Přílohy
Tabulka 1: Parametry motoru z RMxprt

<table>
<thead>
<tr>
<th></th>
<th>IPM1</th>
<th>IPM1</th>
<th>IPM2</th>
<th>IPM2</th>
<th>SPM</th>
<th>SPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil type</td>
<td>Whole</td>
<td>Half</td>
<td>Whole</td>
<td>Half</td>
<td>Whole</td>
<td>Half</td>
</tr>
<tr>
<td>Rated Output Power (kW):</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Rated Voltage (V):</td>
<td>183</td>
<td>183</td>
<td>183</td>
<td>183</td>
<td>183</td>
<td>183</td>
</tr>
<tr>
<td>Number of Poles:</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Frequency (Hz):</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Frictional Loss (W):</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Windage Loss (W):</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rotor Position:</td>
<td>Inner</td>
<td>Inner</td>
<td>Inner</td>
<td>Inner</td>
<td>Inner</td>
<td>Inner</td>
</tr>
<tr>
<td>Type of Circuit:</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
</tr>
<tr>
<td>Type of Source:</td>
<td>Sine</td>
<td>Sine</td>
<td>Sine</td>
<td>Sine</td>
<td>Sine</td>
<td>Sine</td>
</tr>
<tr>
<td>Domain:</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
</tr>
<tr>
<td>Operating Temperature (C):</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

STATOR DATA

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Stator Slots:</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Outer Diameter of Stator (mm):</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Inner Diameter of Stator (mm):</td>
<td>105,3</td>
<td>105,3</td>
<td>105,3</td>
<td>105,3</td>
<td>105,3</td>
<td>105,3</td>
</tr>
<tr>
<td>Type of Stator Slot:</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Stator Slot</td>
<td>IPM1</td>
<td>IPM1</td>
<td>IPM2</td>
<td>IPM2</td>
<td>SPM</td>
<td>SPM</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>hs0 (mm):</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>hs1 (mm):</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>hs2 (mm):</td>
<td>7.82</td>
<td>9.25</td>
<td>8.24</td>
<td>10.93</td>
<td>9.7</td>
<td>11.19</td>
</tr>
<tr>
<td>bs0 (mm):</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>bs1 (mm):</td>
<td>4.65</td>
<td>4.65</td>
<td>4.65</td>
<td>4.65</td>
<td>4.65</td>
<td>4.65</td>
</tr>
<tr>
<td>bs2 (mm):</td>
<td>6.18</td>
<td>6.54</td>
<td>6.25</td>
<td>6.62</td>
<td>6.40</td>
<td>6.78</td>
</tr>
<tr>
<td>rs (mm):</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Top Tooth Width (mm):</td>
<td>4.63</td>
<td>4.63</td>
<td>4.63</td>
<td>4.63</td>
<td>4.63</td>
<td>4.63</td>
</tr>
<tr>
<td>Bottom Tooth Width (mm):</td>
<td>4.63</td>
<td>4.63</td>
<td>4.63</td>
<td>4.63</td>
<td>4.63</td>
<td>4.63</td>
</tr>
<tr>
<td>Skew Width (No. of Slots):</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Length of Stator Core (mm):</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Stacking Factor of Core:</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Type of Steel:</td>
<td>H50A</td>
<td>H50A</td>
<td>H50A</td>
<td>H50A</td>
<td>H50A</td>
<td>H50A</td>
</tr>
<tr>
<td>Designed Wedge Th (mm):</td>
<td>1</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
</tr>
<tr>
<td>Slot Insulation Th (mm):</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Layer Insulation Th (mm):</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>End Length Adjust (mm):</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No. of Parallel Branches:</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>No. of Cond. per Slot:</td>
<td>23</td>
<td>24</td>
<td>28</td>
<td>28</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Type of Coils:</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Average Coil Pitch:</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>IPM1</td>
<td>IPM1</td>
<td>IPM2</td>
<td>IPM2</td>
<td>SPM</td>
<td>SPM</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>No. of Wires per Cond.:</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Wire Diameter (mm):</td>
<td>0,8118</td>
<td>0,8118</td>
<td>0,8118</td>
<td>0,7229</td>
<td>0,8118</td>
<td>0,7229</td>
</tr>
<tr>
<td>Wire Wrap Thickness (mm):</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Slot Area (mm²):</td>
<td>62,97</td>
<td>61,05</td>
<td>65,96</td>
<td>63,99</td>
<td>71,89</td>
<td>69,84</td>
</tr>
<tr>
<td>Net Slot Area (mm²):</td>
<td>47,54</td>
<td>45,34</td>
<td>50,24</td>
<td>47,99</td>
<td>55,62</td>
<td>53,26</td>
</tr>
<tr>
<td>Limited Slot FF (%)</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Stator Slot FF (%)</td>
<td>63,76</td>
<td>69,77</td>
<td>73,46</td>
<td>60,98</td>
<td>73,47</td>
<td>60,83</td>
</tr>
<tr>
<td>Coil Half-Turn L. (mm):</td>
<td>115,59</td>
<td>127,39</td>
<td>116,14</td>
<td>127,94</td>
<td>117,22</td>
<td>129,01</td>
</tr>
<tr>
<td>Wire Resist (ohm:mm²/m):</td>
<td>0,0217</td>
<td>0,0217</td>
<td>0,0217</td>
<td>0,0217</td>
<td>0,0217</td>
<td>0,0217</td>
</tr>
</tbody>
</table>

ROTOR DATA

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Air Gap (mm):</td>
<td>0,15</td>
<td>0,15</td>
<td>0,15</td>
<td>0,15</td>
<td>0,65</td>
<td>0,65</td>
</tr>
<tr>
<td>Inner Diameter (mm):</td>
<td>26</td>
<td>26</td>
<td>80</td>
<td>80</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Length of Rotor (mm):</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Stack. Fact of Core:</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
</tr>
<tr>
<td>Type of Steel:</td>
<td>M400</td>
<td>M400</td>
<td>M400</td>
<td>M400</td>
<td>M400</td>
<td>M400</td>
</tr>
<tr>
<td>Shaft Diameter (mm):</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Emmrace (mm):</td>
<td>0</td>
<td>0</td>
<td>0,7</td>
<td>0,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Pole Embrace:</td>
<td>0,7813</td>
<td>0,7813</td>
<td>0,7617</td>
<td>0,7617</td>
<td>0,7000</td>
<td>0,7000</td>
</tr>
<tr>
<td>Electrical Pole Embrace:</td>
<td>0,7957</td>
<td>0,7957</td>
<td>0,7633</td>
<td>0,7633</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max, Thick. of PM (mm):</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>3,5</td>
<td>3,5</td>
</tr>
<tr>
<td>Width of Magnet (mm):</td>
<td>37</td>
<td>37</td>
<td>40</td>
<td>40</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Type of Magnet:</td>
<td>NdFe35</td>
<td>NdFe35</td>
<td>NdFe35</td>
<td>NdFe35</td>
<td>NdFe35</td>
<td>NdFe35</td>
</tr>
<tr>
<td>PERMANENT MAGNET DATA</td>
<td>IPM1</td>
<td>IPM1</td>
<td>IPM2</td>
<td>IPM2</td>
<td>SPM</td>
<td>SPM</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Residual Flux Density (Tesla):</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>Coercive Force (kA/m):</td>
<td>890</td>
<td>890</td>
<td>890</td>
<td>890</td>
<td>890</td>
<td>890</td>
</tr>
<tr>
<td>Max. Energy Density (kJ/m³):</td>
<td>273.7</td>
<td>273.7</td>
<td>273.7</td>
<td>273.7</td>
<td>273.7</td>
<td>273.7</td>
</tr>
<tr>
<td>Relative Recoil Permeability:</td>
<td>1.099</td>
<td>1.099</td>
<td>1.099</td>
<td>1.099</td>
<td>1.099</td>
<td>1.099</td>
</tr>
<tr>
<td>Demagnetized Flux Density (Tesla):</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Recoil Resid Flux Density (Tesla):</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>Recoil Coercive Force (kA/m):</td>
<td>890</td>
<td>890</td>
<td>890</td>
<td>890</td>
<td>890</td>
<td>890</td>
</tr>
</tbody>
</table>

MATERIAL CONSUMPTION						
Arm. Wire Density (kg/m³):	8900	8900	8900	8900	8900	8900
Permanent Magnet Density (kg/m³):	7400	7400	7400	7400	7400	7400
Arm. Core Steel Density (kg/m³):	7872	7872	7872	7872	7872	7872
Rotor Core Steel Density (kg/m³):	7872	7872	7872	7872	7872	7872
Arm. Copper Weight (kg):	0.88	1.01	1.08	0.94	1.21	1.05
Permanent Magnet Weight (kg):	0.89	0.89	0.32	0.32	0.26	0.26
Arm. Core Steel Weight (kg):	2.25	2.28	2.22	2.24	2.15	2.17
Rotor Core Steel Weight (kg):	1.78	1.78	0.90	0.90	1.19	1.19
Total Net Weight (kg):	5.80	5.96	4.51	4.40	4.99	4.67
Arm. Core Steel Consumption (kg):	4.95	4.95	4.95	4.95	5.47	5.47
Rotor Core Steel Consumption (kg):	2.93	2.93	2.93	2.93	2.64	2.64
STEADY STATE PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IPM1</th>
<th>IPM1</th>
<th>IPM2</th>
<th>IPM2</th>
<th>SPM</th>
<th>SPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator Winding Factor:</td>
<td>0.966</td>
<td>0.966</td>
<td>0.966</td>
<td>0.966</td>
<td>0.966</td>
<td>0.966</td>
</tr>
<tr>
<td>D-Axis Reactive Reactance Xad (ohm):</td>
<td>2.012</td>
<td>2.191</td>
<td>2.618</td>
<td>2.618</td>
<td>2.318</td>
<td>2.318</td>
</tr>
<tr>
<td>Q-Axis Reactive Reactance Xaq (ohm):</td>
<td>15.753</td>
<td>17.153</td>
<td>22.033</td>
<td>22.033</td>
<td>2.318</td>
<td>2.318</td>
</tr>
<tr>
<td>D-Axis Reactance X1+Xad (ohm):</td>
<td>2.530</td>
<td>2.805</td>
<td>3.235</td>
<td>3.303</td>
<td>3.080</td>
<td>3.163</td>
</tr>
<tr>
<td>Arm. Leakage Reactance X1 (ohm):</td>
<td>0.518</td>
<td>0.615</td>
<td>0.617</td>
<td>0.685</td>
<td>0.762</td>
<td>0.845</td>
</tr>
<tr>
<td>Zero-Sequence Reactance X0 (ohm):</td>
<td>0.518</td>
<td>0.615</td>
<td>0.617</td>
<td>0.685</td>
<td>0.762</td>
<td>0.845</td>
</tr>
<tr>
<td>Arm. Phase Resistance R1 (ohm):</td>
<td>0.191</td>
<td>0.220</td>
<td>0.234</td>
<td>0.325</td>
<td>0.262</td>
<td>0.363</td>
</tr>
<tr>
<td>Arm. Phase Resistance at 20C (ohm):</td>
<td>0.138</td>
<td>0.158</td>
<td>0.168</td>
<td>0.234</td>
<td>0.188</td>
<td>0.261</td>
</tr>
</tbody>
</table>

NO-LOAD MAGNETIC DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IPM1</th>
<th>IPM1</th>
<th>IPM2</th>
<th>IPM2</th>
<th>SPM</th>
<th>SPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator-Teeth Flux Density (Tesla):</td>
<td>2.311</td>
<td>2.293</td>
<td>1.986</td>
<td>1.976</td>
<td>1.892</td>
<td>1.883</td>
</tr>
<tr>
<td>Stator-Yoke Flux Density (Tesla):</td>
<td>2.187</td>
<td>2.184</td>
<td>1.860</td>
<td>1.863</td>
<td>1.791</td>
<td>1.520</td>
</tr>
<tr>
<td>Rotor-Yoke Flux Density (Tesla):</td>
<td>0.607</td>
<td>0.603</td>
<td>1.565</td>
<td>1.558</td>
<td>1.280</td>
<td>1.273</td>
</tr>
<tr>
<td>Air-Gap Flux Density (Tesla):</td>
<td>1.032</td>
<td>1.024</td>
<td>0.887</td>
<td>0.883</td>
<td>0.827</td>
<td>0.823</td>
</tr>
<tr>
<td>Magnet Flux Density (Tesla):</td>
<td>0.712</td>
<td>0.708</td>
<td>1.014</td>
<td>1.009</td>
<td>0.891</td>
<td>0.887</td>
</tr>
<tr>
<td>Stator-Teeth By-Pass Factor:</td>
<td>0.07678</td>
<td>0.07411</td>
<td>0.02129</td>
<td>0.02104</td>
<td>0.01382</td>
<td>0.01384</td>
</tr>
<tr>
<td>Stator-Yoke By-Pass Factor:</td>
<td>0.015022</td>
<td>0.014728</td>
<td>0.000774</td>
<td>0.000784</td>
<td>0.000584</td>
<td>0.000598</td>
</tr>
<tr>
<td>Rotor-Yoke By-Pass Factor:</td>
<td>5.32E-05</td>
<td>5.32E-05</td>
<td>0.00016</td>
<td>0.00015</td>
<td>8.05E-05</td>
<td>7.98E-05</td>
</tr>
<tr>
<td>Stator-Teeth Ampere Turns (A,T):</td>
<td>1069.0</td>
<td>1103.2</td>
<td>264.3</td>
<td>279.2</td>
<td>174.7</td>
<td>185.9</td>
</tr>
<tr>
<td></td>
<td>IPM1</td>
<td>IPM1</td>
<td>IPM2</td>
<td>IPM2</td>
<td>SPM</td>
<td>SPM</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Stator-Yoke Ampere Turns (A,T)</td>
<td>1003.4</td>
<td>987.2</td>
<td>175.0</td>
<td>176.8</td>
<td>157.8</td>
<td>160.5</td>
</tr>
<tr>
<td>Rotor-Yoke Ampere Turns (A,T)</td>
<td>6.2</td>
<td>6.1</td>
<td>41.1</td>
<td>40.2</td>
<td>20.8</td>
<td>20.6</td>
</tr>
<tr>
<td>Air-Gap Ampere Turns (A,T)</td>
<td>169.5</td>
<td>168.2</td>
<td>145.7</td>
<td>144.9</td>
<td>505.1</td>
<td>502.6</td>
</tr>
<tr>
<td>Magnet Ampere Turns (A,T)</td>
<td>-2247.4</td>
<td>-2264.7</td>
<td>-626.4</td>
<td>-640.8</td>
<td>-858.0</td>
<td>-869.4</td>
</tr>
<tr>
<td>Leakage-Flux Factor:</td>
<td>1,1568</td>
<td>1,1592</td>
<td>1,0913</td>
<td>1,0913</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Correction Factor for Magnetic Circuit Length of Stator Yoke:</td>
<td>0,2213</td>
<td>0,2215</td>
<td>0,3137</td>
<td>0,3133</td>
<td>0,3776</td>
<td>0,3764</td>
</tr>
<tr>
<td>Correction Factor for Magnetic Circuit Length of Rotor Yoke:</td>
<td>0,734</td>
<td>0,734</td>
<td>0,443</td>
<td>0,447</td>
<td>0,625</td>
<td>0,627</td>
</tr>
<tr>
<td>No-Load Line Current (A):</td>
<td>6,383</td>
<td>0,793</td>
<td>1,726</td>
<td>2,200</td>
<td>0,619</td>
<td>1,153</td>
</tr>
<tr>
<td>No-Load Input Power (W):</td>
<td>171,26</td>
<td>145,07</td>
<td>98,25</td>
<td>108,07</td>
<td>20,76</td>
<td>22,14</td>
</tr>
<tr>
<td>Cogging Torque (N,m):</td>
<td>1,356</td>
<td>1,335</td>
<td>0,959</td>
<td>0,950</td>
<td>1,423</td>
<td>1,409</td>
</tr>
</tbody>
</table>

FULL-LOAD DATA

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Line Induced Voltage (V):</td>
<td>250</td>
<td>259</td>
<td>258</td>
<td>257</td>
<td>263</td>
<td>262</td>
</tr>
<tr>
<td>Root-Mean-Square Line Current (A):</td>
<td>53</td>
<td>54</td>
<td>52</td>
<td>53</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>Root-Mean-Square Phase Current (A):</td>
<td>35</td>
<td>34</td>
<td>32</td>
<td>32</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Arm. Thermal Load (A²/mm³):</td>
<td>726</td>
<td>737</td>
<td>760</td>
<td>956</td>
<td>687</td>
<td>892</td>
</tr>
<tr>
<td>Specific Electric Loading (A/mm):</td>
<td>43</td>
<td>45</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>Arm. Current Density (A/mm²):</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td>20</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Frictional and Windage Loss (W):</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Iron-Core Loss (W):</td>
<td>309,26200</td>
<td>315,3</td>
<td>221,73800</td>
<td>227,71800</td>
<td>198,09150</td>
<td>203,69700</td>
</tr>
<tr>
<td></td>
<td>IPM1</td>
<td>IPM1</td>
<td>IPM2</td>
<td>IPM2</td>
<td>SPM</td>
<td>SPM</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Arm. Copper Loss (W):</td>
<td>552</td>
<td>617</td>
<td>580</td>
<td>805</td>
<td>530</td>
<td>757</td>
</tr>
<tr>
<td>Total Loss (W):</td>
<td>861</td>
<td>933</td>
<td>802</td>
<td>1032</td>
<td>728</td>
<td>961</td>
</tr>
<tr>
<td>Output Power (W):</td>
<td>14991</td>
<td>14999</td>
<td>14998</td>
<td>14994</td>
<td>15006</td>
<td>15000</td>
</tr>
<tr>
<td>Input Power (W):</td>
<td>15852</td>
<td>15932</td>
<td>15800</td>
<td>16027</td>
<td>15734</td>
<td>15961</td>
</tr>
<tr>
<td>Efficiency (%):</td>
<td>94,5</td>
<td>94,7</td>
<td>93,7</td>
<td>93,3</td>
<td>95,1</td>
<td>95</td>
</tr>
<tr>
<td>Synchronous Speed (rpm):</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
</tr>
<tr>
<td>Rated Torque (N,m):</td>
<td>30,8589</td>
<td>23,8715</td>
<td>49,8699</td>
<td>50,8644</td>
<td>26,883</td>
<td>26,8733</td>
</tr>
<tr>
<td>Torque Angle (degree):</td>
<td>47,4391</td>
<td>48,0717</td>
<td>57,2638</td>
<td>58,3755</td>
<td>25,7223</td>
<td>26,9969</td>
</tr>
<tr>
<td>Max. Output Power (W):</td>
<td>57290,2</td>
<td>51504</td>
<td>328691,6</td>
<td>31720</td>
<td>29084,5</td>
<td>30412,9</td>
</tr>
<tr>
<td>Torque Constant KT (Nm/A):</td>
<td>0,100615</td>
<td>0,0150167</td>
<td>0</td>
<td>0,00533663</td>
<td>0,0927496</td>
<td>0,256445</td>
</tr>
</tbody>
</table>

WINDING ARRANGEMENT

- Angle per slot (elec, degrees): 30 30 30 30 30 30
- Phase-A axis (elec, degrees): 105 105 105 105 105 105
- First slot center (elec, degrees): 0 0 0 0 0 0

TRANSIENT FEA INPUT DATA

For Arm. Winding:

- No. of Turns: 138 144 168 168 186 186
- Parallel Branches: 2 2 2 2 2 2
- Terminal Resistance (ohm): 0,191 0,220 0,234 0,325 0,261 0,363
- End Leakage Inductance (H): 6,98E-05 0,000104 0,000106 0,00014 0,000138 0,00018
<table>
<thead>
<tr>
<th></th>
<th>IPM1</th>
<th>IPM1</th>
<th>IPM2</th>
<th>IPM2</th>
<th>SPM</th>
<th>SPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent Model Depth (mm):</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Equivalent Stator Stacking Factor:</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
</tr>
<tr>
<td>Equivalent Rotor Stacking Factor:</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
<td>0,95</td>
</tr>
<tr>
<td>Equivalent Br (Tesla):</td>
<td>1,23</td>
<td>1,23</td>
<td>1,23</td>
<td>1,23</td>
<td>1,23</td>
<td>1,23</td>
</tr>
<tr>
<td>Equivalent Hc (kA/m):</td>
<td>890</td>
<td>890</td>
<td>890</td>
<td>890</td>
<td>890</td>
<td>890</td>
</tr>
<tr>
<td>Rotor Inert. Moment (kg m²):</td>
<td>0,00418</td>
<td>0,00418</td>
<td>0,00418</td>
<td>0,00418</td>
<td>0,00403</td>
<td>0,00403</td>
</tr>
</tbody>
</table>
4. Absolute Maximum Ratings

T_c=25°C, V_{CC}=15V unless otherwise specified.

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Emitter Voltage</td>
<td>V<sub>CES</sub></td>
<td>0</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Short Circuit Voltage</td>
<td>V<sub>SC</sub></td>
<td>200</td>
<td>400</td>
<td>V</td>
</tr>
<tr>
<td>Inverter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Current</td>
<td>I<sub>C</sub></td>
<td>-</td>
<td>400</td>
<td>A</td>
</tr>
<tr>
<td>Duty=68.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Power Dissipation</td>
<td>P<sub>C</sub></td>
<td>-</td>
<td>1066</td>
<td>W</td>
</tr>
<tr>
<td>Brake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Current</td>
<td>I<sub>C</sub></td>
<td>-</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Forward Current of Diode</td>
<td>I<sub>F</sub></td>
<td>-</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Collector Power Dissipation</td>
<td>P<sub>C</sub></td>
<td>-</td>
<td>714</td>
<td>A</td>
</tr>
<tr>
<td>Supply Voltage of Pre- Driver</td>
<td>V<sub>CC</sub></td>
<td>0.5</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Input Signal Voltage</td>
<td>V<sub>n</sub></td>
<td>-0.5</td>
<td>VCC+0.5</td>
<td>V</td>
</tr>
<tr>
<td>Alarm Signal Voltage</td>
<td>V<sub>ALM</sub></td>
<td>-0.5</td>
<td>VCC</td>
<td>V</td>
</tr>
<tr>
<td>Alarm Signal Current</td>
<td>I<sub>ALM</sub></td>
<td>-</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T<sub>j</sub></td>
<td>-</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Case Temperature</td>
<td>T<sub>OP</sub></td>
<td>-20</td>
<td>110</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T<sub>stg</sub></td>
<td>-40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Solder Temperature</td>
<td>T<sub>s<sup>2</sup></sub></td>
<td>-</td>
<td>280</td>
<td>°C</td>
</tr>
<tr>
<td>Isolating Voltage</td>
<td>V<sub>ins</sub></td>
<td>-</td>
<td>AC2500</td>
<td>Vrms</td>
</tr>
<tr>
<td>Screw Torque</td>
<td>Terminal (M5)</td>
<td>-</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Mounting (M5)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Notes

*1: V_{CES} shall be applied to the input voltage between all Collector and Emitter.

*2: Duty=125°C/R_{EQD}[₂]max[₂]+100

*3: P_C=125°C/R_{EQD}[₂]+100 (Inverter & Brake)

*4: V_{CC} shall be applied to the input voltage between terminal No.3 and 1, 7 and 5, 11 and 9, 14 and 13.

*5: V_n shall be applied to the input voltage between terminal No.2 and 1, 6 and 5, 10 and 9, 15 and 18 and 13.

*6: V_{ALM} shall be applied to the voltage between terminal No.4 and 1, 8 and 5, 12 and 9, 19 and 13.

*7: I_{ALM} shall be applied to the input current to terminal No.4, 8, 12 and 19.

*8: Immersion time 10±1sec, 1 time

*9: Terminal to base, 50/60Hz sine wave 1min. All terminals should be connected together during the test.
Datový list materiálu Hiperco 50A
Datový list motoru TG Drives N6-1800

RATED DATA

<table>
<thead>
<tr>
<th>Motor type</th>
<th>N6</th>
<th>1800</th>
<th>80</th>
<th>280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special condition - cooling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Speed n_r</td>
<td>8000 min⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Bus Voltage U_d</td>
<td>280 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal AC Voltage U_n</td>
<td>190 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Motor Voltage U_m</td>
<td>150 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Torque M_n</td>
<td>10.0 Nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated AC Current I_n</td>
<td>40.7 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stall Torque M_0</td>
<td>25.0 Nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stall AC Current I_0</td>
<td>76 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Torque M_{max}</td>
<td>51 Nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Current I_{max}</td>
<td>202 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Speed n_{max}</td>
<td>6000 min⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMF Constant K_e</td>
<td>20.0 V/1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torque Constant K_t</td>
<td>0.33 Nm/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal Resistance R_{2ph}</td>
<td>0.03 Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal Inductance L_{2ph}</td>
<td>0.37 mH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of poles $2p$</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No Load Speed n_{nl}	9490 min⁻¹			
Torque at I_{max}/U_n M_x	50 Nm			
Speed at I_{max}/U_n n_r	4240 min⁻¹			
Max. Torque at n_0 M_x	19.8 Nm			

El. Time Constant T_{el}	12.3 ms			
Mech. Time Constant T_{mech}	0.88 ms			
Thermal Time Constant T_{θ}	42 min			
Rotor Inertia J	18.5 kgcm²			

Torque/Speed curves

15.10.2014

XIII