

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Diploma Thesis

Karel Horák
Graph database query
engine based on tree

decompositions

May 2015 Supervisor: Radomír Černoch, MSc.

v

Acknowledgement
I would like to express my gratitude to my supervisor Radomír Černoch, MSc. for the time
he spent with me discussing the topic, his patience and all his advice that helped me to stay
on track during the whole period of writing this thesis.

I would like to thank my family and friends for their support.

Access to computing and storage facilities owned by parties and projects contributing to
the National Grid Infrastructure MetaCentrum, provided under the programme “Projects of
Large Infrastructure for Research, Development, and Innovations” (LM2010005), is greatly
appreciated.

Prohlášení
Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité
informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při
přípravě vysokoškolských závěrečných prací.

V Praze dne .
Karel Horák

vi

vii

Abstract
Graph databases are establishing as a respectable alternative to the relational data stores.
In this thesis theoretical aspects of the problem solved by graph databases are discussed
and an algorithm for evaluating graph queries using the concept of tree decomposition is
proposed and thoroughly discussed. This algorithm is based on optimality results on graph
homomorphism and is inspired by Yannakakis’ algorithm for acyclic database schemes. Our
algorithm is then evaluated by a series of experiments.

Keywords
graph databases, graph theory, graph homomorphism, tree decomposition, complexity theory,
database theory

Abstrakt
Grafové databáze se těší vzrůstající oblibě a nezřídka se stávají alternativou k datovým
úložištím založeným na relační technologii. Zaměříme se na rozbor teoretických problémů
řešených grafovými databázemi a navrhneme algoritmus pro efektivní vyhodnocování gra-
fových dotazů za použití konceptu stromové dekompozice. Tento algoritmus, založený na
teoretických výsledcích v oblasti homomorfismu grafů, je inspirovaný Yannakakisovým algor-
itmem pro acyklická databázová schémata. Efektivita navrhovaného algoritmu je otestována
v řadě experimentů.

Klíčová slova
grafové databáze, teorie grafů, homomorfismus grafů, stromová dekompozice, teorie složitosti,
teorie databází

viii

Contents

Chapter 1 Introduction . 1

Chapter 2 Graphs, homomorphism and graph databases 5
2.1 Tree decomposition . 6

2.2 Graph homomorphism . 8

2.3 Graph databases . 13

Chapter 3 Relational database theory . 21
3.1 Relations and databases . 21

3.2 Relational algebra . 23
3.2.1 Project operator . 23
3.2.2 Join operator . 23

3.3 Consistency and Joins . 25

3.4 Database consistency . 27

3.5 Acyclic database schemes . 28
3.5.1 Computing full reduction . 29
3.5.2 Evaluating project–join queries . 30

Chapter 4 Database theoretical view on homomorphisms. 33
4.1 Database construction algorithm . 36
4.1.1 Complexity . 43

x

4.2 Result generating algorithms . 51
4.2.1 Decision algorithm . 51
4.2.2 Counting algorithm . 52
4.2.3 Enumeration algorithm . 52

Chapter 5 Experimental results . 55
5.1 Comparison with Neo4j . 55
5.1.1 Scalability in the size of G . 56
5.1.2 Scalability in the size of H . 57

5.2 Effect of planning . 60

Chapter 6 Conclusion and Future work . 65

Chapter A Contents of DVD . 67
A.1 Directory structure . 67

A.2 TreedQuery . 67
A.2.1 Libraries and used software . 67
A.2.2 Experiments . 68

CHAPTER1
Introduction

In the information age data management has become an important discipline in computer
science. It is a tedious task to handle information without any support — specialized systems
for storing, retrieval and analysis of data were therefore asked for.

One of the oldest and still dominant systems for data manipulation are based on relational
database theory. There are many commercially successful RDBMS (relational database
management systems) that have been used for decades already — like PostgreSQL[20] having
its roots in the Ingres Database (a former UC Berkeley project started in 1970s).

The key concept in RDBMS’ is the concept of relation. For simplicity, relations can be
seen as tables where each column has its header. An example of a relational database can
be seen in Figure 1.1. Individual objects in the world are represented as rows of the tables
and their interactions are captured by sharing same values in matching columns (e.g. we
know that Donald Griffin, aged 23, is a student of Czech Technical University in Prague).

Name Surname Age Uni
Tim Rodgers 22 2
Lucy Kelly 21 2
Donald Griffin 23 1
John Williams 21 2
Julie Ross 22 1

(a) Students relation

Uni University name
1 Czech Technical University in Prague
2 University of California, Berkeley

(b) University relation

Figure 1.1: Sample relational database

The popularity of relational databases is based on the existence of more or less standard-
ized language, which allows designers to define the data model (data definition language,
DDL) and users to access data in convenient way (data manipulation language, DML). This
language is called SQL — Structured Query Language. In Figure 1.2 a simple SQL query

2 CHAPTER 1. INTRODUCTION

SELECT * FROM Students
JOIN University ON Students.Uni = University.Uni

Name Surname Age Uni University name
Tim Rodgers 22 2 University of California, Berkeley
Lucy Kelly 21 2 University of California, Berkeley
Donald Griffin 23 1 Czech Technical University in Prague
John Williams 21 2 University of California, Berkeley
Julie Ross 22 1 Czech Technical University in Prague

Figure 1.2: Sample SQL query and its result

and its result are shown (database from Figure 1.1 is considered). Apart from the ease of
use, the decades long history of relational databases makes them a trusted data store.

Many applications from recent years happened to feel the limits that the relational
technology imposes. The need for alternative data stores gave rise to the so called NoSQL
movement (often thought of as Not only SQL). In comparison with the relational databases,
there is a huge diversity amongst NoSQL databases — both in the data model and language
used to interact with them. There are multiple reasons why one may consider adopting some
of the database management systems belonging under the NoSQL movement:

• Scalability. Relational databases are typically run on a single machine (this allows
to ensure ACID1 properties). Many NoSQL databases sacrifice consistency in order
to allow the database to be distributed across multiple machines. This may lower
costs for hardware and software infrastructure and may allow availability and partition
tolerance properties from the CAP theorem.

• Flexibility. Working with relational databases can be seen as a two phase procedure.
Firstly an expert designs a schema (i.e. “table headers”), then users start inserting
new data and issue queries. Changing the schema of a live database is a tedious
task. NoSQL databases are often schemaless — allowing users to store whatever data
whenever needed.

• Performance. Some NoSQL database systems are extremely lightweight (e.g. key–
value stores). Such database systems does neither provide rich functionality nor
guarantee properties like consistency — but they typically allow serving huge amounts
of queries, often in parallel.

1Atomicity, Consistency, Isolation, Durability

3

DBMS Model Score
1 Oracle Relational 1439.72
2 MySQL Relationa 1272.45
3 MS SQL Relational 1177.48
4 MongoDB Document 267.24
5 PostgreSQL Relational 262.34

· · ·
23 Neo4j Graph 26.80

· · ·

Nov12 Jul13 Apr14 Jan15
4

10
20
40
100
200
400

1000
2000

Date

Sc
or
e

Oracle MySQL
MS SQL MongoDB

PostgreSQL Neo4j

Figure 1.3: Popularity ranking of DBMS (DB-Engines.com, February 2015)

The adoption of NoSQL data stores is growing fast. According to DBMS ranking of
DB–Engines.com[8] from February 2015 (excerpt in Figure 1.3), MongoDB has even beaten
renowned relational database management system PostgreSQL in popularity.

Let us briefly review major branches of NoSQL databases — key–value stores, document
databases and graph databases.

Key–value stores are the most lightweight databases one can think of. These systems
serve as a large dictionary where user may store his data primitives (strings, numbers etc.)
under a specific key and later retrieve them using the very same key. From the mathematical
point of view, key–value stores may be seen as a function.

While key–value stores do not care about the structure of data users store, document
databases ask users to store data in a structured way. The most common formats for
expressing documents are XML and JSON. Document databases already provide a lot of
functionality like querying documents by their contents (and not only by their identifiers) or
updating just a portion of the document. But they are lacking a natural way of linking data
from multiple documents together. A commonly used technique to overcome this issue is
map–reduce. This however requires the user to deal with the data on a lower level.

We will focus on the branch of graph databases. These databases try to overcome the
issue of document stores by adding a feature to express the linkage of individual vertices
(“documents”) in an explicit way. There is no common standard for graph databases —
thus the only common thing is that data is captured in the form of a graph. In graph
databases, objects are represented as vertices and their interactions are modelled by edges.
A graph version of the database from Figure 1.1 is shown in Figure 1.4. The most popular
graph database of these days is Neo4j[21] by Neo Technology (ranked 23 according to
DB-Engines.com).

4 CHAPTER 1. INTRODUCTION

{
"name": "Tim",
"surname": "Rodgers",
"age": 22

}

{
"name": "Lucy",
"surname": "Kelly",
"age": 21

}

{
"name": "Donald",
"surname": "Griffin",
"age": 23

}

{
"name": "John",
"surname": "Williams",
"age": 21

}

{
"name": "Julie",
"surname": "Ross",
"age": 22

}

{
"name": "CTU Prague"

}

{
"name": "UC Berkeley"

}

Figure 1.4: Sample graph database

In Chapter 2, graph databases are discussed from the mathematical point of view.
Chapter starts by brief revision of basics of graph theory. The concept of graph homomorph-
isms is then introduced and related results are presented. The rest of the chapter is dedicated
to the relation between graph homomorphisms and graph databases.

Even though graph databases significantly differ from the relational ones, it is worth
being familiar with key concepts and results from the relational database theory — basics of
this theory will be presented in Chapter 3.

These results are then used in Chapter 4 where an algorithm for evaluating graph
queries is discussed. Chapter 5 is devoted to experimental evaluation of the algorithm
from Chapter 4.

CHAPTER2
Graphs, homomorphism and

graph databases
The reader is assumed to be familiar with the basics of graph theory, nevertheless the
first part of this chapter will be devoted to a quick revision and establishing notational
conventions. In the end of this part, the concept of treewidth will be introduced.

Later in this chapter, the problem of graph homomorphism will be investigated and
important theoretical results will be presented. This mainly includes complexity results of
Nešetřil and Grohe.

In the end of this chapter, we will take a look at how graphs and the concept of graph
homomorphism can be used to represent and query real world datasets. The problem that is
solved by graph databases will be formally stated.

Graph is represented as a tuple G = (V,E), where V denotes the set of vertices (“objects”)
and E denotes the set of edges (“interactions”). Edges can be either undirected (denoted
{u, v}) in case of undirected graphs, or directed (denoted (u, v)) in case of directed graphs.
Undirected graphs will be thought of unless stated otherwise. An undirected graph without
loops is said to be simple if for every two vertices there is at most one edge connecting them.
Graphs where multiple edges are allowed to connect same two vertices are called multigraphs.

When talking about graphs, declaration of sets V and E will often be omitted. Instead
the set of vertices of graph G will be referred to as V (G) and the set of edges as E(G). We
will be dealing only with finite graphs, i.e. those where both V (G) and E(G) are finite sets.

It is often convenient to visualize a graph using a diagram. In such a case, vertices
are represented as points and edges as lines. A line connecting two points is present in
the diagram if corresponding vertices are connected by an edge. Figure 2.1 exhibits such
a diagram for a hypothetic friendship network (connecting two people by an edge means
that they are friends). Notice that the actual positions of the points do not matter — the

6 CHAPTER 2. GRAPHS, HOMOMORPHISM AND GRAPH DATABASES

Bob

Alice

John

Pat

Lucy

Steve

Adam

Peter

Chris

Figure 2.1: Friendship network

diagram captures only the interactions and not the positions of the vertices (there is no such
information contained in the graph).

Let e be an edge connecting vertices u and v. Vertices u and v are called endpoints of e.
Edge e is said to be incident to these vertices. If two vertices u, v are connected by an edge,
then v is called to be adjacent to u (and vice versa).

Graph G′ is a subgraph of G if V (G′) and E(G′) are subsets of V (G) and E(G). An induced
subgraph of G by vertex set S (denoted G[S]) is a subgraph of G such that V (G[S]) = S

and all edges of G connecting vertices in S are preserved.
Sequence v0e0v1 · · · vk−1ek−1vk is a path in G if no two distinct vi are the same and for

every i, edge ei connects vertices vi and vi+1. Graph G is said to be connected if for every
two vertices u and v of G, there exists an undirected path from u to v. Vertex set S is said
to be connected in G if G[S] is connected.

A connected component of graph G is a maximal subgraph of G that is connected. A
connected graph has exactly one connected component.

An union of graphs G1 ∪G2 ∪ · · · ∪Gk is a graph G′ such that V (G) =
⋃
i V (Gi) and

E(G) =
⋃
iE(Gi).

Undirected graphs can be generalized to hypergraphs. Edges of hypergraphs are not
restricted to connect exactly two vertices — an edge in a hypergraph can connect arbitrary
number of vertices except for no vertices. To emphasize the difference between regular graphs
and hypergraphs, edges of hypergraphs are often called hyperedges.

2.1 Tree decomposition
Treewidth is an important graph theoretical concept playing an important role in derivation
of many fixed parameter tractable algorithms for otherwise NP–hard problems[13]. This
concept (alongside with tree decomposition) plays an important role in this thesis as well.

2.1. TREE DECOMPOSITION 7

v1 v5

v2

v3

v4

v6

v1

v2

v3

v2

v3

v5

v2
v4

v5

v3
v6

{v2, v4, v5}

{v3, v5, v6}

{v2, v3, v5}v5
{v1, v2, v3}

Figure 2.2: Graph and its tree decomposition

Definition 2.1 (Treewidth and tree decomposition). Let G be a graph. Pair (T, χ),
where T is a tree and χ : V (T) → 2V (G) is a mapping labeling each node of T by a
subset of vertices of G, is called tree decomposition if following properties hold:

1. Every vertex v ∈ V (G) is contained in χ(n) of some node n of T .

2. For every edge e of G connecting vertices u and v, there is a node n of T such
that {u, v} ⊆ χ(n).

3. For every vertex v of G, the set of nodes n containing v in χ(n) is connected in T .

The width of (T, χ) is the maximum from cardinalities of sets χ(n) decreased by one
(i.e. maxn∈V (T) |χ(n)| − 1). The minimal width over all tree decompositions of G is
then the treewidth of G (denoted by tw(G)). Sets χ(n) are called bags.

Remark. In order to distinguish between vertices of G and vertices of its tree decom-
position, vertices of T will be called nodes.

Remark. In the remainder of the text, by tree decomposition of G the optimal tree
decomposition of G (in terms of its width) will be thought of.

Figure 2.2 shows a graph and its tree decomposition with minimum width (width of
this tree decomposition is 2).

In general case, computing optimal tree decomposition (with respect to the treewidth) is
a NP–hard problem[13]. However for graphs of small treewidth, efficient algorithms were
proposed.

In 1991, Matoušek and Thomas[18] showed that an optimal tree decomposition of graphs
of treewidth at most 3 can be computed in linear time. In 1996, Bodlaender[5] gave a linear
time algorithm that for a constant k (fixed previously) either determines that treewidth of a
graph is higher than k or constructs a tree decomposition with treewidth at most k.

8 CHAPTER 2. GRAPHS, HOMOMORPHISM AND GRAPH DATABASES

v1 v2

v3v4

(a) Query graph G

Steve Lucy
John

Bob

Alice

(b) Graph database H

Figure 2.3: Sample graph query and database

2.2 Graph homomorphism
Graph homomorphism problem deals with finding a mapping from vertices of one graph to
vertices of another one, such that adjacent vertices in the first one are adjacent in the second
one as well. Let us first define the homomorphism mapping formally.

Definition 2.2 (Graph homomorphism). LetG,H be graphs. Mapping h : V (G)→ V (H)
is called homomorphism if for every edge e of graph G, there is an edge of H connecting
images of the endpoints of e (i.e. if e = {u, v} ∈ E(G), then {h(u), h(v)} ∈ E(H)).
Graph G from this definition is referred to as the guest graph (or the query graph).
Graph H is a host graph. The set of all homomorphism mappings from G to H will be
denoted by Hom(G,H).

Let us illustrate the concept of graph homomorphism from the graph database perspective.
In a typical graph database query, user provides a pattern that prescribes how vertices
should be connected and asks for (real world) objects interacting in that way. This gives
us a straightforward way of interpreting such queries in terms of graph homomorphisms —
the query corresponds to graph G, whereas the database is graph H. Figure 2.3 shows an
example of both query graph and graph database of friends.

Let us restrict our attention to homomorphisms such that h(v1) = John. The query
can be seen as an attempt to build a simple system for recommendation of new friends —
assuming that if someone is a friend of two friends of mine, he might be a friend of myself as
well.

Some of the homomorphisms will indeed work in exactly the expected way. We will
obtain four homomorphisms shown in Figure 2.4 (notice that in fact there are just two
interesting results — the other two are just mirrored).

In this case, h(v3) is the person to recommend. Vertex v3 has two adjacent vertices v2
and v4 — these correspond to those two common friends of John and h(v3).

Not all graph homomorphisms comply with our original intention — homomorphisms
allow that multiple vertices of G are mapped on a single vertex. We will see that in such a
case, this might lead to unexpected results. Figure 2.5 shows some of such results. In the

2.2. GRAPH HOMOMORPHISM 9

v1→John v2→Lucy

v3→Alicev4→Steve

v1→John v2→Steve

v3→Bobv4→Lucy

v1→John v2→Steve

v3→Alicev4→Lucy

v1→John v2→Lucy

v3→Bobv4→Steve

Figure 2.4: Four injective homomomorphisms

first of them, we would recommend John to become friend with Bob, but there seems to be
just one common friend — Lucy. The remaining two figures would even propose that John
should become a friend with himself.

v1→John v2→Lucy

v3→Bobv4→Lucy

v1→John v2→Lucy

v3→Johnv4→Steve

v1→John v2→Lucy

v3→Johnv4→Lucy

Figure 2.5: Non-injective homomorphisms

The graph homomorphism problem exists in multiple variants — the most typical one
being the decision version. The unrestricted homomorphism problem is NP–complete[11],
thus it makes sense to study restricted versions of the problem. Let us first discuss restricting
the input. Let C, D be classes of graphs. We are asked a question: Given two graphs G ∈ C,
H ∈ D, does homomorphism from G to H exist? In case of existence, we will write G→ H.
The decision problem for classes C and D will be denoted by Hom(C,D). An algorithm
decides Hom(C,D) if for every G ∈ C, H ∈ D it correctly distinguishes instances where
G→ H from those where G 6→ H. In case that the input does not comply with classes C
and D, the behaviour of the algorithm may be arbitrary.

In 1990, Hell and Nešetřil[15] (as restated by Grohe[14]) showed that Hom(—,D)1 is
decidable in polynomial time if class D (of simple undirected graphs) contains only bipartite
graphs. Otherwise the problem is NP–complete. In the context of graph databases, class D
contains possible states of graph store. Allowing user to store only bipartite graphs would
be highly problematic and such a database would most likely be of no use.

On the other hand, class C corresponds to the queries an user can pose to the database.
The problem seen from the other side, i.e. Hom(C,—), is therefore more relevant for us as
these queries are typically rather small and simple. It is known that if class C has bounded

1Class of all simple undirected graphs is denoted by —

10 CHAPTER 2. GRAPHS, HOMOMORPHISM AND GRAPH DATABASES

treewidth, Hom(C,—) is polynomial time solvable. The reasoning behind this claim will be
shown in Chapter 4 where an algorithm that will later be used for empirical comparison
with Neo4j database is derived.

It turns out that tractability of Hom(C,—) with class C having bounded treewidth is not
the strongest result one can hope for. Our attention may focus on substituting an original
problem instance (G,H) (G ∈ C) with another one (G′, H), such that G→ H if and only
if G′ → H (and deciding about G′ → H is easier than the original problem). This holds
if graphs G and G′ are homomorphically equivalent — i.e. simultaneously G → G′ and
G′ → G.

This is a reasonable idea for the decision variant of the problem, however it is hard to
use this knowledge to construct the set of all homomorphism mappings Hom(G,H). This
problem will be demonstrated on the instance from Figure 2.6. In this figure graphs G,
G′ and H are shown (graphs G and G′ are homomorphically equivalent). Homomorphism
mappings from G to G′ and from G′ to H are shown in the figure — by composition of these
mappings a homomorphism from G to H is obtained. This is fully satisfactory for deciding
G→ H, but insufficient for constructing Hom(G,H). One can check that sets Hom(G,G′)
and Hom(G′, H) contain a single homomorphism mapping — therefore only one composed
homomorphism from G to H can be obtained. It is clear that multiple homomorphisms from
G to H can however be constructed.

In 2002, Dalmau et al.[7] showed that if class C has bounded treewidth modulo homomorphic
equivalence (i.e. for fixed k, every G ∈ C has some homomorphically equivalent graph G′ with
tw(G′) ≤ k — this class will be denoted by H(T k)), Hom(C,—) is decidable in polynomial
time. To illustrate the importance of this class, consider class C of bipartite graphs. This class
has unbounded treewidth, but it has bounded treewidth modulo homomorphic equivalence.
Every bipartite graph with at least one edge is homomorphically equivalent with a graph
with two vertices connected by an edge (treewidth of such a graph is 1).

On the other hand, same authors showed that for some fixed treewidth k ≥ 2, testing
membership in H(T k) is NP–complete. This means that a polynomial time algorithm for
deciding problem Hom(H(T k),—) exists, but if it is not guaranteed that G ∈ H(T k) (which
is usually not known in advance), it is NP–complete to verify correctness of the answer.

Grohe[14] later proved that the result of Dalmau is optimal in the sense, that for classes
C of unbounded treewidth modulo homomorphic equivalence, problem Hom(C,—) is not in
polynomial time.

Apart from restricting classes C and D, we may restrict acceptable homomorphism
mappings. The surjective variant of the homomorphism problem caught some attention
recently. Surjectivity requires that for every vertex v of H, there is some vertex of G that
is mapped on v. This makes this version of the problem be of little relevance for our goal
— intuitively the database is supposed to hold large amount of data (and contain a lot of

2.2. GRAPH HOMOMORPHISM 11

G G′ H

Figure 2.6: Deciding G→ H using simpler homomorphically equivalent graph G′

vertices), hence the query cannot be required to cover all the objects in the database. For an
overview of the surjective homomorphism, reader may consult paper of Golovach et al.[12].

On the contrary, injectivity of the homomorphism may be a reasonable requirement
in the domain of graph databases — but it will be shown later in this chapter that this
reasoning may easily become rather counterintuitive. The injective homomorphism problem
can be seen as a problem of finding subgraph of H that is isomorphic to G — that is why
this problem is commonly called subgraph isomorphism problem. This problem is deeply
studied, e.g. in the paper of Marx and Pilipczuk[17].

The NP–hardness of the general subgraph isomorphism problem can be easily seen as
several well known NP–complete problems, such as finding Hamiltonian cycle or k–clique,
are its special cases — the case of Hamiltonian cycle problem even suggests that bounding the
treewidth of G does not help. Every cycle has a treewidth 2 — if a polynomial time algorithm
for deciding inj-Hom(C,—) for class C of bounded treewidth existed, the Hamiltonian cycle
problem would have been in polynomial time (which would imply P = NP).

Most of the positive results stated in the aforementioned paper are of little use for our
goal. Many of these algorithms are parametrized in terms of host graph (i.e. database, which
could end up in unpredictable performance) or even restrict class D (which was already
mentioned to be inacceptable). The most positive result from our perspective is therefore
due to Alon, Yuster and Zwick (as stated by Marx and Pilipczuk):

Theorem 2.1. Subgraph isomorphism problem can be solved in time 2O(|V (G)|)nO(tw(G)).

Let us illustrate the difference between unrestricted and injective homomorphism on ex-
amples. Figure 2.7 shows graphs G and H (such that G→ H) where injective homomorphism
does not exist. On the other hand, injective homomorphism exists in Figure 2.8.

There is a closely related notion to the subgraph isomorphism. The subgraph of H
mentioned above may be required to be induced subgraph of H — this gives rise to the
induced subgraph isomorphism problem. In terms of homomorphism mapping, the induced
subgraph isomorphism requires that an edge is present in G if and only if images of its

12 CHAPTER 2. GRAPHS, HOMOMORPHISM AND GRAPH DATABASES

G H

Figure 2.7: Injective homomorphism from G to H does not exist

G H

Figure 2.8: Injective homomorphism from G to H exists

endpoints are connected in H. This distinguishes it from the homomorphisms where the
requirement that if two vertices of G are disconnected, their images must be disconnected in
H as well is omitted.

The question whether there exists a homomorphism from G to H might not be the
only question we are interested to answer — in fact in the context of graph databases, this
question is probably the least significant one.

The most typical query databases (of whatever kind) are asked to answer is the enumer-
ative one. In such a case, user is interested in computing all valid answers to the query he
posed. In the case of graph homomorphism this means that the database is asked to compute
all homomorphisms from G to H (or at least some well defined portion of Hom(G,H) — in
case of using some analogy of LIMIT clause from the family of SQL languages).

Apart from enumerating the set of all homomorphisms, user is often interested in knowing
how many distinct homomorphism mappings from G to H exist (i.e. what is the cardinality
of Hom(G,H)). This problem is called the counting problem.

To complete the list of homomorphism related problems, an algorithm that either decides
that no homomorphism from G to H exists or constructs one such homomorphism may be
asked for — this problem is closely related to the constraint satisfaction.

2.3. GRAPH DATABASES 13

Following propositions capture two useful properties of homomorphisms — homomorphisms
can be restricted and the result is still a homomorphism, while independent homomorphisms
can be assembled together.

Proposition 2.1. Let G, H be graphs and h be a homomorphism mapping from G to H.
For an arbitrary subgraph G′ of G, mapping h|V (G′) (where h|V (G′) denotes restriction
of h to the vertex set of G′) is homomorphism from G′ to H.

Proof. Mapping h|V (G′) is clearly a mapping from V (G′) to V (H), thus only the adjacency
preservation condition has to be checked. As graph G′ is a subgraph of G, it contains only
subset of edges of G (i.e. E(G′) ⊆ E(G)). By our assumption that h is a homomorphism
mapping, we know that for every edge of G, images of its endpoints are connected in H.
This must also hold for a subset of E(G), thus h|V (G′) is a homomorphism from G′ to H.

Proposition 2.2. Let G and H be graphs and G1, · · · , Gk be all connected components
of G. Let h1, · · · , hk be mappings such that hi is a homomorphism from Gi to H. Then
mapping h defined as follows is a homomorphism from G to H:

h(v) =

h1(v) if v ∈ V (G1)

...
hk(v) if v ∈ V (Gk)

Proof. The union of connected components G1, · · · , Gk is equal to the graph G, therefore h
is a mapping from V (G) to V (H). Mapping h is a homomorphism from G to H as no edge
of G has its endpoints in two different connected components Gi.

Proposition 2.2 allows us to focus on connected query graphs only. In case of disconnected
graph G, we may identify its connected components first and solve the homomorphism
problem for each one of them separately.

2.3 Graph databases
Graph databases exploit the concept of the graph to store data. In this work, the most
successful graph database at the moment will be discussed — Neo4j. The expressivity of this
database system is comparable with the expressivity of relational databases. This required
to introduce few additional features to the graphs that were not discussed previously.

14 CHAPTER 2. GRAPHS, HOMOMORPHISM AND GRAPH DATABASES

In Figure 1.1 a very simple example of relational database was presented. This database
not only captures interactions between students and universities. Both students and univer-
sities are attributed additional information — e.g. the age of the students. Neo4j solves this
by assigning metadata to the vertices. These metadata are captured in Javascript Object
Notation (JSON). Figure 2.9 contains an example of data representation in JSON format.
Part of the JSON grammar is shown in Figure 2.10.

The actual membership of a row to a table is an important information itself — it provides
an information about the type of data. Neo4j allows users to assign labels to vertices, e.g.
user can assign a vertex label :STUDENT if that vertex contains data of some student. The
same options as for vertices are provided for edges in Neo4j. Like that users can specify that
a student is indeed a student of an university (and not an employee), by assigning the edge
a label of :IS_STUDENT.

So far we have been dealing with symmetric friendship relation. Some of the interactions
are however clearly asymetric (e.g. role of manager and his subordinate). Therefore it makes
sense to deal with directed graphs.

In traditional graph theory, graphs contain either directed or undirected edges (exclus-
ively). If an undirected edge should be present in a directed graph, this edge is represented
as a pair of oppositely directed edges. This can be done in graph databases as well — but
one has to be careful. The undirected edge in a graph database is a single object with its
labels and metadata. Thus either every update operation has to keep both edges in sync, or
directed and undirected edges should be stored separately. For the sake of simplicity we will
adopt the former approach.

It was mentioned that both injective and unrestricted versions of the homomorphism
problem are reasonable choices for evaluating graph database queries. The evaluation of
the queries in Neo4j is based on the unrestricted variant. There are several reasons for this
choice.

Firstly, there are historical reasons for this choice. SQL queries in relational database
management systems are evaluated as non–injective as well.

Secondly, we have seen that evaluating injective homomorphism is exponential in the
size of the query graph according to Theorem 2.1. A graph database based on injective
homomorphisms could not provide any reasonable time complexity guarantees.

Last but not least, the injective homomorphisms might easily get counterintuitive. An
intuitive way of interpreting query in Figure 2.11 would be Give me all friends of Bob’s
friends. An injective homomorphism would forbid assigning Bob to vertex v3 — which is
somewhat unwanted behaviour, as in real life, Bob is a friend of every of his friends.

In this thesis, we will consider only the structural part of the graph database — i.e.
vertices, edges and their labels. Let us state the homomorphism problem for graph databases
formally.

2.3. GRAPH DATABASES 15

Definition 2.3 (Labeled graph). Let Λ be the universe of labels. Labeled graph is a
pair (G,λ) where G is a directed multigraph and λ : V (G) ∪ E(G) → 2Λ is a labeling
function.

Remark. Bold font will be used for distinguishing labeled graphs from regular ones
(e.g. G). Graph concepts and notation are extended to labeled graphs in a natural way
(e.g. V (G) denotes vertex set of G).

Disregarding metadata, both the query graph and host graph are labeled graphs in the
context of graph databases.

Definition 2.4 (Homomorphism for graph databases). Let G = (G,λG) be a query
graph and H = (H,λH) be a host graph. Mapping h : V (G) → V (H) is called a
homomorphism if it satisfies following properties:

• For every vertex v ∈ V (G), λG(v) ⊆ λH(h(v)).

• For every edge e = (u, v) ∈ E(G) connecting vertex u with v, there is an
edge e′ = (h(u), h(v)) ∈ E(H) connecting vertex h(u) with h(v) such that
λG(e) ⊆ λH(e′).

The homomorphism in the context of graph databases is similar to the regular graph
homomorphism, except for the fact that also the labels have to be preserved.

Let us illustrate the homomorphism for graph databases on an example. Figure 2.12
shows graphs G and H such that there is only a single homomorphism mapping — assigning
John to v1 and The Pickup to v2. Vertex v1 cannot be mapped to Lucy as there is no car
she owns.

The reason for the growing popularity of the Neo4j database might be caused by the
existence of convenient language for posing queries to the database engine. The language
used in Neo4j is called Cypher. We won’t cover this rich language in detail — we will just
show an example how the query from Figure 2.12 can be rewritten in Cypher. This Cypher
formulation is shown in Figure 2.13.

Number of homomorphisms from G to H may grow exponentially in the size of G — one
cannot therefore expect to construct an algorithm to enumerate Hom(G,H) (for varying
G) in polynomial time under any parametrization. In practical applications, the number
of results is typically much lower. It makes therefore sense to analyze the complexity of
algorithms in the size of the input and the output.

One of the simplest algorithm for finding homomorphisms is the backtracking algorithm.
The key concept in this algorithm is a partial homomorphism. Let G′ be an induced subgraph

16 CHAPTER 2. GRAPHS, HOMOMORPHISM AND GRAPH DATABASES

of G (induced by vertex set V ′). Partial homomorphism p from G to H is a homomorphism
from G′ to H. In every step, this algorithm attempts to extend set V ′ by one vertex (such
that the resulting mapping is once again a partial homomorphism). If it fails to do so, it
has to alter current partial homomorphism — it backtracks. A recursive version of this
algorithm is shown in Figure 2.14.

This algorithm may seem naïve, but in fact similar algorithms are often used. This
algorithm traverses the space of partial solutions in depth first search manner — this results
in its memory efficiency.

The main drawback of the backtracking algorithm is its time complexity. Even in the case
of simple queries (with low fixed treewidth), the worst case time complexity of the algorithm
is exponential in the size of the input regardless of the size of the output. Figure 2.15 shows
an example of graphs G and H that cause problems to the backtracking algorithm. Checking
that directed cycle cannot exist in a directed acyclic graph would solve this particular
instance, but the overall problem persists. Instances similar to the one shown in Figure 2.15
will be used in Chapter 5 to show that Neo4j runtime may become exponential in the size of
G (i.e. the length of the cycle in G).

2.3. GRAPH DATABASES 17

1 {
2 "name": "John",
3 " surname ": "Doe",
4 "age": 24,
5
6 " occupation ": [
7 " computer vision ",
8 " computational graphics "
9],

10 " address ": {
11 " street ": "99 Cambridge Road",
12 "city": "North Cove"
13 }
14 }

Figure 2.9: Sample JSON content

json ::= object | array | string | number | boolean
object ::= {} | {field_list}

field_list ::= field | field,field_list
field ::= identifier:json

identifier ::= string

array ::= [] | [values]
values ::= json | json,values
boolean ::= true | false

Figure 2.10: Part of JSON grammar

Bob
FRIEND FRIEND

?

v1 v2 v3

Figure 2.11: Friends–of–Friends query

18 CHAPTER 2. GRAPHS, HOMOMORPHISM AND GRAPH DATABASES

:PERSON

:OWNS

:CAR

v1 v2

(a) Query graph G

:PERSON

:OWNS

:CAR
:MAN :PICKUP

:PERSON
:WOMAN

:DRIVES

John The Pickup

Lucy

(b) Graph database H

Figure 2.12: Graph database homomorphism example

MATCH (v1:PERSON) -[r:OWNS]-> (v2:CAR)
RETURN v1, r, v2

Figure 2.13: Sample Cypher query

Require: query graph G, host graph H

procedure Compute(V ′, p)
if V ′ = V (G) then

report homomorphism p
else

v ← some element of V (G) \ V ′
for all vertices v′ ∈ V (H) such that p ∪ {v → v′} is a partial homomorphism do

Compute(V ′ ∪ {v}, p ∪ {v → v′})
end for

end if
end procedure

Figure 2.14: Recursive version of backtracking algorithm

2.3. GRAPH DATABASES 19

(a) Query graph G

(b) Host graph H

Figure 2.15: Problematical instance for backtracking algorithm

20 CHAPTER 2. GRAPHS, HOMOMORPHISM AND GRAPH DATABASES

CHAPTER3
Relational database theory

In order to derive an efficient algorithm for evaluating queries in a graph database, reader is
required to have some background on relational database theory. In Chapter 1, the main
idea behind relational database management systems was shown from the practical point
of view. In practice, users of RDBMS indeed think of relations as of tables (and they even
call them tables), and the individual entries are called records (or rows). The theoretical
framework of relational database theory is however more abstract.

In this chapter, foundations of relational database theory are presented. First part of the
chapter is devoted to formal definitions of key terms and relational operators. In the rest
of the chapter, the theory is seen from the computational point of view — the concept of
acyclic database scheme is presented and Yannakakis’ algorithm for acyclic database schemes
is discussed.

3.1 Relations and databases
In Chapter 1, we were thinking of relations as of tables where each column has a header.
Before a relation is defined formally, we have to make sure what the header means.

Definition 3.1 (Relation scheme). A relation scheme is a finite set of attributes
{A1, · · · , An}. Each of the attributes is assigned a domain. The domain of attribute
Ai is denoted by dom(Ai).

Remark. By convention, relation schemes will be denoted by capital R.

To illustrate this definition, let us consider the example from Figure 1.1. The relation
scheme for student relation is the set {Name,Surname,Age,Uni} with appropriately set

22 CHAPTER 3. RELATIONAL DATABASE THEORY

domains, e.g. dom(Surname) might be a set of all surnames and dom(Age) be a set of
natural numbers (possibly including zero).

Definition 3.2 (Tuple). Let R = {A1, · · · , An} be a relation scheme and D be an
union of domains of its attributes (i.e. D = dom(A1) ∪ · · · ∪ dom(An)). A tuple over
relation scheme R is a mapping t : R → D such that for every attribute Ai ∈ R,
t(Ai) ∈ dom(Ai).

Intuitively, for every record in the table, we are interested in knowing its values in every
column. These values are easily obtained from a tuple — by passing it an attribute. As the
relation scheme restricts possible values in the columns, not every tuple is valid — it must
match the domains of the attributes.

Definition 3.3 (Relation). A relation over the relation scheme R is a set of tuples
over relation scheme R.

Remark. If R is a relation scheme, a relation over R will be denoted by lowercase r.

It is indeed reasonable to view relations as tables, but one has to be aware of the
differences. The definition of relation using sets and mappings does not explicitely define an
order of columns and rows. In case of tables, we may be tempted to think that the order of
columns and rows is fixed.

Furthermore, as relations are sets of tuples, a relation cannot contain two duplicate tuples.
This differs from the common practice in majority of contemporary RDBMS, where the
deduplication of tuples has to be done explicitely by the schema designer using the UNIQUE
constraint.

In Figure 1.1, two relations shown are closely related — in order to get full information,
data from both tables have to be combined.

Definition 3.4 (Database scheme). A database scheme is a set of relation schemes.

Remark. Database schemes will be referred to by capital D.

Definition 3.5 (Database). Let D = {R1, · · · , Rk} be a database scheme. A database
is a set of relations {r1, · · · , rk} such that ri is a relation over relation scheme Ri.

Remark. Similarly as in the case of relation schemes and relations, lowercase d will be
used for databases.

3.2. RELATIONAL ALGEBRA 23

Relation scheme defines a dataless template for relations — and relations are instances
containing data. The same applies for database scheme and database; database scheme
prescribes a template for databases (all their relations), whereas the database fills in data in
the form of relations.

3.2 Relational algebra
In the first chapter, a language for practical database manipulation was mentioned. Despite
different vendors provide different dialects of SQL language, there is one thing in common —
SQL language provide a lot of functionality and it is rather complex. For simpler analysis
of relational system, a simpler and well defined language is necessary — the language of
relational algebra.

Relations are defined as sets, therefore set operators like union (∪), intersection (∩) or
set difference (\) can be applied. One has to check that both relations involved are over the
same relation scheme in order to obtain a result that is a relation itself. We assume that
the reader is familiar with these basic set operations. We will focus on operators that are
specific for the relational database theory.

3.2.1 Project operator

Definition 3.6 (Project operator). Let r be a relation over relation scheme R and
A ⊆ R be a subset of R’s attributes. By projection of r on A, following relation over A
is understood:

πA(r) = { t|A | t ∈ r } ,

where ·|A is a restriction of a mapping on A. The projection of r on A is denoted by πA(r).

Remark. For reasons of notational convenience, the project operator will often be
applied on tuples. In such a case it is just an alias for the restriction of the mapping,
i.e. πA(t) = t|A.

Intuitively, we can understand the project operator as an operator that deletes some
columns from a relation. Figure 3.1 shows a projection of students table on attributes Age and
Uni. Notice that one tuple got lost by applying project operator — tuples (Lucy,Kelly, 21, 2)
and (John,Williams, 21, 2) are both mapped on tuple (21, 2) by π{Age,Uni}.

3.2.2 Join operator
In Chapter 1, the importance of combining information from multiple tables was shown
on an example (in that case by means of SQL language). The join operator perform this

24 CHAPTER 3. RELATIONAL DATABASE THEORY

Name Surname Age Uni
Tim Rodgers 22 2
Lucy Kelly 21 2
Donald Griffin 23 1
John Williams 21 2
Julie Ross 22 1

(a) Relation r

Age Uni
22 2
21 2
23 1
22 1

(b) Projection π{Age,Uni}(r)

Figure 3.1: Project operator example

operation in the language of relational algebra. We will define this operator in a slightly
atypical way — studying tuples first and then proceeding to whole relations.

Definition 3.7 (Join–compatible tuples). Tuples t1, t2 over relation scheme R1, R2
are said to be join–compatible if πR1∩R2(t1) = πR1∩R2(t2).

Set of tuples {t1, · · · , tk} is join–compatible if for every i 6= j tuples ti and tj are
join–compatible.

Simply speaking, two tuples are join–compatible if they do not assign different values to
the same attribute. The join–compatibility allows tuples to be joined in the sense of the
following definition:

Definition 3.8 (Join operator). Let t1, t2 be join–compatible tuples over relation
schemes R1, R2. Join of t1 with t2 is a tuple t1 ./ t2 over relation scheme R1 ∪R2, such
that:

(t1 ./ t2)(a) =

t1(a), a ∈ R1

t2(a), a ∈ R2 \R1

Remark. If tuples t1, t2 are not join–compatible, the result of the join is undefined
(possibly a failure).

The join operator is extended towards relation in the following way. Let r1, r2 be
relations over relation schemes R1, R2. Join of r1 with r2 is a relation over R1 ∪ R2
denoted r1 ./ r2 defined as follows:

r1 ./ r2 = { t1 ./ t2 | join–compatible tuples t1 ∈ r1, t2 ∈ r2 }

3.3. CONSISTENCY AND JOINS 25

Remark. Join of two relations is a relation of all possible joins of tuples from these two
relations.

Remark. Join operator is both commutative and associative.

Figure 3.2 shows join–compatible tuples for the database from Figure 1.1. These tuples
are used to form a relation Students ./ Universities shown in Figure 3.3.

Name Surname Age Uni

Tim Rodgers 22 2
Lucy Kelly 21 2
Donald Griffin 23 1
John Williams 21 2
Julie Ross 22 1

Uni University name

1 Czech Technical University in Prague
2 University of California Berkeley

Figure 3.2: Join–compatible tuples (for relations Students and Universities)

Name Surname Age Uni University name
Tim Rodgers 22 2 University of California, Berkeley
Lucy Kelly 21 2 University of California, Berkeley
Donald Griffin 23 1 Czech Technical University in Prague
John Williams 21 2 University of California, Berkeley
Julie Ross 22 1 Czech Technical University in Prague

Figure 3.3: Relation Students ./ Universities

3.3 Consistency and Joins
The join operator takes only join–compatible tuples into account. Tuples that are not
join–compatible with any tuple from joined relation are not relevant for the computation of
the join at all. Such tuples can be safely removed without changing the result of the join.
We will go through several concepts that are built around this observation.

Definition 3.9 (Consistent tuple). Tuple t1 over relation scheme R1 is consistent with
relation r2 over relation scheme R2 if and only if there is a tuple t2 ∈ r2 such that tuples
t1 and t2 are join–compatible.

The definition is extended in straightforward fashion to the relations, when the consistency
means non–existence of inconsistent tuple.

26 CHAPTER 3. RELATIONAL DATABASE THEORY

Definition 3.10 (Consistent relations). Relation r1 is consistent with relation r2 if
and only if every tuple of r1 is consistent with r2. Relations r1 and r2 are consistent if
simultaneously r1 is consistent with r2 and vice versa.

To grasp a better intuition about joins and consistency, we will show that our statement
about irrelevancy of inconsistent tuples for joins is correct.

Proposition 3.1. Let r1, r2 be relations over R1, R2 and t be an inconsistent tuple of
r1. Then the following hold:

r1 ./ r2 = (r1 \ {t}) ./ r2

Remark. Join is a commutative operator, thus we can swap the roles of r1 and r2.

Proof. Join operator produces a single row for every join–compatible pair of tuples t1 ∈ r1,
t2 ∈ r2. We will show that the set of join–compatible pairs was left unchanged by the
removal of an inconsistent tuple t. It is trivial to see that no new join–compatible tuple
could have been created. It remains to show that no join–compatible pair could have been
removed by the removal of t. As t was an inconsistent tuple with relation r2, there exists
no tuple t′ ∈ r2 such that πR1∩R2(t) = πR1∩R2(t′) — which is the necessary condition for
join–compatibility.

As it is possible to omit inconsistent tuples from the relations before computing joins, we
are naturally interested in computing a relation containing only consistent tuples.

Definition 3.11 (Semijoin). Let r1, r2 be relations over relation schemes R1, R2. A
semijoin of relation r1 with r2 is a relation r1 n r2 over relation scheme R1 defined as
follows:

r1 n r2 = πR1(r1 ./ r2)

We can see that only inconsistent tuples get eliminated by applying the semijoin. All
consistent tuples participate in forming at least one tuple in r1 ./ r2 — thus they are
preserved after applying πR1 . On the other hand, for inconsistent tuples, no join–compatible
pair of tuples exists — hence no tuple is generated by them in r1 ./ r2.

3.4. DATABASE CONSISTENCY 27

A B
0 0
1 1

(a) Relation r1

B C
0 0
1 1

(b) Relation r2

A C
0 1
1 0

(c) Relation r3

Figure 3.4: Globally inconsistent database (but pairwise consistent) [3]

3.4 Database consistency
The concept of consistency for two relations can be extended towards databases containing
multiple relations. The straightforward extension of consistency of relations is the pairwise
consistency of databases.

Definition 3.12 (Pairwise consistency). Database d = {r1, · · · , rk} is pairwise consist-
ent if any pair of relations of d is consistent.

In case of consistency for relations, every consistent tuple (let us say tuple t over relation
scheme R) was participating on the join. Therefore there must have been tuple t′ in the join
such that πR(t′) = t. The information represented by t was not lost by applying the join
and we could have “reconstruct” the original content of the relations by applying the project
operator.

In case of pairwise consistency the reconstruction part no longer holds. In Figure 3.4 a
pairwise consistent database is shown. The result of computing r1 ./ r2 ./ r3 is however an
empty relation (one can check that no three tuples t1, t2, t3, ti ∈ ri, are join–compatible).
The information contained in relations r1, r2 and r3 got lost. A stronger consistency concept
is therefore needed.

Definition 3.13 (Global consistency). Database d = {r1, · · · , rk} over database scheme
R = {R1, · · · , Rk} is globally consistent if every relation of d can be obtained from the
join by means of project operator:

ri = πRi(r1 ./ · · · ./ rk), for every i ∈ [k]

Remark. Global consistency is usually defined by using existence of universal relation
whose projections are relations r1, · · · , rk. This is equivalent to our definition.

The definition of global consistency uses similar formula as a semijoin (except that the
semijoin uses just join of two relations). In fact, if ri = πRi(r1 ./ · · · ./ rk) for every i ∈ [k],
also ri = πRi(ri ./ rj) for every i 6= j. Thus for every pair of relations, application of semijoin

28 CHAPTER 3. RELATIONAL DATABASE THEORY

does nothing, and relations ri, rj are consistent. Hence global consistency guarantees pairwise
consistency (but as was shown in Figure 3.4, converse is not true).

3.5 Acyclic database schemes
The most important class of database schemes is the class of acyclic database schemes.
Efficient algorithms are often applicable for acyclic structures — and acyclic database
schemes are of no exception. Many NP–complete problems for general database schemes
are polynomial time solvable in acyclic ones[2]. Beeri et al.[3] characterized acyclic database
schemes by 9 equivalent statements. Some of them will be used later in the text and will be
discussed thoroughly.

In the rest of this section we consider database scheme D = {R1, · · · , Rk}. By A we will
denote the set of all attributes used in D (i.e. A = R1 ∪ · · · ∪Rk).

Pairwise consistency implies global consistency.
We have shown in Figure 3.4 that for general database schemes we cannot expect that

pairwise consistent database is also globally consistent. From the computational point
of view, an important property of acyclic database schemes is that global consistency is
guaranteed by pairwise consistency[3].

Every database over D has a full reducer.
A database over acyclic database scheme can be made globally consistent by applying a

semijoin program. Such a program consists of a sequence of actions of the following form:

ri ← ri n rj

We have shown that a relation ri can be made consistent with rj by applying semijoin
ri ← rinrj . In databases over acyclic database schemes we can apply a semijoin several times
in order to make the whole database pairwise consistent. Using previous characterization of
acyclic database schemes, the global consistency is then obvious.

The construction of a semijoin program for turning database to a globally consistent
state will be discussed later on in this section.

(R1, · · · , Rk) has a join forest
The efficient computation of join of a database over acyclic database scheme is done

using a structure called join forest. A join forest for a database scheme D = {R1, · · · , Rk} is
a forest where the relation schemes R1, · · · , Rk are vertices. Every edge {Ri, Rj} of the join
forest is labeled by the set of shared attributes of the contributing relations — i.e. Ri ∩Rj .

3.5. ACYCLIC DATABASE SCHEMES 29

Every two relation schemes Ri, Rj whose intersection Ri ∩Rj is non–empty are connected
by a path. Every edge on this path contains vertices from Ri ∩Rj in its label.

The join forest structure is closely related to the tree decomposition. The path property
of join forest is equivalent to the property of a tree decomposition stating that the node set
containing a certain attribute is connected in the tree decomposition. The main difference
between join forests and tree decompositions is that join forests can contain multiple connected
components which is an unimportant technical detail in our scenario.

For the sake of completeness we will state the equivalence theorem in its entirety. (A,D)
denotes a hypergraph where attributes of the database scheme form the vertices and relation
schemes of D are the hyperedges.

Theorem 3.1 (1981, Beeri et al.[3]). Let D = {R1, · · · , Rk} be a database scheme and
A = R1 ∪ · · · ∪Rk be a set of all attributes. Following statements about database D are
equivalent:

• (A,D) is an acyclic hypergraph.

• (A,D) is a closed-acyclic hypergraph.

• (A,D) is a chordal hypergraph.

• The join dependency ./ (R1, · · · , Rk) is equivalent to a set of multivalued
dependencies.

• (R1, · · · , Rk) has running intersection property.

• Following two operations reduce the list (R1, · · · , Rk) to nothing, if applied
repeatedly:

1. delete attribute that is contained in a single relation scheme

2. delete relation scheme Ri that is fully covered by another Rj (i.e. Ri ⊆ Rj,
i 6= j)

• Pairwise consistency implies global consistency.

• Every database over D has a full reducer.

• (R1, · · · , Rk) has a join forest.

3.5.1 Computing full reduction
The importance of removing inconsistent tuples was already mentioned. A full reduction of
a database d over database scheme D is a database d′ over the same database scheme where
no inconsistent tuples are present and joins of d and d′ do not differ.

30 CHAPTER 3. RELATIONAL DATABASE THEORY

For the sake of simplicity, let us consider a join forest for D containing a single connected
component — i.e. join tree. Let us root this tree and denote it by T . Let R1, · · · , Rk be
relation schemes of D in the order given by post–order traversal of T (i.e. relation scheme
Ri comes after its children).

The computation of a full reduction is a two phase procedure. In the first phase, every ri
is made consistent with its children — T is traversed in bottom–up manner. This phase can
be described by following semijoin program:

for i from 1 to k and for every children Rj of Ri with respect to T : ri ← ri n rj

There are k−1 edges in T , hence this first phase consists of k−1 statements. The information
propagates throughout the tree — therefore ri is not consistent with its children only. ri is
consistent with all its successors with respect to T .

The second phase serves to propagate this information in the opposite direction — the
tree is traversed top–down. The semijoin program for this phase may be seen as a mirrored
version of the semijoin program for the first phase:

for i from k downto 1 and for every children Rj of Ri with respect to T : rj ← rj n ri

This not only makes every relation be consistent with its predecessors. Due to the information
flow in the algorithm, relations are made consistent also with relations in parallel branches
of the join tree.

3.5.2 Evaluating project–join queries

Definition 3.14 (Project–join query). Let d be a database over database scheme D
and let S be a subset of attributes used in D (i.e. S ⊆

⋃
R∈D R). A project–join query

over d is a statement of the following form:

πS(./r∈d r)

It was pointed out by Yannakakis [22] that project–join queries over database d can be
evaluated in polynomial time in the size of input and output if the database scheme D is
acyclic. Yannakakis’ algorithm relies on two key properties of acyclic database schemes —
the existence of full reducer and the existence of a join tree.

The first step in the evaluation of a project–join query πS(./r∈d r) by means of Yannakakis’
algorithm is to compute a full reduction d′ of d as shown in Subsection 3.5.1. We know that
joins of d and d′ are equivalent, hence also πS(./r∈d r) = πS(./r′∈d′ r′).

Let T be the join tree for D rooted in an arbitrary node. Yannakakis’ algorithm traverses
the tree in bottom–up manner. At every step one leaf relation is processed — its information

3.5. ACYCLIC DATABASE SCHEMES 31

is merged into the parent’s relation and the processed relation itself is discarded. This
step is repeated until a single relation containing all the information (i.e. the result of the
project–join query πS(./r∈d r)) remains.

Let Ri be the relation scheme of the leaf–node relation that is about to be removed
and let r′i be the relation currently associated to this node (these relations initially come
from the reduced database d′). Let us denote the parent relation scheme of Ri by Rj — the
relation associated to Rj is denoted by r′j . The information from r′i has to be integrated in
the parent’s relation r′j . We can safely forget about the attributes that are not about to be
present in the result (i.e. those that are not present in S) and at the same time they are
irrelevant for the join with the parent’s relation. Let Si denote the set of attributes from S

that are present in some of the relation schemes from the subtree of Ri. When performing
join of r′i and r′j , attributes Zi = Ri∩Rj are considered when deciding about join–compatible
tuples. Thus the relation r′i could be safely reduced to πSi∪Zi(r′i). The integration step is
then straightforward — relation r′j is replaced by the join r′j ./ πSi∪Zi(r′i).

This algorithm works in polynomial time in the size of the input and the output as at every
stage the size of relations r′i is bounded by |ri| · |πS(./r∈d r)| (as shown by Yannakakis[22]).
It has to be mentioned that if the full reduction was not computed first, the size of relations
r′i could have become exponential in the size of the input and the output.

32 CHAPTER 3. RELATIONAL DATABASE THEORY

CHAPTER4
Database theoretical view on

homomorphisms
This chapter will present the connections between graph homomorphisms and relational
database theory. Due to the maturity of database theory, identifying graph homomorphisms
with database theoretical concepts is of great importance — allowing us to rely on algorithms
and tools from this framework.

Firstly, let us investigate this connection without caring much about the complexity
of the homomorphism enumeration. In Chapter 3, tuples were defined as mappings from
the set of attributes to the universe. Homomorphism is a mapping as well. It is therefore
straightforward to represent homomorphisms as tuples.

Definition 4.1 (Homomorphism relation). Let G = (G,λG), H = (H,λH) be labeled
graphs. Relation rG→H over relation scheme V (G) with the universe of V (H) is
called homomorphism relation if tuple t is present in rG→H if and only if t is a valid
homomorphism from G to H.

Remark. Relation rG→H represents set of all homomorphisms Hom(G,H).

An example of a homomorphism relation for a simple graph database query is shown in
Figure 4.1.

In order to evaluate homomorphisms efficiently, our interest is to use results obtained
for subproblems (i.e. sets of homomorphism mappings for subgraphs of the original query
graph) and assemble them in order to get the result for the original problem itself. Following
theorem captures how this can be done in terms of joins.

34 CHAPTER 4. DATABASE THEORETICAL VIEW ON HOMOMORPHISMS

:PERSON
v1

v2v3
:PERSON :COURSE

(a) Query graph G

:PERSON
John

:PERSON
Lucy

:PERSON
Steve

:COURSE
Calculus

:COURSE
Graph Theory

:COURSE
Algorithms

(b) Host graph H

v1 v2 v3
John Calculus John
John Calculus Lucy
Lucy Calculus John
Lucy Calculus Lucy
John Graph Theory John
John Graph Theory Lucy
John Graph Theory Steve
Lucy Graph Theory John
Lucy Graph Theory Lucy
Lucy Graph Theory Steve
Steve Graph Theory John
Steve Graph Theory Lucy
Steve Graph Theory Steve
Steve Algorithms Steve

(c) Homomorphism relation rG→H

Figure 4.1: Homomorphism relation example

35

Theorem 4.1. Let G1, . . . ,Gk be subgraphs of G such that G =
⋃
i=1...k Gi. Assume

that for every graph Gi we already have the corresponding homomorphism relation
rGi→H. Relation rG→H (and thus also the set of all homomorphisms Hom(G,H)) can
be computed as:

rG→H = ./i=1...k r
Gi→H

Remark. Notice that the set {V (Gi) | i = 1 . . . k} forms a database scheme.

Proof. We will prove that the relations rG→H and ./i=1...k r
Gi→H are equivalent by proving

both inclusions related to these relations.
Let us start with rG→H ⊆ ./i=1...k r

Gi→H. Let h ∈ rG→H be a homomorphism from G
to H. By Proposition 2.1, we can restrict our attention to an arbitrary subgraph of G and
the appropriate restriction of h will be a homomorphism mapping from G[·] to H. Hence for
every graph Gi, restriction h|V (Gi) ∈ rGi→H must be a homomorphism from Gi to H. As
tuples h|V (Gi) for every Gi are join–compatible, their join (equal to the mapping h) must be
present in ./i=1...k r

Gi→H which proves this inclusion.
Let us focus our attention to the second inclusion rG→H ⊇ ./i=1...k r

Gi→H. We will show
that for any join–compatible tuples t1, · · · , tk from relations rG1→H, · · · , rGk→H, their join
t = t1 ./ · · · ./ tk is a homomorphism from G to H (and therefore t ∈ rG→H). Let e = (u, v)
be an edge of G. We have to show that there is an edge e′ = (t(u), t(v)) in H such that
λG(e) ⊆ λH(e′). We know that graphs Gi partition graph G. Therefore there must be a
graph Gj containing edge e. If edge e′ was not present in H, tuple tj would have not been a
homomorphism from Gj to H — which would have contradict our original assumption of
tj ∈ rGj→H.

The most trivial decomposition of graph G would be such that every Gi would be a
graph containing a single edge of the original graph. This decomposition is however not a
great choice because the resulting database scheme will not be acyclic (and therefore the
evaluation of the join will be NP-complete) unless G is a tree.

Let us perform this decomposition by means of computing tree decomposition. For every
bag of tree decomposition, we construct graph Gi as an induced subgraph of G by the
vertex set of the given bag. It is easy to see that tree decomposition can be turned into a
join tree for database scheme {RG1→H, · · · , RGk→H} induced by the tree decomposition —
therefore the resulting database scheme is acyclic, allowing us to compute the join in time
polynomial in the size of input and output by means of Yannakakis’ algorithm. This choice
however means that the computation of the homomorphism relations will be harder, actually
exponential in the treewidth of G.

Yannakakis’ algorithm assumes that its input relations are available in advance which
is not the case here as we have to compute the homomorphism relations first. In the
remainder of this chapter, we will present an algorithm tailored to this specific problem

36 CHAPTER 4. DATABASE THEORETICAL VIEW ON HOMOMORPHISMS

of computing Hom(G,H). Knowing the goal behind the computation of homomorphism
relations, additional properties (like the consistency of the database) may be enforced on the
go and additional information that makes the joining procedure more straightforward can be
kept.

The general outline of our algorithm will be similar to the computation of Hom(G,H)
by means of Yannakakis’ algorithm. Let us list main steps needed for successful application
of Yannakakis’ algorithm on this problem:

1. Compute homomorphism relation for every node of tree decomposition.

2. Compute full reduction of the database.

3. Evaluate the project–join query.

4.1 Database construction algorithm
The major part of our algorithm deals with computation of the database of homomorphism
relations and ensuring that the resulting database is globally consistent. This is equivalent
to first two steps in the outline described above.

In order to simplify the derivation of the algorithm, we will consider a special case of tree
decomposition. This decomposition will allow us to focus on atomic operations of addition
and removal of a single vertex.

Definition 4.2 (Nice tree decomposition). Rooted tree decomposition is called nice
tree decomposition if for every (non-root) node u and its parent node v one of the
following hold:

• χ(u) ⊆ χ(v) and |χ(u)| = |χ(v)| − 1. In such case u is called forget node.

• χ(v) ⊆ χ(u) and |χ(u)| = |χ(v)|+ 1. In such case u is called introduce node.

Remark. To grasp better intuition about forget and introduce nodes we will provide
an informal description of these types of nodes. Node u is called forget node, if one
vertex got forgotten on the last edge of the path from root to u. Similarly node u is an
introduce node, if one vertex was introduced on the last edge of the path from root to u.

Every tree decomposition can be turned to a nice one by a simple algorithm. Let us start
by rooting the original tree decomposition in an arbitrary vertex.

First possibility how the property of nice tree decomposition can be violated is that
χ(ni) = χ(nj) for some node ni and its parent nj . This problem can be easily fixed by
removing ni from the tree decomposition and attaching all its children to nj .

Another problem arises when multiple vertices get forgotten and introduced when
traversing an edge. To recover from this issue, we have to replace this single edge by

4.1. DATABASE CONSTRUCTION ALGORITHM 37

{v1, v2, v3} {v3, v4}

n1

{v1, v2, v3} {v2, v3}

n2 n1 f1

{v3}

n0

{v3, v4}

n2

Figure 4.2: Computing nice tree decomposition

a sequence of edges so that these forget and introduce operations are applied one by one. To
keep the size of the bags as small as possible, vertices are first forgotten. An application of
this principle is shown in Figure 4.2. As sizes of bags are bounded by tw+ 1 where tw is the
treewidth, an edge in the tree decomposition is replaced by at most 2tw + 2 edges.

Similarly as in the case of backtracking algorithm, our algorithm will be working with
partial solutions — although in this case these will not be directly partial homomorphisms.
In this case a partial solution will be represented by a partial database — database containing
portion of homomorphism relations.

Definition 4.3 (Partial solution). Let G = (G,λG) be the query graph, H = (H,λH)
be the host graph. Let (T, χ) be a nice tree decomposition of G rooted in r. Pair (S, d)
is a partial solution of Hom(G,H) with respect to (T, χ) if:

• S is a connected subset of nodes of T .

• S contains root r.

• Database scheme of d is the set of bags of nodes in S, i.e.

D = {χ(n) | n ∈ S}

Remark. This means that for every node n ∈ S, there is a relation rn over relation
scheme χ(n) present in the database.

• Let VS =
⋃
n∈S χ(n) be a set of all vertices of G covered by nodes in S. The set

of all homomorphisms from G[VS] to H is equal to the join of the database d, i.e.:

Hom(G[VS],H) = ./r∈d r

• For every node n ∈ S, relation rn ∈ d over relation scheme χ(n) is the smallest
one such that the above property holds.

We can see that partial solutions are indeed closely related to the solution of this part of
the algorithm. Partial solution represents a globally consistent database of homomorphism
relations for a subproblem described by a connected subtree of the tree decomposition.

38 CHAPTER 4. DATABASE THEORETICAL VIEW ON HOMOMORPHISMS

Corollary 4.1. Let (S, d) be a partial solution. If S = V (T), the partial solution (S, d)
represents the solution to the original problem of Hom(G,H).

Proof. Tree decomposition has to cover all nodes of the graph, i.e.
⋃
n∈V (T) χ(n) = V (G).

The induced subgraph G[VS] is therefore equal to G, as is Hom(G[VS],H) equal to
Hom(G,H).

Figure 4.3 shows a pseudocode for the database construction algorithm. For the sake of
clarity, some important points were omitted from the pseudocode and will be addressed in
the following text.

The initial partial solution has to cover root node. There are several ways to compute
the relation associated to the root node. One possibility is to apply a conventional algorithm
for computing homomorphisms (e.g. bactracking algorithm as discussed in Figure 2.14).
Another option involves choosing a specific root node, e.g. a node with an empty bag when
the associated relation contains just one empty tuple. It is always possible to modify a tree
decomposition to obtain such a node.

The choice of node n in every iteration of the main loop of the algorithm is a nondetermin-
istic choice. From the theoretical point of view, the actual choice is not important — but in
practice choosing n properly may lead to results in shorter time. We will discuss heuristics
for choosing n in Chapter 5.

The last hidden point of the algorithm is the way it ensures global consistency of the
database in case that for some t ∈ rp no join–compatible tuple exists in rn. This procedure
is roughly captured in Figure 4.3 starting on line 16, but it needs more explanation.

Alongside with the generation of tuples (both on lines 9 and 14), it is possible to construct
a consistency graph. Vertices of this graph correspond to individual tuples in the relations of
the database. Edge between tuples tm ∈ rm and tn ∈ rn is present in the graph if tm and tn
are join–compatible and importantly nodes m and n are adjacent in T . It is easy to check
that an edge connects tm with tn if and only if tm was generated from tn (or vice versa).
The structure of this graph is shown in Figure 4.4.

Global consistency of the database means, that for every tuple t ∈ rni and for every
node nj ∈ S adjacent to ni, there is an edge connecting t with some tuple from rnj . As this
property is local, a removal of a tuple may render this property violated only in the nearest
neighborhood of t. The consistency can be reestablished by traversing this complementary
graph structure as shown in Figure 4.5.

4.1. DATABASE CONSTRUCTION ALGORITHM 39

Require: query graph G, host graph H, nice tree decomposition (T, χ) of G
Ensure: globally consistent database of homomorphism relations for the problem of com-

puting Hom(G,H)
1:
2: function ConstructDatabase()
3: (S, d)← initial partial solution
4: while S 6= V (T) do
5: n← node from V (T) such that n /∈ S and nodes in S ∪ {n} are connected
6: p← parent node of n (note that p ∈ S)
7:
8: if n is a forget node then
9: rn ← πχ(n)(rp)

10: else if n is an introduce node (introducing vertex v) then
11: rn ← {}
12: for all t ∈ rp do
13: if ∃v′ ∈ V (H) such that (t ∪ {v → v′}) ∈ Hom(G[χ(n)],H) then
14: For every such v′, extend t by an assignment v → v′ and add it to rn
15: else
16: rp ← rp \ {t}
17:
18: remove all tuples from relations of d that lost their only join
19: compatible tuple in rp after deletion of t; cascade
20: end if
21: end for
22: end if
23:
24: (S, d)← (S ∪ {n}, d ∪ {rn})
25: end while
26: return database d
27: end function

Figure 4.3: Database construction algorithm

40 CHAPTER 4. DATABASE THEORETICAL VIEW ON HOMOMORPHISMS

g1

g2 g4

g5

g6

g3

(a) Query graph G

h1

h2 h5 h7

h9

h3 h6 h8

h4

(b) Host graph H

n4 {g3}

n3 {g2, g3}

n2 {g2}

n1 {g1, g2}

n5 {g3, g4}

n6 {g4}

n7 {g4, g5}

n8 {g5}

n9 {g5, g6}

(c) Nice tree decomposition of G

g3

h4

g3 g2

h4 h2

h4 h3

g2

h2

h3

g2 g1

h2 h1

h3 h1

g3 g4

h4 h5

h4 h6

g4

h5

h6

g4 g5

h5 h7

h6 h8

g5

h7

h8

g5 g6

h7 h9

h8 h9

rn4

rn3

rn2

rn1

rn5

rn6

rn7

rn8

rn9

(d) Example of a solution with a consistency graph

Figure 4.4: Example of a solution with a consistency graph

4.1. DATABASE CONSTRUCTION ALGORITHM 41

1: procedure Remove(n, t)
2: remove tuple t from relation rn
3: for all tuples t′ ∈ rn′ adjacent to t in the consistency graph do
4: remove edge {t, t′} from the consistency graph
5: if {t, t′} was the only edge connecting t′ with tuples in rn then
6: Remove(n′, t′)
7: end if
8: end for
9: end procedure

Figure 4.5: Consistency ensuring algorithm

Proposition 4.1. After application of the Remove procedure on a globally consistent
database, the database is in a consistent state.

Proof. It follows from global consistency and the definition of the consistency graph that
for every two adjacent nodes x, y ∈ S, every tuple t ∈ rx must be connected to some tuple
in ry (as otherwise this tuple would have been inconsitent). Firstly we will show that the
existence of such edges is also sufficient for global consistency. Let us assume that such edges
are present in the consistency graph, i.e. every tuple is connected to some tuple in every
adjacent relation.

It is obvious that for every two adjacent nodes x, y ∈ S, relations rx and ry are consistent.
For the consistency of two relations, it is sufficient that every tuple t ∈ rx finds it join–
compatible tuple t′ ∈ ry (and vice versa) — i.e. there is an edge {t, t′} in the consistency
graph, which was our assumption. Adjacent nodes are connected by a path of unit length.

Let us assume that for every two nodes u, v of T connected by a path of length at most
i − 1, relations ru and rv are consistent. Let us show that in such case, nodes x, y of T
connected by a path of length at most i are consistent as well. If i > 1, we can find a node z
on path from x to y such that both x, z and y, z are connected by paths of length at most
i− 1. Hence relations rx, rz and ry, rz are consistent. As χ(x) ∩ χ(y) ⊆ χ(z), relations rx
and ry are consistent as well.

Every two nodes of tree decomposition are connected by a path, hence the database is
pairwise consistent. As tree decomposition induces an acyclic database scheme, the database
is also in a globally consistent state.

An edge is removed from the consistency graph only when the Remove procedure
removes one of its endpoints. In such a case this procedure inspects the other endpoint
as well and checks whether required edges are still present in the consistency graph. It is
therefore impossible that an inconsistent tuple was left in the database and the resulting
database therefore must be consistent.

42 CHAPTER 4. DATABASE THEORETICAL VIEW ON HOMOMORPHISMS

Theorem 4.2. After every iteration of the main loop of the algorithm from Figure 4.3,
(S, d) contains a valid partial solution.

Proof. The algorithm starts with a valid partial solution. We have to check that each
iteration of the main loop transforms one partial solution into another one. Let (S, d) be a
partial solution before entering body of this loop. We will check that (S ∪ {n}, d ∪ {rn}) is
once again a partial solution. Let us check that it satisfies all the required properties.

It is obvious that set S ∪ {n} contains root node r. Root r was present in the initial
solution and since then only new nodes were added. Similarly it is easy to check that nodes
in S ∪{n} are connected in T as this was required on line 5. Adding relation rn over relation
scheme χ(n) to the database ensures that the database is over a proper database scheme.

It remains to verify two last properties. Let us start by verifying that the relations of
d ∪ {rn} are minimal — i.e. there are no tuples that are not join–compatible with adjacent
relations (with respect to T). The consistency between rn and rp is obvious: If n is a forget
node then for every tuple t ∈ rp there is a join–compatible tuple πχ(n)(t) present in rn,
and similarly every tuple of rn must have been projected from some tuple of rp. If n is an
introduce node, then for every tuple t ∈ rp either a tuple t in rn was generated (that agrees
with t on all the attributes from χ(p)), or tuple t was removed from rp. The consistency of
remaining relations of d is ensured by the Remove procedure. Correctness of this procedure
was proved separately.

Let VS′ = VS ∪ χ(n). Let us check that the newly constructed database represents all
homomorpshims from G[VS′] to H. Let us consider the forget node case first. In such a
case, VS = VS′ , no tuple was removed from the original database d (and its join is equal to
Hom(G[VS],H)). Relations rn and rp are consistent and relation scheme of rp is a superset
of the relation scheme of rn. Therefore rn ./ rp = rp.

(./r∈d r) ./ rn = (./r∈d r) ./ (rp ./ rn)
= (./r∈d r) ./ rp
= ./r∈d r = Hom(G[VS],H) = Hom(G[VS′],H)

Let us discuss the introduce node case now. All homomorpshims from G[χ(n)] to H
consistent with rp are present in rn — this was ensured on line 14. The removal procedure
then removed only inconsistent tuples that does not participate on the join anyway. The
resulting database is therefore full reduction of a database of homomorphism relations for
the decomposition {G[χ(m)] | m ∈ S ∪ {n}}.

4.1. DATABASE CONSTRUCTION ALGORITHM 43

Proposition 4.2. Algorithm from the listing in Figure 4.3 terminates.

Proof. Tree decomposition is a connected graph. Therefore if S 6= V (T), there is a node
n /∈ S that is connected to some node from S. In every iteration, one node is added to the
set S and after |V (T)| − 1 iterations the algorithm terminates.

Corollary 4.2. Algorithm from the listing in Figure 4.3 is correct.

Proof. Algorithm reaches the situation when S = V (T) while ensuring that (S, d) is a partial
solution. According to the Corollary 4.1, the join of the database d is equal to Hom(G,H)
as was required.

4.1.1 Complexity

This section devoted to the time complexity analysis of the database construction algorithm
is divided into three parts. In the first one, necessary data structures and algorithms will
be presented. In the second part, the problem of computing valid extensions for a given
partial homomorphism is discussed. The third part is devoted to the analysis of the database
construction algorithm itself.

Preliminaries

Many structures used in our algorithm are sets — and set operations have to be performed
efficiently. We will start by discussing the way how sets are represented in our algorithm and
what does it mean for the time needed to compute set operations like intersection and union.

Let U be a finite universe. We say that set S is a set over universe U if S ⊆ U . If two
sets S1, S2 are over the same universe U , their intersection S1 ∩ S2 and union S1 ∪ S2 are
once again sets over the universe U .

We will assume that universe U is a totally ordered set. Set S over the universe U will
be represented as a sorted list containing elements of U in increasing order. No element of U
can be present in the list more than once.

Operations of intersection and union of two sets will be performed by a 2–way merge
algorithm. We assume that the reader is familiar with this algorithm, nevertheless a brief
overview of this algorithm will be given.

44 CHAPTER 4. DATABASE THEORETICAL VIEW ON HOMOMORPHISMS

We will describe the application of 2–way merge for computing an intersection of two
sets S1, S2 over the same universe U . The idea is simple:

S1 ∩ S2 =

∅ S1 = ∅ ∨ S2 = ∅(
S1 \ {min(S1)}

)
∩ S2 min(S1) < min(S2)

S1 ∩
(
S2 \ {min(S2)}

)
min(S1) > min(S2)

{min(S1)} ∪
((
S1 \ {min(S1)}

)
∩
(
S2 \ {min(S2)}

))
min(S1) = min(S2)

The operations of finding the minimum of a set and removal of the smallest element are
done in constant time for the sorted list representation — the minimum in a sorted list is
the first element of the list and its removal is done by truncating the list (i.e. advancing to
the next element). For every two sets S1, S2 over the universe U the algorithm computes the
intersection in time O(c · |U |) where O(c) is the time needed to compare two elements of U .
The idea is similar for computing a union of two sets.

The 2–way merge procedure can be used to merge multiple sets over the same universe U .
As every merge of two sets over U is once again a set over U , the merge of n sets can be
done in time O(n · c · |U |). This procedure of merging n sets over the same universe will be
called n–way merge.

Let us now discuss the representation of a graph H. When talking about vertices, set
V (H) will be treated as a sorted universe — for simplicity we will assume that two vertices
vi, vj ∈ V (H) are compared vi ≤ vj if and only if i ≤ j. Any subset of V (H) is therefore
a set over the universe of V (H) and is represented by a sorted list.

For every vertex v of H an incidence list will be known. This list contains all edges e of
H such that either e = (v, u) or e = (u, v) (i.e. all edges incident to v). The incidence list
for vertex v will be denoted by inc(v).

When we will be working with some subset of E(H), it will always be a subset of some
incidence list. For this reason in the context of edges, inc(v) will be seen as an universe.
An order of edges in inc(v) has to be therefore established. Let endv(e) denote endpoint of
edge e other than v (we will often call such endpoint opposing). Two edges ei, ej ∈ inc(v)
are compared first by the opposing vertex (with respect to the order on V (H)) secondly by
the edge itself — more formally:

comparev(ei, ej) =

ei < ej if endv(ei) < endv(ej)
ei < ej if endv(ei) = endv(ej) ∧ i < j

ei > ej if endv(ei) > endv(ej)
ei > ej if endv(ei) = endv(ej) ∧ i > j

ei = ej otherwise

4.1. DATABASE CONSTRUCTION ALGORITHM 45

v′1 v′1 v′3 v′1 v′2 v′1 v′1 v′2 v′4 v′3 v′1 v′2 v′3 v′1 v′3

(a) List representation

v′1 v′1 v′3
v′1 v′2 v′1
v′1 v′2 v′4
v′3 v′1 v′2
v′3 v′1 v′3

(b) Tabular representation

Figure 4.6: Representation of a relation over [v1, v2, v3]

This allows not only efficient merging of two sets over the universe inc(v). If set S ⊆ inc(v)
of edges is represented by a sorted list, it is possible to obtain a list of opposing endpoints
(i.e. set {endv(e) | e ∈ S}) that is ordered with respect to the ordering on V (H) by a single
pass of S. As inc(v) is ordered firstly by the opposing vertex, duplicate vertices are aligned
in blocks — which allows the deduplication to be done efficiently.

Another important set–related structures used in the database construction algorithm
are relations. In order to derive the overall complexity of this algorithm, the complexity of
individual operations related to them has to be studied. Only relations with the domains of
V (H) are used in our algoirhtm — therefore set V (H) will be used in the text below instead
of a general universe U .

Let us fix the order A1, · · · , Ak of attributes in a k–attribute relation scheme R. Tuples
over R need not then be represented as mappings t : R → V (H) but rather as k–tuples
(t(A1), · · · , t(Ak)). This allows us to establish lexicographical order on such k–tuples and
set Rk of all such k–tuples then forms an ordered universe in the sense of our view of sets.
It is easy to see that universe Rk contains |V (H)|k elements. A k–attribute relation r is
then a set over the universe Rk. A list based representation of such a relation is shown in
Figure 4.6a, but it is also convenient to view such a list as a table shown in Figure 4.6b. To
emphasize the fact that the relation scheme is ordered, we will use notation [A1, · · · , Ak]
instead of {A1, · · · , Ak}.

Two operations related to relations have to be considered. When processing an introduce
node a (k − 1)–attribute relation rp over relation scheme [v1, · · · , vk−1] is considered and k–
attribute relation rn over relation scheme [v1, · · · , vk−1, vk] has to be computed (i.e. a column
has to be appended at the end of rp). Assume that for every tuple t ∈ rn a sorted list ext(t)
of values for attribute vk is known (and for every v′k from this list, tuple t ∪ {vk → v′k} has
to be present in rn). Let us iterate through all tuples t = (v′1, · · · , v′k−1) of rp and for each
value v′k from the list ext(t) construct a tuple t′ = (v′1, · · · , v′k−1, v

′
k). As both rp and all

ext(t) are sorted, it is easy to see that tuples t′ are generated in lexicographical order (and
thus rendering the relation rn properly sorted). At most |V (H)|k−1 tuples from relation rp

46 CHAPTER 4. DATABASE THEORETICAL VIEW ON HOMOMORPHISMS

1

2

1

2

1

2

1 1

1 2

1 1

1

1

2 2

2

22

2

22

block

subblock

i = 2

prefixes of length i− 1

1 1

1 2

2 2

1 2

22

1 1

1 2

2 2

1 2

22

1

2

Figure 4.7: Removal of a column

have to be considered and at most |V (H)|k tuples are generated (each having O(k) elements)
— thus the time of appending a column to a (k − 1)–attribute relation is in O(k · |V (H)|k).

In the case of forget nodes, relation rn is obtained by projecting a k–attribute relation
rp onto k − 1 attributes — i.e. a column is removed from a table. Let us assume that
i–th column is about to be removed. If tuple (x1, · · · , xi−1, xi, xi+1, · · · , xk) is present in
rp, tuple (x1, · · · , xi−1, xi+1, · · · , xk) has to be present in rn. The following procedure may
seem unintuitive at the first glance — reader may therefore consult Figure 4.7 where the
individual steps are illustrated. Let us identify blocks of tuples having the same prefix of
length i− 1 — these blocks can be handled separately as the results for individual blocks can
be joined to form a relation in lexicographical order. There are up to |V (H)|i−1 such blocks.
Each of the blocks can be decomposed into subblocks having the same value in the i–th
column — there are up to |V (H)| subblocks for each block. Suffixes of tuples in subblocks
of length k− i (from the universe Rk−i) are clearly in lexicographical order — this allows us
to compute their union by means of |V (H)|–way merge in time O(|V (H)| · k · |V (H)|k−i)
(assuming that two suffixes are compared in O(k) time). The overall time complexity of the
removal of a column from a k–attribute relation is therefore O(k · |V (H)|k).

Extending partial homomorphism tuples

Let us recall how an introduce node (introducing vertex v) is processed by the database
construction algorithm. Every tuple t from parent’s relation rp is considered and vertices v′

such that t′ = t ∪ {v → v′} forms a valid homomorphism from G[χ(n)] to H are found. For
all such vertices v′, tuple t′ is added to the newly constructed relation rn. The way relations
are represented allows to perform this operation efficiently provided set ext(t) of all such
vertices v′ is known for every tuple t ∈ rp. Let us discuss how vertices v′ can be found for a
single partial homomorphism t and hence construct set ext(t).

4.1. DATABASE CONSTRUCTION ALGORITHM 47

Let t = {u1 → u′1, · · · , uk → u′k} be a partial homomorphism from G to H. We
are supposed to find all vertices v′ of H such that t ∪ {v → v′} is once again a partial
homomorphism. Not all vertices v′ are allowed — the choice of these vertices is restricted by
two types of constraints originating from graph G.

Firstly, vertex v of G has labels — and these labels have to be present for vertex v′ of H
as well (i.e. λG(v) ⊆ λH(v′) must hold). The set of vertices v′ satisfying this condition will
be denoted by label(v).

Secondly, the assignment for vertex v has to respect edges connecting v with vertices
u1, · · · , uk (for which the assignment is already known). Let us focus on a single edge
e = (ui, v) of G labeled by λG(e). Edge e admits assignment v → v′ given assignment
ui → u′i if there is an edge e′ = (u′i, v′) such that λG(e) ⊆ λH(e′). Set of all vertices v′ of H
for which the assignment v → v′ is admitted by edge e will be denoted by adm(e, ui → u′i).
The meaning of this set is similar if edge e is oppositely directed — in such case edge e′ has
to be oppositely directed as well.

Vertex v′ can be used to extend partial homomorphism t by an assignment v → v′ if it
satisfies all constraints of both types, i.e. if vertex v′ is present in all sets related to these
constraints. The set of all such vertices can be computed by means of intersection:

label(v) ∩

 ⋂
i=1...k

 ⋂
e∈EG(ui,v)

adm(e, ui → u′i)

(where EG(x, y) denotes the set of all edges of G connecting vertices x and y)

The problem of this formula is, that the number of intersected sets depends on the
number of edges in G connecting vertex v with some of the vertices u1, · · · , uk (i.e. the size
of sets EG(ui, v)). We can avoid it by precomputing the inner intersection for every vertex
of G:

edgev(ui → u′i) =
⋂

e∈EG(ui,v)
adm(e, ui → u′i)

Let us provide intuitive meaning of this set. If vertex v′ is present in the set edgev(ui → u′i),
no edge in G prevents the assignment v → v′ when the assignment ui → u′i is already fixed.
Introducing these sets allows a simplification of the formula to one using the intersection of
k + 1 sets:

label(v) ∩
[⋂
i=1...k

edgev(ui → u′i)
]

The precomputation of sets label(·), adm(·) and edge·(·) does not come for free. The
time required to compute these sets is discussed below.

48 CHAPTER 4. DATABASE THEORETICAL VIEW ON HOMOMORPHISMS

Proposition 4.3. The time needed to compute sets label(v) for all vertices v of G is
in O(LV · |V (H)|+ |V (G)|) (where LV =

∑
v∈V (G) |λG(v)|). Resulting sets label(v) are

represented by sorted lists ordered with respect to the ordering on V (H).

Proof. Let us consider the time needed to compute label(v) for a single vertex v first. If
λG(v) is empty, label(v) contains all vertices of H — thus label(v) can be computed in
constant time.

If λG(v) is non–empty, every vertex v′ of H has to be considered and the property
λG(v) ⊆ λH(v′) has to be verified (if it is satisfied, vertex v′ should be present in label(v)).
Assuming that presence of a single label in λH(v′) can be done in constant time, the inclusion
property is verified by |λG(v)| such queries. The overall time to compute label(v) for a given
vertex v is therefore in O(1 + |λG(v)| · |V (H)|). Let us now sum over all vertices of G to
obtain the total time needed to construct sets label(v) for all vertices v of G:

∑
v∈V (G)

O
(
1 + |λG(v)| · |V (H)|

)
= O

 ∑
v∈V (G)

[
1 + |λG(v)| · |V (H)|

] 1

= O

|V (G)|+ |V (H)|
∑

v∈V (G)
|λG(v)|

= O

(
|V (G)|+ |V (H)| · LV

)
As V (H) is represented by an ordered list of vertices, its subsets label(v) are represented by
sorted lists as well.

Proposition 4.4. The time needed to compute sets adm(e, u → u′) for every edge e
of G, every its endpoint u and every vertex u′ of H is in O

(
(LE + |E(G)|) · |E(H)|

)
(where LE =

∑
e∈E(G) |λG(e)|). Lists representing sets adm(e, u→ u′) are sorted with

respect to the ordering on V (H).

Proof. Let us consider the time needed to compute set adm(e, u→ u′) for a fixed edge e of
G, its endpoint u and a fixed vertex u′ of H. Vertex v′ is in adm(e, u→ u′) if there is an
edge e′ = (u′, v′) (respectively (v′, u′) if e has opposite direction) such that λG(e) ⊆ λH(e′).
All such edges are incident to u′, hence present in the incidence list inc(u′). Every edge in
the incidence list inc(u′) is considered. If λG(e) is empty, only direction of the edge has to

1If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) then f1(n) + f2(n) ∈ O(g1(n) + g2(n)). To make the proofs
more readable we abuse the notation and write directly O(g1(n)) + O(g2(n)) = O(g1(n) + g2(n)).

4.1. DATABASE CONSTRUCTION ALGORITHM 49

be verified — hence O(1) time per edge. If λG(e) is non–empty, every label l ∈ λG(e) has to
be checked to be present in λH(e′) using |λG(e)| constant time queries.

We are not interested in edges e′ = (u′, v′) — set adm(e, u→ u′) has to contain opposing
vertices v′. Recall that the incidence list inc(u′) is sorted by vertex v′, thus it is possible
to convert set of edges e′ into set of vertices v′ (and remove duplicate endpoints v′) by a
single pass through the list of found edges. The overall time needed to compute a single set
adm(e, u→ u′) is therefore in O(|inc(u′)| · |λG(e)|+ |inc(u′)|).

Let us now aggregate this result over all edges e of G, both its endpoints and all vertices
u′ of H:

2
∑

e∈E(G)

∑
u′∈V (H)

O
(
|inc(u′)| · (|λG(e)|+ 1)

)

=
∑

e∈E(G)
O

(|λG(e)|+ 1)
∑

u′∈V (H)
|inc(u′)|

=

∑
e∈E(G)

O
(
(|λG(e)|+ 1) · |E(H)|

)
2

= O
(
|E(H)| ·

∑
e∈E(G)

(|λG(e)|+ 1)
)

= O
(
|E(H)| · LE + |E(H)| · |E(G)|

)

It is easy to see that the lists representing sets adm(e, u→ u′) are sorted with respect
to the ordering on V (H) as the incidence lists used to compute these sets were sorted by
opposing vertices of edges.

Proposition 4.5. Provided sets adm(·) are known, sets edgey(x→ x′) for every vertices
x, y of G and every vertex x′ of H are computed in O(|E(G)| · |E(H)|+ |V (G)|2 · |V (H)|).

Proof. Let us study time needed to compute a single set edgey(x → x′). If there is no
edge connecting vertices x and y in G, then every vertex y′ of H is in edgey(x→ x′) and
edgey(x→ x′) is computed in constant time.

If there are some edges connecting vertices x and y in G, sets adm(e, x→ x′) for every
edge e connecting x and y are to be intersected. Recall that sets adm(e, x → x′) were
found out by inspecting adjacency list inc(x′) — hence adm(e, x→ x′) are sets represented
by sorted lists over a universe of size at most |inc(x′)|. The intersection is computed by

2Using handshaking lemma (Euler):
∑

v∈V deg(v) = 2|E| (where deg(v) denotes degree of vertex v, i.e.
size of the incidence list inc(v))

50 CHAPTER 4. DATABASE THEORETICAL VIEW ON HOMOMORPHISMS

means of Nxy–way merge (where Nxy is number of edges connecting x and y in G) in time
O(Nxy · |inc(x′)|). The overall complexity of computing edgey(x→ x′) for fixed vertices x, y
of G and x′ of H is in time O(Nxy · |inc(x′)|+ 1).

Let us now sum over vertices x, y of G and vertices x′ of H to obtain time needed to
compute all sets edge·(·):∑

x,y∈V (G)

∑
x′∈V (H)

O(Nxy · |inc(x′)|+ 1)

=
∑

x,y∈V (G)
O

|V (H)|+Nxy ·
∑

x′∈V (H)
|inc(x′)|

=

∑
x,y∈V (G)

O (|V (H)|+Nxy · |E(H)|)

= O

|V (G)|2 · |V (H)|+ |E(H)| ·
∑

x,y∈V (G)
Nxy

= O

(
|V (G)|2 · |V (H)|+ |E(H)| · |E(G)|

)

Database construction algorithm complexity

Theorem 4.3. Given sets label(·) and edge·(·), the database construction algorithm
runs in time O(|V (T)| · tw(G) · |V (H)|tw(G)+1).

Proof. In the course of the database construction algorithm, three types of nodes are being
processed — the root node, forget nodes and introduce nodes. Let us consider the latter two
first.

If n is a forget node and p is the parent node, a (|χ(p)| − 1)–attribute relation rn is
created from a |χ(p)|–attribute relation rp. The way relations are represented allows the
computation of such a relation to be done in time O(|χ(p)| · |V (H)||χ(p)|).

When processing an introduce node n introducing vertex v, a |χ(n)|–attribute relation rn
is constructed from a (|χ(n)|−1)–attribute relation rp. This is done by means of the algorithm
for appending a column to the representation of relation rp in time O(|χ(n)| · |V (H)||χ(n)|) —
provided set ext(t) is known for every tuple t of rp. We have shown in previous part that a
single set ext(t) can be computed using |χ(n)|–way merge of sets over the universe V (H) as:

ext(t) = label(v) ∩

 ⋂
u∈χ(p)

edgev
(
u→ t(u)

)

4.2. RESULT GENERATING ALGORITHMS 51

There are at most |V (H)||χ(n)|−1 tuples in rp and the computation of the set ext(t) for a
single tuple takes O(|χ(n)| · |V (H)|) time — hence all sets ext(t) can be computed in time
O(|χ(n)| · |V (H)||χ(n)|) which is also the overall time needed to process the introduce node n.

Finally let us consider the time needed to compute the relation associated to the
root node r. Let us construct a sequence of nodes n0, · · · , n|χ(r)| such that χ(n0) = ∅,
χ(n|χ(r)|) = χ(r) and χ(ni) ⊂ χ(ni+1). It is easy to see that χ(ni) contains exactly i vertices
and ni can be seen as an introduce node with respect to ni−1. Relation rn0 is trivially
constructed in constant time, while O(i · |V (H)|i) time is needed to compute a relation
associated to the introduce node ni. All relations associated to nodes n0, · · · , n|χ(r)| are
computed in time

∑|χ(r)|
i=1 O(i · |V (H)|i), which is in O(|χ(r)| · |V (H)||χ(r)|). As root relation

rr is equal to rn|χ(r)| , the root relation can be computed in time O(|χ(r)| · |V (H)||χ(r)|) as
well.

For every node n of the tree decomposition, size of the set χ(n) is bounded by tw(G) + 1.
This allows us to process all types of nodes in time O(tw(G) · |V (H)|tw(G)+1). There are
|V (T)| nodes to be processed, hence the algorithm runs in O(|V (T)| ·tw(G) · |V (H)|tw(G)+1).

It remains to verify that ensuring the database consistency does not worsen this bound.
An edge in the consistency graph is created in situations when a tuple in some of the relations
is generated. We know that every edge in this graph is traversed at most once during the
whole run of the database construction algorithm (as it is removed after it is being traversed).
Hence both creation and maintenance of the consistency graph is linear in the number of
tuples generated by the algorithm.

4.2 Result generating algorithms
In this section, we will focus on three algorithms that provided output of previous algorithm
answer one of the following questions:

• Does homomorphism from G to H exist? (decision variant)

• How many homomorphisms from G to H exist? (counting variant)

• What are the homomorphisms from G to H? (enumeration variant)

We will see that compared to the algorithm presented in previous section, these algorithms
are very simple. This is mainly caused by the presence of the consistency graph.

4.2.1 Decision algorithm
The procedure of deciding whether a homomorphism from G to H exist is so simple that
calling it an algorithm may well be unnecesary. We have to decide if the join of the database
obtained from the database construction algorithm generates at least one tuple.

52 CHAPTER 4. DATABASE THEORETICAL VIEW ON HOMOMORPHISMS

It suffices to check whether the database contains at least one tuple in any of the relations
— as the database is globally consistent, every tuple must participate on the join and thus
presence of a tuple in the database means that the join is non–empty. The algorithm runs
therefore in constant time.

4.2.2 Counting algorithm

In this subsection a dynamic programming algorithm for counting number of distinct
homomorphisms from G to H will be proposed. This algorithm will perform a bottom–up
traversal of the tree decomposition and the tuples associated to these nodes.

Let X(n) denote the set of all vertices covered by the subtree of n, i.e. X(n) is the union
of bags of all nodes in n’s subtree. By cn,t we will denote the number of homomorphisms
from G[X(n)] to H that are compatible with tuple t ∈ rn. We will derive a formula that
allows computation of cn,t in bottom–up manner.

Let n1, · · · , nk be children of n and JCt,ni be the set of join–compatible tuples of t in
relation rni (these can be obtained from the consistency graph). Notice that for any j 6= k,
any two tuples tj ∈ JCt,nj , tk ∈ JCt,nk are join–compatible (this is caused by the fact that
any vertex in χ(nj) ∩ χ(nk) must be present also in χ(n) — and the assignments for these
vertices are fixed by tuple t). This fact allows us to use multiplication to compute cn,t:

cn,t =
∏

i=1...k

∑
t′∈JCt,ni

cni,t′

After having computed all cn,t, it remains to sum over all tuples of the relation assigned
to the root node to obtain the result: ∑

t∈rr
cr,t

Every edge of the consistency graph is used exactly once during the computation of cn,t,
hence the counting algorithm runs in linear time in the size of the graph of join–compatible
tuples (i.e. linear in the number of tuples in the database).

4.2.3 Enumeration algorithm

The enumeration algorithm uses similar principle as the counting one, except that instead of
numbers of homomorphisms cn,t it computes sets of all homomorphisms from G[X(n)] to H
compatible with tuple t, denoted by Hn,t. The formula for computation of Hn,t is slightly
more complex in this case:

Hn,t =
{
t′1 ./ · · · ./ t′k | ∀t1 ∈ JCt,n1 , · · · , tk ∈ JCt,nk : t′i ∈ Hni,ti

}

4.2. RESULT GENERATING ALGORITHMS 53

One has to be aware of a special case when all children of node n are forget nodes
(forgetting the same vertex v). In such a case we have to enrich homomorphisms by the
assignment for vertex v from tuple t, i.e.:

Hn,t =
{
{v → t(v)} ./ t′1 ./ · · · ./ t′k | ∀t1 ∈ JCt,n1 , · · · , tk ∈ JCt,nk : t′i ∈ Hni,ti

}
To obtain the result, it suffices to perform the union of Hr,t for every tuple of the relation

associated to the root node r: ⋃
t∈rr

Hr,t

Proposition 4.6. Number of tuples generated by enumeration algorithm for instance
(G,H) is in O(|V (T)| · |Hom(G,H)|).

Proof. Let us focus on a single node n of the tree decomposition and its associated sets Hn,t.
Let Hn =

⋃
t∈rn Hn,t denote all homomorphisms from G[X(n)] to H. Sets Hn,t for t ∈ rn

are pairwise disjoint, hence |Hn| =
∑
t∈rn |Hn,t|.

As the database is consistent, every mapping h ∈ Hn is used to construct some homo-
morphism mapping from G to H — the number of tuples |Hn| generated when processing
node n of T is therefore bounded by |Hom(G,H)|. There are |V (T)| nodes to be processed,
hence at most |V (T)| · |Hom(G,H)| tuples are generated in the course of the algorithm.

54 CHAPTER 4. DATABASE THEORETICAL VIEW ON HOMOMORPHISMS

CHAPTER5
Experimental results

In previous chapter, theoretical guarantees for our algorithm were given. This chapter will
be devoted to its experimental evaluation.

To simulate real world datasets, test instances used in this chapter will be generated from
Barabàsi–Albert model[1] (unless stated otherwise). Many real world networks are thought
to respect scale–free power–law distribution of vertex degrees — and the Barabàsi–Albert
model generates such graphs. In power–law graphs, the number of vertices of degree k decays
exponentially in k.

At every step a new vertex is created. This new vertex is then connected to at most K
vertices that were formerly present in the graph. Vertices with high degree are more likely
to be chosen (preferential attachment property). The parameter K will be referred to as the
max–links parameter.

5.1 Comparison with Neo4j

For the following experiments, the latest version of Neo4j available at the moment of writing
the thesis (Neo4j 2.2.1 Community Edition) was used. Unfortunately during our experiments,
it turned out that this version does not always return correct results. In many situations
it either misses some valid homomorphisms or it even constructs a solution that is not a
valid homomorphism. This behavior was detected by the Neo4jTest experiment from the
attached software bundle. Figure 5.1 shows an instance where Neo4j produced an invalid
homomorphism:

{q0 → h2, q1 → h1, q2 → h3, q4 → h0}

56 CHAPTER 5. EXPERIMENTAL RESULTS

q3 q2

q0 q1

(a) Query graph G

h3 h2

h0

h1h4

(b) Host graph H

Figure 5.1: Instance where Neo4j failed

Following Cypher query was used to obtain this result:

match (q0)-->(q1), (q0)-->(q2), (q1)-->(q2), (q3)-->(q0), (q3)-->(q2)
return q0.name, q1.name, q2.name, q3.name

The problems can be emphasized by comparing results of previous query with an equivalent
query:

match (q0), (q1), (q2), (q3)
where (q0)-->(q1) and (q0)-->(q2) and (q1)-->(q2) and (q3)-->(q0)

and (q3)-->(q2)
return q0.name, q1.name, q2.name, q3.name

This query is highly inefficient (query execution plan suggests that it is solved by testing all
54 possible mappings) — but in this case it correctly returns just one result:

{q0 → h0, q1 → h2, q2 → h1, q4 → h4}

Due to the inefficiency of the second query, queries of the first type were used in the
experiments. Reader should be aware that once the bug is fixed, the running times of Neo4j
may change.

5.1.1 Scalability in the size of G
Graph database queries are typically rather simple (in terms of the treewidth). This
subsection studies the scalability of the algorithms in the size of G when the treewidth of G
is kept small. Let us start this subsection by artificially constructed instances introduced in
Figure 2.15. Regardless of the length of the cycle in graph G and the length of the double
chain in H, no homomorphism from G to H exists. This allows us to study the performance
of the algorithm in its pure form without spending time on enumerating results.

In this experiment, graphs G are directed cycles of increasing length while graph H is
similar to the one shown in Figure 2.15, except that the graph was prolonged — the longest

5.1. COMPARISON WITH NEO4J 57

100

101

102

103

104

105

2 4 6 8 10 12 14 16 18 20

T
im

e
(m

s)

Length of cycle in G

Our algorithm
Neo4j

Figure 5.2: Scalability in the size of G (ar-
tificially constructed instances)

100

101

102

103

104

105

106

2 3 4 5 6 7 8 9

T
im

e
(m

s)

Number of vertices in G

Our algorithm
Neo4j

Figure 5.3: Scalability in the size of G

directed path in graph H is 20 edges long. In Figure 5.2 time needed to enumerate results
for different lengths of cycle in G is shown. The graph suggests that the runtime of Neo4j
is growing exponentially in the size of G while runtime of our algorithm is polynomial —
which agrees with the results from the previous chapter.

To see how these algorithms scale in more real situations, another experiment was
conducted. Graphs G were generated from Barabàsi-Albert model with max–links set to 2
(only graphs G with no non–trivial automorphisms were considered). Graphs H were
generated with max–links set to 5 (|V (H)| = 300). Measured runtime is plotted in Figure 5.3.
The trend of fast–growing runtimes of Neo4j (compared with our algorithm) is less pronounced,
but still apparent.

It has to be said that the situation when the queries are fixed and the database
(i.e. graph H) is continually growing is a more typical scenario in practice. The scalability of
the algorithms in the size of H will be discussed in the next subsection.

5.1.2 Scalability in the size of H
In the following set of experiments a random graph G was generated for every run (and
this choice of G was then fixed). Graphs H of increasing size were then used and the time
needed to enumerate Hom(G,H) was measured.

Let us start the discussion with graphs G of treewidth 1 — i.e. trees. Acyclic queries are
the most typical queries in practical scenarios. Figures 5.4 and 5.5 shows measured runtimes

58 CHAPTER 5. EXPERIMENTAL RESULTS

and number of homomorphisms returned for tree query graphs G with 4 and 8 vertices.
Graphs H were generated from Barabàsi–Albert model with max–links set to 4.

In both cases, our algorithm tends to return results faster than Neo4j — however Neo4j
runtimes seem to be longer just by a constant factor. This could be attributed to different
operating conditions of the algorithms — Neo4j as a full–fledged database engine uses a HDD
to store the graph (in our case we have employed a SSD drive), whereas our algorithm is
operating in memory. Another common theme in both cases is that Neo4j fails to recover some
valid homomorphism mappings — all homomorphism mappings returned by our algorithm
were verified to be correct.

Whereas in the case of 4–vertex query graph, the database construction algorithm con-
sumed significant part of the total runtime, in the case of larger query graph its contribution
to the total runtime became negligible. This has two reasons: Firstly the number of solutions
significantly increased in case of the larger query graph, secondly the addition of vertices
to G while keeping the same treewidth does worsen the database construction algorithm
runtime only by a constant factor.

Let us perform a similar experiment with more complex query graphs. Figure 5.6 captures
results measured for instances where Barabàsi–Albert model with max–links set to 3 was
used to generate query graph G and graphs H were generated from Barabàsi–Albert model
with max–links set to 6. Query graph G contains 8 vertices.

In some cases Neo4j returns results even before the database construction part of our
algorithm terminates — this holds especially for large graphs H. On the other hand,
Figure 5.6b shows that Neo4j misses most of the results discovered by our algorithm and
furthermore majority of the mappings constructed by Neo4j are not valid homomorphisms.

So far we have discussed results that were highly influenced by the time needed to
enumerate homomorphisms. This time has to be considered — but most of the real world
databases and queries are designed in such a way that the number of results tends to be low.

Let us now focus on the database construction algorithm separately. This algorithm
forms the most critical part of the overall algorithm — after it terminates a constant time is
required to enumerate each of the results. In the following two experiments graphs H were
generated from Barabàsi–Albert model with max–links set to 6.

Figure 5.7a shows measured runtimes for query graphs with treewidth 1 (i.e. trees). We
have approximated the runtimes by a power function. From the theoretical discussion in
Chapter 4 we know that the exponent of the power functions should be below 2 and this
holds for all three approximating functions.

Figure 5.7b captures results of a similar experiment with query graphs G generated
from Barabàsi–Albert model with max–links set to 2. The result may seem strange — the
exponents of the approximating functions are lower than in the previous case even though
query graphs G are more complex this time. The explanation of this phenomenon is

5.1. COMPARISON WITH NEO4J 59

100

101

102

103

104

105

106

0 200 400 600 800 1000

T
im

e
(m

s)

Number of vertices in H

Our algorithm (total)
Neo4j
DB construction alg.

101

102

103

104

105

106

0 200 400 600 800 1000
R
ec
ov
er
ed

so
lu
tio

ns

Number of vertices in H

Our algorithm
Neo4j

Figure 5.4: Scalability in the size of H — tw(G) = 1, |V (G)| = 4

100

102

104

106

108

1010

0 100 200 300 400

T
im

e
(m

s)

Number of vertices in H

Our algorithm (total)
Neo4j
DB construction alg.

101

102

103

104

105

106

107

108

109

0 100 200 300 400

R
ec
ov
er
ed

so
lu
tio

ns

Number of vertices in H

Our algorithm
Neo4j

Figure 5.5: Scalability in the size of H — tw(G) = 1, |V (G)| = 8

60 CHAPTER 5. EXPERIMENTAL RESULTS

100

101

102

103

104

105

106

107

0 200 400 600 800 1000

T
im

e
(m

s)

Number of vertices in H

Our algorithm (total)
Neo4j

DB construction alg.

(a) Runtime

100

101

102

103

104

105

106

0 200 400 600 800 1000
Av

er
ag

e
nu

m
be

r
of

so
lu
tio

ns
Number of vertices in H

Our algorithm
Neo4j (valid results)

Neo4j (invalid results)

(b) Generated homomorphisms

Figure 5.6: Scalability in the size of H — |V (G)| = 8, Barabàsi–Albert, max–links=3

however straightforward. More complex graphs G are more restrictive. This results in faster
identification of inconsistent tuples and smaller relations throughout the computation.

5.2 Effect of planning

The goal of database engines is to produce correct results in the shortest time possible.
Typically one cannot rely on a single algorithm and single settings for every instance. Every
instance has its specific parameters which allows sophisticated systems to choose proper
algorithms to solve the task, or at least fine–tune their internals.

Usually there is not a single way to evaluate a query. The first thing successful database
engines do (after understanding the semantics of a query) is that they try to collect relevant
information to decide which algorithms to apply, in which order and what settings to use —
they construct a query execution plan. This plan prescribes what exactly has to be done in
order to yield the result. Neo4j uses a planner for evaluating queries as well — an example of
a query execution plan of Neo4j is shown in Figure 5.8. These planners commonly consider
even low–level operations to estimate the runtime — e.g. time required to perform disk
operations[19] — and statistical information about the state of the database is used. The
actual choice of the best plan is often a hard problem and hence heuristics come to play.

5.2. EFFECT OF PLANNING 61

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

T
im

e
(m

s)

Number of vertices in H

V (G) = 6
V (G) = 8
V (G) = 10
k1x

1.71

k2x
1.82

k3x
1.95

(a) G — Barabàsi–Albert, max–links=1

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 200 400 600 800 1000

T
im

e
(m

s)
Number of vertices in H

V (G) = 6
V (G) = 8
V (G) = 10
k1x

1.74

k2x
1.60

k3x
1.63

(b) G — Barabàsi–Albert, max–links=2

Figure 5.7: Database construction algorithm — scalability in the size of H

Figure 5.8: Neo4j query plan

62 CHAPTER 5. EXPERIMENTAL RESULTS

102

103

104

105

106

107

102 103 104 105 106 107

G
en

er
at
ed

tu
pl
es

(H
eu

ris
tic

B
)

Generated tuples (Heuristic A)

0

10

20

30

40

50

60

70

80

102 103 104 105 106 107

C
ou

nt
s

Generated tuples

Heuristic A
Heuristic B

Figure 5.9: Effect of heuristical node expansion

Small details may often have significant impact on the query execution time — and this
holds for the algorithm from Chapter 4 as well. In the database construction algorithm
(Figure 4.3), expansion nodes n in the main loop of the algorithm are chosen in a non-
deterministic way. Choosing these nodes in proper order may result in much lower amount of
generated tuples throughout the course of the algorithm — and therefore also in significantly
shorter runtimes. Generating new tuples from a tuple that will be later found out to be
inconsistent is a waste of time. Hence it is a good idea to try to detect this inconsistency in
as early stage as possible.

Let us demonstrate this effect on a simple heuristic. It is convenient to introduce
constraints as soon as possible — and the only constraints in our case are edges and labels
in G. At every expansion step, node n introducing the most edges is chosen (i.e. a node that
maximizes the number of edges between the vertex newly introduced and the vertices that
are in the parent’s bag). This also means that introduce nodes are processed before forget
nodes (if they are available). The heuristics will also be applied to choose the root for the
nice tree decomposition — a node will be chosen as a root if it admits the lexicographically
largest sequence of the numbers of edges introduced.

To empirically measure the impact of this heuristic, following experiment was conducted.
Random graphs G and H were generated from the Barabàsi–Albert model. For every
instance, the database construction algorithm was run twice using different heuristics and
the number of generated tuples was counted. The first heuristic (referred to as Heuristic
A) was described in the previous paragraph. The second heuristic (Heuristic B) aims to
achieve exactly the opposite goal — the sequence it produces is the lexicographically smallest

5.2. EFFECT OF PLANNING 63

v1

v2

v3

v4

v5

v6

v7

v8

(a) Graph G

{v1, v2, v3}

{v1, v3, v4}

{v1, v4, v5}

{v1, v5, v6}

{v1, v6, v7}

{v1, v7, v8}

{v1, v3}

{v1, v4}

{v1, v5}

{v1, v6}

{v1, v7}

(b) Linear decomposition of G

{v1, v7, v8}

{v1, v2, v3}

{v1, v7}

{v1, v5, v7}

{v1, v3, v5}

{v1, v3}

{v5, v6, v7}

{v5, v7}

{v3, v4, v5}

{v3, v5}

{v1, v5}

(c) Bad decomposition of G

Figure 5.10: Possible tree decompositions of a directed cycle

one. According to Figure 5.9, the proposed heuristic is not perfect (in some instances this
heuristic performed even worse than the Heuristic B), but in most of the cases the number
of generated tuples was significantly lower compared to Heuristic B.

We have shown that in many cases a proper ordering of expansion nodes can result in
significant improvement of the runtime. There are however cases when even choosing the
optimal order results in suboptimal performance because the underlying tree decomposition
was chosen inappropriately.

This issue will be demonstrated on the artificial instances from Subsection 5.1.1. Fig-
ure 5.10 shows a query graph G (a directed cycle of length 8) together with its two optimal
tree decompositions (the width of both of them is 2). After rooting, these decompositions
satisfy all properties of a nice tree decomposition. Let us consider number of generated
tuples for the double chain graph H with 2L vertices for both of these tree decompositions —
results are shown in Figure 5.11.

This result may seem strange at the first glance — tree decompositions from Figure 5.10
share many common properties. They have the same number of nodes and the number of
nodes with equally sized bags is the same in both tree decompositions as well. But the
important fact is that these decompositions differ structurally. Clearly it does not make
sense to root the tree decomposition from Figure 5.10c in any of the internal nodes — the
bags of the internal nodes are disconnected in G and the number of tuples in the initial
relation would be at least quadratic in L. Without loss of generality, let us root it in the
node with bag {v1, v2, v3}. The problem with this decomposition is that once the introduce
node with bag {v1, v3, v5} is processed, the newly introduced vertex v5 lacks any edges to v1
and v3 — there are no constraints on the newly introduced vertex. As the number of tuples
in the parent relation is linear in L and for every tuple 2L extensions are possible, the newly
constructed relation will be quadratic in size.

64 CHAPTER 5. EXPERIMENTAL RESULTS

100

101

102

103

104

105

106

107

0 5 10 15 20 25 30 35 40 45 50

G
en

er
at
ed

tu
pl
es

Length of double chain in H (L)

Tree decomposition from Figure 5.10b
Tree decomposition from Figure 5.10c

Figure 5.11: Effect of using improper tree decomposition

CHAPTER6
Conclusion and Future work

An algorithm for graph database homomorphism problem was presented in Chapter 4. Its
theoretical properties were discussed and time complexity guarantees were given. Experiments
have shown that our algorithm performs better than Neo4j on large query graphs with low
treewidth. A bug in Neo4j database have made some experiments inconclusive — these
experiments should be repeated once this bug is fixed.

In practical applications, real query execution time is an important measure of quality.
In Section 5.2, we have shown that there is a lot of space to improve the runtime of our
algorithm by choosing a tree decomposition properly and expanding partial solutions in
a way that relations are kept as small as possible. For every instance (G,H) a plan that
minimizes number of tuples generated by the database construction algorithm should be
created. A good planner should make use of both structural information about the query
graph G and statistical information about the state of the database H to create such plan.
It is likely that solving the task exactly is impossible and heuristical planner may therefore
be proposed.

Our implementation works with immutable databases that are kept in memory. Practical
database management systems have to allow changes to the database and these changes have
to be stored persistently. Adapting the algorithm for these new conditions and optimizing it
for maximum performance is another challenge. The long term goal would be to integrate
this algorithm to the query execution system of Neo4j.

66 CHAPTER 6. CONCLUSION AND FUTURE WORK

APPENDIXA
Contents of DVD

A.1 Directory structure
/2015-Karel_Horak-Diploma_Thesis.pdf

/tex

/TreedQuery

Electronic version of the thesis

LATEX sources of the thesis

Sources of the application

A.2 TreedQuery
We have implemented a prototype of a graph database query engine that uses the ideas
presented in the thesis. An IntelliJ IDEA project is contained in the directory /TreedQuery.
This project is decomposed into several subprojects, the most important ones include:

./Core Implementation of algorithms from Chapter 4

./ExperimentRunner Implementation of experiments (discussed below)

./HostGraph Representation of graphs, computation of tree decompositions

./RecordSet Representation of relations and consistency graph

A.2.1 Libraries and used software
• LibTW (Thomas van Dijk, Jan-Pieter van den Heuvel, Wouter Slob)
Java library for computing tree decomposition of a graph. Copy in ./lib/libtw.jar
See: http://www.treewidth.com/

• QuickBB (Vibhav Gogate and Rina Dechter)
Application for computing treewidth of a graph. Path to QuickBB binary has to be

http://www.treewidth.com/

68 APPENDIX A. CONTENTS OF DVD

specified in the quickbb property (e.g. by using -Dquickbb=<path> Java command
line option)
See: http://www.hlt.utdallas.edu/~vgogate/quickbb.html

• GraphStream
Java library for handling graphs. This library is used to generate random graphs.
See: http://graphstream-project.org/

A.2.2 Experiments
Experiments are present in the package cz.wigsoft.graphdb.experiments available in the
ExperimentRunner project. Neo4j database must be running on localhost in order to run
these experiments.

Some of the experiments require a model to be specified. To rely on Barabàsi–Albert
model, use string "BarabasiAlbertGenerator:<max–links>". For a complete overview of
models available, see http://graphstream-project.org/doc/Generators/.

GScalability Scalability in the size of G (see Figure 5.3)
GScalabilityArtificial Scalability in the size of G, artificial instances
HScalability Scalability in the size of H (see Figures 5.4, 5.5, 5.6)
HScalabilityTD Scalability in the size of H, TreedQuery only
HeuristicsTest Effect of heuristical node expansion (see Figure 5.9)
TDChoiceEffect Effect of bad tree decomposition (see Figure 5.10)
Neo4jTest Identification of Neo4j bug

http://www.hlt.utdallas.edu/~vgogate/quickbb.html
http://graphstream-project.org/
http://graphstream-project.org/doc/Generators/

List of Figures

1.1 Sample relational database . 1
1.2 Sample SQL query and its result . 2
1.3 Popularity ranking of DBMS (DB-Engines.com, February 2015) 3
1.4 Sample graph database . 4

2.1 Friendship network . 6
2.2 Graph and its tree decomposition . 7
2.3 Sample graph query and database . 8
2.4 Four injective homomomorphisms . 9
2.5 Non-injective homomorphisms . 9
2.6 Deciding G→ H using simpler homomorphically equivalent graph G′ 11
2.7 Injective homomorphism from G to H does not exist 12
2.8 Injective homomorphism from G to H exists 12
2.9 Sample JSON content . 17
2.10 Part of JSON grammar . 17
2.11 Friends–of–Friends query . 17
2.12 Graph database homomorphism example . 18
2.13 Sample Cypher query . 18
2.14 Recursive version of backtracking algorithm 18
2.15 Problematical instance for backtracking algorithm 19

3.1 Project operator example . 24
3.2 Join–compatible tuples (for relations Students and Universities) 25
3.3 Relation Students ./ Universities . 25
3.4 Globally inconsistent database (but pairwise consistent) 27

4.1 Homomorphism relation example . 34
4.2 Computing nice tree decomposition . 37
4.3 Database construction algorithm . 39
4.4 Example of a solution with a consistency graph 40

70 APPENDIX A. CONTENTS OF DVD

4.5 Consistency ensuring algorithm . 41
4.6 Representation of a relation over [v1, v2, v3] 45
4.7 Removal of a column . 46

5.1 Instance where Neo4j failed . 56
5.2 Scalability in the size of G (artificially constructed instances) 57
5.3 Scalability in the size of G . 57
5.4 Scalability in the size of H — tw(G) = 1, |V (G)| = 4 59
5.5 Scalability in the size of H — tw(G) = 1, |V (G)| = 8 59
5.6 Scalability in the size of H — |V (G)| = 8, Barabàsi–Albert, max–links=3 . . 60
5.7 Database construction algorithm — scalability in the size of H 61
5.8 Neo4j query plan . 61
5.9 Effect of heuristical node expansion . 62
5.10 Possible tree decompositions of a directed cycle 63
5.11 Effect of using improper tree decomposition 64

Bibliography

[1] Albert-László Barabási and Réka Albert. “Emergence of scaling in random networks”.
In: science 286.5439 (1999), pp. 509–512.

[2] Catriel Beeri et al. “On the desirability of acyclic database schemes”. In: Journal of
the ACM (JACM) 30.3 (1983), pp. 479–513.

[3] Catriel Beeri et al. “Properties of acyclic database schemes”. In: Proceedings of the
thirteenth annual ACM symposium on Theory of computing. ACM. 1981, pp. 355–362.

[4] Jean RS Blair and Barry Peyton. “An introduction to chordal graphs and clique trees”.
In: Graph theory and sparse matrix computation. Springer, 1993, pp. 1–29.

[5] Hans L Bodlaender. “A linear time algorithm for finding tree-decompositions of small
treewidth”. In: Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing. ACM. 1993, pp. 226–234.

[6] Hans L Bodlaender. “A tourist guide through treewidth”. In: Acta cybernetica 11.1-2
(1994), p. 1.

[7] Víctor Dalmau, Phokion G Kolaitis and Moshe Y Vardi. “Constraint satisfaction,
bounded treewidth, and finite-variable logics”. In: Principles and Practice of Constraint
Programming-CP 2002. Springer. 2002, pp. 310–326.

[8] DB-Engines. DB-Engines Ranking. 2015. url: http://db-engines.com/en/ranking/
(visited on 12/02/2015).

[9] Reinhard Diestel. “Graph theory (Graduate texts in mathematics)”. In: (2005).

[10] Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts
in Theoretical Computer Science. An EATCS Series. 2006.

[11] Michael R Garey and David S Johnson. Computers and intractability. Vol. 29. wh
freeman, 2002.

[12] Petr A Golovach et al. “Finding vertex-surjective graph homomorphisms”. In: Acta
informatica 49.6 (2012), pp. 381–394.

http://db-engines.com/en/ranking/

72 BIBLIOGRAPHY

[13] Georg Gottlob and Stefan Szeider. “Fixed-parameter algorithms for artificial intelli-
gence, constraint satisfaction and database problems”. In: The Computer Journal 51.3
(2008), pp. 303–325.

[14] Martin Grohe. “The complexity of homomorphism and constraint satisfaction problems
seen from the other side”. In: Journal of the ACM (JACM) 54.1 (2007), p. 1.

[15] Pavol Hell and Jaroslav Nešetřil. “On the complexity of H-coloring”. In: Journal of
Combinatorial Theory, Series B 48.1 (1990), pp. 92–110.

[16] David Maier. The theory of relational databases. Vol. 11. Computer science press
Rockville, 1983.

[17] Dániel Marx and Michał Pilipczuk. “Everything you always wanted to know about
the parameterized complexity of Subgraph Isomorphism (but were afraid to ask)”. In:
arXiv preprint arXiv:1307.2187 (2013).

[18] Jiří Matoušek and Robin Thomas. “Algorithms finding tree-decompositions of graphs”.
In: Journal of Algorithms 12.1 (1991), pp. 1–22.

[19] Abraham Silberschatz, Henry F. Korth and S. Sudarshan. Database System Concepts.
sixth edition. McGraw-Hill, 2010.

[20] PostgreSQL Team. History. 2015. url: http : / / www . postgresql . org / about /
history/.

[21] Neo Technology. Neo4j. 2015. url: http://www.neo4j.com/.

[22] Mihalis Yannakakis. “Algorithms for acyclic database schemes”. In: Proceedings of
the seventh international conference on Very Large Data Bases-Volume 7. VLDB
Endowment. 1981, pp. 82–94.

http://www.postgresql.org/about/history/
http://www.postgresql.org/about/history/
http://www.neo4j.com/

	Introduction
	Graphs, homomorphism and graph databases
	Tree decomposition
	Graph homomorphism
	Graph databases

	Relational database theory
	Relations and databases
	Relational algebra
	Project operator
	Join operator

	Consistency and Joins
	Database consistency
	Acyclic database schemes
	Computing full reduction
	Evaluating project–join queries

	Database theoretical view on homomorphisms
	Database construction algorithm
	Complexity

	Result generating algorithms
	Decision algorithm
	Counting algorithm
	Enumeration algorithm

	Experimental results
	Comparison with Neo4j
	Scalability in the size of G
	Scalability in the size of H

	Effect of planning

	Conclusion and Future work
	Contents of DVD
	Directory structure
	TreedQuery
	Libraries and used software
	Experiments

