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Abstract

This thesis deals with terrain traversability for an unmanned ground vehicle (UGV) based 

on Niftibot  platform.  This  mobile  robot,  which  is dedicated  for  Urban Search  and Rescue 

(USAR) missions, is equipped with auxiliary articulated tracks, so-called  flippers.  Flippers 

enhance  robot´s  ability  to traverse  complicated  terrain,  however  they  bring  more  degrees 

of freedom  to control.  Semi-autonomous  control  system  which  selects  optimal  flippers´ 

configuration with respect to traversed terrain is being developed at FEE, CTU. 

A system  based  on reinforcement  learning  and  decision  trees  had been  previously 

implemented.  This system,  however,  required  complete  data  from  sensors.  As model 

of environment was built using solely data from laser scanner, this condition was violated 

in some scenarios, e.g. in case of reflective surfaces. Therefore a partial reimplementation and 

an extension  of the former  system  is introduced  in this  work.  A new mode  which  utilizes 

JACO robotic arm for tactile exploration of terrain has been incorporated to the system. This 

helps to explore terrain invisible to laser scanner. The experiments with aluminium foil were 

performed to demonstrate that the arm helps the robot to complete information in robot´s map 

and furtherly use it to safely traverse terrain.

Keywords

Adaptive  traversability,  mobile  robotics,  tracked  vehicle,  flippers,  robotic  arm,  tactile 

exploration, digital elevation map, Robot Operating System.



Abstrakt

Tato  práce  se  zabývá  problematikou  bezpečného  přejíždění  terénu  pro mobilního 

pozemního robota, který je vyvíjen pro nasazení při záchraných operacích. Za tímto účelem 

je robot vybaven artikulovanými postranními pásy,  flippery, které zlepšují schopnost robota 

pohybovat se terénem, ale přinášejí s sebou také více stupňů volnosti, které je potřeba řídit. 

Proto je na Fel, Čvut, vyvíjen semi-autonomní řídící systém, který volí optimální konfiguraci 

postranních pásů s ohledem na právě přejížděný terén.

Již  dříve  byl  vytvořen  řídící  systém  založený  na posilovaném  učení  a rozhodovacích 

stromech. Avšak tento systém vyžadoval úplné informace ze senzorů. Jelikož mapa prostředí 

byla vytvářena výhradně z dat poskytovaných laserovým dálkoměrem, byla tato podmínka 

mnohdy nesplněna, např. v případě lesklých povrchů. Proto byla v rámci této práce provedena 

částečná  reimplementace  a rozšíření  původního  systému.  Nový  mód,  který  využívá 

robotickou paži JACO pro dotykový průzkum terénu, byl přidán do systému. Paže pomáhá 

prozkoumávat  terén neviditelný pro laserový scanner.  Experimenty s hliníkovou folií  byly 

provedeny,  aby demonstrovaly,  že paže může skutečně pomoci  robotu doplňovat  nezbytné 

informace do mapy a ty následně využívat pro bezpečné přejíždění terénu.

Klíčová slova

Adaptivní  přejíždění  terénu,  mobilní  robotika,  pásové vozidlo,  flippery,  robotická paže, 

dotykový průzkum, digitální výšková mapa, Robot Operating System
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1. Introduction

Tracked unmanned ground vehicle (UGV) for urban search and rescue (USAR) missions 

is being  developed  at  Faculty  of  Electrical  Engineering  (FEE)  and  Czech  Institute 

of Informatics,  Robotics and Cybernetics (CIIRC); both under Czech Technical University 

in Prague, which is participating in European project  TRADR. This robotic  tracked vehicle 

is expected to be able to move in an unstructured,  complicated terrain such as disaster  sites 

and explore potentially dangerous areas, thus helping rescue workers. For this purpose, it is 

equipped by auxiliary tracks called  flippers  which are  driven by independent servomotors. 

Flippers  significantly  enhance  robot´s  capabilities  to overcome  wide  variety  of obstacles 

as their attitude and compliance may be adjusted according to traversed terrain.

Although flippers may be controlled manually by a robot´s operator,  this  additional task, 

which requires operator´s attention, makes his work more difficult. It is more convenient that 

the operator  only  controls  robot´s  heading  and forward  speed  and flippers  are  being 

autonomously  adapted to the terrain´s  shape  so that  the robot  moves  fluently  across 

the terrain.  We call  such  behaviour  adaptive  traversability  (AT).  This  proposed  semi-

autonomous control system reduces cognitive load onto operator who may focus on higher 

level tasks instead.

One of crucial conditions for adaptive traversability algorithms, which had been developed 

at FEE so far [1] [2], to work properly is having a reliable model of surrounding environment. 

Laser range finder is able to provide necessary information for most of the time. However, 

there are situations, that may happen, in which laser  scanner fails to detect objects in front 

of the robot, typically in case of reflective surfaces such as water or in the presence of smoke. 

Such situations are not uncommon in USAR missions, so it is better to be prepared on them. 

Therefore  the robot  has  been  equiped  by a robotic  manipulator  and possible  utilization 

of this manipulator is investigated within this thesis. The basic idea is that whenever the robot 

has incomplete data about the terrain in front of itself, for example when crossing a stream, 

the robot performs tactile exploration of the terrain using the robotic arm. Its model is updated 

by these measurements and consequently the robot may decide whether it is safe to continue 

in terrain traversal and what flipper configuration to use.
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2. TRADR project

This thesis deals with driving a tracked mobile vehicle with articulated flippers and its goal 

is to enhance  robot´s  ability  to overcome  rugged  terrain  even  with  incomplete  data  about 

surrounding  environment.  It is  a subproblem  which  has been  encountered  during 

a development  of unmanned ground vehicle  for TRADR project  in which Czech Technical 

University is one of affiliates. Therefore this chapter is devoted to the TRADR project.

Fig. 2.1: TRADR logo. [3]

TRADR is an acronym which stands for  Long-Term Human-Robot Teaming for Robot-

Assisted  Disaster  Response.  It is an integrated  research  project  funded  by  the EU 

FP7 Programme,  ICT: Cognitive  systems,  interaction,  robotics  (Project  Nr.  60963).  Being 

a direct  successor  of NIFTi  project,  it is  based  on previous  experience  and  carries on 

with the research. [3] Its main aim is to develop science and technology which would allow to 

make human-robot  teams and to interact  with each other in order  to achieve shared goals. 

Both, NIFTi and TRADR, are primarly focused on tasks in Urban Search and Rescue (USAR) 

missions  in  which  people  and  robots  work  together  to explore  a disaster  area,  assess 

the situation, locate victims or prevent further damage.

2.1 TRADR Consortium

There are 12 partners from 6 countries collaborating on the project including 5 universities, 

3 research  institues,  1 industry  partner  and  last  but  not least  3 end-user  organisations—

2



firebrigades  from  Germany,  Italy  and the Netherlands.  All  of participating  institutions 

are listed in the table below, see Tab. 2.1.

Tab. 2.1: Institutions participating in TRADR project. [4]

German Research Center for Artificial Intelligence

Delft University of Technology 

Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS

Royal Institute of Technology (KTH), Stockholm, Sweden

Swiss Federal Institute of Technology

Czech Technical University in Prague

La Sapienza University of Rome

Ascending Technologies GmbH

Stadt Dortmund

Corpo Nationale dei Vigili del Fuoco (CNVVF)

Openbaar Lichaam Gezamenlijke Brandweer

Dutch Organisation for Applied Scientific Research TNO 

2.2 TRADR mission

The ultimate goal of the TRADR project is to build a team of robots which would be able 

to cooperate together with people, mainly firefighters and rescue workers, in a first response 

disaster  scenarios,  for example  in case  of industrial  accidents,  earthquakes,  fires,  etc. 

The greatest asset of using robots in such scenarios is that they may enter and explore areas 

which are potentially dangerous for human workers. Thus they lessen jeopardy of workers 

and prevent bad situation getting even more complicated. 

Two types of robots are developed within the project—unmanned ground vehicles (UGV) 

and unmanned areial vehicles (UAV). While UAV may execute quick exploration of large area 

and provide  overview  from higher  perspective,  UGV  is able  to overcome  piles  of rubble 

and get  to hardly  accesible  places  looking  for  victims  and gathering  physical  samples. 

Knowledge  about  disaster  area  is then  gradually  built  in direct  cooperation  with  human 

rescuers which results in better understanding of the situation and consequently taking viable 

decisions in critical moments. This should improve overall quality of the sortie and increase 

chances to succesfully secure the area and save human lives. [3]
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2.3 TRADR Joint Exercises

As  TRADR  project  is intended  to develop  robots  which  should  be particularly  used 

by rescue workers, joint exercise is held every year (already since the beginning of previous 

NIFTi  project).  These  meetings  of developers  and USAR  organizations  are fundamental, 

because  the both  groups  come  into  close  contact  and may exchange  valuable  experience. 

Rescuers may team up with robots to perform on training scenarios which enable evaluation 

of current progress in research and also help with identification of shortcomings. Above all, 

USAR workers,  i.e.  end-users  of the whole system, have an opportunity to contribute  with 

valuable  insights  in order  to help  developers  to improve  the system  and make  it  actually 

useful  in real-life  situations.  Over  the course of the project,  testing scenarios  are  intended 

to grow  increasingly  challenging  with more  complex  circumstances,  taking  into  account 

progress of the project. 

Last  such meeting was held from 23rd of September  to 2nd of October  at  the Tremora 

hospital,  ex American  hospital  of  Calambrone,  near  Pisa,  Italy,  in  cooperation  with  the 

TRADR partners and the firefighters from the Firebrigade of Pisa. [5] 

2.4 Niftibot

2.4.1 Platform description

Unmanned ground vehicle (UGV) used in TRADR project is based on  Niftibot platform 

produced by BlueBotics company [6], see Fig. 2.2. It is a tracked mobile robot with one pair 

of main  tracks,  each  equipped  with  own  motor  to provide  traction.  The tracks 

are mechanically linked to the body via brackets and a differential. When one track is rotated, 

the differential induce an inverse rotation in the other track in order to maximize contact with 

the ground.  Four  additional  articulated  tracks,  flippers,are connected  to the main  tracks. 

The flippers  are driven  by  their  own  servomotors  which  may  be controlled  indivudually 

to change flipper´s attitude and compliance (by controlling maximal allowed torque) and thus 

improving robot´s traversability capabilities to overcome rugged terrain. [7]
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Fig. 2.2: UGV used in TRADR project (Niftibot platform) with mounted

Kinova JACO robotic arm.

The robot´s  body contains main electronic board of the platform with an embedded PC, 

a power PCB used for power distribution and a 3D PCB which manages rotation of the 3D 

sensor. Ubuntu Linux is installed as an operating system on the internal computer with Robot 

Operating System (ROS) running on top of Linux.  USB and DVI connectors may be used 

to connect  I/O peripherals  to the  robot´s  computer  and work  in OS,  for example  installing 

new drivers, updating obsolete ones, uploading new programmes and scripts, etc. [7]

Next, the body contains a slot for a LiPol battery with two connectors, which means that 

two batteries may be connected at the same time. Although only one battery fit in the slot, this 

is particularly convenient, when it is needed to change depleted battery. It allows to hot-swap 

batteries while the robot is still running. Furthermore, there is also a connector for an external 

power supply in the back of the body. An emergency button is located on the top of the body 

dissconnecting power sources in case of safety issues. There are also LED diodes which may 

be used either as indicators or as a light source thanks to their high luminous power. [7]

Top of the body  is manufactured  in the  way  that  additional  features  may  be mounted 

on the robot.  Kinova  JACO  Arm,  which  is utilized  in this  thesis,  is one example  of such 

feature, but also another sensors (like RGBD camera, infrared camera, etc.) or actuators (like 

different manipulator) may be installed as well.
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2.4.2 Sensor suite

Ladybug     3 omnicamera  

Ladybug 3  is a high  resolution  spherical  digital  video  camera  system.  It consists  of six 

MP cameras which enable to cover even more than 80% of 360° sphere together.  They all 

are fit in a weather-resistant case allowing usage in adverse conditions. [8]

Camera  provides  panoramic  image  which  is accesible  by ROS  nodes  on ROS  topic 

/viz/pano/image.

Sick LMS-151 laser scanner

LMS-151 is a laser measurement system. It is rotating 2D laser range finder with rotation 

from -90° to 90° from origin position. It is ultimately providing 3-dimensional point cloud 

constructed from all plane scans. The point cloud is accesible by ROS nodes on ROS topic 

/dynamic_point_cloud.

XSens Mti-G IMU

It is a MEMS based orientation sensor with integrated GPS. It provides odometry data like 

position, heading and velocity computed in real-time. The data are accesible by ROS nodes 

on ROS topic /imu/data. 

2.4.3 Kinova JACO Robotic Manipulator

JACO robotic  arm  is one  of the additional  hardware  mounted  on UGV  to enhance 

its capabilities.  The possibility  of utilizing  the arm  for tactile  exploration  of environment 

is a challenge currently being studied and solved at FEE and CIIRC (CTU). The other usage 

for an arm may be to pick up samples or manipulating with an environment.

It is a lightweight 6-DoF robotic arm with hand-like gripper produced by Kinova Robotics 

[9].  Thanks to carbon fibre structure it weights only 5.3 kg and therefore it can be carried 

by the robot  with ease  and it is  also  durable  and able  to endure  adverse  conditions  during 

USAR missions.

In addition, Kinova offers Windows and Ubuntu compatible API for easier programming 

of the arm in C++ (or C#) and allows programmers to configure advanced parameters and 

integrate the arm to their own systems. Kinova has produced even a ROS driver for the arm, 

which is one of the reasons, why this manipulator has been chosen for our UGV. [9]
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3. Robot operating system

Robot Operating system (ROS) is utilized throughout TRADR project, because it provides 

well-designed framework for writing modules of robotic software that is convenient for such 

large-scale project.

ROS is an open-source platform particularly employed by robot developers for writing robot 

software. Despite its name it is not literally an operating system, but it runs on top of existing 

one whereas Ubuntu Linux (currently its 14.04 LTS release) is officially supported. In other 

words, it is a robotics middleware like Player Project or OpenRDK.

"It provides  services  that  one would expect  from an operating  system including  hardware 

abstraction,  low-level  device  control,  implementation  of commonly  used  functionalities  

and message  passing  between  processes.  Furthermore,  it provides  a collection  of tools,  

libraries  and conventions  that  aim  to simplify  the  task  of creating  complex  and  robust  

behavior across a wide variety of robotic platforms." [10]

Fig. 3.1: Official logo of ROS. [11]

3.1 Basic Concepts

ROS  framework  provides  mechanisms  to easily  implement  considerable  number 

of processes  which  are supposed  to run  in parallel  and communicate  with  each  other 

at the same time. The processes are not even requiered to run on a single machine, which may 

come in handy particularly in robotics, because robots may be composed of multiple modules, 

each having own computer controlling sensors and/or actuators.  This distributed approach 

to control may help to create autonomous AI for a robot or even a group of robots coopearting 

on a common goal. The system may be furtherly extended by interface for a human operator, 

who may then command robot(s) from his workstation. [10]

Another key idea behind ROS is to ease sharing advancements and codes in the community 

of robotics developers; does not matter if they are scientists researching in the field, industry 
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professionals  or just  hobbyist.  Firstly,  ROS framework  defines  uniform  interface  which 

is practically becoming a standard for robot software interoperability and it is widely known 

among the developers. [11] This uniformity and unicity of ROS allows seamless collaboration 

of several  contributors  on one project  which  is also  the case  of TRADR  and it is  exactly 

the reason why ROS has been chosen for such extensive project.

Secondly,  the whole  ROS  is open  project  and anyone  may  contribute  to the general 

progress. Thanks to that, there are many ROS packages from many authors publicly available 

on the ROS website for all users. [12] One may browse either ROS standard packages for 

stable, debugged implementations of algorithms used in robotics for all common tasks (such 

as planning, mapping, navigation, building world models, etc.) or other ROS packages with 

experimental cutting-edge algorithms. One way or another, developer does not have to spend 

much time reimplementing already well-mastered algorithms on his own and he may rather 

focus on another tasks which have not been satisfactorily solved yet. [10]

Community using ROS is growing in numbers which means, among others, that anyone 

may get some support in case of problems from other users of the system, either on official 

forum  or other  Q&A sites  like  Stack  Overflow.  There  is  plenty  of information  on ROS 

provided  by ROS developers  on official  web-site [11]  including  tutorials,  extensive 

documentation and reference manual describing usage of ROS functionalities in detail.

Another huge advantage of ROS is that it enables easier testing of new algorithms and their 

different implementations. The authors of ROS are aware that testing in robotics may be time-

consuming  and  error-prone.  In addition,  practicle  experience  suggest  that  robots  may 

not be available for testing for considerable amount of time due to problems with hardware 

or other  parts  of software  or the testing  may be  simply  dangerous  and  expensive.  This  is 

where well-designed ROS system enables to  separete  low-level  control  of robot  and high-

level processing. Developer then has two possibilities of testing high-level reasoning. Firstly, 

he may use simulator which substitues low-level part of the system. Secondly,  he may use 

rosbag utility. This option facilitates recording robot´s sensor data while driving the robot. 

Later the same data may be replayed  again infinite times and used to compare performance 

of different approaches to processing them. [10]

Finally,  ROS offers  some built-in  tools  for visualization  that  may help  in development 

and debugging of a project, for example rqt_graph, rqt_plot, image_view or Rviz.
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3.2 Framework

3.2.1 Package

Package  is  a fundamental  term  in ROS  representing  a base  unit  of ROS  software 

organization.  In practise,  it is  a single  directory which may contain almost  anything,  most 

likely  executables,  scripts,  libraries,  tools,  etc.,  but  every  time  it includes  a manifest  file 

(named package.xml in catkin build system or manifest.xml in rosbuild) and CmakeLists.txt. 

Manifest  is  an xml  structured  file  defining  basic  properties  of package—name,  version 

number, atuhors, maintainers and dependencies on other packages—and it is particularly this 

file is what make difference between ROS package and any generic directory. [10]

Usually  one  project  comprises  of  many  packages.  Each  of them serve  as logical  unit, 

one piece of puzzle, and has its own purpose. One may be used for mapping while other for 

planning and the third one for driving the robot. And all of them may depend on each other 

in some  ways,  thus making  a complex  system  altogether.  The division  into  packages 

significantly contributes to easier orientation in vast projects and in addition well-maintained 

package may be reused in different projects on different robotic platforms.

3.2.2 Node

Node  is  an elementary  part  of every  ROS  project.  It denotes  launched  instance 

of practically any executable within any ROS package; either compiled from C++ source or 

being a Python script (or lisp, java, Matlab,...). It may be launched anytime after Roscore has 

been initiated in order to perform process it is supposed to do. The most significant difference 

between ROS node and any other executable file is that ROS node is able to connect to ROS 

master and consequently communicate with other nodes. [11]

The advantage of ROS is that  nodes may be written in different languages,  e.g.  in C++, 

Python,  Java,  Lisp,  Octave  (Matlab),  yet  they  are able  to  mutually  communicate  thanks 

to ROS  client  libraries  (roscpp,  rospy,  rosjava,  roslisp,  rosmatlab).  Therefore  the whole 

project does not have to be written in an only one language. 

3.2.3 Roscore

Roscore is initiated by typing roscore command in terminal window and it has to be done 

everytime before any of ROS nodes starts. It consists of Master, Rosout and Parameter server.
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ROS Master is a naming and registration service for ROS, i.e. it helps nodes to find each 

other. It tracks publishers and subscribers to all topics as well as services. Communication 

between two nodes over topics (or services) is done on peer-to-peer basis, once the both are 

connected with each other by Master.

Rosout is ROS equivalent of stdout and stderr and is used particularly for debugging.

Parameter server is a multi-variate dictionary. Nodes may use the server to store and read 

parameters  at runtime.  It  is best  used  for  static  data  such as  configuration  parameters. 

(On the other  hand,  exchange  of dynamic  data  between  nodes  is better  done  via  topics 

or services.) [11]

3.2.4 Topics and messages

Topics  and  messages  are  one way of communication  between  nodes  provided  by ROS 

framework. Any topic may be viewed as a uniquely named channel for streaming messages. 

Message itself is a data structure containing at least one (but often more) field, which may 

be of an arbitrary type.  ROS supports  common standard  types  as  integers,  floating  points, 

booleans,  strings  as  well  as  arrays  and even  other  messages  nested  within a message. 

Programmer  then  may  choose  to use  either  from standard  ROS  message  types  or he can 

prepare user-defined messages in his package saved as *.msg files. Programmer also should 

not  forget  that  one  topic  is restricted  to transfer  messages  of only  one type,  i.e.  type 

of message determines type of topic. [11]

A node,  which  wants  to send  messages  to other  nodes  is said  to be  publisher and it 

is publishing  messages  on the topic.  A node  which  is supposed  to receive  and process 

messages  is said  to be  subscriber and it  is subscribing  to the topic.  There  may  be  even 

multiple publishers and subscribers to one topic at the same time. [11]

ROS tools for dealing with topics and messages are called  rostopic and  rosmsg and they 

allow user to show information about currently available topics; for example what node(s) is 

(are) publishing, what node(s) is (are) subscribing to specified topic, what type of message 

is passed, publishing rate, trafic volume, etc. rqt_graph is also helpful tool which graphically 

visualize network of communicating nodes and topics.
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3.2.5 Services

Services  are  the second  way  how  nodes  may  communicate  with  each  other.  While 

communication  via  topics  is unidirectional  on many-to-many  basis  from  publishers 

to subscribers (publisher does not await any response; in fact it does not even require actual 

existence of any subscriber to the topic), services  enable bidirectional communication.

Besides, service calls implement strict one-to-one communication. One node is in a role 

of a client. It sends a request to other node which is in a role of a server. The server processes 

the request,  it performs  an action  (e.g.  computes  something,  configures  hardware,  makes 

a measurement, etc.) and finally it sends back a response which the client is waiting for. [11]

To ensure that the client and the server understand each other, special data structure  srv, 

defined  in custom  *.srv  file,  is used.  It is  composed  of a pair  of messages—request  and 

response. The both contain fields which may be of an arbitrary type analogically to messages 

used on topics. [11]

ROS tools for dealing with services are called  rosservice and  rossrv and they allow user 

to show information about currently available services. These tools are analogical to rostopic 

and rosmsg.
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4. Reinforcement learning

Reinforcement learning (RL) is widely used within this thesis. At first, it is used to learn 

a model  for adaptive  traversability which chooses  optimal  flipper  configuration  depending 

on robot´s  state  and terrain  features.  Secondly,  it is  used  to learn  a strategy  for tactile 

exploration  of terrain  to speed up  the process.  Therefore  this  chapter  is devoted 

to reinforcement learning.

4.1 Markov Decision Processes

Markov Decision Processes (MDP) are commonly used models for reinforcement learning 

problems.  They  provide  a decent  level  of abstraction,  thus  they  simplify  description 

of a problem, but in spite of that they are sufficently robust and flexible to describe a large set 

of real-world problems. [13] MDP is defined as a tuple

MDP = 〈 S , A , p s ´∣s , a  , r , s0〉 , (4.1)

where  S is  a set  of possible  states  in which  an agent  may find  itself,  A is  a set  of possible 

actions which the agent can do, p  s´∣s , a  : S × A × S  [0, 1] is a transition probability 

that  the agent  will  get  to state s´ if  it performs  action a in state s, r  s , a , s ´  :

S × A × S  ℝ is a reward which the agent obtains when it reaches state s´ from previous 

state s using action a and s0 ∈ S is an initial state. [14]

Let  us  denote s ∈ S a single  state  and a ∈ A a single  action.  Basic  idea  of 

reinforcement  learning  problem  is that  the agent  (i.e.  decision  maker  and  learner) 

and environment interact continually. Agent selects an action and environment is responding

—introducing  the agent  to a new  state  and  giving  reward  to the agent,  see Fig. 4.1. 

The evaluative  feedback  is one  of the most  important  concepts  of reinforcement  learning. 

The learner  is told  how  good  an action  is  in terms  of reward,  which  is received  after 

performing the action. It is in contrast with instructive feedback used in supervised learning, 

where learner is told what action is optimal. [13]
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 Fig. 4.1: Interaction between agent and environment during reinforcement learning. [13]

 A sequence of visited states and actions performed by the agent is called a trajectory τ:

 =  s0 , a0 , s1 , a1 , s2 , a2 ,  . (4.2)

At each time step, agent receives a reward r t st−1 , at−1 , st which is a simple real number. 

Agent  is then  supposed  to collect  as much  reward  as possible  throughout  its actions. 

Optimally,  it should avoid greedy actions with high immediate rewards and rather  choose 

actions that would maximize cummulative reward in longer time horizon (along the whole 

trajectory).  Therefore  a return R of rewards  when  agent  follows  trajectory τ beggining 

at time t is introduced:

Rt   = ∑
n = 0

N

 n⋅r tn . (4.3)

It is a sum of discounted rewards from time t onwards. N denotes time horizon, i.e. how many 

steps to the future are considered (in some cases N may be equal to infinity meaning no time 

horinzon  at all)  and  ∈ ( 0, 1 ] is a discount  factor  which  is used  to lessen  influence 

of states in far future. 

Another important  concept  used in MDP is  a policy   s : S A which is a function 

mapping  a state  to an action  (in deterministic  case)  or  to  a probability p a t = a∣st

of selecting action a in state s (in stochastic case). 
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The ultimate  goal  of learning  is then  to find  an optimal  policy  in terms  of maximizing 

expected return:

 * s  = arg max


E { R} = arg max

∫
∈T

p ∣⋅R⋅d  . (4.4)

Term  R(τ) appearing  in formula  (4.4) is a return R (4.3) obtained  after  the agent  was 

following  trajectory τ starting  from  state s when  policy π was in charge.  As transitions 

between  states  may be stochastic  and  therefore  different  trajectory  may occur  every  time 

the same policy is forced, mean value over probability distribution of all possible trajectories 

induced by policy π is considered. (Τ denotes a set of possible trajectories and p(τ | π) denotes 

probability that trajectory  ∈ T occurs when  policy π is used.)

4.2 Q-function

Some  of reinforcement  learning  algorithms  are based  on estimating  value  functions 

of states for policies. Generally, there are two types of value functions. The first type is state-

value function  for policy π,  which  quantitatively  estimates  how  it is  advantageous  or 

disadvantageous to be in a certain state when policy π is used. It is an expected return when 

the agent is using policy π starting from state s:

V  s  = E { R∣ s0 = s } = E {∑
n =0

N

n⋅r n1∣ s0 = s} . (4.5)

The  second  type  is action-value function  (also  frequnetly  reffered  as Q-function) 

for policy π,  which  quantitatively  estimates  how  it is  advantageous  or  disadvantageous 

to perform certain action a in specific state s and then follow policy π:

Q s , a  = E { R∣ s0 = s , a0 = a} , (4.6)

Q s , a  = E {∑
n = 0

N

n⋅r n1∣ s0 = s , a0 = a} . (4.7)
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A fundamental  property  of value  functions  is that  they  satisfy  particular  recursive 

relationship—value function at one state s may be determined as a combination of reward for 

getting to another state s´ and value function at the new state discounted by factor γ. If we take 

into account stochastic transitions between states, we may bring together following formula 

for Q-function, which is called Bellman equation: [13]

Q s , a  = ∑
s´

p  s ´∣s , a⋅[r  s , a , s ´   ⋅Q s ´ ,s ´  ] . (4.8)

Analogical formula may be derived for state-value function as well.

Defining  Q-function  allows us  to estimate  what  actions  are useful  in particular  states. 

As it takes into account  possible  succesor states,  it estimates how much reward agent may 

acquire  over  long run;  not just  by a single  greedy action.  For  example,  this  property may 

prevent getting ultimately to severely bad state due to  choosing greedy actions in the first 

place and not thinking about possible future consequences. 

Having  known  Q-function,  we may compare  two  policies—we may argue  that  one policy 

is better over another when it has higher Q-values for all (s,a) pairs:

 ≥  ´ iff Q  s , a  ≥ Q ´  s , a for all s , a . (4.9)

Naturally,  the ultimate  goal  is to  learn  what  policy  is the best  one,  looking  for optimal 

action-value function:

Q* s , a = max


Q s , a . (4.10)

Finally,  we  may  formulate  Bellman  optimality  equation,  which  describes  realtionships 

between optimal Q-functions of state-action pairs: [13]

Q* s , a  = ∑
s ´

p  s ´∣s , a⋅[r  s , a , s ´   ⋅max
a ´

Q* s ´ , a ´ ] . (4.11)
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4.3 Reinforcement Learning process

MDP tasks  may be  solved  by dynamic  programming  methods,  described  for example 

in [13].  However  these  methods  require  complete  and  accurate  model  which  describes 

interaction between robot/agent and environment. Unfortunately this assumption is not often 

satisfied,  particularly  probabilities p  s ´∣s , a  remain  unknown  in many  real-world 

problems.  Secondly,  they  compute  Q-values  based  on iterative  approach  (via Bellaman 

equation)  using  sweeps  through  complete  sets  of states  and actions,  which  may 

be prohibitively expensive.

Great advantage of reinforcement learning methods, including Q-Learning, lays in the fact 

that they draw from experience and particularly does not require any prior knowledge about 

environment  and  its  dynamics.  [15]  Learning  is run  in episodes.  Agent  is following  some 

policy in each episode and trajectory τ is recorded along with obtained rewards. For each pair 

(s,a)  visited  within  the episode,  Q-value  Q(s,a)  is  then  updated  by obtained  return R (see 

equation 4.3) following the visit.  Optimal policy π* is updated accordingly to be consistent 

with actual Q-values. [13] [15]

One of critical matters in reinforcement learning is a choice of policy π which will be used 

to select actions in states occuring within an episode. One the one hand, agent should greedily 

follow optimal policy π* computed so far which ensures relatively high rewards. On the other 

hand,  there  is no  guarantee  that  such  policy  is really  optimal;  it is  just  a temporary 

assumption. There may be some better policy which has not been found yet.  It is a problem 

of balancing exploitation (using the best known policy) and exploration (trying other actions 

and looking for potentially better policies). There are many approaches how to deal with it, 

however this topic is still a subject or research and there are many unresolved questions. [13] 

Probably the simplest  approach, however quite effective, is ε-greedy strategy. Rule which 

is used to select actions is simple. The greedy action is performed for most of the times, but 

also  a random action  may be  chosen  with  a little  probability ε.  This  behaviour  enables us 

thoroughly explore optimal strategy and strategies which are close to the optimal one. In other 

words,  Q(s,a)  is preferably  estimated  for potentionally  interesting  state-action  pairs  while 

state-action pairs with no promising asset, which are not likely to be visited at all, may not be 

explored or they are tried only several times (just to figure out that they are useless). This is 

a huge  advantage  over  dynamic  programming  which  has to  perform  systematic  sweeps 

over the whole set of state-action pairs to estimate Q-values. 
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There  exist  several  learning  algorithms  used  for Q-learning.  The one  which  has  been 

utilized in this thesis to learn exploration strategy using robotic arm is denoted as On-policy 

Monte Carlo Control in [13].

17

On-policy Monte Carlo Control algorithm [13]

Initialize:
For all s ∈ S , a ∈ A s do:

Q s , a  ←  arbitrary
Returns s , a  ←  an empty list
 ←  an arbitrary ε-soft policy

Repeat forever:
Generate an episode using policy 
For each pair  s , a appearing in the episode do:

R ←  return following first occurence of  s ,a in the episode
  Append R to Returns  s , a 

Q s , a  ← average Returns s , a 
For each s appearing in the episode do:

a* ←  arg max a Q s , a
  For each a ∈ A s  do:

  s , a  ← 1−   
∣A s ∣

if a = a*

  s , a  ←


∣A s∣
if a ≠ a*

Note:  s , a  denotes probability of choosing action a in state s



5. Terrain traversability—State of Art

This thesis deals with a movement of an unmanned ground vehicle (UGV) in an unknown 

environment. Extending abilities of mobile robots to overcome an unstructured terrain beyond 

paved roads is a challenging issue which has an attention of many robotics experts and novel 

systems are being developed particularly since the beginning of the century.

It is a complex problem in which both, hardware and software, play vital roles. Mechanical 

construction of a robot is as important as a control system. The overall succes then depends 

on synergy  of the both.  Following  sections  cover  several  approaches  and advancements 

in building  chassis  of mobile  robots  at first.  Then  a major  part  of the state  of art  review 

focuses on intelligent systems for traversing rough terrain.

5.1 Chassis construction

Generally,  when  designing  a mobile  robot,  choice  of suitable  hardware  is a first  step 

in the process. We should take into consideration characteristics of an environment in which 

we assume the robot will work as well as a puropose of the robot itself. This particularly holds 

for urban  search  and rescue  (USAR)  missions,  in which  we  want  to ensure  high  mobility 

in rough, uneven and unstructured terrain. Therefore, we should think about chassis first.

Usually, three types of mobile mechanisms for robots are distinguished—wheels, legs and 

tracks.  Wheels  work  well  especially  on even  surfaces,  where  they  enable  robot  to move 

fluently,  effectively and fast.  However,  they may lack  ability  to move across  complicated 

terrain. On the contrary, legged robots have a huge potential for such situations, but it is very 

difficult to control them thanks to many degrees of freedom and their movement is slow so 

far. But this field is a subject of modern research [16] [17] and it is likely that there will be 

many legged robots with amazing agility in the future. For now, the most popular mechanism 

for robots used in USAR are tracks, which offer enough robustness to move across rugged 

terrain combined with fair speed. [18] [19]  

Tracks  are  able  to provide good traction for  most  of the time,  even on muddy or sandy 

surfaces,  but sometimes problems may occur,  when contact with ground is  minimal.  Such 

situations may happen, for example,  when it is needed to overcome steps,  boulders,  fallen 

branches, depressions, etc. Some enhancements may come in handy.
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For example, Lee, Kang and Kim designed a robotic platform ROBHAZ-DT3 [18], which 

is composed of two pairs of tracks, which are interconnected using passive joint, see Fig. 5.1. 

Relative  position  of front  and rear  tracks  is being  passively  changed  according  to shape 

of traversed surface. It does not only provide a better contact with the ground, but also center 

of gravity  is shifting,  giving  better  stability  to the robot  in comparison  with single  tracked 

platforms.

Fig. 5.1: Mobile robot platform ROBHAZ-DT3. [18]

Left – view from side. Right – view from above.

Passive machanisms, like the one mentioned above, have the advantage that they do not 

require  additional  control  systems.  On the other  hand,  they  may get  stuck,  e. g.  in  some 

depression,  and  may not be  able  to escape.  Actively  controlled  mechanisms  represent 

an alternative, which brings new options for robot movement. [20]

Yamada et al. [21] got inspired by a wharf roach and designed a robot combining some 

passive  and  some  active  mechanisms.  They  refer  to their  design  as  blade-type  crawler 

mechanism because  flexible  blades  are  mounted  on tracks.  These  enhance  robot´s  ability 

to overcome some minor obstacles, see Fig. 5.2, and also serve as dumpers, when robot falls. 

In addition, robot is equiped with actively controlled antennas, which may even help robot 

to jump in some occasions like the animal.
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Fig. 5.2: Blade-type crawler mechanism inspired by a wharf roach. [21]

Guarnieri,  Debenest  et  al.  [19] introduced  an interesting  mechanism  applied  on robot 

Helios Carrier, which was equipped by actively controlled tail-like mechanism, see Fig. 5.3, 

which particularly served as support preventing robot from flipping over. They succesfully 

tested their design during climbing and descending stairs.

Fig. 5.3: Robot Helios Carrier with actively controlled tail-like mechanism. [19]

Left: Robot overview. Right: Climbing stairs without and with tail-like mechanism.

Finally,  a popular  approach,  which may be considered as an extension of the mechanism 

introduced in the previous paragraph, is a design using two pairs of articulated side tracks—

often reffered to as flippers. This type of chassis is widely used for search and rescue robots 

including UGV from  NIFTi/TRADR project. [1] [20] [22] [23] [24] (Or there is an another 

popular platfrom Packbot produced by iRobot company which uses only front flippers. [25]) 

Attitude  of each  flipper  is controlled  by its own  servomotor.  One  can  also  alter  flippers´ 
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compliance by limitng maximal current (and therefore limiting maximal generated torque). 

Flippers  significantly  enhance  robot´s  mobility  as they  allow  to traverse  larger  set 

of heterogenous obstacles, from which some of them may be even impossible to overcome 

by other types of chassis. [26] This variability, however, demands more sofisticated control. 

It is  the aim  of this  thesis  to propose  a solution,  how to  automatically  control  flippers 

for smooth overcoming of obstacles, but first, there will be introduced state of art on this topic 

in the following sections.

5.2 Artificial intelligence for autonomous traversal

There  were  several  types  of chassis  for UGVs,  which  enable  movement  on more 

complicated terrain, presented in the previous section. Constructions with actively controlled 

elements naturally offer more options, but their control is more difficult. This brings higher 

demands on robot´s operator, especially when robot is being driven remotely and information 

of robot´s  situation  provided  to operator  on his workstation  is limited.  It is  slowing down 

operator´s  work  and a risk  of mistake  is higher.  Therefore  one of the main  goals  of current 

research is to automatize robot´s movement and lower cognitive load of operator, who may 

consequently  focus  on higher  level  tasks  required  by the mission  instead  of paying  extra 

attention to driving the robot. [2] [24]

If we want  robot  to have  a certain  level  of autonomy,  we  cannot  forget  to  develop 

intelligent software, that will be able foremost to process sensor readings (both proprioceptive 

and exteroceptive) and utilize them into a model of environment. Secondly, it should be able 

to evaluate  negotiability  of the terrain  based  on the model  and eventually  to choose  proper 

configuration of adjustable chassis. 

5.2.1 Planetary rovers

One  of the  first  application  domains  of mobile  robots  in  which  a problematics  of save 

terrain traversal was emphasised was usage of planetary rovers.  [27] [28] Increased caution 

during movement in an unknown environment is necessary in their case beacuse of high cost 

of the mission and a fact that they have to get along without any assistance. If rover lost its 

stability and tipped over, it would mean an early end of mission and therefore bad succes. 
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This was  the reason,  why  scientists  started  to think  about  how to minimize  a risk 

of an accident.

Negotiability  of terrain  is evaluated  as a part  of an autonomous  navigation  and  a path 

planning  in the case  of rovers  like  in  work  of  Singh,  Simmons et al. [27],  who  designed 

planning  algorithm for Mars  Rover.  They encountered  a problem that  previous  researches 

concerning path planning for UGVs had divided space only into free space and obstacles. 

While  this  binary  division  may  be sufficent  for indoor  robots,  it ceases  to be  efficient 

in a complex environment. One can find a wide variety of obstacles outdoors. Some of them 

may be impassable like large objects or deep pitfalls and it is necessary to avoid them, while 

some other obstacles may be overcome by robot. One just have to take into account higher 

pitch and roll when passing them which usually means higher risk and energy consumption, 

which should be incorporated into cost function for a planner.

Concretely,  Mars  Rover  is equipped  with  a stereoscopic  camera  used  to map  terrain. 

The map is divided into cells whose size is approximately the same as robots. Points obtained 

by the camera which fall into one cell are used to fit a plane via least squares method. This 

allows,  among  others,  to determine  eventual  pitch  and  roll  of the rover  and a roughness 

of terrain from deviations of points  from the plane. They also compute a certainty of a cell 

which encompasses number of points  in the cell  and their  distribution.  For example,  a cell 

with only few points in one corner will have less certainty value than other cell with a lot of 

points distributed uniformly in its area.

The plan  itself  is  being  build  on two  levels—global  and  local.  D*  algorithm  is  used 

for global  planning  to prepare  an initial  plan.  The local  planner  than  evaluates  different 

directions of movement  from the current  position to  find the most  suitable  one.  It  is  using 

parametrs from the map, certainty of map cells and mechanical properties of rover.

Algortihm for autonomous navigation was furtherly extended in the work of Goldberger 

et al. [28] who use a grid of cells with higher resolution. They also introduced some other 

parameters to describe cells such as step hazard, roughness hazard, pitch hazard and border 

hazard  (cell  which  is neighbouring  with  unknown  cells  has  high  border  hazard).  They 

subsequently utilize all this information to determine optimal heading of rover in order to get 

closer to the goal and choose safe trajectory at the same time.
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5.2.2 Search and rescue UGVs

Mechanisms  developed  for  planetary  rovers  may  be  indeed  applied  on other  UGVs 

including those designated for USAR missions. Nevertheless, rescue robots cannot manage 

with some simplifying assumptions, that may have been done for Mars Rover. Thats because 

of more  dangerous  character  of their  missions.  Environment  in which  they  are  supposed 

to work is more complex and it is more difficult to make its model. [22]

5.2.3 Planning approach to traversability

One  popular  approach  for  autonomous  overcoming  of obstacles  is determination 

of traversability (and choice of suitable  configuration of chassis  if possible)  already during 

path-planning; quite similarly like in the case of Mars Rover. 

There is  a fair  number  of papers that  focus mainly on building traversability cost  maps 

for robots  with fixed  chassis,  i.e.  for  robots  which  cannot  adapt  their  chassis  according 

to terrain (for both, tracked and wheeled). [29] [30] [31] [32] These maps are then supposed 

to be an input  for path planning algorithms which are responsible  for generating safe  path. 

Researchers  are  usually  exploiting  either  onboard  stereocameras  or laser  range  finders 

to obtain point  clouds  which are furtherly transformed into maps (mostly by fitting planes 

using  least  squares  fit,  Ransac,  etc.).  Relative  difficulty  of driving  through certain  region 

is assessed  by various  methods.  Usually  detailed  information  on robot-terrain  interaction 

is estimated  such as  pose  of robot  on surface  (in the computed  world  model,  map), 

its stability, traction/slippage, power consumption, etc.

Kim,  Sun et al.  [33]  proposed  online  learning  method for terrain  classifier  that  should 

distinguish traversable  and untraversable  terrain by wheeled  robot.  Their  system performs 

collection  of data  by sterocamera  as robot  moves.  They  extract  features  from  the data 

describing geometry of terrain together with image textures. The classifier then learns which 

features are corresponing to traversable terrain and which are corresponding to untraversable 

terrain.  Terrain  classification  then provides  information  to the  planner.  Their  approach 

is similar to ours in some ways, but they are learning model only to distinguish traversable 

and  unsafe  areas,  while  we are  trying  to learn  model  to assess  several  different  chassis 

configurations and choose the best one. Secondly we are trying to exploit reactive behaviour 

rather than planning.
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Brunner et al. pursue the problem of terrain traversability for robots with adjustable chassis 

[26],  whereas  they  try  to design  a general  algorithm,  which  would  not be limited  to just 

one type  of chassis.  Their  solution  is  built  on creating  quality  model  of terrain.  In their 

opinion,  difficult  parts  of the path  should  be known in advance  (while  we  argue  that  this 

condition may not often be satisfied in USAR missions), so that  one can avoid dangerous 

situations in advance. Secondly, model in memory is needed in situations when robot cannot 

rely  on actual  sensor  readings  due  to high  pitch  (and  therefore  looking  in  bad  direction) 

or some noise in sensor data.

Again,  their  planner  works on two levels.  Global  planner  is looking for an approximate 

path  and  also performs  classification  of  terrain  on  easy  areas  and  hard  areas.  Its  output 

is a graph  roughly  describing  path.  In the following  phase,  easy  segments  of path  are 

not considered  as they  are accesible  in any  configuration.  Local  planner  is  used  just 

on difficult segments, which needs thorough analysis.

For now, they consider only static properties of robot in the article [26]. Including dynamic 

properties (inertia, dynamic stability, ...) is intended to be a subject of future work. For now, 

they  check  static  stability  which  they  quantify  by  mechanical  work  needed  to tip over 

the robot  along  least  stable  axis  at that moment.  This  is determined  for  each  possible 

configuration and incorporated into cost function used in planning algorithm for given vertex. 

They  validated  their  approach  in ROS  Gazebo  simulator,  but  not  on real  robot  and  real 

environment.

Colas et al.  [22] have chosen more specific approach. They work with concrete robotic 

platform  Niftibot.  (Note:  They  are  collaborating  on TRADR  project,  therefore  they  are 

experimenting  and developing  systems  for the  same  platform  as we do.)  They  emphasis 

thorough processing of sensor data and building precise model too. The model is then used 

to determine  reachable  positions  (i.e. robot  does not  collide  with  obstacles,  has  enough 

support from the ground and pitch and roll are within prescribed limits) using tensor voting 

method  at first.  Then  they  determine  if it is possible  to move  between  two  positions  and 

in what configuration. This makes a graph which is used as an input for D* algorithm.

Functionality  of  their  solution  was verified  in an experiment  in flat  terrain  at first 

to compare  their  planner  with  regular  planners  for 2D environment.  Then  they  performed 

an experiment in fully 3D terrain during succesful attempt to climb a staircase. The extension 
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of the planner  from  2D  (2.5D)  to 3D  is considered  as their  most  significant  contribution 

by the authors.

Safe climbing of stairs is generally a popular challenge, which is tackled by more robotics 

developers  working  on many  platfroms  (not  only  tracked  robots,  but  also  legged  robots 

as well).  There are just some examples:  Mihankhah  et al. [23] work with tracked platform 

Silver similar to Niftibot equiped with two 2D laser range finders (horizontal and vertical). 

The lasers  are  used  to detect  a staircase.  It is done  by extracting  lines  from  laser  data 

and choosing  candidate  lines  for describing  stairs.  Robot  is then  subsequently  navigated 

to the staircase and is aligned in front of the stairs ensuring that robot will start climbing from 

a good initial posture. Finally, they use fuzzy logic based controller to drive the robot upstairs 

using  laser  data  on input  assessing  relative  posture  of the robot  to the stairs  and keeping 

the robot parallel to walls on the side of staircase.  

Hesch,  Mariottini  et al. [34]  pursued  stair  descending  for a change.  Nevertheless,  basic 

idea  was similar.  They utilize  monocular  camera  to analyze  scene  geometry  (lines)  using 

machine  vision  algorithms  in order  to detect  descending  staircase.  After  that,  the robot 

is navigated  to the staircase  followed  by aligning  itself  with  the edge  and finally  climbing 

down. The main concern is to keep the robot in the center and avoid tipping over. Information 

from  tri-axial  gyroscope  combined  with  line  information  from  camera  is exploited 

by extended Kalman filter and a PID controller which should steer the robot following safe 

trajectory.

Although climbing/descending stairs is a challenging problem, the stairs are still structured 

and regular terrain. The both mentioned articles have in common that the proposed controllers 

detect  stairs  as lines  in laser  or  camera  measurements,  but  terrain  in USAR  scenario 

is expected to be much more irregular, therefore more robust approaches are needed.

5.2.4 Reactive approach to traversability

There  were  several  papers  mentioned  in  previous  sections  which  deal  with  terrain 

traversability  and adjusting  configuration  of  robot´s  chassis  already  during  a planning 

procedure.  On the one  hand,  this  approach  may  prevent  driving  robot  into potentially 

dangerous situations, but on the other hand, it may be sometimes computationally demanding, 

slow and not very flexible, requiring complete information about environment and precise 

model.
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Situations  in  which  we  do not have  comprehensive  knowledge  of the environment  (for 

example  due to dust  or smoke  covering  sensors)  are  not  exception  as well.  This  makes 

planning  much  more  difficult,  because  we  are  unable  to recognize  what  part  of map 

is reachable and what part is not. In addition, thorough plan may not be even needed. Most 

of the times operator does not request robot to autonomously plan the whole path and then 

realize locomotion from actual position to distant goal position. 

Usually,  search  and  rescue  robot  is  under  human  control  during  its deployment  for 

most of the time.  It is  the operator  who  is choosing  direction  and  speed  of the robot´s 

movement.  Active auxiliary articulated tracks,  flippers,  may be controlled manually when 

needed as well. However, it is more convenient when flippers adaptively change their position 

with  respect  to a shape  of terrain  underneath  and in front  of the robot.  That  is,  we  rather 

aim to develop a semi-autonomous system instead of fully autonomous one. The system is not 

supposed to replace an expert operator, but it should play supportive role and ease operator´s 

work. 

Similar philosophy to the solution of the problem concerning adaptive traversability may 

be found in works of Okada et al. [24] or Ohno et al. [20]

Okada et al. develop a control system of flippers for a tracked robot Kenaf,  see Fig. 5.4, 

which has a similar construction as our platform Niftibot. These authors used two laser range 

scanners  mounted  on both  flanks  above  main  tracks  in their  older  paper.  [35] The lasers 

provided information about terrain under both, left track and right track,  see Fig 5.5. Then 

their control system updated actual flippers´ positions using the information. This solution 

turned  out  to be  insufficient,  especially  in  situations,  when  there  was  a narrow  obstacle 

in front  of robot,  which  fitted  into  free  space  between  front  flippers.  Robot  crashed  into 

the obstacle without noticing it earlier in that cases. 

The authors later published another paper [24], in which they introduced enhanced system 

with third laser range scanner, which detects terrain in front of the robot, see Fig. 5.5. We may 

deduce from their  experince,  among others,  that  if we want to  effectively control  flippers 

for safe traversal, we do not need only information about terrain´s shape right under robot´s 

tracks,  but  also  in front  of the robot.  This  is an important  idea  which  is used  in our  work 

as well  as we utilize  digital  elevation map (DEM) which describes terrain under the robot 

and in front of the robot. 
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Fig. 5.4: Tracked robot Kenaf. [24]

Fig. 5.5: Laser range scanners mounted on Kenaf. [24]

Left – New system described in [24] with a new additional sensor in front.

Right – Old system described in [35] using only two sensors on sides.

Algorithm which was applied in the paper is summarized in a schema in Fig. 5.6. At first, 

shape  of the terrain  under  robot´s  tracks  is  derived  from  laser  scans  and  actual  posture 

of the robot is measured by inertial measurement unit (IMU). These estimates are then used 

to assess  a suitable  configuration  of flippers  to overcome  the terrain.  A requested  posture 

(if different from actual)  is designated so that it is  paralel  with plane,  which approximates 

terrain using a least squares method and so that the robot has enough support from the ground. 

Its  reachability  is also  subsequently  checked  in a feedback  loop,  especially  in the sense 

of stability.  In the end,  control  signals  are  sent  to servomotors  in order  to execute  desired 

movement. A conventional PID regulator is used in this step.
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Fig. 5.6: Adaptive traversability algorithm introduced by Okada et al. [24]

Ohno et al. [20] also rather try to explore reactive behaviour based on actual data from 

sensors instead of building a complex model of the world and planning over this model. They 

use  following  sensor  information:  pitch  of robot´s  body,  angles  and  torques  of flippers, 

distance  between  front  body  and  ground  and  distance  between  rear  body  and  ground, 

see Fig. 5.7. 

Fig. 5.7: Exploited sensor information in [20].

Pitch  of  robot´s  body  θp,  angle  of front  flipper  θf,  angle  of  rear  flipper  θr,  torque of front 

flipper Tf, torque of rear flipper Tr, distance of front (rear) body and ground lf (lr).

They also made some simplifying assumptions in their work. Firstly, they assumed only 

2D situations—sagittal section of robot and terrain was considered (like in Fig. 5.7). This also 
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means that  they did not  take into account  a roll  of the robot.  Secondly,  they assumed that 

rubble and other terrain structures may have been approximated as steps in 2D. 

Based on their  assumtions, the authors designed motion sequences for getting smoothly 

over an upward step and analogically for getting past a downward step; see Fig. 5.8, which 

illustrates  these  sequences.  They  prepared  several  control  rules  for both,  front  and  rear 

flippers,  according  to the sensor  information  at the moment.  The rules  were organized  into 

two look-up tables. Several quantities are being continually observed,  see Fig. 5.7: robot´s 

pitch,  angles  of flippers,  distance  between  robot´s  body  and ground  and contact  between 

flippers and ground (which is assessed from robot´s  inertia, posture of flippers and angular 

momentums  generated  by actuators).  Appropriate  control  rules  are chosen  from the tables 

for front  and  rear  flippers  according  to measured  quantities.  The rules  themselves 

are implemented  as PD controllers  which  drive  flippers  to optimal  positions  so that 

the movement of the robot is as smooth as possible. 

They succesfully tested their system on some artificial obstacles made of wooden blocks.

Fig. 5.8: Designed motion sequences for getting over upward step (left) 

and downward step (right). [20]

The advantage of proposed method is that it enables robot fluently cross steps of variable 

heights thanks to sophisticated control rules and PD controller optimized for such situations. 

Nevertheless,  authors  did not  mention  how  their  algorithm  performed  on general  terrain 

shapes  and  we find  utilizing  2D sections  instead  of 3D model  as pretty  strong  assumption 

which  is not  valid  in many situations.  We also  argue  that  such  approach may be  effective 

when climbing a single step, but the robot may have difficulties when driving more complex 

terrain.
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6. Adaptive traversability

Mobile platforms which have adjustable chassis with actively controlled elements such 

as flippers  have  good  capabilities  to overcome  various  terrain  features.  However,  they 

inevitably  yield more degrees of freedom to control. It causes a high level of cognitive load 

of robot´s  operator,  thus  making his  task more difficult  and  error-prone.  Therefore,  semi-

autonomous control system for adapting robot´s morphology to traverse terrain in an optimal 

way is being developed, so that operator may focus on other tasks than manually adjusting 

flippers´ positions. This behaviour is called adaptive traversability (AT).  [1] [2].

The ultimate goal of this thesis is to take up current progress on semi-autonomous control 

system  which  has  been  done  so far  [1]  [2] and further  enhance  its capabilities—mainly 

to extend  the system  by introducing  active  tactile  exploration  of not  visible  terrain 

by a robotic arm. Necessity of this extension has been suggested after previous experience. 

As the terrain was being scanned only by laser range finder before, situations in which robot 

was  unable  to detect  objects  in front  of itself  occurred.  It may happen for example  in case 

of reflective  surfaces  such  as water  and oil  spills,  in the presence  of smoke or just  in case 

of occluded  view.  Such  situations  are causing  missing  data  in the model  of environment, 

which is gradually being build from laser scans. As this model is then used by decision maker 

to choose optimal flipper configuration for terrain traversal,  missing data may significantly 

spoil the decision.  Mentioned situations are quite probable during USAR missions,  so  they 

deserve our attention.

6.1 Existing AT algorithm

6.1.1 Utilized features—Feature vector F

There are two types  of features  which are provided by robot´s  sensors and may be used 

for decision  making—proprioceptive  and  exteroceptive.  The former  group  of features 

is provided by inner sensors. Namely following information is being utilized: pitch, roll, real 

speed of robot, speed requested by commands and currents in servomotors driving all 6 tracks 

(that includes main tracks as well as flippers).

Exteroceptive features describe terrain in close area around robot and are generated by 3D 

laser  scanner.  Concretely,  we utilize  terrain  representation  called  Digital  Elevation  Map 
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(DEM). In our case, it is a discrete grid of size 2 m x 0.5 m which is divided into cells of size 

0.1 m x 0.1 m,  i.e. there  are 20 x 5  cells,  see  Fig. 6.1.  Each  cell  stores  value  of height 

of terrain at corresponding [x, y] coordinates.  The area under the robot (orange in the figure) 

is cut from octomap (provided by octomap server) which is stored in the memory. The area 

in front of the robot is directly visible by laser scanner, therefore it is rather computed from 

dynamic  point  cloud  than  from octomap.  (We experienced  that  octomap  server  does  not 

perform  well  when  dealing  with  dynamic  environment  as moving  objects  leave  ''trail'' 

in the octomap.  In other  words,  a moving  object  persists  in the map  even  if it has  already 

moved to a different place and it is spoiling the octomap.) Height in each cell at given [x, y] 

coordinates is computed as a mean value of z-coordinates of all points from the dynamic point 

cloud which fall into particular cell.

Fig. 6.1: Digital Elevation Map (DEM).

DEM is composed of 0.1 m x 0.1 m cells which form a grid of 20 lines and 5 columns (note 

that DEM is rotated by 90° degrees in the figure). Each cell stores value of height of terrain 

in particular place. 

Values in orange colored cells are obtained from octomap provided by octomap server (one 

of ROS packages) while values in green colored cells are computed from dynamic point 

cloud. Light green cells are also measurable by Kinova JACO arm.

All  features  which  may bring  us potentially  useful  information  are stored  in the feature 

vector F. It has following structure:

F =  [ 100 x height values (each DEM cell), pitch, real forward speed of the robot,

speed requested by command, 6 x currents in tracks, roll, 100 x counter 

(number of points used to compute height in corresponding DEM cell) ]
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6.1.2 Flipper configurations

Control of attitude of all four flippers and their compliance (which is obtained by limiting 

maximal  allowed  current  to their corresponding  servomotors)  is generally  a difficult  8- 

dimensional  continuous  problem.  However,  our experience  suggest  that  only  several 

configurations  may be  enough  to succesfully  drive  robot  across  rough  terrain.  It is 

not necessary  to adjust  posture  of flippers  with  millimeter  precision  so that  they 

are accuratelly  copying  terrain  under  the robot.  The robot just  needs  to know  only  few 

different  flipper  modes—each one for  specific  terrain  structures  that  may be encountered, 

see Fig. 6.2. [1] [2]

This  observation  allows us  to simplify  the task.  It may  be limited  just  to a choice 

of a viable  flipper  configuration from a finite  discrete  set.  Flipper  configurations  proposed 

in this thesis were designed during experiments at FEE, CTU.  [1] [2] However, we are not 

the only  ones  who do  something  like  that—Colas et al.  proposed  similar  configurations 

in design of their path planner. (Their approach is also described in chapter 5.2.3) [22] 

Fig. 6.2: Proposed flipper configurations. [1]

Each configuration corresponds to a different morfology of robot´s body and has its 

own characteristics. The configurations are depicted in typical situations for their usage.

I-shape (maximazes traction)

The flippers are parallel with the main tracks and they increase effective lenght of tracks. 

It consequently increases traction, which is the highest out of all configurations. I-shape mode 

is effective  when  driving  robot  on inclined  plane  and particularly  when  it has  to climb up 

or climb down a staircase (and it is already past first step), because tracks make contact with 

as many steps´ edges as possible.  On the other  hand, the robot may have difficulties to get 

over some bumps or single steps in this mode.
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V-shape (provides observability)

The flippers are folded. It is used when robot is moving on a flat surface, i.e. in situations 

when flippers are not actually needed for overcoming obstacles and traction provided by main 

tracks  is sufficent  for robot  to move.  Folding  the flippers  guarantees  free  view  for laser 

scanner  or cameras  mounted  on the robot.  (The flippers  otherwise  slightly  cover  the view 

of sensors to some extent when being in other configurations, thus limiting information about 

surrounding environment which robot is able to obtain by sensors.) 

L-shape (climbing up)

The front flippers are elevated. It is the best mode, when robot is approaching an obstacle 

(like stones, bumps, etc.) as it allows the robot to smoothly get on the obstacle.

As posture of tracks in this mode is similar to a tank (or other military vehicles), it is the most 

powerful configuration in the means of terrain traversability. Unfortunately elevated flippers 

interfere  with rays  of laser  scanner,  thus  complicating  building  of model  of environment. 

Therefore it is prefered to use this configuration only when it is really needed. 

U-shape (climbing down)

The flippers  are  pushed  downwards  when  this  configuration  is on.  It the most  suitable 

mode when robot is approaching some kind of depression or a step down. The front flippers 

are the first part of robot´s body to touch ground under the step and they are immidiately able 

to provide enough support for robot to prevent falling down or flipping over.

The idea is to  change between configurations  so that  the movement  of robot  is as fluent 

as possible  and eventual  obstacles  are safely  traversed.  Some  obstacles  may  even require 

a combination of configurations which are being adaptively changed as robot moves across 

the obstacle.  For example,  when  climbing  a staircase,  the robot  must  first  use L-shape 

to get on  first  step.  As robot´s  pitch  rises,  configuration  is changed  to I-shape  maximizing 

traction  when  climbing  following  steps.  Finally,  when  robot  gets  on the upper  edge 

of the staircase, U-shape is required in order to prevent flipping over.  
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6.1.3 Reinforcement learning framework for AT

The agent  which  is selecting  optimal  flipper  configuration  is based  on reinforcement 

learning framework which has been theoretically described in chapter 4. The goal is to choose 

configuration c ∈ C = { ' I ' ,' V ' ,' L ' , ' U ' } from a set presented in the previous section. 

The agent  is evaluated  by a reward  function r F , c , F ´  : ℝn × C ×ℝn  ℝ which 

assigns  real-valued  reward  for a transition  from  an initial  state  described  by features F 

to a successor state described by features F´ while using configuration c. [1]

We may define  Q-function QAT F , c  : ℝn × C   ℝ which estimates expected sum 

of discounted rewards following after the robot drives from state F using configuration c.

The aim  of learning  is to estimate  Q-function  so that  for each  state F we may  select 

configuration c* with highest QAT -value: [1]

c* = arg max
c∈ C

QAT F , c  . (6.1)

We also require that the best configuration c* fulfils a condition that QAT F , c * should 

be at least  positive.  Otherwise,  none of configurations may be considered safe and it is  not 

recommended to drive robot forward at all.

There were several problems which were encountered during collection of training samples 

for initial training of QAT -function. Firstly, driving a real robot is generally time consuming 

and any  operator  is able  to record  only  a limited  set  of trajectories  in reasonable  time. 

Secondly, the operator cannot afford to jeopardize robot. (So far, the robot is too expensive 

to risk its destruction only to obtain some data samples.) That means, that there are not many 

examples from situations in which robot robot found itself in some critical circumstances.  

The first  of the problems  mentioned  in previous  paragraph  was partially  bypassed 

by manual  annotation  of the data.  While  the configuration  chosen  by the operator  when 

actually  driving  robot  was denoted  as optimal  and was  assigned  a reward  equal  to 1.0, 

the other configurations were judged offline on the recorded data. Suboptimal configuration 

for each  situation  received  reward  0.5,  indifferent  configuration  (neither  good  nor bad) 

received reward 0.0 and unacceptable configuration received negative reward (i.e. penalty) 

– 1.0. 
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Thanks to that, we got useful training data even for configurations which were not used 

for driving  robot  at all,  thus  making  our  training  dataset  richer.  Manual  annotation  also 

enabled us to partially bypass the second problem and add negative samples to dataset. As it 

was  mentioned,  some configurations  may  have  received  negative  rewards  in this  way. 

Additionally, even if robot could not have been taken into situations which would endanger it, 

the operator could drive it near to such situations. For example, the operator could have taken 

robot near the edge of a cliff. Naturally, such recording episode had to end before the robot 

reached the edge and fell down. But last frames of recorded data may have been labeled with 

negative rewards as any of the configurations would lead to destruction of the robot if it really 

continued moving forward.

However this approach has its drawbacks. Mainly, as it is not much straightforward, such 

data collection and manual labeling may be hardly replicable. Secondly, when rewards were 

manually assigned to a configuration different from configuration actually used when driving 

robot  during  data  recording,  a fact  that  robot  may find  itself  in a slightly  different  state 

was neglected.  For example we did not take into account that  robot would be in a different 

pitch angle if it switched flippers´ positions.

6.1.4 Decision trees

QAT -value QAT F , c  for  each  pair  feature vector F - configuration c is predicted 

by regression trees which are trained using recorded training datasets.

We operate  with  n-dimensional  vectors  of features F = F1  F n Conditional 

probability p F i∣F j , where  j = {1  n }∖ i of i-th feature is represented by a forrest 

of regression trees. We have a training dataset which consists of M training samples denoted 

by F1  F M . Each tree is learned by top-down greedy algorithm which selects the splitting 

variable j  and split point s at each node in order to minimize variance in the left and in the 

right subtree. Following term is minized [2]:

argmin
 j ,s

∣R1∣⋅var F i
k

k ∈ R1  j , s
∣R2∣⋅var F i

k
k ∈ R2  j , s

, (6.2)

where  R1(j,s) denotes  a subset  of samples  which  fall  into  left  subtree  (value  of splitting 

variable j is lesser than or eaqual to splitting value s)  and  R2(j,s) denotes the other subset 
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of samples which fall into right subtree (value of splitting variable j is greater than splitting 

value s). Those samples whose particular splitting feature is unknown are inserted to the both 

subsets, thus falling to the both subtrees. [2]

Conditional probability of the feature is computed as the mean conditional probability over 

all  the leaves  in the forrest  reached  by the respective  sample.  It is  finally  used  to estimate 

probability distribution function of the QAT -function. QAT F , c is obtained as mean value 

over this distribution. [2]

6.2 Enhancement of AT algorithm

6.2.1 High-level features FH

Generally,  one of characteristic  properties  of decision  trees  is,  that  learning  algorithms 

have  already embedded  feature  selection.  That  also  includes  trees used  in this  work,  see 

previous  section.  The learning  algorithm  is searching  feature  vector  for features  which 

are able  to effectively  split  learning  dataset.  In the end,  it may  happen  that  only  a subset 

of features from the feature vector is actually used.

It was  observed  when  experimenting  on recorded  datasets,  that  if all values  from DEM 

are used  as single  input  features,  only few of them are actually  used for making decisions 

while  the others  are ignored.  Such  behaviour  may increase  probability  of overfitting. 

Therefore usage of high-level features was considered in order to make model more robust. 

Vector of high-level features will be furtherly denoted as FH.

Several  combinations  of high-level  features  were  designed—five  different  models  with 

different  vectors FH were constructed,  see Appendix  for detailed  description. QAT -function

QAT F H
i , c has  been  learned  for each  of them separately,  thus  we obtained  5 different 

models  for adaptive  traversability.  For example,  model  which  is denoted  as Model 4 

has following construction of vector FH:

     F H
4 = [ pitch and roll, 
average height values in lines in DEM (there has to be at least 2 valid values in line),
number of NaN values in lines in DEM (line is perpendicular to x-axis),
standard deviation of averages in lines in DEM,
maximal gradient value along x-axis (same orientation as heading of robot) of DEM,
minimal gradient value along x-axis of DEM,
mean gradient value between lines in DEM ]
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Proposed high-level features particularly describe actual robot´s  inclination and provide 

information about terrain in a compact and robust form. For example, using average height 

value in whole line of DEM should be less susceptible to noise than using value from a single 

bin of DEM. 

6.2.2 Active tactile exploration of terrain by robotic arm

Kinova  JACO  robotic  arm has  been  mounted  on the top  of Niftibot.  Vojtěch  Šalanský 

implemented an algorithm which enables the robot to use the arm for active tactile exploration 

within his thesis. [36] The basic principle is simple and is similar to the method used by blind 

people when they are navigating themselves. The arm is holding a stick which is used to tap 

on terrain.  After  coordinates  [x, y]  of unknown  part  of terrain  (for  example  coordinates 

of DEM cell)  are specified,  the arm  moves  the stick  towards  ground  at the requested 

coordinates until  it touches the ground. The touch is recognized when the currents  in arm´s 

servomotors  rise  due  to pushing  against  the ground.  Height  value z which  is computed 

by solving direct kinematic task for the arm is then returned. [36]

This  work is focused on utilization  of arm in order  to fill in  missing  height  infromation 

in DEM.  It consequently  helps  to determine  if it is  safe  to move  robot  forward  and what 

flipper configuration is optimal for such transition. The arm is able to reach up to cca. 50 cm 

in front  of the robot.  DEM cells  which  may be  measured  by arm  are  colored  light  green 

in Fig. 6.1.  This particularly involves cells from lines 11–14. Despite arm´s reach is limited, 

it particularly  enables  us to explore  terrain  immediately  in front  of the robot  and it may 

provide valuable information for making decisions.

6.2.3 Introduction of NaN Mode

The decision  trees,  see paragraph  6.1.4, are used  to predict  values  of QAT -function

QAT F H , c for all configurations c ∈ C = { ' I ' ,' V ' ,' L ' , ' U ' } at the state described 

by feature  vector FH. When performing experiments on the data where some of information 

about terrain was missing, a problem was encountered.

There  are  two common types  of situations  when a configuration  (or  all  configurations) 

may receive a bad reward:

1) It is actually inappropriate to drive robot further in that configuraton.

2) There is too much incomplete information in DEM so that  driving robot further may 
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not be denoted as safe in any configuration. 

Therefore a new mode (a pseudo-configuration) was introduced for situations when there is 

too much missing information in DEM. It is reffered as NaN (not a number) mode, because 

this value is prevalent in feature vector F (which includes  DEM) in that case. The extended 

set  of modes,  which  may be chosen,  is now C ' = C ∪ { ' NaN ' } = { ' I ' , ' V ' , ' L' ,

' U ' , ' NaN ' }.

   The both situations  presented above share that  it is not safe to move forward. However, 

the later  one  may possibly  obtain  a better  reward  after  missing information  is completed. 

It was  not needed to distinguish  these two kinds  of  situations  in time when robot  was not 

equiped  by the robotic  arm  for  active  tactile  exploration,  because  it did  not have  any 

mechanism to fill in the missing information. However, now, when we have the opportunity 

to explore terrain by the arm, it is practical to be able to decide if further exploration will be 

beneficial or redundant; especially if we take into account the fact that exploration by the arm 

may be time demanding.

A new tree has been trained (and added to existing model) to predict QAT F H , ' NaN ' 

using a dataset  with manually annotated training samples. The rewards for these data were 

labeled  by values  from range  from – 0.5  (meaning  no  need  of tactile  exploration)  to  1.0 

(almost  all  data  in DEM  are missing).  So, the training  procedure  was  similar  to other 

configurations.

However, this mode is a bit specific in contrast with other modes and is treated differently. 

Firstly,  it does  not  move  flippers,  but exploration  by the robotic  arm  is initiated  instead. 

Secondly,  the rule (6.1) that  configuration  with  highest QAT F H , c is the one  that  will 

be used does not explicitly apply on NaN mode. It was empirically found out that it is more 

convenient  to use  value QAT F H , ' NaN '  as a safety  measure  in general. When  this 

value is higher than a specified treshold ε, i.e.

QAT F H , ' NaN '    , (6.3)

movement  forward  is not  considered  safe  due to  a lack  of information  in DEM  in front 

of the robot.  NaN mode is used—and  therefore  exploration  by arm is enforced—whenever

QAT F H , ' NaN '  is higher  than ε (value  ε = 0.25  is used  implicitly)  regardless  other 

configurations  (even  if there  is some  configuration  with  higher  QAT -value).  The other 
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configurations  are judged  only after QAT F H , ' NaN '  becomes low,  which  means  that 

the terrain in front of the robot is known well.

The new  rule  applied  to a choice  of viable  flipper  configuration c* may be  formulated 

in the following way:

c* = arg max
c∈ C

QAT F H , c subject to QAT F H , ' NaN '    (6.4)

and QAT F H , c*  must be at least positive.

Introduction of NaN mode also solves another problem which was occasionally observed. 

The implemented  decision  trees have a property  that  if value  of the splitting  feature 

is unknown,  then  input sample  descents  into  both  sub-trees.  The output  value  is then 

computed as mean over all leaves, in which the input sample ended.

Initially  it  was  expected,  that  predictor  will predict  poor  values  of QAT F , c 

for inputs F with  too much  incomplete  data.  However,  it was  observed  that  it may 

occasionally happen that it predicts a good value of QAT F , c  because the few elements 

which are actually known may happen to be the ones which ultimately fall to branches of the 

tree giving high rewards.

Now, when there is too much unknown information about terrain, NaN mode is chosen 

even if some other mode may incidentally get a good reward in spite of little information.

However,  we suppose that  this  drawback could be partially solved if there  was a richer 

training dataset to learn the trees. 

6.3 Testing of AT algorithm

6.3.1 Offline testing on recorded datasets

Decision trees have been learned to estimate value of QAT -function QAT F H , c for all 

modes c ∈ C ' . Such  trained  model  then  chooses  the most  viable  mode from C '

for particular input feature vector FH.  As it has been mentioned in section 6.2.1, five models

—five different QAT -functions—which differ in the way, how feature vector FH is computed, 

have been trained.

Performances  of these  five  models  were  assessed  offline  on training  dataset.  As it is 

mentioned  in 6.2.3,  samples  in this  dataset  had  been  manually  annotated,  telling  what 
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configuration  was optimal,  what  configuration  was  suboptimal  or  what  configuration 

was inappropriate.  The configuration  chosen  by the model  was  compared  to the manual 

annotation in order to determine if the model made optimal, suboptimal or incorrect decision. 

The results are shown in graph, see Fig. 6.3.

In addition, second dataset was prepared for testing. This dataset contained some unique 

samples which did not appear in training data. It also contained some samples from training 

dataset in which values in DEM were synthetically pertubated. Height values in DEM cells 

were altered by a value from normal distribution with mean value 0 cm and standard deviation 

4 cm.  It was  done to  obtain  richer  dataset  for testing.  Again,  the configuration  chosen 

by the model  was  compared  to manual  annotation  in order  to determine  if the model  made 

optimal, suboptimal or incorrect decision. The results are shown in graph, see Fig. 6.3.

Fig. 6.3: Testing of models for adaptive traversability.

Models were tested on two datasets—training dataset (trn) and different testing dataset (tst). 

The graph shows percentage of optimal, suboptimal and incorrect decisions made by models 

on samples in particular datasets.

As you may see in Fig. 6.3,  all  five models provide similar results.  The optimal  action 

was chosen  on approximately  75%  of data  samples,  suboptimal  action  was  chosen 

approximately on 15% of data  samples  and incorrect  action  was chosen  on approximately 

10% of data samples.

10% of incorrect decisions may seem quite high,  but when the robot is actually driven, 

decision  about  configuration  is done  with  frequency  cca. 2 Hz.  Hence  incorrect  decision 

is often corrected in less than a second.  Fig 6.4 shows how many times (in %) the models 
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chose incorrect  decision on three samples from testing dataset  in a row. (Note that  dataset 

contained samples in the order as they were recorded.) Repeated incorrect decision,  which 

may actually endanger the robot, is made in less than 2.5%.

Fig. 6.4: Testing of models for adaptive traversability.

Percentage of cases, when model chose an incorrect mode 3 times in a row on samples from 

testing dataset.

Probably the worst performance was given by Model 1. There is an apparent drop in succes 

rate when comparing performance on training and testing data, thus suggesting that this model 

was  slightly  overfitted.  The other  four  models  behave  more  robustly  and results  of tests 

performed on training and testing data are similar.

The best model created so far is the one denoted as Model 4. It made only 7.8 % incorrect 

decisions on testing dataset and only in 0.8 % cases incorrect decision was repeated 3 times 

in a row or more). Therefore, this model is prefered when driving the robot.

6.3.2 Online testing of AT algorithm on Niftibot

The test of performance of the proposed adaptive traversability algorithm on Niftibot was 

performed when Nifitbot was driven across standard EU pallet. You may watch a video record 

AT_1.mp4  on enclosed DVD. The robot behaved as it  was expected. It used L-shape when 

approaching  the pallet  in order  to get  onto it.  When  robot´s  pitch  rose,  configuration  was 

switched  to U-shape  to support  the robot  and  thus  prevent  flipping  over.  While  being 

on pallet, V-shape could be used for observability. Finally U-shape was used to climb down 

when the robot reached the opposite edge of the pallet. 
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7. Tactile exploration of DEM

Special  mode  for situations  when  there  is missing  information  in digital  elevation  map 

(DEM) was introduced in the previous chapter.  Decison tree which is predicting  QAT -value

QAT F H , ' NaN '  has been  trained  on manually  annotated  data.  This  QAT -value  serves 

as a safety  measure.  The idea  is  that  whenever  QAT -value  of NaN  mode  which  depends 

on feature vector  FH (whose significant part is computed from DEM) is less than specified 

treshold ε (ε = 0.25  in implicit  setting),  robot´s  movement  forward  is not  considered  safe 

because  terrain  in front  of the robot  is unknown  and generally  may  have  any  shape. 

The missing part of map may mean that there is just a shallow puddle of water or there may 

be a deep pitfall. These two situations cannot be distinguished only using laser scans, but their 

distinction is crucial for robot safety.

Hence, tactile exploration of DEM by robotic arm is invoked. In the first case (a puddle), 

missing height values are being gradually filled in DEM as the arm touches terrain at various 

points. Finally, there will be enough known values in DEM that robot may determine that it is 

safe  to continue  and chooses  the best  flipper  configuration  to go  across  the puddle.  In the 

second case, it may even happen that the pitfall is too deep that robotic arm is unable to reach 

its floor.  No information  is added  to DEM  and therefore  we  may  conclude  that  going on 

will be dangerous and rather choose different direction of heading instead of going forward. 

For illustration,  an example  of situation  when  exploration  by arm  is needed  is depicted 

in Fig 7.1. QAT F H , ' NaN '  is high  as DEM  in front  of the robot  is practically  empty 

and agent does not have enough information to decide whether to continue going forward and 

what  flipper  configuration  should  be used. Updated  state  after  exploration,  during  which 

10 DEM cells were measured by the arm, is depicted in Fig 7.2. At this time, decision about 

flipper configuration can be safely done, because value QAT F H , ' NaN '  has fallen under 

treshold ε = 0.25. (It became even negative.) As you may notice, V-shape flipper configuration 

obtained the highest QAT -value and therefore is chosen for moving forward.
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Fig. 7.1: Example of DEM in situation when major part of terrain is not visible for robot. 

Left: QAT -values for all modes [1-I, 2-V, 3-L, 5-U, 6-NaN]. NaN mode has QAT -value 

greater than 0.25 → exploration by arm is required.

(Note: Model 4 is used to estimate QAT -value, see chapter 6 for more information) 

Right:  DEM.  Heights  in cells  (in  meters)  are  coded  by colors,  dark  blue  ~  NaN. 

The robot finds itself in the upper half of DEM and it is heading down.

Fig. 7.2: Example of DEM after some of missing values were measured by arm. 

Left: QAT -values for all modes [1-I, 2-V, 3-L, 5-U, 6-NaN]. NaN mode has QAT -values 

less than  0.25  → exploration  by  arm  is  no  longer  required.  V-configuration  has 

the greatest QAT -values → it is chosen to traverse terrain.

Right:  DEM.  Heights  in cells  (in  meters)  are  coded  by colors,  dark  blue  ~  NaN. 

The robot finds itself in the upper half of DEM and it is heading down.
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The presented  concept  is simple—the robot  is supposed  to use  arm  for exploration 

of terrain  in front  of itself  until  safe decision  can be  made,  i.e.  QAT -value  of NaN  mode 

becomes low. Naturally, it is advantageous to use arm as little as possible. In other words it is 

desired to find a strategy which would enable us to touch minimal number of cells in DEM 

that would be sufficent to make safe decision. 

One reason for this solicitude is to minimize time spent on touching terrain. As we want 

to prevent  any damage  of arm  which  could  be caused  by rash  movement,  it is  preffered 

to control arm so that it moves rather slowly. Therefore even measurement at only one cell 

of DEM takes some time. Second reason is that our arm is not equiped by actual tactile sensor. 

Contact with the ground has to be recognized indirectly from currents in arm´s servomotors 

when arm starts  to push against  ground.  This  contact  recognition  method burdens  motors 

in joints and some joints may get overheated after some time. So, it is desired to touch ground 

at as few points as possible.

7.1 Reinforcement learning for tactile exploration

7.1.1 RL Framework

When  looking  for an optimal  exploration  strategy  which  would  be quick  and reliable, 

reinforcement learning approach was utilized one more time.  For detailed information about 

reinforcement learning see chapter 4. 

The two elements of framework which have to be properly defined are states and actions. 

As arm is used to explore DEM, it is natural to derive states and actions from DEM. Action 

is easier  to define—action a is related  to cell  whose  height  is supposed  to be measured. 

Therefore we choose action a ∈ A , where A is a set of all cells in DEM reachable by arm, 

see Fig. 7.3.

Fig. 7.3: Digital Elevation Map (DEM). 

DEM  is composed  of  0.1 m x 0.1 m  cells.  Each  cell  stores  value  of height  of terrain 

in particular place. Cells which may be reached by arm are colored light-green.
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States  are  a bit  more  difficult  to define.  The very  first  idea  was  to denote  what  cells 

are already known and what  cells  are  left  to explore.  But,  as  one cell  may be in 2  states 

(known/unknown), it makes 222 states (over 4 million states) in total if we take into account 

only those cells which may be touched. It would be considerably computationaly demanding 

to estimate  Q-values for all states and it would require a lot of memory as well. Hence, it is 

good to replace such high-dimensional states with low-dimensional ones. An approach which 

showed up to be efficient is to watch how many cells are known in each line of DEM. One 

line may then find itself in 6 possible states (none cell is known, ..., all five cells are known). 

If we take into account lines 11-15, there are 65 (7776) states. This number of states is more 

acceptable. (Note: Keeping track, how many cells in particular lines of DEM are explored, 

is performed also because input high-level features FH for adaptive traversability predictions

QAT F H , c are based on average values in lines of DEM, see section 7.3.1.) 

7.1.2 Learning process

The task of exploring DEM naturally breaks down into episodes. We start with unknown 

terrain and then,  step by step,  we fill  new measured values  into DEM (and consequently 

feature  vector FH,  which  serves  as the input  for decision  about  safety,  is updated)  until 

we have enough information about the terrain. If we want to make this process fast, we should 

adapt rewards to motivate learning agent to finish as soon as possible. We may define reward 

in a following  way:  We  give  a small  negative  reward r  s , a , s ´  = −1 if

QAT F H , ' NaN '  in new  state s´ is still  higher  than  the specified  treshold  ε = 0.25. 

Otherwise,  we give  high  positive  reward r  s , a , s ´  = 25 when QAT F H , ' NaN ' 

becomes  less  than  ε and  the episode  is terminated.  The ultimate  goal  of learning  agent 

is to learn how to maximize obtained reward so it is supposed to get to terminal state quickly.

We may  define  a new  Q-function QEX (s , a) which  estimates  future  expected  sum 

of rewards  starting  from point  when  action a is used  in state s.  (Lower  index  EX is used 

to distinguish this function from QAT -function QAT (FH , c) used for adaptive traversability.) 

On-policy Monte Carlo Control learning algorithm adopted from book [13] was implemented 

to train QEX (s , a) , see Chapter 4.3 for detailed description.

The whole  learning  process  to obtain QEX (s ,a) was  performed  offline  on datasets 

recorded by the robot in advance. (Learning online while the robot is moving would be time 
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consuming and it could also endanger the robot.) The training dataset consisted of DEMs with 

full  information.  However,  before  each  learning  episode  started,  front  part  of DEM  was 

artificially hidden, i.e. height values in cells were replaced with NaN values. Learning agent 

was then performing simulated ''measurements of height''  after which NaN values were, one 

by one, replaced back by actual height value until terminating condition was fulfilled. Over 

2.5 million of learning episodes were performed in order to ensure that each state-action pair 

was tried enough times to ensure that estimated QEX s , a is plausible.

7.2 Testing of strategy learned by Q-learning

QEX -values QEX (s , a) for  all  possible  state-action  pairs  were  determined  by 

reinforcement  learning.  The strategy  for exploration  is then  to greedily  choose action a* 

at given state s:

a * s  = arg max
a

QEX s , a . (7.1)

Performance  of this  strategy  has been assessed  offline  on testing  dataset.  At first,  front 

part of DEM  was  replaced  with NaN values  in the beginning  of each  testing  episode,  thus 

simulating  terrain  invisible  to laser  scanner.  Each  action a*(s) simulated  a measurement 

by arm by replacing  NaN  value  back with  actual  height  value.  Testing  episode  ended 

in the moment  when QAT (FH ,' NaN ') dropped  bellow  treshold  ε = 0.25  and number 

of measurements  which  was  needed  to reach  this  state  was remembered.  This  simulated 

experiment was performed on 1150 DEMs. 

Similarly, a strategy which was choosing random actions was used on the same data (1150 

DEMs and  50 random episodes  on each  of them),  so  that  performance  of both  strategies, 

measured by number of actions needed to make a decision, may be compared.

Chapter  6.3.1 was dealing  with  high  level  features  FH.  Choice  of high  level  features 

directly influences adaptive traversability  QAT -function QAT F H , c and hence differently 

build vectors FH make different models. Five such models were designed (see their detailed 

specification  in Appendix)  and  their  correspondive  functions QAT F H
i , c were  learned 

separately.  This  also  means  that QEX (s ,a) strategy  had  to be  learned  for each  model 
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separately  as well,  because QEX (s , a) model  is build  on QAT F H , c model. However, 

learning algorithms were used always the same.

The performance  of QEX (s , a) strategy  then  could  have  been  compared  with  random 

strategy on each model.  Average numbers of measurements needed to make a decision about 

robot´s safety when using random measurements (actions) and Q-learning strategy are plotted 

in a graph, see Fig. 7.4.

Fig. 7.4: Comparison of strategy learned by QEX -learning and random strategy.

Q-learning algorithm was used to learn a strategy on 5 different models (which differ in the 

way  how  vector FH is constructed,  see chapter 6.3.1). Figure  shows  average  number 

of DEM cells which have to be measured by robotic arm until QAT F H , ' NaN '  becomes 

lower than ε = 0.25 by random sampling and QEX -learning based strategy.

Our results  propose  that  using  Q-learning  strategy  for exploration  may  speed up 

the process.  It proved  to be faster  on all of  five  presented  models.  We observed  that  this 

strategy prefers to choose action which may potentially bring more valuable knowledge about 

terrain and which may enable robot to make safe decision sooner.

Q-learning strategy performed well particularly on Model 4. Only 8.8 measurements were 

needed in average and it was less cca. by 4 measurements than using random strategy.
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8. Documentation

This  thesis  was  mainly  focused on a continuation in a development  of  a ROS  package 

'adaptive_traversability' for UGV in TRADR project. This package´s purpose is to introduce 

a module  for  autonomous  control  of Niftibot´s  flippers  and to adapt  them  with respect 

to traversed terrain. Core of the package was implemented by Petr Zuzánek.  [1] [2] Source 

codes of several nodes were modified during the work on this thesis. 

Files  AT_with_MATLAB_JACO.cpp,   AT_with_MATLAB_JACO.h  are  then  the most 

important  contribution  of this  work  (along  with  Matlab  part).  These  files  realize 

communicaton  with  Matlab,  which  was  used to  create  and  utilize  models  for AT,  see 

chapter 6, and for arm exploration,  see chapter 7. Matlab part of the project is implemented 

in files init_nodes.m, F_callback.m and F_choose_arm_action_callback.m.

If you are interested in the  implemented 'adaptive_traversability' package,  please contact 

the author of this thesis, Jakub Mareš, or his supervisor, Karel Zimmermann, Ph.D..

8.1 Launching instructions

After  Niftibot  is turned on  and  all  drivers  are succesfully  initialized,  run  following 

commands on the robot, the base station and in Matlab:

BASE$ roslaunch nifti_mapping_launchers mapAndNav.launch
BASE$ roslaunch adaptive_traversability AT_with_MATLAB_JACO_base.launch
ROBOT$ roslaunch jaco_moveit JACO_for_AT.launch
ROBOT$ export ROS_IP=192.168.2.xxx # ip adress of robot
ROBOT$ roslaunch adaptive_traversability AT_with_MATLAB_JACO.launch
MATLAB$ cd "path to 'at_rosmatlab' directory"
MATLAB$ init_nodes

To ensure proper communication between Matlab and roscore which is running on robot, 

modify following lines in init_nodes.m properly:

ROS_MASTER_IP = '192.168.2.xxx';    % ip adress of robot
ROS_MASTER_PORT = 11311;            % port
setenv('ROS_MASTER_URI','192.168.2.xxx:11311') % ip adress of robot:port
setenv('ROS_IP','192.168.2.yyy')    % ip adress of machine with Matlab

Press buttons '3' and '4' on joypad simultaneously to activate adaptive traversability mode. 

Press button '4' to deactivate.

Press button '5' to enable exploration by JACO robotic arm. Press button '6' to disable.
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Brief description of launched nodes is covered in the following sections.

8.2 Base station nodes

Following launchers are primarly supposed to run on the base station, but they may be also 

run on the robot as well.

8.2.1 mapAndNav.launch

This launcher starts nodes from 'nifti_mapping' package which are responsible for running 

laser  scanner  and generating  useful  information  about  geometry  of robot´s  surrounding 

environment.

8.2.2 AT_with_MATLAB_JACO_base.launch

This  launcher  starts  several  nodes  which  are  used  particularly  for preparing  map 

information  which is later used by AT_MATLAB_JACO node to generate DEM and feature 

vector F.

Fig. 8.1: AT_with_MATLAB_JACO_base launcher

Node: icp_odom_transformer

Source: adaptive_traversability/src/icp_odom_transformer.cpp

This node listens to /dynamic_point_cloud topic. It receives point cloud containing points 

whose coordinates are expressed in /base_link frame, i.e. it receives points generated by laser 

scanner in coordinate system connected to the robot.  The node then transforms point cloud 

into fixed /map frame which is the global frame. Such transformed point cloud is published 

on topic /dynamic_point_cloud_filtered which is subscribed by octomap server.
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Node: octomap_server_node

Package: octomap_server [37]

It is  a node  from  octomap_server  package  which  is one of  ROS standard  packages. 

It listens  to the topic  /dynamic_point_cloud_filtered  where  dynamic  point  clouds  in global 

frame  are  published. These  are  gradually  used  for building  an octomap,  which 

is 3D occupancy grid. Octomap is published on /octomap_point_cloud_centers topic. 

Node: gen_msg_node

Source: adaptive_traversability/src/gen_msg_node3.cpp

This node´s function is to subscribe to several topics in order to obtain information about 

robot´s position, velocity, odometry, currents in tracks, state of flippers and particularly point 

clouds. It is receiving dynamic point cloud (on topic /dynamic_point_cloud) and point cloud 

generated by octomap server (on topic /octomap_point_cloud_centers).

The node wraps up all information into floor message (floor_msgs.msg), which is defined 

within  adaptive_traversability  package.  This  message  contains  all the  information  needed 

to construct feature vector F.

Node:   at_publ  

Source: adaptive_traversability/src/tf_child_publisher.cpp

This node is broadcasting 'tf' transformation between coordinate frames /base_link, which 

is connected  to the robot,  and  /stab_base_link,  which  has the same  origin,  but  it has 

compensated pitch and roll so that it is parallel to global frame.

8.3 Robot nodes

Following nodes (launchers) are intended to be run on the robot itself.

8.3.1 JACO_for_AT.launch

There  is a nested  launcher  jabbing.launch  which was implemented  by V. Šalanský.  [36] 

It starts action server for jaco_moveit, thus it enables to control arm from ROS and it launches 

jab_service.py  node  within  which  there is  an implemented  algorithm  for touching  ground 

at specified point.
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Node: service_arm_touchDEM

Source: jaco_moveit/src/service_arm_touchDEM.py

This  node utilizes jab_service.py to perform height measurement at specified DEM cell. 

It serves as a service server which uses user defined srv jaco_moveit/JabDEM.srv:

int8 row
int8 col
---
bool valid
float32 x
float32 y
float32 z

The request contains coordinates (row and column) of DEM cell which should be explored 

by the arm.  The arm performs  a measurement  after  which  the service  returns  a response 

containing coordinates  [x, y, z]  of the measured  point.  Boolean  variable  valid denotes 

if measurement was succesful (therefore values in x, y, z are valid) or unsuccesful.

The service´s name used in ROS framework is /JACO_touch_DEM.

8.3.2 AT_with_MATLAB_JACO.launch

This  launcher  starts a node  AT_MATLAB_JACO  which  is the  core  node  for adaptive 

traversability. It communicates with Matlab node and is capable to utilize JACO robotic arm 

through service_arm_touchDEM.py node (by calling /JACO_touch_DEM service).

Node: AT_MATLAB_JACO

Source: adaptive_traversability/src/AT_with_MATLAB_JACO.cpp 

Header: adaptive_traversability/include/AT_with_MATLAB_JACO.h

This node is the main node for adaptive traversability on Niftibot. It is subscribing for floor 

message  and dynamic  point  cloud from gen_msg_node.  When callback  on floor  message 

is triggered, inference process begins.

In the  beggining,  vector F is constructed.  It  contains  210 members:  F =  [100 x  height 

values for each bin in DEM; pitch; speed_r (real speed of robot); speed_c (speed demanded 

by control); 6 x currents in tracks; roll; 100 x counter]. 
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This vector is send to Matlab node on topic /model_request. Matlab node, at first, extracts 

high-level features FH from F. After that, value QAT F H , c is estimated by regression trees 

for all configurations and send back to AT_MATLAB_JACO node on topic /model_response.

If QAT F H , ' NaN '  is higher than treshold  ε = 0.25,  vector F is send to Matlab again, 

this time on topic /arm_action_request.  Matlab chooses the most viable action according to

QEX (s , a) which  has  been trained,  see chapter 7 for more  details,  and  is stored  in a file 

RL_OUTPUT.mat.  Coordinates  (row and column)  of DEM cell  which should be explored 

by arm are send back on topic /arm_action_response. After that /JACO_touchDEM service, 

see section 8.3.1, is called. Robotic arm is used to measure height of terrain at particular DEM 

cell  which  is then  added  to DEM.  This process  is repeated  in a cycle  until

QAT F H , ' NaN '  drops  below  treshold ε or there  are  no more  DEM  cells  to explore 

or operator forces its end.

Finally  the most  suitable  flipper  configuration  with  the highest QAT F H , c value 

is chosen for driving robot forwards.  The whole process is recapitulated in a flow diagram, 

see Fig. 8.2.
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Fig. 8.2: Flow diagram of AT_MATLAB_JACO node.
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8.4 Matlab node

8.4.1 init_nodes.m

This  script  connects  Matlab  to roscore  running  on the robot.  Remember,  that  IP adress 

has to be correctly specified within the code for connection to be succesfully established, see 

section  8.1  for instructions!  Then,  it starts  a rosmatlab  node  with  two pairs  subscriber-

publisher, which are covered in the following sections.

8.4.2 F_callback.m

F_subscriber  which  is started  by init_nodes.m  subscribes  to topic  /model_request. 

A message  containing  vector F published  by  AT_MATLAB_JACO  node  on the topic 

is received this way. Callback function F_callback.m is triggered at that moment.

This Matlab  function  utilizes  function  getFeaturesFromF.m  which  extracts  high-level 

features FH from  F.  Then  it uses  learned  regression  trees  to estimate QAT F H , c for 

all configurations.  (The trees  are  stored  in ./tree  directory  whereas  major  part  was 

implemented  by Petr  Zuzánek  in [2].)  In the end  Q_publisher  publishes  Q-values  on topic 

/model_response.

DEM and Q-values for all configurations are also visualized in Matlab figures.

8.4.3 F_choose_arm_action_callback.m

F_action_subscriber  which  is started  by init_nodes.m  subscribes  to topic  /arm_action_-

request. A message containing vector F published by AT_MATLAB_JACO node on the topic 

is received this way. Callback function F_choose_arm_action_callback.m is triggered at that 

moment.

It utilizes learned QEX (s ,a) function, which is stored in RL_OUTPUT.mat file, in order 

to determine what DEM cell should be explored by arm. The coordinates (row and column) 

are published on topic /arm_action_response by arm_action_publisher.
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9. Experiments

Two  experiments  were  performed  to verify  functionality  of the implemented  algorithm 

for adaptive  traversability  extended  by possibility  of tactile  exploration  by a robotic  arm. 

The experiments took place under lab conditions. The aluminium foil served as a reflective 

layer  which  is hardly  visible  for laser  scanner.  It caused  missing  information  in Digital 

Elevation  Map  (DEM)  in front  of the robot  and consequently  it disallowed  robot  to move 

forward because such action would be potentially dangerous. Robot had to use robotic arm 

which was holding a simple wooden stick to touch some points and add them to the existing 

map.  Only  then  the robot  could  make  a safe  decision  about  moving  forward  and choose 

suitable flipper configuration.

9.1 Experiment on flat terrain

First  experiment  was captured  on a video  AT_with_JACO_1.mp4  which  is accesible 

on enclosed DVD.

During  the  experiment,  robot  was  driven  on a flat  floor  in a laboratory.  The operator 

was only  giving  commands  to move  forward  or backward.  Other  actions  were  performed 

autonomously  by the robot.  There  was  an aluminium  foil  put  on the floor  which  caused 

missing data in DEM, because it was not  well  detactable by laser  scanner.  When the robot 

approached the foil, exploration by robotic arm had to be invoked.

The whole movement of the robot may be viewed as divided into few sequences. At first, 

the robot  explores  some DEM cells  by the JACO arm until  movement  forward  is denoted 

safe, i.e. QAT -value of NaN configuration QAT F H , ' NaN '  drops under treshold  ε = 0.25. 

Robot  can  move  forward  a bit  and  it gets  again  into  a situation  that  there  is an unknown 

terrain  in front. QAT F H , ' NaN '  becomes  again  higher  than ε and  hence,  exploration 

by the arm is invoked again and new points are added to DEM.

After  several  tactile  measurements,  the robot  is  able  to get  safely over  aluminium foil. 

Without  usage  of the arm for tactile  exploration,  such  obsatcles  like  the foil  could  not be 

traversed  because  of incomplete  terrain  data  or it would  be  at least  hazardous  if operator 

forced the robot to continue to unknown terrain anyway.

55



Finally,  the operator  commanded robot  to drive backward to return  to the same position 

as in the beggining  of the experiment.  As the points  which  were  obtained  by touching 

the ground by the arm were stored in separated point cloud, they persisted in memory. When 

the same aluminium foil was seen again by the robot, the touched points were already present 

in DEM. When the robot was overcoming the foil for the second time, no further exploration 

by the arm was therefore not needed.

9.2 Experiment on a downward step

Second  experiment  was captured  on a video AT_with_JACO_2.mp4 which  is accesible 

on enclosed DVD.

In the beginning of this experiment robot found itself on an elevated platform and operator 

wanted to drive it downwards.  However,  an aluminium foil  was located under the step and 

it caused that robot had not enough information about the terrain under the platfrom. Hence, 

tactile  exploration  by arm had to  be used.  When exploration  was  finished,  robot  correctly 

chose  U-shape  of the  flippers  which  is  the most  suitable  configuration  for overcoming 

a descending step. 

56



10.Discussion

Performed  experiments  suggest  that  our  approach  to adaptive  traversability,  which 

is exploiting information about pose of the robot and Digital  Elevation Map (DEM) and is 

using  decision  trees  to predict  Q-values,  is promising.  The robot  is able  to adjust  flippers 

in order to overcome obstacles in front of itself.  The main contribution of this  work is then 

extension  of the process  which  is used  to construct  DEM.  Formerly  only  data  from laser 

scanner  were used.  It showed up that  laser  alone may be insufficient  for certain  scenarios, 

particularly  it is unable  to detect  reflective  surfaces  or it performs  poorly  in the presence 

of smoke. As the both mentioned situations may be expected during USAR missions, it has 

been decided to equip the robot by JACO robotic arm.

The idea that the arm may be utilized for tactile exploration of terrain in front of the robot 

was proved  to be practicable.  The experiments  with  an aluminium foil  have  indicated  that 

the robot is really able to update DEM in this way. This may help make safer decisions in case 

of incomplete data about terrain in front of the robot.

However,  some issues were encountered during tests which may be subject of the future 

work. One of them is that robot sometimes (in slightly less than 10% cases, see section 6.3.1) 

chooses incorrect flipper configuration. It is not bad if we take into account that decisions are 

made  with  frequency  cca. 2 Hz  and  an incorrect  decision  is often  immediately  followed 

by a correct one, so robot´s safety is not actually endangered. It just lead to a situation when 

robot starts switching flippers to the incorrect configuration and it is immediately followed 

by switching  back  to the optimal  configuration  before  it even  finishes  switching 

to the incorrect  one.  This  behaviour  may be also seen on the video  AT_with_JACO_1.mp4 

on enclosed  DVD.  Addition  of some  heuristic  which  would  prevent  this  behaviour  may 

contribute to more fluent movement.

Secondly,  movement  of the arm  is slow,  therefore  it takes  some  time  to measure  even 

one value  in DEM.  This  setting  is chosen  deliberately  for  now  in order to prevent  rash 

movement  which  could  lead  to bumping  with arm  to surrounding  objects.  One  also  has 

to be cautious  during tactile measurement by arm. It is the principle of this subtask, that one 

does not know in advance actual height of the terrain which has to be explored. Thus, at first, 
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arm points  the stick  at a greater  height  and  it slowly  moving  down  towards  ground  until 

a touch is recognized.

Recognition  of the touch  is also  a bit  problematic.  Contact  with the ground  has to 

be identified  indirectly  from  currents  in arm´s  joints when  the arm  starts  to push  against 

the ground. This contact recognition method burdens motors in joints and some joints may 

get overheated after some time. The held stick may also “slide” on the surface so that contact 

is not  recognized.  Usage  of some  kind  of tactile  sensor  would  be more  effective 

and comfortable.

Thirdly,  as the arm has been  mounted  on the robot,  robot´s center  of gravity  has  moved 

upward. Additionally, as the arm moves, the center of gravity moves as well. It has influence 

on stability of the robot and it may not be neglected in some critical situations. It is double-

edged, because arm may do both—cause tipping over or prevent tipping over—it depends 

only on the way how it is controlled. Intelligent balancing may be subject of the future work.

Some  drawbacks  were  discussed  in previous  paragraphs.  However,  we argue  that 

researched  potential  of arm´s  contribution  may compensate  second  and  third  mentioned 

drawbacks as the arm allows the robot to explore more places than before. Tactile exploration 

by arm may be very useful, particularly if the hand was enhanced with direct tactile sensors 

which would make recognition of the touch much easier and more reliable.

In parallel with this project, Vojtěch Šalanský was implementing 3D terrain reconstruction 

algorithm  in his  diploma  thesis.  [36] He models  conditional  probability  of height  value 

in each DEM cell with respect to other cells whereas he uses method of maximum likelihood 

to describe how value in one cell is influenced by values from other cells.  DEM is divided 

into two subsets—known and unkwnown cells. Two properties are used to describe unknown 

cells (which are candidates for tactile measurement by the arm)—accuracy (particular cell has 

high accuracy if it depends on already known cells) and  usefulness (particluar cell has high 

usefulness if it may potentially bring valuable information on other unknown cells, i.e. values 

in other  unknown cells  highly  depend  on this  one).  The algorithm chooses  unknown  cell 

to be measured  by the arm,  which  has  high  usefulness  and  low  accuracy,  so it  helps 

to estimate values in all unknown cells (including itself) more accurately.
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Model implemented in this thesis, which is used to choose cell which should be measured 

by the arm,  was  trained  using  reinforcement  learning.  It chooses  such  cell  which  may 

potentially lower QAT F H , ' NaN '  which is used as safety measure. (The lower this value 

is, DEM is better known.) The observed learned strategy is that cells for tactile measurement 

are  chosen  in such  order  to complete  information  in vector  of computed  high-level 

features FH.  In contrast  with  the algorithm  implemented  by V. Šalanský,  it does  not aim 

to estimate  values  in all  DEM  cells  and to model  the whole  DEM.  It just  aims  to collect 

enough information to make safe dicision if the robot may or may not move forward and what 

flipper configuration should be used.
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11.Conclusion

This  thesis  was  focused  on solving  adaptive  traversability  (AT)  task  for a tracked 

unmanned  ground  vehicle  (Niftibot).  The main  goal  was  to propose a semi-autonomous 

system to control  auxiliary articulated tracks  of the robot,  called flippers,  so that  the robot 

would be able to move fluently across terrain and to safely overcome obstacles on the way 

while  forward  speed  and  heading  of the robot  is controlled  by  its  operator.  The main 

contribution  of such  system  is lowering  cognitive  load  of the  operator  who  is no longer 

required to adjust flippers manually.

The author  took up  previous  progress  on AT  system  which  was  based  on Q-learning 

and decision  trees.  [2] Several  flipper  modes  (configurations)  were  designed  for various 

situations.  The trees  then  estimated  Q-value QAT F , c . for  all  configurations c ∈ C

in particular  state  described  by feature  vector F,  which  included  Digital  Elevation  Map 

(DEM)  of adjacent  terrain. The mode  with  the highest  Q-value  was  ultimately  chosen 

for control.  However,  this  system had difficulties  when it had  to deal  with situations  with 

incomplete  terrain  data.  (It leaned  only  on laser  scanner  which  barely  detects  reflective 

surfaces  or performs badly in smoke leaving blank spaces in a model of environment.)

Therefore a new mode, denoted as NaN mode, was introduced to the system. This mode 

is invoked whenever there is too much missing information in DEM. All decision trees were 

re-learned  on manually collected and annotated  datasets  in consideration  of this  extension. 

The learning  process  also  included  introduction  of high-level  features FH extracted  from 

the original  feature  vector F in an attempt  to lower  susceptibility  to overfitting (see 

Chapter 6.2.1 and Appendix).

As a result  of the learning  process,  new  decision  trees  estimating  Q-values  have  been 

obtained  and  it also  included  a tree  which  estimates  Q-value  of NaN mode

QAT F H , ' NaN '  . This  value  serves  as a safety measure  determining  whether  the robot 

may move on or not. The value is highest when there is no information in DEM at all. On the 

contrary, it is  negative  when  information  in DEM is complete.  When QAT F H , ' NaN ' 

is higher  than a specified treshold  ε = 0.25,  movement  forward is forbidden,  because there 

is little information in DEM and safety of robot cannot be guaranteed.

Kinova JACO robotic arm  has been  mounted on the top of the robot to deal with such 

situations.  The robot  is now  able  to touch  terrain  in front  of itself  and use  terrain  height 
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measured  this  way  to update  DEM.  Concretely,  an agent,  which  has  been  learned  using 

reinforcement  learning,  selects  an unknown DEM cell  which may potentially bring useful 

information to the model. The arm touches terrain at coordinates of selected DEM cell, height 

value  is retrieved  and filled  in DEM. QAT F H , ' NaN '  value  is estimated  again  after 

the update and if it is still higher than ε, a new measurement has to be made. This means that 

arm is used to explore unknown terrain in front of the robot until there is enough information 

in DEM. Only after that the robot is allowed to choose optimal flipper configuration c* with 

the highest estimated QAT F H , c and move forward.

Functionality  of the implemented  system  was tested  under  lab  conditions,  see video-

recordings on enclosed DVD. Artificial  obstacles  were used to simulate  possible  situations 

which may happen in real environment. It includes using aluminium foil which has a property 

that it reflects majority of laser rays, thus it is hardly detectable by laser scanner. The system 

performed quite well—the robot was able to touch terrain in front of itself.  It made several 

measurements this way and finally chose viable flipper configuration to move forward across 

the aluminium foil.

Proposition of the future work includes testing of the implemented algorithm in a realistic 

environment. This process may also include collection of more training samples for learning 

of decision  trees  in order  to improve  the trained  model.  Better  behaviour  of the  model 

is expected after that.
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Appendix

A.1 Extraction of high-level features FH from vector F

Vector F was introduced in chapter 6.1.1. It contains 210 members: 

F = [100 x height values for each bin in DEM; pitch; speed_r (real speed of robot); 

speed_c (speed demanded by control); 6 x currents in tracks; roll; 100 x counter].

As it was  mentioned  in chapter  6.2.1,  it was  decided  to use  high-level  features  as input 

for decision  trees.  Five  different  models,  which  differ  in the way  how  high-level  feature 

vector  FH is constructed  from  F,  were  made.  This  section  provides  information  about 

construction of FH, namely it presents source codes of Matlab functions getFeaturesFromF.m, 

which are responsible for this process.

There  are  five  files  model_X.m  which  contain  Matlab  implementation  of function 

getFeaturesFromF(F)  on enclosed DVD.  These  files  differ,  each  of them  creates  own 

collection  of  high-level  features  which  are  extracted  from  vector  F.  Source  code 

of getFeaturesFromF(F)  for  Model 4  (model_4.m  on DVD)  is presented  as an example 

in the following section.
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A.1.1 Model 4

  function [features] = getFeaturesFromF(F)
      DEM = F2DEM(F);
    
      PITCH = F(101);
      ROLL = abs(F(110));
    
      LIN_AVGS = zeros(8,1); index = 0;
      for line = 9:16
          index = index + 1;
          DEM_line = DEM(line,:); 
          if (sum(isnan(DEM_line)) > 3)
              LIN_AVGS(index) = NaN;
          else
              LIN_AVGS(index) = nanmean(DEM_line);
          end
      end
      LIN_AVGS_STD = nanstd(LIN_AVGS);  
      NAN_INFO = isnan(LIN_AVGS(3:6));
    
      lin_averages = LIN_AVGS(isfinite(LIN_AVGS(3:end)));
      gradient = diff(lin_averages);
      GRAD_MAX = max(gradient);
      if(isempty(GRAD_MAX))
          GRAD_MAX = NaN;
          GRAD_MAX_nan = 1;
      else
          GRAD_MAX_nan = 0;
      end
      GRAD_MIN = min(gradient);
      if(isempty(GRAD_MIN))
          GRAD_MIN = nan;
          GRAD_MIN_nan = 1;
      else
          GRAD_MIN_nan = 0;
      end
      GRAD_MEAN = mean(gradient);
 
      features = [PITCH; 
          ROLL;
          LIN_AVGS;
          LIN_AVGS_STD;
          NAN_INFO;
          GRAD_MAX;
          GRAD_MAX_nan;
          GRAD_MIN;
          GRAD_MIN_nan;
          GRAD_MEAN;
          ];
  end
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