users use exclusively
keyboard for the navigation and welcome more advanced features of the application
and possibility to change various settings. The user interface (mainly the HUD) got a
very positive response – the users appreciated its simplicity and arrangement. Inclusion
of the Help button directly into the HUD also proved to be a good idea, because users
noticed it quickly and used for guidance when necessary. As for the visual quality, they
praised the appearance of the application and were satisfied with the virtual world. On
the other side, they would welcome more content, which is something we unfortunately
cannot easily add due to the time required for such task and must leave it for the future
improvements. One user also noticed that some models are better than others, which
is true, but unfortunately it is not something easily fixed. You can see screenshots of
the final application in the Appendix C.

The testing also shown us some problems in our design and gave us ideas for im-
provements. We have made the following changes:.we have added captions above the HUD buttons. so the users do not have to wonder what the button is for.we have added a black outline to the captions of all HUD buttons, so they are

visible even when the image is very bright (i.e. when looking into the sun).we have added HUD buttons for controlling the flying altitude of the avatar. it was difficult to control the avatar for the users who were not versed in 3D and
games. the buttons are visible only when the FLY mode is active.we have added a HUD button for highlighting objects of interest in the scene. it was shown that some users would prefer if objects of interest stand out more. entire objects are highlighted in a color.we made the Minimap clickable.users tried to click on the Minimap and were surprised that nothing happened. clicking on the Minimap now opens the Bigmap

Upon the analysis of the users’ opinions, we have also thought about some possible
future improvements to the virtual walk functionality:.HUD buttons for looking up and down. some less experienced users did not know about the mouse look

128

. 11.3 Performance testing

.Tutorial. to clearly state what is possible in the virtual world and how to achieve that, short
interactive tutorial explicitly showing the possibilities – e.g. video-like tutorial
with a brief text commentary about what is happening on the screen, sometimes
requesting the user cooperation to make the controls familiar to him.Virtual Guided Tour.avatar would be walking automatically on a pre-defined tour – the user would not
have to worry about controlling the application if he/she does not feel like it

11.3 Performance testing
The application was tested on 2 different machines (see Table 11.2) and 3 major web
browsers (see Table 11.3). The tests were conducted three times to eliminate deviations,
the results were averaged. Internal Three.js benchmark (Stats.js) was used to measure
the performance. The testing scenario consisted of walking around the castle area.

Item / Name Desktop 2007 Laptop 2009
Manufacturer Name — Acer Aspire 3810TZG
Type Desktop PC Laptop PC
Year 2007 2009
Processor Intel Core2 Duo E6850 3.00GHz Intel SU4100 1.3 GHz
RAM 4GB 4GB
Graphics card ATI Radeon HD 3870 512MB ATI Mobility Radeon HD 4330 512MB

Intel GMA 4500MHD
Resolution 1680×1050 1366×768
OS Win 7 64-bit Win 7 64-bit

Table 11.2. Hardware and software specifications of machines used for the performance
testing

Browser Version
Mozilla Firefox 43
Google Chrome 46

Opera 33
Table 11.3. Software specifications of web browsers used for the performance testing

Option High Medium Low
Resolution Full Full Half

SSAO on off off
FXAA on off off

Lens Flare on off off
Shadows on on off
Table 11.4. Performance test – description

129

11. Testing .
Browser High Medium Low

Mozilla Firefox 60 60 60
Google Chrome 60 60 60

Opera 60 60 60
Table 11.5. Desktop 2007 – measured FPS

Browser High Medium Low
Mozilla Firefox 17 30 50
Google Chrome 18 35 55

Opera 17 34 55
Table 11.6. Laptop 2009 – measured FPS

As we can see on Table 11.5, our desktop testing machine performed very well and
the application was running smoothly. More interesting are results from Table 11.6,
where our application had to run on weaker hardware. Running application on laptop
with high details was slow – although the laptop has dedicated graphics card, it is
simply not strong enough. However, medium details, which still contain shadows, are
running above 30 FPS and the experience is alright. Low details were of course the
fastest, with shadows off and resolution cut in half. The absence of shadows helped the
framerate to became bigger, but since shadows are not actually updated each frame but
only when the sun moves (which is about each 15th frame), the main speedup came
from the decreased resolution, which was expected.

11.3.1 Conclusion
We have found out that older desktop computers which we target should not have
problems running the application smoothly in high details. However, the situation
with laptops is worse: dedicated graphics card is an absolute must for older laptops
and running the application in high details is not possible. On the other side, medium
details can be handled even by older laptops at around 30 FPS. This means we have
been successful in our goal of reaching 30 FPS+ on target hardware.

130

Chapter 12
Conclusion

The aim of this thesis was to develop a web-based 3D virtual walk application visual-
izing the Prague Castle, provide an insight into the area of virtual walk applications
in the context of present-day technologies and explain how to achieve quality visual
presentation while retaining high framerate.

Similar visualization systems have been analyzed, which served as the main source of
the inspiration during formulation of requirements for the application. We have found
out that popular technologies used for realization of web-based virtual walk applications
in the past (VRML) and even some promising nowadays ones are not an option, either
due to the ending support of external plugins in web browsers or lack of support for a
technology in browsers. Therefore, due to the supportability (and performance) reasons,
the graphics is rendered using WebGL (with Three.js as the middleware above) and the
application itself is implemented in JavaScript.

Realization of the user interface which fulfills identified requirements of the users
has been discussed. The application can be controlled by the keyboard, mouse or from
HUD. It is localized into Czech and English, with an option of switching between at
the runtime. The users can choose to visit interesting places using a graphic list of
viewpoints, also they can interact with interesting objects in the virtual world and
educate themselves by clicking on them; they have a both classic map and permanently
visible small version of classic map available as well, to help them with the orientation in
the virtual world. Although the reactions of the users during user testing were positive,
a few issues were revealed; some of them were corrected and some were left for the
future work.

We have explained our approach taken in the process of virtual content creation and
presented the reader with our approach in a form of a guide covering all phases of
the process (physical data acquisition, modeling, creating textures, importing into the
application). Part of the Prague Castle has been created, along with the surrounding
12 km2 of the terrain generated from the real digital elevation model of Prague.

Collision detection is handled by our own simple heightmap-based approach which
allows us to have even overhang areas to some degree, which is not usually possible with
heightmaps. We have employed performance optimizations which focus on reducing
WebGL state changes by utilizing technique of Mesh merging. Further performance
gain was obtained by reduction of drawing calls, which was possible thanks to the
rearrangement of meshes’ data where triangles sharing same material are stored in
contiguous blocks of memory. We have incorporated algorithms improving visual quality
such as Fast Approximate Anti Aliasing for fixing aliasing artifacts, global illumination
technique of Screen Space Ambient Occlusion or shadows via Shadow Mapping and
still maintained smooth framerate on the target hardware. Visual effects include also a
day/night cycle and another minor effects such as lens flare or bump/normal mapping.
The application runs in majority of web browsers (Chrome, Firefox, Opera) and requires
no external plugin.

131

12. Conclusion .
12.1 Future work

The future work can be divided into the three categories. The first category is a
virtual content creation. Current application contains the top part of the Prague
Castle where ceremonials are held, but the central part with the Third Courtyard
and the bottom part containing e.g. the famous Golden Lane are yet to be done.
Creating these areas will be a very time demanding task. The second category of
the future work is solving minor issues related to UI which were revealed by the user
testing and also enhancing the virtual walk functionality even further, for example by
virtual guided tours. The third category are additional visual quality and performance
improvements. The application is fast enough to handle over a hundred of thousands
of triangles and hundreds of different materials (depending on the quality settings),
but there is still room for an improvement – the user interface is already very mobile-
friendly, so reducing hardware requirements even further is the last remaining step for
making it possible to run the application at smooth speed even on mobile phones or
tablets.

132

References

[1] Wikipedia. Google Earth.
http://en.wikipedia.org/wiki/Google_Earth [cit. 09-30-2014].

[2] Google Inc. Google Earth downloaded more than one billion times. Google
Official Blog.
http://googleblog.blogspot.cz/2011/10/google-earth-downloaded-more-than-one.
html [cit. 09-30-2014].

[3] Google Inc. User generated 3D model pipeline has been retired October 1st, 2013.
Google Groups.
https://groups.google.com/forum/#!msg/3dwh/epXUQA2bJ2s/pw7G8E6wtZ4J [cit. 09-
30-2014].

[4] Google Inc. What happened to Google Earth 3D view for Los Angeles. Google
Groups.
https://productforums.google.com/forum/#!msg/gec-open-forum/lv_K224O4q4/
2Knak2Sy2qEJ [cit. 09-30-2014].

[5] Google Inc. The Next Dimension of Google Maps - Official Post. Google Groups.
https://productforums.google.com/forum/#!msg/gec-open-forum/lv_K224O4q4/
2Knak2Sy2qEJ [cit. 09-30-2014].

[6] gisportal.cz. Nejrozsáhlejší 3D mapa na světě vzniká českou technologií Melown
Maps.
http://www.gisportal.cz/2014/04/nejrozsahlejsi-3d-mapa-na-svete-vznika-ceskou-technologii-melown-maps-tz/
[cit. 10-02-2014].

[7] Marek Dobrý. Přichází nové Mapy.cz. Neztratíte se ani na webu, ani v ulicích.
Seznam.cz věstník, March 2014.
http://newsletter.seznam.cz/articles/120 [cit. 10-02-2014].

[8] Pino Bonetti. Ovi Maps 3D: The World is Not Flat.
http://360.here.com/2011/04/19/ovi-maps-3d-the-world-is-not-flat [cit. 10-04-
2014].

[9] VOP Project Group. Documentation – Introduction.
http://dcgi.felk.cvut.cz/cgg/vsp2/about/1.html [cit. 10-06-2014].

[10] User with nickname “patapom”. Virtual 3D visit, the Saint Jean Cathedral.
http://patapom.com/topics/WebGL/cathedral/intro.html [cit. 10-08-2014].

[11] TimeWalk: Your Virtual Reality Playground.
https://www.indiegogo.com/projects/timewalk-your-virtual-reality-playground#gallery
[cit. 10-08-2014].

[12] Benjamin Smedberg, Mozilla. NPAPI Plugins in Firefox.
https://blog.mozilla.org/futurereleases/2015/10/08/npapi-plugins-in-firefox
[cit. 11-18-2015].

133

http://en.wikipedia.org/wiki/Google_Earth
http://googleblog.blogspot.cz/2011/10/google-earth-downloaded-more-than-one.html
http://googleblog.blogspot.cz/2011/10/google-earth-downloaded-more-than-one.html
https://groups.google.com/forum/#!msg/3dwh/epXUQA2bJ2s/pw7G8E6wtZ4J
https://productforums.google.com/forum/#!msg/gec-open-forum/lv_K224O4q4/2Knak2Sy2qEJ
https://productforums.google.com/forum/#!msg/gec-open-forum/lv_K224O4q4/2Knak2Sy2qEJ
https://productforums.google.com/forum/#!msg/gec-open-forum/lv_K224O4q4/2Knak2Sy2qEJ
https://productforums.google.com/forum/#!msg/gec-open-forum/lv_K224O4q4/2Knak2Sy2qEJ
http://www.gisportal.cz/2014/04/nejrozsahlejsi-3d-mapa-na-svete-vznika-ceskou-technologii-melown-maps-tz/
http://www.gisportal.cz/2014/04/nejrozsahlejsi-3d-mapa-na-svete-vznika-ceskou-technologii-melown-maps-tz/
http://newsletter.seznam.cz/articles/120
http://360.here.com/2011/04/19/ovi-maps-3d-the-world-is-not-flat
http://dcgi.felk.cvut.cz/cgg/vsp2/about/1.html
http://patapom.com/topics/WebGL/cathedral/intro.html
https://www.indiegogo.com/projects/timewalk-your-virtual-reality-playground#gallery
https://blog.mozilla.org/futurereleases/2015/10/08/npapi-plugins-in-firefox

References .
[13] Justin Schuh, Google Inc. The Final Countdown for NPAPI.

http://blog.chromium.org/2014/11/the-final-countdown-for-npapi.html [cit. 11-
18-2015].

[14] Web3D Consortium. What is X3D.
http://www.web3d.org/what-x3d [cit. 10-10-2014].

[15] x3dom.org. About X3D.
http://www.x3dom.org/?page_id=2 [cit. 10-11-2014].

[16] Danny Winokur. Flash to Focus on PC Browsing and Mobile Apps.
http://blogs.adobe.com/conversations/2011/11/flash-focus.html [cit. 10-12-
2014].

[17] Marco Scabia. How Stage3D works.
http://www.adobe.com/devnet/flashplayer/articles/how-stage3d-works.html
[cit. 10-12-2014].

[18] Google Inc. Technical Overview.
http://developer.chrome.com/native-client/overview [cit. 10-13-2014].

[19] Cade Metz. Mozilla: Our browser will not run native code.
http://www.theregister.co.uk/2010/06/24/jay_sullivan_on_firefox [cit. 10-13-
2014].

[20] Cade Metz. Google Native Client: The web of the future - or the past?.
http://www.theregister.co.uk/2010/06/24/jay_sullivan_on_firefox [cit. 10-14-
2014].

[21] Wikipedia. Source-to-source compiler.
http://en.wikipedia.org/wiki/Source-to-source_compiler [cit. 10-14-2014].

[22] Writing Definition (.d.ts) Files.
http://typescript.codeplex.com/wikipage?title=Writing%20Definition%20%28.
d.ts%29%20Files [cit. 10-15-2014].

[23] Dart VM and dart2js Performance.
http://www.dartlang.org/performance [cit. 10-15-2014].

[24] Lars Bak and Kasper Lund, Google Inc. Dart for the Entire Web .
http://news.dartlang.org/2015/03/dart-for-entire-web.html [cit. 11-21-2015].

[25] Brendan Eich
http://news.ycombinator.com/item?id=2982949 [cit. 10-16-2014].

[26] Emscripten documentation.
http://kripken.github.io/emscripten-site [cit. 10-16-2014].

[27] David Herman, Luke Wagner, Alon Zakai. Specification (working draft).
http://asmjs.org/spec/latest [cit. 10-17-2014].

[28] Alon Zakai, Robert Nyman. asm.js performance improvements in the latest
version of Firefox make games fly!.
http://hacks.mozilla.org/2014/05/asm-js-performance-improvements-in-the-latest-version-of-firefox-make-games-fly
[cit. 10-17-2014].

[29] Mozilla. Mozilla and Epic Preview Unreal Engine 4 Running in Firefox.
http://blog.mozilla.org/blog/2014/03/12/mozilla-and-epic-preview-unreal-engine-4-running-in-firefox
[cit. 10-17-2014].

[30] Fraunhofer IGD/VCST. FAQ — X3DOM Documentation.
http://x3dom.readthedocs.org/en/1.4.0/notes/faq.html [cit. 12-7-2014].

134

http://blog.chromium.org/2014/11/the-final-countdown-for-npapi.html
http://www.web3d.org/what-x3d
http://www.x3dom.org/?page_id=2
http://blogs.adobe.com/conversations/2011/11/flash-focus.html
http://www.adobe.com/devnet/flashplayer/articles/how-stage3d-works.html
http://developer.chrome.com/native-client/overview
http://www.theregister.co.uk/2010/06/24/jay_sullivan_on_firefox
http://www.theregister.co.uk/2010/06/24/jay_sullivan_on_firefox
http://en.wikipedia.org/wiki/Source-to-source_compiler
http://typescript.codeplex.com/wikipage?title=Writing%20Definition%20%28.d.ts%29%20Files
http://typescript.codeplex.com/wikipage?title=Writing%20Definition%20%28.d.ts%29%20Files
http://www.dartlang.org/performance
http://news.dartlang.org/2015/03/dart-for-entire-web.html
http://news.ycombinator.com/item?id=2982949
http://kripken.github.io/emscripten-site
http://asmjs.org/spec/latest
http://hacks.mozilla.org/2014/05/asm-js-performance-improvements-in-the-latest-version-of-firefox-make-games-fly
http://blog.mozilla.org/blog/2014/03/12/mozilla-and-epic-preview-unreal-engine-4-running-in-firefox
http://x3dom.readthedocs.org/en/1.4.0/notes/faq.html

. .
[31] stackoverflow.com SceneJS vs Three.JS vs others.

http://stackoverflow.com/a/6965426 [cit. 12-31-2014].
[32] Alain Abran. Guide to the software engineering body of knowledge 2004 version:

SWEBOK. Los Alamitos, Calif, IEEE Computer Society Press, 2004.
[33] Zara Jiri, Chromy Pavel, Cizek Jiri, Ghais Kamil, Holub Michal, Mikes Stanislav,

Rajnoch Jakub. A Scaleable Approach to Visualization of Large Virtual Cities.
Proceedings Fifth International Conference on Information Visualisation, Los
Alamitos, IEEE Computer Society Press, p. 639-644, 2001.

[34] W3Schools. Browser Statistics.
http://www.w3schools.com/browsers/browsers_stats.asp [cit. 11-20-2015].

[35] Statista.com Global forecast of the average PC age from 2006 to 2015 (in years).
http://www.statista.com/statistics/203817/global-forecast-of-the-average-age-of-pcs-up-to-2015
[cit. 11-20-2015].

[36] Jason Gregory. Game Engine Architecture. CRC Press, 2009.
[37] Microsoft Corporation. Key Principles of Software Architecture. Microsoft De-

veloper Network.
https://msdn.microsoft.com/en-us/library/ee658124.aspx [cit. 11-18-2015].

[38] webglstats.com WebGL Stats.
http://webglstats.com [cit. 11-7-2015].

[39] Mozilla. Using textures in WebGL.
https: / / developer . mozilla . org / en-US / docs / Web / API / WebGL_API / Tutorial /
Using_textures_in_WebGL [cit. 12-15-2015].

[40] GIMP Plugin Registry Make Seamless Advanced.
http://registry.gimp.org/node/28112 [cit. 11-07-2015].

[41] Geoportal Praha. Shuttle Radar Topography Mission.
http://www.geoportalpraha.cz/ [cit. 11-07-2015].

[42] Fang Qiu. Synergy of LIDAR and High-Resolution Digital Orthophotos to Support
Urban Feature Extraction and 3d City Model Construction. Geospatial Informa-
tion Sciences, The University of Texas at Dallas.
http://www.utsa.edu/lrsg/Teaching/EES5053-06/Qiu_UTD_Lidar.pdf [cit. 11-07-
2015].

[43] Wikipedia. Surfaces represented by a Digital Surface Model and Digital Terrain
Model.
https://en.wikipedia.org/wiki/File:DTM_DSM.svg [cit. 11-07-2015].

[44] Prague Institute of Planning and Development. Prague: Digital terrain model
(raster).
http://opendata.iprpraha.cz/CUR/D3M/DTM1M/DTM1M.tif [cit. 11-07-2015].

[45] Seznam.cz, OpenStreetMap, NASA. Geographical map of Prague.
http://mapy.cz/zemepisna?x=14.4314998&y=50.0593852&z=11 [cit. 11-07-2015].

[46] Žára Jiří. Web-Based Historical City Walks: Advances and Bottlenecks. PRES-
ENCE: Teleoperators and Virtual Environments, 2006, vol. 15, no. 3, p. 262-277.

[47] caniuse.com SVG (basic support): Method of displaying basic Vector Graphics
features using the embed or object elements.
http://caniuse.com/#feat=svg [cit. 11-08-2015].

[48] Kouichi Matsuda, Rodger Lea. WebGL Programming Guide: Interactive 3D
Graphics Programming with WebGL (OpenGL). Addison-Wesley Professional,
2013.

135

http://stackoverflow.com/a/6965426
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.statista.com/statistics/203817/global-forecast-of-the-average-age-of-pcs-up-to-2015
https://msdn.microsoft.com/en-us/library/ee658124.aspx
http://webglstats.com
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Tutorial/Using_textures_in_WebGL
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Tutorial/Using_textures_in_WebGL
http://registry.gimp.org/node/28112
http://www.geoportalpraha.cz/
http://www.utsa.edu/lrsg/Teaching/EES5053-06/Qiu_UTD_Lidar.pdf
https://en.wikipedia.org/wiki/File:DTM_DSM.svg
http://opendata.iprpraha.cz/CUR/D3M/DTM1M/DTM1M.tif
http://mapy.cz/zemepisna?x=14.4314998&y=50.0593852&z=11
http://caniuse.com/#feat=svg

References .
[49] Wikipedia. Newton’s law of universal gravitation.

https://en.wikipedia.org/wiki/Newton’s_law_of_universal_gravitation [cit. 11-
12-2015].

[50] Prague Institute of Planning and Development. Aerial images (orthophotomaps)
– Archive.
http://mpp.praha.eu/OrtofotoArchiv/default.aspx [cit. 12-11-2015].

[51] Skytiger. Packing Depth into Color – New 24 bit Packing.
https://skytiger.wordpress.com/2010/12/01/packing-depth-into-color/ [cit. 12-
11-2015].

[52] Wikipedia. Free fall.
https://en.wikipedia.org/wiki/Free_fall [cit. 11-14-2015].

[53] Opengl.org S3 Texture Compression.
https://www.opengl.org/wiki/S3_Texture_Compression [cit. 12-01-2015].

[54] Macey Jon. Illumination models.
https://nccastaff.bournemouth.ac.uk/jmacey/CGF/slides/IlluminationModels4up.
pdf [cit. 11-13-2015].

[55] Agu Emmanuel. llumination and Shading.
http://web.cs.wpi.edu/˜emmanuel/courses/cs543/slides/lecture05_p2.pdf [cit.
11-13-2015].

[56] Barré-Brisebois, Colin. Finding Next-Gen – Part I – The Need For Robust (and
Fast) Global Illumination in Games.
http://madebyevan.com/webgl-path-tracing/ [cit. 11-14-2015].

[57] Tabellion Eric. Global Illumination Across Industries, SIGGRAPH 2010 Course.
http://cgg.mff.cuni.cz/˜jaroslav/gicourse2010/giai2010-04-eric_tabellion-slides.
pdf [cit. 11-14-2015].

[58] Boesch Florian. WebGL Deferred Irradiance Volumes.
http://codeflow.org/entries/2012/aug/25/webgl-deferred-irradiance-volumes/
[cit. 11-14-2015].

[59] Wallace Evan. WebGL Path Tracing.
http://madebyevan.com/webgl-path-tracing/ [cit. 11-14-2015].

[60] Cutler Barb. Local vs. Global Illumination and Radiosity.
http: / / www . cs . rpi . edu / ˜cutler / classes / advancedgraphics / F05 / lectures /
14_radiosity.pdf [cit. 11-13-2015].

[61] Asawari Deshpande, Siddhartha Singh Sandhu, Shruti Gotmare, Vineet Mahadik.
Department of Computer Science Ambient Light Occlusion & Shadows using
WebGL. Department of Computer Science, University of Southern California, Los
Angeles, USA.

[62] Kvarfordt Daniel, Lillandt Benjamin. Screen Space Ambient Occlusion.
http://www.cse.chalmers.se/edu/course/TDA361/Advanced%20Computer%20Graphics/
SSAO.pdf [cit. 11-17-2015].

[63] Bittner Jiří. Shadows in rasterization pipeline. Algorithms of Computer Graphics
– Lecture 11. Czech Technical University in Prague.

[64] Ambrož David, Felkel Petr. Shadows for real-time graphics. Computer Graphics
2 – Lecture 9. Czech Technical University in Prague.
https://cent.felk.cvut.cz/courses/PGR2/lectures/09-gpu_shadows.pdf [cit. 12-
04-2015].

136

https://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation
http://mpp.praha.eu/OrtofotoArchiv/default.aspx
https://skytiger.wordpress.com/2010/12/01/packing-depth-into-color/
https://en.wikipedia.org/wiki/Free_fall
https://www.opengl.org/wiki/S3_Texture_Compression
https://nccastaff.bournemouth.ac.uk/jmacey/CGF/slides/IlluminationModels4up.pdf
https://nccastaff.bournemouth.ac.uk/jmacey/CGF/slides/IlluminationModels4up.pdf
http://web.cs.wpi.edu/~emmanuel/courses/cs543/slides/lecture05_p2.pdf
http://madebyevan.com/webgl-path-tracing/
http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/giai2010-04-eric_tabellion-slides.pdf
http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/giai2010-04-eric_tabellion-slides.pdf
http://codeflow.org/entries/2012/aug/25/webgl-deferred-irradiance-volumes/
http://madebyevan.com/webgl-path-tracing/
http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/F05/lectures/14_radiosity.pdf
http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/F05/lectures/14_radiosity.pdf
http://www.cse.chalmers.se/edu/course/TDA361/Advanced%20Computer%20Graphics/SSAO.pdf
http://www.cse.chalmers.se/edu/course/TDA361/Advanced%20Computer%20Graphics/SSAO.pdf
https://cent.felk.cvut.cz/courses/PGR2/lectures/09-gpu_shadows.pdf

. .
[65] Scott Todd. Shadow volumes visualized. GitHub.

http://scotttodd.github.io/assets/projects/graphics/shadow-volumes.png [cit.
12-04-2015].

[66] Joshua Koo. webgl - sky + sun shader. Three.js examples.
http://threejs.org/examples/#webgl_shaders_sky [cit. 12-31-2015].

[67] Jerome Etienne, John Chapman. Pseudo Lens Flare.
https://github.com/jeromeetienne/threex.sslensflare [cit. 12-31-2015].

[68] dahlsys.com Anti-aliasing technologies.
http://www.dahlsys.com/misc/antialias [cit. 11-17-2015].

[69] Warner Mark. NVIDIA’s New FXAA Antialiasing Technology.
http://www.hardocp.com/article/2011/07/18/nvidias_new_fxaa_antialiasing_technology/
5#.VnVuH7_ypvU [cit. 11-18-2015].

[70] DesLauriers Matt. three-shader-fxaa. GitHub.
https://github.com/mattdesl/three-shader-fxaa [cit. 11-18-2015].

[71] User Experience Professionals’ Association. Think Aloud Testing. The Usability
Body of Knowledge.
http://www.usabilitybok.org/think-aloud-testing [cit. 12-23-2015].

[72] Jason Gregory. Runtime game engine architecture.
http://www.gameenginebook.com/img/fig-runtime-arch.jpg [cit. 11-18-2015].

137

http://scotttodd.github.io/assets/projects/graphics/shadow-volumes.png
http://threejs.org/examples/#webgl_shaders_sky
https://github.com/jeromeetienne/threex.sslensflare
http://www.dahlsys.com/misc/antialias
http://www.hardocp.com/article/2011/07/18/nvidias_new_fxaa_antialiasing_technology/5#.VnVuH7_ypvU
http://www.hardocp.com/article/2011/07/18/nvidias_new_fxaa_antialiasing_technology/5#.VnVuH7_ypvU
https://github.com/mattdesl/three-shader-fxaa
http://www.usabilitybok.org/think-aloud-testing
http://www.gameenginebook.com/img/fig-runtime-arch.jpg

Appendix A
Abbreviations

AA Anti-Aliasing
AABB Axis Aligned Bounding Box

API Application Interface
BRDF Bidirectional Reflectance Distribution Function
CVUT Czech Technical University in Prague
DEM Digital Elevation Model
DSM Digital Surface Model
DTM Digital Terrain Model
DOM Document Object model

ECMA European Computer Manufacturers Association
FEE Faculty of Electrical Engineering
FPS Frames Per Second

FXAA Fast Approximation Anti-Aliasing
GPU Graphics Processing Unit
GWT Google Web Toolkit
HDD Hard Disk Drive

HTML Hyper Text Markup Language
HUD Head Up Display
IDE Integrated Development Editor
ISO International Organization for Standardization

JPEG Joint Photographic Experts Group
LLVM Low Level Virtual Machine (Compiler infrastructure designed as a set of

reusable libraries with well-defined interfaces)
LOD Level of Detail

MLAA Morphological Anti-Aliasing
MSAA Multi Sample Anti-Aliasing

OS Operating System
PCF Percentage Closer Filtering
PHP Hypertext Preprocessor
PNG Portable Network Graphics

SRTM The Shuttle Radar Topography Mission
SSAA Super-Sampling Anti-Aliasing
SSAO Screen Space Ambient Occlusion
SDK Software Development Kit
SQL Structured Query Language
SVG Scalable Vector Graphics

UI User Interface
VM Virtual Machine

VOP Virtual Old Prague

139

Appendix B
Additional images

Figure B.1. Runtime game engine architecture part 1/2 [72]

140

. .

Figure B.2. Runtime game engine architecture part 2/2 [72]

141

B Additional images .

142

Appendix C
Screenshots and comparisons

Figure C.3. Color highlighting of interesting objects

143

C Screenshots and comparisons .

Figure C.4. Reality vs our application – The Second Courtyard

144

. .

Figure C.5. Reality vs our application – The Fourth Courtyard

145

C Screenshots and comparisons .

Figure C.6. Virtual Old Prague vs our application – Chapel of the Holy Rood

146

. .

Figure C.7. Virtual Old Prague vs our application – The First Courtyard

147

C Screenshots and comparisons .

Figure C.8. Virtual Old Prague vs our application – Matthias Gate

148

. .

Figure C.9. Mapy.cz vs our application – The First Courtyard

149

Appendix D
Installation manual

D.1 Running the application
This section covers how to run the application. There are two ways to do that:.From the web.Open the address http://leyfi.felk.cvut.cz/prague-castle-3d in your web

browser.Locally.Open the file index.html or run_application.html in a web browser..You may need to adjust your browser’s security settings (see the next section D.1.1)

D.1.1 Running the application locally
There is a high probability that because of browsers’ security restrictions1), loading
application files (models, textures, ...) when running the application locally will fail
with a security exception. There are two options how overcome the issue:.Run index.html or run_application.html from a local server2). i.e. access the page as http://localhost/index.html.Change browser security policy.Mozilla Firefox. type about:config into the address bar.option security.fileuri.strict_origin_policy must be false.Google Chrome, Opera. close any running instance of Google Chrome. run Chrome from the command line:.chrome --allow-file-access-from-files

Please note that if you change your browser’s security policy, the browser may become
vulnerable. We recommend you create a new profile where you make these changes and
use it only for running local files and not regular web browsing.

1) https://en.wikipedia.org/wiki/Same-origin policy
2) For example Apache – available at https://httpd.apache.org

150

http://leyfi.felk.cvut.cz/prague-castle-3d
https://en.wikipedia.org/wiki/Same-originunhbox voidb@x kern .06em vbox {hrule width.3em}policy
https://httpd.apache.org

. D.2 Requirements and troubleshooting

D.2 Requirements and troubleshooting
Application targets personal computers and laptops. It shall generally run on personal
computers manufactured in year 2008 and later, and on laptops manufactured in year
2010 and later.

D.2.1 Minimum computer configuration

.Processor: 1.3 GHz.RAM: 4 GB.Graphics card: dedicated with 512MB.Supported web browser

D.2.2 Supported web browsers
The application supports following web browsers:.Mozilla Firefox 43+.Google Chrome 46+.Opera 33+

Running the application in another browser is not guaranteed to work.
The web browser must have WebGL turned on. To see if WebGL is turned on and

works properly, you can visit one of the following sites:.https://get.webgl.org, http://webglreport.com

Make sure that hardware acceleration is enabled. It can happen that WebGL is
turned on, but hardware acceleration is disabled, making the application run slow. If
you have a feeling that the application is slow, we recommend you manually check
following options in your browser:.Mozilla Firefox. type about:config into the address bar.webgl.disabled must be false.webgl.force-enabled must be true. try setting an opposite value for the option webgl.disable-angle.Google Chrome. type chrome://flags into the address bar.Override software rendering list must be enabled.Disable WebGL must be disabled.Opera. type opera:config into the address bar.Enable WebGL and Enable Hardware Acceleration must be 2

D.2.3 Graphic card drivers
Make sure your graphics card drivers are up-to-date.

151

https://get.webgl.org
http://webglreport.com

Appendix E
User manual

Figure E.10. User Guide 1/6 – Introduction, Controls

152

. .

Figure E.11. User Guide 2/6 – Onscreen buttons control

153

E User manual .

Figure E.12. User Guide 3/6 – Keyboard controls (advanced version; note that the user
manual in the application contains also a more basic version and it is possible to switch

between the basic and the advanced one)

154

. .

Figure E.13. User Guide 4/6 – Interaction, Walking/Flying, Viewpoints

155

E User manual .

Figure E.14. User Guide 5/6 – Maps

156

. .

Figure E.15. User Guide 6/6 – Language, Main Menu, HW requirements

157

Appendix F
Contents of the enclosed DVD-ROM

The DVD contains following directories and files:.application/. source codes of the application (HTML, CSS, JavaScript, GLSL).application executable (index.html).thesis/.DT Smrcek Antonin 2016.pdf. text of the thesis (PDF)

.documentation/.program/. contains programming documentation for the source files.vpc content completion guide.pdf.guide for developers which explains process of addition of a new virtual content
to the application

.content/.models/.main scene/.prague castle.skp, prague castle.dae.virtual scene with all models (SketchUp and Collada formats)

.terrain/.terrain.dae.model of the environment around the castle.terrain.png.heightmap which was used for generating the terrain

.textures/. contains all created textures (JPEG).photos/. contains all taken high-resolution photographs (JPEG)

158

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Thesis structure

	Visualization systems analysis
	Goals
	Map services
	Google Maps
	Google Earth
	Mapy.cz
	Here
	Comparison of map services

	Standalone presentations
	Virtual Old Prague
	Saint Jean Cathedral
	Interactive demos by Bitmanagement Software
	3D tours by Internet Dominion
	3D Ancient Wonders
	Timewalk
	Comparison of standalone applications

	Conclusion of similar systems analysis

	Technology analysis
	Goals
	VRML
	X3D (X3DOM)
	Adobe Flash
	Google Native Client
	WebGL + JavaScript compilable language
	TypeScript
	Dart
	Google Web Toolkit
	Emscripten

	Comparison of technologies
	Choosing JavaScript-compilable programming language
	Middleware above WebGL

	Conclusion of technology analysis

	Project specification
	Choice of technology
	Application requirements
	Functional requirements
	Non-functional requirements

	Software structure
	Architecture requirements
	Components

	Virtual content creation
	Goals
	Choosing the content creation programs
	Extent of the content creation
	References for the content creation
	Textures creation
	Hardware limitations
	Acquiring photographs for textures
	Creating textures from photographs
	Retouching textures in GIMP
	Tileable textures
	Approximating complex objects by textures

	Models creation
	Modeling process outline
	Creating details
	Handling two-sided faces
	Productivity tips
	Environment modeling

	Exporting from SketchUp
	Issues with exporting

	Statistics

	User interface
	Goals
	UI functionality
	Implementation, design and UI behavior
	Technologies and libraries
	Left part of HUD and virtual keyboard
	Viewpoint change
	Map
	Minimap
	Interaction with objects of interest
	Translation mechanism

	Collision detection
	Goals
	Collision detection approaches
	Heightmap implementation
	Creation of the heightmap
	Using the heightmap
	Heightmap layers

	Principles of the application's collision detection
	Implementation of collision detection

	Performance optimizations
	Goals and considerations
	Three.js and meshes
	Rendering approaches
	Naive rendering approach
	Improved rendering approach -- Mesh merging
	Mesh merging -- several groups

	Possible performance improvements in the future

	Lighting and visual improvement techniques
	Goals
	Illumination models
	Shadows
	Lighting and other techniques
	Reducing rendering artefacts

	Testing
	Goals
	User testing
	Testing scenario
	Results
	Conclusion

	Performance testing
	Conclusion

	Conclusion
	Future work

	References
	Abbreviations
	Additional images
	Screenshots and comparisons
	Installation manual
	Running the application
	Running the application locally

	Requirements and troubleshooting
	Minimum computer configuration
	Supported web browsers
	Graphic card drivers

	User manual
	Contents of the enclosed DVD-ROM

