
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Tomáš Báča

Model predictive control of micro aerial vehicle using onboard
microcontroller

Department of Computer Science

Thesis supervisor: Dr. Martin Saska

Acknowledgements

Firstly I would like to thank my family for their encouragement and support during

my whole studies. Furthermore, I thank my supervisor Martin Saska for his great support

throughout this project. Finally, my thanks goes to my friend and colleague Antońın Novák

for his excellent expertise and corrections regarding mathematics. This thesis is an outcome of

a long lasting and diligent work. The author is grateful for the knowledge and the experience

he gained, both theoretical and technical.

Abstract
This thesis deals with autonomous stabilization of unmanned multirotor

aircraft along predefined trajectories, using a model predictive control

approach. The main focus of this work lies in design and implementation

of an embedded platform to allow onboard execution of the controller. We

propose a linear dynamical model of the helicopter, identification of its

parameter and design of a state observer. A quadratic model predictive

controller is derived, implemented, and prepared for the experimental

platform, which has been created for this purpose. Presented experiments,

conducted both indoors and outdoors, verified the capability of the system

to accurately follow a desired trajectory in space.

Keywords: model predictive control, unmanned aerial vehicles, em-

bedded systems

Abstrakt
Tato práce se zabývá návrhem ř́ıdićıho systému pro v́ıcerotorovou

bezpilotńı helikoptéru s použit́ım metody prediktivńıho ř́ızeńı. Za ćıl

si klade vývoj vestavěného systému, který umožńı výpočet regulátoru

př́ımo na palubě letounu. Předkládáme model dynamického systému

helikoptéry, identifikaci jeho parametr̊u a následný návrh pozorovatele

stav̊u. Kvadratický prediktivńı regulátor je odvozen a implementován

do navrženého hardware. Prezentované experimenty, provedené uvnitř i

vně budovy, prokázaly schopnost přesného sledováńı trajektoríı v prostoru.

Kĺıčová slova: prediktivńı ř́ızeńı, bezpilotńı letouny, vestavěné systémy

CONTENTS

Contents

List of Figures v

1 Introduction 1

1.1 Problem statement . 3

1.2 Previous work . 4

1.3 Related work . 5

1.4 Contribution . 6

1.5 Mathematical notation . 7

2 UAV dynamics 8

2.1 Attitude dynamics . 8

2.2 Altitude dynamics . 10

2.3 Dynamics of the integrated stabilization . 10

2.4 State space representation . 11

3 System identification 12

3.1 Attitude subsystem identification . 13

3.2 Altitude subsystem identification . 14

3.3 Yaw subsystem identification . 15

3.4 Summary . 16

4 State observer 17

4.1 Open-loop observer . 17

4.2 Closed-loop observer . 18

4.3 Kalman filter . 18

4.3.1 Prediction phase . 19

4.3.2 Correction phase . 19

4.4 Summary . 19

5 Model predictive control 21

5.1 System prediction . 22

5.2 Problem formulation - QMPC . 23

5.3 Constraints . 24

5.3.1 Input constraints . 24

5.3.2 State constraints . 24

5.3.3 Other constraints . 25

5.4 Move blocking – reducing complexity of MPC 25

5.5 Solving QMPC - unconstrained . 26

5.6 Solving QMPC - constrained . 26

5.6.1 QMPC with input constraints . 27

5.6.2 QMPC with state constraints . 28

i

CONTENTS

5.7 The MPC control loop . 28

5.8 Summary . 28

6 Hardware and Software platform 29

6.1 UAV platform . 29

6.2 px4flow sensor . 29

6.3 Custom control board v.2 . 30

6.3.1 xMega main unit . 31

6.3.2 ARM coprocessing unit . 32

6.3.3 XBee telemetry module . 32

6.3.4 OpenLog data logging module . 32

6.4 FreeRTOS and tasks . 33

6.5 Tasks on xMega MCU . 34

6.6 Tasks on STM MCU . 34

6.7 CMatrixLib - ANSI C matrix library . 35

6.8 Summary . 35

7 Implementation aspects 36

7.1 Implementing Kalman filter . 36

7.1.1 Estimating state disturbances . 37

7.2 Implementing QMPC . 38

7.2.1 Input governor . 38

7.2.2 Offset-free tracking . 39

7.2.3 Controller parameters . 39

7.2.4 Optimizing onboard . 41

7.3 Summary . 41

8 Experiments 43

8.1 Simulating MPC . 43

8.2 Tracking constant setpoint . 45

8.3 Measuring of estimation drift . 45

8.4 Tracking dynamic trajectory . 46

8.5 Disturbance rejection . 47

8.5.1 Persistent wind disturbances . 48

8.5.2 Momentary disturbances . 49

8.6 Outdoor experiment — longer trajectory . 50

8.7 Performance and comparison . 51

8.8 Summary . 51

9 Conclusion 52

9.1 Future work . 53

10 Bibliography 55

ii

CONTENTS

Appendix A CD Content 59

Appendix B List of abbreviations 61

Appendix C Custom control board schematic 63

Appendix D PCB layouts 65

Appendix E Additional experimental result 67

iii

CONTENTS

iv

LIST OF FIGURES

List of Figures

1.1 An example of multirotor aircraft used for aerial imaging. 1

2.1 UAV and its coordinate systems. 9

3.1 Identification data - attitude. 13

3.2 Identification - open loop estimation of attitude system states. 14

3.3 Identification data - altitude . 15

3.4 Identification - open loop estimation of altitude system states. 16

4.1 Block diagram of the Kalman filter. 20

4.2 Kalman filter tracking a noisy singal of UAV forward speed. See the difference

between filtered values, which might have a significant effect on the control. . 20

5.1 An illustrative example of 2-dimensional quadratic form with box constraints. 27

6.1 Tricopter platform with px4flow optical flow sensor. 30

6.2 Custom control board v.2, key components are placed at follows: 1 – xMega, 2

– STM, 3 – switching power supply, 4 – socket for XBee, 5 – data logging MCU. 31

6.3 Block diagram of modules on the UAV. 33

6.4 Block diagram of information flow between tasks of xMega and STM MCUs. 34

7.1 Diagram of the LTI system with the disturbance estimation. 37

7.2 Control action produced by 20 decision variables and stretched to 2.2 s predic-

tion horizon. 39

7.3 Illustrative example of 2-dimensional quadratic form and its. 41

8.1 Simulating position step response without the input governor (forward motion). 43

8.2 Simulating position step response with the input governor (forward motion). 43

8.3 Simulating tracking of feasible sine trajectory (forward motion). 44

8.4 Simulation of disturbance rejection (forward motion). 44

8.5 Experiment of tracking static trajectory (forward motion). 45

8.6 Experiment of measuring a position drift (forward motion). 45

8.7 Experiment conducted to measure a position drift while tracking a sine trajec-

tory (forward motion). 46

8.8 Experiment of tracking the unit step response. 46

8.9 Experiment of tracking circular trajectory. Amplitude 0.95 m, period 20 s,

speed 0.25 ms−1. 47

8.10 Experimental setup with 40 W fan to test the disturbance rejection feature. . 47

8.11 Experiment of tracking constant setpoint while being under the influence of

wind. 48

8.12 Experiment of tracking constant setpoint while being under the influence of

momentary disturbances. The UAV was dragged by hand which is indicated

by the gray areas. 49

8.13 Experiment with trajectory conducted outdoors. For detailed data see Ap-

pendix E. 50

8.14 Two videos with onboard data rendered — a) compilation video, b) long tra-

jectory video. 50

v

LIST OF FIGURES

vi

1 INTRODUCTION

1 Introduction

Unmanned aerial vehicles capable of vertical takeoff and landing have undergone a big

boom in the past few years. It is mainly thanks to the arrival of multirotor helicopters (mul-

ticopters). Their capabilities span from being a platform for professional film makers, to toys

and hobby products, and military vehicles built for reconnaissance. These vehicles (fig. 1.1)

have characteristically several propellers (typically four and more) with a fixed pitch angle.

The mechanical design of the machine is usually simple by comparison with a classical he-

licopter. From the mechanical point of view it has several brushless motors with propellers

mounted directly on them. There is a rigid body with a utility platform, motor mounts and

landing gear. They can operate in situations where the presence of a person could be haz-

ardous (natural disasters) or they can help with work tasks which would otherwise require a

very expensive solution e.g. inspection of high-voltage lines. They also find an application in

situations where prior technology would not help — archaeological imaging from low-to-mid

altitude.

In most cases, such an aircraft requires a human operator to fly although it can offer a

certain level of automatic assistance. Nowadays the global position system (GPS) receiver is

embedded in almost every mobile phone thus it is no surprise that it can help with the control

of an unmanned aircraft (UAV) when flying outdoors. Commercially available platforms can

assist with position hold or even fly to a particular location. Such technology can provide an

automatic flight with precision up to 1 m depending on the GPS, external conditions and

the vehicle itself. The scientific community has shown that there are methods to increase the

precision of UAV control up to centimeters by using a better localization system than GPS

(namely Vicon1) and implementing advanced algorithms for automatic control [10, 24].

Figure 1.1: An example of multirotor aircraft used for aerial imaging.

1Vicon is a motion capture system using multiple cameras capturing the object. http://www.vicon.com/

1/72

1 INTRODUCTION

Although the previously mentioned works required an expensive laboratory hardware and

on-the-ground computational power, they can be used as an example of what one could imag-

ine an ”automatic assistance” would be capable of when flying indoors. Since the multirotor

UAV is a highly unstable machine, feedback control is necessary to even only stop it in the

air. UAVs have been a subject of research for a long time. Current intention is to build an

automatic UAV that is supposed to work not only in a laboratory but also in uncontrolled

indoor environment [1]. A modification of current outdoor solutions for indoor usage brings

new challenges and requires different approaches. The main ones are requirement of high pre-

cision control when flying indoors while omitting external localization system (like Vicon and

GPS) and managing all computations onboard the vehicle itself.

The control mechanism used in today’s control systems is usually satisfactory when the

precision is roughly defined by the GPS localization and the control settling time is slow. It

is often narrowed to PID (proportional-integral-derivative controller) that is relatively easy

to compute on common embedded hardware [30, 2]. But when increasing requirements on

precision and settling time, such approach seems to suffer if controlling this kind of unstable

vehicle (see prior work in chapter 1.2). Also when imposing a requirement not only to stabilize

the vehicle (stop it from moving) but to fly through a desired space trajectory, the need for

a better control design approach emerges.

One of them is a model predictive control (MPC) which is a method based on the knowl-

edge of a dynamical model of the controlled system. It formulates the computation of control

actions as a mathematical optimization problem. Mathematical optimization can solve such

problems by finding a minimum of a mathematical function. MPC uses a general prediction

of system future states to formulate the objective function to be optimized. There are various

types of optimization problems based on the shape of the objective function and the range

of its parameters. MPC is usually formulated as a continuous optimization with a convex

quadratic objective function where the function itself penalizes squares of deviations from a

desired state trajectory. When the optimum is found it guarantees that control actions will

lead to an optimal future trajectory with respect to the objective function.

Several important features set the MPC apart from other control techniques such as PID.

Firstly, it works with the state space representation of the system and all states (e.g. position,

velocity, acceleration, ...) participate as an input for optimization, not only a control error of

the tracked state (usually position) as it is with the PID. Although, there are methods for

nesting multiple controllers, the MPC offers a direct way to work with all states of the system.

The other important feature is the way in which MPC handles constraints. We can impose

constraints on inputs, systems states and even more complex ones. Though the optimization

task becomes more complicated — linearly constrained convex quadratic optimization, it still

has a global optimum which can be found in reasonable time. Another feature is a capability

to account in disturbances. When properly modeled and estimated, a disturbance can be used

directly by the controller to produce adequate control actions.

As it was previously mentioned, MPC has been already successfully used for control of

2/72

1 INTRODUCTION

UAVs. But the challenging task is to implement it solely on the hardware onboard of the UAV

where computational power is very limited. Today microcontrollers2 can have parameters

similar to ≈ 200 MHz clock, ≈ 200 kB RAM and mainly floating point performance in

order of 107 operations per second. Surely one could ask, why not to equip the UAV with a

dedicated (miniaturized) PC to handle the computation. Our goal is to create a small all-in-

one solution which can be mounted on any micro aerial vehicle (MAV) where the potential

payload capacity could be only hundreds of grams. In the long term this would allow us to

create a swarm of self-sustained MAVs that could solve tasks as remote sensing, localization

of dangerous objects or mapping even in indoor and unknown environment.

The engineering part of the thesis had been preceded by a survey of state-of-the-art

work (section 1.3) and study of optimization and control algorithms. Then the experimental

platform was created. A tricopter (multirotor aircraft with 3 propellers) was built using of-

the-shelf parts (see fig. 6.1) and adapted to mount a custom control board. The control board

is an electronic platform designed specifically for execution of the MPC controller. The printed

circuit board has been manufactured and equipped with variety of microcontrollers to support

data logging, execution of MPC and wireless telemetry.

This thesis is structured as follows. Firstly, chapter 2 describes a derivation of a state

space model of the helicopter, which is further utilized for state estimation and control.

Chapter 3 describes how the dynamical model of the UAV was identified using data from

experiments. A concept of a state observer is introduced in chapter 4 with explanation of

linear Kalman filter. It is followed by chapter 5 where the MPC controller is derived. Chapter

6 introduces the UAV platform that was developed specifically for experimental verification.

Implementation aspects of the control system are discussed in chapter 7 accompanied by

important notes on disturbance rejection and offset-free tracking. Experimental results follow

in chapter 8, where trajectory tracking and disturbance rejections features were tested on

several predefined trajectories, both indoors and outdoors.

1.1 Problem statement

The task of this thesis is to design, build and implement an embedded controller that will

utilize the model predictive control approach to drive the aircraft in a way suitable for indoor

use, supporting precise trajectory following, and in future will enable its usage in formations

and swarms of helicopter. It entails a design and creation of dedicated circuit board which

will allow to work with any usual UAV and extends its capabilities to fulfill complex robotic

tasks. It should support connecting a variety of external peripherals and sensors to localize

the helicopter in space. Firstly, system modeling and identification need to be done to supply

a dynamical model for simulation purposes and the MPC itself. It is followed up by a design of

a state observer to track the current position of the UAV based on its sensors and to estimate

all other states for purpose of the MPC. The design of the model predictive controller requires

2A microcontroller is an integrated circuit containing a processor, operating memory, program memory and

peripheral controller.

3/72

1 INTRODUCTION

a formulation of optimization task

min
x∈RN

J(x) =
1

2
xTHx + xT c

s.t. constrains on x,

(1)

where x is the solution that leads to the desired control actions over a certain prediction

horizon. A proper method for solving the optimization process needs to be chosen and im-

plemented on the embedded hardware of the UAV. Previously mentioned tasks should be

accompanied by simulation of the system including modeling of measurements, data filtration

and the flight itself. There are minor tasks tied to the implementation and hardware design,

mainly resolving communication, signal processing and data handling. The final outcome

should be verified using variety of experiments testing its capabilities and finally compared

to the prior solution used in the laboratory up to now.

1.2 Previous work

There has been a research on UAV control in laboratory of Intelligent and Mobile Robotics

(IMR) group at FEE CTU Prague since 2011. The main focus has been on simulation of

relatively localized UAV swarms and formations. Because it was also desired to verify the

results experimentally, a development of hardware platform started. The first experiments

has been done with AR Drone platform [19] but it was shown that there is a need for a

customizable platform capable of lifting heavier payload.

The first iteration of creating the custom platform is depicted in [4]. A custom control

board was developed accommodating PID controllers. It could be mounted on a general

purpose UAV and allowed connecting a dedicated onboard camera localization system [14].

Experiments showed that the UAV was able to track and follow the position of a ground robot

marked for image recognition. It was also tested that localization based solely on the position

of a moving object (another robot or UAV) tends to destabilize the vehicle. Experiments were

conducted with a heterogeneous formation of two helicopters and one ground robot.

Subsequent work has been done in [42] utilizing the same hardware accompanied by the

px4flow optical flow sensor. PID controllers were fine-tuned and the system was further im-

proved to allow automatic flight even when the tracked object cannot be seen. This allowed

creating formations of multiple UAVs which was not successful with the former system. Ex-

periments were again conducted to test the performance of the system.

Furthermore, the need for a precise execution of indoor experiments led to increasing

focus in development of the control system itself. This thesis describes a development of new

hardware platform which satisfies demands that arose during the previous work. The system

should be capable of executing a MPC controller, transmitting telemetry to ground station

as well as logging data onboard in realtime.

4/72

1 INTRODUCTION

1.3 Related work

It is difficult to find results on completely embedded MPC control of UAV. Those who

are not only scientifically active in simulating flight control but verify their outcomes ex-

perimentally tend to use an external localization system and on-the-ground computational

power, since it makes experiments much less demanding on particular hardware implementa-

tion. Following survey contains the state-of-the-art of both, embedded and ground computed

MPC.

The paper [5] shows an onboard quadratic implementation of MPC running on Pixhawk

platform [30]. The control problem with the prediction horizon of length 5 steps is solved by

unconstrained optimization. The UAV is supplied with position data gathered from the Vicon

system and transmitted to the vehicle wirelessly. Data from presented experiments suggest

that the aircraft is capable of tracking position step changes and harmonic trajectory. A

correct MPC formulation is presented. The paper lacks description of experiments including

multimedia material, which is suspicious since it presents a working and flying autonomous

helicopter. The system is not fully onboard and the results can be overcome.

The paper [1] is considered as the current state-of-the-art in the field of embedded MPC

implementation on UAV. Authors have proposed a solution based on RMPC (Robust MPC)

utilizing an explicit formulation of the optimization task. The RMPC takes a form of a lin-

ear objective subject to linear constraints (Linear Programming). The formulation allows a

disturbance rejection which is demonstrated by experiments where the UAV follows a tra-

jectory while being under the influence of wind gusts. The experimental platform consists of

two vehicles equipped with Atom based PC, one of them being localized by Vicon, the other

one equipped with a ultrasonic rangefinder and camera for computing an optical flow. The

presented solution also allows to incorporate a collision avoidance directly into the control

loop, which is experimentally verified in the paper. Despite the results are impressive, the

approach suffers from combination of a trajectory planner and a low-level controller in one

system. The overall performance of the controller (its capability to follow the trajectory) is

lower than if using our approach, because the optimization takes care of creating the optimal

trajectory using state constraints. Theoretical and experimental analyses show that a better

approach is to separate the controller from a trajectory planner. The trajectory planner may

use an MPC approach too (even non-linear [38]), but its execution rate can be slower than of

the controller. See section 7.2 for detailed discussion to this topic.

Another work [29] (prior to [1]) shows an implementation of a quadratic MPC, embed-

ded on tilt-rotor aircraft, utilizing onboard Atom based computer. The position of UAV is

estimated from onboard sensor data. The constrained formulation presented in the paper can

handle state constraints and allow optimization over prediction horizon of 8 steps. Experi-

ments were conducted in order to show its ability to track desired 3D trajectory and reject

position disturbances.

Authors of technical report [7] and later paper [8] managed to implement the explicit

5/72

1 INTRODUCTION

formulation of quadratic MPC using onboard Atom PC. They localize the helicopter using

the Vicon system and use a learning based MPC to improve the performance of the system.

Their experiments involved a helicopter catching a flying ball.

In [40], a non-linear MPC formulation allowing to control several miniature, single-rotor

helicopters in a collision-free way, is presented. An external camera localization system as well

as a ground computer station are utilized. The MPC optimizes over 2 s prediction horizon.

Their simulation result has been experimentally verified with one miniature helicopter.

University ETH in Zurich has a long tradition of research in the field of UAV control.

Some of their videos of helicopter aerobatics have been commonly known even among general

public. They have accomplished astounding achievements with UAVs with the Vicon system

involved [10, 3]. Their contribution to MPC is published in [25], it also relies on the external

localization system as well as the PC ground station.

Almost all of presented works was implemented using a single MPC approach to control the

vehicle together with creating the optimal trajectory. We aim to decompose those problems.

This thesis presents MPC controller, while our other related work describes the trajectory

planning [39, 38]. A purely embedded implementation of MPC can be seen only in [1, 29] but

our proposed solution surpasses its capabilities of trajectory tracking by having a significantly

longer prediction horizon. Other works [5, 7, 8, 25, 40] utilize an external localization system

which limits the usage and testing of such system to laboratory conditions.

1.4 Contribution

We present a control system for UAV that allows the execution of quadratic MPC onboard

the aircraft. It consists of a single board equipped with two microcontrollers, telemetry module

and SD-card data logger. The system was tested with the px4flow optical flow sensor, but

allows connecting other sensors and modules. A custom implementation of QMPC enables to

control the UAV with 2.2 s prediction horizon. The implementation allows to estimate system

disturbances with Kalman filter and reject them directly with the controller. When flying

in indoor environment, the system is able to track desired trajectories with errors in order

of centimeters. Experiments have shown that the results are similar to current state of the

art solutions. It can be implemented in very small UAVs (5 inch propellers) to allow flying

in compact formations in indoor environment. Our contribution beyond the state-of-the-art

approach is summarized in following points:

• We formulated a system observer and MPC controller for embedded implementation.

• We present a disturbance rejection model delivering an offset-free tracking.

• We designed a hardware platform specifically intended for UAV MPC control relying

on onboard sensors and computational resources.

6/72

1 INTRODUCTION

1.5 Mathematical notation

The table 1.1 denotes the basic mathematical notation used in this thesis.

Symbol Description

lower or uppercase letter, e.g. n, N a scalar

bold lowercase letter, e.g. x a column vector

bold uppercase letter, e.g. A a matrix

xT , AT vector and matrix transpose

underlined vector, e.g. x concatenated vectors
(
xT1 ,x

T
2 , ...,x

T
n

)T
I identity matrix

1 matrix of ones

x(W) x in coordinate system W

x[t], x[t] x, x in the sample time t

R, N set of real and natural numbers

Table 1.1: Overview of mathematical notation.

7/72

2 UAV DYNAMICS

2 UAV dynamics

Modeling a system dynamics is an important part of the control design process. Good

understanding of system’s behavior enables to design a proper controller using approaches

studied in the field of control theory. Such controller can reflect known characteristics of

the system and can appropriately response to evolution of system states. There are two

fundamental approaches to the system modeling. One is based on the knowledge about the

physics involved in the system. This knowledge can be used to derive a mathematical model

using e.g. Hamiltonian mechanics. Control design of a well known system is usually called

Whitebox, or Greybox, depending on how much of the physical process we are able to describe.

On the other hand, if the system is unknown, one can experimentally identify a mathematical

model which sufficiently represents observed behavior of the system. Such method is usually

called Blackbox.

If modeling a classical helicopter with main and tail rotors, a complex model including

phenomena as aerodynamics and rotor-blade flapping could be constructed. In many ap-

proaches [1, 23], dynamics of a multirotor UAV is simplified to a single rigid-body description,

mostly because of smaller fixed-pitch propellers. Further, due to existence of well designed

and tested platforms such as Pixhawk [30] or Ardupilot [2], the vehicle can be modeled with

the inner feedback loop already closed. By doing that, considering a fixed-pitch quadrotor, we

move from a system actuated by thrust of its four propellers to a system, where the inputs are

the desired pitch (θD), roll (ψD), yaw rate (φ̇D) and collective thrust (UD). It is assumed that

such system can be treated as a decoupled one [23]. Some assumptions and simplifications

are made in the following chapter thus the field of modeling in this thesis is the Greybox.

2.1 Attitude dynamics

Several coordinate systems are presented, in which states of the UAV (fig. 2.1) are ex-

pressed. The first one is a world coordinate system W with a fixed position in the world.

Then there is a rotating world coordinate system R. It is rotated from W around axis Wz by

angle φ. An inertial frame I follows, in which the attitude angles θ and ψ are measured. It is

translated into the geometric center of the UAV. The last one is a body frame B which axis

are aligned with the mechanical frame of the UAV.

Assuming a complete decoupling of the system, the attitude dynamics can be modeled

using Newton’s 2nd law of motion and expressed by following equations

ẍ(W) =
U

m
(sinψ cosφ+ sin θ sinφ) ,

ÿ(W) =
U

m
(sin θ cosφ+ sinψ sinφ) ,

(2)

8/72

2 UAV DYNAMICS

By

Bx

Bz
ψ

θ

Wx
Wy

Wz

Rx

Ry

Rz

Ix

Iy
Iz

~r1, φ ~r3

~r2, φ

Figure 2.1: UAV and its coordinate systems.

where U is the total thrust force action on a center of gravity3 and m is the mass of the UAV.

It is assumed that desired operating point is a hovering state, where U , m are constants and

absolute values of θ, ψ are small. Since our system is not localized using any global localization

system and it relies completely on a dead-reckoning in terms of stabilizing the yaw motion4,

all positions and their derivatives in following equations are expressed in system R. Thus the

position is no longer a function of φ. We can then simplify the equations into the following

form

ẍ(R) = K1 sinψ,

ÿ(R) = K1 sin θ.
(3)

Furthermore, assuming a small input actions during hovering around the operating point,

these forms can be linearized. It is done by approximating it by first two terms of the Taylor

series. The acceleration of the UAV is directly proportional to its attitude angle providing

assumptions previously mentioned in this paragraph. The linearized forms follows as:

ẍ = K1ψ,

ÿ = K1θ.
(4)

3in a direction of the Bz axis
4The yaw angle φ is stabilized by a feedback loop implemented on a stabilization board using onboard IMU.

9/72

2 UAV DYNAMICS

2.2 Altitude dynamics

The altitude dynamics can be also modeled using Newton’s 2nd law of motion. The follow-

ing equation describes the relationship between UAV acceleration in the Rz axis and control

inputs U , θ, ψ:

z̈ =
U

m
cos θ cosψ − g(W). (5)

The gravitational acceleration is denoted by g(W). This system is also non-linear as in the

case of attitude dynamics, but we need to be more cautious with a potential linearization in

this case. If we try to build an altitude controller that is supposed to work not only around a

hovering point, but also during take-off and landing, the force U cannot be treated as constant,

unlike in eq. (3). The pull force of a propeller can be simplified to a quadratic function of its

angular speed [21], which is one of the controlled inputs.

2.3 Dynamics of the integrated stabilization

Current UAVs are usually equipped with an attitude stabilization system. If properly

tuned and the feedback loop is closed it transforms the system to be controlled by θD, ψD,

UD, ˙φD, instead of desired thrust of each motor. Such system can be a cheap and affordable

item on a list when building a custom multirotor aircraft. For purpose of this thesis, all four

model systems are modeled using first order transfer function (6). Furthermore it is shown

(chapter 3) that these models are satisfactory and can be fitted on a measured data reliably.

It is assumed the stabilization does not integrate an altitude feedback loop5. In that case, the

first order system would encapsulate also one of system integrators (z̈ → ż) considering an

altitude speed controller, which is common in some systems [30, 2]. The first order transfer

functions are defined as:

L{U}
L {UD}

=
1

τ1s+ 1
,

L{θ}
L {θD}

=
1

τ2s+ 1
,

L{ψ}
L {ψD}

=
1

τ3s+ 1
,

L
{
φ̇
}

L
{
φ̇D

} =
1

τ4s+ 1
.

(6)

5Which would require e.g. barometer, GPS, or other sensors.

10/72

2 UAV DYNAMICS

2.4 State space representation

For the purpose of this thesis the discrete formulation of the dynamical system will be

used. It allows to design a proper filtration method and the MPC controller itself. Since now,

all differential equations and state space formulation are written in a discrete form with a

constant sampling rate 1/∆t. The following form describes a discrete time-invariant system

with a main matrix A, and input matrix B:

q[t+1] = Aq[t] + Bu[t], (7)

where xt is the state vector in the sample time t. Following matrices describe the pitch and

roll systems, where state vectors are defined as qx = (x, ẋ, ẍ)T , qy = (y, ẏ, ÿ)T and inputs as

ux = ψD, uy = θD:

Ax,y =

1 ∆t 0

0 1 ∆t

0 0 P1

 ,Bx,y =

 0

0

P2

 , (8)

where ∆t is the sampling period, P1 and P2 are parameters of the first order transfer from

a desired angle to the actual angle of attitude. This description is LTI system and can be

directly used for state estimation (using e.g. Kalman filter) and for the MPC controller. For

purpose of modeling altitude dynamics including Earth’s gravitational pull, an additional

input needs to be added to the system which will act as an constant source of acceleration.

In the following case, the 2nd input value is always equal to 1. Eq. (9) shows the discrete

altitude LTI system for state vector qz = (z, ż, z̈, z̈u)T and input uz = (UD, 1)T linearized

around a hovering point

Az =


1 ∆t 0 0

0 1 ∆t 0

0 0 0 1

0 0 0 P3

 ,Bz =


0 0

0 0

0 −g
P4 0

 , (9)

where g ≈ 9.8ms−2 is a gravitational acceleration, P3 and P4 are parameters of the first order

system UD → z̈. The last system represents the yaw dynamics of the UAV for state vector

qφ =
(
φ, φ̇

)T
and input uφ = φ̇D. Symbols P5 and P6 denote parameters of the system

φ̇D → φ̇. The system matrices follows as:

Aφ =

[
1 ∆t

0 P5

]
,Bφ =

[
0

P6

]
. (10)

11/72

3 SYSTEM IDENTIFICATION

3 System identification

A test flight needed to be made, in order to identify parameters P1 . . . P6, introduced

in chapter 2. Several methods exist for system identification for both time and frequency

domain. Despite theirs advantages, one have to excite system poles and zeros in a way that

could lead to damage of the system and its surroundings. In case of highly unstable UAV,

testing by a step response or frequency response is mostly unwanted. Instead of that the model

can be fitted to arbitrary data using a mathematical optimization approach. The test flight,

which was conducted by a human operator, consisted mainly of hovering above one place

with small oscillations in all axis. All data used for following identification were gathered

from the onboard px4flow optical flow sensor (including ultrasonic rangefinder). The data

were received and logged in constant rate and coupled with appropriate control action of the

operator. Since all searched parameters are part of the first order system eq. (6), we can write

down its discrete differential equation

q[n] = PAq[n−1] + PBu[n−1], (11)

where PA, PB are unknown constants of the transfer function. If supposing that, all sensors

are perfect and there are no other effects on the system, this equation should hold for all

measured samples. When considering all samples, the set of equations can be written in a

matrix form as follows:

b = Ap, (12)

where A ∈ R(m−1)×2 represents matrix of the set of equations, b ∈ R(m−1) is the left-hand

side of the equation, p ∈ R2 is the vector of parameters we are looking for, and m being the

number of samples. Parameters b, A, p are created as follows:

A =


q[1] u[1]
q[2] u[2]
...

...

q[m−1] u[m−1]

 ,b =


q[2]
q[3]
...

q[m]

 ,p =

[
PA
PB

]
. (13)

Due to the fact that the system description does not cover all phenomena and the measured

data is noisy, the equation (12) does not necessary hold. But we can still estimate p in a way

that ‖Ap-b‖22 is minimal. Thus the supplied set of equations needs to be overdetermined to

provide sufficient accuracy of estimated parameters. The solution is then optimal in terms

of least squares of r, where r = Ap-b is a vector of residuals of the equation system. This

optimization problem can be solved e.g. by using operator ’\’ in Matlab.

12/72

3 SYSTEM IDENTIFICATION

3.1 Attitude subsystem identification

Four parameters, P1, P2 for x axis and P3, P4 for y axis, need to by identified. Assuming

the system is decoupled and the low-level stabilization drives both subsystems identically6,

we can identify a model using only one of them. Following experiment was conducted using

a manually controlled UAV equipped with the px4flow optical flow sensor. Data from the

experiment (fig. 3.1) are both unfiltered and captured onboard using a dedicated logging

device. Unit of measurement of the input signal represents a difference from a mean PPM7

signal pulse length, measured using a hardware timer. They are directly proportional to the

desired attitude angle of the UAV.

0 5 10 15 20 25 30
−1

0

1

2
Speed

Time [s]

S
pe

ed
 [m

/s
]

Speed
Fitted polynomial

0 5 10 15 20 25 30
−400

−200

0

200

400

600

800
Input

Time [s]

In
pu

t [
−

]

Input, desired angle of attitude

Figure 3.1: Identification data - attitude.

The speed signal has to be differentiated to identify the first order transfer function from

the input to the acceleration. Discrete differentiation of the signal was found impractical, due

to its large noise component. But when fitting a smooth function to the data, the derivative

can be computed analytically. The polynomial function was chosen to fit the data since it

can be easily differentiated and it can be found easily. Using the approach described above,

constants P1 and P2 were obtained as:

P1 = 0.9799, P2 = 5.0719× 10−5. (14)

Having these constants, the attitude system can be completed from eq. (8) with particular

values:

Ax,y =

1 0.0114 0

0 1 0.0114

0 0 0.9799

 ,Bx,y =

 0

0

5.0719× 10−5

 . (15)

6Further experiments show that both axis can be driven by the same controller utilizing a single model.
7Pulse Position Modulation is a common communication protocol used on unmanned vehicles.

13/72

3 SYSTEM IDENTIFICATION

The system can be further tested by estimating all states in open-loop from the measured

input. We can evaluate its performance empirically by comparing estimates with measured

data.

0 5 10 15 20 25 30

−1

0

1

2

Position

Time [s]

P
os

iti
on

 [m
]

Integrated measurement
Estimated in open−loop

0 5 10 15 20 25 30
−1

0

1

2
Speed

Time [s]

S
pe

ed
 [m

/s
]

Measured speed
Estimated in open−loop

0 5 10 15 20 25 30

−1

0

1

2

Acceleration

Time [s]

A
cc

el
er

at
io

n
[m

/s
2]

Derived velocity
Estimated in open−loop

0 5 10 15 20 25 30
−400

−200

0

200

400

600

800
Input

Time [s]

In
pu

t [
−

]

Input, desired angle of attitude

Figure 3.2: Identification - open loop estimation of attitude system states.

As it can be seen in fig. 3.2, states estimated in open-loop are tracking the genuine values

without a significant error. Some drift can be seen in the position, after the second integrator.

But the model fits the measured data sufficiently, at least for purpose of the control design.

3.2 Altitude subsystem identification

For the purpose of altitude identification, another flight was realized. Again, with an

intention to excite the system’s dynamics. In this case, the measured state is an altitude.

It is supplied by an ultrasonic rangefinder which works in a range from 0.3 m to 4 m. The

sensor is implemented on the px4flow unit and although the data is sent together with the

optical flow, its actual rate is about 20 Hz. Data were again fitted with polynomial and further

differentiated into other states. Figure 3.3 shows data on which parameters P5, P6 were found.

In this particular situation, input signal had to be shifted to cancel the DC8 component which

countered the gravitational acceleration. The input offset was found by another optimization

with a cost computed as a sum of sums of quadratic errors of all state open-loop estimations.

8Supposing the force caused by the gravity of Earth is a constant, the total thrust signal contains a DC

component countering the gravitational pull.

14/72

3 SYSTEM IDENTIFICATION

4 6 8 10 12 14
0.8

1

1.2

1.4

1.6

1.8
Altitude

Time [s]

A
lti

tu
de

 [m
]

Altitude
Fitted polynomial

0 5 10 15

−100

−50

0

50

100

150
Input

Time [s]

In
pu

t [
−

]

Input

Figure 3.3: Identification data - altitude

The measurement unit of the input signal is again a time difference from a mean PPM

pulse measured in discrete steps of a hardware timer. Following parameters were found using

the least squares method described in the beginning of this chapter:

P5 = 0.9519, P6 = 0.0012× 10−5. (16)

Having these constants, the attitude system can be completed from eq. (9) with the

particular values

Az =


1 0.0114 0 0

0 1 0.0114 0

0 0 0 1

0 0 0 0.9519

 ,Bz =


0 0

0 0

0 −g
0.0012 0

 , (17)

where g ≈ 9.8ms−2 is the gravitational acceleration.

As can be seen in fig. 3.4 the open-loop estimation holds fairly up to the speed state. The

altitude drifts heavily in a horizon of seconds, which indicates that the LTI system is not

identified as good as in case of the attitude system. It could be due to omitting some physical

phenomena e.g. in case of the rotor thrust or because of the linearization itself.

3.3 Yaw subsystem identification

The system could be identified by exactly the same procedure as the previous subsystems.

But in our case, the UAV is not equipped with any device to measure its yaw angle or rate.

It is stabilized by dead-reckoning from IMU9 (yaw rate measured by a gyro). The actual data

9Inertial Measurement Unit - measures accelerations and rotational speeds of the UAV.

15/72

3 SYSTEM IDENTIFICATION

from IMU are present only in integrated stabilization and are not sent to the custom control

board. This would require a modification of the used stabilization board.

4 6 8 10 12 14

0

0.5

1

1.5

2

2.5
Altitude

Time [s]

P
os

iti
on

 [m
]

Measured altitude
Estimated in open−loop

4 6 8 10 12 14

0

1

2

Velocity

Time [s]

V
el

oc
ity

 [m
/s

]

Velocity (from altitude)
Estimated in open−loop

4 6 8 10 12 14
−2

0

2

4
Acceleration

Time [s]

A
cc

el
er

at
io

n
[m

/s
2]

Acceleration (from altitude)
Estimated in open−loop

0 5 10 15

−100

−50

0

50

100

150
Input

Time [s]

In
pu

t [
−

]

Input

Figure 3.4: Identification - open loop estimation of altitude system states.

3.4 Summary

This chapter discussed the identification of parameters of the dynamical model presented

in chapter 2. Mathematical optimization was used to fit a model to measured data in terms

of least squares of residuals. We were able to find common parameters for both axis of the

attitude model P1, P2, and parameters of the altitude model P3, P4. Using this information

state space representation of both systems was constructed. It can be further used for state

estimation and system control as it is shown in following chapters. The identification is consid-

ered successful by means of open-loop estimation error as it can be seen in presented figures.

The absence of the yaw measurement could be solved by adding e.g. a magnetometer or an

additional camera system.

16/72

4 STATE OBSERVER

4 State observer

Design of the model predictive controller, requires a knowledge about development of all

system states. This is a different situation than in the case of previously used PID controller,

when only the controlled state needs to be known. There are some situations and correspond-

ing systems, where all states values are relatively easy to obtain, respectively they might

be already measured for another reason than the control. For instance cosmic, aerospace or

another vehicles, where the typical states are position and its derivatives. But if not all states

can be measured or we do not want to measure them, the state observer needs to be imple-

mented. The state observer is a dynamical system that is simulated concurrently with the

controlled system. It has the same number of inputs and it is controlled by the same actions

as the real system. The order of the observer is the same as the order of the system. Its states

are supposed to be observable and they should correspond to the real system’s states.

4.1 Open-loop observer

Let us have an LTI system that needs to be observed (assuming C = I, D = 0 i.e. the

output consists directly of all states and there is no direct transfer from the input to the

output). The uncertainty in the model is covered by a random variable w ∈ Rn, which is

usually called a process noise. The system description (7) can be extended to

x[t+1] = Ax[t] + Bu[t] + w[t]. (18)

The open-loop observer can be constructed by setting up following system (19), where

x̂ denotes a vector of estimated state values. If w has non zero-mean, x̂ drifts from x since

the process noise is integrated over time. Three distinct situations can happen during the

execution of the observer:

x̂[t+1] = Ax̂[t] + Bu[t] (19)

• Estimated states track well corresponding system states. The system was identified

perfectly and there is no need for feedback control in this situation.

• Estimated states track well system states, but there is some drift during the time frame

of the experiment. The feedback loop is required to provide zero-offset observation.

• States estimated by the observer are completely out of scope of real system states which

may suggest that the observer’s model is wrong.

Open-loop estimations in chapter 3 indicate that our model is satisfactory, but the open-

loop estimator would not probably lead to precise control results.

17/72

4 STATE OBSERVER

4.2 Closed-loop observer

The open-loop observer can be basically corrected by closing a feedback loop around the

system as follows

x̂[t+1] = Ax̂[t] + Bu[t] − L
(
x[t] − x̂[t]

)
. (20)

There are methods of finding L such that poles of the observer are desirably placed10.

One can utilize that placing poles of a state feedback is a dual problem for placing poles of

the observer. Practically, a state feedback controller can be tuned using matrices AT ,BT to

get LT for the observer, hence the duality.

4.3 Kalman filter

In this thesis, the Kalman filter (KF) was implemented to estimate all states of the he-

licopter and to filter the measured data from sensors. The Kalman filter is variant of the

closed-loop iterative estimator. If well tuned, it corrects a drift in estimated states. It is

widely used not only as an observer but also for its great filtering capabilities. A hypothesis

about estimated states takes form of a normal distribution with mean vector x̂ and covariance

matrix Σ̂. It presumes a dynamical model in the form (18), where w ∈ Rn is drawn from

normal distribution N (0,R), R ∈ Rn×n. Furthermore, we presume a linear sensor model

ẑ[t] = Px̂[t] + v[t], (21)

where ẑ[t] ∈ Rp is the measurement vector, P ∈ Rp×n is a matrix that maps the state vector

to the measurement and v ∈ Rp is the measurement noise which is drawn from N (0,Q),

Q ∈ Rp×p. A real measurement z[t] ∈ Rp is modeled using the sensor model by adding a sample

of the measurement noise to all estimated states and transforming it by P to a measurement

vector. The filter updates a state vector x̂[t] and its covariance matrix Σ̂[t] between iterations.

The feedback withing the filter is then constructed using the inverse sensor model with the

real measurement z[t].

vector covariance mapping to x̂ mapping to ẑ

estimated states x̂ Σ̂ I P

measurement ẑ Q I

model (process) x R

Table 4.1: Overview of vectors and matrices used in Kalman filter.

10Assuming the system can be converted to the controlled canonical form.

18/72

4 STATE OBSERVER

4.3.1 Prediction phase

There are two stages of the KF algorithm, which are shown in the block diagram in figure

4.1. The first one is the prediction phase (22) which can be easily related to the open-loop

observer (19). Here, the new state vector is estimated using the model (18), previous state

x̂[t−1] and the input u[t−1]. Its covariance Σ̂[t] is modified using the model and the process

noise covariance R.

x̂[t] ← Ax̂[t−1] + Bu[t−1]

Σ̂[t] ← AΣ̂[t−1]A
T + R

(22)

4.3.2 Correction phase

The second phase is the correction phase (23), where the state vector is updated using

the measurement z[t]. The covariance Σ̂[t] is again modified, but this time using the noise

measurement covariance Q. Following assignment statements denote the correction phase of

the Kalman filter

K[t] ← Σ̂[t]P
T
(
PΣ̂[t]P

T + Q
)−1

,

x̂[t] ← x̂[t] + K[t]

(
z[t] −Px̂[t]

)
,

Σ̂[t] ←
(
I−K[t]P

)
Σ̂[t],

(23)

where K[t] is the Kalman gain, I is the identity matrix and P is the matrix that maps estimated

states to the measurement. The first part consists of computing a Kalman gain K[t]. It has

a direct correspondence to the matrix L in (20) thus it determines the feedback effect in the

observer. The gain can be fine tuned by carefully setting R and Q. The Q can be found

by observing the noise parameters of measurements. It means that the process noise can be

independently set. The table 4.1 denotes the important vectors and matrices that are used

in the filter. Practically there is a trade-off between trusting fully to the model and trusting

fully to sensors. When setting R the filtered values have to be observed and the Kalman

filter should be set basically by tuning the ratio between elements of R and Q. The desired

outcome usually is to eliminate the measurement noise while still preserving the zero-offset

tracking (with sufficient transient response) of all estimated states.

4.4 Summary

The Kalman filter was presented in order to estimate all system states and filter measured

data. Its performance can be shown on subsequence of data (forward movement) used in

19/72

4 STATE OBSERVER

Prediction

x̂[t] ← Ax̂[t−1] + Bu[t−1]
Σ̂[t] ← AΣ̂[t−1]A

T + R

Correction

K[t] ← Σ̂[t]P
T
(
PΣ̂[t]P

T + Q
)−1

x̂[t] ← x̂[t] + K[t]

(
z[t] −Px̂[t]

)
Σ̂[t] ←

(
I−K[t]P

)
Σ̂[t]

x̂[t], Σ̂[t]
x̂[t], Σ̂[t]

t← t+ 1

Input

u

Measurement

z,Q,P

Figure 4.1: Block diagram of the Kalman filter.

chapter 3.1. The figure 4.2 shows the velocity of UAV measured by onboard sensor. Among

others, it is able to estimate all other states including the position and the acceleration which is

essential for further use of model predictive controller. It can be tuned to estimate noisy signal

with relatively small delay compared to e.g. exponential filter11. For particular parameters of

KF that were used in the final implementation see chapter 7 where also an extended form of

LTI system is presented to provide a disturbance estimation. For an intuitive description of

KF in more details see [15].

0 1 2 3 4 5 6 7

−0.5

0

0.5

1

Time [s]

S
pe

ed
 [m

/s
]

Measured speed
Exponential filter
Kalman filter

Figure 4.2: Kalman filter tracking a noisy singal of UAV forward speed. See the difference between

filtered values, which might have a significant effect on the control.

11The exponential filter is a method where filtered values are computed as x̂[t] = αx̂[t−1] + (1 − α)Pz[t].

20/72

5 MODEL PREDICTIVE CONTROL

5 Model predictive control

Model predictive controller (MPC), also known as receding horizon controller, is an un-

common technique of controlling unmanned aircraft. Mostly because it is a challenging task to

implement it into an embedded hardware, unlike other feedback loop controllers usually used

on UAVs, namely PID (proportional-integral-derivative controller) and full-state feedback.

The origins of MPC can be found in control of chemical plants, where the time constants of

such dynamical processes are relatively high (up to order of hours) thus the computational

demand is not so limiting. Also the constraint handling, an inherent property of MPC, is

widely used while driving chemical processes. Since then the MPC started to spread on faster

systems as the hardware become more powerful. Nowadays it is used to drive systems with

sampling in order of milliseconds and tens of hertz loop rate.

The control loop itself is built upon repeatedly optimizing a cost function (usually called

objective function) with decision variables that represent a desired input action. It is usually

a function of all states, desired trajectory and system inputs over a certain time horizon,

often called prediction horizon. It penalizes (by increase of cost values) the difference between

predicted and desired state trajectory. It also penalizes the control action itself, which can

be interpreted as penalizing the energy used for controlling the system. In other words, the

objective function returns a scalar value that quantifies whether the controller drove the sys-

tem well. Such function can have extrema. Our goal is to find its minimum which corresponds

to states changing according to our desired trajectory. The minimum can be local or global,

depending on the function itself. It is usually desirable to find the global minimum, since it

corresponds to the optimal control action with respect to the constructed objective function.

There are several classes of continuous optimization problems depending on the type of the

objective function and constraints. Problems based on linear or quadratic objective function

subjected to linear inequality constraints are common. These are historically well studied cases

with known methods for solving them. The problem is usually called Linear Programming

(LP) if optimizing linear function, or Quadratic Programming (QP) if optimizing a quadratic

function. Since the MPC can be formulated as LP or QP, the control design problem is

then basically reduced to solving a QP or LP program and the main focus is left on system

modeling and fine-tuning of free parameters of the objective function. The optimization task

itself is usually left on dedicated solver that it specialized on the particular function type.

In this thesis, we consider only the linear MPC i.e. controlling an LTI system proposed in

chapter 3. The MPC can be formulated as LP or QP, depending on what type of Euclidean

norm is used for computing the distance between two states. When using the `1 or `∞ norm,

the formulation leads to a linear program. One can formulate the LP in a way that minimizes

the maximal deviation from desired trajectory - this formulation is usually called a robust

MPC (RMPC). We will focus on the QP formulation (`2 norm, QMPC) since the quadratic

penalization can be more expressive than the linear one — it penalizes large errors more and

additionally provides a deadband in the controller.

21/72

5 MODEL PREDICTIVE CONTROL

5.1 System prediction

For the purpose of MPC, it is essential to be able to predict a series of system’s states x =

(xT[0],x
T
[1], ...,x

T
[M−1])

T based on the initial state x[0] and inputs u = (uT[0],u
T
[1], ...,u

T
[M−1])

T ,

where M is the length of the prediction horizon. Let us consider a discrete, linear, time-

invariant system with n states and k inputs, assuming C = I and D = 0 (again, assuming

there is no direct transfer from the input to the output and the output consists directly of all

states)

x[t+1] = Ax[t] + Bu[t], (24)

where x[t] ∈ Rn is the state vector in the sample time t, u[t] ∈ Rk is the input vector in the

sample time t, A ∈ Rn×n is the system matrix and B ∈ Rn×k is the input matrix. First two

prediction steps from x[0] can be formulated as

x[1] = Ax[0] + Bu[0],

x[2] = Ax[1] + Bu[1] = A2x[0] + ABu[0] + Bu[1].
(25)

The prediction can be further generalized for any time step as follows:

x[t+2] = A2x[t] + ABu[t] + Bu[t+1] (26)

The recurrent relation can be used to get the prediction in any future time step. Moreover,

it can be put in the matrix form for all future time steps within the prediction horizon. Ma-

trices denoted in (27) are basic building blocks of QMPC formulation presented on following

page.


x[1]

x[2]
...

x[M−1]


︸ ︷︷ ︸

x

=


A

A2

...

AM−1


︸ ︷︷ ︸

Â

x[0] +


B 0 0 0

AB B 0 0
...

...
. . .

...

AM−1B AM−2B . . . B


︸ ︷︷ ︸

B̂

u (27)

Thus it can be simplified into a form using matrices Â and B̂ as

x = Âx[0] + B̂u. (28)

22/72

5 MODEL PREDICTIVE CONTROL

5.2 Problem formulation - QMPC

The objective function for QMPC is formulated as sum of squares of weighted control

errors combined with weighted control actions. In our case the last control error is weighted

differently than all the previous errors, which is denoted by the second summand in (29). By

doing that, we can prioritize the final error in the horizon and force the controller to converge

to the desired trajectory.

V (x,u) =
1

2

M−2∑
i=0

(
eT[i]Qe[i] + uT[i]Pu[i]

)
+

1

2
e[M−1]Se[M−1] (29)

The control error is denoted by e[t] = x[t] − x̃[t] in the time t, Q ∈ Rn×n is the state

weighting matrix, P ∈ Rk×k is the input weighting matrix, and S ∈ Rn×n is the matrix

weighting the final state values. Matrices Q, S need to be positive semi-definite (Q,S � 0)

and matrix P need to be positive definite (P � 0) to ensure that the function V (x,u) is

strictly convex. Moreover, elements of x and u need to satisfy the system’s dynamics (24).

Furthermore by inducing (28) into (29) the objective function can be rewritten into matrix

form

J(u) =
1

2
uT
(
B̂
T
Q̂B̂ + P̂

)
︸ ︷︷ ︸

Ĥ

u + uT
(
Q̂B̂

)T (
Âx[0] − x̃

)
︸ ︷︷ ︸

ĉ

, (30)

where x̃ = (x̃T[0], x̃
T
[1], ..., x̃

T
[M−1])

T is the reference trajectory for all states consisting of a state

vector for each step of the prediction horizon. Q̂ ∈ RnM×nM and P̂ ∈ RkM×kM are weighting

matrices denoted in (31). Matrices Ĥ ∈ RkM×kM and ĉ ∈ RkM then define the quadratic

form.

Q̂ =


Q 0 . . . 0

0 Q . . .
...

0 . . .
. . .

...

0 S

 , P̂ =


P 0 . . . 0

0 P . . .
...

0 . . .
. . .

...

0 P

 . (31)

Finally the optimization task can be formulated as minimizing the objective function

J(u) subject to constraints on u (which will be discussed in the following paragraphs). This

problem is solved repeatedly for new x[0] in each control step

min
u∈RkM

J(u) =
1

2
uT Ĥu + uT ĉ

s.t. constrains on u.

(32)

23/72

5 MODEL PREDICTIVE CONTROL

5.3 Constraints

Two types of constraints are usually imposed on the searched solution if optimizing the

quadratic form (32). The first type is often related to the physical limitations of the controlled

system. System actuators (particularly the physical ones) may not be designed to accept an

arbitrary input signal. For example a servo-motor has a maximum allowed electric current and

rotational speed or control surface of an airplane operates within a certain angles of freedom.

Let us focus on this type of input constraints defined as box constraints i.e. decision variables

need to lie within a closed hypercube.

5.3.1 Input constraints

Input box constraints allow the controller to find a solution (control actions) that satisfies

the input limitations of system actuators. We can find an analogy in adding a saturation on

control outputs of PID controller. They can be modeled by set of inequalities taking following

form

b ≤ u ≤ g, (33)

where b ∈ RkM and g ∈ RkM are constraint vectors denoting the lower and upper bound on

inputs. Such constrained optimization task can be easily solved as it can be seen in chapter

5.5. Though it seems more practical to tune parameters of MPC (matrices Q̂ and P̂) in a

way, that the controller won’t naturally produce such control action even when starting from

improbable initial conditions. This approach leads to proper control actions anyway so the

input constraints can serve as a protection mechanism.

5.3.2 State constraints

The ability to constrain particular state values is one of the main features of the MPC.

It can be used to drive the system within some safety region of state variables and to find

a control action that won’t push the system into unwanted states (sometime irreversibly,

e.g. in chemical processes). A convenient example can be found also in a field of unmanned

vehicles that can usually operate only within a certain region of velocities and accelerations.

By inducing state constraints to the optimization task, it suddenly becomes more difficult to

solve. These constraints can be also modeled as a set of linear inequalities using the prediction

equation (28). Vectors v ∈ RnM and w ∈ RnM denote the lover and upper bounds on states.

State constraints create the general linear inequalities of the quadratic programming.

v ≤ Âx[0] + B̂u ≤ w (34)

24/72

5 MODEL PREDICTIVE CONTROL

5.3.3 Other constraints

Several different types of constraints can be declared to improve or change the behavior

of the system. One particularly useful example is limiting the rate of change of input within

the prediction horizon. This leads to smoother input signals and can prevent some stress on

actuators of the system. Another possibility is to restrict the monotonicity of particular state

values over the horizon [31]. This can lead to suppression of overshoots and limiting reactions

of unstable zeros (systems with non-minimum phase characteristics) of the system (initially,

the system tends to move in the opposite direction than intended). Finally, one can create

constraints that force the control signal to lie out of a deadzone of an actuator. Deadzones are

inconvenient actuator nonlinearities that can make the control design otherwise very painful.

5.4 Move blocking – reducing complexity of MPC

Until now, we have considered that each decision variable of the optimization task directly

corresponds to a value of input signal in a particular time of the prediction horizon. One could

ask whether it is necessary to optimize over the input signal with the same density of signal

changes at the beginning as at the end of the prediction horizon. Simulation and experiments

show that when coming to the end of the horizon, the optimized input tends to take form of a

constant function, assuming the initial condition is sufficiently near to the desired trajectory.

Also, supposing that the model of the UAV is not perfect and that the control loop (see chapter

5.7) uses only first few steps of the input signal, there might be an open-loop prediction error

too high to payoff for a densely distributed variables. The move blocking technique allows to

project a smaller number of variables to cover a longer prediction horizon. The transformation

is denoted by following equation

u =



1
...

1

 0 . . . 0

0

1
...

1

 . . . 0

...
...

. . .
...

0 0 . . .

1
...

1




︸ ︷︷ ︸

U

ur, (35)

where U ∈ {0, 1}kM×kN , N ∈ N is the number of decision variables and ur ∈ RkN is the

reduced input vector. The MPC task can be then simply modified by creating a new matrix

B̂r = B̂U to solve the optimization with, and then simply project the variables on the whole

25/72

5 MODEL PREDICTIVE CONTROL

horizon. The distribution of variables can vary. One can distribute them evenly or assign a

larger portion of them at the beginning of the horizon. This technique can also improve system

stability by prolonging the horizon when maintaining a similar computational complexity.

Although, the optimization does not control the system precisely (withing the prediction)

the objective function is still in play in every system step. The chapter 7.2.3 discuses the

particular setting used during the implementation and experiments.

5.5 Solving QMPC - unconstrained

The quadratic function in our task is a convex function due to matrices Q, S and P which

are designed to be positive semi-definite (Q,S � 0) and positive definite (P � 0). Using this

assumption we can find a global minimum by translating it (by a vector u∗) to the origin

and thus changing it to a quadratic form. The quadratic form with a semi-definite matrix has

a minimum in the origin. The translation can be found by completing the function to the

square

1

2
uT Ĥu + uT ĉ =

1

2
(u− u∗)T Ĥ(u− u∗)

=
1

2
uT Ĥu− 1

2
uT Ĥu∗ − 1

2
u∗T Ĥu +

1

2
u∗T Ĥu∗

=
1

2
uT Ĥu− uT Ĥu∗ +

1

2
u∗T Ĥu∗.

(36)

By comparing parts of the same degree we get following equations

ĉ = −Ĥu∗,

0 =
1

2
u∗T Ĥu∗.

(37)

Finally the solution can be found in a closed-form as u∗ = −Ĥ
−1

ĉ.

5.6 Solving QMPC - constrained

Firstly, we will see how to optimally solve QMPC constrained only by the input constraints

(33). Secondly, we will shortly discuss several QP algorithms for solving QMPC constrained

by general linear inequalities (produced by (34)). Since the work done in this thesis focuses

on implementing the first case, only a short survey of QP algorithms is presented.

26/72

5 MODEL PREDICTIVE CONTROL

5.6.1 QMPC with input constraints

Input box constrains are a special case of general linear inequalities of QP. Thus they cre-

ate a convex set of feasible solutions. When the global optimum of a convex quadratic form is

not a feasible solution, the actual optimum satisfying the constraints is located on the facet

of the convex polytope of the feasible set [9]. One can find it by projecting the unconstrained

optimum orthogonally on the feasible set. In the case of box constrains imposed on decision

variables this can be done by using median function. It is possible to project variables inde-

pendently on each other because box constrains are orthogonal and perpendicular to their

corresponding axis.

ũ∗i ← median (bi,u
∗
i ,gi) ,∀i = 0, ..., kN (38)

One could ask why this process leads to the optimal solution on a feasibility set. A simple

proof can be constructed. The figure 5.1 shows an analogous example for two dimensions. It

is assumed that the function J(u) is convex. When the global optimum u∗ is found using the

closed-form solution and it satisfies all constraints, the task is finished. Otherwise there is a

constrained optimum ũ∗ located in the feasibility set which can be found by (38). If there

would be another, different, better solution on the feasible set, we could get to it by following

facets of the feasibility set polyhedron [9]. That means the step from ũ∗ would lower the

objective value of J(u) thus there would be a negative gradient in the direction. But when

using (38), every step of projecting variables violating constraints is a step over a positive

gradient (as any step from the global optimum of a convex function). This would lead to a

claim that there is a local maximum in ũ∗ which is contradictory to the assumption.

u∗

ũ∗

x1

x2

feasible set

Figure 5.1: An illustrative example of 2-dimensional quadratic form with box constraints.

27/72

5 MODEL PREDICTIVE CONTROL

5.6.2 QMPC with state constraints

As it was mentioned previously, the state constraints are the most general of linear in-

equalities. Solving such quadratic program is a difficult task, compared to the one constrained

only by input constraints. The author of [28] compares several iterative methods for solving

constrained model predictive control. The first one is the Active set method. It uses the fact

that the optimum is attained on the boundary of the feasible set. Throughout the iterations,

the algorithm walks along the facets of the convex polytope in a similar way as the simplex

algorithm does for linear programming. The QP with equality constraints (or unconstrained)

is solved every step. The number of iterations depends on the number of constraints active

in the optimum.

Another method presented in [28] and used in [44] is the Fast gradient method. It is

a modification of the classical gradient descend. But instead of moving against the gradient

vector, it rather projects it to the feasible set. Its computational demands strongly depend on

the projection itself which means that it is usually used if only a certain type of constraints is

used e.g. box, simplex or Euclidean norm ball. The method also suffers from bad convergence

if the quadratic form is not well conditioned.

The last method discussed in [28] is the Interior point method using logarithmic bar-

rier function. It constructs a new unconstrained optimization problem based on the original

one which can be solved by e.g. Newton’s method. The new task is only an approximation

which precision can be controlled. It requires to be started from a feasible solution and the

computational complexity strongly depends on the conditionality of the quadratic form.

5.7 The MPC control loop

The optimization task is solved repeatedly, if using MPC for realtime control. Only the

first elements of u are used for control, until another iteration with updated x[0] is done. The

number of elements used depends on how well the system was modeled and identified and

how fast the optimization can be done. One have to set the complexity (number of variables,

length of prediction horizon) in such way, that the optimization is done fast enough so the

system could react adequately to disturbances and trajectory changes.

5.8 Summary

This is the end of the theoretical introduction for implementation of MPC into embedded

hardware of unmanned helicopter. We have discussed how to formulate a control task as

a mathematical optimization problem using quadratic programming. The input and state

constraints were presented as well as the move blocking technique for reducing the number of

variables. At last, methods for solving unconstrained and constrained MPC were described.

28/72

6 HARDWARE AND SOFTWARE PLATFORM

6 Hardware and Software platform

In order to test the embedded implementation of MPC on real aircraft, either an existing

platform has to be used, or a new one created. Creating a custom hardware is a tedious job,

but it is an investment that may repay itself by providing complete control over platform’s

parameters and design. The key decision has been done to improve the existing design of

custom control board (see author’s Bc. thesis [4] for more details) emphasizing possibility

to reuse the code that has been already developed. A new version has been designed by

incorporating experience and observations from prior development. Following chapter firstly

describes the UAV testbed used for experimental validation of the control design, then there

is the new control board presented with overview of its features and capabilities, and lastly

the software structure is discussed including realtime operating system and custom matrix

library used for UAV control.

6.1 UAV platform

The UAV is a custom built tricopter (fig. 6.1a) with one propeller mounted on a tilting

mechanism. It has a capability to pitch, roll and yaw just as any other multirotor UAV. The

yaw control is supplied by the tilting mechanism while pitch and roll can be controlled by

changing the ratio between rotational speed of all motors. All propellers are mounted directly

on brushless motors, each one of them controlled by an individual ESC (electronic speed

controller). The platform is capable of lifting payload of 150 g while its weight is 450 g. Its

flight time is 7 minutes on average. Propellers are 5 × 3.8 inch in dimensions, mounted on

motors by rubber bands to increase safety.

The aircraft is equipped with the KK2 board that provides the basic stabilization of pitch

and roll angles (θ, ψ) and yaw rate (φ̇). It is a low-cost (≈ 30 USD) commercial product with

open-source software. It utilizes 3-axis MEMS gyroscopes and accelerometers to estimate θ,

ψ, φ̇ and allow the vehicle to be controlled as an RC model. It incorporates a set of nested

PID controllers for both attitude axis. They can be easily tuned using built-in display and

buttons. It can handle various types of multirotor aircraft including the tricopter. Another

important module is the px4flow device, which is the only sensor used for localization of UAV

3D pose in space (see section 6.2 for more information).

6.2 px4flow sensor

The vehicle is localized in 3D space by the px4flow sensor [11, 17] (fig. 6.1b), developed and

produced by PixHawk [30]. It encapsulates two sensors — a camera for computing an optical

flow and an ultrasonic rangefinder for measuring a distance from the ground. It provides

an information about its velocity relative to the ground computed by the correlation of two

consecutive images from the camera (the same principle as employed in most computer mice).

The velocity is internally compensated from rotational motion by built-in gyroscope and

29/72

6 HARDWARE AND SOFTWARE PLATFORM

(a) Tricopter aircraft. (b) The px4flow sensor.

Figure 6.1: Tricopter platform with px4flow optical flow sensor.

finally scaled to absolute values using the altitude measured by the ultrasonic sensor. The

sensor is able to measure velocities up to 0.5 ms−1 when flying in 1 meter altitude in good

light conditions. The altitude is measured from 0.3 m to 4 m. Data is sent in frequency around

70 Hz over UART (universal asynchronous receiver-transmitter) using MAVLink protocol [11].

6.3 Custom control board v.2

The control board v.2 (see fig. 6.2) is a significant improvement of the previous version

[4] that comprised only of a single 8-bit Atmel microcontroller. After 1 year of using the old

control board, designed within Bc. thesis of author of this thesis, in research of Department

of Cybernetics, CTU in Prague, following requirements initiated a development of the second

version. The platform should support variety of connections for external sensors and mod-

ules, mainly via UART and i2c. It should support onboard data logging that is necessary for

debugging and capturing data for system identification. Another requirement is a presence

of a telemetry module. The UAV should be able to send short packets of data to another

helicopter and to the ground station (laptop). The main motivation is to allow simple teleme-

try data being displayed on laptop while conducting an experiment. This should limit the

number of unsuccessful experiments by offering a simple way to detect misbehaving sensors

etc. Additionally, was required a tool for sending simple commands from PC to the UAV.

And the last and most important demand was to support execution of the model predictive

controller, being the goal of this thesis.

The board itself was built upon a standard (for UAVs) square mounting pattern (45 ×
45 mm). It is designed in such way that allows mounting another board with dimensions

50×50 mm on its top while not obscuring connectors, buttons and radio antenna. The board

30/72

6 HARDWARE AND SOFTWARE PLATFORM

contains a 3.3 V, 1 A switching power supply that powers all its components. For an electrical

schematic see Appendix C, for layouts of the printed circuit board see Appendix D. Following

sections contain brief description of all key parts of the control board. Figure 6.4 shows a

block diagram of all modules on the UAV.

1

2 3

4

4

(a) board’s top

5

(b) board’s bottom

Figure 6.2: Custom control board v.2, key components are placed at follows: 1 – xMega, 2 – STM,

3 – switching power supply, 4 – socket for XBee, 5 – data logging MCU.

6.3.1 xMega main unit

The first of two used microcontrollers is 8-bit AVR, ATxMega128a3u. It was decided

to distribute software tasks (MPC, Kalman filter and others) onto two separate units. The

controllers and estimators are isolated in the co-processing ARM microcontroller, allowing

potential students to develop on xMega without worrying about damaging the control sys-

tem. Another reason is to reuse the low-level code (communication handling) to be reused

from the previous version of the control board. The xMega MCU (microcontroller unit) is

designated for handling all communication and other minor tasks. It is one of the most pow-

erful MCUs in AVR 8-bit family with 32 MHz clock and 8 kB of SRAM memory. One of its

greatest features are 7 separate UARTs. 3 of them are used for communication with other

onboard parts, 4 of them are left free for connecting external devices. One is equipped with

an optional level converter for connecting 5 V devices. Additionally, there are two i2c lines

and PPM12 input/output for communicating with KK2 and RC receiver (both with optional

level converters). The software is developed using C programming language and uploaded to

the microcontroller using a dedicated hardware programmer.

12Pulse position modulation is a communication protocol commonly used on UAVs and RC models.

31/72

6 HARDWARE AND SOFTWARE PLATFORM

6.3.2 ARM coprocessing unit

The second MCU onboard is a powerful 32-bit ARM device produced by STMicroelectron-

ics — STM32F415RGT6. It is built upon ARM Cortex M4 with FPU (floating point unit)

which allows a native work with floating point numbers. It has a powerful processor working

on 168 MHz accompanied by 192 kB of RAM. This MCU is designated solely for computing

Kalman filter and MPC. It is incorporated in such a way, that it only serves as an external

coprocessor for xMega — there are no peripherals connected to it. There are several reasons

for choosing the architecture where the more powerful MCU does not serve for all purposes

although it has enough resources for it. The first one is the backwards compatibility with

previously developed software. The xMega can execute it without many changes. The second

one is the fact that it is more complicated to develop on the ARM STM, than the simpler

AVR xMega MCU (The system as a whole is designed withing this thesis as an open platform

for another students to develop and test their work.). Since the MPC and Kalman filter are

important pieces of the program and their unwanted modification could make the machine

dangerous, it was decided to conserve it on a separate MCU. The controller and KF are then

used from the xMega MCU by a form of API. Important feature of STM is its floating point

unit. Custom benchmarks has shown that it is capable of making ≈ 6 × 106 floating point

operations per second which is a noticeable difference comparing it to the xMega’s ≈ 3× 104.

6.3.3 XBee telemetry module

When searching for a suitable wireless communication module, one cannot miss the family

of XBee devices [43]. Built upon ZigBee standard, they can be set up to maintain one of several

communication network topologies e.g. star or mesh. There are many different versions of

XBee, based on its capabilities and frequency used. All of them support the same connection

socket so they can be easily swapped for another type when necessary. Currently, we use

XBee Pro S2B that works on 2.4 GHz ISM band. Practical tests shown that it is not well

suited for any real-time critical data transfers since there is a significant delay (≈ 150 ms)

and its throughput is ≈ 20 kbit/s. The XBee module is used to transmit telemetry data to

the ground station and allows communication between multiple UAVs. The communication

protocol was developed by another student within his Bc. thesis [16].

6.3.4 OpenLog data logging module

Since we were not interested in creating our own data logger, we have integrated an

existing, open source solution — OpenLog [13]. It has been designed to serve as an external

SD card logging device connected by UART. Because its design is very simple, it was directly

integrated into the control board. One can then set it up to receive a stream of data from

the xMega MCU once the UAV is turned one. In our system, it handles logging 30 bytes with

rate 70 Hz which is sufficient for debugging and system identification.

32/72

6 HARDWARE AND SOFTWARE PLATFORM

ATxmega MCU ARM MCU

OpenLog

XBee

px4flow

Ground station

RC receiver

KK2 board

Custom control board v.2

Figure 6.3: Block diagram of modules on the UAV.

6.4 FreeRTOS and tasks

A program for MCU such as xMega and STM can be created in two ways. The most

straightforward one is to develop the bare application that will be directly executed on the

processor while utilizing all of its computational resources. It is up to the creator of the pro-

gram to manage concurrent processes, interact with hardware and supply fast communication

responses in parallel with long-running calculations. In previous work, the control software

was developed exactly in this way. Its benefit is obvious. The programmer has a complete con-

trol over the hardware, since only his code is executed on the CPU. But when the application

gets complicated, an operating system can be used to take care of allocating computational

resources for different parts of the program. There is a family of operating systems intended

for real-time applications called Real-Time Operating Systems (RTOS).

The reader should not confuse the RTOS with the notion of operating system usually used

on personal computers. RTOS are special software solutions developed with different criteria.

The main one is its scheduling which ensures that each application is given its time slot in

a deterministic and defined time. The scheduling usually works based on hardware timers

and interrupts. Context switch in RTOS is usually very fast and it happens relatively often

to allow real-time processing of incoming data. One of widely used RTOS is the FreeRTOS

[41]. An Open Source solution with existing ports for both MCUs used in the control board.

It offers a capability to create so called tasks, an analogy of processes in classical operating

systems. Tasks are separate pieces of program with its own CPU context and memory stack.

The RTOS takes care of switching between tasks based on given priority allowing user to

develop apparently multitask application. There are new issues coming up with this concept,

which are the problems of synchronization and sharing resources. The FreeRTOS incorporates

queues and semaphores which are supposed to be used for exchanging data between tasks

and for their synchronization. We have incorporated the FreeRTOS on both MCUs creating

separate tasks for handling communication and computations. See figure 6.3 for view on tasks

33/72

6 HARDWARE AND SOFTWARE PLATFORM

and the information flow between them.

Since our system requires execution of controllers and estimators in order of tens Hz and

it has to handle communication in rate in order of hundreds Hz, the context switch rate was

chosen in order of magnitude faster — 1000 Hz. But still some operations require even faster

execution and reaction times (e.g. reception and creation of pulse-position signal or buffering

raw data from peripherals). That is why a part of the control software remains executed

directly on interrupt basis, independently of the FreeRTOS. Due to safety constraints, the

system is able to hand over the UAV to the human operator even when the FreeRTOS and

the control system do not work properly or even freezes. Both implementations on our MCUs

require around 4 kB which leaves around 4 kB for our code.

6.5 Tasks on xMega MCU

The software on xMega consists of 4 different tasks running equally in parallel. Comm-

Task is designated to handle incoming and outgoing communication. Since shared access to

all communication media would be difficult to maintain, all other tasks communicate with

peripherals via the CommTask. ControllersTask handles computations with regards to sys-

tem controllers. LogTask is responsible for periodic data logging to OpenLog module. Finally,

MainTask, despite its name, handles minor jobs as trajectory following and flight state au-

tomaton (modeling different flight modes of the UAV).

6.6 Tasks on STM MCU

Tasks on STM have much clearer designation. There is also CommTask serving as a com-

munication mediator. The second one is KalmanTask which handles complete computation

of the Kalman filter. Finally, MPCTask, which takes care of computing the model predictive

controller.

CommTaskControllersTask

MainTask

LogTask

CommTask

KalmanTask

MPCTask

xMega MCU STM MCU

Figure 6.4: Block diagram of information flow between tasks of xMega and STM MCUs.

34/72

6 HARDWARE AND SOFTWARE PLATFORM

6.7 CMatrixLib - ANSI C matrix library

Implementation of the Kalman filter (section 4.3) and the model predictive controller

(section 5) requires to deal mainly with vector and matrix operations. Although they can

be implemented directly using the programming language, this way is impractical for code

debugging and it discards the clarity of mathematical matrix notation. There is a large selec-

tion of matrix libraries [26] available for variety of programming languages. But since both

software for STM and xMega are developed using ANSI C programming language and our

platforms are specific (the architectures of these processors are specific, thus the library should

be supplied by means of its source code) we decided to develop our own matrix library. An-

other reason that supports this decision is to maintain as much control over the executed

code as possible, especially with regards to memory allocation, which is a critical issue for

microcontrollers (and considering we are dealing with matrices and vectors with dimensions

in order of hundreds). Our library supports basic matrix and vector operations with floating

point values as well as basic algebra operators, such as matrix inversion and computation

of determinant. It was developed with intention to minimize memory stack footprint by re-

quiring prior memory allocation for subresults. There is also a possibility to create a matrix

using a constant data located within the program memory. CMatrixLib, as we named it, is

released on a community website GitHub [27] under GNU General Public License together

with a proper documentation.

6.8 Summary

This section described the platform used for development, testing and evaluation of model

predictive controller onboard the UAV. The aircraft uses a classical tricopter design utilizing

built-in stabilization board. We proposed a custom control board for handling signal process-

ing and controller computation onboard while supplying wireless telemetry and data logging.

Two different microcontrollers were used to allow a decomposition of the cod. Computation-

ally intensive tasks (Kalman filter and MPC) are located on 32-bit ARM coprocessor, while

communication and other tasks are left on 8-bit xMega MCU. Both systems utilize FreeR-

TOS, Real-Time operating system. RTOS Tasks were presented with brief description of their

purpose. In order to implement KF and MPC on these microcontrollers, a CMatrixLib ma-

trix library was developed and published as an Open Source project on community website

https://github.com/klaxalk/CMatrixLib.

35/72

https://github.com/klaxalk/CMatrixLib

7 IMPLEMENTATION ASPECTS

7 Implementation aspects

Following section shows how the theoretical concept of Kalman filter and MPC (see sec-

tions 4.3 and 5) were transferred to the real hardware. Although its implementation is simple

and straightforward if using e.g. Matlab, the transfer of the technology into embedded hard-

ware brings new challenges. We propose practical refinements that allow execution of MPC

on underpowered hardware of the UAV. We present an approach that exploits the structure

of the dynamical system to introduce off-set free tracking with the original MPC formulation.

Subsequently, we discuss how to take an advantage of objective function structure to optimize

it while having a small memory footprint. Lastly, parameters of MPC are tuned to meet the

performance requirements (namely computation rate). Furthermore, the simulation results

are presented to allow comparison with experiments.

The final setup comprises of two separate MPC controllers driving both attitude axis. Since

the PID altitude controller developed during previous work [42] is satisfactory for experiments

with multiple UAVs, implementation of the MPC for the altitude system was postponed for

future work. Because both attitude axis are controlled identically (due to decoupled system

description), following chapters contain figures mostly for forward motion of the UAV. The

yaw subsystem is left uncontrolled due to absence of data for estimating angle φ but consid-

ering its stability and the order of the dynamical system, appropriate PD controller could be

designed to suite our needs.

7.1 Implementing Kalman filter

The KF, described in section 4.3, was firstly simulated in Matlab. In order to provide

good estimate of all states, the measurement noise Q has to be identified and the process

noise parameters in R tuned. Practically, setting of kalman filter is done by tuning the ratio

between elements of R and Q. For the system defined by (8), R and Q were empirically

identified as follows:

Rx,y =

1 0 0

0 1 0

0 0 1

 ,Qx,y =
[
150
]
. (39)

The remaining parameters for KF are Cx,y = [0, 1, 0] and LTI system matrices defined as

(15). Tuning the filter is a very subjective process where one has to take into account several

criteria, often contradictory. All states need to be estimated as accurate as possible while

having them to converge as fast as possible (increasing values of R). On the other hand, it is

supposed to eliminate the measurement noise (increasing values of Q) that brings a possibility

of an incorrect estimate. The rule of thumb is to give a priority to convergence by finding a

noise level, which is the highest tolerable level that allows smooth control. The corresponding

ratio (39) was found roughly in simulation and lately fine-tuned with hardware.

36/72

7 IMPLEMENTATION ASPECTS

The filter was firstly implemented solely on the xMega MCU. Because the MCU allowed

its execution only in a rate around 50 Hz while dedicating all its resources, it was moved on

the STM MCU, where the computation is done under 1 ms for both axis.

7.1.1 Estimating state disturbances

The Kalman filter can be also used for estimation of disturbances, if they can be modeled

as states in the LTI system. In our case, these are uncontrollable and unmeasurable states,

that have a link into the path between the system input and a measured state. Specifically, all

disturbances in the system of the UAV can be combined into one force acting on its body. In

practice, these are for example the wind disturbances and IMU calibration offset. The force

can be expressed as an parasitic acceleration in the respective attitude axis.

Let us improve the attitude LTI system by adding two new states — ẍd representing

the disturbance in acceleration and ẍu representing the contribution in acceleration from

the control input. The state ẍ that was previously considered as the only acceleration now

combines the two previously mentioned states. The diagram of the newly proposed system is

depicted in figure 7.1. u(s) is the Laplace image of the input signal u(t), and x(s), ẋ(s), ẍ(s),

ẍu(s), ẍd(s) are Laplace images of x(t), ẋ(t), ẍ(t), ẍu(t), ẍd(t) respectively. Furthermore, the

disturbance can be estimated by the KF by setting the process noise matrix R. If we set

relatively high variances for states ẍu, ẍ compared to state ẍd the filter will estimate ẍd by

computing discrepancies between estimations from u and corrections from measured ẋ.

1
τ1s+1

+

ẍd(s)

1
s

1
s

u(s) ẍu(s)

ẍ(s) ẋ(s) x(s)

Figure 7.1: Diagram of the LTI system with the disturbance estimation.

Matrices for the new discrete attitude LTI system state as follows:

Ax,y =


1 0.0114 0 0 0

0 1 0.0114 0 0

0 0 0 1 1

0 0 0 0.9799 0

0 0 0 0 1

 ,Bx,y =


0

0

0

5.0719× 10−5

0

 , (40)

where the state vectors are qx = (x, ẋ, ẍ, ẍu, ẍd)
T and qy = (y, ẏ, ÿ, ÿu, ÿd)

T . This state

representation was used in the final implementation and during experiments. The parameters

of KF can be tuned that the settling time is fast enough to compensate wind disturbances.

37/72

7 IMPLEMENTATION ASPECTS

The diagonal of the process noise matrix was set to diag(R) = (1, 1, 1, 1, 0.04)T in the final

implementation. Estimated disturbances can be further used in the control loop to eliminate

control offset (see section 7.2.2). It can be also used for detecting abnormal flight conditions

as a part of a failure detection system.

7.2 Implementing QMPC

Two approaches to model predictive control can be seen in literature. It can be either

used for trajectory planning or for real-time control solely. Given the dynamical model, set

of constraints and roughly defined (even infesible) desired trajectory, MPC optimization can

produce a feasible result (satisfying constraints and the dynamical model) when minimizing

a certain objective. In this form, MPC can be used as an offline trajectory planner [38]. On

the other hand, if using the MPC for real-time control of the UAV, we suppose that the

desired trajectory is already known and that is feasible. It has a significant impact on the

particular formulation of our MPC. If the trajectory is feasible (meaning no state constraints

are violated) and it initiates in the current state of the UAV, no state constraints are violated

(and thus required) in the MPC formulation. Otherwise, the trajectory is infeasible. Based

on these assumptions, we propose an implementation of input constrained QMPC. Since the

feasibility of the desired trajectory may not be guaranteed or the trajectory may not start

with the current state of the UAV, we propose a simple input governor (see section 7.2.1),

which is a recommended technique [31] instead of implementing constraints.

Since optimizing the objective is easier if it is constrained only by input constraints, we

can afford to optimize over a larger prediction horizon. It allows the UAV to track dynamic

trajectories with greater precision since the controller can be more proactive with regards to

future changes in the desired trajectory.

7.2.1 Input governor

In order to provide a trajectory tracking mechanism that does not violate state constraints,

two requirements have to be considered. Firstly, the trajectory itself should satisfy the system

dynamics and imposed constraints and secondly the trajectory should start with the current

state of the UAV. The input governor is a system that modifies the desired trajectory in such

a way, that it satisfies these requirements. This modification does not need to be optimal since

our aim is not to produce optimal desired trajectories but to find optimal control actions to

drive the system through known trajectories. The governor produces a feasible trajectory from

the current state of the UAV. The only constraint we impose is a maximum speed of the UAV,

since the px4flow sensor effectively measures speed only up to 0.35 ms−1. Our input governor

limits the rate of change of the desired position trajectory by that value while ensuring the

trajectory initiates in the current state of the UAV.

38/72

7 IMPLEMENTATION ASPECTS

7.2.2 Offset-free tracking

The MPC formulation as stated in section 5.2 does not provide offset-free tracking. In the

case of external disturbances or imperfect behavior of the integrated stabilization system, this

would lead to steady state control error. Several techniques exist to solve the problem. The

classical one is a delta input formulation of MPC [6]. Morover, an additional integral feedback

loop could be created around the MPC controller. But since our estimator is able to observe

the disturbance within the system, the classical formulation of MPC is in fact able to control

the system without a steady state error [31]. Moreover it has some other useful properties,

e.g. no windup issues (like with classical integral feedback) and the controller (considering its

separation from the estimator) can be completely stateless.

With this approach, the controller is able to compensate not only small and steady dis-

turbances, but it creates adequate actions even for sudden and momentary disturbances. See

section 8.5.2 for results of the experiments.

7.2.3 Controller parameters

The controller has several parameters whose settings have an impact on its performance.

Some of them are tied up by execution rate of the MPC, namely the number of decision

variables and the length of the prediction horizon. After an experiment, we have converged

to horizon length of 200 steps (2.2 s) with 20 decision variables in the objective. They are

distributed in an exponential way over the horizon. First 10 variables directly correspond to

first 10 control actions. Another 9 variables cover control actions evenly up to the 100th one.

The last variable sets the control action for the last 100 steps. See figure 7.2 for an example

of the optimized control action.

0 0.5 1 1.5 2
−30

−20

−10

0

10

20

30

Time [s]

O
ut

pu
t [

−
]

Optimized control action

Figure 7.2: Control action produced by 20 decision variables and stretched to 2.2 s prediction horizon.

Our system presumes desired trajectories in the form of position states only. There is no

need to require the information about the desired velocity of the UAV, unless its speed is

the only state that should be controlled without demanding the control of UAV’s position.

One can specify not to penalize certain states by setting respective elements of matrices Q,

39/72

7 IMPLEMENTATION ASPECTS

Horizon length 200 steps, 2.2 s

Number of variables 20

Move blocking exponential-like

Constraints input constraints

MPC rate 30 Hz

Table 7.1: Parameters of our MPC implementation.

S and P (consequently merged to Q̂, P̂) to zero. By doing that, the control error of the state

does not take part in the objective. This leaves us basically three parameters to set in order

to tune the performance of the controller, supposing the desired trajectory consists of only

position state. These parameters are weights for penalizing position errors and control actions

as defined in section 5.2, specifically tuned as follows

Q =


1.07 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,S =


10 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,P =
[
0.0000025

]
(41)

Tuning of MPC controller is a different process than tuning of PID controller, which was

used in the previous system for UAV control by Department of Cybernetic of CTU. Parameters

of the MPC controller (diagonals of matrices in (41)) have a meaningful interpretation since

they correspond to a particular state, and the effect of changing the parameters can be

observed on the states. A common rule of thumb is to firstly normalize the diagonal of

Q according to a ’usual’ range of state values (e.g. if the range of the velocity state is

0.1 ms−1 then the corresponding element of Q is set to 1/0.1). In the beginning, this helps

to normalize the penalties, since each state can hypothetically have different typical range of

values. Furthermore the parameter P needs to be set in such way that the system produces

control actions that do not violate input constraints when started from an ordinary initial

condition. On can set P in such a way that the actions lie within a desired range most of the

time. When increasing the input penalization, generated control actions tend to be smaller,

which means that the system is more conservative with actions. Finally, one can tune elements

Q so the states are estimated properly.

There is an important phenomenon that needs to be taken into account. The matrix Ĥ

(defined in (30)) determines the shape of the quadratic form in the objective. A condition

number of Ĥ determines whether the optimum of the objective is sharply defined or whether it

lies within a wide plateau. See figure 7.3 for an illustrative example of 2-dimensional quadratic

form. In the case of ill-conditioned quadratic form, there are many solutions with the objective

value near the optimum, which can be interpreted as there are many different sequences

of control actions that can lead to similar outcomes. We should avoid constructing such

function, because locating its minimum may lead to numerical difficulties during calculations.

40/72

7 IMPLEMENTATION ASPECTS

−10
−5

0
5

10

−10

−5

0

5

10
0

20

40

60

80

100

(a) well-conditioned quadratic form

−10
−5

0
5

10

−10

−5

0

5

10
0

20

40

60

80

100

(b) ill-conditioned quadratic form

Figure 7.3: Illustrative example of 2-dimensional quadratic form and its.

Optimizing it using a closed-form as described in section 5.5 can be affected by numerical

instabilities when calculating the matrix inversion Ĥ
−1

. Also, iterative methods tend to suffer

from slow convergence on such plateaus [9]. Fortunately, it has a simple solution. We can

regularize the matrix Ĥ by increasing penalization P̂ since it directly increases values on

its diagonal and thus increases its eigenvalues (supposing P̂ � 0). The interpretation of this

process is simple. We limit the freedom of input actions by regularizing Ĥ, which leads to

better numerical stability of computation.

7.2.4 Optimizing onboard

When implementing the input constrained MPC into embedded hardware, the structure

of the problem can be exploited in following way. Since matrix Ĥ does not depend on the

desired trajectory nor the initial condition, it can be precomputed offline. This also holds for its

inversion Ĥ
−1

and matrices B̂ and Â. Thanks to that we can store them in a ROM (read-only

memory, designated for the program), which supports execution even on a microcontrollers

with a small amount of RAM.

The workflow of testing and tuning different parameters of the controller was built upon a

simulation in Matlab. One part of the simulation is a script that can generate a C code, with all

matrices precomputed, that can be easily inserted into sources for the STM microcontroller.

This allowed relatively easy tuning and testing cycle.

7.3 Summary

This chapter described some aspects of implementation of the Kalman filter and MPC

controller. Particular settings of Kalman filter has been presented and followed by the exten-

41/72

7 IMPLEMENTATION ASPECTS

sion of the LTI system to allow estimating state disturbances. Then, we discussed the two

fundamental approaches to use MPC as a trajectory planner and as a low-level controller.

The input governor system is presented to supply the controller with a feasible trajectory

followed by particular settings of our MPC implementation. Finally, we discussed a memory

allocation of MCP matrices which is necessary for final implementation.

42/72

8 EXPERIMENTS

8 Experiments

This section presents an evaluation of the proposed control system. Firstly, simulation

results are shown to be subsequently compared real-world experiments. We tested the system

in various situations including tracking constant reference, step response and sine trajectory.

Another experiments were conducted to verify the disturbance rejection feature. This section

also includes observations on drift of the position estimator with an absolute localization

system. Finally, the system’s performance is compared to the previous work. Most of the

experiments are captured in the compilation video http://youtu.be/lPy7w-GUbw4, which is

also located on the enclosed CD.

8.1 Simulating MPC

Figure 8.1 shows the step response of the system, simulated without the input governor.

The proaction can be seen before the step in the reference trajectory, which is enabled due

to the predictive nature of the controller.

0 2 4 6 8 10

0

0.5

1

1.5

Position

Time [s]

P
os

iti
on

 [m
]

Setpoint
Position

0 2 4 6 8 10

0

0.5

1

1.5
Speed

Time [s]

S
pe

ed
 [m

/s
]

Simulated measurement
Estimated speed

Figure 8.1: Simulating position step response without the input governor (forward motion).

0 2 4 6 8 10

0

0.5

1

1.5

Position

Time [s]

P
os

iti
on

 [m
]

Setpoint
Position

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

Speed

Time [s]

S
pe

ed
 [m

/s
]

Simulated measurement
Estimated speed
Speed limit

Figure 8.2: Simulating position step response with the input governor (forward motion).

43/72

http://youtu.be/lPy7w-GUbw4

8 EXPERIMENTS

Since the desired unit step trajectory is not feasible, it should be firstly transformed

using the input governor. In our case, we limit the UAV’s speed to 0.35 ms−1 (which is

due to maximum speed that the px4flow sensor can measure reliably). Figure 8.2 shows the

simulation of step response with the input governor. See that the speed lies roughly under the

limit. Figure 8.3 shows the simulation of UAV tracking sine trajectory. Prior work [4, 42] and

related work [5] demonstrated that tracking such trajectory is difficult without a notable lag.

Our simulation shows that MPC with long enough prediction horizon achieves better results.

See section 8.4 for experimental validation of sine trajectory.

0 10 20 30 40

−1

0

1

2

Position

Time [s]

P
os

iti
on

 [m
]

Setpoint
Position

0 10 20 30 40
−0.5

0

0.5

Speed

Time [s]

S
pe

ed
 [m

/s
]

Simulated measurement
Estimated speed

Figure 8.3: Simulating tracking of feasible sine trajectory (forward motion).

The disturbance rejection ability based on the disturbance estimation is one of key points

of the system. It should be able to deal with constant disturbances (cause by bad trimming,

offset in KK2 stabilization) as well as momentary disturbances (possibly caused by wind).

Although simulations showed that the disturbance estimation can be tuned arbitrarily to

match a desired settling time of the estimate, in practice, there is a limit (see discussion in

section 8.5.1). Figure 8.4 shows a simulation of disturbance rejection with parameters tuned

using the real UAV.

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

0.15
Position

Time [s]

P
os

iti
on

 [m
]

Setpoint
Position

0 5 10 15 20
−0.05

0

0.05

0.1

0.15

0.2

Disturbance

Time [s]

A
cc

el
er

at
io

n
[m

/s
2]

Disturbance
Estimation

Figure 8.4: Simulation of disturbance rejection (forward motion).

44/72

8 EXPERIMENTS

8.2 Tracking constant setpoint

The first experiment was realized with the aim to test the UAV capability of tracking

a constant reference, i.e. hovering above one place. Statistically, we are interested in the

standard deviation σ and the maximum deviation ∆max. Figure 8.5 shows its performance

in good light conditions with no wind disturbances. The aircraft was capable of tracking the

reference with standard deviation σ = 4.8 cm and maximum deviation ∆max = 14.4 cm.

0 20 40 60 80 100 120 140 160 180
−1

−0.5

0

0.5

1
Position

Time [s]

P
os

iti
on

 [m
]

Desired position
Estimated by KF

Figure 8.5: Experiment of tracking static trajectory (forward motion).

8.3 Measuring of estimation drift

One could ask, what is the relevance of previously presented data, since the position is

estimated onboard using only velocity data and the model. The truth is that the position is not

absolute and although the controller seems to stay around the setpoint, the absolute position

in the space may drift away. In order to measure such drift we implemented the Whycon

camera localization system [20, 14] using calibrated camera was employed. It was used to

measure the absolute position of the UAV while conduction a flight. The figure 8.6 shows the

position drift during 1 minute flight. The maximum measured deviation was ≈ 10 cm. It can

be seen, that the estimated position slowly drifts away from the absolute one, and then lately

drifts back. Similar effect can be observed in figure 8.7, where the UAV is tracking a sine

trajectory. In general, the drift is larger when the UAV is moving closer to the saturation of

the px4flow sensor.

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

Time [s]

P
os

iti
on

 [m
]

Position

Position estimated by KF
Position measured by Whycon

Figure 8.6: Experiment of measuring a position drift (forward motion).

45/72

8 EXPERIMENTS

The signal noise from the px4flow sensor is usually larger at higher velocities. At last,

there are other conditions that need to be met to eliminate the position drift — good light

conditions and good vibration isolation of the sensor. Otherwise the drift is ≈ 10 cm/min or

larger. Our observations correspond with results presented by authors of the system in [17].

0 50 100 150

−0.5

0

0.5

1

Time [s]

P
os

iti
on

 [m
]

Position

Position estimated by KF
Position measured by Whycon

Figure 8.7: Experiment conducted to measure a position drift while tracking a sine trajectory (forward

motion).

8.4 Tracking dynamic trajectory

Another experiment tested the system capability of tracking dynamic trajectories. In the

first experiment, response of the UAV to a unit step response was tested. As it can be seen in

figure 8.8, the UAV does not overshoot the setpoint, but it rather makes a proaction which

is a typical characteristic of the model predictive controller. The speed lies within the set

boundaries due to input governor. Figure 8.9 shows the performance of the system during

tracking a circular trajectory. The trajectory was precomputed with constant speed 0.25 ms−1.

Figure shows position and speed for both attitude axis. The experiment can bee seen in the

compilation video which can be found at http://youtu.be/lPy7w-GUbw4 or in the enclosed

CD (video1.mp4). The maximum deviation from the desired trajectory (forward motion) was

∆max = 16.3 cm and the standard deviation σ = 4.3 cm.

0 2 4 6 8 10

0

0.5

1

1.5

Elevator position

Time [s]

P
os

iti
on

 [m
]

Desired position
Estimated by KF

0 2 4 6 8 10
−0.5

0

0.5

1

Elevator speed

Time [s]

S
pe

ed
 [m

/s
]

Measured by px4flow
Estimated by KF
Speed limit

Figure 8.8: Experiment of tracking the unit step response.

46/72

http://youtu.be/lPy7w-GUbw4

8 EXPERIMENTS

0 10 20 30 40
−1

0

1

2

Forward position

Time [s]

P
os

iti
on

 [m
]

Desired position
Estimated by KF

0 10 20 30 40
−0.5

0

0.5

1

Forward speed

Time [s]

S
pe

ed
 [m

/s
]

Measured by px4flow
Estimated by KF
Speed limit

0 10 20 30 40
−1

0

1

2

Leftward position

Time [s]

P
os

iti
on

 [m
]

Desired position
Estimated by KF

0 10 20 30 40
−0.5

0

0.5

1

Leftward speed

Time [s]

S
pe

ed
 [m

/s
]

Measured by px4flow
Estimated by KF
Speed limit

Figure 8.9: Experiment of tracking circular trajectory. Amplitude 0.95 m, period 20 s, speed

0.25 ms−1.

8.5 Disturbance rejection

Different set of experiments was conducted to test the disturbance rejection capability.

Since we dealt with the real hardware where the dynamical model is only an approximation

of the real system, we cannot suppose the same performance during the experiments as it

was observer in simulations. The difference was mostly observed during tuning of the distur-

Figure 8.10: Experimental setup with 40 W fan to test the disturbance rejection feature.

47/72

8 EXPERIMENTS

bance estimator. By decreasing the settling time of the estimated disturbance, the system

becomes unstable due to oscillations being induced into the estimate which led to worse per-

formance. We found sufficient parameters that allows to estimate usual disturbances, such as

bad trimming or stabilization offset, in order of seconds.

8.5.1 Persistent wind disturbances

The UAV was tested for its capability to reject wind disturbances by using a 40 W fan

pointed to the UAV (see figure 8.10). To put it into context, it is the same power as one of

UAV motors. The figure 8.11 shows the forward motion of the aircraft. The grey area indicates

when the fan was turned on. The estimated disturbance settled in ≈ 10 s which allowed the

UAV to eliminate the resulting steady state error. Notice the non-zero disturbance when the

fan is turned off, which is caused by already mentioned trimming and stabilization offset.

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

Position

Time [s]

P
os

iti
on

 [m
]

Desired position
Estimated by KF

0 10 20 30 40 50 60 70 80

−50

0

50

100

Control action

Time [s]

O
ut

pu
t [

−
]

Control action

0 10 20 30 40 50 60 70 80
−0.1

−0.05

0

0.05

0.1

Estimated acceleration error (wind disturbance)

Time [s]

A
cc

el
er

at
io

n
er

ro
r

[m
/s

2]

Disturbance

Figure 8.11: Experiment of tracking constant setpoint while being under the influence of wind.

48/72

8 EXPERIMENTS

8.5.2 Momentary disturbances

Following experiment, shown in the compilation video, aimed to test the system’s capa-

bility of rejecting momentary disturbances. Figure 8.12 shows a forward motion of the UAV,

which is repeatedly dragged by hand. These disturbances were short and sudden, and their

estimate has relatively short raise time, comparing to those in the previous experiment. Gray

areas denote the moments when the UAV was dragged away. One can spot overshoots in

the position signal. They can be explained by the remaining disturbance in the estimate.

The controller accounted for a disturbance, that was not actually effecting the UAV at the

moment (due to the settling time of the estimate). See Appendix E for additional data from

experiments with disturbances.

0 5 10 15 20 25 30

−0.5

0

0.5

Position

Time [s]

P
os

iti
on

 [m
]

Desired position
Estimated by KF

0 5 10 15 20 25 30

−500

0

500

Control action

Time [s]

O
ut

pu
t [

−
]

Control action

0 5 10 15 20 25 30

−0.1

0

0.1

0.2
Estimated acceleration error (disturbance by hand)

Time [s]

A
cc

el
er

at
io

n
er

ro
r

[m
/s

2]

Disturbance

Figure 8.12: Experiment of tracking constant setpoint while being under the influence of momentary

disturbances. The UAV was dragged by hand which is indicated by the gray areas.

49/72

8 EXPERIMENTS

8.6 Outdoor experiment — longer trajectory

The last experiment was conducted to present the UAV capability of autonomous opera-

tion not only in indoor (laboratory) conditions, but also in a general outdoor area. The UAV

was supposed to track a precomputed trajectory with 1 minute duration. Figure 8.13a shows

a photo that illustrates the course of the experiment13 while figure 8.13b shows the plot of

onboard data including desired and estimated position. The experiment was conducted under

the influence of mild and steady breeze. The video from the experiment can be found on url

http://youtu.be/iqgL1H_DCmU or on the CD (video2.mp4).

(a) image stitched from the video

0

2

4

6

−1.5−1−0.50

0

0.5

1

1.5

Z
 [m

]

Y [m]

X [m]

Estimated position
Setpoint

(b) visualization of logged data

Figure 8.13: Experiment with trajectory conducted outdoors. For detailed data see Appendix E.

Most of previously presented situations can be seen in the compilation video. It is accom-

panied by data logged onboard the UAV, that are rendered in the video (see figure 8.14a).

The estimated position is also fitted with the estimated force acting on the UAV. The outdoor

video is also accompanied with the position plot (figure 8.14b).

(a) video1: http://youtu.be/lPy7w-GUbw4 (b) video2: http://youtu.be/iqgL1H_DCmU

Figure 8.14: Two videos with onboard data rendered — a) compilation video, b) long trajectory

video.

13The photo was created by stitching multiple images from the video.

50/72

http://youtu.be/iqgL1H_DCmU
http://youtu.be/lPy7w-GUbw4
http://youtu.be/iqgL1H_DCmU

8 EXPERIMENTS

8.7 Performance and comparison

Results presented in this section were gathered from three experiments — tracking con-

stant trajectory (section 8.2), tracking circular trajectory (section 8.4), and the last experi-

ment of tracking a longer trajectory in outdoor environment (see the previous section). The

first two experiments were performed indoor and all of them were conducted under good

lighting conditions. Table 8.1 shows the statistical evaluation of trajectory tracking where

σx, ∆x,max and σy, ∆y,max denote the standard and maximum deviation for the lateral and

forward axis respectively, and l indicates the time duration of the experiment. One can see

that the performance of the system in the indoor environment is slightly better than in the

outdoor environment, but overall the results are better when comparing to the previous work

[42]. Although the performance of tracking constant trajectory is similar, the results of track-

ing dynamical trajectory are in order of magnitude better in terms of the standard deviation.

According to results of thesis [42] it rarely went under 60 cm.

σx [cm] ∆x,max [cm] σy [cm] ∆y,max [cm] l [s]

constant trajectory 4.0 15.1 3.3 11.8 184

circular trajectory 4.3 14.9 3.9 8.5 92

outdoor experiment 8.7 23.5 7.0 21.6 55

Table 8.1: Performance of the proposed solution.

The result of the proposed system are similar to results of previously used PID controller,

if tracking a constant setpoint. If tracking a dynamical trajectory, the MPC outperforms the

PID controller significantly.

8.8 Summary

The last section of this thesis demonstrated the performance of the system in practice.

The implemented Kalman filter was able to estimate external disturbances, which signifi-

cantly improved performance of the system during offset-free tracking. The UAV was able

to effectively counteract wind disturbances. Moreover, it was able to follow a desired trajec-

tory with precision suitable for use in GPS-denied and indoor environment. Statistically, the

results were significantly better than in the previous work.

51/72

9 CONCLUSION

9 Conclusion

In this thesis, we have developed a hardware and software solution that allows execution

of the model predictive controller onboard of micro aerial vehicles. The dynamical model of

the helicopter has been derived and its parameters have been numerically and experimentally

identified. We have designed a system including the Kalman filter as the state estimator and

the quadratic MPC which optimizes control actions over the prediction horizon of 2.2 s. The

proposed system has been successfully implemented into the embedded hardware. The con-

troller has been verified by numerical simulations and tested in various experiments. Many

experiments have been conducted both indoors and outdoors to test different scenarios in-

cluding tracking various trajectories and disturbance rejection. The entire assignment of this

thesis has been fulfilled successfully. According to the assignment, following tasks have been

completed:

• The dynamical system of the UAV has been analyzed and its model was constructed.

• A Kalman filter has been implemented to estimate states and disturbances.

• A model predictive controller has been derived and implemented on the experimental

micro aerial vehicle.

• The experimental aircraft has been constructed including the custom control board,

which has been designed and manufactured for the purpose of this thesis.

• Experiments have been conducted that verified the capabilities of the solution to follow

dynamical trajectories in indoor and outdoor environments.

This work also created opportunities for other students to work on their theses [18, 16].

The first work aimed to control a group of UAVs synchronously using the XBee modules, in

the second one, a user interface for the ground station was developed and a failure detection

system based on the proposed estimator was designed. The platform proposed in this thesis

will be further used for a research of UAV swarms and formations within the Multi-Robot

System group of FEE CTU.

Finally, let us mention some contributions of the presented work beyond the assignment of

this thesis and related publications, in which author of this thesis contributed as a co-author.

The experimental platform was used during the research of a visual feature tracking system

[12]. The results with multirobotic formations have been published in [39]. The last results

dealing with application of the proposed system in multi-robot scenarios have been submitted

to Autonomous Robots journal [22].

Relevant information and results in the field of MAV control and multi-robot systems in

general, which were achieved by other members of Multi-robot Systems group, can be found

in [35, 37, 32, 33, 36, 34].

52/72

9 CONCLUSION

9.1 Future work

During the development of this thesis, several ideas and needs emerged that specify our

future work. Since the main bottleneck of the system is its dependence on sensor data, ad-

ditional onboard sensors should be mounted to increase the precision and robustness of the

estimated UAV position. Barometer and magnetometer could be added to the custom control

board and their data fused by the Kalman filter. The IMU, which is already present in the

stabilization board, could be also used for the position estimation.

Regarding controllers, the MPC shall be implemented to control also the altitude, al-

though there is not such need for precise trajectory tracking. Furthermore, an additional

MPC could be added to allow optimal onboard trajectory planning. It would require to solve

an optimization problem with more complex constraints.

53/72

9 CONCLUSION

54/72

10 BIBLIOGRAPHY

10 Bibliography

[1] Kostas Alexis, Christos Papachristos, Roland Siegwart, and Anthony Tzes. Robust ex-

plicit model predictive flight control of unmanned rotorcrafts: Design and experimental

evaluation. In Control Conference (ECC), 2014 European, pages 498–503. IEEE, 2014.

[2] Ardupilot. http://ardupilot.com/, February 2015.

[3] Federico Augugliaro, Ammar Mirjan, Fabio Gramazio, Matthias Kohler, and Raffaello

D’Andrea. Building tensile structures with flying machines. In Intelligent Robots and

Systems (IROS), 2013 IEEE/RSJ International Conference on, pages 3487–3492. IEEE,

2013.

[4] Tomáš Báča. Control of relatively localized unmanned helicopters. Bachelor’s thesis,

České vysoké učeńı technické v Praze, 2013.

[5] Moses Bangura, Robert Mahony, et al. Real-time model predictive control for quadrotors.

19th World Congress, The International Federation of Automatic Control, 2014.

[6] Francesco Borrelli and Manfred Morari. Offset free model predictive control. In Proc.

IEEE Conference on Decision and Control, pages 1245–1250, 2007.

[7] Patrick Bouffard. On-board model predictive control of a quadrotor helicopter: Design,

implementation, and experiments. Technical report, DTIC Document, 2012.

[8] Patrick Bouffard, Anil Aswani, and Claire Tomlin. Learning-based model predictive

control on a quadrotor: Onboard implementation and experimental results. In Robotics

and Automation (ICRA), 2012 IEEE International Conference on, pages 279–284. IEEE,

2012.

[9] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university

press, 2004.

[10] Dario Brescianini, Markus Hehn, and Raffaello D’Andrea. Quadrocopter pole acrobatics.

In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on,

pages 3472–3479. IEEE, 2013.

[11] PX4FLOW Smart Camera. https://pixhawk.org/modules/px4flow, April 2015.

[12] J. Chudoba, M. Saska, T. Baca, and L. Preucil. Localization and stabilization of micro

aerial vehicles based on visual features tracking. In Proceedings of 2014 2014 Interna-

tional Conference on Unmanned Aircraft Systems (ICUAS), volume 1, pages 611–616,

Danvers, 2014. IEEE Computer society.

[13] Open Source Hardware Datalogger. https://github.com/sparkfun/OpenLog, April 2015.

55/72

10 BIBLIOGRAPHY

[14] J. Faigl, T. Krajńık, J. Chudoba, L. Přeučil, and M. Saska. Low-Cost Embedded System

for Relative Localization in Robotic Swarms. In ICRA2013: Proceedings of 2013 IEEE

International Conference on Robotics and Automation, pages 985–990, Piscataway, 2013.

IEEE.

[15] Ramsey Faragher et al. Understanding the basis of the kalman filter via a simple and

intuitive derivation. IEEE Signal processing magazine, 29(5):128–132, 2012.

[16] Jǐŕı Fiedler. Synchronized control of group of helicopters using direct communication.

Bachelor’s thesis, České vysoké učeńı technické v Praze, expected in June 2015.

[17] Dominik Honegger, Lorenz Meier, Petri Tanskanen, and Marc Pollefeys. An open source

and open hardware embedded metric optical flow cmos camera for indoor and outdoor

applications. In Robotics and Automation (ICRA), 2013 IEEE International Conference

on, pages 1736–1741. IEEE, 2013.

[18] Martin Klučka. User interface and failure detection for support of multi-mav experiments.

Bachelor’s thesis, České vysoké učeńı technické v Praze, expected in June 2015.

[19] T. Krajnik, M. Nitsche, S. Pedre, L. Preucil, and M. Mejail. A Simple Visual Navigation

System for an UAV. In International Multi-Conference on Systems, Signals and Devices,

page 34, Piscataway, 2012. IEEE.

[20] Tomas Krajnik, Matias Nitsche, Jan Faigl, Petr Vanek, Martin Saska, Libor Preucil,

Tom Duckett, and Marta Mejail. A practical multirobot localization system. Journal of

Intelligent & Robotic Systems, 76(3-4):539–562, 2014.

[21] Teppo Luukkonen. Modelling and control of quadcopter. Independent research project

in applied mathematics, Espoo, 2011.

[22] J. Chudoba L. Preucil T. Krajnik J. Faigl J. Thomas G. Loianno V. Kumar M. Saska,

T. Baca. System for stabilization of micro aerial vehicle swarms using onboard visual

relative localization. Submitted to Autonomous Robots journal, 2015.

[23] Robert Mahony, Vijay Kumar, and Peter Corke. Multirotor aerial vehicles: Modeling,

estimation, and control of quadrotor. IEEE Robotics & Automation Magazine, (19):20–

32, 2012.

[24] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The grasp mul-

tiple micro-uav testbed. Robotics & Automation Magazine, IEEE, 17(3):56–65, 2010.

[25] Mark W Mueller and Raffaello D’Andrea. A model predictive controller for quadro-

copter state interception. In Control Conference (ECC), 2013 European, pages 1383–

1389. IEEE, 2013.

[26] List of numerical libraries. http://en.wikipedia.org/wiki/List of numerical libraries,

April 2015.

56/72

10 BIBLIOGRAPHY

[27] CMatrixLib on Github.com. https://github.com/klaxalk/CMatrixLib, April 2015.

[28] Mikuláš Ondřej. Quadratic programming algorithms for fast model-based predictive

control. Bachelor’s thesis, České vysoké učeńı technické v Praze, 2013.

[29] Christos Papachristos, Kostas Alexis, and Anthony Tzes. Model predictive hovering-

translation control of an unmanned tri-tiltrotor. In Robotics and Automation (ICRA),

2013 IEEE International Conference on, pages 5425–5432. IEEE, 2013.

[30] Pixhawk. https://pixhawk.org/, February 2015.

[31] J Anthony Rossiter. Model-based predictive control: a practical approach. CRC press,

2013.

[32] M. Saska, J. Chudoba, L. Preucil, J. Thomas, G. Loianno, A. Tresnak, V. Vonasek, and

V. Kumar. Autonomous Deployment of Swarms of Micro-Aerial Vehicles in Cooperative

Surveillance. In Proceedings of 2014 International Conference on Unmanned Aircraft

Systems (ICUAS), volume 1, pages 584–595, Danvers, 2014. IEEE Computer society.

[33] M. Saska, Z. Kasl, and L. Preucil. Motion Planning and Control of Formations of Mi-

cro Aerial Vehicles. In Proceedings of The 19th World Congress of the International

Federation of Automatic Control, pages 1228–1233, Pretoria, 2014. IFAC.

[34] M. Saska, T. Krajnik, J. Faigl, V. Vonasek, and L. Preucil. Low Cost MAV Platform

AR-Drone in Experimental Verifications of Methods for Vision Based Autonomous Navi-

gation. In Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems, volume 1, pages 4808–4809, Piscataway, 2012. IEEE.

[35] M. Saska, T. Krajnik, V. Vonasek, Z. Kasl, V. Spurny, and L. Preucil. Fault-Tolerant For-

mation Driving Mechanism Designed for Heterogeneous MAVs-UGVs Groups. Journal

of Intelligent and Robotic Systems, 73(1-4):603–622, January 2014.

[36] M. Saska, T. Krajnik, V. Vonasek, P. Vanek, and L. Preucil. Navigation, Localization and

Stabilization of Formations of Unmanned Aerial and Ground Vehicles. In Proceedings

of 2013 International Conference on Unmanned Aircraft Systems, pages 831–840, New

York, 2013. Springer.

[37] M. Saska, J. Vakula, and L. Preucil. Swarms of Micro Aerial Vehicles Stabilized Under

a Visual Relative Localization. In ICRA2014: Proceedings of 2014 IEEE International

Conference on Robotics and Automation, pages 3570–3575, Piscataway, 2014. IEEE.

[38] M. Saska, V. Vonasek, T. Krajnik, and L. Preucil. Coordination and Navigation of

Heterogeneous MAV-UGV Formations Localized by a ’hawk-eye’-like Approach Un-

der a Model Predictive Control Scheme. International Journal of Robotics Research,

33(10):1393–1412, September 2014.

57/72

10 BIBLIOGRAPHY

[39] M. Saska, V. Vonásek, T. Báča, and L. Přeučil. Ad-hoc heterogeneous (mav-ugv) for-

mations stabilized under a top-view relative localization. In In Proceedings of workshops

of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE),

2013.

[40] Satoshi Suzuki, Takahiro Ishii, Yoshihiko Aida, Yohei Fujisawa, Kojiro Iizuka, and

Takashi Kawamura. Collision-free guidance control of small unmanned helicopter us-

ing nonlinear model predictive control. SICE Journal of Control, Measurement, and

System Integration, 7(6):347–355, 2014.

[41] FreeRTOS Free Real-Time Operating System. http://www.freertos.org/, April 2015.

[42] Endrych Václav. Control and stabilization of an unmanned helicopter following a dy-

namic trajectory. Master’s thesis, České vysoké učeńı technické v Praze, 2014.

[43] Xbee PRO wireless module. www.digi.com/zb module dk, April 2015.

[44] Pablo Zometa, M Kogel, Timm Faulwasser, and Rolf Findeisen. Implementation aspects

of model predictive control for embedded systems. In American Control Conference

(ACC), 2012, pages 1205–1210. IEEE, 2012.

58/72

APPENDIX A CD CONTENT

Appendix A CD Content

In Table A.1 are listed names of directories on CD.

Directory name Description

thesis Master’s thesis in pdf format

thesis sources latex source codes

src/STM sources for STM32F4

src/xMega sources for ATxMega128A3U

src/Matlab matlab scripts for simulation and identification

src/CMatrixLib CMatrixLib matrix library

src/hardware Eagle files and material for PCB reproduction

videos videos from experiments

Table A.1: CD Content

59/72

APPENDIX A CD CONTENT

60/72

APPENDIX B LIST OF ABBREVIATIONS

Appendix B List of abbreviations

In Table B.1 are listed abbreviations used in this thesis.

Abbreviation Meaning

ANSI C a standard for C programming language

API application programming interface

AVR Atmel’s micro-controller architecture

ARM RICS processor architecture

EKF extended Kalman filter

ESC electronic speed controller

FPU floating-point unit

GNU GNU’s not Unix

GPS global positioning system

IMU inertial measurement unit

i2c two-wire serial interface

KF Kalman filter

KK2 name of used stabilization board

LP linear programming

LTI liner time-invariant

MCU microcontroller unit

MAV micro aerial vehicle

MEMS micro-electro-mechanical system

MPC model predictive controller

PC personal computer

PCB printed circuit board

PID proportional-integral-derivative controller

PPM pulse-position modulation

QMPC quadratic model predictive control

QP quadratic programming

RAM random access memory

RC remotely controlled / remote controller

RMPC robust model predictive controller

RTOS real-time operating system

SRAM static random access memory

STM STMicroelectronics company

UART universal asynchronous receiver transmitter

UAV unmanned aerial aircraft

Table B.1: Lists of abbreviations

61/72

APPENDIX B LIST OF ABBREVIATIONS

62/72

APPENDIX C CUSTOM CONTROL BOARD SCHEMATIC

Appendix C Custom control board schematic

Electrical schematic of the custom control board v.2.

63/72

APPENDIX C CUSTOM CONTROL BOARD SCHEMATIC

64/72

APPENDIX D PCB LAYOUTS

Appendix D PCB layouts

(a) Board’s top layer. (b) Board’s bottom layer.

Printed circuit board layouts of the custom control board v.2.

65/72

APPENDIX D PCB LAYOUTS

66/72

APPENDIX E ADDITIONAL EXPERIMENTAL RESULT

Appendix E Additional experimental result

0
50

10
0

15
0

20
0

−
2

−
1012

P
os

iti
on

T
im

e
[s

]

Position [m]

E

st
im

at
ed

 p
os

iti
on

S
et

po
in

t

0
50

10
0

15
0

20
0

−
0.

50

0.
5

S
pe

ed

T
im

e
[s

]

Speed [m/s]

M

ea
su

re
d

sp
ee

d
E

st
im

at
ed

 b
y

K
F

S
pe

ed
 li

m
it

0
50

10
0

15
0

20
0

0

0.
51

E
st

im
at

ed
 a

cc
el

er
at

io
n

er
ro

r
(w

in
d

di
st

ur
ba

nc
e)

T
im

e
[s

]

Acceleration error [m/s
2
]

E

st
im

at
ed

 a
cc

el
er

at
io

n
er

ro
r

Data from experiment conducted during a strong wind (5 − 10 ms−1 according to weather forecast).

Notice the control lag behind the setpoint — the desired setpoint was changing by 0.35 ms−1 which

was the actual speed limit in the input governor. Since the system does not integrate the control error,

there are no windup issues. Otherwise, there would be unwanted overshoots.

67/72

APPENDIX E ADDITIONAL EXPERIMENTAL RESULT

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0
−

1012

P
os

iti
on

T
im

e
[s

]

Position [m]

S

et
po

in
t

E
st

im
at

ed
 p

os
iti

on

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

−
0.

50

0.
5

S
pe

ed

T
im

e
[s

]

Speed [m/s]

M

ea
su

re
d

sp
ee

d
E

st
im

at
ed

 b
y

K
F

S
pe

ed
 li

m
it

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0
−

40
0

−
20

00

20
0

40
0

C
on

tr
ol

 a
ct

io
n

T
im

e
[s

]

Control action [−]

C

on
tr

ol
 a

ct
io

n

Data for forward axis from the experiment showed in the video1, https://youtu.be/lPy7w-GUbw4.

68/72

https://youtu.be/lPy7w-GUbw4

APPENDIX E ADDITIONAL EXPERIMENTAL RESULT

0
10

20
30

40
50

60

051015
P

os
iti

on

T
im

e
[s

]

Position [m]

S

et
po

in
t

E
st

im
at

ed
 p

os
iti

on

0
10

20
30

40
50

60

−
0.

50

0.
5

S
pe

ed

T
im

e
[s

]

Speed [m/s]

M

ea
su

re
d

sp
ee

d
E

st
im

at
ed

 b
y

K
F

S
pe

ed
 li

m
it

0
10

20
30

40
50

60
−

40
0

−
20

00

20
0

40
0

C
on

tr
ol

 a
ct

io
n

T
im

e
[s

]

Control action [−]

C

on
tr

ol
 a

ct
io

n

UAV tracking a ramp trajectory.

69/72

APPENDIX E ADDITIONAL EXPERIMENTAL RESULT

0
10

20
30

40
50

60
70

0246

P
os

iti
on

T
im

e
[s

]
Position [m]

S

et
po

in
t

E
st

im
at

ed
 p

os
iti

on

0
10

20
30

40
50

60
70

−
0.

50

0.
5

S
pe

ed

T
im

e
[s

]

Speed [m/s]

M

ea
su

re
d

sp
ee

d
E

st
im

at
ed

 b
y

K
F

S
pe

ed
 li

m
it

0
10

20
30

40
50

60
70

−
20

00

20
0

C
on

tr
ol

 a
ct

io
n

T
im

e
[s

]

Control action [−]

C

on
tr

ol
 a

ct
io

n

Data for forward axis from the experiment showed in the video2, https://youtu.be/iqgL1H_DCmU.

70/72

https://youtu.be/iqgL1H_DCmU

APPENDIX E ADDITIONAL EXPERIMENTAL RESULT

0
10

20
30

40
50

60
70

−
1.

5

−
1

−
0.

50

P
os

iti
on

T
im

e
[s

]

Position [m]

S

et
po

in
t

E
st

im
at

ed
 p

os
iti

on

0
10

20
30

40
50

60
70

−
0.

50

0.
5

S
pe

ed

T
im

e
[s

]

Speed [m/s]

M

ea
su

re
d

sp
ee

d
E

st
im

at
ed

 b
y

K
F

S
pe

ed
 li

m
it

0
10

20
30

40
50

60
70

−
20

0

−
10

00

10
0

20
0

C
on

tr
ol

 a
ct

io
n

T
im

e
[s

]

Control action [−]

C

on
tr

ol
 a

ct
io

n

Data for the lateral axis from the experiment showed in the video2, https://youtu.be/iqgL1H_DCmU.

71/72

https://youtu.be/iqgL1H_DCmU

APPENDIX E ADDITIONAL EXPERIMENTAL RESULT

0
5

10
15

20
25

30
35

40
45

50

0

0.
51

P
os

iti
on

T
im

e
[s

]

Position [m]

S

et
po

in
t

E
st

im
at

ed
 p

os
iti

on

0
5

10
15

20
25

30
35

40
45

50

−
0.

50

0.
5

S
pe

ed

T
im

e
[s

]

Speed [m/s]

M

ea
su

re
d

sp
ee

d
E

st
im

at
ed

 b
y

K
F

S
pe

ed
 li

m
it

0
5

10
15

20
25

30
35

40
45

50
−

20
0

−
10

00

10
0

20
0

C
on

tr
ol

 a
ct

io
n

T
im

e
[s

]

Control action [−]

C

on
tr

ol
 a

ct
io

n

UAV tracking trajectory containing unit steps. This experiment was conducted outdoors.

72/72

	List of Figures
	Introduction
	Problem statement
	Previous work
	Related work
	Contribution
	Mathematical notation

	UAV dynamics
	Attitude dynamics
	Altitude dynamics
	Dynamics of the integrated stabilization
	State space representation

	System identification
	Attitude subsystem identification
	Altitude subsystem identification
	Yaw subsystem identification
	Summary

	State observer
	Open-loop observer
	Closed-loop observer
	Kalman filter
	Prediction phase
	Correction phase

	Summary

	Model predictive control
	System prediction
	Problem formulation - QMPC
	Constraints
	Input constraints
	State constraints
	Other constraints

	Move blocking – reducing complexity of MPC
	Solving QMPC - unconstrained
	Solving QMPC - constrained
	QMPC with input constraints
	QMPC with state constraints

	The MPC control loop
	Summary

	Hardware and Software platform
	UAV platform
	px4flow sensor
	Custom control board v.2
	xMega main unit
	ARM coprocessing unit
	XBee telemetry module
	OpenLog data logging module

	FreeRTOS and tasks
	Tasks on xMega MCU
	Tasks on STM MCU
	CMatrixLib - ANSI C matrix library
	Summary

	Implementation aspects
	Implementing Kalman filter
	Estimating state disturbances

	Implementing QMPC
	Input governor
	Offset-free tracking
	Controller parameters
	Optimizing onboard

	Summary

	Experiments
	Simulating MPC
	Tracking constant setpoint
	Measuring of estimation drift
	Tracking dynamic trajectory
	Disturbance rejection
	Persistent wind disturbances
	Momentary disturbances

	Outdoor experiment — longer trajectory
	Performance and comparison
	Summary

	Conclusion
	Future work

	Bibliography
	Appendix CD Content
	Appendix List of abbreviations
	Appendix Custom control board schematic
	Appendix PCB layouts
	Appendix Additional experimental result

