

Czech

Technical

University

in Prague

Faculty of Electrical Engineering
Department of Computer Science

Master’s thesis

Path Planning for Non-holonomic

Vehicle in Surveillance Missions

Bc. Petr Váňa

May 2015

Thesis supervisor: doc. Ing. Jan Faigl, Ph.D.

Prohlášeńı

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem
uvedl veškeré použité informačńı zdroje v souladu s Metodickým pokynem
o dodržováńı etických princip̊u při př́ıpravě vysokoškolských závěrečných
praćı.

V Praze 11. května 2015

ii

Acknowledgement

I would like to thank to my supervisor doc. Ing. Jan Faigl, Ph.D. for the
idea of this theme, for his valuable recommendations, and finally for his
patience with me.

iii

Abstract

In this thesis, we address the problem of optimal path planning for a non-
holonomic vehicle in surveillance missions. We consider car-like vehicles
with a limited turning radius, modeled as the Dubins vehicle. We for-
mulate the surveillance mission as a multi-goal path planning problem to
visit a set of regions by Dubins vehicle, which is also known as the Dubins
Traveling Salesman Problem with Neighborhoods (DTSPN). Several ap-
proaches for solving this infinite combinatorial optimization problem can
be found in literature, including genetic algorithms or reduction to other
variants of the TSP. We study the properties of the optimal path for the
DTSPN and we provide detailed analysis of the optimal solution of the
restricted problem where regions are in a distance longer than four times
of the turning radius. Based on this analysis, we propose a new local it-
erative optimization procedure to find Dubins path visiting the regions.
Experimental results indicate that the procedure provides better solutions
with lower computational requirements than existing approximation ap-
proaches.

Abstrakt

Diplomová práce se zabývá plánováńım cesty pro neholonomńı vozidla
v úlohách dohledu. V práci uvažujeme vozidlo s omezených poloměrem
zatáčeńı, které modelujeme jako Dubinsovo auto. V práci definujeme
problém dohledu jako úlohu plánováńı cesty přes v́ıce ćıl̊u (oblast́ı) pro Du-
binsovo auto. Tento problém je znám jako Dubins̊uv problém obchodńıho
cestuj́ıćıho s okoĺım (DTSPN). V literatuře můžeme nalézt několik př́ıstup̊u
k řešeńı tohoto nekonečného kombinatorického problému. Např́ıklad řešeńı
založené na genetických algoritmech nebo př́ıstup využ́ıvaj́ıćı transformace
problému na varianty úlohy obchodńıho cestuj́ıćıho. V této práci studu-
jeme vlastnosti optimálńıho řešeńı DTSPN, které jsou následně využity
v návrhu nového zp̊usobu řešeńı založeného na dvoufázovém př́ıstupu. Ne-
jprve je určeno pořad́ı ćılových region̊u řešeńı úlohy eukleidovského ob-
chodńıho cestuj́ıćıho a následně je použita nově navržená iterativńı op-
timalizačńı procedura, která hledá nejkratš́ı cestu pro Dubinsovo auto
procházej́ıćı všemi ćılovými oblastmi. Navržený algoritmus je porovnán
s ostatńımi existuj́ıćımi př́ıstupy. Z výsledk̊u vyplývá, že námi navržený al-
goritmus poskytuje řešeńı srovnatelné kvality s ostatńımi př́ıstupy, přičemž
je výrazně méně výpočetně náročný.

iv

i
Contents

1 Introduction 1

2 Background 5
2.1 Path planning . 5

2.1.1 Nonholonomic vehicle 6
2.1.2 Dubins vehicle . 6
2.1.3 Dubins maneuver 7

2.2 Traveling salesman problem 8
2.2.1 Exact algorithms 9
2.2.2 Approximate algorithms 10
2.2.3 Heuristic algorithms 11
2.2.4 λ-opt approximate algorithm 11
2.2.5 Lin-Kernighan heuristic 12
2.2.6 Generalized traveling salesman problem 13

3 Problem statement 15
3.1 Dubins TSP . 16

3.1.1 Targets distances constraint 17
3.2 Dubins TSP with Neighborhoods 17

3.2.1 Targets distances constraint 18

4 Analysis 19
4.1 On the Dubins TSP . 19

4.1.1 Dubins touring problem 20
4.1.2 Existing approaches for the DTSP 21
4.1.3 On the sequence in the DTSP 22

4.2 On the Dubins TSP with neighbourhoods 23

5 Existing approaches for the DTSPN 25
5.1 Decoupled methods . 25
5.2 Sampling-based methods 26

v

5.3 Genetic algorithms . 28

6 Proposed approach for the DTSPN 31
6.1 Proposed method . 31

6.1.1 Reduction of the DTSPN to the DTRP 32
6.1.2 Local Iterative Optimization for the DTRP 33
6.1.3 Determination of the sequence to visit the regions 35

7 Results 37
7.1 Problem generator . 37
7.2 Implementations details of the used algorithms 38

7.2.1 Proposed decoupled algorithm 38
7.2.2 Other decoupled algorithms 40
7.2.3 Genetic based algorithms 40
7.2.4 Sampling based algorithms 40

7.3 Results for the DTSPN 42
7.4 Discussion . 46

8 Dealing with obstacles 47
8.1 Naive based approach . 47

8.1.1 Sampling-based methods 48
8.1.2 Genetic methods 49

8.2 Sampling-based approach with obstacles 50

9 Conclusion 51
9.1 Suggestion for future work 52

Bibliography 56

A Used symbols and abbreviations 57

B Content of the enclosed CD 59

vi

i
List of Figures

2.1 Dubins vehicle represented by a car-like vehicle 7
2.2 Two types of Dubins maneuver 8
2.3 Distribution of Dubins maneuver types 9
2.4 k-opt moves for TSP . 12
2.5 An instance of the GTSP 13

3.1 Example of the Dubins TSP 16
3.2 Example of Dubins TSP with Neighborhoods 17

4.1 Example of a path for the DTSP 20
4.2 Alternating algorithm . 22
4.3 Two different solution of the same instance of the DTSP . 22
4.4 Properties of the optimal solution of the DTSPN 24

5.1 Decoupled approach for the DTSPN 26
5.2 An example of sampled road map for DTSPN 27
5.3 Example of the Noon-Bean transformation 28

6.1 Position on the boundary of the region 32
6.2 Local extremes in the DTSPN 33
6.3 Proposed framework to solve the DTSPN 36

7.1 Examples of randomly generated DTSPN instances 38
7.2 Performance of ETSP+LIO 39
7.3 Average required computation time of ETSP+LIO 39
7.4 An instance of the DTSPN with 4 regions 42
7.5 Quality of the solution of sampling-based algorithm 42
7.6 Computational time of sampling-based algorithm 43
7.7 Comparison of algorithms with 20 regions 44
7.8 Comparison of algorithms with 40 regions 45
7.9 Comparison of algorithms for various numbers of targets . 45
7.10 Comparison of algorithms for various distance constraints . 46

vii

8.1 Unfeasible solution for the DTSPN with obstacles 48
8.2 Sampling-based method a instace with obstacles 49
8.3 Sampling-based method a large instace with obstacles . . . 49
8.4 Genetic algorithm for a large instace with obstacles 50

viii

i
List of Tables

7.1 Settings of the genetic based algorithms 40

A.1 Used symbols . 57
A.2 Used abbreviations . 58

ix

i
List of Algorithms

1 Local Iterative Optimization (LIO) for the DTRP 33
2 Optimize orientation locally (subroutine of LIO) 34
3 Optimize position locally (subroutine of LIO) 35

4 Genetic algorithm for the DTSPN 41

x

CHAPTER 1
Introduction

During the last decade, the number of applications with unmanned vehicles is growing
rapidly. These vehicles can be used in many different missions by both civilian and
defense organizations and can operate in a semi or fully autonomous mode. It allows
to accomplish missions more effectively and potentially reduce the mission cost. One of
the common type of tasks for unmanned vehicles are surveillance missions in which a
vehicle is utilized to gather required information about areas of interest by providing on-
line (usually visual) information of the selected locations. In surveillance missions, the
vehicles can be equipped with various types of sensors (e.g., camera, elector-magnetic,
sonic, etc.). The sensors have particular limitations, but all of them are limited in the
field of view and maximal sensing range from which collected measurements provide
information of sufficient quality.

Having areas of interest, a vehicle has to follow a path (trajectory) such that it is
able to collect the required information about the areas by performing particular mea-
surements along the path, i.e., at the sensing locations. Thus, the surveillance mission
is a problem to find a cost efficient solution of the information gathering problem, where
the cost can be the time needed to collect the required information. Such a cost can
consist of the time to perform the particular measurements and the time needed to
travel to the sensing locations. Regarding the sensing locations, we can identify two
types of surveillance missions.

The first type of surveillance missions are inspection tasks where we need to de-
termine the sensing locations to provide the requested information. Here, we further
distinguish situations where the cost of a sensor measurement is high, e.g., because of
a long duration of measurement or a limited storage capacity. In such a case, the total
cost mostly depends on the number of sensing locations and thus the inspection task
can be formulated as the problem to minimize the number of sensing locations, where
the measurements provide the required information. This problem can be formulated as
a variant of the art gallery problem. This visibility problem originates in computational
geometry and it is inspired by a problem of guarding an art gallery with the minimal
possible number of stationary guards who observe particular parts of the gallery [1] and
thus all together provide continuous surveillance of the whole gallery. The stationary

1

CHAPTER 1. INTRODUCTION

surveillance problem is a limiting case where we have the same number of sensing ve-
hicles as the minimal number of sensing locations. The opposite limiting case is for a
single vehicle, where it is required to plan a path to visit the sensing locations once
they are determined.

Nowadays, cameras are already digitized and also memory storage has enough ca-
pacity to save continuous streams from visual sensors. Hence, the sensing system is
able to provide continuous streams of data almost at zero cost. Therefore, the cost
function of the surveillance mission consists mainly of the length of the path to collect
information about the requested areas of interest. In this case, the problem to collect
visual information about the areas of interest can be formulated as the coverage path
problem. Beside surveillance missions with visual sensing, other robotic tasks as clean-
ing, painting or plowing can be considered as this problem. The fundamental approach
for coverage was published in [2], where the author proposed the boustrophedon cellular
decomposition. Another variant of the coverage path problem is the coverage sampling
problem (CSP) [3], where particular sensing locations are determined. In the CSP, each
sample corresponds to a single measurement providing a partial information about the
object or area of interest similarly to the art gallery problem. The main difference from
the art gallery problem is that the CSP uses a more than the minimal number of sensing
locations and thus the problem to collect the required information at minimal cost also
includes optimization of the path cost together with the selection of the most suitable
subset of the sensing locations.

The second type of surveillance missions are problems where we assume the particu-
lar sensing locations, where performed measurements provide the requested information,
are already given and the problem can be formulated as the multi-goal path planning
problem (MPP) [4, 5]. The problem is defined by a set of goals (targets) that are rep-
resented by points or geometrical regions, e.g., discs, convex polygonal areas, etc. In
the MPP, the goals can be generally visited in an arbitrary order and the problem is to
determine an order of the visits to the goals such that the final path has the minimal
cost. In a case the goals are represented by points and the vehicle used to visit the
goals satisfies holonomic constraints, the MPP can be considered as the combinatorial
traveling salesman problem (TSP). The TSP stands to find a shortest path to visit the
given set of goals (cities), such that each goal is visited exactly once and the vehicle
returns to the starting goal (city). It is known the TSP is NP-hard, and it can be
considered as one of the well studied problem in operational research [6].

In practical scenarios of surveillance missions addressed as the MPP, the task is
to sense a given set of objects of interest by the used visual sensor or it can also be
the case to retrieve data from deployed sensors using wireless communication. Thus,
the measurement can be performed from a limited distance and it is not necessary to
precisely visit the goal location. Then, we can extend the goal location represented as a
point to a goal region. This extension enables a vehicle to fulfill the mission by visiting
any point of each given region. Hence, the traveling salesman problem is transformed
to the traveling salesman problem with neighborhoods (TSPN).

For the purpose of this thesis, we formulate the surveillance mission as a multi-goal
planning problem for a nonholonomic vehicle. An example of nonholonomic vehicle is

2

CHAPTER 1. INTRODUCTION

a fix-wing unmanned aerial vehicle (UAV), for which the nonholonomic constraint is
the limited turning radius. There can be several approaches how to address challenges
arising from the non-holonomic constraint. Since we focus the thesis to aerial vehicles,
we consider the vehicle as the Dubins vehicle [7], which is a widely used model for
path planning for fix-wing aerial vehicles. Regarding the aforementioned overview of
the related problems, a surveillance mission for Dubins vehicle can be considered as the
Dubins traveling salesman problem with neighbourhoods (DTSPN) [8]. In the DTSPN,
a set of goal regions to be visited by the vehicle is given and the problem is to find a
cost efficient tour path for the Dubins vehicle to visits all the goal regions.

The main challenge of the DTSPN is related to the nonholonomic constraint of the
vehicle and the combinatorial nature of the problem. It is necessary to determine the
sequence to visit the regions, the points at which the vehicle visits the regions, and
finally also the orientation of the vehicle at these points since Dubins vehicle cannot
turn arbitrarily at a single point. One can image that we can find a feasible solution
of the DTSPN by a subsequent solution of these particular sub-problems. However,
if we like to find an optimal solution, we cannot do that separately, because these
problems are mutually dependent. We need particular points to visit the regions and
their orientations to determine the optimal sequence, e.g., as a solution of the TSP.
However, such a position of the entry point can be selected as any point on the boundary
of the regions. Moreover, the orientation of the vehicle at this entry point can be
also selected arbitrarily. Thus, we call the problem infinite combinatorial optimization
problem and we cannot simply use existing discrete combinatorial approaches for the
TSP. Therefore, it is desirable to address the problem differently. In the thesis, we study
this challenging problem and we propose a new, fast, and efficient any-time algorithm,
which provides competitive solutions to existing approaches while its computational
requirements are significantly lower.

The thesis is organized as follows. In Chapter 2 we familiarize the reader with the
basic terms and ideas, which are used further in the text. The DTSPN is formally
defined in Chapter 3 and analyzed in Chapter 4. Existing approaches are divided into
three classes and described in Chapter 5. In Chapter 6, we propose a new decoupled
approach to address the DTSPN. It has been designed on the top of the analyzed
properties of the optimal solution for the DTSPN. We tested our new local optimization
algorithm, compared it with existing approaches, and the achieved results are presented
in Chapter 7. We also designed extensions of existing approaches to deal with obstacles
in Chapter 8.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER 2
Background

In this chapter, we familiarize the reader with the basic terms and ideas used in the
further chapters of the thesis. More experienced readers can simple jump over this
part. The chapter is divided into two sections. In the first section, we formulate path
planning problem and further focus on path planning for vehicles with the limited
turning radius. Subsequently, in the second section, we define the traveling salesman
problem and introduce its the most related variants.

2.1 Path planning

A fundamental task in robotics it is to find a collision-free path for a robot from an initial
configuration to the desired goal configuration among a collection of static obstacles.
This Geometric Path Planning Problem is also known as the Piano Mover’s Problem [9].
We use the definition of the planning problem from [10] and modify it according to
the addressed surveillance mission. In the planning problem, the robot operates in a
word W which is either a two-dimensional or a three-dimensional space (W = RN). The
robot A is represented by a rigid body defined in the world. A position and orientation
of the robot is specified by a configuration q. The space of all possible configurations
of the robot in the world is the configuration space C, or C-space. The dimension of
the C-space is the number of degrees of freedom of the robot. An obstacle region is
represented by the closed set O ⊂ W , which usually contains polyhedrons, spheres, or
piecewise-algebraic surfaces. From this, the C-space obstacle region Cobs can be defined
as follows:

Cobs = {q ∈ C|A(q) ∩ O 6= ∅}. (2.1)

The free space Cfree is the set of all robot configurations that are not in collision
with the obstacle region:

Cfree = C \ Cobs. (2.2)

Using the definitions stated above, we formulate the Geometric Path Planning Prob-
lem as follows:

5

CHAPTER 2. BACKGROUND

Problem 1 (Geometric Path Planning Problem)

Given:

1. A world W in which either W = R2 or W = R3.

2. A set of obstacle regions O ⊂ W.

3. A robot A defined in W.

4. A configuration space C determined by the set of all possible transformations that
may be applied to the robot. From this, Cobs and Cfree are derived.

5. An initial configuration qI ∈ Cfree.

6. A goal configuration qG ∈ Cfree.

The task is to find a continuous path τ : 〈0, 1〉 → Cfree, which starts at the initial
configuration τ(0) = qI and ends at the goal configuration τ(1) = qG.

A special variant of path planning problem is planning with nonholonomic vehicles.
It is complicated by an additional nonholonomic constraints, which restrict the search
space.

2.1.1 Nonholonomic vehicle

We can divide vehicles into two main groups holonomic and non-holonomic. A holo-
nomic vehicle is able to control all degrees of freedom independently. An example of
a holonomic vehicle is a robot with three omnidirectional wheels. It can fully control
its movement in all three degrees of freedom and execute any collision-free path. By
contrast, a vehicle is non-holonomic if the controllable degrees of freedom are less than
the total degrees of freedom. An alternative definitions of the non-holonomic vehicle
can be found in [10]. An example of a non-holonomic vehicle is a standard car used
every day by billions of people all over the world. It has limited turning radius and
that is the reason why it is so complicated to learn parallel parking.

The nonholonomic constraint restrict the movement of the vehicle. Therefore, the
possible transformations inside the configuration space are also limited. This forces the
path planners to consider the whole configuration of the robot, instead of the position
only.

2.1.2 Dubins vehicle

A commonly used model for both aerial and ground non-holonomic vehicles is the model
of Dubins vehicle. It models a vehicle which goes only forward at a constant speed and
has a limited minimum turning radius ρ. Dubins vehicle is suitable mainly for car-like
vehicles or fix-wings aerial vehicles. An example of the Dubins vehicle represented by
a car-like vehicle is depicted in Fig. 2.1.

6

CHAPTER 2. BACKGROUND

x

yO

θ

Figure 2.1: Dubins vehicle represented by a car-like vehicle

A configuration of the Dubins vehicle is specified by the position (x, y) and the
orientation θ. Mathematical model of the Dubins vehicle can by formulated as follows: ẋ

ẏ

θ̇

 = v

 cos θ
sin θ
u
ρ

 , |u| ≤ 1, (2.3)

where v is the constant forward velocity, ρ is the minimum turning radius, and u is the
bounded control input. It is possible to normalize both vehicle velocity and minimum
turning radius by scaling the space (x′ = x

ρ
, y′ = y

ρ
, t′ = t

v
) and thus simplify the

mathematical model of the Dubins vehicle into the following alternative form: ẋ′

ẏ′

θ̇′

 =

 cos θ′

sin θ′

u

 , |u| ≤ 1. (2.4)

2.1.3 Dubins maneuver

Properties of paths with a minimum turning radius were first studied in 1957 by Du-
bins [7]. He proved by geometric arguments that the path with a minimum possible
length between two configurations, each defined by position and direction, can contain
only line segments and arcs with exactly the minimum turning radius. Therefore we
call the minimum length path Dubins maneuver. It was further shown that only 6
maneuvers of 2 types can be optimal:

• CCC type: LRL, RLR;

• CSC type: LSL, LSR, RSL, RSR.

Here, C denotes the arc with the radius equal to the minimum turning radius ρ
and S denotes a straight line segment. Two orientations of C segments are possible:
L for the left turn and analogously R for the right turn. Examples of CSC and CCC
maneuver are depicted in Fig. 2.2. We can notice that for the situation in Fig. 2.2b it
is not possible to construct RSR maneuver due to the limited turning radius and thus
the optimal maneuver is the CCC.

7

CHAPTER 2. BACKGROUND

C
S

C
qstart qend

(a) CSC maneuver

C C

qstart
qend

C

(b) CCC maneuver

Figure 2.2: Two types of Dubins maneuver

A problem of finding Dubins maneuver was also addressed in [11] where authors
formulated conditions that determine which of the six possible maneuvers is the shortest
one. Dubins maneuver is the shortest path between two vehicle configuration, but two
configurations have 6 degrees of freedom in total. Luckily, we can choose coordinate
system in such a way that the start configuration lies on the origin and the direction
angle is zero (parallel to x axis), i.e., qstart = ~0. This transformation reduces the input
space into 3 degrees of freedom. Now we can simply plot it for some fixed turning angle
θend. An example for θend = π/3 is plotted in Fig. 2.3. Here, each type of the Dubins
maneuver is highlighted by a different color. Curves in the figure represent areas with
the same length of the Dubins maneuver. Hence, we can introduce new function L to
denote the length of the Dubins maneuver for any configuration qend in the normalized
coordination system.

L : R2 × S1 → R (2.5)

Even though the function L is strictly continuous inside regions with the same
type, it can have discontinuity in the places where CSC maneuver is changing to CCC
maneuver. Since the CCC maneuver exists only if the Euclidean distance between
the two configurations is shorter than 4ρ, the function L is strictly continuous for all
configurations which are at least 4ρ apart [11].

2.2 Traveling salesman problem

The traveling salesman problem (TSP) is one of the most studied combinatorial problem
in operational research. The TSP stands to find the shortest tour visiting each city
exactly ones. The set of cities (locations to be visited) is given and it is further assumed
that the particular cost to travel from one city to another city is also given, e.g., in a
form of a cost (distance) matrix. The TSP is a combinatorial optimization problem,
which is proved to be NP-hard [12]. It is unclear when the TSP was first formulated,
but first attempts to address this problem was in mid-20th century in [13] and [14].
The TSP can be defined by the cost matrix C which contains distances ci j between

8

CHAPTER 2. BACKGROUND

Figure 2.3: Distribution of Dubins maneuver types where θend = π/3

each pair of cities. This matrix can be both symmetric and asymmetric. The matrix
is symmetric if Equation 2.6 holds, otherwise the matrix is asymmetric. According to
this property the problem is called symmetric traveling salesman problem (TSP) or
asymmetric traveling salesman problem (ATSP).

ci j = cj i, ∀ i, j (2.6)

Another important property of the TSP is the triangle inequality. It basically means
that there does not exist a shortcut between two cities which goes through the third one
and the shortcut is strictly shorter than the direct connection between the two cities.
This condition can be formulated as Equation 2.7. If this condition holds we call the
TSP is metric.

ci k ≤ ci j + cj k, ∀ i, j, k (2.7)

A special case of the cost function for the TSP is Euclidean distance. Then, we call
such a problem Euclidean Traveling Salesman Problem (ETSP). It is obvious that the
ETSP is both symmetric and metric. An important property of the solution of any
ETSP instance is that the solution does not contain any self-intersection.

To compare different algorithms it is necessary to have enough representative in-
stances of the TSP. For this purpose, the TSPLIB library [15] can be used. It contains
many instances for the TSP from various sources and of various types.

2.2.1 Exact algorithms

The exact algorithms are guaranteed to find the optimal solution in a finite number of
steps. On of such algorithms is a brute force exhaustive search. Unfortunately, this

9

CHAPTER 2. BACKGROUND

approach is not applicable for very large instances because it is too computationally
demanding using now days computers. Another method is to formulate the TSP as a
problem of the integer linear programming (ILP). One way how to formulate the TSP
as the ILP problem is to use Boolean variable xi j for oriented connection between two
cities:

xi j =

{
1 the path goes from city i to city j

0 otherwise
.

Then, it is necessary to restrict the number of input and output edges connected to a
city. These variables are used to ensure that there exist only closed tours; however, it
cannot eliminate creating more smaller separated subtours. To effectively eliminate the
subtours Miller et al. proposed a new formulation of the TSP as the ILP problem [16].
They suggested to add new variables ui and formulated the TSP as Problem 2.

Problem 2 (TSP - MTZ formulation)

min
n∑
i=1

n∑
j=1

ci,j xi,j

subject to:
n∑
j=1

xi,j = 1, ∀i ∈ {1, . . . , n}

n∑
i=1

xi,j = 1, ∀j ∈ {1, . . . , n}

xi,j ∈ {0, 1}, ∀i, j ∈ {1, . . . , n}

u1 = 1

2 ≤ ui ≤ n, ∀i ∈ {2, . . . , n}
ui − uj + 1 ≤ (n− 1)(1− xij), ∀i, j ∈ {2, . . . , n}

The MTZ formulation eliminates subtours by addingO(n) extra variables andO(n2)
constraints. The ILP problem can be further solve by a branch and bound algo-
rithm [17]. An example of the state-of-the-art exact algorithm is Concorde solver[18],
which is publicly available. It can solve problems with hundreds of nodes in few seconds
to optimum using standard desktop computer.

2.2.2 Approximate algorithms

Approximate algorithm solves the problem while it can guarantee the approximation
factor of the found solution for every instance of the given problem. An example of an
approximate algorithm for the TSP is the well known Christofides’ algorithm for which
the approximate factor is equal to 3

2
.

10

CHAPTER 2. BACKGROUND

2.2.3 Heuristic algorithms

For larger instances of the TSP, or in a lack of time, heuristic algorithms are suitable
choice. Although they do not guarantee the optimal solution would be found, they can
find solution of high quality in much shorter time. Some of them can even find the
optimal solution with a high probability. According to [19], there are three classes of
heuristic algorithms:

• Tour construction algorithms;

• Tour improvement algorithms;

• Composite algorithms.

The tour construction algorithms incrementally build a tour by adding a new city
in each iteration. A simple example is the nearest-neighbour algorithm which in each
step adds a nearest unused city. This greedy way is fast and generates only feasible
solutions but not optimal in average.

The tour improvement algorithms try to repeatedly modify a tour in order to shorten
the length of the tour until there is no such modification that will improve the tour.
Probably the simplest tour improvement algorithm is the 2-opt algorithm. The al-
gorithm starts with a given tour and iteratively evaluates possible exchanges of the
connections between two edges in the tour.

The composite algorithms combine both previous approaches. An initial tour is
found by a construction algorithm and improvement algorithms continue in trying to
find better solution. This method shares all benefits from both previous approaches.
The initial tour is quickly found and the algorithm continues in finding a better solution
in a case of enough computational time.

2.2.4 λ-opt approximate algorithm

An example of approximate algorithm is the 2-opt algorithm. It iteratively improves the
tour by 2-opt move where the initial tour is given. If there is no improving 2-opt move
the algorithms terminates. The 2-opt move exchanges a pair of edges by another pair
which creates a new tour. An example of the 2-opt move is depicted in Fig. 2.4a. The
black circle represents the original tour, where the doted edges x1 and x2 are removed
and replaced by the red edges y1 and y2. It is necessary to make sure that disconnected
sub-tours are not generated.

The 2-opt algorithm can be generalized by changing the number of exchanged
edges λ and the exchange procedure is then called the λ-opt algorithm. An example
of the 3-opt move in the 3-opt algorithm is depicted in Fig. 2.4b. The λ-opt algorithm
returns the λ-optimal tour. A tour is said to be λ-optimal if it is impossible to obtain
a shorter tour by replacing any λ of its links by any other set of λ links [20]. From this
definition, it is obvious that a tour containing n cities is optimal if and only if the tour
is n-opt. It is also easy to see that any λ-opt tour is also λ′-opt for each λ′ satisfying
1 ≤ λ′ ≤ λ.

11

CHAPTER 2. BACKGROUND

x2

x1

y1 y2

(a) 2-opt move

x2

x1

y1y2

x3
y3

(b) 3-opt move

Figure 2.4: k-opt moves for TSP

A higher the λ is, a higher is the probability of finding the optimal solution by the
λ-opt algorithm. Further, the cases when λ = 4, 5 were studied in [21]. Although,
increasing of λ improves the probability of finding a good solution, the computational
time grows rapidly as the number of cities increases. A naive implementation of the
λ-opt algorithm has a time complexity of O(nλ). That is why 2-opt and 3-opt are
the most commonly used as a suitable balance between the solution quality and the
required computational time.

2.2.5 Lin-Kernighan heuristic

Another heuristic algorithm for the TSP is the Lin-Kernighan heuristic algorithm which
was first published in [19]. It is based on the λ-opt algorithm. The key idea is to use a
variable λ for the λ-opt move. The algorithm tries all possible moves in each step and
recursively all possible moves from improved tours. Any exchange can be represented
by the two sets X = {x1, . . . , xλ} and Y = {y1, . . . , yλ} where X and Y stands for a
set of removed edges and added edged, respectively. To reduce the number of possible
moves sequentially edge by edge, four following properties are checked. If any property
does not hold the move is not further considered.

1. The sequential exchange criterion: In a sequence of move (x1, y1, x2, y2, . . . , xλ, yλ),
all adjoining edges must share the same city. A necessary condition is that the
sequence of edges makes a closed chain.

2. The feasibility criterion: It is required that if a smaller number of m edges from
the move are used the last edge ym closes the edges into a feasible tour. This
criterion significantly reduce a running time.

3. The positive gain criterion: We define the gain Gi by weight of edges Gi =
(g1 + g2 + · · · + gi), where g is the change in the total cost by exchange of one
pair of the edges gi = c(xi)− c(yi). To improve the tour length it is necessary the
gain Gi is positive. The Lin-Kernighan algorithm also requires all partial sums
to be positive. This criterion makes the algorithm effective but is not restrictive.
There always exist any permutation which meets this criterion.

12

CHAPTER 2. BACKGROUND

4. The disjunctivity criterion: Once the edge is removed it cannot be added back
again. Hence, X and Y are disjoint sets.

These criteria are described in more detail in [20]. The author significantly improved
effectiveness of the Lin-Kernighan and estimated the time complexity of the procedure
to be approximately O(n2.2). He implemented this algorithm and make it publicly
available as the LKH solver [22].

2.2.6 Generalized traveling salesman problem

The Generalized traveling salesman problem [23] (GTSP) is a variant of the TSP, in
which the cities are partitioned into mutually exclusive sets. The task is to find a tour
which visit exactly one city in each set. The GTSP can be both symmetric and asym-
metric. An example instance of the GTSP is depicted in Fig. 2.5, where p denotes a
city and S is a set of cities. Several approaches were proposed to address this prob-
lem. It can be transformed by the Noon-Bean transformation [24] into the ATSP, see
Section 5.3. Another approaches are based on memetic algorithm [25] and modified
Lin-Kernighan heuristic for the GTSP [26].

S2
p2,1

S1

S3

p2,2

p3,1

p1,2

p1,1

p1,3

Figure 2.5: An instance of the GTSP

13

CHAPTER 2. BACKGROUND

14

CHAPTER 3
Problem statement

There exist many types of surveillance missions, but in this thesis, we focus on the
multi-goal path planning problem (MPP) for the Dubins vehicle. In this problem, the
Dubins vehicle is requested to visit a given set of goals. The goals can be represented by
points or regions. In the case points are used, the MPP problem can be considered as
the Dubins traveling salesman problem (DTSP). A more generous variant of the DTSP
is the Dubins traveling salesman problem with neighborhoods (DTSPN) in which the set
of point goals is replaced by a set of goal regions. These two problems share similar
properties because the DTSP can be considered as a sub-problem of the DTSPN.

The Dubins vehicle is considered in a two-dimensional world that is represented as
a plane W ⊆ R2. The Dubins vehicle is a non-holonomic vehicle which can go only
forward at a constant speed and it has a limited turning radius ρ. For simplicity and
without loss of generality, if it is not explicitly stated, we consider ρ=1 in the rest of this
text. The state of the vehicle is defined by the position p ∈ W and the heading θ ∈ S1.
Hence, the configuration space of the vehicle C = SE(2) has three dimensions. The
shortest path between two configurations q1, q2 ∈ C in an environment without obstacles
is called Dubins maneuver, viz Section 2.1.3. This maneuver can be found very quickly
because there exists an analytic solution. The length of the Dubins maneuver as a
fundamental part of our further work, and therefore, we denote L(q1, q2) to represent
the length of the shortest path for the Dubins vehicle connecting two configurations q1

and q2.

The vehicle is requested to visit all the given goals, and therefore, for each goal pi,
there must be a configuration qi of the path that satisfy visitation of pi. For an instance
with n goals, there is a set of configurations q = {q1, . . . , qn}. However, in the DTSP(N)
the order of visits as a sequence Σ = (σ1, . . . , σn) is not given. This causes that a part
of the problem is also a combinatorial optimization similarly to the standard TSP.

To further simplify the notation, the length of the shortest tour through the set of
configurations q in the sequence Σ is denoted as L(q,Σ), which is the sum of the lengths
of Dubins maneuvers between adjoining configurations in the sequence. Formally, it is
defined as:

15

CHAPTER 3. PROBLEM STATEMENT

L(q,Σ) = L(qσn , qσ1) +
n−1∑
i=1

Lρ(qσi , qσi+1
). (3.1)

In the MPP, the objective is to minimize the total cost to visit the given goals.
Particularly in the DTSP(N), the cost function is represented directly as L(q,Σ). Thus,
we need to find both the configurations to visit the goals and also the sequence in order
to evaluation the total cost of the solution.

3.1 Dubins TSP

The Dubins traveling salesman problem (DTSP) [27] is specified by a given set of point
goals to be visited. The problem is to find the shortest path for Dubins vehicle visiting
all the given points. In this problem, it is necessary to estimate the sequence of the goal
points from the given set and an orientation of the Dubins vehicle at each point goal.
The resulting path is then created by connecting every two consecutive points in the
sequence using the Dubins maneuver. An example solution of the DTSP is depicted
in Fig. 3.1. The path is continuous and fulfills the minimum turning radius constraint
ρ. Although, there is not self-intersection of the path, it is possible the optimal path
can have self-intersections for specific instances of the DTSP. This is different from the
Euclidean TSP for which the optimal path is always without any self-intersection.

Figure 3.1: Example of the Dubins TSP

More formally, we formulate the DTSP as an optimization problem with the cost
function L(q,Σ) defined in Equation 3.1. The set of target positions p = {p1, . . . , pn}
is given, where pi ∈ W and W ⊂ R2. The problem is to find both the permutation
Σ = (σ1, . . . , σn) of targets points and vehicle headings Θ = {θ1, . . . , θn} at each point
pi. Having these preliminaries, the DTSP can be written down as follows.

Problem 3 (DTSP)

minimize Σ,Θ L(q,Σ)

subject to qi = (pi, θi), i = 1, . . . , n,

16

CHAPTER 3. PROBLEM STATEMENT

3.1.1 Targets distances constraint

The DTSP can be significantly simplified if the distances between points in p have
similar length as the minimum turning radius or longer. To improve readability of the
text, we introduce the minimum distance constraint DK on the set of given points p as
follows:

||pi − pj|| > Kρ ∀i, j = 1, . . . , n; i 6= j. (3.2)

3.2 Dubins TSP with Neighborhoods

The Dubins traveling salesman problem with neighborhoods (DTSPN) [8] is a straight-
forward generalization of the DTSP in which the set of point goals to be visited is
generalized into a set of regions and thus the problem is to determine the shortest path
visiting all the given goal regions by the Dubins vehicle. A region is considered as
visited if there exist an intersection between the region and the path. The DTSPN is
motivated by real scenarios in which an UAV is requested to provide snapshots of some
objects or communicate with stationary stations at some communication radius. The
DTSPN is complicated by the fact that the vehicle can visit any part of each region
in any direction. It often enables to shorten the length of the solution in comparison
to the original DTSP, where the point goals are prescribed, instead of the goal regions.
An example solution of the DTSPN is depicted in Fig. 3.2.

Figure 3.2: Example of Dubins TSP with Neighborhoods

Similarly to the DTSP, we formulate the DTSPN as an optimization problem with
the cost function L(q,Σ) defined by Equation 3.1. Unlike in the DTSP, positions of the
configuration qi is not fixed and can be placed anywhere inside the particular goal region.
The DTSPN is defined for a given set of regions R = {R1, . . . ,Rn} and a projection
of the configurations P (qi) to its position pi in the world coordinates P (qi) = pi, where
pi ∈ W . Having these preliminaries, the DTSPN can be written down as follows.

17

CHAPTER 3. PROBLEM STATEMENT

Problem 4 (DTSPN)

minimize q,Σ L(q,Σ)

subject to P(qi) ∈ Ri; i = 1, . . . , n

q = {q1, . . . , qn}

3.2.1 Targets distances constraint

Two main variants of the DTSPN can be considered depending on whether the regions
are overlapping or not. In the case of non-overlapping regions, we can extend the
minimum distance constraint DK for the DTSPN. We define the minimum distance
constraint DK for the given set of regions R as a minimum distance between any pair
of regions:

||pi − pj|| > Kρ ∀pi ∈ Ri; ∀pj ∈ Rj; i, j ∈ 1, . . . , n; i 6= j (3.3)

18

CHAPTER 4
Analysis

In this chapter, we study the DTSPN and analyze the basic properties of the optimal
solution. In the first section, we focus on the DTSP which can be considered as a
sub-problem of the DTSPN. Therefore, all properties of the optimal path for the DTSP
hold also for the optimal solution of the DTSP with Neighborhoods.

4.1 On the Dubins TSP

The DTSP is specified by the set of point goals p. For each goal point there exists
a corresponding configuration of the Dubins vehicle on the path. The final path is
constructed from the set of configurations q = {q1, . . . , qn} by applying the Dubins ma-
neuver between two consecutive configurations in the sequence of configurations defined
by the sequence Σ. The total length L(q,Σ) is computed according to Equation 3.1.
Since the optimal path is constructed from Dubins maneuvers, the path is continuous
and also its first derivatives are continuous. Hence, the optimal path is a closed curve
from the C1 class.

As Dubins maneuvers are used, the optimal path consists of straight line segments
and curve segments with the minimum turning radius of the Dubins vehicle. No curves
with a different curvature are possible to be in the optimal path.

Properties of the optimal solution of the DTSP are influenced strongly by the value
of the minimum distance constraint DK measured in multiplies of the minimum turning
radius. A special case is when the value K ≥ 4. In this case, we can formulate the
following lemma.

Lemma 1 For an optimal solution of the DTSP with the D4 constraint, all Dubins
maneuvers connecting two consecutive configurations qi and qi+1 are always of the
CSC type.

Proof 1 Euclidean distance between qi and qi+1 is always longer than 4ρ, and there-
fore, it is not possible to construct the CCC maneuver [7].

19

CHAPTER 4. ANALYSIS

Lemma 1 holds independently on the permutation Σ of the given point goals. As
the lemma holds, all parts of the optimal path connecting two given points pi and pj,
corresponding to configurations qi and qj, are made only by Dubins CSC maneuvers.
If the D4 constraint holds, the length of the Dubins maneuver L(pi, pj) is a continuous
function [28].

For the DTSP with D4, only CSC maneuvers are possible to be optimal. Therefore,
we introduce new notation where C+

i states for the C part of Dubins maneuver leading
to configuration qi and C−i for the C part going from the configuration. An example
of this notation is depicted in Fig. 4.1. Generally, these C± parts can have zero length
and any orientations of the curvature. If the DTSPN satisfies the D4 constraint, the C±

parts connected with one point have the same length and orientation. This property is
formulated in the following lemma.

C+
i

S

qi-1 qi+1

qi

C-
i

S

Figure 4.1: Example of a path for the DTSP

Lemma 2 For an optimal solution of the DTSP with the D4 constraint, for all con-
figurations qi it holds that both corresponding curve segments C+

i and C−i are equally
long and they have the identical orientation.

Proof 2 The Equality of lengths and orientations of C+
i and C−i was proven in [29]

and [28] for an arbitrary permutation Σ. Since, the lemma holds for any permutation,
it also certainly holds for the permutation of the optimal solution of the DTSP.

4.1.1 Dubins touring problem

In the case the sequence Σ is given, the DTSP can be transformed into a problem of find-
ing the orientations Θ for the given set of points p = {p1, . . . , pn}. We call the problem
Dubins touring problem1 (DTP). The transformation of the original sequence of points

1We call the problem Dubins touring problem due to it’s similarity with theTouring polygon problem
(TPP) [30]. For the both problems the permutation of the goals to be visited is given.

20

CHAPTER 4. ANALYSIS

p in the DTSP into the ordered sequence of points p′ of the DTP is straightforward.
The point set is rearranged by the given permutation Σ = (σ1, . . . , σn):

p′i = pσi , i = 1, . . . , n. (4.1)

Now, the ordered set of point is given and the DTP can be formulated as an optimiza-
tion problem. The objective function is the length of the path, defined by Equation 3.1.
Variables are the headings Θ for all the given points.

Problem 5 (DTP)

minimize θ L(q,Σ)

subject to qi = (pi, θi), i = 1, . . . , n,

In the case the D4 constraint holds, the objective function is continues due to proper-
ties of the Dubins maneuver. The DTP was studied in [28], where the authors showed
that the DTP with the D4 constraint can be reduced to n-dimensional convex opti-
mization sub-problems, each over a convex polyhedral domain defined by at most 4n
inequalities. The maximum number of the sub-problems is 2n−2. Even though, the
number of sub-problems grows exponentially, in a usual case the real number of sub-
problems is considerably smaller. The authors used the term sharp turn and derived
relationship to the number of sub-problems which are needed to be considered.

4.1.2 Existing approaches for the DTSP

Many approaches for solving the DTSP were proposed in the past. Most of them are
based on a decoupled approach. The sequence of waypoints is determined first by using
the Euclidean TSP. Subsequently, the DTSP is transformed into the DTP.

One of first attempts to address the DTP was in [27] where authors proposed Al-
ternating Algorithm (AA). The AA algorithm applies straight line segment to even
segments in the sequence which defines particular orientation of the configurations of
the segment endpoints. For odd segments, the Dubins maneuver is applied. An exam-
ple of such a solution is depicted in Fig. 4.2 where straight lines segments are denoted
by the black color and the Dubins maneuvers are in red and blue.

The DTP was further studied in [29], where a receding horizon planning approach
was suggested. Instead of using two consecutive points, the authors optimized the path
regarding three following waypoints. This approach is also called k-step look-ahead
algorithm, where k stands for the number of the goal points considered in the local
optimization.

In [31], authors propose an approach based on a discretization of possible values of
headings at the points to be visited. Having the heading samples, particular config-
urations are created and they are connected by Dubins maneuver to form a roadmap
of Dubins maneuvers connecting particular configurations. This roadmap is then used
to formulate the problem as the generalized asymmetric traveling salesman problem
(GATSP). The GATSP can be then transformed to the ATSP by the Noon-Bean trans-
formation [24] and solved by any existing solver, e.g., the Lin-Kernighan algorithm.

21

CHAPTER 4. ANALYSIS

p1

p2

p3

p4

p5

p6

Figure 4.2: Alternating algorithm

4.1.3 On the sequence in the DTSP

The DTSP includes the combinatorial problem of finding the optimal sequence Σopt to
visit the given goals. If the Σopt is known the problem is transformed to the DTP where
the problem is to determine particular orientations Θ. The advantage of the transformed
problem is that the ATSP can be efficiently addressed by existing available algorithms,
which significantly simplifies the solution of the original problem. It would be helpful
to have a method which can independently find the optimal sequence. Unfortunately,
it is not possible due to the complexity of the DTSP and mutual dependencies of the
optimal sequence and optimal headings at the point for the optimal solution of the
original problem.

(a) Optimal solution
(Dubins distance 65.38 m)

(b) Non-optimal solution
(Dubins distance 66.14 m)

Figure 4.3: Two different solution of the same instance of the DTSP

Finding an optimal sequence Σopt is a challenging combinatorial problem. Hence,
heuristic methods are often used. One of the most straightforward method is estimation
of the sequence by simplifying the DTSP to the TSP using Euclidean distance. The
Euclidean Traveling Salesman Problem (ETSP) is the well studied problem [6] and

22

CHAPTER 4. ANALYSIS

many solvers are available. Despite the ETSP is a suitable heuristic for estimating
the sequence, it cannot guarantee the optimal solution of the DTSP. An example is
shown in Fig. 4.3. There two solutions for the same instance of the DTSP visualized
in the figure. The set of given points is generated on a grid with the step 4ρ where
ρ = 1 m. There are 16 points and the optimal solution for the corresponding ETSP
is 64 m long. There exist two different optimal solution of the ETSP forming ’U’ and
’H’ patterns. However, corresponding solutions for the DTSP have different lengths
(Dubins distances). It is caused by a different number of the sharp turns. This simple
example clearly shows that a sequence of visits determined as an optimal solution of
the ETSP does not guarantee an optimal solution of the DTSP would be found.

4.2 On the Dubins TSP with neighbourhoods

In this section, we further extend the discussed properties of the optimal solution of
the DTSP with the D4 constraint in the context of the optimal solution of the DTSPN
with the D4 constraint.

First, we extend Lemma 1 for the DTSPN, while the idea remains the same, i.e.,
only CSC maneuvers can be used in the optimal solution of the DTSPN with the D4

constraint.

Lemma 3 For an optimal solution of the DTSPN with the D4 constraint, all Dubins
maneuvers connecting two consecutive configurations qi and qi+1 are always of the
CSC type.

Proof 3 Euclidean distance between qi and qi+1 is always longer than 4ρ, and there-
fore, it is not possible to construct the CCC maneuver [7].

A similar extension can be applied also to Lemma 2. Here, we need to modify the
proof and assume the truthfulness of the original lemma. An example illustrating the
lemma is depicted in Fig. 4.4a.

Lemma 4 For an optimal solution of the DTSPN with the D4 constraint, for all
configurations qi it holds that both corresponding curve segments C+

i and C−i are
equally long and have the identical orientation.

Proof 4 Let assume we have the optimal solution (q, Σ). We can fix the position pi
and let the orientation θi be free for each configuration qi in the optimal solution of
the DTSPN with the D4 constraint. Then, the problem becomes the DTSP with the
optimal solution (q, Σ). Since Lemma 2 holds for the DTSP, this property must also
hold for the DTSPN.

The previous lemmas were extended from the DTSP. Now we study properties of the
vehicle configurations qi which visits the goal region Ri. As it is depicted in Fig. 4.4b,

23

CHAPTER 4. ANALYSIS

we assume the optimal path has only a single point intersecting the goal region. This
is an appropriate consideration, but it is necessary to consider an intersection of the
region with straight lines segments of the path. In such a situation, there exist more
configurations intersecting the same goal region with the optimal path. This observation
can be formulated in the following lemma.

Lemma 5 In the optimal solution of the DTSPN with the D4 constraint, for each
region Ri there is only one configurations qi ∈ Ri of the optimal path that is intersect-
ing with the region, or there is not a turn part of the optimal maneuver corresponding
to qi, i.e., C+

i = C−i = 0.

Proof 5 This can be shown by a contradiction. Let an optimal solution of the DTSPN
pass a region Ri by a turn part at the configuration qi. Assume there are several
intersections of the optimal path with Ri. Since qi is a part of the optimal path
and Lemma 4 holds, the both curve segments C+

i and C−i are equally long. Now,
consider a different configuration q′i, which is also a configuration of the optimal path
intersecting the region Ri. An example is depicted in Fig. 4.4b. The optimal path
consists of CSC maneuvers (Lemma 3) and thus q′i must be on the same C–segment
as qi. However, its corresponding C+ and C− parts are not equally long, which is in
contradiction with Lemma 4, unless there is not a turn segment corresponding to qi,
i.e., C+ = C− = 0.

Ri

SS

qi

Ci
+ Ci

-

(a) C+
i and C−

i have the same
length and orientation

Ri

SS

qi

C-segment

qi'

(b) C-segment does not satisfy
property of the optimal solution

Figure 4.4: Properties of the optimal solution of the DTSPN

Notice, Lemma 5 does not forbid more intersections of the optimal path with the
particular region if there is no turn segment corresponding to the visiting configuration.

The results of the analysis can be used as a guideline, how to restrict possible
solutions, which are surely not optimal. Therefore, we use the results in further chapters
to design new approach to address the DTSPN.

24

CHAPTER 5
Existing approaches for the DTSPN

In literature, we can find several different approaches to address the DTSPN. The DT-
SPN is a challenging problem, where it is necessary to determine both the target visiting
sequence and the visiting configurations q for each given region. An intuitive approach
is to find the permutation separately and then transform the DTSPN into a different
problem in which particular configurations q are determined. Another approaches are
based on sampling possible configuration to solve the DTSPN and then the samples are
utilized to transform the DTSPN into the ATSP. Genetic algorithms can also be used.

According to the key principle how a solution of the DTSPN is found, we can
divide existing approaches into three classes. The first class are the decoupled ap-
proaches. They find the sequence of visits separately and then transform the DTSPN
into a different problem in which configurations q are determined. The second class are
sampling-based methods, where the goal regions are sampled and then the DTSPN is
transformed into the ATSP. Finally, the third class contains methods based on genetic
algorithms that can be considered as a general optimization technique.

5.1 Decoupled methods

Decoupled methods solve the DTSPN by separating the problem into sub-problems
which are then solved separately. They were first used for the DTSP for which the
ETSP is commonly used as a suitable heuristic for estimating the sequence.

In [32], authors proposed to simplify the DTSPN by a solution of the related the
Traveling Salesman Problem with Neighborhoods (TSPN) where Euclidean metric is
used. The solution of the TSPN contains both the permutation and the visited points
of the goal regions. The points and the determined sequence of their visits are then
used for transformation of the DTSPN into the DTP. The authors also showed that this
approach provides a suitable heuristic for Dubins-like vehicle. An example solution of
the TSPN is depicted in Fig. 5.1a.

The solution of the TSPN contains permutation and positions which are further used

25

CHAPTER 5. EXISTING APPROACHES FOR THE DTSPN

in Fig. 5.1b, where the transformed DTP is depicted together with an example solution.
The TSPN is a well known problem which was addressed by several approaches [33, 34,
35, 36, 37] where different algorithms were proposed. Notice, there are also approaches
to deal with the TSPN with obstacles in the polygonal domain, e.g., [38] where authors
consider an algorithm based on self-organizing maps.

(a) An example solution of the TSPN (b) An example solution of the DTP

Figure 5.1: Decoupled approach for the DTSPN

Another decoupled method was presented in [39]. The authors proposed a three-
stage process based on an evolutionary algorithm to solve the DTSPN. These stages
are:

1. Position update: Move the position of the configuration qi inside the region Ri in
order to minimize the cost function.

2. Orientation update: Change the orientation θi of the configuration qi in order to
minimize the cost function.

3. Visiting sequence update: Check if there is a better sequence Σ for configura-
tions q.

The algorithm starts from an arbitrary solution. This solution is locally optimized in
the first two stages. The key idea is in the third stage, where the current configurations q
are connected into a fully connected roadmap constructed from the Dubins maneuvers.
This roadmap is subsequently considered as the ATSP which is solved by existing
solvers. In the article, the authors used the Concorde solver [18] to solve the ATSP to
optimum, but it is possible to use any other solver. The three stages are repeated until
the solution is improving.

5.2 Sampling-based methods

Another class of the approaches for solving the DTSPN are based on sampling-based
methods [40, 41]. They make samples of the target regions. The samples can be created

26

CHAPTER 5. EXISTING APPROACHES FOR THE DTSPN

in the whole regions or only on the boundaries of the regions. In the next step, the
samples are connected together between different regions by the Dubins maneuver, the
shortest possible path, to form a roadmap. Such a created roadmap is fully connected
except configuration in the same region and can be considered as an instance of the
asymmetric GTSP. Notice, the sampling based method is resolution complete [41] if
the GTSP is solved to the optimum. If a solution exists, a resolution complete [10]
algorithm will find it in finite time; however, if a solution does not exist, the algorithm
may run forever.

(a) 3 samples (b) 100 samples

Figure 5.2: An example of sampled road map for DTSPN

The samples can be created in whole regions or only on the boundaries of the regions,
but using only samples on the boundaries have statistically better results for the same
number of samples. An example of a created roadmap is depicted in Fig. 5.2a, where
3 random sampled configurations are used for each given region to be visited. The
roadmap is blue and the best solution of the generated GTSP is in red. In Fig. 5.2b,
a shorter solution for the same instance of the DTSPN is depicted. Here, 100 samples
were used for each region, and therefore, a bit shorter solution is found.

The generated GATSP can be transformed to the ATSP by the Noon-Bean trans-
formation [24]. An example of the Noon-Bean transformation is depicted in Fig. 5.3.
Here, vertices pi,j stand for the sampled configurations of the Dubins vehicle sampled
in the goal region Ri which is denoted as the set Si in the GATSP. An oriented edge
in the graph stands for the Dubins maneuver and the associated cost of the edge is
equal to the length of the maneuver. The transformation creates a zero cost circuit of
vertices pi,j. An oriented edge is transformed such that it starts at the same vertex
but it leads to the vertex following in the zero cost circuit. The associated cost of the
edge is transformed into the sum of the original cost and a big constant M . This big
constant forces the optimal solution of the generated ATSP to visit each set of vertices
Si only once and use the zero cost circuit. It ensures that all used edges create a tour
and each region is visited only once.

A backward transformation is straightforward. The edges still represent original
Dubins maneuvers which directly create a tour in the GATSP. The transformed ATSP

27

CHAPTER 5. EXISTING APPROACHES FOR THE DTSPN

S2
p2,1

S1

S3

p2,2

p3,1

p1,2

p1,1

p1,3

1
2

6
8

3

4
7

5

(a) GATSP

S2p2,1

S1

S3

p2,2

p3,1

p1,2

p1,1

p1,3

1+
M

2
+
M

6+M

8+M

3+M

4+
M

7+M

5
+
M

0
0

0

0
0

(b) ATSP

Figure 5.3: Example of the Noon-Bean transformation

can be solved by many existing algorithms. The authors of [40, 41] used Lin-Kernighan
heuristic algorithm.

5.3 Genetic algorithms

The last class of the existing approaches, are methods based on genetic or more specif-
ically evolutionary techniques [8, 42]. The general idea is to encode the solution by a
chromosome in which permutation Σ = (σ1, . . . , σn) and configurations q = {q1, . . . , qn}
are stored:

Chromosome:

(
σ1

qσ1

)
·
(
σ2

qσ2

)
·
(
σ3

qσ3

)
·
(
σ4

qσ4

)
· · ·

(
σn
qσn

)
The population of individuals is evolved by applying the mutation and crossover

operators. Different types of selection method can be used, e.g., roulette wheel selection
or tournament selection. Three kinds of mutation operators were used by the authors
in [8]. First mutation operator is orientation shift, which randomly changes the orienta-
tion of the configuration qi in the interval 〈0, 2π). The second operator is position shift,
which randomly changes the positions of the configuration qi inside the corresponding
target region Ri, i.e., qi ∈ Ri. The last operator is the partial reverse operator, which
reverses the sequence Σ between two uniform randomly chosen indexes. The configu-
rations in the reverse part of the sequence are rotated to the reversed orientation, i.e.,
rotated by π.

The authors adapted the Ordered Crossover operator (OX) [43] for the DTSPN in
which random parts from two parents are selected. These parts are directly used in the
descendants. Remaining parts are completed from the second parent. For example, let
two parent chromosomes be:

28

CHAPTER 5. EXISTING APPROACHES FOR THE DTSPN

• Parent 1:

(
2
q1

2

)
·
(

4
q1

4

)
·
(

6
q1

6

)
·
(

5
q1

5

)
·
(

3
q1

3

)
·
(

1
q1

1

)

• Parent 2:

(
5
q2

5

)
·
(

4
q2

4

)
·
(

1
q2

1

)
·
(

3
q2

3

)
·
(

2
q2

2

)
·
(

6
q2

6

)
.

Then, their derived children are chosen. Randomly choose parts go directly from Parent
1 to Child 1 and from Parent 2 to Child 2, respectively:

• Child 1:

(
?
?

)
·
(

?
?

)
·
(

6
q1

6

)
·
(

5
q1

5

)
·
(

3
q1

3

)
·
(

?
?

)

• Child 2:

(
?
?

)
·
(

?
?

)
·
(

1
q2

1

)
·
(

3
q2

3

)
·
(

2
q2

2

)
·
(

?
?

)
.

Finally, the descendant chromosomes are completed by remaining part from the second
parent. The children are completed in the following way:

• Child 1:

(
4
q2

4

)
·
(

1
q2

1

)
·
(

6
q1

6

)
·
(

5
q1

5

)
·
(

3
q1

3

)
·
(

2
q2

2

)

• Child 2:

(
4
q1

4

)
·
(

6
q1

6

)
·
(

1
q2

1

)
·
(

3
q2

3

)
·
(

2
q2

2

)
·
(

5
q1

5

)
.

Recently, the genetic approach was modified into a memetic algorithm in [42] to ad-
dress the DTSPN. The authors used similar operators for their memetic algorithm and
add local improvement of the chromosome by optimizing the position of configurations.
They also used only configurations on the boundaries of the regions; so, they can code
configurations only by one real variable. They estimated orientations by the AA, which
is a heuristic algorithm.

29

CHAPTER 5. EXISTING APPROACHES FOR THE DTSPN

30

CHAPTER 6
Proposed approach for the DTSPN

In this chapter, we propose new decoupled approach based on local optimization meth-
ods. The approach has been primarily designed to solve instances of the DTSPN for
which D4 constraint holds and all regions are convex. Although the D4 constraint was
originally assumed, the proposed method can be used even for more general instances
of the DTSPN, which is further support by the performed evaluation and comparison
with existing solutions in Chapter 7.

6.1 Proposed method

The proposed decoupled method to address the DTSPN consists of two main parts. The
first part estimates the sequence of the given regions while the second part is dedicated
to find the path visiting all the given goal regions in the order defined by the estimated
sequence. The proposed method works as follows.

Similarly to the previous approaches, we use the ETSP solver to find the sequence
based on a point distance between centers of the regions. The center of region is a point
inside the region which is, in some sense, the most interesting part of the region. The
DTSPN is often inspired by real problems in which the vehicle can sense the object
from a neighborhood. In such a case, we define the center as a real position of the
object of interest. Alternatively, the center can be determined as a center of gravity of
the regions.

After the sequence is determined, the DTSPN is reduced to the Dubins touring
regions problem (DTRP)1 which is a sub-problem of the DTSPN. The DTRP is an
extended version of the DTP where instead of point goals, the set of regions are given.
Hence, the DTP is a sub-problem of the DTRP. We propose a new method to address the
DTRP called Local Iterative Optimization (LIO) which is based on local optimization
procedure to find the most suitable position and orientation of each configuration to
visit all the regions.

1We call the problem Dubins touring regions problem due to it’s similarity with theTouring polygon
problem (TPP) [30], similarly as the DTP.

31

CHAPTER 6. PROPOSED APPROACH FOR THE DTSPN

6.1.1 Reduction of the DTSPN to the DTRP

In the first part of the proposed method, the sequence Σ of visits to the regions R is
determined. Using the sequence, we reduce the DTSPN to the DTRP. The problem to
determine the optimal solution of the DTRP is to find configurations q = {q1, . . . , qn}
that minimize the total tour length L(q,Σ) for the given sequence Σ. Each configuration
qi, from the sequence of configurations defined by Σ, has to lie in the corresponding
region, i.e., qi ∈ Ri. For every solution of the DTRP, the path intersects each region at
least in one configuration. Hence, we can consider only configurations on the boundary
δRi of the corresponding region R:

qi ∈ δRi, i = 1, . . . , n. (6.1)

We introduce new set of variables α = {α1, . . . , αn} which determines positions on
the edge for each region, where αi ∈ 〈0, 1). The α is defined by a projection B which
projects the position variable α on the boundary of the region Ri ∈ R by the equation:

pi = B(Ri, αi), i = 1, . . . , n. (6.2)

A straightforward way to define B is to define an initial point on the boundary and
measure a relative length of the boundary from the initial point. An example of such a
projection B is shown in Fig. 6.1.

Ri
0

0.25

0.5

0.75

α

Figure 6.1: Position of the point of visit to the region Ri defined by the projection B

We can define the DTRP as a minimization optimization problem where the target
regions R and its sequence of visits are given. The problem is to determine values of
the positions α with the associated orientations Θ under the objective function. The
objective function is the total length of the solution which is constructed from Dubins
maneuvers. Formally, the problem can be stated as follows.

Problem 6 (DTRP)

minimize α,Θ L(q,Σ)

subject to qi = (pi, θi), pi = B(Ri, αi), i = 1, . . . , n

32

CHAPTER 6. PROPOSED APPROACH FOR THE DTSPN

6.1.2 Local Iterative Optimization for the DTRP

In the second part of proposed method, the DTRP is solved by the newly proposed
Local Iterative Optimization (LIO) algorithm. The LIO algorithm starts with some
initial configurations which can be generated randomly or by a heuristic algorithm, like
the AA. Then, the algorithm optimizes the total tour length by adjusting values of
directions Θ and positions α of candidate configurations for all regions. The process is
repeated until the path is improving or a termination condition is not meet, e.g., after
a given number of iterations. The algorithm is expressed in Algorithm 1.

Algorithm 1: Local Iterative Optimization (LIO) for the DTRP

Data: Input regions R, candidate sequence Σ
Result: Configurations q = (q1, . . . , qn), qi ∈ δRi

1 initialization() // random assignment of qi ∈ δRi;
2 while global solution is improving do
3 for every Ri ∈ R do
4 (θi, qi) := optimizeOrientationLocally(θi);
5 (αi, qi) := optimizePositionLocally(αi);

6 end

7 end

Since the proposed iterative procedure performs only local optimization, it can stuck
in a local minima. However, for the DTRP with the D4 constraint, we can identify two
types of possible local minima. The first type occurs during the optimization of the
orientation of a single configuration. This local minima, depicted in Fig. 6.2a, has
been studied in [28]. The second type occurs during optimization of the configuration
position. In the example depicted in Fig. 6.2b, the locally shortest paths intersects the
boundary of the target region Ri in two other configurations q′i and q′′i . From Lemma 5,
we know that this path is not globally optimal. Thus, such a situation can be detected
to avoid the local optima.

Ri-1 Ri+1

Ri

qi

qi-1 qi+1

alternative
locally
optimal
path

(a) Two locally optimal solutions

Ri-1 Ri+1

Ri

qi

qi-1 qi+1

qi' qi''

(b) Local minimum of position αi

Figure 6.2: Local extremes evaluated during the proposed local optimization

33

CHAPTER 6. PROPOSED APPROACH FOR THE DTSPN

The LIO algorithm tries to avoid local shortest paths by examination of alternative
orientations and positions. The first subroutine called optimizeOrientationLocally()
optimizes the orientation of one chosen configuration while all other configurations
are fixed. Subsequent configurations are connected by Dubins maneuver to form the
shortest possible path. The task is to minimize the length of two adjacent Dubins
maneuvers. For each configuration qi, the subroutine locally optimizes the cost function
cost(qi) defined as:

cost(qi) = L(qi−1, qi) + L(qi, qi+1). (6.3)

The subroutine locally optimizes the orientation of the current configuration using
variable step which is expressed in Algorithm 2. At the beginning, the step is set to
π. By using this value, the subroutine examines a “reverse” configuration to avoid a
local minimum. Although it works in many situations, it is not sufficient to guarantee
the global optimal solution [28]. In subsequent, the variable step is adjusted depending
on whether the path was shortened in the current iteration. If the shortening was
successful, the step is increased. Otherwise, the step is reduced and its sign is changed.
The algorithm terminates when the absolute value is reduced and it is shorter than
the required tolerance. In the case the DTRP satisfies the D4 constraint, the path
converges to local minimum where the configuration cuts the corresponding turn into
half. This meets Lemma 4, therefore such a path is a good candidate to be the optimal
solution of the DTRP.

Algorithm 2: optimizeOrientationLocally() – Optimize orientation locally (sub-
routine of LIO)

Data: Actual region Ri and corresponding heading θi
Result: Improved heading θi and corresponding configuration qi

1 step := π;
2 while abs(step) > TOLERANCE do
3 θ′i := θi + step;
4 q′i := onEdge(Ri, αi, θ

′
i);

5 if cost(q′i) < cost(qi) then
6 θi := θ′i;
7 qi := q′i;
8 step := 2 · step;

9 else
10 step := -0.5 · step;
11 end

12 end
13 return (θi, qi)

The second subroutine called optimizePositionLocally() is based on the similar idea
and is expressed in Algorithm 3. It locally optimizes the position of the given configu-
ration qi. It uses the same cost function defined by Equation 6.3. The main difference
from the previous subroutine is that the position of the configuration qi is optimized

34

CHAPTER 6. PROPOSED APPROACH FOR THE DTSPN

and is encoded by the variable αi. The function B transforms it into the position at the
border of the corresponding region. The variable step starts with the value 0.5, which
represents the position on the opposite side of the region. If the position variable αi
leaves the range 〈0, 1), it is normalized back into to the interval 〈0, 1).

Algorithm 3: optimizePositionLocally() – Optimize position locally (subroutine
of LIO)

Data: Actual region Ri and corresponding position αi
Result: Improved position αi and corresponding configuration qi

1 step := 0.5;
2 while abs(step) > TOLERANCE do
3 α′i := αi + step;
4 q′i := onEdge(Ri, α

′
i, θi);

5 if cost(q′i) < cost(qi) then
6 αi := α′i;
7 qi := q′i;
8 step := 2 · step;

9 else
10 step := -0.5 · step;
11 end

12 end
13 return (αi, qi)

For the DTRP with the D4 constraint, the LIO algorithm ends with the path that
satisfies Lemma 4. But satisfaction of Lemma 5 is not guaranteed. The returned path
can intersect the boundary of the regions in more configurations while there is a turn.
Such a path is proven to be non-optimal. These intersections can be further examined to
improve the quality of the solution. Notice, the LIO algorithm can still stuck at a local
minima even after applying all these additional tests. However, based on the performed
evaluation and comparison with existing approaches, LOI provides competitive solutions
with significantly less computations requirements then evolutionary approaches, see the
results presented in Section 7.3.

6.1.3 Determination of the sequence to visit the regions

In most of decoupled approaches, the sequence to visit the regions is determined at
first. For this purpose the ETSP is used. It is clear that using ETSP provides a feasible
solution. However, it may not be necessarily the optimal sequence for the DTSPN.
An example of the optimal solution of the ETSP which definitely does not provide the
optimal sequence to visit the regions in the DTSP is shown in Fig. 4.3. Since the DTSP
is a sub-problem of the DTSPN, this problem also occurs for the DTSPN. Therefore,
we propose the following framework to address this issue.

The framework is based on considering several sequences that can be for example
found as a solution of the k-best TSP [44]. Alternatively, the candidate sequences can

35

CHAPTER 6. PROPOSED APPROACH FOR THE DTSPN

be generated by solving k-best ETSPN, which can utilize information about the shapes
of the goal regions. The main idea of the proposed framework is depicted in Fig. 6.3.

Fast DTRP solver

Sequence generator
U

p
p
er

 b
o
u
n
d

k−best permutations

DTSPN

DTRP

Solution of the DTSPN

Proposed Local Interative Optimization

Figure 6.3: Proposed framework to solve the DTSPN

36

CHAPTER 7
Results

We have implemented several algorithms for the DTSPN without obstacles. To compare
them, we created a random problem generator which can generate random instances of
the DTSPN with various shapes of regions. All algorithms have been implemented in
C++ and tested on a single core of the Intel Core i5-M480 CPU running at 2.67 GHz.
The processor was accompanied with 4 GB RAM.

7.1 Problem generator

To evaluate the performance of the studied approaches for the DTSPN, we decided to
create a random problem generator and provide an exhaustive comparison on several
random instances of hte DTSPN with particular parameters of the problem. The devel-
oped generator places regions in the workplace. The input is the number of generated
regions n and the minimum distance d between the regions. Since the minimum distance
is given, the generated DTSPN instances fulfills the Dd constraint. Centers of regions
are generated inside a bounding box with the side 6

√
nρ which produces instances with

a similar density of regions regardless the number of goal regions. A newly generated
region is added only if it meets the Dd constraint with all already generated regions.
This process continues until all regions is generated. The instances with up to n=500
regions were used. Besides, we considered several types of regions:

• single point;

• circle with the radius ρ;

• ellipse with the semi-axis 2ρ and 0.5ρ;

• polygon with up to 6 vertices created from a circle with the radius ρ.

Examples of randomly generated instances with 50 regions accompanied with a
sample solution are depicted in the Fig. 7.1. The main difference between these instances
is in the minimum distance constraint. A number regions are the same in the both
instances, which is caused by using the same random seed for the utilized random

37

CHAPTER 7. RESULTS

generator. It can also illustrate the higher computational demands for creating instances
with higher minimum distance d. The same method can be used for generating instances
of the DTSP simply by generation only single points instead of more complex regions.

(a) D1 convex regions (b) D4 convex regions

Figure 7.1: Examples of randomly generated DTSPN instances (n = 50)

7.2 Implementations details of the used algorithms

All algorithms have been implemented in the C++ language and two external libraries
have been utilized. The first is the Concorde solver [18] which was used for solving
the ETSP problems to optimal. The solver is based on linear programming solver and
it is designed especially for solving the symmetric traveling salesman problem. The
second library was LKH solver [22] which is an implementation of the Lin-Kernighan
approximate algorithm. More details about the algorithm can be found in [20]. The
LKH solver is faster than Concorde, but it does not guarantees the optimal solution. We
use the LKH in our experiments to solve large ATSP instances created by the sampling-
based approach for the DTSPN. Both libraries are free for an academic research.

7.2.1 Proposed decoupled algorithm

The first algorithm to compare is our new Local Iterative Optimization (LIO) algo-
rithm. It is used together with the Concorde solver to provide a sequence of the given
regions by solving the ETSP. Hence, in presented plots with the results, the combined
algorithm is denoted as the ETSP+LIO. The LIO algorithm was implemented according
to Algorithm 1. This algorithm call iteratively two subroutines defined in Algorithm 2
and Algorithm 3 until the solution converges to a local optima. The minimum step of
the gradient descent used in the both subroutines is 10−5.

The speed of the convergence of the LIO algorithm has been studied for an instances
of the DTSPN with the D4 constrain and a given sequence. The instance was randomly
generated for various numbers of regions defined by n. The results are depicted in

38

CHAPTER 7. RESULTS

Fig. 7.2. It shows a quick convergence of the optimization in the first few iterations
for the main while-loop of Algorithm 1. The computational time of a single iteration
decreases with the number of iterations.

Number of iterations

0 1 2 3 4 5

R
el

at
iv

e
le

n
g

th
 o

f
so

lu
ti

o
n

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

n=25

n=50

n=100

n=200

n=300

n=400

n=500

(a) Average tour length

Number of iterations

1 2 3 4 5

R
eq

u
ir

ed
 C

P
U

 t
im

e
[s

]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

n=25

n=50

n=100

n=200

n=300

n=400

n=500

(b) Average computational time

Figure 7.2: Performance of ETSP+LIO in particular iteration of the main loop

Number of regions

0 100 200 300 400 500

R
eq

u
ir

ed
 C

P
U

 t
im

e
[s

]

10
-2

10
-1

10
0

10
1

10
2

10
3

DTRP (LIO)

ETSP (Concorde)

Figure 7.3: Average required computational time (from 10 trials) for the DTSPN algo-
rithms with increasing number of regions n

Secondly, we have measured the required computational time separately for the
ETSP and LIO parts of the decoupled algorithm. We have used instances of the DTSPN
with D4 and up to 500 regions. The results are depicted in Fig. 7.3. The presented
results are the average values over 10 trials and the minimum and the maximum required
computational time are shown as the endpoints of the error bars. The plots show the
LIO part is executed much faster than find an optimal solution of the ETSP by the
Concorde solver. The proposed algorithm (ETSP+LIO) can be accelerated by using
heuristic algorithm for solving ETSP, e.g., the Lin-Kernighan algorithm. But, for the
further evaluation of the LIO algorithm, we decided to use the Concorde solver and
determine the optima solution of the underlying ETSP.

39

CHAPTER 7. RESULTS

7.2.2 Other decoupled algorithms

We have implemented two other decoupled algorithms based on a solution of the ETSPN
prior determination of Dubins maneuvers. We use a heuristic method for solving the
ETSPN. A solution of the ETSPN is found in two phases. First, a sequence of the
visits is determined from the solution of the ETSP by the Concorde solver, similarly to
the ETSP+LIO approach. Then, the particular points of visits on the boundary of the
goal regions are determined by local optimization method. Since the sequence of visits
to the regions and particular entry point are determined, the problem is transformed to
the DTP. We have implemented two reference methods for the DTP. The first method
is the Alternating Algorithm (AA) [27] and the corresponding decoupled algorithm is
denoted as the ETSPN+AA. The second implemented method for solving the DTP is
a simplified version of the proposed LIO algorithm, where only headings are optimized
but positions are taken from a solution of the ETSPN. We denote this algorithm as the
ETSPN+HoLIO.

7.2.3 Genetic based algorithms

The next studied approach for the DTSPN found in literature are genetic based al-
gorithms [8] and [42]. We have implemented two variants of the algorithm: genetic
algorithm [8] and memetic algorithm [42]. Both of the algorithms used the same frame-
work expressed in Algorithm 4. We use a tournament selection and the Partial Reverse
operator is utilized as the sequence mutation operator. It randomly choose the part of
the sequence to be reverted. Finally, the adapted version of the Ordered Crossover is
used.

Table 7.1: Settings of the genetic based algorithms

Property Genetic Memetic
Population size 60 25
Tournament size 8 5
Probability K1 0.2 0.1
Probability K2 0.3 0.05

The difference between these two implemented genetic based algorithms is in the
procedure updateConfigurations(). In the genetic algorithm, the procedure uses
position and orientation mutation of the configurations. In contrast to that, a local
optimization of the configurations is used in the memetic algorithm. The proposed LIO
algorithm is utilized to perform the local optimization. The used settings of the both
algorithms are expressed in Table 7.1. The coefficient K1 stands for a probability of
the sequence mutation and K2 stands for a probability of changing configurations.

7.2.4 Sampling based algorithms

The last implemented algorithm is the sampling based transformation of the DTSPN to
the aTSP, which is denoted in plots as Sample+ATSP. The given regions are sampled

40

CHAPTER 7. RESULTS

Algorithm 4: Genetic algorithm for the DTSPN

Data: Target regions R
1 i := 0;
2 P(0) := initializePopulation(); // The initial population

3 while not termination do
4 for each in population do
5 parents := selection(P(i));
6 if random() < K1 then
7 newSolution := mutateSequence(parents);
8 else
9 newSolution := crossover(parents);

10 end
11 if random() < K2 then
12 newSolution := updateConfigurations(newSolution);
13 end
14 P(i + 1) ← newSolution;

15 end
16 i := i + 1;

17 end
18 return the best solution

on the boundary by m random sample configurations. Hence there are n ·m samples
at total. The samples are then connected by Dubins maneuvers into the so-colled
Dubins roadmap. The roadmap can be considered as an instance of the GTSP which is
subsequently transformed into the ATSP by the Noon-Bean transformation [24]. The
ATSP is solved by the LKH solver [22] which is an implementation of the Lin-Kernighan
heuristic algorithm. To study basic properties of the sampling algorithm, we have used
an instance of the DTSPN with only 4 circle regions, which is depicted in Fig. 7.4. The
sequence is obvious in this instance; hence, we utilized the proposed LIO algorithm as
a reference solution of this problem. We have measured a quality of the solution and
the required computational time. The results are depicted in Fig. 7.5 and Fig. 7.6,
respectively.

Building the roadmap takes O((n · m)2) where n is number of regions and m is
number or samples in each region. It is because a computation of the Dubins maneuver
takes a constant time and there are (n ·m)2 edges in the complete graph. The Noon-
Been transformation does not change then number of vertices. For solving the generated
ATSP, we use the LKH solver. According the author [22], the time complexity of
the LKH is approximately O(n2.2

ATSP). Hence, the expected total time complexity is
O((n ·m)2.2).

To compare the performance of the sampling based algorithm with other algorithm,
we need to modify this algorithm. We want to have an any-time algorithm. The
sampling-based algorithm works with a constant number of samples which are given a
priory. Therefore, we run the sampling based algorithm repeatedly with an increasing

41

CHAPTER 7. RESULTS

Figure 7.4: An instance of the DTSPN with 4 regions

number of samples. Since the time complexity of the algorithm is nearly quadratic, we
want to use inverse function for the number of samples mk according to the number k
of the actual iteration:

mk ≈
√

2k. (7.1)

After the rounding the mk to integer value, it gives us the following series of numbers:

M = {1, 2, 3, 4, 6, 8, 11, 16, 23, 32, 45, 64, 91, 128, 181, 256, . . .}.

Number of samples per region

0 100 200 300 400 500 600 700 800

R
el

at
iv

e
le

n
g
th

 o
f

so
lu

ti
o
n

0.99

1

1.01

1.02

1.03

1.04

1.05

ETSP + LIO

Sample + ATSP

Figure 7.5: Average ratio of the tour length (from 20 trials) according to the ETSP+LIO
solution for the instance of the DTSPN with 4 circle regions and D4 constraint.

7.3 Results for the DTSPN

The performance of the proposed algorithm (ETSP+LIO) have been evaluated in a
series of scenarios. The quality of the solutions provided by the proposed algorithm is

42

CHAPTER 7. RESULTS

Number of samples per region

0 100 200 300 400 500 600 700 800

T
im

e
[s

]

10
-2

10
-1

10
0

10
1

10
2

10
3

ETSP + LIO

Sample + ATSP

Figure 7.6: Average required computational time (from 20 trials) for the instance of
the DTSPN with 4 circle regions and D4 constraint.

compared with all other implemented algorithms described above. For each scenario
several random problem instances have been created with the minimum turning radius ρ
set to ρ = 1. For each trial a new instance is generated, so the number of generated
instances is equal to the number of trials. The scenario is defined by the number of
regions n and the minimum allowed mutual distance between the goal regions. All the
tour length are expressed as the ratio to the tour length generated by the proposed
algorithm. Hence, the proposed algorithm has always the ratio equal to one. All the
presented results are averaged from several instances and the standard deviation is
computed.

In the first scenario, we compared the quality of solutions regarding the dedicated
computational resources for the instances of the DTSPN in which the D4 constraint
holds. The results for 20 and 40 convex regions are shown in Fig. 7.7 and Fig. 7.8,
respectively. From the results, it can be seen that all three decoupled algorithms find
an initial solution and it is not improving any more. For 20 regions the solution is found
in less than 100 milliseconds. In contrast, the other algorithms (genetic, memetic and
sampling-based) continue until the time limit of 100 seconds is exceeded.

We further evaluated the scalability of the algorithms with the increasing number
of the goal regions n from 5 to 50. Instances with the D4 constraint were used and the
computation time has been limited to 10 seconds. The results are shown in Fig. 7.9.

So far, random instances with D4 and convex regions were used. Here, we relax
the D4 constraint in order to evaluate the algorithms on instances according to the
minimum mutual distance d of the goal regions. Hence, the instances meets the Dd

constraint. The results are shown in Fig. 7.10. Although, the LIO algorithm has been
designed on top of the found properties of the optimal solution of the DTSPN with the
D4 constraint, the results for the relaxed constraint indicate suitability of the proposed
algorithm also for a more general problems with closer regions.

43

CHAPTER 7. RESULTS

Time [s]

10
-2

10
-1

10
0

10
1

10
2

R
el

at
iv

e
le

n
g
th

 o
f

th
e

so
lu

ti
o
n

1

1.1

1.2

1.3

1.4

1.5

ETSP + LIO

ETSPN + HoLIO

ETSPN + AA

Memetic

Genetic

Sample + ATSP

(a) General view

Time [s]

10
-1

10
0

10
1

10
2

R
el

at
iv

e
le

n
g
th

 o
f

th
e

so
lu

ti
o
n

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14
ETSP + LIO

ETSPN + HoLIO

ETSPN + AA

Memetic

Genetic

Sample + ATSP

(b) Focused view

Figure 7.7: Average ratio of the tour length (from 50 trials) according to the ETSP+LIO
solution for the DTSPN with n=20 convex regions. Plots start from the time when the
first solution is available.

44

CHAPTER 7. RESULTS

Time [s]

10
-2

10
-1

10
0

10
1

10
2

R
el

at
iv

e
le

n
g
th

 o
f

th
e

so
lu

ti
o
n

1

1.1

1.2

1.3

1.4

1.5

ETSP + LIO

ETSPN + HoLIO

ETSPN + AA

Memetic

Genetic

Sample + ATSP

Figure 7.8: Average ratio of the tour length (from 50 trials) according to the ETSP+LIO
solution for the DTSPN with n=40 convex regions. Plots start from the time when the
first solution is available.

Number of regions

0 10 20 30 40 50

R
el

at
iv

e
le

n
g
th

 o
f

so
lu

ti
o
n

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

ETSP + LIO

ETSPN + HoLIO

ETSPN + AA

Memetic

Genetic

Sample + ATSP

Figure 7.9: Average ratio of the tour length (from 20 trials) according to the ETSP+LIO
solution for problems with increasing number of regions. The time limit is 10 seconds.

45

CHAPTER 7. RESULTS

Minimum distance between regions

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R
el

at
iv

e
le

n
g
th

 o
f

so
lu

ti
o
n

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

ETSP + LIO

ETSPN + HoLIO

ETSPN + AA

Memetic

Genetic

Sample + ATSP

Figure 7.10: Average ratio of the tour length (from 20 trials) according to the
ETSP+LIO solution for instances of the DTSPN with 20 regions increasing minimal
mutual distance of the regions. The time limit is 10 seconds.

7.4 Discussion

The presented results support feasibility of the proposed decoupled algorithm, called
ETSPN+LIO, for the DTSPN. It transforms the DTSPN into the DTRP using a se-
quence estimated by solving the ETSP for centers of the goal regions. The DTRP is
then solved by the proposed LIO algorithm which adjusts the vehicle heading and entry
point to the goal regions. The LIO algorithm provides solution of competitive quality
with significantly lower computation requirements (about three orders of magnitude
lower) then the evolutionary and sampling based approaches.

Although the LIO has been designed on top of the found properties of the optimal
solution of the DTSPN with the D4 constraint, the results for the relaxed constraint
indicate suitability of the proposed approach also for general problems. It can be seen
in Fig. 7.10 that the LIO provides better results than other approaches even for D0.5

and D1 constraints if the time is limited.
The most computationally demanding part of the proposed LIO approach is a solu-

tion of the ETSP, which increases with the number of the goal regions. The Concorde
solver was used in experiments, which solves the ETSP to optimum. It can be replaced
by approximation algorithms to speed up the computations, while the quality of the
solution is still satisfactory. For example the LKH solver [22] can be utilized.

46

CHAPTER 8
Dealing with obstacles

In this chapter, we study the DTSPN in the environment with obstacles. The general
multi-goal path planning problem with obstacles was considered in [4, 5]. But, to the
best of our knowledge, there is only one approach [41] that explicitly considers the
DTSPN with obstacles. The author proposed to use sampling based method, similarly
to the case without obstacles, and create samples even outside the given regions to be
visited. All the samples form a roadmap and that is then used to solve to problem as
the ATSP. Although this approach provides a feasible solution and in particular cases
also solutions of good quality, the DTSPN with obstacles is a challenging problem. The
final path is constructed as a sequence of Dubins maneuvers passing not only particular
entry configurations in the goal regions, but also arbitrary configurations in the free
configuration space to avoid collision with the obstacles.

A simple naive approach to address Dubins planning with obstacles is proposed
in the next section to further show this difficulty and how it can be addressed by
the sampling and genetic based algorithms. Then, the sampling based method [41] is
described.

8.1 Naive based approach

We propose naive based approach to address the DTSPN with obstacles. The idea of
the approach is based on the optimization problem defined in Problem 4 where all paths
that are intersecting with obstacles are discarded. The obstacles are not considered in
the original problem, and therefore, the Dubins maneuver is used between two config-
urations, which is the shortest possible path in an environment without obstacles. For
the DTSPN with obstacles, the same concept is used, but only collision-free Dubins ma-
neuvers considered. Since the Dubins maneuvers can pass through obstacles and have
to be discarded, unnecessary long paths are preserved and thus this naive approach is
only a heuristic method. Moreover, it can be simple shown that an existence of a feasi-
ble solution is not guaranteed. The example instance containing this issue is shown in
Fig. 8.1. In this example, there is not collision-free Dubins maneuver between two disc
goal regions (denoted by brown color), because it necessarily goes throw the obstacle

47

CHAPTER 8. DEALING WITH OBSTACLES

denoted by green color. However, there exist a collision-free path for the Dubins vehecle,
which is not provided by the simple naive based approach. In the following section, we
discuss two extensions of this very simple idea that are able to provide feasible solution
with great probability. The first approach utilized sampling-based method while the
secont approach combines idea of genetic algorithms.

Figure 8.1: Example of an unfeasible solution of the DTSPN with obstacles

8.1.1 Sampling-based methods

The first method, which follows the idea of the the naive approach, is adapted version
of the sampling-based method described in Section 5.2. As well as in the original
method, the goal regions are randomly sampled. They can be sampled anywhere in the
regions or only at the boundaries. Based on evaluation of these two sampling strategies,
both variants produced solutions of competitive quality. The sampled configuration are
connected by Dubins maneuvers into a roadmap which is considered as an asymmetric
version of the GTSP. The GTSP is transformed into ATSP and solved by available
solvers, e.g., LKH [22].

Although, the original sampling-based method for the DTSPN without obstacles is
resolution complete [41], the adapted version considering the obstacles does not nec-
essarily converges into an optimal solution. Such a situation is shown in Fig. 8.2. On
the left, there is a full roadmap in blue, which was created from 3 samples for each
goal regions. The shortest path in the roadmap visiting the goal regions is shown red.
On the right, the shortest path for the Dubins vehicle found for the roadmap with 100
samples per goal region is depicted.

The naive sampled-based method also does not guarantee that a feasible solution
will be found, if such a solution exists. Nevertheless, the method can be used for
instances of the DTSPN with obstacle. Examples of problems with 11 goal regions and
12 obstacle regions are shown in Fig. 8.3.

48

CHAPTER 8. DEALING WITH OBSTACLES

(a) 3 samples with all
feasible connections

(b) 100 samples

Figure 8.2: Example instances of the DTSPN with obstacles solved by the naive
sampling-based method with different number of samples per goal regions.

(a) 3 samples with all
feasible connections

(b) 60 samples

Figure 8.3: Large instances of the DTSPN with obstacles solved by the naive sampling-
based method with different number of samples per goal regions.

8.1.2 Genetic methods

We also consider the idea of the naive approach for the DTSPN with obstacles in com-
bination of the genetic approach described in Section 5.3. The original version of the
algorithm have been proposed for hte DTSPN without obstacles, and therefore, we need
to modify it appropriately to discard solution that pass through the obstacles. However,
in genetic algorithm, we cannot directly forbid unfeasible paths colliding with obstacles.
Therefore, we adjust the fitness function used for the evaluation of individuals. Origi-
nally, the the fitness function was equal to the length of the Dubins path L(q,Σ) going
through one configuration for each goal region, defined in Equation 3.1. We modify

49

CHAPTER 8. DEALING WITH OBSTACLES

the fitness function by doubling it for each intersection with the obstacle. Hence, the
algorithm prefers solutions with less number of collisions. The proposed fitness function
f can be express by the following equation, where K denotes the number of collisions:

f = L(q,Σ) · 2K . (8.1)

An example instance of the DTSPN with obstacles is shown in Fig. 8.4 together
with solution generated by the adapted genetic algorithm.

Figure 8.4: A larger instance of the DTSPN with obstacles solved by the modified
genetic algorithm. The timelimit was 10 s.

8.2 Sampling-based approach with obstacles

The main disadvantage of the naive based approach is the fact that it is capable to
find any feasible solution for some instances of the DTSPN with obstacles. In [41],
the author proposed new method to address the problem. The sampling-based method
was extended to make two types of vehicle configuration samples. The first type of the
samples are configurations inside the goal regions which was also used in the original
sampling-based approach without the obstacles. Let denote such a configuration ri,j
which represents the j-th sample inside the i-th goal region. The second type of samples
are configuration outside the goal regions. Let denote them si which represents the i-th
sample of this type. In the next step, the complete roadmap is created by applying
the Dubins maneuver. All maneuvers that are intersecting with obstacles are discarded.
Further, a path between any pair of r samples is determined in the roadmap using graph
path planning algorithm, e.g., Dijkstra or A*. Once the paths are found, the problem
can be considered as an asymmetric version of the GTSP. From this point, the process is
the same as for the original sampling-based approach without the obstacles [40]. Finally,
the GTSP is transformed into the ATSP and it can be solved by existing solvers. This
approach is similar to the classical Probabilistic Roadmaps (PRM) introduced in [45].
Ideas of the PRM can be further used to speed up the process of construction the
roadmap between r samples.

50

CHAPTER 9
Conclusion

The diploma thesis deals with the problem of optimal path planning for a non-holonomic
vehicle in surveillance missions. We consider the surveillance mission as the multi-goal
planning problem for the Dubins vehicle which we formulate as the Dubins traveling
salesman problem with neighbourhoods (DTSPN). The main challenge of the DTSPN
is related to the nonholonomic constraint of the vehicle and the combinatorial nature
of the problem. It is necessary to determine both the order of visits the given goal
regions and also the particular configurations of the vehicle that guarantee visitation
of each region. The configurations consist of entry points accompanied by the vehicle
orientation, where both values may significantly influence the final cost of the solution.
Because these values can be selected from infinite sets, existing discrete combinatorial
approaches for the TSP cannot be directly applied to solve this challenging infinite
combinatorial optimization problem.

The main contribution of the thesis is our approach to address the DTSPN which is
based on the analysis of the optimal solution of the DTSPN. More specifically, we focus
on the restricted variant of the problem with the D4 constraint. The found properties
of the optimal solution are then used in the developed algorithms and for detection of
non-optimal solutions in existing methods.

We have proposed a decoupled approach to address the DTSPN which uses the newly
designed Local Iterative Optimization (LIO) algorithm. The LIO algorithm has been
designed on top of the found properties of the optimal solution for the DTSPN with
the D4 constraint. The performance of the LIO based approach have been evaluated
in a series of scenarios and the presented results support a feasibility of the proposed
approach. Although, the LIO was originally designed for problem instances with the
D4 constraint, the results indicate it is also suitable for general instances of the DTSPN
with non-overlapping goal regions.

We have compared the LIO based approaches with several state-of-the-art ap-
proaches found in literature. In particular, we considered sampling-based, genetic-
based, and decoupled methods. According to the results of the comparison, the LIO
based approach provides competitive solutions to the existing approaches while its com-
putational requirements are significantly lower.

51

CHAPTER 9. CONCLUSION

Finally, the DTSPN with obstacles was also considered in the thesis. We have
designed a naive based approach to address the problem. Although the propose naive
based approach does not guarantee a solution is found if such a solution exists, to the
best of our knowledge, there is not an algorithm based on computation of the Dubins
maneuvers that provides such a guarantee. We have investigated the sampling-based
approach with two types of samples which can solve this issue. Unfortunately, this
approach have not been appropriately studied so far and it is still an open problem.

9.1 Suggestion for future work

A multi-goal path planning problem for a nonholonomic vehicle suggests variety of
research directions that need to be pursued to make it suitable for a wider range of
possible applications. One such direction would be to focus on developing a fast algo-
rithm for the DTSPN with obstacles. To the best of our knowledge, only one article [41]
has been published to address this problem. The author proposed a sampling-based
method with two types of samples, but the algorithm has not been evaluated exhaus-
tively. We assume that there exist interesting possibilities to speed up the algorithm
and evaluate this approach by experiments using real aerial vehicles in an environment
with obstacles.

52

i
Bibliography

[1] Der-Tsai Lee and Arhurk Lin. Computational complexity of art gallery problems.
Information Theory, IEEE Transactions on, 32(2):276–282, 1986.

[2] Howie Choset and Philippe Pignon. Coverage path planning: The boustrophedon
cellular decomposition. In Field and Service Robotics, pages 203–209. Springer,
1998.

[3] Brendan Englot and Franz S Hover. Sampling-based coverage path planning for
inspection of complex structures. In ICAPS, 2012.

[4] Steven N Spitz and Aristides AG Requicha. Multiple-goals path planning for
coordinate measuring machines. In ICRA, volume 3, pages 2322–2327. IEEE,
2000.

[5] Mitul Saha, Tim Roughgarden, Jean-Claude Latombe, and Gildardo Sánchez-
Ante. Planning tours of robotic arms among partitioned goals. The International
Journal of Robotics Research, 25(3):207–223, 2006.

[6] David S Johnson and Lyle A McGeoch. The traveling salesman problem: A case
study in local optimization. Local search in combinatorial optimization, 1:215–310,
1997.

[7] Lester E Dubins. On curves of minimal length with a constraint on average cur-
vature, and with prescribed initial and terminal positions and tangents. American
Journal of mathematics, pages 497–516, 1957.

[8] Karl J Obermeyer. Path planning for a uav performing reconnaissance of static
ground targets in terrain. In AIAA Guidance, Navigation, and Control Conference,
pages 10–13, 2009.

[9] Jacob T Schwartz and Micha Sharir. On the “piano movers” problem. ii. gen-
eral techniques for computing topological properties of real algebraic manifolds.
Advances in applied Mathematics, 4(3):298–351, 1983.

53

BIBLIOGRAPHY

[10] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[11] X.N. Bui, P. Souères, J-D. Boissonnat, and J-P. Laumond. The shortest paths
synthesis for non-holonomic robots moving forwards. ICRA, 1994.

[12] Eugene L Lawler, Jan Karel Lenstra, AHG Rinnooy Kan, and David B Shmoys.
The traveling salesman problem: a guided tour of combinatorial optimization, vol-
ume 3. Wiley New York, 1985.

[13] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale
traveling-salesman problem. Journal of the operations research society of America,
2(4):393–410, 1954.

[14] Shen Lin. Computer solutions of the traveling salesman problem. Bell System
Technical Journal, The, 44(10):2245–2269, 1965.

[15] Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on
computing, 3(4):376–384, 1991.

[16] Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer programming for-
mulation of traveling salesman problems. Journal of the ACM (JACM), 7(4):326–
329, 1960.

[17] Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey.
Operations research, 14(4):699–719, 1966.

[18] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. CONCORDE TSP Solver.
http://www.math.uwaterloo.ca/tsp/concorde.html. [cited 31 Mar 2015].

[19] Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations research, 21(2):498–516, 1973.

[20] Keld Helsgaun. An effective implementation of the lin–kernighan traveling sales-
man heuristic. European Journal of Operational Research, 126(1):106–130, 2000.

[21] Nicos Christofides and Samuel Eilon. Algorithms for large-scale travelling salesman
problems. Operational Research Quarterly, pages 511–518, 1972.

[22] Keld Helsgaun. LKH solver 2.0.7. http://www.akira.ruc.dk/~keld/research/

LKH. [cited 31 Mar 2015].

[23] Gilbert Laporte, Hélène Mercure, and Yves Nobert. Generalized travelling sales-
man problem through n sets of nodes: the asymmetrical case. Discrete Applied
Mathematics, 18(2):185–197, 1987.

[24] Charles E Noon and James C Bean. A lagrangian based approach for the asymmet-
ric generalized traveling salesman problem. Operations Research, 39(4):623–632,
1991.

54

http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.akira.ruc.dk/~keld/research/LKH
http://www.akira.ruc.dk/~keld/research/LKH

BIBLIOGRAPHY

[25] Gregory Gutin and Daniel Karapetyan. A memetic algorithm for the generalized
traveling salesman problem. Natural Computing, 9(1):47–60, 2010.

[26] Daniel Karapetyan and Gregory Gutin. Lin–kernighan heuristic adaptations for the
generalized traveling salesman problem. European Journal of Operational Research,
208(3):221–232, 2011.

[27] Ketan Savla, Emilio Frazzoli, and Francesco Bullo. On the point-to-point and
traveling salesperson problems for dubins’ vehicle. In Proceedings of the American
Control Conference, pages 786–791. IEEE, 2005.

[28] Xavier Goaoc, Hyo-Sil Kim, and Sylvain Lazard. Bounded-curvature shortest paths
through a sequence of points using convex optimization. SIAM Journal on Com-
puting, 42(2):662–684, 2013.

[29] Xiang Ma and David A Castanon. Receding horizon planning for dubins traveling
salesman problems. In 45th IEEE Conference on Decision and Control, pages
5453–5458, 2006.

[30] Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph SB Mitchell. Touring a sequence
of polygons. In Proceedings of the thirty-fifth annual ACM symposium on Theory
of computing, pages 473–482. ACM, 2003.

[31] Jerome Le Ny, Eric Feron, and Emilio Frazzoli. On the dubins traveling salesman
problem. IEEE Trans. Automat. Contr., 57(1):265–270, 2012.

[32] Xin Yu and JY Hung. Optimal path planning for an autonomous robot-trailer sys-
tem. In 38th Annual Conference on IEEE Industrial Electronics Society (IECON),
pages 2762–2767, 2012.

[33] Esther M Arkin and Refael Hassin. Approximation algorithms for the geometric
covering salesman problem. Discrete Applied Mathematics, 55(3):197–218, 1994.

[34] Adrian Dumitrescu and Joseph SB Mitchell. Approximation algorithms for tsp
with neighborhoods in the plane. In Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms, pages 38–46. Society for Industrial and Applied
Mathematics, 2001.

[35] Khaled Elbassioni, Aleksei V Fishkin, Nabil H Mustafa, and René Sitters. Ap-
proximation algorithms for euclidean group tsp. In Automata, Languages and
Programming, pages 1115–1126. Springer, 2005.

[36] Joseph SB Mitchell. A ptas for tsp with neighborhoods among fat regions in the
plane. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 11–18. Society for Industrial and Applied Mathematics, 2007.

[37] Bo Yuan, Maria Orlowska, and Shazia Sadiq. On the optimal robot routing problem
in wireless sensor networks. Knowledge and Data Engineering, IEEE Transactions
on, 19(9):1252–1261, 2007.

55

BIBLIOGRAPHY

[38] Jan Faigl, Vojtěch Vonásek, and Libor Přeučil. Visiting convex regions in a polyg-
onal map. Robotics and Autonomous Systems, 61(10):1070–1083, 2013.

[39] Douglas Guimaraes Macharet, Armando Alves Neto, Vilar Fiuza da Camara Neto,
and Mario Montenegro Campos. An evolutionary approach for the dubins’ trav-
eling salesman problem with neighborhoods. In Proceedings of the 14th annual
conference on Genetic and evolutionary computation, pages 377–384. ACM, 2012.

[40] Jason T Isaacs, Daniel J Klein, and Joao P Hespanha. Algorithms for the traveling
salesman problem with neighborhoods involving a dubins vehicle. In American
Control Conference (ACC), 2011, pages 1704–1709. IEEE, 2011.

[41] Karl J Obermeyer, Paul Oberlin, and Swaroop Darbha. Sampling-based path
planning for a visual reconnaissance unmanned air vehicle. Journal of Guidance,
Control, and Dynamics, 35(2):619–631, 2012.

[42] Xing Zhang, Jie Chen, Bin Xin, and Zhihong Peng. A memetic algorithm for path
planning of curvature-constrained uavs performing surveillance of multiple ground
targets. Chinese Journal of Aeronautics, 27(3):622–633, 2014.

[43] Zbigniew Michalewicz and David B Fogel. How to solve it: modern heuristics.
Springer Science & Business Media, 2004.

[44] Edo S Van der Poort, Marek Libura, Gerard Sierksma, and Jack AA van der Veen.
Solving the k-best traveling salesman problem. Computers & operations research,
26(4):409–425, 1999.

[45] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. Robotics and
Automation, IEEE Transactions on, 12(4):566–580, 1996.

56

APPENDIX A
Used symbols and abbreviations

Table A.1: Used symbols

Symbol Description

W World in which the vehicle operates (R2)

O Finite set of obstacle regions

A Robot represented by a rigid body

C Configuration space

ρ Minimal turning radius

R Set of regions to visit

Ri Region i to be visited by Dubins’ vehicle, Ri ∈ R
δRi Boundary of the region Ri ∈ R
n Number of the regions (points)

pi Point where Ri is visited, pi ∈ R2

θi Heading of the Dubins’ vehicle at pi, θi ∈ S1

qi Configuration of the vehicle qi = (pi, θi), qi ∈ SE(2)

αi Position of qi at the border of Ri, α ∈ 〈0, 1)

Σ Sequence of the regions – Σ = (σ1, . . . , σn), where σi 6= σj,
i 6= j, and 1 ≤ σi ≤ n, 1 ≤ σj ≤ n

||pi − pj|| Euclidean distance between points pi and pj

D(qi, qj) Dubins maneuver connecting qi and qj

L(qi, qj) Length of the shortest path (D(qi, qj)) connecting qi and qj
for the Dubins vehicle

L(q,Σ) Length of the shortest path connecting configurations q in
sequence Σ for the Dubins vehicle, defined by Equation 3.1

57

APPENDIX A. USED SYMBOLS AND ABBREVIATIONS

Table A.2: Used abbreviations

Abbreviations Description

UAV Unmanned Aerial Vehicle

MPP Multi-goal path planning problem

CSP Coverate sampling problem

TSP Traveling salesman problem

ATSP Asymmetric traveling salesman problem

ETSP Euclidean traveling salesman problem

ETSPN Euclidean traveling salesman problem with neighborhoods

DTSP Dubins traveling salesman problem

DTSPN Dubins traveling salesman problem with neighborhoods

TPP Touring polygon problem

DTP Dubins touring problem

DTRP Dubins touring regions problem

AA Alternating algorithm

LIO Local iterative optimization

58

APPENDIX B
Content of the enclosed CD

CD

ReadMe.txt

thesis

thesis.pdf

sources

program

src

...source files of my program

DTSTP ...compiled program for linux-64bit

ruh.sh ...script to run the program

dtspn.pdf ...the result path in the pdf format

experiments

plot

generateAllPlots.m

test

...scripts used for results generation

results

...raw results in mat-files

59

APPENDIX B. CONTENT OF THE ENCLOSED CD

60

	Introduction
	Background
	Path planning
	Nonholonomic vehicle
	Dubins vehicle
	Dubins maneuver

	Traveling salesman problem
	Exact algorithms
	Approximate algorithms
	Heuristic algorithms
	-opt approximate algorithm
	Lin-Kernighan heuristic
	Generalized traveling salesman problem

	Problem statement
	Dubins TSP
	Targets distances constraint

	Dubins TSP with Neighborhoods
	Targets distances constraint

	Analysis
	On the Dubins TSP
	Dubins touring problem
	Existing approaches for the DTSP
	On the sequence in the DTSP

	On the Dubins TSP with neighbourhoods

	Existing approaches for the DTSPN
	Decoupled methods
	Sampling-based methods
	Genetic algorithms

	Proposed approach for the DTSPN
	Proposed method
	Reduction of the DTSPN to the DTRP
	Local Iterative Optimization for the DTRP
	Determination of the sequence to visit the regions

	Results
	Problem generator
	Implementations details of the used algorithms
	Proposed decoupled algorithm
	Other decoupled algorithms
	Genetic based algorithms
	Sampling based algorithms

	Results for the DTSPN
	Discussion

	Dealing with obstacles
	Naive based approach
	Sampling-based methods
	Genetic methods

	Sampling-based approach with obstacles

	Conclusion
	Suggestion for future work

	Bibliography
	Used symbols and abbreviations
	Content of the enclosed CD

