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Abstract

In this diploma thesis, methods for automatic locomotion generation for modular
robots are investigated. Methods based on Central Pattern Generation (CPG) are
used to generate control signals for actuators of modules. Optimization of CPGs
parameters is processed by two bio-inspired methods, Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA). To decrease the number of expensive �tness
evaluations, the Fitness Estimation method was applied to both PSO and GA. The
performance of optimization methods under di�erent circumstances was statistically
compared. An important task of modular robotics is coping with module failures.
A novel preventive method for decreasing the impact of failures is proposed in this
work and veri�ed together with standard locomotion generators in a scenario with
failures. The experiments were conducted using a dedicated simulation environment
and selected motion patterns were executed on real robots.

Keywords: robot, modular, locomotion, failure

Abstrakt

V diplomové práci jsou popsány metody pro automatické generování pohyb· pro
modulární roboty. �ídicí signály pro aktuátory modul· jsou získávány metodami
zaloºenými na principu Central Pattern Generation (CPG). Optimalizaci parametr·
CPG zaji²´ují biologicky inspirované metody Particle Swarm Optimization (PSO)
a Genetický Algoritmus (GA). Za ú£elem sníºení po£tu £asov¥ nákladných vyhod-
nocení �tness funkce byly uvedené algoritmy roz²í°eny o metodu Fitness Estima-
tion. Výkony obou optimaliza£ních algoritm· za r·zných okolností byly statisticky
porovnány. D·leºitou úlohou modulární robotiky je vypo°ádání se se závadami mod-
ul·. V této práci je navrºena nová preventivní metoda zmír¬ující dopad poruch
na pohyb robotu a je porovnána se standardními generátory pohybu v situacích s
poruchami. Experimenty byly provád¥ny v simulátoru vytvo°eném pro pot°eby této
práce a vybrané pohybové vzory byly spu²t¥ny na reálných robotech.

Klí£ová slova: robot, modulární, pohyb, porucha
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Chapter 1

Introduction

In modular robotics the robots are composed of robotic devices called modules. This
architecture allows construction of di�erent robotic organisms of various shapes from
a �nite set of either homogenous or heterogeneous modules. This variability makes
modular robotics a very �exible and versatile technology. Furthermore, the modules
can be capable of autonomic self-recon�guration, thereby the organism can adapt
its structure in reaction to actual circumstances, or replace a broken module with a
spare one, which is extremely useful in case a human operator can't intervene, as in
space or in dangerous areas.

A fundamental property of autonomous robot is a capability of a locomotion.
In this diploma thesis, a locomotion through joint-control approach is investigated.
This type of locomotion uses a collaboration of joints of all modules to generate a
movement of the whole organism. To maintain control signals for module actuators,
we used the Central Pattern Generation (CPG) method. The control signals are
generated by a set of oscillators and the resulting movement is determined by a
setting of parameters of these oscillators (e.g. a frequency and phase shift of a
harmonic oscillator). Two types of CPG were investigated in this diploma thesis. To
�nd a feasible setting of parameters that emerges into a desired locomotion, Particle
Swarm Optimization (PSO) and Genetic Algorithm (GA) were used.

The most time-consuming part of the parameter optimization is computation of
the �tness value. If the optimization runs on a real robot, it has to apply the tested
parameters, realize the locomotion and measure its quality, thereby every �tness
evaluation lasts several seconds. For the purposes of this diploma thesis, a simple
simulator of CoSMO modular robots was created to generate and test locomotion
patterns. Although the simulator provides much faster �tness evaluation, it still
remains the slowest step of the optimization, therefore decreasing the number of

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Validation of results with a real robot.

needed �tness evaluations is desired. A Fitness Estimation method, that uses an
approximate estimated value of �tness instead of calling the �tness function, was
applied to both PSO and GA.

In the real world, any module can break down at any time. In this diploma thesis,
a preventive method was investigated, where the failures are taken into account
during the optimization of the CPG parameters. We also tried adding a simple
feedback to one of the CPGs to make it capable of active reaction to failures.

A comparison of automatic locomotion generation using di�erent optimization
algorithms and di�erent CPG types was made during the experimental part. Also,
the performance of Fitness Estimation method and generation of failure-resistant
locomotion patterns were examined. All experiments were run for six di�erent shapes
of a robot. To verify the simulator, some of the found locomotion patterns were run
on real robots and resulting movements were compared to simulations.



Chapter 2

State of the art

2.1 Modular robotics

A modular robot is a mechanical organism composed of either heterogeneous or
homogenous modules. Advantages of using this architecture is a wide variability of
organisms, achievable by reassembling modules, and also a capability of replacing
disabled modules by a spare device of the same type. As there may be one or
relatively few types of the module, the mass production could be possible, which
is e�ective from an economic viewpoint. If the hardware architecture provides self-
recon�guration [1], a robot can autonomously modify its structure in a response to
environmental changes or a module defect. Therefore the robot is highly adaptive
as it have advantages of the every shape it can be recon�gured to. For example
a legged robot is able to walk on a rough terrain and to pass through a narrow
space it can recon�gure to a snake-like robot. An autonomous self-recon�guration is
very useful especially in dangerous, distant or inaccessible environments where it is
impossible for a human operator to intervene. A possible issue of self-recon�guration
is that it may require cooperation of all modules which might not be possible in case
of failures. Moreover, self-recon�guration requires precise movements which cannot
be easily achieved in rough terrains. In this diploma thesis, only �xed-structure
organisms are examined, which preserve a single con�guration and can be operated
through controlling joint angles of their modules.

The task of self-recon�guration and its usage for changing the structure and for
a locomotion is described for various robot types in [2, 3, 4]. An distributed ap-
proach capable of �nding a time-e�cient solution of the self-recon�guration task for
organisms with very large number of module is proposed in [5]. The parallel path
planning is de�ned as a Markov decision problem and solved using dynamic program-

3
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Figure 2.1: A four-legged robot composed of 16 modules.

ming. The organism must remain connected whole time. The proposed method uses
depth-�rst search implemented with message passing between modules to �nd the
mobile modules, which can move without the structure being disconnected. If a path
connecting all neighbors of the module is found, the module is identi�ed as mobile.
This method provided plans with running time proportional to 3

√
m for cubic robots

with m modules.
The article [6] discusses the problem of autonomic repairing an organism by

replacing broken modules. They use homogenous organisms with numbers of modules
which are capable of self-assembling according to de�ned constraints using local
inter module communication. The self-assembly process is made layer by layer. If a
missing module is detected, the organism is degenerated to a stage when this module
was added and then the assembling procedure runs again.

A basic building block of the modular robot called module has usually a small
number of DOFs (usually one or two). Connecting several modules together results
into a robot with many DOFs which requires a precise collaboration of all modules
to perform any action, to maintain stability or to prevent self-collisions between
the modules. Recent robots includes communication system between modules that
allows synchronization of actions whether the control is distributed or control inputs
are provided centrally e.g. by one of the modules. A low level controller for adjusting
joint angles is implemented in each module processor. In this diploma thesis, the
CoSMO robotic cubes were used for experiments.
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Figure 2.2: Di�erent types of modules (from left to right): Scout robot, Active wheel
and Backbone robot (CoSMO).

2.1.1 CoSMO modules

The CoSMO modular robotic platform was developed within EU projects Symbrion
and Replicator [7]. The modules are cubes of size 10x10x10 cm and weight≈1 kg
(Fig. 4.1a). The modules are equipped with a pair of screw-drives that provides
2D locomotion. The screw-drives allow the modules to operate fully autonomously,
so the modules can be used also as stand-alone mobile robots. 3D locomotion is
achieved using powerful hinge that is able to lift up to �ve other modules. Besides
the actuators, the modules are equipped with four docking mechanisms, camera, IR
receivers/transmitters, RGB sensors and accelerometers. The data can be processed
by the on-board Black�n CPU. The modules communicate with each other using
Ethernet, Bluetooth or Zigbee. The modules can be combined with each other using
an active docking mechanism. Each module can operate using an internal battery,
and the modules can share energy when connected to an organism.

The CoSMO modules are part of large modular robotic system, that consists
of three types of modules: "active wheels", "scouts" and "backbones" (Fig. 2.2).
The backbones are realized using the CoSMO modules. The three modules are spe-
cialized to di�erent tasks. The scouts robots are used to explore 2D environments,
backbones/CoSMOs are designed mainly for 3D locomotion and active-wheel mod-
ules serve as a backup modules.

The 3D locomotion of the CoSMO robots is realized using the main hinge, which
can move in range

[
−π

2
, π
2

]
. The hinge is controlled by setting a desired angle and

its motion is controlled using an internal PD regulator. Although the joint can move
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very fast (the whole motion from −π
2
to π

2
can be realized in less than a second), the

fast movements are not used and the modules move very slow.

2.1.2 Failures in modular robotics

As mentioned before, an important advantage of the modular robot architecture is
the possibility to cope with the failures. The basic solution of a module malfunc-
tion is to disconnect the broken module and to replace it with a spare robot using
autonomic self-recon�guration. The issues of this method may be an inability to
undock the broken module due to mechanical or electrical failures, an impossible
self-recon�guration due to a rough terrain or the unavailability of a spare functional
module. In case the self-repair by self-recon�guration is unfeasible for any reason,
the organism must be able to �nish the task or transport itself to a location where
the repair can be done, even with the presence of failures. Recovering from failures
by adapting the robot locomotions instead of exchanging the broken parts is inves-
tigated in [8]. The presented method, including the adaptation of the locomotive
primitives after failure, was veri�ed to signi�cantly increase the ratio of successful
plan ful�lling in most cases, in comparison to only updating the high-level path
planner to cope with a lame locomotion.

For a modular robot consisting of m modules the number of possible failures Nm

is equal to:

Nm =
m∑
i=0

(
m

i

)
· ki = (1 + k)m, (2.1)

where k is a constant number of considered module defects relevant to the locomotion,
for example a discrete set of joint angles where the module might get stuck or free-
wheel run if an actuator is broken. If we presume that at most n modules can break,
the formula changes to:

Nm =
n∑
i=0

(
m

i

)
· ki. (2.2)

For a robot assembled from 6 modules, considering three defect types and at most 2
broken modules, there are yet 154 possible functional states of the robot. With the
growing number of modules or defect types this count increases rapidly, thereby it
is computationally intractable to prepare a set of locomotion patterns for all failure
states in advance. For example for the four-legged robot depicted in Fig. 2.1 consist-
ing of 16 modules and with other conditions left as in the previous case, the number
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of combinations is 1129. Also, in the real world, the number of potential module
defects k is very high.

The method presented in [8] tries to adapt the locomotion under failures on-line.
It uses the original locomotion as an initial solution and optimizes it on the broken
robot. This method requires a mechanism for failure detection and a robot capable
of optimizing the locomotion in the �eld, that may be di�cult to guarantee. In this
diploma thesis, another approach was investigated, which could be used when it is
impossible to detect module defects or alter the locomotion of the robot on-line.
We try to overcome failures of the modules by providing such a robust locomotion
pattern, that it would work su�ciently for a healthy robot as well as for a robot
under di�erent failures.

2.2 Automatic locomotion pattern generation

for modular robots

A key property of each autonomous robot is the ability to move through an environ-
ment, which can include various obstacles. Movements resulting in progression of an
individual from one place to another is called locomotion. As we almost never know
robot's workspace precisely, the locomotion should be robust enough to proceed in
as wide range of conditions as possible. For example, the locomotion pattern should
be applicable for di�erent types of surfaces (slippery, rough) and should be able to
handle with some amount of bumpiness of the terrain. One robust locomotion is eas-
ier to achieve than several ad hoc locomotion patterns being switched due to actual
circumstances.

The locomotion of a modular robot can be achieved by a repetitive self-recon�guration
or joint-control approaches. In the case of a motion through self-recon�guration,
modules from back part of the robot are being transported to front and that results
in organism movement. This approach is not very fast for long locomotions over
large distances, because modules have to be disassembled, sent through the whole
organism and reassembled at a new position in every step, but on the other hand
it can solve di�cult tasks like climbing over a high obstacle. The second way is to
preserve the only con�guration of the modular robot, use module joint motors to
act like organism muscles and perform a whole-body motion. The latter locomotion,
called joint-locomotion, is the one investigated in this thesis.

Both approaches for locomotion generation (motion through self-recon�guration
and joint-control locomotion) can be solved using planning approaches. In the former
case, the self-recon�guration can be formulated as a discrete planning problem, where
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the task is to �nd a sequence of actions to change the structure of the robot [9, 10, 2,
6, 3]. In this case, it is assumed that each module can perform several actions (e.g.
disconnect, move to left, right, up, down across its neighbors and reconnect back to
the organism).

The joint-control locomotion can be formulated as a motion planning problem,
where the task is to derive control signals for each actuator that would move the
robot. This would require a motion model of the modular robot in order to determine
how the pose of the robot changes after a control input is applied. Generally, the
motion of modular robots depends on their kinematics (that can vary in the case
of self-recon�gurable robots), as well as on contacts with the underneath terrain.
Therefore, it is not easy to derive an analytical motion model [11]. A motion of the
robot can be modeled using physical simulation instead [12, 13].

The motion planning problem for joint-control robots can be solved using sampling-
based approaches like Rapidly Exploring Random Tree [14, 15]. The sampling-based
approaches can cope with many-DOF systems and they allow us to consider kine-
matics and dynamics constraints. The methods can be easily extended to utilize a
black-box motion model, which is necessary in the case of simulated motion model.
The disadvantage of the RRT method is the necessity to derive control signals in
order to expand the con�guration space of the robot. In the case of modular robots,
this would require to discretize the possible control inputs (desired angles of the
joints) and to generate combinations of these discretized values.

Such an approach can be applied only to modular robots with few actuators (e.g.
snakes with three modules), but it cannot be used for robots with many modules.
The number of combinations grows exponentially with the number of actuators [16],
which increases the complexity of the planning task. Although a random subset of the
combinations can be used [14], a better approach is to utilize locomotion generators
in the planning task [16, 17]. A possible method to reduce the dimensionality of this
problem to a reasonable level is usage of Central Pattern Generation (CPG), where
the control inputs are generated by a set of oscillators. In CPG, a feasible setting of
parameters of the oscillators is being found, which is an easier task than �nding the
control inputs directly and is accomplishable even for robots with many modules.

2.2.1 Central Pattern Generators

In order to transport themselves between di�erent places, animals perform less or
more complicated rhythmic moves. Formerly it wasn't clear if this movement is
caused by chains of re�exes or by central oscillators [18]. By isolating animal's ner-
vous system and comparing its output to an output observed during motion, it was
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proved that there is no need for feedback from environment to generate rhythmic
motor pattern [19]. Although the sensory feedback is unnecessary for generating
rhythms, together with the higher-level neural center it allows adaptation of the mo-
tor pattern to the current situation or even learning new patterns. Neural networks
responsible for creating rhythmic patterns are called Central Pattern Generators.
Besides locomotion CPGs generate every stereotyped patterns such as breathing,
chewing or peristalsis.

As robot structures are often inspired by living creatures it is natural to try to
imitate also the principles of their locomotion. Central Pattern Generators can be
modeled as a set of coupled oscillators, which is appropriate to use in a distributed
system - like in a modular robot [20], where we can assign a single oscillator to each
module and use its output to control it. The coupling of oscillators means that an
output of a oscillator can be in�uenced by a state of another oscillator. The main
motivation for using CPGs is that it can signi�cantly reduce the dimensionality of the
problem of a locomotion generation. Instead of generating control signals directly,
we only need to �nd feasible parameters of the oscillators that emerge into a desired
high-dimensional locomotion.

An example of using CPG in modular robotics may be [21], where a serpentine
bot is driven by CPGs with near-neighbor coupling. In [22], the switching between
walking and swimming gaits of a salamander robot is achieved by adjusting the CPG
parameters on-line. CPG with neural oscillators was used to generate locomotion
for six di�erent shapes of robots in [23]. The parameters of neural oscillators were
obtained from a genetic algorithm.

For trivial situations the parameter values can be assigned manually. For exam-
ple for a snake-like robot driven by CPG with simple harmonic oscillators (described
in 3.1.1) a locomotion can be achieved by setting frequencies and amplitudes equally
for all modules and setting the phase shift value of the i-th module to φi = π

c
· i.

This setting emerges into a waving movement of the organism, where c is a con-
stant determining the wave shape. Otherwise, in nontrivial cases, the optimization
methods have to be used to set CPGs up. Because the in�uence of individual CPG
parameters or even direct in�uence of a single module on the resulting behavior of
the whole organism is generally unknown, the optimized �tness function is black-
box type. The appropriate optimization algorithm to be used without any initial
knowledge of the problem could be an evolutionary algorithm or the particle swarm
optimization algorithm.

An example of locomotion generated by CPG is shown in Figure 2.3, that consists
of a graph with control signals obtained from harmonic oscillators and snapshots of
the driven robot in the simulation environment.
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Figure 2.3: A snake-like robot driven by harmonic oscillators. The modules are
numbered from left to right. The lighter lines stands for real positions of actuators.
The snapshots of the robot corresponds to time points marked in the graph.

2.3 Parameter optimization

Central Pattern Generators can be used to obtain a whole-body locomotion. A
CPG model consists of a set of oscillators with some parameters that have to be set
properly. As these parameters a�ect only one particular oscillator, it is not apparent
how it in�uences the locomotion of the whole organism. For nontrivial cases the
resulting �tness function is a black-box, so we have to use an optimization algorithm
based on the trial and error method. In this diploma thesis, two bio-inspired methods
were investigated - a Genetic Algorithm (GA) and a Particle Swarm Optimization
algorithms (PSO). The former belongs to evolutionary algorithms that try to imitate
natural evolution of living organisms and use its principles to evolute a population of
feasible solutions. The latter reproduces movements of individuals in insect swarms,
�sh schools or bird �ocks but instead of the three-dimensional world the individuals
move in a n-dimensional problem space while examining it.

The advantage of the methods is the ability to cope with high-dimensional prob-
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lems. Another important advantage of the bio-inspired methods is the fast con-
vergence to an acceptable solution, which is crucial in the case of the locomotion
generation, where the evaluation of the �tness function is very time consuming.

2.3.1 Genetic algorithms

The natural evolution is evidently a very robust process. Diverse lifeforms have
evolved and adapted themselves to survive in almost all thinkable places on the
earth, from cold poles to the heat equator, in water, on land or in air. The evolu-
tion can be considered as an optimization process with the �tness function de�ned
implicitly by the ability to survive, reproduce and pass own genetic information to
next generations. Evolutionary algorithms intend to model perfectly time-proven
principles of the natural evolution and use their strength to search a space of so-
lutions to di�erent problems. There are more variations of evolutionary computing
but the main structure often remains [24]. Initially a population of random solutions
is generated and then it is iteratively improved by repeating stochastic operations
of selection, recombination and mutation until some condition is satis�ed. Probably
the best known evolutionary algorithms are genetic algorithms.

Classical genetic algorithms usually don't compute directly with the vectors from
the solution space but use a discrete binary alphabet to encrypt them into vectors of
zeros and ones. The genetic algorithms terminology is derived from molecular genet-
ics so these binary vectors, which are analogical to DNA chains, are called genotypes
or chromosomes. By decrypting chromosome we get a corresponding solution or, in
terms of genetics, a phenotype.

Genetic algorithm (Alg. 1) starts with a set of arbitrarily selected chromosomes
called population. Then every chromosome is evaluated by �tness function, which
quantify the quality of the solution stored by the chromosome. A natural selection
ensures that the �ttest chromosomes are kept in the population and those with insuf-
�cient �tness values are forgotten. The ratio between kept and rejected individuals
may be set arbitrary. The population gap developed after the selection is then �lled
by a crossover, which is the most important operation in GAs, di�ering them from
other evolution algorithms. Chromosomes are paired randomly and the �tness value
of the individual may be taken into account when de�ning the probability of its mat-
ing. The o�spring chromosome is generated as a combination of parents, while there
exist several methods how to combine the chromosomes. The �nal step is a mutation.
In classical binary representation it means that any bit among the chromosomes in
the population can swap its value from zero to one and vice versa with a given small
probability. The mutation can prevent a premature convergence and �nd solutions
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Figure 2.4: The schema of a basic Genetic Algorithm. The numbers in boxes are
the �tness values. During the selection of parents, the individuals which are about
to mate have the same color, and after the crossover their o�spring also has this
color. The semitransparent individuals are the members of the original population
that were not chosen to proceed to the next generation.

which were not present in the original population. The algorithm continues using the
new population of chromosomes for a next iteration of the selection, the crossover
and the mutation until the population converges or some another condition is met.

The modi�cations of the genetic algorithm for real-valued chromosomes also ex-
ists [25]. They use the same steps as the classical GA and di�er only in the implemen-
tation of the mutation and crossover operators. The chromosomes in a continuous
genetic algorithm can be vectors straight from the space of solutions so coding be-
tween the chromosomes and the solutions is not necessary any more. The real-coded
genetic algorithm is superior for optimizing multimodal functions or variables with
many local minimums [23] and therefore it was used also in this diploma thesis for
the CPG parameter optimization.



CHAPTER 2. STATE OF THE ART 13

// initialize population

pop[1..N ] := random chromosome;
// decode chromosomes and evaluate their fitness

evaluate(pop);
repeat

// select fit chromosomes to be copied into next generation

popnew[1..Nkeep] := selection(pop);
// pair chromosomes and recombine them to fill the rest

popnew[Nkeep + 1..N ] := crossover(pop);
// modify some chromosomes randomly with small probability

popnew := mutate(popnew);
pop := popnew;
// decode chromosomes and evaluate their fitness

evaluate(pop);
until condition;

Algorithm 1: Basic genetic algorithm

2.3.2 Particle Swarm Optimization

An ant colony is capable of the complex social behavior including building ant-hills,
defending enemies or food seeking although a single ant is credited with minimal
individual intelligence and does not plan his actions in manner of achieving long
term outcome. The individuals behave according to simple rules like a pheromone
following and working together they are capable to solve a global problem, like
selecting the shortest path of many [26]. The pheromone, which is laid down by the
ants, attracts other ants. If the path is e�cient, the ants shuttle faster and leave more
pheromone there which provides a positive feedback. The phenomenon of simple
individual behavior emerging into complex results is known as swarm intelligence [27].
Beside the ant colony behavior, an another example of the swarm intelligence is the
bird �ocking. A simulation of the complicated movement of the whole �ock can be
obtained easily if the problem is decentralized. The �ock members are in�uenced
by local forces that are easy to determine. These may be for example a collision
avoidance, velocity matching with their neighbors and moving toward the center of
the �ock.

The particle swarm optimization algorithm [28, 29, 30, 31] prospers from the
swarm intelligence phenomenon as well and is inspired by the social behavior of in-
dividuals in swarms or �ocks. A population of particles swarms through the solution
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space and each particle is attracted to the best position it has visited so far and to
the global best position, which is the best position found by the particle's neighbor-
hood. As an initialization, a set of particles is generated arbitrary. Every particle
consists of a position, which is a vector from the solution space, and of a velocity
vector determining the position change in the succeeding step. Each particle also
keeps track of its best evaluated position and of the best evaluated position of its
neighborhood, also called the global best. In every step the particle moves according
to its velocity and then the velocity is updated as stated in equations:

xk+1
i = xki + vki

vk+1
i = vki + c1 · rnd(0, 1) · (pbestki − xki ) + c2 · rnd(0, 1) · (gbestki − xki )(2.3)

where xki is the position of i-th particle in k-th step, vki is the velocity vector of
this particle, pbestki is the particle's current best position achieved so far, gbestki
is the current best position of the i-th particle's neighborhood, rnd (0, 1) is a ran-
dom number between 0 and 1 with the uniform distribution, c1and c2 are weight
constants determining the importance of the personal and global best values. Usu-
ally these constants are set equally c1 = c2 = 2 to make the mean of stochastic
values c1 · rnd(0, 1) and c2 · rnd(0, 1) equal to 1 [28]. After the particle's position
change, the new �tness value is computed and if it is better than the �tness of the
particle's best position, the actual position is stored as pbest. To prevent a gain
of oscillations of particle positions, velocity should be damped. A simple solution
is to de�ne a vector vmax and make sure that each dimension of the actual particle
velocity �ts in the interval [−vmax,d, vmax,d], where vmax,d is the maximal speed in
the tested dimension. In this diploma thesis, the maximal velocity is given by a
scalar parameter vmax, that determines the maximal speed as a percentage part of
each dimension size of the solution space. Thus, the vector vmax is computed as
vmax = vmax (ubound− lbound), where ubound and lbound are vectors of upper
and lower boundaries of each dimension. The PSO algorithm in a pseudo-code is
shown in Alg. 2, where G() stands for a �tness evaluating function. Other symbols
are the same as that in Eq. 2.3.

The stated algorithm intentionally lacks the way how the particles are clustered
into neighborhoods, as there are more approaches for implementation of this. In-
stead of geometrical neighborhood constructed in terms of particle distances in search
space, the topological structures are more common. In [27] there are two topologies
compared. The circle topology, also called the ring or lbest, where each particle is
connected to its k immediate neighbors (Fig. 2.5a), and the wheel, where one particle
is connected to all others and they are connected only to that one (the origin of the
name �wheel� is obvious from Fig. 2.5b). In the circle topology distant particles are
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// compute the maximal speed vector

vmax = vmax (ubound− lbound);
// initialize a swarm of particles

for i := 1 to particle count do
xi := random position;
vi := random velocity;
pbesti := xi;
gbesti := xi;

end

repeat

// run following loop for every particle

for i := 1 to particle count do
// update particle best

if G(xi) > G(pbesti) then
pbesti := xi;

end

// update the neighborhood best

for j := indexes of neighbors do
if G(pbestj) > G(gbesti) then

gbesti := pbestj;
end

end

// update the position and the speed

xi := xi + vi;
vi := vi + 2 · rnd(0, 1) · (pbesti − xi) + 2 · rnd(0, 1) · (gbesti − xi);
// ensure the maximal velocity in all dimensions

for d := number of dimensions do
if vid < −vmax,d then vid := −vmax,d;
if vid > vmax,d then vid := vmax,d;

end

end

until condition;

Algorithm 2: Basic PSO algorithm
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(a) Circle, k = 2 (b) Wheel (c) gbest (d) random,
pconn = 0.25

Figure 2.5: Examples of swarm topologies.

independent of each other, but neighbors are connected. In the wheel topology all
information is communicated through the focal individual, thus other individuals are
isolated. From the experimental comparison a hypothesis it was proposed that the
wheel topologies may perform better by maintaining diverse population on functions
with many local optima. Another basic topology is gbest, where all particles commu-
nicate with each other (Fig. 2.5c), thus there is only one common best position at a
time. The gbest topology often su�ers by the premature convergence in a local opti-
mum. As the character of the �tness function used for optimizing CPG parameters
in this thesis is not known, a randomized topology of the particle interaction was
used (Fig. 2.5d). The selected topology is described below in 3.2.1. This approach is
reported to perform equally or better than selected deterministic topologies in [32].

The basic improvement of PSO algorithm is an introduction of inertia weight
ω, described in [30]. The parameter de�nes the willingness of a particle to change
its speed according to the personal and neighborhood best positions. The modi�ed
equation for velocity changes is:

vk+1
i = ωvki + c1 · rnd (0, 1) ·

(
pbestki − xki

)
+ c2 · rnd (0, 1) ·

(
gbestki − xki

)
, (2.4)

where ω stands for the inertia weight. In the classic PSO, this value equals one.
Increasing ω results into searching the wider part of the search space, but in the
�nal phase of the optimization the particles can oscillate around better solutions.
Decreasing results in a more precise local search but the particles can easily get
stuck in a local optimum. If the value of ω is initialized at higher value and linearly
decreased during optimization process, the algorithm searches the bigger space in
the beginning and in the �nal stadium it performs a partial search. The �ne setting
of ω can improve the speed of algorithm convergence while searching su�cient part
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Figure 2.6: Explanation of the particle movement in the search space. An orange
circle represents the previous position of the particle xk, a yellow circle represents the
updated position xk+1, a green square stands for pbest, the best position the particle
has visited and a red square is gbest, the best particle found by the neighborhood
of the particle. The numbers in boxes are the �tness values. In the last picture the
pbest position is updated, as the particle passes a point with a �tness value 1.06,
which is higher than the actual pbest �tness 0.88.

of the search space.

2.4 Conclusion

Modular robotics is a versatile technology applicable especially in �elds with high
demands on a device autonomy. An organism assembled from a set of modules may
be capable of self-recon�guration and change its shape according to actual needs, like
for climbing over a high obstacle or passing through a narrow space. The locomotion
of a modular robot can be achieved by either repetitive self-recon�guration, where
modules from the back of the robot are being transported over other modules to
the front, or by joint-control approaches, where the robot structure is �xed and the
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organism is moved by cooperation of actuators of the modules. The latter is studied
in this thesis.

As computing the proper joint angles for all modules directly would be compli-
cated, the CPG method can be used to simplify the problem. In this method a set of
coupled oscillators is used to generate the control inputs. The CPG sets constraints
of the generated signals so the dimension of the solution space is decreased to the
number of parameters of the oscillators. An adequate setting of the parameters
ensures the desired locomotion of the organism.

To �nd feasible parameters automatically, optimization methods must be used,
with the �tness value determined by a measured value from the locomotion gen-
erated by the currently evaluated parameter, e.g. a change of the coordinates of
the organism after a speci�ed running time. The number of the parameters usually
grows linearly with the number of the modules and a curse of the �tness function
is unknown, therefore the appropriate optimization methods can be a genetic algo-
rithm or the particle swarm optimization, that are proved to be e�cient in such
types of problems. The evaluation of the �tness function is very time consuming
in the locomotion learning and it dominates the overall optimization time, therefore
minimizing the number of evaluations is desired.

In the next chapter two particular variants of the CPG controller and concrete
implementations of GA and PSO are described. A method of decreasing the number
of �tness evaluations for both optimization algorithms is also proposed.



Chapter 3

Investigated solutions

3.1 Locomotion Generation

The central pattern generation uses a set of oscillators that generate control inputs.
In modular robotics, we can assign the oscillators to modules and use their outputs
as a reference signal for the module position controller to maintain an organism
locomotion. In this thesis, two kinds of CPG were tested. The former uses the
simplest oscillating function � the harmonic oscillator, whose output is described
by a sinus function and is characterized by an amplitude, a frequency and a phase
shift. The latter is implemented as a chain of coupled nonlinear oscillators. Next to
the intrinsic amplitude and frequency that have the same meaning as in the harmonic
oscillator, this approach contains also parameters that de�ne connections between
oscillators and their relative in�uences. Performance of both of them was examined
experimentally with di�erent robot shapes.

As there are physical and mechanical limitations in controlling a real module,
some boundaries must be applied also for the parameters of the central pattern
generators to get a reasonable behavior. For the sinusoidal CPG the setting of the
boundaries is done intuitively. The boundaries of the parameters of the coupled
nonlinear CPG, in contrast, are hard to set to maintain a desired signal shape. We
found a feasible settings for our experiments experimentally using the Fast Fourier
Transform to verify that the generated signal doesn't contain too high frequencies.

3.1.1 Harmonic oscillators

The simplest implementation of CPG composes of a set of harmonic oscillators. The
control input of i-th module is given by function:

19
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ui(t) = Ai · sin(ωit+ φi) (3.1)

There are three parameters per module: Ai is an amplitude, ωi = 2πfi is an angular
frequency and φi is an phase shift. The overall number of parameters is 3m for a
modular robot consisting of m modules. The amplitude and frequency boundaries
are de�ned by mechanical attributes of a module. The amplitude matches the range
of module joint angles a the frequency is limited by the maximal speed of joint
movement.

3.1.2 Coupled nonlinear oscillators

The second implemented variation of CPG was based on [22] where it is used to
generate two di�erent gaits of a salamander inspired robot, walking and swimming,
by modifying parameters of the oscillators. Compared with sinusoidal CPG, the
coupled nonlinear CPG allows coupling between oscillators. The system of coupled
nonlinear oscillators is described by following set of di�erential equations:

θ̇i = 2πfi +
∑
j 6=i

wijrj sin(θj − θi − φij)

r̈i = ai

(
ai
4
(Ri − ri)− ṙi

)
(3.2)

ui = ri(1 + cos(θi)),

where θi and ri are state variables representing the phase and the amplitude of the i-
th oscillator. The parameters fi and Ri de�nes the intrinsic frequency and amplitude
of the oscillator and wij and φij determines the weight and the phase bias of the j-th
oscillator state with respect to the i-th oscillator. The coupling parameters are not
necessarily symmetric, thus wij may di�er from wji. The parameter ai is positive
constant a�ecting the response of output on Ri changes. The phase shift is given by
the initial condition θi(0). All locomotions in this thesis start with steady modules
set to zero angles, therefore initial conditions ri(0) and ṙi(0) are set to zero.

If ri(0), ṙi(0) and ai are set manually and �xed, there are m (3 + 2(m− 1)) =
2m2 +m parameters to specify for a modular robot consisting of m modules. fi, Ri

and θi(0), with a meaning similar to the parameters fi, Ai and φi of sinusoidal CPG,
and wij and φij, de�ning the strength of the coupling between two oscillators and
their phase bias. To generate signals that are feasible for used modules, the upper
limit of Ri is set to the value of the maximal angle of the joint. The instantaneous
frequency of the coupled nonlinear oscillators depends on an intrinsic frequency fi
but is also in�uenced by the states of the linked oscillators weighted by the parameter
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wij, so the setting of the parameters boundaries is not clear. We used the Fast Fourier
Transform in MATLAB to determine which frequencies are present in the outputs
of the oscillators and lowered the range of the wij boundaries until the frequencies
were appropriate.

3.2 Parameter optimization

The resulting whole body locomotion depends on the collaboration of all modules.
In case of using central pattern generators the locomotion is given by a properly set
combination of parameters for all oscillators. As denoted in the previous subsection,
the sinusoidal CPG and the coupled nonlinear CPG have 3m and 2m2 + m real
valued parameters to be set, respectively, where m is the number of modules in
the organism. Acquiring these parameters is the optimization problem with the
�tness function whose value is determined by some measured output of a locomotion
emerged from the evaluated parameters. This output may be for example the change
of some coordinate after the speci�ed amount of time for which the locomotion was
executed. The �tness function is de�ned implicitly by the used CPG method, the
physical and mechanical parameters of modules, the structure of the organism, the
environment etc., therefore the only way how to get the �tness function value for a
set of parameters is to actually drive the robot using CPG with these parameters
and observe its behavior.

As the number of dimensions of the search space is a multiple of the module count
and the course of the �tness function is unknown, gradient optimization methods are
not e�cient for this problem. In contrast, genetic algorithms and the particle swarm
optimization perform good results on high-dimensional and black-box problems. In
this diploma thesis, both of them were implemented and their performance in �nding
the parameters for di�erent robot shapes was investigated. It usually takes many
�tness evaluations to �nd a feasible combination of CPG parameters. As measuring
the �tness value on a real hardware is very time-consuming, the locomotion �nding
methods were tested in a simulator, but still the �tness evaluation consumes the
most signi�cant part of the computation time. Methods decreasing the number of
evaluations were investigated for both optimization algorithms.

3.2.1 Particle swarm optimization

The particle swarm optimization is an optimization algorithm based on swarm intel-
ligence. The swarm of particles representing possible solutions imitates the behavior
of a insect swarm or a bird �ock to examine the search space and to �nd a solution
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with the highest �tness value. For the purposes of this diploma thesis the basic
PSO algorithm was implemented. The algorithm structure is the same as in Alg. 2
listed above. To minimize the number of the expensive �tness evaluations, the �tness
values of the particle actual position and its best position are stored in memory, so
only the new positions after the particle movement are evaluated. The algorithm
terminates after a speci�ed number of iterations.

An important part of the PSO algorithm is the velocity update function, which
in this case is:

vk+1
i = vki + rnd(0, 2) · (pbestki − xki ) + rnd(0, 2) · (gbestki − xki ) (3.3)

This equation corresponds to Eq. 2.3 and Eq. 2.4 with substituted parameters c1, c2
and ω. The inertia weight ω is constant for the whole duration of the algorithm run
and equals one, the parameters c1 and c2 are both set to 2.

// generate neighborhood for every particle in the swarm

for i := 1 to particle count do
for j := 1 to particle count do

// add particlej to neighborhood with probability pc
if i 6= j ∧ rnd(0, 1) < pc then

neigborhoodi := neigborhoodi ∪ particlej;
end

end

end

Algorithm 3: Neighborhood generation in PSO

Another key property of the algorithm is the way the neighborhood of a particle is
generated, which imply the social behavior of the swarm. There are many approaches
for determining the connections between particles that perform di�erently for dif-
ferent optimization problems. The one used in our implementation of PSO is based
on the randomized neighborhood re-structuring method described in [32]. The topol-
ogy created by this method is asymmetric, thus the neighbor of the particle don't
have to contain this particle in its own neighborhood (Fig. 2.5d). Neighborhoods of
di�erent particles are completely independent. In this method, the connections be-
tween particles are set randomly, kept for a speci�ed number of PSO iterations and
then re-structured entirely. In our implementation there are parameters pc and tkeep
standing for the probability of adding a particle into generated neighborhood and
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the number of iterations for the one speci�c structure remains, respectively. Pseudo-
code for neighborhoods generation is shown in Alg. 3. After tkeep iterations all the
neighborhoods are regenerated. The parameters were set pc = 0.25 and tkeep = 10
for the experiments presented in this diploma thesis.

3.2.2 Genetic algorithm

Genetic algorithms belongs to evolutionary algorithms, thereby they consists of typ-
ical evolutionary processes of a natural selection, a crossover and a mutation. They
are distinguished from another EAs mainly by a large importance of the crossover op-
erator. An outline of a basic genetic algorithm was shown above in Alg. 1. Classical
GAs cope with binary genomes that represent encoded possible solutions, however
for optimizing multimodal functions with many local minimums real-coded GAs are
more e�cient. As an application of genetic algorithm for optimizing CPG parame-
ters was already presented in [23], we adopted the published settings of the algorithm
from this paper.

The population is initialized randomly and each individual's �tness value is eval-
uated. The individuals are sorted by their �tness value and nkeep of them are copied
into the next generation. The rest of the population of the next generation is �lled
by crossover. The Unimodal Normal Distribution Crossover (UNDX) method, de-
scribed below, is used. This method requires three parents for generating an o�spring
which are selected by a roulette selection method (Alg. 4), where the probability of
selecting an individual is proportional to its �tness value. With a probability given
bym_rate, every dimension of the chromosome can mutate by being set to a random
value from its range. The used mutation operator is shown in 5.

3.2.2.1 Unimodal Normal Distribution Crossover

The Unimodal Normal Distribution Crossover (UNDX) method [33] is a component-
wise crossover method which provides a su�cient diversity of children while pre-
serving the original distribution of the parent population. For the n-dimensional
real-valued search space Rn the UNDX method works as follows. The steps of par-
ent selection and o�spring generation are shown in Fig. 3.1. At �rst, two parents
x1 ∈ Rn and x2 ∈ Rn and are selected from the population and their midpoint xp

and di�erence vector d are computed:

xp =
1

2
(x1 + x2) (3.4)

d = x2 − x1 (3.5)
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// roulette initialization

�tness_sum := the sum of all �tness values;
�tness_min := the minimal �tness value;
roulette[1] := (pop[1].�tness− �tness_min)/�tness_sum;
for i := 2 to population size− 1 do

roulette[i] := roulette[i− 1] + (pop[i].�tness− �tness_min)/�tness_sum;
end

roulette[population size] := 1;

// spinning the roulette

i := 1;
r := rnd(0, 1);
while roulette[i] < r do

i := i+ 1;
end

// the selected individual is pop[i]

Algorithm 4: Roulette wheel method. The variable pop[i] is the i-th individual
and pop[i].�tness is its �tness value.

// mutation

for i := 1 to population size do
for j := 1 to number of dimensions do

if rnd(0, 1) < m_rate then
pop[i].chromosome[j] := rnd(lbound[j], ubound[j]);

end

end

end

Algorithm 5: The used mutation operator. The variable pop[i] is the i-th
individual and pop[i].chromosome[j] is the j-th value of its chromosome. The
variables lbound[j] and ubound[j] are the lower and upper boundaries of the
j-th dimension.
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The vector d determines the primary search direction. As the next step, the third
parent x3 ∈ Rn is randomly selected from the population. The distance D between
x3 and the line connecting x1 and x2 is given by the equation:

D =
∣∣∣x3 − x1

∣∣∣ ·
1− ((x3 − x1)T (x2 − x1)

|x3 − x1| |x2 − x1|

)2
 1

2

(3.6)

The o�spring vector xo ∈ Rn is given by the equation:

xo = xp + ξd+
n−1∑
i=1

ηieiD (3.7)

where ξ is a random number following a normal distribution N(0, σ2
ξ ) and ηi are

n− 1 random numbers independently following a normal distribution N(0, σ2
η). The

vectors e1, . . . , en−1 are normalized orthogonal basis that span the secondary search
space, or in other words these are vectors perpendicular to the vector d. These
vectors can be obtained using the Gram�Schmidt orthonormalizing process, as de-
scribed in Appendix B. The recommended setting of the variance parameters based
on numerical experiments, as denoted in [33], is:

σ2
ξ =

1

4

σ2
η =

0.352

n
. (3.8)
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Figure 3.1: Unimodal Normal Distribution Crossover.
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3.2.3 Fitness estimation

As the evaluation of the �tness function is very time-consuming and dominates the
overall time of the locomotion pattern generation, minimizing the number of �tness
evaluations is desired. A possible method of achieving this is estimating the �tness
of an individual instead of computing it. An estimation method for evolutionary
algorithms is described in [34]. The �tness of an o�spring can be estimated from
the known �tness values of its parents. As the accuracy of the estimated values gets
lower with a number of estimations, a reliability parameter is associated with each
�tness value to specify, how much reliable this values is. If the reliability falls under
a de�ned threshold, the estimated �tness value is discarded and a true �tness value is
computed. The reliability varies between 1 and 0, where only true evaluated values
have the reliability equal to 1. The reliability of o�spring is given by the reliability of
the parents and also by the distance of the o�spring and the parents in the solution
space. The similarity of two individuals is given by the equation:

S = 1−

√∑n

i=1
(x1i−x

2
i )

2

n

2A
, (3.9)

where n is the number of dimensions, x1i and x2i are the values of i-th dimensions
of the vectors of the two compared individuals. The values x1i and x2i lie between
±A. In this diploma thesis, di�erent boundaries were used for separate dimensions,
so the previous equation is modi�ed into:

S = 1−

√√√√√∑n
i=1

(
x1i−x

2
i

uboundi−lboundi

)
2

n
, (3.10)

where lboundi and uboundi are the boundaries of the i-th dimension. Having the
�tness values and reliabilities of the parents, we can compute the �tness and the
reliability of their child as:

f =
S1r1f1 + S2r2f2
S1r1 + S2r2

, (3.11)

r =
(S1r1)

2 + (S2r2)
2

S1r1 + S2r2
, (3.12)

where S1 is the similarity between the �rst parent and the o�spring, S2 is the simi-
larity between the second parent and the o�spring and r1,f1,r2,f2 are the reliabilities
and �tness values of the parents.
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In [35], this method is extended for usage with the PSO algorithm. In PSO, as
stated in Eq. 2.3, the next position of a particle, xk+1 is determined by: 1) its current
speed (vk−1 = xk − xk−1), 2) its best visited position so far (pbestk), and 3) the
best position found by its neighborhood (gbestk). Thereby the positions xk, xk−1,
pbestk and gbestk can be regarded as the parent vectors while the position xk+1 is
their o�spring. Modifying the above equations for four parents yields:

f =
S1r1f1 + S2r2f2 + S3r3f3 + S4r4f4

S1r1 + S2r2 + S3r3 + S4r4
, (3.13)

r =
(S1r1)

2 + (S2r2)
2 + (S3r3)

2 + (S4r4)
2

S1r1 + S2r2 + S3r3 + S4r4
, (3.14)

where Si, i = 1 . . . 4, are the similarities of xk, xk−1, pbestk and gbestk in respect to
xk+1, ri and fi are the reliability and �tness values of xk, xk−1, pbestk and gbestk.

As the change of the particle position is limited by the given maximal velocity,
the reliability doesn't decrease so rapidly. In GA, the parents are selected randomly
from the population regardless of their relative distance in the search space, so their
o�spring may be generated far away from its parents and its reliability may be very
low. To provide information from the close neighborhood of the o�spring and to
increase the reliability of the estimated �tness value, we added another two parents,
which are selected according to their reliability and similarity to the o�spring. The
resulting �tness and reliability values are given by the same equations as in the case
of PSO, but the four parents are xp1, xp2 - the genetic parents of the o�spring, and
xp3, xp4 which are two individuals having the highest values of the product S · r.

The important parameter of the estimation method is the reliability threshold
rmin. If the reliability of the estimated �tness drops below rmin, the real �tness value
is computed and the reliability is set to 1. The lower the rmin parameter is, the
more �tness values are estimated. For rmin = 1 there is no estimation at all and
the true �tness value is computed every time. The goal is to �nd such value of rmin
that decreases the number of real �tness evaluations but keeps enough to su�ciently
evaluate the search space. In our experiments we discovered, that there was a thin
border, where the number of real evaluations dropped quickly. A method to prevent
too many �tness values from being estimated, called Random Fitness Evaluation, is
also presented in [34]. If the reliability of an estimated �tness value is higher than
rmin, with a small probability (e.g. PE = 0.05) the real �tness value is computed.
In this diploma thesis, this method was modi�ed in order to be able to explicitly
set the minimal rate of the true �tness evaluations. The desired minimal amount
of true �tness evaluations is given by a probability P ′E, so that e.g. P ′E = 0.6 (used
in our experiments) ensures at least 60 % of true evaluations. For every individual
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// fitness estimation

x.�tness = estimate_�tness(x, p1, p2, p3, p4) (Eq. 3.13);
x.reliability = compute_reliability(x, p1, p2, p3, p4) (Eq. 3.14);
// check if a true fitness value should be computed

if rnd(0, 1) < P ′E ∨ x.reliability < rmin then
// compute a real fitness value

x.�tness = true_�tness_function(x);
x.reliability = 1;

end

// continue the optimization algorithm

Algorithm 6: Fitness estimation process. The variable xmay be a PSO particle
or a GA individual. Variables p1, p2, p3 and p4 are the parents selected as stated
in 3.2.3.

a random number is obtained and if it is lower than P ′E, the real �tness value is
computed regardless of the reliability of the current �tness.

Another improvements of the �tness evaluation method may be the Error Com-
pensation method [34], where an average di�erence between recent true �tness eval-
uations and their estimated value is computed and used to add a simple feedback
to following �tness estimations, or the usage of visual parents vectors [35] which is
applied in case the o�spring does not lie in the area determined by its parents, where
the classic convex combination may be inaccurate. From the stated enhancements,
only the modi�ed Random Fitness Evaluation technique was implemented for the
purposes of this diploma thesis. The process of the used �tness evaluation method
is shown in Alg. 6.



Chapter 4

Experiments

The algorithms for the automatic locomotion generation described in the previous
chapter were implemented in C++ and their performance was quanti�ed by several
benchmark experiments, using a physical simulator to evaluate the �tness of the
locomotion. The locomotion generation was achieved via CPG with two types of
oscillators, the simple harmonic oscillators (3.1.1) and the coupled nonlinear oscil-
lators (3.1.2). The implemented methods for parameter optimization of the CPGs
were Particle Swarm Algorithm (3.2.1) and Genetic Algorithm (3.2.2). For both of
them, the Fitness Estimation method (3.2.3) was also implemented. The methods
enhanced by Fitness Estimation are denoted FE-PSO and FE-GA in the rest of the
text.

The goal of the �rst set of experiments was to discover an appropriate setting of
the PSO parameter vmax, determining the maximal velocity of the particle in search
space, and the setting of the parameter rmin, the requested minimal reliability of
an estimated �tness value to keep this value and not to compute the true �tness
value, for both, the PSO algorithm and Genetic Algorithm. In the second set of
experiments, all optimization methods were statistically compared with both CPGs
and with �ve di�erent robot shapes. The last benchmark test intended to verify,
whether it is possible to increase the robustness of locomotion patterns by training
them on robots with simulated failures.

All experiments were realized at Intel Core i7 CPU, 2.8GHz with 8 cores and
4GB RAM.

29
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(a) The real module. (b) The detailed model. (c) The model used in the simula-
tor.

Figure 4.1

4.1 Simulation environment

For the purposes of this diploma thesis, a simple ad-hoc simulator of CoSMO modu-
lar robots was created. The physical environment is granted by the Open Dynamics
Engine library (ODE) [36] that includes also a library DrawStu� for a simple visual-
ization. The physical library can cope with collisions of simple geometric structures,
allows connecting objects together with joints of di�erent types and o�ers functions
for applying forces and torques to objects.

The CoSMO module was modeled as a pair of L-shaped parts connected together
with a rotation joint. A single module in the simulator is shown in Fig. 4.1c. This
simpli�ed model does not describe the real hardware as precisely as more detailed
models (Fig. 4.1b), but on the other hand, it provides fast simulations, which is
demanded for statistical benchmark testing. However, some of the found locomotion
patterns were also run on the real robots with satisfying results, thereby it showed
up that even a simple simulator may prepare a su�cient initial solution, that can
be further improved in a more complex simulator or on a real hardware. A simple
proportional controller was implemented to control the module to a desired position.
The modules are loaded into the environment and connected together with �xed
joints, as if they were assembled in the real world, according to their position and
orientation in a grid written in a simple text �le. The used data format allows
creating two-dimensional shaped organisms.
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4.2 Settings

4.2.1 Genetic Algorithm

As a usage of a Genetic Algorithm for automatic locomotion generation for modular
robots was already investigated in [23], we used the parameters of the algorithm pre-
sented there. The population size was set to 150. The generation gap, which de�nes
the number of individuals replaced after the natural selection operator, was set to
0.6 (the �ttest 40 % of the population is kept, the rest is �lled by the crossover).
The m_rate parameter de�ning a probability of mutation in each dimension of a
genome was set to 0.05. As the crossover operator, the Unimodal Normal Distribu-
tion Crossover was used (3.2.2.1). The variance values used for generation of random
samples were set as recommended in [33]: σ2

ξ = 1
4
and σ2

η = 0.352

n
, where n is the

number of dimensions of the search space.

4.2.2 Particle Swarm Optimization

We used a basic PSO algorithm (3.2.1), where the weights of pbest and gbest, c1
and c2 are equal and set to 2 and the inertia weight ω is constant and set to 1.
A swarm size recommended in [27] is between 10 and 50 particles and in [31] no
e�ciency di�erence is reported for swarm sizes between 20 and 100 particles. Based
on this knowledge, the chosen number of particles in a swarm for our experiments
was 20.

The used randomized topology of a swarm was described in 3.2.1. This topology
can vary in two parameters, a probability pc of adding another particle in current
particle's neighborhood and tkeep, the number of iterations for which the actual
topology is kept before it is re-structured. The settings of these parameters was
pc = 0.25 (each particle has approximately 25 % of the rest of the swarm in its
neighborhood) and tkeep = 10 (every 10th iteration the neighborhoods are dismissed
and re-generated).

4.2.3 Harmonic oscillators

The parameters of harmonic oscillators (3.1.1) are a frequency fi, an amplitude Ai
and a phase shift φi. All of them are gained by optimization, thereby we only need
to specify their boundaries. The minimal values of these parameters are 0, maximal
frequency and amplitude can be naturally obtained from mechanical limitations of a
real hardware. The constraints used for the parameters of harmonic oscillators were:
fi ∈ [0, 0.2], Ai ∈

[
0, π

5

]
, φi ∈ [0, 2π].
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Figure 4.2: Used de�nition of the locomotion �tness value for a move forward along
the x axis. The coordinates (xi, yi) stand for the position of the i-th module at
the beginning of the simulation and (x′i, y

′
i) determine the position after a speci�ed

simulation time when applying the tested locomotion.

4.2.4 Coupled nonlinear oscillators

The CPG with coupled nonlinear oscillators was described in 3.1.2. Some of the
parameters were �xed, these were two of initial conditions ri (0) = ṙi (0) = 0 and a
constant ai = 1, and the rest was obtained from optimizers. The upper boundary
of intrinsic frequency fi was slightly lowered compared to harmonic oscillator, as
there is another term added to the change of the phase. The initial phase θi (0) and
the intrinsic amplitude Ri have the same meaning as the parameters φi and Ai in
harmonic oscillators. The parameters wij and φij determines weights and phase bias
of in�uences between modules. In our experiments, the constraints of the parameters
were set as: fi ∈ [0, 0.15], Ri ∈

[
0, π

5

]
, θi (0) ∈ [0, 2π], wij ∈ [−1, 1], φij ∈ [0, 2π].

4.2.5 Fitness de�nition

To measure a quality of a set of parameters, a simulation is run for a speci�ed amount
of time and during the simulation the robot is driven by the CPG using the tested
parameters. In this diploma thesis, locomotion patterns were optimized to transport
the robot forward along the x axis (robots were oriented to head to this direction),
while keeping the original heading. After the simulation is �nished, the �tness value
of a locomotion for a robot with m modules is computed as follows:
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Figure 4.3: The organisms used for experiments with the numbering of modules and
the orientation of rotation axes.

f = a ·
∑m
i=1 x

′
i − xi

m
− b · |ϕ′ − ϕ| (4.1)

where xi is the x coordinate of i-th module at the beginning of the simulation, x′i
is its x coordinate after the simulation ends, ϕ is the original heading of the robot
in radians (in our simulations it was always 0) and ϕ′ is the heading at the end of
the simulation. Due to the structure of used organism, the heading is common for
all modules. The positive constants a and b determines weights of both terms in
the �tness equation and were set to a = 1, b = 2. The Equation 4.1 implies that a
locomotion is rewarded for a movement of the organism in the positive direction of
the x axis and penalized for the change of the heading. The meaning of all terms in
the �tness equation is depicted in Fig. 4.2. According to our de�nition of the �tness
value, a higher value means a better solution. The �tness function can be easily
extended to consider movements also in other directions.

4.2.6 Shapes of organisms

The investigated methods were experimentally evaluated by �nding locomotion pat-
terns for �ve shapes of modular robots. These were three snake-like robots with
di�erent length, snake3 (3 modules), snake4 (4 modules) and snake5 (5 modules), a
cross robot (5 modules) and an s-shape robot (5 modules). Schematics of all robot
types used during experiments are pictured in Fig. 4.3 and their appearance in the
simulator is shown in Fig. 4.4.
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(a) snake3 (b) snake4 (c) snake5

(d) cross (e) s-shape

Figure 4.4: The appearance of used organisms in the simulation environment.

4.3 Results

4.3.1 In�uence of vmax and rmin

Before running the benchmark tests of implemented methods, we examined the in-
�uence of the PSO parameter vmax (the maximal velocity of a particle) and the
reliability threshold rmin of the Fitness Estimation method used for both PSO and
GA.

If a particle moves faster, its consecutive positions are farther from each other
and therefore the reliability of an estimated �tness decreases. As both vmax and
rmin may a�ect the performance of PSO algorithm, we set up an experiment to de-
termine the in�uence of their various combinations. The tested values were vmax ∈
{0.05, 0.1, 0.15, 0.2, 0.25} and rmin ∈ {1, 0.95, 0.9, 0.85, 0.8, 0.75}. For every combina-
tion the PSO algorithm was run ten times with optimization being stopped after 30
iterations and the simulation time (for determining the �tness value) 30 simulated
seconds. Measured values were the best �tness value found and the computation
time. A character of results was similar for all robot types and both CPGs. Typ-
ical obtained data is visualized in Fig. 4.5. Please note that this experiment was
processed before the Random Fitness Evaluation method (also described in 3.2.3)
was implemented, which is the reason why a duration of the simulation drops so
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Figure 4.5: In�uence of the maximal particle speed vmax and the reliability threshold
rmin in PSO and FE-PSO algorithms with a snake3 robot.

signi�cantly when rmin is low. Based on this experiment, we decided to �x the vmax
parameter to a value 0.2 which seemed to work well in most cases (and was also con-
sistent with a range stated in [37]) and further investigated an appropriate setting
of rmin for PSO and GA.

Another set of experiments was performed for various settings of rmin for FE-
PSO and FE-GA, to determine a feasible value of this parameter for di�erent robots.
The desired setting lowers the computation time while providing statistically equal
results as the algorithms without Fitness Estimation. For each tested rmin, the
algorithms were terminated after 30 iterations, the �tness values were measured
after 10 simulation seconds, every experiment was repeated 25 times. To compare the
performances with various rmin to the performance with rmin = 1 (original PSO and
GA), we used the t-test, assuming that the �tness values of found locomotion patterns
follow the normal distribution. The null hypothesis is that the samples (�tness
values) obtained with rmin = 1 and rmin being tested were generated under the same
distribution. The p-value obtained from t-test gives a probability of generation of the
observed samples if the null hypothesis was correct. If the p-value drops below the
signi�cance level (e.g. 5%), the null hypothesis is rejected. In other words, the higher
the p-value is, the more likely the generators of two compared sets of samples are
equal. Appropriate setting must lower the computation time and must be evaluated
by su�ciently high p-value.

We plotted the data obtained from PSO and GA with all robots and both CPGs
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(b) Nonlinear CPG.

Figure 4.6: In�uence of the reliability threshold rmin in FE-PSO for an s-shape robot.
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Figure 4.7: In�uence of the reliability threshold rmin in FE-GA for a snake3 robot.
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PSO GA

Sine CPG Nonlinear CPG Sine CPG Nonlinear CPG

snake3 0.8 0.9 0.75 0.65

snake4 0.8 0.8 0.65 0.65

snake5 0.8 0.9 0.7 0.7

cross 0.8 0.85 0.7 0.65

s-shape 0.85 0.9 0.65 0.65

Table 4.1: Selected values of the reliability threshold rmin.

and used the generated graphs for selection of the reliability threshold values for
di�erent cases. The graphs includes the mean values of best �tness values found, the
p-values of the t-test comparing results of an algorithm without Fitness Estimation
(rmin = 1) and with an given reliability threshold value, and relative mean values of
computation time with respect to the mean value of time with rmin = 1.

Typical results we got for the PSO algorithm are shown in Fig. 4.6. The �rst
�gure displays the data obtained for the s-shape robot when using Sine CPG. Due to
these results, the setting rmin = 0.8 was used. For this value of the threshold, the p-
value was about 50% and the computation time was more than 30% faster compared
to PSO without Fitness Estimation. For the Nonlinear CPG, shown in the second
�gure, the p-value drops faster, thus a higher reliability threshold rmin = 0.9 with
p-value around 70% and time saving about 10%.

The results for GA with the snake3 robot are in Fig. 4.7. Generally, for GA the
rmin had to be set lower compared to PSO to a�ect the computation time. In the
presented case of the snake3 robot the chosen values were rmin = 0.75 for Sine CPG
(p-value ≈ 55%, time saving ≈ 20%) and rmin = 0.65 for Nonlinear CPG (p-value
≈ 45%, time saving ≈ 15%).

The selected values of rmin for all robot and CPG types are stated in Tab. 4.1.

4.3.2 Benchmark tests

To compare the performance of PSO and GA and the same methods enhanced by
the Fitness Estimation method FE-PSO and FE-GA, statistical benchmark tests
were processed. 50 measurements were taken for each of the four methods, using
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(a) A snake5 robot with Sine CPG.

 0

 1

 2

 3

 4

 5

20
0

40
0

60
0

80
0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00
30

00
32

00
34

00
36

00
38

00
40

00

be
st

 fi
tn

es
s 

va
lu

es

number of fitness evaluations

PSO
FE-PSO

(b) A snake4 robot with Sine CPG.

Figure 4.8: The comparison of PSO and FE-PSO.

every shape of a robot and both Sine and Nonlinear CPG. The algorithms were
terminated after 200 iterations. During the optimization, the actual best �tness
value and the number of true �tness evaluations were stored in each iteration. Thus,
the experiments provided 50 vectors with 200 �tness values and 200 numbers of
evaluations for each combination of an optimization method, a robot shape and a
CPG type.

As the key parameters of optimization are the quality of generated solutions and
the computation time, which in our case is dominated by the number of true �tness
evaluations, the comparison of two methods was processed as follows. The interval
from zero to the number of �tness evaluations (the higher of the two) was divided
into several identical parts. For every dividing point, standing for the number of
�tness evaluations, �tness values of both methods were determined, that needed this
number of �tness evaluations to be found, and boxplots were generated from these
�tness values. In other words, we generated a set of boxplots with the number of
�tness evaluations on x axis and achieved �tness values on y axis. If one of compared
algorithms terminates earlier, light blue boxes are used to display the �nal results of
�nished algorithm for easier comparison of both results. Using these graphs we can
easily compare the performance of two methods with respect to required computation
time.
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(a) An s-shape robot with Sine CPG.
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(b) An s-shape robot with Nonlinear CPG.

Figure 4.9: The comparison of GA and FE-GA.

4.3.2.1 Evaluation of the Fitness Estimation method

The results achieved in 4.3.1 were promising, as the Fitness Estimation method
decreased the computation time down to 70% in some cases, while keeping a quality of
found locomotions similar to original algorithms. The comparison method proposed
above allows deeper investigation of Fitness Estimation performance, with impact on
how much the reached �tness value depends on computationally expensive evaluation
of the �tness function. The results di�ers for every shape of a robot and both CPGs.
The FE-PSO algorithm performed best with organisms consisting of 5 modules -
snake5, cross and s-shape, while with snake3 and snake4 the �tness curves were
same the �tness curves of original algorithm or worse. Little e�ect was achieved
when applying the Fitness Estimation method to GA, which corresponds with lower
reliability of estimated �tness values in FE-GA (explained in 3.2.3). Probably the
reliability thresholds were set too high for FE-GA, as the number of estimated �tness
values was very low.

An example of a good performance of FE-PSO is shown in Fig. 4.8a, for a snake5
robot and Sine CPG combination. The FE-PSO algorithm converges after 1600
�tness evaluations while the classic PSO algorithm needs 2800 �tness evaluations to
reach the same results. In contrast, the FE-PSO algorithm failed for a snake4 robot
with Sine CPG. At the beginning FE-PSO provides similar or maybe slightly better
results than PSO, but then it gets stuck at a local optimum in most cases and the
median stays under the PSO median, as shown in Fig. 4.8b. The comparison of GA
and FE-GA is demonstrated in Fig. 4.9, where the results are practically identical,
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(a) Results for snake4 and Sine CPG.
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(b) Results for snake5 and Nonlinear CPG.

Figure 4.10: PSO to GA comparison. Typical graphs.

whether the Fitness Estimation method was used or not.

4.3.2.2 Comparison of PSO with GA

From the graphs obtained as described above, we can conclude some basic properties
of PSO and GA and their di�erences. The PSO algorithm seems to reach a su�cient
median values faster than GA in all cases except the Sine CPG with the s-shape robot.
Also, the relative performance of GA gets worse if the Nonlinear CPG was used,
which could imply that the PSO algorithm cope better with a raising dimensionality
of the search space. On the other hand, it is clear that the GA provides more
consistent results, as the variance of �tness values is much lower than the variance of
PSO results. The �nal results of GA after 200 iterations of optimization are better
compared to PSO for all robots if Sine CPG was used, but the number of �tness
evaluations must be taken into account. After 200 iterations, the PSO algorithm had
called the �tness evaluation 4000 times (particle_count·iteration_count = 20·200 =
4000), while the GA had called it 18000 times (generation_gap · population_size ·
generation_count = 90 ∗ 200 = 18000). The results of PSO would probably further
improve if the algorithm went through more iterations, but as we did not processed
the experiments for more than 200 iterations, we do not dispose of the required data
to con�rm this. Although PSO ran for less than a quarter of GA computation time,
it found better parameters for Nonlinear CPG for all shapes of a robot but s-shape.

In most cases, one of the two typical results shown in 4.10 was obtained. For Sine
CPG, the PSO algorithm usually performed better at the beginning but then gets
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outperformed by GA with raising number of �tness evaluations. As an example, the
results for a snake4 robot were used in Fig. 4.10a. If we compared the quality of
optimization by the achieved median, the PSO algorithm requires only 3600 �tness
evaluations to provide equal results as GA after 6300 �tness evaluations, i.e., it
reaches this results about 40% faster. On the other hand, with more iterations the
results of GA further improves and the median raises. The other case is presented in
Fig. 4.10b, showing the results for snake5 and Nonlinear CPG. The GA algorithm
does not achieve the PSO results even after four times more �tness evaluations.

Using the graphs in Fig. 4.10, we can observe the basic properties of distributions
of results as well. The variance of the PSO results is much higher than the variance
of the GA results. It implies that we should not rely on a single PSO run, as the
optimized parameters may be far away from optimal values. On the contrary, the
results of GA were more stable. All graphs comparing PSO and GA are placed in
Appendix C.

4.3.3 Locomotion under failures

The failures in modular robotics were introduced in 2.1.2. We investigated a preven-
tive solution based on generation of such a robust locomotion patterns, that would
succeed in transporting the robot even if some hardware failures appear. We consid-
ered only two possible functional states of a module, the module is either working
correctly or it is stuck in zero angle, and assumed that at most one or two modules
can be broken at a time.

To allow the CPG to react if a behavior of a robot changes, we added a simple
feedback to Nonlinear CPG, so the change of phase is given by:

θ̇i = 2πfi +
∑
j 6=i

wij
(
θrealj − θreali

)
,

where θreali is the real position of the i-th robot's actuator. Thus, in this section,
we used three CPG types for locomotion generation, Sine CPG, Nonlinear CPG and
Nonlinear CPG with feedback (FB-Nonlinear CPG).

The investigated method of generation failure-resistant locomotion patterns is
based on learning the CPG parameters on a robot under failures. The simulation
is processed multiple times with di�erent combinations of failures and the overall
�tness value is computed as a sum of �tness values from all simulations. After the
optimization �nishes, the �tness values of the best parameters found are computed
under all combinations of errors and stored. The PSO algorithm terminating after
100 iterations was used for optimization. Each optimization was processed 25 times.
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Figure 4.11: Locomotion of a snake5 robot under failures.
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Figure 4.12: Locomotion of a cross robot under failures.
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Figure 4.13: Locomotion of an s-shape robot under failures.

The presented graphs show the performance of every CPG method trained on either
a healthy robot, on all combinations of failures or on a subset of combinations of
states of modules, with or without failures, randomly selected in every iteration of
the optimization. 2 combinations were selected in the case of one allowed failure and
5 combinations in the case of two allowed failures.

For every CPG, there are three columns of points determining the achieved mean
�tness values. The �rst column contains �tness values of locomotions optimized on a
healthy robot, the second column contains results of an optimization considering all
combinations of failures and the third column contains �tness values of locomotions
optimized on a randomly selected combinations of states of modules. Each point
represents results for a speci�c state of the robot. Green points stands for �tness
values achieved by a healthy robot, each yellow point represents a failure of one of
modules and red points denotes combinations of two broken modules.

If we do not consider the absolute values, all CPGs changed their performance
similarly when the three optimization approaches were applied, thereby our exper-
iments did not con�rmed, that an appropriate choice of CPG type can improve a
behavior of locomotions under failures, nor the introduction of a simple feedback in
the manner as stated above. In the contrary, the obtained results apparently di�er
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if the failures are taken into account during the optimization. As the Sine CPG
provided highest �tness values, we will use its result for the comparison of improved
optimization approaches.

For a snake5 robot, as shown in Fig. 4.11a, �tness values with broken modules
(and even the �tness value of a healthy robot) increased when enhanced optimization
was used. In the �rst column, a �tness value of the worst-case scenario of a failure lies
between 0.5 and 0.6 (A). The optimization that considers all possible failures make
this value double (B) and even the optimization that considers only two randomly
selected states increases the worst �tness value to about 0.9 (C). If two modules can
break (Fig. 4.11b), only the optimization considering all possible states (a middle
column of each CPG) a�ects the robustness of found locomotion patterns. Similar
results can be observed also with cross (Fig. 4.12) and s-shape (Fig. 4.13) robots.

The processed experiments allow us to better understand the importance of dif-
ferent modules of a robot and to determine a sensitivity of given robot shapes to
failures, as well. For example, in Fig. 4.12b, there are three red points with �tness
value near to zero in every column. These points represents three possible combi-
nations that include two of the modules lying on the motion axis of the cross robot
(denoted as 2, 3 and 4 in Fig. 4.12). If two of these modules break, there is no
way the robot can move in desired direction, no matter how well the optimization is
implemented.

Figure 4.14: An experiment with the s-
shape robot.

Figure 4.15: A spasm of one of the mod-
ules.
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Figure 4.16: Comparison of an experiment with real snake5 robot and a simulated
experiment using the same Sine CPG parameters.

4.3.4 Experiments with real robots

To verify the simulator and the feasibility of investigated methods of automatic
locomotion pattern generation, we used the Sine CPG with parameters optimized
in the simulator to generate control inputs for a real robot. We tested a forward
locomotion of snake5 and s-shape robots and a rotational motion of a s-shape robot.
Although the simulator operates only with a very rough model of a real module
(Fig. 4.1c), it provided locomotion patterns that could be instantly used with a real
hardware. Despite technical di�culties with some of the modules (e.g. Fig. 4.15)
we had at our disposal, we managed to run these locomotions and thus to apply the
simulated results practically.

The best results were obtained for a snake5 robot, as demonstrated in Fig. 4.16.
The same Sine CPG parameters were applied to the real robot and to the robot in
the simulator, and locomotions of both were captured and synchronized. Another
experiments were run for an s-shape robot (Fig. 4.14). For this shape, the di�erences
between simulations and reality were bigger, nevertheless, some of the selected CPG
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locomotions performed well. Together with forward locomotions, we tested also
rotational motion, as the s-shape structure allows it.



Chapter 5

Conclusion

In this diploma thesis, methods of automatic locomotion generation for modular
robots were investigated. The locomotion was achieved by the joint-control ap-
proach, where the movement is emerged by a precise cooperation of actuators of all
modules. The Central Pattern Generation method was used for generation of the
control inputs for each module. CPG is based on a set of coupled oscillators, that can
be implemented variously. Two di�erent types of oscillators were presented in this
thesis, simple harmonic oscillators and coupled nonlinear oscillators. Both of them
are determined by parameters, that have to be set properly to achieve a locomotion
of an robotic organism.

The optimization of the parameters is being slowed down by a very expensive
�tness function, as it has to computed by actually applying the parameters and
observing the resulting movement. Therefore, only fast converging optimization
algorithms are appropriate for this task. In this diploma thesis, two bio-inspired
methods were investigated, a Genetic Algorithm and a Particle Swarm Optimization.
To further decrease the number of needed �tness evaluations, the Fitness Estimation
method was applied to both of them.

An important task of modular robotics is coping with unexpected errors in mod-
ules. A preventive method for overcoming failures of modules by generation of ro-
bust locomotion patterns, was designed and evaluated. Also, the CPG with coupled
nonlinear oscillators was altered by adding a simple feedback into the oscillator,
to examine if it could provide better reactions to changes of a behavior of broken
modules.

For the purposes of this diploma thesis, a simple simulator for Symbrion CoSMO
modules was implemented. Using the simulator, all investigated methods could be
experimentally evaluated. Some of locomotion patterns obtained from the simulator

47
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were afterward successfully run on a real hardware, validating a su�cient quality
of the simulator and implemented methods. Moreover, by running the experiments
with real robots, all the guidelines from the diploma thesis assignment were ful�lled
including the optional part.

5.1 Future work

Based on results obtained in this diploma thesis, some further investigation may
be suggested. Both optimization methods are characterized by di�erent properties.
PSO is capable of fast search for a feasible solution and cope well with a high di-
mensional search space, while GA provides more stable results, but converges slowly.
Using swarms of particles obtained from several short PSO runs as an initial pop-
ulation of GA could connect advantages of both methods together. The Fitness
Estimation method could be applied to PSO to further increase the performance, as
it was shown to be capable of speeding up the convergence of PSO in some cases.

The preventive method of optimization with simulated broken modules was veri-
�ed to improve the locomotion robustness in case failures occurs. The problem is the
number of possible combinations of errors that have to be taken into account, increas-
ing rapidly the computation time of a �tness evaluation. We propose a method based
on determining, which combinations of failures cause the worst degradation of the
locomotion �tness and optimizing the locomotion with respect to these worst-case
combinations only.
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Appendix A

DVD content

./dt.pdf This diploma thesis.

./video Contains video �les captured during experiments.

./graphs Contains graphs that were not included in the thesis.

./code Contains C++ source �les of implemented programs.
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Appendix B

Using the Gram-Schmidt process for

obtaining vectors e1 . . . en−1

The vectors e1, . . . , en−1 are perpendicular to the vector d and they span the sec-
ondary search space. The secondary search space and the direction of the vector e
in a two-dimensional search space is visualized in 3.1. For an n-dimensional search
space the number of these vectors is n − 1, as these vectors span the subspace of
the search space perpendicular to the primary search direction. To obtain the vec-
tors e1, . . . , en−1, the Gram-Schmidt orthonormalizing process may be used. The
method takes a �nite set of linearly independent vectors v1, . . . ,vn and generates an
orthonormal set of vectors e1 . . . en spanning the same space as the original set. The
orientation of the generated orthonormal set is given by the �rst vector provided.
The Gram-Schmidt process works as follows:

u1 = v1, e1 =
u1

‖u1‖

u2 = v2 − v2·u1

u1·u1
u1, e2 =

u2

‖u2‖

u3 = v3 − v3·u1

u1·u1
u1 − v3·u2

u2·u2
u2, e3 =

u3

‖u3‖
...

...

un = vn −
∑n−1
i=1

vn·ui

ui·ui
ui en = un

‖un‖

(B.1)

The vectors u1, . . . ,un−1 form the orthogonal set and the vectors e1, . . . , en−1 form
the orthonormal set. In every step of the algorithm, the projections of the input
vector vi into existing orthogonalized vectors ui are subtracted from vector vi and
then the resulting di�erence vector is normalized. If the set v1, . . . ,vn was linearly
dependent, in some step the vector ui would be a zero vector, which means that the
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provided vector vi can be already generated as a linear combination of the vectors
u1 . . . ,ui−1.

To generate a set of vectors perpendicular to the vector d in the n-dimensional

space, we can use a standard n-dimensional basis b1 =
(

1 0 . . . 0

)
,b2 =(

0 1 0 . . . 0

)
, . . . ,bn =

(
0 . . . 0 1

)
extended by the vector d as the

input set of the algorithm. In case the vector d is a multiple of any of the standard
basis vectors, the required set e1, . . . , en−1 is composed by the standard basis vectors
without the one parallel with d. Else, the basis e1, . . . , en−1 can be computed through
the Gram-Schmidt process:

u0 = d, e0 =
u0

‖u0‖

u1 = b1 − b1·u1

u1·u1
u1, e1 =

u1

‖u1‖

u2 = b2 − b2·u1

u1·u1
u1 − v3·u2

u2·u2
u2, e2 =

u2

‖u2‖
...

...

un−1 = bn−1 −
∑n−1
i=1

bn−1·ui

ui·ui
ui en−1 =

un−1

‖un−1‖

(B.2)

where the indexing was modi�ed so the vector e0 is parallel to d and the vectors
e1, . . . , en−1 are the required set of vectors perpendicular to d.
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Graphs for comparison of PSO with

GA
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Figure C.1: snake3
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Figure C.2: snake4
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Figure C.3: snake5
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Figure C.4: cross
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Figure C.5: s-shape
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