
Safe Obstacle Traversal with Incomplete Data

Bezpečné přejíždění překážek s neúplnými daty

DIPLOMA THESIS

Author: Bc. Jakub Mareš
Supervisor: Ing. Karel Zimmermann, Ph.D.

Prague, May 2015

CZECH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Electrical Engineering

Department of Cybernetics

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc. Jakub M a r e š

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Diploma Thesis: Safe Obstacle Traversal with Incomplete Data

Guidelines:
The robot rescuer http://cmp.felk.cvut.cz/demos/robotics/mobile-robots is developed in the Center
for Machine Perception (CMP) at the Department of Cybernetics within the European project TRADR
developed. One of the most important functionalities of the robot rescuer is the autonomous control
of auxiliary articulated tracks - the so-called flipper. Currently used method for autonomous flipper
control requires the full knowledge of all the sensory data (laser scan, pitch, roll, torque in engines).
This condition, however, is in real life situations often violated (e.g. the terrain in front of the robot is
not visible). Design and practically verify the extension of the existing algorithms for the safe functioning
with incomplete data.

1. Read, re-learn and re-implement (if necessary) the existing autonomous flipper control method [1]
 based on the reinforcement learning [3] and decision trees [2].
2. Propose a metric determining safety of available actions on partially visible terrain.
3. Extend the existing algorithm [1] by active perception of not visible terrain. Exploit the existing
 algorithm for 3D terrain reconstruction by using robotic arm proposed by V.Šalanský.
4. Compare your active perception strategy with the 3D reconstruction strategy and show how these
 strategies differ.

Bibliography/Sources:
[1] K. Zimmermann, P. Zuzánek, M. Reinstein, and V. Hlaváč: „Adaptive traversability of unknown
 complex terrain with obstacles for mobile robots,” in IEEE International Conference on Robotics
 and Automation, pp. 5177–5182, 2014.
[2] Trevor Hastie, Robert Tibshirani and Jerome Friedman: The Elements of Statistical Learning: Data
 Mining, Inference, and Prediction, Springer, 2009
[3] Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction, MIT Press, 2012.

Diploma Thesis Supervisor: Ing. Karel Zimmermann, Ph.D.

Valid until: the end of the summer semester of academic year 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 23, 2015

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ DIPLOMOVÉ PRÁCE

Student: Bc. Jakub M a r e š

Studijní program: Kybernetika a robotika (magisterský)

Obor: Robotika

Název tématu: Bezpečné přejíždění překážek s neúplnými daty

Pokyny pro vypracování:
V Centru strojového vnímání (CMP) na katedře kybernetiky je v rámci Evropského projektu TRADR
vyvíjen robot záchranář http://cmp.felk.cvut.cz/demos/robotics/mobile-robots. Jednou z důležitých
funkcionalit je autonomní řízení pomocných artikulovaných pásů – tzv. flipperů. Podmínkou dobrého
fungování aktuálně navrženého algoritmu pro autonomní řízení flipperů je úplná znalost všech
senzorických dat (laserových scanů, náklonů robota, proudů ve flipperech). Tato podmínka je však
v reálných situacích často porušena (např. terén před robotem není viditelný). Navrhněte a prakticky
ověřte rozšíření stávajícího algoritmu pro bezpečné fungování i při neúplných datech.

1. Nastudujte stávající algoritmus autonomního řízení flipperů [1] založený na posilovaném učení [3]
 a rozhodovacích stromech [2].
2. Navrhněte algoritmus rozhodující o bezpečnosti/nebezpečnosti přejetí jen částečně viditelné
 překážky.
3. Rozšiřte stávající algoritmus [1] o možnost aktivního průzkumu terénu pomocí robotické ruky.
 Využijte stávající algoritmus pro 3D rekonstrukci terénu před robotem naimplementovaný
 V. Šalanským a ukažte, jak se Vaše strategie kontaktního průzkumu terénu pro autonomní řízení
 flipperů liší od strategie pro 3D rekonstrukci terénu.
4. Navržený algoritmus experimentálně ověřte v hasičském tréninkovém centru pro Urban Search &
 Rescue mise (přístup zajistí školitel během review meetingu projektu TRADR).

Seznam odborné literatury:
[1] K. Zimmermann, P. Zuzánek, M. Reinstein, and V. Hlaváč: „Adaptive traversability of unknown
 complex terrain with obstacles for mobile robots,” in IEEE International Conference on Robotics
 and Automation, pp. 5177–5182, 2014.
[2] Trevor Hastie, Robert Tibshirani and Jerome Friedman: The Elements of Statistical Learning: Data
 Mining, Inference, and Prediction, Springer, 2009
[3] Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction, MIT Press,2012.

Vedoucí diplomové práce: Ing. Karel Zimmermann, Ph.D.

Platnost zadání: do konce letního semestru 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 23. 1. 2015

http://cmp.felk.cvut.cz/demos/robotics/mobile-robots

Abstract

This thesis deals with terrain traversability for an unmanned ground vehicle (UGV) based

on Niftibot platform. This mobile robot, which is dedicated for Urban Search and Rescue

(USAR) missions, is equipped with auxiliary articulated tracks, so-called flippers. Flippers

enhance robot´s ability to traverse complicated terrain, however they bring more degrees

of freedom to control. Semi-autonomous control system which selects optimal flippers´

configuration with respect to traversed terrain is being developed at FEE, CTU.

A system based on reinforcement learning and decision trees had been previously

implemented. This system, however, required complete data from sensors. As model

of environment was built using solely data from laser scanner, this condition was violated

in some scenarios, e.g. in case of reflective surfaces. Therefore a partial reimplementation and

an extension of the former system is introduced in this work. A new mode which utilizes

JACO robotic arm for tactile exploration of terrain has been incorporated to the system. This

helps to explore terrain invisible to laser scanner. The experiments with aluminium foil were

performed to demonstrate that the arm helps the robot to complete information in robot´s map

and furtherly use it to safely traverse terrain.

Keywords

Adaptive traversability, mobile robotics, tracked vehicle, flippers, robotic arm, tactile

exploration, digital elevation map, Robot Operating System.

Abstrakt

Tato práce se zabývá problematikou bezpečného přejíždění terénu pro mobilního

pozemního robota, který je vyvíjen pro nasazení při záchraných operacích. Za tímto účelem

je robot vybaven artikulovanými postranními pásy, flippery, které zlepšují schopnost robota

pohybovat se terénem, ale přinášejí s sebou také více stupňů volnosti, které je potřeba řídit.

Proto je na Fel, Čvut, vyvíjen semi-autonomní řídící systém, který volí optimální konfiguraci

postranních pásů s ohledem na právě přejížděný terén.

Již dříve byl vytvořen řídící systém založený na posilovaném učení a rozhodovacích

stromech. Avšak tento systém vyžadoval úplné informace ze senzorů. Jelikož mapa prostředí

byla vytvářena výhradně z dat poskytovaných laserovým dálkoměrem, byla tato podmínka

mnohdy nesplněna, např. v případě lesklých povrchů. Proto byla v rámci této práce provedena

částečná reimplementace a rozšíření původního systému. Nový mód, který využívá

robotickou paži JACO pro dotykový průzkum terénu, byl přidán do systému. Paže pomáhá

prozkoumávat terén neviditelný pro laserový scanner. Experimenty s hliníkovou folií byly

provedeny, aby demonstrovaly, že paže může skutečně pomoci robotu doplňovat nezbytné

informace do mapy a ty následně využívat pro bezpečné přejíždění terénu.

Klíčová slova

Adaptivní přejíždění terénu, mobilní robotika, pásové vozidlo, flippery, robotická paže,

dotykový průzkum, digitální výšková mapa, Robot Operating System

Acknowledgement

I would like to thank my family for their material and moral support for the whole time

during my studies.

iii

Prohlášení autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré

použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů

při přípravě vysokoškolských závěrečných prací.

V Praze dne

 Podpis autora práce

iv

Contents

1. Introduction...1
2. TRADR project...2

2.1 TRADR Consortium...2
2.2 TRADR mission...3
2.3 TRADR Joint Exercises...4
2.4 Niftibot...4

2.4.1 Platform description..4
2.4.2 Sensor suite...6
2.4.3 Kinova JACO Robotic Manipulator...6

3. Robot operating system...7
3.1 Basic Concepts...7
3.2 Framework..9

3.2.1 Package...9
3.2.2 Node..9
3.2.3 Roscore...9
3.2.4 Topics and messages...10
3.2.5 Services...11

4. Reinforcement learning...12
4.1 Markov Decision Processes..12
4.2 Q-function..14
4.3 Reinforcement Learning process..16

5. Terrain traversability—State of Art...18
5.1 Chassis construction...18
5.2 Artificial intelligence for autonomous traversal...21

5.2.1 Planetary rovers..21
5.2.2 Search and rescue UGVs..23
5.2.3 Planning approach to traversability..23
5.2.4 Reactive approach to traversability..25

6. Adaptive traversability..30
6.1 Existing AT algorithm...30

6.1.1 Utilized features—Feature vector F..30
6.1.2 Flipper configurations...32
6.1.3 Reinforcement learning framework for AT...34
6.1.4 Decision trees..35

6.2 Enhancement of AT algorithm..36
6.2.1 High-level features FH...36

v

6.2.2 Active tactile exploration of terrain by robotic arm..37
6.2.3 Introduction of NaN Mode...37

6.3 Testing of AT algorithm..39
6.3.1 Offline testing on recorded datasets...39
6.3.2 Online testing of AT algorithm on Niftibot..41

7. Tactile exploration of DEM...42
7.1 Reinforcement learning for tactile exploration..44

7.1.1 RL Framework..44
7.1.2 Learning process...45

7.2 Testing of strategy learned by Q-learning..46
8. Documentation..48

8.1 Launching instructions...48
8.2 Base station nodes..49

8.2.1 mapAndNav.launch..49
8.2.2 AT_with_MATLAB_JACO_base.launch...49

8.3 Robot nodes..50
8.3.1 JACO_for_AT.launch...50
8.3.2 AT_with_MATLAB_JACO.launch..51

8.4 Matlab node..54
8.4.1 init_nodes.m...54
8.4.2 F_callback.m...54
8.4.3 F_choose_arm_action_callback.m..54

9. Experiments..55
9.1 Experiment on flat terrain...55
9.2 Experiment on a downward step..56

10. Discussion...57
11. Conclusion...60
 References..62
 Appendix..65

A.1 Extraction of high-level features FH from vector F..65
A.1.1 Model 4..66

vi

List of annexes

1. AT_1.mp4
2. AT_with_JACO_1.mp4
3. AT_with_JACO_2.mp4
4. model_1.m
5. model_2.m
6. model_3.m
7. model_4.m
8. model_5.m

vii

List of abbreviations

AI – artificial intelligence

AT – adaptive traversability

CIIRC – Czech Institute of Informatics, Robotics and Cybernetics

CTU – Czech Technical University in Prague

DEM – Digital elevation map

DoF – degrees of freedom

IMU – inertial measurement unit

FEE – Faculty of Electrical Engineering

MEMS – micro-electro-mechanical system

RL – reinforcement learning

ROS – Robot Operating System

TRADR – Teaming for Robot-Assisted Disaster Response

UAV – unmanned aerial vehicle

UGV – unmanned ground vehicle

USAR – urban search and rescue

viii

1. Introduction

Tracked unmanned ground vehicle (UGV) for urban search and rescue (USAR) missions

is being developed at Faculty of Electrical Engineering (FEE) and Czech Institute

of Informatics, Robotics and Cybernetics (CIIRC); both under Czech Technical University

in Prague, which is participating in European project TRADR. This robotic tracked vehicle

is expected to be able to move in an unstructured, complicated terrain such as disaster sites

and explore potentially dangerous areas, thus helping rescue workers. For this purpose, it is

equipped by auxiliary tracks called flippers which are driven by independent servomotors.

Flippers significantly enhance robot´s capabilities to overcome wide variety of obstacles

as their attitude and compliance may be adjusted according to traversed terrain.

Although flippers may be controlled manually by a robot´s operator, this additional task,

which requires operator´s attention, makes his work more difficult. It is more convenient that

the operator only controls robot´s heading and forward speed and flippers are being

autonomously adapted to the terrain´s shape so that the robot moves fluently across

the terrain. We call such behaviour adaptive traversability (AT). This proposed semi-

autonomous control system reduces cognitive load onto operator who may focus on higher

level tasks instead.

One of crucial conditions for adaptive traversability algorithms, which had been developed

at FEE so far [1] [2], to work properly is having a reliable model of surrounding environment.

Laser range finder is able to provide necessary information for most of the time. However,

there are situations, that may happen, in which laser scanner fails to detect objects in front

of the robot, typically in case of reflective surfaces such as water or in the presence of smoke.

Such situations are not uncommon in USAR missions, so it is better to be prepared on them.

Therefore the robot has been equiped by a robotic manipulator and possible utilization

of this manipulator is investigated within this thesis. The basic idea is that whenever the robot

has incomplete data about the terrain in front of itself, for example when crossing a stream,

the robot performs tactile exploration of the terrain using the robotic arm. Its model is updated

by these measurements and consequently the robot may decide whether it is safe to continue

in terrain traversal and what flipper configuration to use.

1

2. TRADR project

This thesis deals with driving a tracked mobile vehicle with articulated flippers and its goal

is to enhance robot´s ability to overcome rugged terrain even with incomplete data about

surrounding environment. It is a subproblem which has been encountered during

a development of unmanned ground vehicle for TRADR project in which Czech Technical

University is one of affiliates. Therefore this chapter is devoted to the TRADR project.

Fig. 2.1: TRADR logo. [3]

TRADR is an acronym which stands for Long-Term Human-Robot Teaming for Robot-

Assisted Disaster Response. It is an integrated research project funded by the EU

FP7 Programme, ICT: Cognitive systems, interaction, robotics (Project Nr. 60963). Being

a direct successor of NIFTi project, it is based on previous experience and carries on

with the research. [3] Its main aim is to develop science and technology which would allow to

make human-robot teams and to interact with each other in order to achieve shared goals.

Both, NIFTi and TRADR, are primarly focused on tasks in Urban Search and Rescue (USAR)

missions in which people and robots work together to explore a disaster area, assess

the situation, locate victims or prevent further damage.

2.1 TRADR Consortium

There are 12 partners from 6 countries collaborating on the project including 5 universities,

3 research institues, 1 industry partner and last but not least 3 end-user organisations—

2

firebrigades from Germany, Italy and the Netherlands. All of participating institutions

are listed in the table below, see Tab. 2.1.

Tab. 2.1: Institutions participating in TRADR project. [4]

German Research Center for Artificial Intelligence

Delft University of Technology

Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS

Royal Institute of Technology (KTH), Stockholm, Sweden

Swiss Federal Institute of Technology

Czech Technical University in Prague

La Sapienza University of Rome

Ascending Technologies GmbH

Stadt Dortmund

Corpo Nationale dei Vigili del Fuoco (CNVVF)

Openbaar Lichaam Gezamenlijke Brandweer

Dutch Organisation for Applied Scientific Research TNO

2.2 TRADR mission

The ultimate goal of the TRADR project is to build a team of robots which would be able

to cooperate together with people, mainly firefighters and rescue workers, in a first response

disaster scenarios, for example in case of industrial accidents, earthquakes, fires, etc.

The greatest asset of using robots in such scenarios is that they may enter and explore areas

which are potentially dangerous for human workers. Thus they lessen jeopardy of workers

and prevent bad situation getting even more complicated.

Two types of robots are developed within the project—unmanned ground vehicles (UGV)

and unmanned areial vehicles (UAV). While UAV may execute quick exploration of large area

and provide overview from higher perspective, UGV is able to overcome piles of rubble

and get to hardly accesible places looking for victims and gathering physical samples.

Knowledge about disaster area is then gradually built in direct cooperation with human

rescuers which results in better understanding of the situation and consequently taking viable

decisions in critical moments. This should improve overall quality of the sortie and increase

chances to succesfully secure the area and save human lives. [3]

3

2.3 TRADR Joint Exercises

As TRADR project is intended to develop robots which should be particularly used

by rescue workers, joint exercise is held every year (already since the beginning of previous

NIFTi project). These meetings of developers and USAR organizations are fundamental,

because the both groups come into close contact and may exchange valuable experience.

Rescuers may team up with robots to perform on training scenarios which enable evaluation

of current progress in research and also help with identification of shortcomings. Above all,

USAR workers, i.e. end-users of the whole system, have an opportunity to contribute with

valuable insights in order to help developers to improve the system and make it actually

useful in real-life situations. Over the course of the project, testing scenarios are intended

to grow increasingly challenging with more complex circumstances, taking into account

progress of the project.

Last such meeting was held from 23rd of September to 2nd of October at the Tremora

hospital, ex American hospital of Calambrone, near Pisa, Italy, in cooperation with the

TRADR partners and the firefighters from the Firebrigade of Pisa. [5]

2.4 Niftibot

2.4.1 Platform description

Unmanned ground vehicle (UGV) used in TRADR project is based on Niftibot platform

produced by BlueBotics company [6], see Fig. 2.2. It is a tracked mobile robot with one pair

of main tracks, each equipped with own motor to provide traction. The tracks

are mechanically linked to the body via brackets and a differential. When one track is rotated,

the differential induce an inverse rotation in the other track in order to maximize contact with

the ground. Four additional articulated tracks, flippers,are connected to the main tracks.

The flippers are driven by their own servomotors which may be controlled indivudually

to change flipper´s attitude and compliance (by controlling maximal allowed torque) and thus

improving robot´s traversability capabilities to overcome rugged terrain. [7]

4

Fig. 2.2: UGV used in TRADR project (Niftibot platform) with mounted

Kinova JACO robotic arm.

The robot´s body contains main electronic board of the platform with an embedded PC,

a power PCB used for power distribution and a 3D PCB which manages rotation of the 3D

sensor. Ubuntu Linux is installed as an operating system on the internal computer with Robot

Operating System (ROS) running on top of Linux. USB and DVI connectors may be used

to connect I/O peripherals to the robot´s computer and work in OS, for example installing

new drivers, updating obsolete ones, uploading new programmes and scripts, etc. [7]

Next, the body contains a slot for a LiPol battery with two connectors, which means that

two batteries may be connected at the same time. Although only one battery fit in the slot, this

is particularly convenient, when it is needed to change depleted battery. It allows to hot-swap

batteries while the robot is still running. Furthermore, there is also a connector for an external

power supply in the back of the body. An emergency button is located on the top of the body

dissconnecting power sources in case of safety issues. There are also LED diodes which may

be used either as indicators or as a light source thanks to their high luminous power. [7]

Top of the body is manufactured in the way that additional features may be mounted

on the robot. Kinova JACO Arm, which is utilized in this thesis, is one example of such

feature, but also another sensors (like RGBD camera, infrared camera, etc.) or actuators (like

different manipulator) may be installed as well.

5

2.4.2 Sensor suite

Ladybug 3 omnicamera

Ladybug 3 is a high resolution spherical digital video camera system. It consists of six

MP cameras which enable to cover even more than 80% of 360° sphere together. They all

are fit in a weather-resistant case allowing usage in adverse conditions. [8]

Camera provides panoramic image which is accesible by ROS nodes on ROS topic

/viz/pano/image.

Sick LMS-151 laser scanner

LMS-151 is a laser measurement system. It is rotating 2D laser range finder with rotation

from -90° to 90° from origin position. It is ultimately providing 3-dimensional point cloud

constructed from all plane scans. The point cloud is accesible by ROS nodes on ROS topic

/dynamic_point_cloud.

XSens Mti-G IMU

It is a MEMS based orientation sensor with integrated GPS. It provides odometry data like

position, heading and velocity computed in real-time. The data are accesible by ROS nodes

on ROS topic /imu/data.

2.4.3 Kinova JACO Robotic Manipulator

JACO robotic arm is one of the additional hardware mounted on UGV to enhance

its capabilities. The possibility of utilizing the arm for tactile exploration of environment

is a challenge currently being studied and solved at FEE and CIIRC (CTU). The other usage

for an arm may be to pick up samples or manipulating with an environment.

It is a lightweight 6-DoF robotic arm with hand-like gripper produced by Kinova Robotics

[9]. Thanks to carbon fibre structure it weights only 5.3 kg and therefore it can be carried

by the robot with ease and it is also durable and able to endure adverse conditions during

USAR missions.

In addition, Kinova offers Windows and Ubuntu compatible API for easier programming

of the arm in C++ (or C#) and allows programmers to configure advanced parameters and

integrate the arm to their own systems. Kinova has produced even a ROS driver for the arm,

which is one of the reasons, why this manipulator has been chosen for our UGV. [9]

6

3. Robot operating system

Robot Operating system (ROS) is utilized throughout TRADR project, because it provides

well-designed framework for writing modules of robotic software that is convenient for such

large-scale project.

ROS is an open-source platform particularly employed by robot developers for writing robot

software. Despite its name it is not literally an operating system, but it runs on top of existing

one whereas Ubuntu Linux (currently its 14.04 LTS release) is officially supported. In other

words, it is a robotics middleware like Player Project or OpenRDK.

"It provides services that one would expect from an operating system including hardware

abstraction, low-level device control, implementation of commonly used functionalities

and message passing between processes. Furthermore, it provides a collection of tools,

libraries and conventions that aim to simplify the task of creating complex and robust

behavior across a wide variety of robotic platforms." [10]

Fig. 3.1: Official logo of ROS. [11]

3.1 Basic Concepts

ROS framework provides mechanisms to easily implement considerable number

of processes which are supposed to run in parallel and communicate with each other

at the same time. The processes are not even requiered to run on a single machine, which may

come in handy particularly in robotics, because robots may be composed of multiple modules,

each having own computer controlling sensors and/or actuators. This distributed approach

to control may help to create autonomous AI for a robot or even a group of robots coopearting

on a common goal. The system may be furtherly extended by interface for a human operator,

who may then command robot(s) from his workstation. [10]

Another key idea behind ROS is to ease sharing advancements and codes in the community

of robotics developers; does not matter if they are scientists researching in the field, industry

7

professionals or just hobbyist. Firstly, ROS framework defines uniform interface which

is practically becoming a standard for robot software interoperability and it is widely known

among the developers. [11] This uniformity and unicity of ROS allows seamless collaboration

of several contributors on one project which is also the case of TRADR and it is exactly

the reason why ROS has been chosen for such extensive project.

Secondly, the whole ROS is open project and anyone may contribute to the general

progress. Thanks to that, there are many ROS packages from many authors publicly available

on the ROS website for all users. [12] One may browse either ROS standard packages for

stable, debugged implementations of algorithms used in robotics for all common tasks (such

as planning, mapping, navigation, building world models, etc.) or other ROS packages with

experimental cutting-edge algorithms. One way or another, developer does not have to spend

much time reimplementing already well-mastered algorithms on his own and he may rather

focus on another tasks which have not been satisfactorily solved yet. [10]

Community using ROS is growing in numbers which means, among others, that anyone

may get some support in case of problems from other users of the system, either on official

forum or other Q&A sites like Stack Overflow. There is plenty of information on ROS

provided by ROS developers on official web-site [11] including tutorials, extensive

documentation and reference manual describing usage of ROS functionalities in detail.

Another huge advantage of ROS is that it enables easier testing of new algorithms and their

different implementations. The authors of ROS are aware that testing in robotics may be time-

consuming and error-prone. In addition, practicle experience suggest that robots may

not be available for testing for considerable amount of time due to problems with hardware

or other parts of software or the testing may be simply dangerous and expensive. This is

where well-designed ROS system enables to separete low-level control of robot and high-

level processing. Developer then has two possibilities of testing high-level reasoning. Firstly,

he may use simulator which substitues low-level part of the system. Secondly, he may use

rosbag utility. This option facilitates recording robot´s sensor data while driving the robot.

Later the same data may be replayed again infinite times and used to compare performance

of different approaches to processing them. [10]

Finally, ROS offers some built-in tools for visualization that may help in development

and debugging of a project, for example rqt_graph, rqt_plot, image_view or Rviz.

8

3.2 Framework

3.2.1 Package

Package is a fundamental term in ROS representing a base unit of ROS software

organization. In practise, it is a single directory which may contain almost anything, most

likely executables, scripts, libraries, tools, etc., but every time it includes a manifest file

(named package.xml in catkin build system or manifest.xml in rosbuild) and CmakeLists.txt.

Manifest is an xml structured file defining basic properties of package—name, version

number, atuhors, maintainers and dependencies on other packages—and it is particularly this

file is what make difference between ROS package and any generic directory. [10]

Usually one project comprises of many packages. Each of them serve as logical unit,

one piece of puzzle, and has its own purpose. One may be used for mapping while other for

planning and the third one for driving the robot. And all of them may depend on each other

in some ways, thus making a complex system altogether. The division into packages

significantly contributes to easier orientation in vast projects and in addition well-maintained

package may be reused in different projects on different robotic platforms.

3.2.2 Node

Node is an elementary part of every ROS project. It denotes launched instance

of practically any executable within any ROS package; either compiled from C++ source or

being a Python script (or lisp, java, Matlab,...). It may be launched anytime after Roscore has

been initiated in order to perform process it is supposed to do. The most significant difference

between ROS node and any other executable file is that ROS node is able to connect to ROS

master and consequently communicate with other nodes. [11]

The advantage of ROS is that nodes may be written in different languages, e.g. in C++,

Python, Java, Lisp, Octave (Matlab), yet they are able to mutually communicate thanks

to ROS client libraries (roscpp, rospy, rosjava, roslisp, rosmatlab). Therefore the whole

project does not have to be written in an only one language.

3.2.3 Roscore

Roscore is initiated by typing roscore command in terminal window and it has to be done

everytime before any of ROS nodes starts. It consists of Master, Rosout and Parameter server.

9

ROS Master is a naming and registration service for ROS, i.e. it helps nodes to find each

other. It tracks publishers and subscribers to all topics as well as services. Communication

between two nodes over topics (or services) is done on peer-to-peer basis, once the both are

connected with each other by Master.

Rosout is ROS equivalent of stdout and stderr and is used particularly for debugging.

Parameter server is a multi-variate dictionary. Nodes may use the server to store and read

parameters at runtime. It is best used for static data such as configuration parameters.

(On the other hand, exchange of dynamic data between nodes is better done via topics

or services.) [11]

3.2.4 Topics and messages

Topics and messages are one way of communication between nodes provided by ROS

framework. Any topic may be viewed as a uniquely named channel for streaming messages.

Message itself is a data structure containing at least one (but often more) field, which may

be of an arbitrary type. ROS supports common standard types as integers, floating points,

booleans, strings as well as arrays and even other messages nested within a message.

Programmer then may choose to use either from standard ROS message types or he can

prepare user-defined messages in his package saved as *.msg files. Programmer also should

not forget that one topic is restricted to transfer messages of only one type, i.e. type

of message determines type of topic. [11]

A node, which wants to send messages to other nodes is said to be publisher and it

is publishing messages on the topic. A node which is supposed to receive and process

messages is said to be subscriber and it is subscribing to the topic. There may be even

multiple publishers and subscribers to one topic at the same time. [11]

ROS tools for dealing with topics and messages are called rostopic and rosmsg and they

allow user to show information about currently available topics; for example what node(s) is

(are) publishing, what node(s) is (are) subscribing to specified topic, what type of message

is passed, publishing rate, trafic volume, etc. rqt_graph is also helpful tool which graphically

visualize network of communicating nodes and topics.

10

3.2.5 Services

Services are the second way how nodes may communicate with each other. While

communication via topics is unidirectional on many-to-many basis from publishers

to subscribers (publisher does not await any response; in fact it does not even require actual

existence of any subscriber to the topic), services enable bidirectional communication.

Besides, service calls implement strict one-to-one communication. One node is in a role

of a client. It sends a request to other node which is in a role of a server. The server processes

the request, it performs an action (e.g. computes something, configures hardware, makes

a measurement, etc.) and finally it sends back a response which the client is waiting for. [11]

To ensure that the client and the server understand each other, special data structure srv,

defined in custom *.srv file, is used. It is composed of a pair of messages—request and

response. The both contain fields which may be of an arbitrary type analogically to messages

used on topics. [11]

ROS tools for dealing with services are called rosservice and rossrv and they allow user

to show information about currently available services. These tools are analogical to rostopic

and rosmsg.

11

4. Reinforcement learning

Reinforcement learning (RL) is widely used within this thesis. At first, it is used to learn

a model for adaptive traversability which chooses optimal flipper configuration depending

on robot´s state and terrain features. Secondly, it is used to learn a strategy for tactile

exploration of terrain to speed up the process. Therefore this chapter is devoted

to reinforcement learning.

4.1 Markov Decision Processes

Markov Decision Processes (MDP) are commonly used models for reinforcement learning

problems. They provide a decent level of abstraction, thus they simplify description

of a problem, but in spite of that they are sufficently robust and flexible to describe a large set

of real-world problems. [13] MDP is defined as a tuple

MDP = 〈 S , A , p s ´∣s , a  , r , s0〉 , (4.1)

where S is a set of possible states in which an agent may find itself, A is a set of possible

actions which the agent can do, p  s´∣s , a  : S × A × S  [0, 1] is a transition probability

that the agent will get to state s´ if it performs action a in state s, r  s , a , s ´  :

S × A × S  ℝ is a reward which the agent obtains when it reaches state s´ from previous

state s using action a and s0 ∈ S is an initial state. [14]

Let us denote s ∈ S a single state and a ∈ A a single action. Basic idea of

reinforcement learning problem is that the agent (i.e. decision maker and learner)

and environment interact continually. Agent selects an action and environment is responding

—introducing the agent to a new state and giving reward to the agent, see Fig. 4.1.

The evaluative feedback is one of the most important concepts of reinforcement learning.

The learner is told how good an action is in terms of reward, which is received after

performing the action. It is in contrast with instructive feedback used in supervised learning,

where learner is told what action is optimal. [13]

12

 Fig. 4.1: Interaction between agent and environment during reinforcement learning. [13]

 A sequence of visited states and actions performed by the agent is called a trajectory τ:

 =  s0 , a0 , s1 , a1 , s2 , a2 ,  . (4.2)

At each time step, agent receives a reward r t st−1 , at−1 , st which is a simple real number.

Agent is then supposed to collect as much reward as possible throughout its actions.

Optimally, it should avoid greedy actions with high immediate rewards and rather choose

actions that would maximize cummulative reward in longer time horizon (along the whole

trajectory). Therefore a return R of rewards when agent follows trajectory τ beggining

at time t is introduced:

Rt   = ∑
n = 0

N

 n⋅r tn . (4.3)

It is a sum of discounted rewards from time t onwards. N denotes time horizon, i.e. how many

steps to the future are considered (in some cases N may be equal to infinity meaning no time

horinzon at all) and  ∈ (0, 1] is a discount factor which is used to lessen influence

of states in far future.

Another important concept used in MDP is a policy   s : S A which is a function

mapping a state to an action (in deterministic case) or to a probability p a t = a∣st

of selecting action a in state s (in stochastic case).

13

The ultimate goal of learning is then to find an optimal policy in terms of maximizing

expected return:

 * s  = arg max


E { R} = arg max

∫
∈T

p ∣⋅R⋅d  . (4.4)

Term R(τ) appearing in formula (4.4) is a return R (4.3) obtained after the agent was

following trajectory τ starting from state s when policy π was in charge. As transitions

between states may be stochastic and therefore different trajectory may occur every time

the same policy is forced, mean value over probability distribution of all possible trajectories

induced by policy π is considered. (Τ denotes a set of possible trajectories and p(τ | π) denotes

probability that trajectory  ∈ T occurs when policy π is used.)

4.2 Q-function

Some of reinforcement learning algorithms are based on estimating value functions

of states for policies. Generally, there are two types of value functions. The first type is state-

value function for policy π, which quantitatively estimates how it is advantageous or

disadvantageous to be in a certain state when policy π is used. It is an expected return when

the agent is using policy π starting from state s:

V  s  = E { R∣ s0 = s } = E {∑
n =0

N

n⋅r n1∣ s0 = s} . (4.5)

The second type is action-value function (also frequnetly reffered as Q-function)

for policy π, which quantitatively estimates how it is advantageous or disadvantageous

to perform certain action a in specific state s and then follow policy π:

Q s , a  = E { R∣ s0 = s , a0 = a} , (4.6)

Q s , a  = E {∑
n = 0

N

n⋅r n1∣ s0 = s , a0 = a} . (4.7)

14

A fundamental property of value functions is that they satisfy particular recursive

relationship—value function at one state s may be determined as a combination of reward for

getting to another state s´ and value function at the new state discounted by factor γ. If we take

into account stochastic transitions between states, we may bring together following formula

for Q-function, which is called Bellman equation: [13]

Q s , a  = ∑
s´

p  s ´∣s , a⋅[r  s , a , s ´   ⋅Q s ´ ,s ´ ] . (4.8)

Analogical formula may be derived for state-value function as well.

Defining Q-function allows us to estimate what actions are useful in particular states.

As it takes into account possible succesor states, it estimates how much reward agent may

acquire over long run; not just by a single greedy action. For example, this property may

prevent getting ultimately to severely bad state due to choosing greedy actions in the first

place and not thinking about possible future consequences.

Having known Q-function, we may compare two policies—we may argue that one policy

is better over another when it has higher Q-values for all (s,a) pairs:

 ≥  ´ iff Q  s , a  ≥ Q ´  s , a for all s , a . (4.9)

Naturally, the ultimate goal is to learn what policy is the best one, looking for optimal

action-value function:

Q* s , a = max


Q s , a . (4.10)

Finally, we may formulate Bellman optimality equation, which describes realtionships

between optimal Q-functions of state-action pairs: [13]

Q* s , a  = ∑
s ´

p  s ´∣s , a⋅[r  s , a , s ´   ⋅max
a ´

Q* s ´ , a ´ ] . (4.11)

15

4.3 Reinforcement Learning process

MDP tasks may be solved by dynamic programming methods, described for example

in [13]. However these methods require complete and accurate model which describes

interaction between robot/agent and environment. Unfortunately this assumption is not often

satisfied, particularly probabilities p  s ´∣s , a  remain unknown in many real-world

problems. Secondly, they compute Q-values based on iterative approach (via Bellaman

equation) using sweeps through complete sets of states and actions, which may

be prohibitively expensive.

Great advantage of reinforcement learning methods, including Q-Learning, lays in the fact

that they draw from experience and particularly does not require any prior knowledge about

environment and its dynamics. [15] Learning is run in episodes. Agent is following some

policy in each episode and trajectory τ is recorded along with obtained rewards. For each pair

(s,a) visited within the episode, Q-value Q(s,a) is then updated by obtained return R (see

equation 4.3) following the visit. Optimal policy π* is updated accordingly to be consistent

with actual Q-values. [13] [15]

One of critical matters in reinforcement learning is a choice of policy π which will be used

to select actions in states occuring within an episode. One the one hand, agent should greedily

follow optimal policy π* computed so far which ensures relatively high rewards. On the other

hand, there is no guarantee that such policy is really optimal; it is just a temporary

assumption. There may be some better policy which has not been found yet. It is a problem

of balancing exploitation (using the best known policy) and exploration (trying other actions

and looking for potentially better policies). There are many approaches how to deal with it,

however this topic is still a subject or research and there are many unresolved questions. [13]

Probably the simplest approach, however quite effective, is ε-greedy strategy. Rule which

is used to select actions is simple. The greedy action is performed for most of the times, but

also a random action may be chosen with a little probability ε. This behaviour enables us

thoroughly explore optimal strategy and strategies which are close to the optimal one. In other

words, Q(s,a) is preferably estimated for potentionally interesting state-action pairs while

state-action pairs with no promising asset, which are not likely to be visited at all, may not be

explored or they are tried only several times (just to figure out that they are useless). This is

a huge advantage over dynamic programming which has to perform systematic sweeps

over the whole set of state-action pairs to estimate Q-values.

16

There exist several learning algorithms used for Q-learning. The one which has been

utilized in this thesis to learn exploration strategy using robotic arm is denoted as On-policy

Monte Carlo Control in [13].

17

On-policy Monte Carlo Control algorithm [13]

Initialize:
For all s ∈ S , a ∈ A s do:

Q s , a  ← arbitrary
Returns s , a  ← an empty list
 ← an arbitrary ε-soft policy

Repeat forever:
Generate an episode using policy 
For each pair  s , a appearing in the episode do:

R ← return following first occurence of  s ,a in the episode
 Append R to Returns  s , a 

Q s , a  ← average Returns s , a 
For each s appearing in the episode do:

a* ← arg max a Q s , a
 For each a ∈ A s  do:

  s , a  ← 1−   
∣A s ∣

if a = a*

  s , a  ←


∣A s∣
if a ≠ a*

Note:  s , a  denotes probability of choosing action a in state s

5. Terrain traversability—State of Art

This thesis deals with a movement of an unmanned ground vehicle (UGV) in an unknown

environment. Extending abilities of mobile robots to overcome an unstructured terrain beyond

paved roads is a challenging issue which has an attention of many robotics experts and novel

systems are being developed particularly since the beginning of the century.

It is a complex problem in which both, hardware and software, play vital roles. Mechanical

construction of a robot is as important as a control system. The overall succes then depends

on synergy of the both. Following sections cover several approaches and advancements

in building chassis of mobile robots at first. Then a major part of the state of art review

focuses on intelligent systems for traversing rough terrain.

5.1 Chassis construction

Generally, when designing a mobile robot, choice of suitable hardware is a first step

in the process. We should take into consideration characteristics of an environment in which

we assume the robot will work as well as a puropose of the robot itself. This particularly holds

for urban search and rescue (USAR) missions, in which we want to ensure high mobility

in rough, uneven and unstructured terrain. Therefore, we should think about chassis first.

Usually, three types of mobile mechanisms for robots are distinguished—wheels, legs and

tracks. Wheels work well especially on even surfaces, where they enable robot to move

fluently, effectively and fast. However, they may lack ability to move across complicated

terrain. On the contrary, legged robots have a huge potential for such situations, but it is very

difficult to control them thanks to many degrees of freedom and their movement is slow so

far. But this field is a subject of modern research [16] [17] and it is likely that there will be

many legged robots with amazing agility in the future. For now, the most popular mechanism

for robots used in USAR are tracks, which offer enough robustness to move across rugged

terrain combined with fair speed. [18] [19]

Tracks are able to provide good traction for most of the time, even on muddy or sandy

surfaces, but sometimes problems may occur, when contact with ground is minimal. Such

situations may happen, for example, when it is needed to overcome steps, boulders, fallen

branches, depressions, etc. Some enhancements may come in handy.

18

For example, Lee, Kang and Kim designed a robotic platform ROBHAZ-DT3 [18], which

is composed of two pairs of tracks, which are interconnected using passive joint, see Fig. 5.1.

Relative position of front and rear tracks is being passively changed according to shape

of traversed surface. It does not only provide a better contact with the ground, but also center

of gravity is shifting, giving better stability to the robot in comparison with single tracked

platforms.

Fig. 5.1: Mobile robot platform ROBHAZ-DT3. [18]

Left – view from side. Right – view from above.

Passive machanisms, like the one mentioned above, have the advantage that they do not

require additional control systems. On the other hand, they may get stuck, e. g. in some

depression, and may not be able to escape. Actively controlled mechanisms represent

an alternative, which brings new options for robot movement. [20]

Yamada et al. [21] got inspired by a wharf roach and designed a robot combining some

passive and some active mechanisms. They refer to their design as blade-type crawler

mechanism because flexible blades are mounted on tracks. These enhance robot´s ability

to overcome some minor obstacles, see Fig. 5.2, and also serve as dumpers, when robot falls.

In addition, robot is equiped with actively controlled antennas, which may even help robot

to jump in some occasions like the animal.

19

Fig. 5.2: Blade-type crawler mechanism inspired by a wharf roach. [21]

Guarnieri, Debenest et al. [19] introduced an interesting mechanism applied on robot

Helios Carrier, which was equipped by actively controlled tail-like mechanism, see Fig. 5.3,

which particularly served as support preventing robot from flipping over. They succesfully

tested their design during climbing and descending stairs.

Fig. 5.3: Robot Helios Carrier with actively controlled tail-like mechanism. [19]

Left: Robot overview. Right: Climbing stairs without and with tail-like mechanism.

Finally, a popular approach, which may be considered as an extension of the mechanism

introduced in the previous paragraph, is a design using two pairs of articulated side tracks—

often reffered to as flippers. This type of chassis is widely used for search and rescue robots

including UGV from NIFTi/TRADR project. [1] [20] [22] [23] [24] (Or there is an another

popular platfrom Packbot produced by iRobot company which uses only front flippers. [25])

Attitude of each flipper is controlled by its own servomotor. One can also alter flippers´

20

compliance by limitng maximal current (and therefore limiting maximal generated torque).

Flippers significantly enhance robot´s mobility as they allow to traverse larger set

of heterogenous obstacles, from which some of them may be even impossible to overcome

by other types of chassis. [26] This variability, however, demands more sofisticated control.

It is the aim of this thesis to propose a solution, how to automatically control flippers

for smooth overcoming of obstacles, but first, there will be introduced state of art on this topic

in the following sections.

5.2 Artificial intelligence for autonomous traversal

There were several types of chassis for UGVs, which enable movement on more

complicated terrain, presented in the previous section. Constructions with actively controlled

elements naturally offer more options, but their control is more difficult. This brings higher

demands on robot´s operator, especially when robot is being driven remotely and information

of robot´s situation provided to operator on his workstation is limited. It is slowing down

operator´s work and a risk of mistake is higher. Therefore one of the main goals of current

research is to automatize robot´s movement and lower cognitive load of operator, who may

consequently focus on higher level tasks required by the mission instead of paying extra

attention to driving the robot. [2] [24]

If we want robot to have a certain level of autonomy, we cannot forget to develop

intelligent software, that will be able foremost to process sensor readings (both proprioceptive

and exteroceptive) and utilize them into a model of environment. Secondly, it should be able

to evaluate negotiability of the terrain based on the model and eventually to choose proper

configuration of adjustable chassis.

5.2.1 Planetary rovers

One of the first application domains of mobile robots in which a problematics of save

terrain traversal was emphasised was usage of planetary rovers. [27] [28] Increased caution

during movement in an unknown environment is necessary in their case beacuse of high cost

of the mission and a fact that they have to get along without any assistance. If rover lost its

stability and tipped over, it would mean an early end of mission and therefore bad succes.

21

This was the reason, why scientists started to think about how to minimize a risk

of an accident.

Negotiability of terrain is evaluated as a part of an autonomous navigation and a path

planning in the case of rovers like in work of Singh, Simmons et al. [27], who designed

planning algorithm for Mars Rover. They encountered a problem that previous researches

concerning path planning for UGVs had divided space only into free space and obstacles.

While this binary division may be sufficent for indoor robots, it ceases to be efficient

in a complex environment. One can find a wide variety of obstacles outdoors. Some of them

may be impassable like large objects or deep pitfalls and it is necessary to avoid them, while

some other obstacles may be overcome by robot. One just have to take into account higher

pitch and roll when passing them which usually means higher risk and energy consumption,

which should be incorporated into cost function for a planner.

Concretely, Mars Rover is equipped with a stereoscopic camera used to map terrain.

The map is divided into cells whose size is approximately the same as robots. Points obtained

by the camera which fall into one cell are used to fit a plane via least squares method. This

allows, among others, to determine eventual pitch and roll of the rover and a roughness

of terrain from deviations of points from the plane. They also compute a certainty of a cell

which encompasses number of points in the cell and their distribution. For example, a cell

with only few points in one corner will have less certainty value than other cell with a lot of

points distributed uniformly in its area.

The plan itself is being build on two levels—global and local. D* algorithm is used

for global planning to prepare an initial plan. The local planner than evaluates different

directions of movement from the current position to find the most suitable one. It is using

parametrs from the map, certainty of map cells and mechanical properties of rover.

Algortihm for autonomous navigation was furtherly extended in the work of Goldberger

et al. [28] who use a grid of cells with higher resolution. They also introduced some other

parameters to describe cells such as step hazard, roughness hazard, pitch hazard and border

hazard (cell which is neighbouring with unknown cells has high border hazard). They

subsequently utilize all this information to determine optimal heading of rover in order to get

closer to the goal and choose safe trajectory at the same time.

22

5.2.2 Search and rescue UGVs

Mechanisms developed for planetary rovers may be indeed applied on other UGVs

including those designated for USAR missions. Nevertheless, rescue robots cannot manage

with some simplifying assumptions, that may have been done for Mars Rover. Thats because

of more dangerous character of their missions. Environment in which they are supposed

to work is more complex and it is more difficult to make its model. [22]

5.2.3 Planning approach to traversability

One popular approach for autonomous overcoming of obstacles is determination

of traversability (and choice of suitable configuration of chassis if possible) already during

path-planning; quite similarly like in the case of Mars Rover.

There is a fair number of papers that focus mainly on building traversability cost maps

for robots with fixed chassis, i.e. for robots which cannot adapt their chassis according

to terrain (for both, tracked and wheeled). [29] [30] [31] [32] These maps are then supposed

to be an input for path planning algorithms which are responsible for generating safe path.

Researchers are usually exploiting either onboard stereocameras or laser range finders

to obtain point clouds which are furtherly transformed into maps (mostly by fitting planes

using least squares fit, Ransac, etc.). Relative difficulty of driving through certain region

is assessed by various methods. Usually detailed information on robot-terrain interaction

is estimated such as pose of robot on surface (in the computed world model, map),

its stability, traction/slippage, power consumption, etc.

Kim, Sun et al. [33] proposed online learning method for terrain classifier that should

distinguish traversable and untraversable terrain by wheeled robot. Their system performs

collection of data by sterocamera as robot moves. They extract features from the data

describing geometry of terrain together with image textures. The classifier then learns which

features are corresponing to traversable terrain and which are corresponding to untraversable

terrain. Terrain classification then provides information to the planner. Their approach

is similar to ours in some ways, but they are learning model only to distinguish traversable

and unsafe areas, while we are trying to learn model to assess several different chassis

configurations and choose the best one. Secondly we are trying to exploit reactive behaviour

rather than planning.

23

Brunner et al. pursue the problem of terrain traversability for robots with adjustable chassis

[26], whereas they try to design a general algorithm, which would not be limited to just

one type of chassis. Their solution is built on creating quality model of terrain. In their

opinion, difficult parts of the path should be known in advance (while we argue that this

condition may not often be satisfied in USAR missions), so that one can avoid dangerous

situations in advance. Secondly, model in memory is needed in situations when robot cannot

rely on actual sensor readings due to high pitch (and therefore looking in bad direction)

or some noise in sensor data.

Again, their planner works on two levels. Global planner is looking for an approximate

path and also performs classification of terrain on easy areas and hard areas. Its output

is a graph roughly describing path. In the following phase, easy segments of path are

not considered as they are accesible in any configuration. Local planner is used just

on difficult segments, which needs thorough analysis.

For now, they consider only static properties of robot in the article [26]. Including dynamic

properties (inertia, dynamic stability, ...) is intended to be a subject of future work. For now,

they check static stability which they quantify by mechanical work needed to tip over

the robot along least stable axis at that moment. This is determined for each possible

configuration and incorporated into cost function used in planning algorithm for given vertex.

They validated their approach in ROS Gazebo simulator, but not on real robot and real

environment.

Colas et al. [22] have chosen more specific approach. They work with concrete robotic

platform Niftibot. (Note: They are collaborating on TRADR project, therefore they are

experimenting and developing systems for the same platform as we do.) They emphasis

thorough processing of sensor data and building precise model too. The model is then used

to determine reachable positions (i.e. robot does not collide with obstacles, has enough

support from the ground and pitch and roll are within prescribed limits) using tensor voting

method at first. Then they determine if it is possible to move between two positions and

in what configuration. This makes a graph which is used as an input for D* algorithm.

Functionality of their solution was verified in an experiment in flat terrain at first

to compare their planner with regular planners for 2D environment. Then they performed

an experiment in fully 3D terrain during succesful attempt to climb a staircase. The extension

24

of the planner from 2D (2.5D) to 3D is considered as their most significant contribution

by the authors.

Safe climbing of stairs is generally a popular challenge, which is tackled by more robotics

developers working on many platfroms (not only tracked robots, but also legged robots

as well). There are just some examples: Mihankhah et al. [23] work with tracked platform

Silver similar to Niftibot equiped with two 2D laser range finders (horizontal and vertical).

The lasers are used to detect a staircase. It is done by extracting lines from laser data

and choosing candidate lines for describing stairs. Robot is then subsequently navigated

to the staircase and is aligned in front of the stairs ensuring that robot will start climbing from

a good initial posture. Finally, they use fuzzy logic based controller to drive the robot upstairs

using laser data on input assessing relative posture of the robot to the stairs and keeping

the robot parallel to walls on the side of staircase.

Hesch, Mariottini et al. [34] pursued stair descending for a change. Nevertheless, basic

idea was similar. They utilize monocular camera to analyze scene geometry (lines) using

machine vision algorithms in order to detect descending staircase. After that, the robot

is navigated to the staircase followed by aligning itself with the edge and finally climbing

down. The main concern is to keep the robot in the center and avoid tipping over. Information

from tri-axial gyroscope combined with line information from camera is exploited

by extended Kalman filter and a PID controller which should steer the robot following safe

trajectory.

Although climbing/descending stairs is a challenging problem, the stairs are still structured

and regular terrain. The both mentioned articles have in common that the proposed controllers

detect stairs as lines in laser or camera measurements, but terrain in USAR scenario

is expected to be much more irregular, therefore more robust approaches are needed.

5.2.4 Reactive approach to traversability

There were several papers mentioned in previous sections which deal with terrain

traversability and adjusting configuration of robot´s chassis already during a planning

procedure. On the one hand, this approach may prevent driving robot into potentially

dangerous situations, but on the other hand, it may be sometimes computationally demanding,

slow and not very flexible, requiring complete information about environment and precise

model.

25

Situations in which we do not have comprehensive knowledge of the environment (for

example due to dust or smoke covering sensors) are not exception as well. This makes

planning much more difficult, because we are unable to recognize what part of map

is reachable and what part is not. In addition, thorough plan may not be even needed. Most

of the times operator does not request robot to autonomously plan the whole path and then

realize locomotion from actual position to distant goal position.

Usually, search and rescue robot is under human control during its deployment for

most of the time. It is the operator who is choosing direction and speed of the robot´s

movement. Active auxiliary articulated tracks, flippers, may be controlled manually when

needed as well. However, it is more convenient when flippers adaptively change their position

with respect to a shape of terrain underneath and in front of the robot. That is, we rather

aim to develop a semi-autonomous system instead of fully autonomous one. The system is not

supposed to replace an expert operator, but it should play supportive role and ease operator´s

work.

Similar philosophy to the solution of the problem concerning adaptive traversability may

be found in works of Okada et al. [24] or Ohno et al. [20]

Okada et al. develop a control system of flippers for a tracked robot Kenaf, see Fig. 5.4,

which has a similar construction as our platform Niftibot. These authors used two laser range

scanners mounted on both flanks above main tracks in their older paper. [35] The lasers

provided information about terrain under both, left track and right track, see Fig 5.5. Then

their control system updated actual flippers´ positions using the information. This solution

turned out to be insufficient, especially in situations, when there was a narrow obstacle

in front of robot, which fitted into free space between front flippers. Robot crashed into

the obstacle without noticing it earlier in that cases.

The authors later published another paper [24], in which they introduced enhanced system

with third laser range scanner, which detects terrain in front of the robot, see Fig. 5.5. We may

deduce from their experince, among others, that if we want to effectively control flippers

for safe traversal, we do not need only information about terrain´s shape right under robot´s

tracks, but also in front of the robot. This is an important idea which is used in our work

as well as we utilize digital elevation map (DEM) which describes terrain under the robot

and in front of the robot.

26

Fig. 5.4: Tracked robot Kenaf. [24]

Fig. 5.5: Laser range scanners mounted on Kenaf. [24]

Left – New system described in [24] with a new additional sensor in front.

Right – Old system described in [35] using only two sensors on sides.

Algorithm which was applied in the paper is summarized in a schema in Fig. 5.6. At first,

shape of the terrain under robot´s tracks is derived from laser scans and actual posture

of the robot is measured by inertial measurement unit (IMU). These estimates are then used

to assess a suitable configuration of flippers to overcome the terrain. A requested posture

(if different from actual) is designated so that it is paralel with plane, which approximates

terrain using a least squares method and so that the robot has enough support from the ground.

Its reachability is also subsequently checked in a feedback loop, especially in the sense

of stability. In the end, control signals are sent to servomotors in order to execute desired

movement. A conventional PID regulator is used in this step.

27

Fig. 5.6: Adaptive traversability algorithm introduced by Okada et al. [24]

Ohno et al. [20] also rather try to explore reactive behaviour based on actual data from

sensors instead of building a complex model of the world and planning over this model. They

use following sensor information: pitch of robot´s body, angles and torques of flippers,

distance between front body and ground and distance between rear body and ground,

see Fig. 5.7.

Fig. 5.7: Exploited sensor information in [20].

Pitch of robot´s body θp, angle of front flipper θf, angle of rear flipper θr, torque of front

flipper Tf, torque of rear flipper Tr, distance of front (rear) body and ground lf (lr).

They also made some simplifying assumptions in their work. Firstly, they assumed only

2D situations—sagittal section of robot and terrain was considered (like in Fig. 5.7). This also

28

means that they did not take into account a roll of the robot. Secondly, they assumed that

rubble and other terrain structures may have been approximated as steps in 2D.

Based on their assumtions, the authors designed motion sequences for getting smoothly

over an upward step and analogically for getting past a downward step; see Fig. 5.8, which

illustrates these sequences. They prepared several control rules for both, front and rear

flippers, according to the sensor information at the moment. The rules were organized into

two look-up tables. Several quantities are being continually observed, see Fig. 5.7: robot´s

pitch, angles of flippers, distance between robot´s body and ground and contact between

flippers and ground (which is assessed from robot´s inertia, posture of flippers and angular

momentums generated by actuators). Appropriate control rules are chosen from the tables

for front and rear flippers according to measured quantities. The rules themselves

are implemented as PD controllers which drive flippers to optimal positions so that

the movement of the robot is as smooth as possible.

They succesfully tested their system on some artificial obstacles made of wooden blocks.

Fig. 5.8: Designed motion sequences for getting over upward step (left)

and downward step (right). [20]

The advantage of proposed method is that it enables robot fluently cross steps of variable

heights thanks to sophisticated control rules and PD controller optimized for such situations.

Nevertheless, authors did not mention how their algorithm performed on general terrain

shapes and we find utilizing 2D sections instead of 3D model as pretty strong assumption

which is not valid in many situations. We also argue that such approach may be effective

when climbing a single step, but the robot may have difficulties when driving more complex

terrain.

29

6. Adaptive traversability

Mobile platforms which have adjustable chassis with actively controlled elements such

as flippers have good capabilities to overcome various terrain features. However, they

inevitably yield more degrees of freedom to control. It causes a high level of cognitive load

of robot´s operator, thus making his task more difficult and error-prone. Therefore, semi-

autonomous control system for adapting robot´s morphology to traverse terrain in an optimal

way is being developed, so that operator may focus on other tasks than manually adjusting

flippers´ positions. This behaviour is called adaptive traversability (AT). [1] [2].

The ultimate goal of this thesis is to take up current progress on semi-autonomous control

system which has been done so far [1] [2] and further enhance its capabilities—mainly

to extend the system by introducing active tactile exploration of not visible terrain

by a robotic arm. Necessity of this extension has been suggested after previous experience.

As the terrain was being scanned only by laser range finder before, situations in which robot

was unable to detect objects in front of itself occurred. It may happen for example in case

of reflective surfaces such as water and oil spills, in the presence of smoke or just in case

of occluded view. Such situations are causing missing data in the model of environment,

which is gradually being build from laser scans. As this model is then used by decision maker

to choose optimal flipper configuration for terrain traversal, missing data may significantly

spoil the decision. Mentioned situations are quite probable during USAR missions, so they

deserve our attention.

6.1 Existing AT algorithm

6.1.1 Utilized features—Feature vector F

There are two types of features which are provided by robot´s sensors and may be used

for decision making—proprioceptive and exteroceptive. The former group of features

is provided by inner sensors. Namely following information is being utilized: pitch, roll, real

speed of robot, speed requested by commands and currents in servomotors driving all 6 tracks

(that includes main tracks as well as flippers).

Exteroceptive features describe terrain in close area around robot and are generated by 3D

laser scanner. Concretely, we utilize terrain representation called Digital Elevation Map

30

(DEM). In our case, it is a discrete grid of size 2 m x 0.5 m which is divided into cells of size

0.1 m x 0.1 m, i.e. there are 20 x 5 cells, see Fig. 6.1. Each cell stores value of height

of terrain at corresponding [x, y] coordinates. The area under the robot (orange in the figure)

is cut from octomap (provided by octomap server) which is stored in the memory. The area

in front of the robot is directly visible by laser scanner, therefore it is rather computed from

dynamic point cloud than from octomap. (We experienced that octomap server does not

perform well when dealing with dynamic environment as moving objects leave ''trail''

in the octomap. In other words, a moving object persists in the map even if it has already

moved to a different place and it is spoiling the octomap.) Height in each cell at given [x, y]

coordinates is computed as a mean value of z-coordinates of all points from the dynamic point

cloud which fall into particular cell.

Fig. 6.1: Digital Elevation Map (DEM).

DEM is composed of 0.1 m x 0.1 m cells which form a grid of 20 lines and 5 columns (note

that DEM is rotated by 90° degrees in the figure). Each cell stores value of height of terrain

in particular place.

Values in orange colored cells are obtained from octomap provided by octomap server (one

of ROS packages) while values in green colored cells are computed from dynamic point

cloud. Light green cells are also measurable by Kinova JACO arm.

All features which may bring us potentially useful information are stored in the feature

vector F. It has following structure:

F = [100 x height values (each DEM cell), pitch, real forward speed of the robot,

speed requested by command, 6 x currents in tracks, roll, 100 x counter

(number of points used to compute height in corresponding DEM cell)]

31

6.1.2 Flipper configurations

Control of attitude of all four flippers and their compliance (which is obtained by limiting

maximal allowed current to their corresponding servomotors) is generally a difficult 8-

dimensional continuous problem. However, our experience suggest that only several

configurations may be enough to succesfully drive robot across rough terrain. It is

not necessary to adjust posture of flippers with millimeter precision so that they

are accuratelly copying terrain under the robot. The robot just needs to know only few

different flipper modes—each one for specific terrain structures that may be encountered,

see Fig. 6.2. [1] [2]

This observation allows us to simplify the task. It may be limited just to a choice

of a viable flipper configuration from a finite discrete set. Flipper configurations proposed

in this thesis were designed during experiments at FEE, CTU. [1] [2] However, we are not

the only ones who do something like that—Colas et al. proposed similar configurations

in design of their path planner. (Their approach is also described in chapter 5.2.3) [22]

Fig. 6.2: Proposed flipper configurations. [1]

Each configuration corresponds to a different morfology of robot´s body and has its

own characteristics. The configurations are depicted in typical situations for their usage.

I-shape (maximazes traction)

The flippers are parallel with the main tracks and they increase effective lenght of tracks.

It consequently increases traction, which is the highest out of all configurations. I-shape mode

is effective when driving robot on inclined plane and particularly when it has to climb up

or climb down a staircase (and it is already past first step), because tracks make contact with

as many steps´ edges as possible. On the other hand, the robot may have difficulties to get

over some bumps or single steps in this mode.

32

V-shape (provides observability)

The flippers are folded. It is used when robot is moving on a flat surface, i.e. in situations

when flippers are not actually needed for overcoming obstacles and traction provided by main

tracks is sufficent for robot to move. Folding the flippers guarantees free view for laser

scanner or cameras mounted on the robot. (The flippers otherwise slightly cover the view

of sensors to some extent when being in other configurations, thus limiting information about

surrounding environment which robot is able to obtain by sensors.)

L-shape (climbing up)

The front flippers are elevated. It is the best mode, when robot is approaching an obstacle

(like stones, bumps, etc.) as it allows the robot to smoothly get on the obstacle.

As posture of tracks in this mode is similar to a tank (or other military vehicles), it is the most

powerful configuration in the means of terrain traversability. Unfortunately elevated flippers

interfere with rays of laser scanner, thus complicating building of model of environment.

Therefore it is prefered to use this configuration only when it is really needed.

U-shape (climbing down)

The flippers are pushed downwards when this configuration is on. It the most suitable

mode when robot is approaching some kind of depression or a step down. The front flippers

are the first part of robot´s body to touch ground under the step and they are immidiately able

to provide enough support for robot to prevent falling down or flipping over.

The idea is to change between configurations so that the movement of robot is as fluent

as possible and eventual obstacles are safely traversed. Some obstacles may even require

a combination of configurations which are being adaptively changed as robot moves across

the obstacle. For example, when climbing a staircase, the robot must first use L-shape

to get on first step. As robot´s pitch rises, configuration is changed to I-shape maximizing

traction when climbing following steps. Finally, when robot gets on the upper edge

of the staircase, U-shape is required in order to prevent flipping over.

33

6.1.3 Reinforcement learning framework for AT

The agent which is selecting optimal flipper configuration is based on reinforcement

learning framework which has been theoretically described in chapter 4. The goal is to choose

configuration c ∈ C = { ' I ' ,' V ' ,' L ' , ' U ' } from a set presented in the previous section.

The agent is evaluated by a reward function r F , c , F ´  : ℝn × C ×ℝn  ℝ which

assigns real-valued reward for a transition from an initial state described by features F

to a successor state described by features F´ while using configuration c. [1]

We may define Q-function QAT F , c  : ℝn × C   ℝ which estimates expected sum

of discounted rewards following after the robot drives from state F using configuration c.

The aim of learning is to estimate Q-function so that for each state F we may select

configuration c* with highest QAT -value: [1]

c* = arg max
c∈ C

QAT F , c  . (6.1)

We also require that the best configuration c* fulfils a condition that QAT F , c * should

be at least positive. Otherwise, none of configurations may be considered safe and it is not

recommended to drive robot forward at all.

There were several problems which were encountered during collection of training samples

for initial training of QAT -function. Firstly, driving a real robot is generally time consuming

and any operator is able to record only a limited set of trajectories in reasonable time.

Secondly, the operator cannot afford to jeopardize robot. (So far, the robot is too expensive

to risk its destruction only to obtain some data samples.) That means, that there are not many

examples from situations in which robot robot found itself in some critical circumstances.

The first of the problems mentioned in previous paragraph was partially bypassed

by manual annotation of the data. While the configuration chosen by the operator when

actually driving robot was denoted as optimal and was assigned a reward equal to 1.0,

the other configurations were judged offline on the recorded data. Suboptimal configuration

for each situation received reward 0.5, indifferent configuration (neither good nor bad)

received reward 0.0 and unacceptable configuration received negative reward (i.e. penalty)

– 1.0.

34

Thanks to that, we got useful training data even for configurations which were not used

for driving robot at all, thus making our training dataset richer. Manual annotation also

enabled us to partially bypass the second problem and add negative samples to dataset. As it

was mentioned, some configurations may have received negative rewards in this way.

Additionally, even if robot could not have been taken into situations which would endanger it,

the operator could drive it near to such situations. For example, the operator could have taken

robot near the edge of a cliff. Naturally, such recording episode had to end before the robot

reached the edge and fell down. But last frames of recorded data may have been labeled with

negative rewards as any of the configurations would lead to destruction of the robot if it really

continued moving forward.

However this approach has its drawbacks. Mainly, as it is not much straightforward, such

data collection and manual labeling may be hardly replicable. Secondly, when rewards were

manually assigned to a configuration different from configuration actually used when driving

robot during data recording, a fact that robot may find itself in a slightly different state

was neglected. For example we did not take into account that robot would be in a different

pitch angle if it switched flippers´ positions.

6.1.4 Decision trees

QAT -value QAT F , c  for each pair feature vector F - configuration c is predicted

by regression trees which are trained using recorded training datasets.

We operate with n-dimensional vectors of features F = F1  F n Conditional

probability p F i∣F j , where j = {1  n }∖ i of i-th feature is represented by a forrest

of regression trees. We have a training dataset which consists of M training samples denoted

by F1  F M . Each tree is learned by top-down greedy algorithm which selects the splitting

variable j and split point s at each node in order to minimize variance in the left and in the

right subtree. Following term is minized [2]:

argmin
 j ,s

∣R1∣⋅var F i
k

k ∈ R1  j , s
∣R2∣⋅var F i

k
k ∈ R2  j , s

, (6.2)

where R1(j,s) denotes a subset of samples which fall into left subtree (value of splitting

variable j is lesser than or eaqual to splitting value s) and R2(j,s) denotes the other subset

35

of samples which fall into right subtree (value of splitting variable j is greater than splitting

value s). Those samples whose particular splitting feature is unknown are inserted to the both

subsets, thus falling to the both subtrees. [2]

Conditional probability of the feature is computed as the mean conditional probability over

all the leaves in the forrest reached by the respective sample. It is finally used to estimate

probability distribution function of the QAT -function. QAT F , c is obtained as mean value

over this distribution. [2]

6.2 Enhancement of AT algorithm

6.2.1 High-level features FH

Generally, one of characteristic properties of decision trees is, that learning algorithms

have already embedded feature selection. That also includes trees used in this work, see

previous section. The learning algorithm is searching feature vector for features which

are able to effectively split learning dataset. In the end, it may happen that only a subset

of features from the feature vector is actually used.

It was observed when experimenting on recorded datasets, that if all values from DEM

are used as single input features, only few of them are actually used for making decisions

while the others are ignored. Such behaviour may increase probability of overfitting.

Therefore usage of high-level features was considered in order to make model more robust.

Vector of high-level features will be furtherly denoted as FH.

Several combinations of high-level features were designed—five different models with

different vectors FH were constructed, see Appendix for detailed description. QAT -function

QAT F H
i , c has been learned for each of them separately, thus we obtained 5 different

models for adaptive traversability. For example, model which is denoted as Model 4

has following construction of vector FH:

 F H
4 = [pitch and roll,
average height values in lines in DEM (there has to be at least 2 valid values in line),
number of NaN values in lines in DEM (line is perpendicular to x-axis),
standard deviation of averages in lines in DEM,
maximal gradient value along x-axis (same orientation as heading of robot) of DEM,
minimal gradient value along x-axis of DEM,
mean gradient value between lines in DEM]

36

Proposed high-level features particularly describe actual robot´s inclination and provide

information about terrain in a compact and robust form. For example, using average height

value in whole line of DEM should be less susceptible to noise than using value from a single

bin of DEM.

6.2.2 Active tactile exploration of terrain by robotic arm

Kinova JACO robotic arm has been mounted on the top of Niftibot. Vojtěch Šalanský

implemented an algorithm which enables the robot to use the arm for active tactile exploration

within his thesis. [36] The basic principle is simple and is similar to the method used by blind

people when they are navigating themselves. The arm is holding a stick which is used to tap

on terrain. After coordinates [x, y] of unknown part of terrain (for example coordinates

of DEM cell) are specified, the arm moves the stick towards ground at the requested

coordinates until it touches the ground. The touch is recognized when the currents in arm´s

servomotors rise due to pushing against the ground. Height value z which is computed

by solving direct kinematic task for the arm is then returned. [36]

This work is focused on utilization of arm in order to fill in missing height infromation

in DEM. It consequently helps to determine if it is safe to move robot forward and what

flipper configuration is optimal for such transition. The arm is able to reach up to cca. 50 cm

in front of the robot. DEM cells which may be measured by arm are colored light green

in Fig. 6.1. This particularly involves cells from lines 11–14. Despite arm´s reach is limited,

it particularly enables us to explore terrain immediately in front of the robot and it may

provide valuable information for making decisions.

6.2.3 Introduction of NaN Mode

The decision trees, see paragraph 6.1.4, are used to predict values of QAT -function

QAT F H , c for all configurations c ∈ C = { ' I ' ,' V ' ,' L ' , ' U ' } at the state described

by feature vector FH. When performing experiments on the data where some of information

about terrain was missing, a problem was encountered.

There are two common types of situations when a configuration (or all configurations)

may receive a bad reward:

1) It is actually inappropriate to drive robot further in that configuraton.

2) There is too much incomplete information in DEM so that driving robot further may

37

not be denoted as safe in any configuration.

Therefore a new mode (a pseudo-configuration) was introduced for situations when there is

too much missing information in DEM. It is reffered as NaN (not a number) mode, because

this value is prevalent in feature vector F (which includes DEM) in that case. The extended

set of modes, which may be chosen, is now C ' = C ∪ { ' NaN ' } = { ' I ' , ' V ' , ' L' ,

' U ' , ' NaN ' }.

 The both situations presented above share that it is not safe to move forward. However,

the later one may possibly obtain a better reward after missing information is completed.

It was not needed to distinguish these two kinds of situations in time when robot was not

equiped by the robotic arm for active tactile exploration, because it did not have any

mechanism to fill in the missing information. However, now, when we have the opportunity

to explore terrain by the arm, it is practical to be able to decide if further exploration will be

beneficial or redundant; especially if we take into account the fact that exploration by the arm

may be time demanding.

A new tree has been trained (and added to existing model) to predict QAT F H , ' NaN ' 

using a dataset with manually annotated training samples. The rewards for these data were

labeled by values from range from – 0.5 (meaning no need of tactile exploration) to 1.0

(almost all data in DEM are missing). So, the training procedure was similar to other

configurations.

However, this mode is a bit specific in contrast with other modes and is treated differently.

Firstly, it does not move flippers, but exploration by the robotic arm is initiated instead.

Secondly, the rule (6.1) that configuration with highest QAT F H , c is the one that will

be used does not explicitly apply on NaN mode. It was empirically found out that it is more

convenient to use value QAT F H , ' NaN '  as a safety measure in general. When this

value is higher than a specified treshold ε, i.e.

QAT F H , ' NaN '    , (6.3)

movement forward is not considered safe due to a lack of information in DEM in front

of the robot. NaN mode is used—and therefore exploration by arm is enforced—whenever

QAT F H , ' NaN '  is higher than ε (value ε = 0.25 is used implicitly) regardless other

configurations (even if there is some configuration with higher QAT -value). The other

38

configurations are judged only after QAT F H , ' NaN '  becomes low, which means that

the terrain in front of the robot is known well.

The new rule applied to a choice of viable flipper configuration c* may be formulated

in the following way:

c* = arg max
c∈ C

QAT F H , c subject to QAT F H , ' NaN '    (6.4)

and QAT F H , c*  must be at least positive.

Introduction of NaN mode also solves another problem which was occasionally observed.

The implemented decision trees have a property that if value of the splitting feature

is unknown, then input sample descents into both sub-trees. The output value is then

computed as mean over all leaves, in which the input sample ended.

Initially it was expected, that predictor will predict poor values of QAT F , c 

for inputs F with too much incomplete data. However, it was observed that it may

occasionally happen that it predicts a good value of QAT F , c  because the few elements

which are actually known may happen to be the ones which ultimately fall to branches of the

tree giving high rewards.

Now, when there is too much unknown information about terrain, NaN mode is chosen

even if some other mode may incidentally get a good reward in spite of little information.

However, we suppose that this drawback could be partially solved if there was a richer

training dataset to learn the trees.

6.3 Testing of AT algorithm

6.3.1 Offline testing on recorded datasets

Decision trees have been learned to estimate value of QAT -function QAT F H , c for all

modes c ∈ C ' . Such trained model then chooses the most viable mode from C '

for particular input feature vector FH. As it has been mentioned in section 6.2.1, five models

—five different QAT -functions—which differ in the way, how feature vector FH is computed,

have been trained.

Performances of these five models were assessed offline on training dataset. As it is

mentioned in 6.2.3, samples in this dataset had been manually annotated, telling what

39

configuration was optimal, what configuration was suboptimal or what configuration

was inappropriate. The configuration chosen by the model was compared to the manual

annotation in order to determine if the model made optimal, suboptimal or incorrect decision.

The results are shown in graph, see Fig. 6.3.

In addition, second dataset was prepared for testing. This dataset contained some unique

samples which did not appear in training data. It also contained some samples from training

dataset in which values in DEM were synthetically pertubated. Height values in DEM cells

were altered by a value from normal distribution with mean value 0 cm and standard deviation

4 cm. It was done to obtain richer dataset for testing. Again, the configuration chosen

by the model was compared to manual annotation in order to determine if the model made

optimal, suboptimal or incorrect decision. The results are shown in graph, see Fig. 6.3.

Fig. 6.3: Testing of models for adaptive traversability.

Models were tested on two datasets—training dataset (trn) and different testing dataset (tst).

The graph shows percentage of optimal, suboptimal and incorrect decisions made by models

on samples in particular datasets.

As you may see in Fig. 6.3, all five models provide similar results. The optimal action

was chosen on approximately 75% of data samples, suboptimal action was chosen

approximately on 15% of data samples and incorrect action was chosen on approximately

10% of data samples.

10% of incorrect decisions may seem quite high, but when the robot is actually driven,

decision about configuration is done with frequency cca. 2 Hz. Hence incorrect decision

is often corrected in less than a second. Fig 6.4 shows how many times (in %) the models

40

Model 1 (trn)
Model 1 (tst)

Model 2 (trn)
Model 2 (tst)

Model 3 (trn)
Model 3 (tst)

Model 4 (trn)
Model 4 (tst)

Model 5 (trn)
Model 5 (tst)

0%

20%

40%

60%

80%

100%

Optimal Suboptiomal Incorrect

chose incorrect decision on three samples from testing dataset in a row. (Note that dataset

contained samples in the order as they were recorded.) Repeated incorrect decision, which

may actually endanger the robot, is made in less than 2.5%.

Fig. 6.4: Testing of models for adaptive traversability.

Percentage of cases, when model chose an incorrect mode 3 times in a row on samples from

testing dataset.

Probably the worst performance was given by Model 1. There is an apparent drop in succes

rate when comparing performance on training and testing data, thus suggesting that this model

was slightly overfitted. The other four models behave more robustly and results of tests

performed on training and testing data are similar.

The best model created so far is the one denoted as Model 4. It made only 7.8 % incorrect

decisions on testing dataset and only in 0.8 % cases incorrect decision was repeated 3 times

in a row or more). Therefore, this model is prefered when driving the robot.

6.3.2 Online testing of AT algorithm on Niftibot

The test of performance of the proposed adaptive traversability algorithm on Niftibot was

performed when Nifitbot was driven across standard EU pallet. You may watch a video record

AT_1.mp4 on enclosed DVD. The robot behaved as it was expected. It used L-shape when

approaching the pallet in order to get onto it. When robot´s pitch rose, configuration was

switched to U-shape to support the robot and thus prevent flipping over. While being

on pallet, V-shape could be used for observability. Finally U-shape was used to climb down

when the robot reached the opposite edge of the pallet.

41

Model 1 Model 2 Model 3 Model 4 Model 5
0.0

0.5

1.0

1.5

2.0

2.5

3
in

co
rr

ec
t d

ec
is

io
ns

in
 a

 ro
w

 [%
]

7. Tactile exploration of DEM

Special mode for situations when there is missing information in digital elevation map

(DEM) was introduced in the previous chapter. Decison tree which is predicting QAT -value

QAT F H , ' NaN '  has been trained on manually annotated data. This QAT -value serves

as a safety measure. The idea is that whenever QAT -value of NaN mode which depends

on feature vector FH (whose significant part is computed from DEM) is less than specified

treshold ε (ε = 0.25 in implicit setting), robot´s movement forward is not considered safe

because terrain in front of the robot is unknown and generally may have any shape.

The missing part of map may mean that there is just a shallow puddle of water or there may

be a deep pitfall. These two situations cannot be distinguished only using laser scans, but their

distinction is crucial for robot safety.

Hence, tactile exploration of DEM by robotic arm is invoked. In the first case (a puddle),

missing height values are being gradually filled in DEM as the arm touches terrain at various

points. Finally, there will be enough known values in DEM that robot may determine that it is

safe to continue and chooses the best flipper configuration to go across the puddle. In the

second case, it may even happen that the pitfall is too deep that robotic arm is unable to reach

its floor. No information is added to DEM and therefore we may conclude that going on

will be dangerous and rather choose different direction of heading instead of going forward.

For illustration, an example of situation when exploration by arm is needed is depicted

in Fig 7.1. QAT F H , ' NaN '  is high as DEM in front of the robot is practically empty

and agent does not have enough information to decide whether to continue going forward and

what flipper configuration should be used. Updated state after exploration, during which

10 DEM cells were measured by the arm, is depicted in Fig 7.2. At this time, decision about

flipper configuration can be safely done, because value QAT F H , ' NaN '  has fallen under

treshold ε = 0.25. (It became even negative.) As you may notice, V-shape flipper configuration

obtained the highest QAT -value and therefore is chosen for moving forward.

42

Fig. 7.1: Example of DEM in situation when major part of terrain is not visible for robot.

Left: QAT -values for all modes [1-I, 2-V, 3-L, 5-U, 6-NaN]. NaN mode has QAT -value

greater than 0.25 → exploration by arm is required.

(Note: Model 4 is used to estimate QAT -value, see chapter 6 for more information)

Right: DEM. Heights in cells (in meters) are coded by colors, dark blue ~ NaN.

The robot finds itself in the upper half of DEM and it is heading down.

Fig. 7.2: Example of DEM after some of missing values were measured by arm.

Left: QAT -values for all modes [1-I, 2-V, 3-L, 5-U, 6-NaN]. NaN mode has QAT -values

less than 0.25 → exploration by arm is no longer required. V-configuration has

the greatest QAT -values → it is chosen to traverse terrain.

Right: DEM. Heights in cells (in meters) are coded by colors, dark blue ~ NaN.

The robot finds itself in the upper half of DEM and it is heading down.

43

The presented concept is simple—the robot is supposed to use arm for exploration

of terrain in front of itself until safe decision can be made, i.e. QAT -value of NaN mode

becomes low. Naturally, it is advantageous to use arm as little as possible. In other words it is

desired to find a strategy which would enable us to touch minimal number of cells in DEM

that would be sufficent to make safe decision.

One reason for this solicitude is to minimize time spent on touching terrain. As we want

to prevent any damage of arm which could be caused by rash movement, it is preffered

to control arm so that it moves rather slowly. Therefore even measurement at only one cell

of DEM takes some time. Second reason is that our arm is not equiped by actual tactile sensor.

Contact with the ground has to be recognized indirectly from currents in arm´s servomotors

when arm starts to push against ground. This contact recognition method burdens motors

in joints and some joints may get overheated after some time. So, it is desired to touch ground

at as few points as possible.

7.1 Reinforcement learning for tactile exploration

7.1.1 RL Framework

When looking for an optimal exploration strategy which would be quick and reliable,

reinforcement learning approach was utilized one more time. For detailed information about

reinforcement learning see chapter 4.

The two elements of framework which have to be properly defined are states and actions.

As arm is used to explore DEM, it is natural to derive states and actions from DEM. Action

is easier to define—action a is related to cell whose height is supposed to be measured.

Therefore we choose action a ∈ A , where A is a set of all cells in DEM reachable by arm,

see Fig. 7.3.

Fig. 7.3: Digital Elevation Map (DEM).

DEM is composed of 0.1 m x 0.1 m cells. Each cell stores value of height of terrain

in particular place. Cells which may be reached by arm are colored light-green.

44

States are a bit more difficult to define. The very first idea was to denote what cells

are already known and what cells are left to explore. But, as one cell may be in 2 states

(known/unknown), it makes 222 states (over 4 million states) in total if we take into account

only those cells which may be touched. It would be considerably computationaly demanding

to estimate Q-values for all states and it would require a lot of memory as well. Hence, it is

good to replace such high-dimensional states with low-dimensional ones. An approach which

showed up to be efficient is to watch how many cells are known in each line of DEM. One

line may then find itself in 6 possible states (none cell is known, ..., all five cells are known).

If we take into account lines 11-15, there are 65 (7776) states. This number of states is more

acceptable. (Note: Keeping track, how many cells in particular lines of DEM are explored,

is performed also because input high-level features FH for adaptive traversability predictions

QAT F H , c are based on average values in lines of DEM, see section 7.3.1.)

7.1.2 Learning process

The task of exploring DEM naturally breaks down into episodes. We start with unknown

terrain and then, step by step, we fill new measured values into DEM (and consequently

feature vector FH, which serves as the input for decision about safety, is updated) until

we have enough information about the terrain. If we want to make this process fast, we should

adapt rewards to motivate learning agent to finish as soon as possible. We may define reward

in a following way: We give a small negative reward r  s , a , s ´  = −1 if

QAT F H , ' NaN '  in new state s´ is still higher than the specified treshold ε = 0.25.

Otherwise, we give high positive reward r  s , a , s ´  = 25 when QAT F H , ' NaN ' 

becomes less than ε and the episode is terminated. The ultimate goal of learning agent

is to learn how to maximize obtained reward so it is supposed to get to terminal state quickly.

We may define a new Q-function QEX (s , a) which estimates future expected sum

of rewards starting from point when action a is used in state s. (Lower index EX is used

to distinguish this function from QAT -function QAT (FH , c) used for adaptive traversability.)

On-policy Monte Carlo Control learning algorithm adopted from book [13] was implemented

to train QEX (s , a) , see Chapter 4.3 for detailed description.

The whole learning process to obtain QEX (s ,a) was performed offline on datasets

recorded by the robot in advance. (Learning online while the robot is moving would be time

45

consuming and it could also endanger the robot.) The training dataset consisted of DEMs with

full information. However, before each learning episode started, front part of DEM was

artificially hidden, i.e. height values in cells were replaced with NaN values. Learning agent

was then performing simulated ''measurements of height'' after which NaN values were, one

by one, replaced back by actual height value until terminating condition was fulfilled. Over

2.5 million of learning episodes were performed in order to ensure that each state-action pair

was tried enough times to ensure that estimated QEX s , a is plausible.

7.2 Testing of strategy learned by Q-learning

QEX -values QEX (s , a) for all possible state-action pairs were determined by

reinforcement learning. The strategy for exploration is then to greedily choose action a*

at given state s:

a * s  = arg max
a

QEX s , a . (7.1)

Performance of this strategy has been assessed offline on testing dataset. At first, front

part of DEM was replaced with NaN values in the beginning of each testing episode, thus

simulating terrain invisible to laser scanner. Each action a*(s) simulated a measurement

by arm by replacing NaN value back with actual height value. Testing episode ended

in the moment when QAT (FH ,' NaN ') dropped bellow treshold ε = 0.25 and number

of measurements which was needed to reach this state was remembered. This simulated

experiment was performed on 1150 DEMs.

Similarly, a strategy which was choosing random actions was used on the same data (1150

DEMs and 50 random episodes on each of them), so that performance of both strategies,

measured by number of actions needed to make a decision, may be compared.

Chapter 6.3.1 was dealing with high level features FH. Choice of high level features

directly influences adaptive traversability QAT -function QAT F H , c and hence differently

build vectors FH make different models. Five such models were designed (see their detailed

specification in Appendix) and their correspondive functions QAT F H
i , c were learned

separately. This also means that QEX (s ,a) strategy had to be learned for each model

46

separately as well, because QEX (s , a) model is build on QAT F H , c model. However,

learning algorithms were used always the same.

The performance of QEX (s , a) strategy then could have been compared with random

strategy on each model. Average numbers of measurements needed to make a decision about

robot´s safety when using random measurements (actions) and Q-learning strategy are plotted

in a graph, see Fig. 7.4.

Fig. 7.4: Comparison of strategy learned by QEX -learning and random strategy.

Q-learning algorithm was used to learn a strategy on 5 different models (which differ in the

way how vector FH is constructed, see chapter 6.3.1). Figure shows average number

of DEM cells which have to be measured by robotic arm until QAT F H , ' NaN '  becomes

lower than ε = 0.25 by random sampling and QEX -learning based strategy.

Our results propose that using Q-learning strategy for exploration may speed up

the process. It proved to be faster on all of five presented models. We observed that this

strategy prefers to choose action which may potentially bring more valuable knowledge about

terrain and which may enable robot to make safe decision sooner.

Q-learning strategy performed well particularly on Model 4. Only 8.8 measurements were

needed in average and it was less cca. by 4 measurements than using random strategy.

47

Model 1 Model 2 Model 3 Model 4 Model 5
0

5

10

15

20

25

Random strategy
Q_ex strategy

N
um

be
r o

f m
ea

su
re

m
en

ts
re

qu
ire

d
fo

r s
af

e
de

ci
si

on
 [

-]

8. Documentation

This thesis was mainly focused on a continuation in a development of a ROS package

'adaptive_traversability' for UGV in TRADR project. This package´s purpose is to introduce

a module for autonomous control of Niftibot´s flippers and to adapt them with respect

to traversed terrain. Core of the package was implemented by Petr Zuzánek. [1] [2] Source

codes of several nodes were modified during the work on this thesis.

Files AT_with_MATLAB_JACO.cpp, AT_with_MATLAB_JACO.h are then the most

important contribution of this work (along with Matlab part). These files realize

communicaton with Matlab, which was used to create and utilize models for AT, see

chapter 6, and for arm exploration, see chapter 7. Matlab part of the project is implemented

in files init_nodes.m, F_callback.m and F_choose_arm_action_callback.m.

If you are interested in the implemented 'adaptive_traversability' package, please contact

the author of this thesis, Jakub Mareš, or his supervisor, Karel Zimmermann, Ph.D..

8.1 Launching instructions

After Niftibot is turned on and all drivers are succesfully initialized, run following

commands on the robot, the base station and in Matlab:

BASE$ roslaunch nifti_mapping_launchers mapAndNav.launch
BASE$ roslaunch adaptive_traversability AT_with_MATLAB_JACO_base.launch
ROBOT$ roslaunch jaco_moveit JACO_for_AT.launch
ROBOT$ export ROS_IP=192.168.2.xxx # ip adress of robot
ROBOT$ roslaunch adaptive_traversability AT_with_MATLAB_JACO.launch
MATLAB$ cd "path to 'at_rosmatlab' directory"
MATLAB$ init_nodes

To ensure proper communication between Matlab and roscore which is running on robot,

modify following lines in init_nodes.m properly:

ROS_MASTER_IP = '192.168.2.xxx'; % ip adress of robot
ROS_MASTER_PORT = 11311; % port
setenv('ROS_MASTER_URI','192.168.2.xxx:11311') % ip adress of robot:port
setenv('ROS_IP','192.168.2.yyy') % ip adress of machine with Matlab

Press buttons '3' and '4' on joypad simultaneously to activate adaptive traversability mode.

Press button '4' to deactivate.

Press button '5' to enable exploration by JACO robotic arm. Press button '6' to disable.

48

Brief description of launched nodes is covered in the following sections.

8.2 Base station nodes

Following launchers are primarly supposed to run on the base station, but they may be also

run on the robot as well.

8.2.1 mapAndNav.launch

This launcher starts nodes from 'nifti_mapping' package which are responsible for running

laser scanner and generating useful information about geometry of robot´s surrounding

environment.

8.2.2 AT_with_MATLAB_JACO_base.launch

This launcher starts several nodes which are used particularly for preparing map

information which is later used by AT_MATLAB_JACO node to generate DEM and feature

vector F.

Fig. 8.1: AT_with_MATLAB_JACO_base launcher

Node: icp_odom_transformer

Source: adaptive_traversability/src/icp_odom_transformer.cpp

This node listens to /dynamic_point_cloud topic. It receives point cloud containing points

whose coordinates are expressed in /base_link frame, i.e. it receives points generated by laser

scanner in coordinate system connected to the robot. The node then transforms point cloud

into fixed /map frame which is the global frame. Such transformed point cloud is published

on topic /dynamic_point_cloud_filtered which is subscribed by octomap server.

49

Node: octomap_server_node

Package: octomap_server [37]

It is a node from octomap_server package which is one of ROS standard packages.

It listens to the topic /dynamic_point_cloud_filtered where dynamic point clouds in global

frame are published. These are gradually used for building an octomap, which

is 3D occupancy grid. Octomap is published on /octomap_point_cloud_centers topic.

Node: gen_msg_node

Source: adaptive_traversability/src/gen_msg_node3.cpp

This node´s function is to subscribe to several topics in order to obtain information about

robot´s position, velocity, odometry, currents in tracks, state of flippers and particularly point

clouds. It is receiving dynamic point cloud (on topic /dynamic_point_cloud) and point cloud

generated by octomap server (on topic /octomap_point_cloud_centers).

The node wraps up all information into floor message (floor_msgs.msg), which is defined

within adaptive_traversability package. This message contains all the information needed

to construct feature vector F.

Node: at_publ

Source: adaptive_traversability/src/tf_child_publisher.cpp

This node is broadcasting 'tf' transformation between coordinate frames /base_link, which

is connected to the robot, and /stab_base_link, which has the same origin, but it has

compensated pitch and roll so that it is parallel to global frame.

8.3 Robot nodes

Following nodes (launchers) are intended to be run on the robot itself.

8.3.1 JACO_for_AT.launch

There is a nested launcher jabbing.launch which was implemented by V. Šalanský. [36]

It starts action server for jaco_moveit, thus it enables to control arm from ROS and it launches

jab_service.py node within which there is an implemented algorithm for touching ground

at specified point.

50

Node: service_arm_touchDEM

Source: jaco_moveit/src/service_arm_touchDEM.py

This node utilizes jab_service.py to perform height measurement at specified DEM cell.

It serves as a service server which uses user defined srv jaco_moveit/JabDEM.srv:

int8 row
int8 col

bool valid
float32 x
float32 y
float32 z

The request contains coordinates (row and column) of DEM cell which should be explored

by the arm. The arm performs a measurement after which the service returns a response

containing coordinates [x, y, z] of the measured point. Boolean variable valid denotes

if measurement was succesful (therefore values in x, y, z are valid) or unsuccesful.

The service´s name used in ROS framework is /JACO_touch_DEM.

8.3.2 AT_with_MATLAB_JACO.launch

This launcher starts a node AT_MATLAB_JACO which is the core node for adaptive

traversability. It communicates with Matlab node and is capable to utilize JACO robotic arm

through service_arm_touchDEM.py node (by calling /JACO_touch_DEM service).

Node: AT_MATLAB_JACO

Source: adaptive_traversability/src/AT_with_MATLAB_JACO.cpp

Header: adaptive_traversability/include/AT_with_MATLAB_JACO.h

This node is the main node for adaptive traversability on Niftibot. It is subscribing for floor

message and dynamic point cloud from gen_msg_node. When callback on floor message

is triggered, inference process begins.

In the beggining, vector F is constructed. It contains 210 members: F = [100 x height

values for each bin in DEM; pitch; speed_r (real speed of robot); speed_c (speed demanded

by control); 6 x currents in tracks; roll; 100 x counter].

51

This vector is send to Matlab node on topic /model_request. Matlab node, at first, extracts

high-level features FH from F. After that, value QAT F H , c is estimated by regression trees

for all configurations and send back to AT_MATLAB_JACO node on topic /model_response.

If QAT F H , ' NaN '  is higher than treshold ε = 0.25, vector F is send to Matlab again,

this time on topic /arm_action_request. Matlab chooses the most viable action according to

QEX (s , a) which has been trained, see chapter 7 for more details, and is stored in a file

RL_OUTPUT.mat. Coordinates (row and column) of DEM cell which should be explored

by arm are send back on topic /arm_action_response. After that /JACO_touchDEM service,

see section 8.3.1, is called. Robotic arm is used to measure height of terrain at particular DEM

cell which is then added to DEM. This process is repeated in a cycle until

QAT F H , ' NaN '  drops below treshold ε or there are no more DEM cells to explore

or operator forces its end.

Finally the most suitable flipper configuration with the highest QAT F H , c value

is chosen for driving robot forwards. The whole process is recapitulated in a flow diagram,

see Fig. 8.2.

52

Fig. 8.2: Flow diagram of AT_MATLAB_JACO node.

53

8.4 Matlab node

8.4.1 init_nodes.m

This script connects Matlab to roscore running on the robot. Remember, that IP adress

has to be correctly specified within the code for connection to be succesfully established, see

section 8.1 for instructions! Then, it starts a rosmatlab node with two pairs subscriber-

publisher, which are covered in the following sections.

8.4.2 F_callback.m

F_subscriber which is started by init_nodes.m subscribes to topic /model_request.

A message containing vector F published by AT_MATLAB_JACO node on the topic

is received this way. Callback function F_callback.m is triggered at that moment.

This Matlab function utilizes function getFeaturesFromF.m which extracts high-level

features FH from F. Then it uses learned regression trees to estimate QAT F H , c for

all configurations. (The trees are stored in ./tree directory whereas major part was

implemented by Petr Zuzánek in [2].) In the end Q_publisher publishes Q-values on topic

/model_response.

DEM and Q-values for all configurations are also visualized in Matlab figures.

8.4.3 F_choose_arm_action_callback.m

F_action_subscriber which is started by init_nodes.m subscribes to topic /arm_action_-

request. A message containing vector F published by AT_MATLAB_JACO node on the topic

is received this way. Callback function F_choose_arm_action_callback.m is triggered at that

moment.

It utilizes learned QEX (s ,a) function, which is stored in RL_OUTPUT.mat file, in order

to determine what DEM cell should be explored by arm. The coordinates (row and column)

are published on topic /arm_action_response by arm_action_publisher.

54

9. Experiments

Two experiments were performed to verify functionality of the implemented algorithm

for adaptive traversability extended by possibility of tactile exploration by a robotic arm.

The experiments took place under lab conditions. The aluminium foil served as a reflective

layer which is hardly visible for laser scanner. It caused missing information in Digital

Elevation Map (DEM) in front of the robot and consequently it disallowed robot to move

forward because such action would be potentially dangerous. Robot had to use robotic arm

which was holding a simple wooden stick to touch some points and add them to the existing

map. Only then the robot could make a safe decision about moving forward and choose

suitable flipper configuration.

9.1 Experiment on flat terrain

First experiment was captured on a video AT_with_JACO_1.mp4 which is accesible

on enclosed DVD.

During the experiment, robot was driven on a flat floor in a laboratory. The operator

was only giving commands to move forward or backward. Other actions were performed

autonomously by the robot. There was an aluminium foil put on the floor which caused

missing data in DEM, because it was not well detactable by laser scanner. When the robot

approached the foil, exploration by robotic arm had to be invoked.

The whole movement of the robot may be viewed as divided into few sequences. At first,

the robot explores some DEM cells by the JACO arm until movement forward is denoted

safe, i.e. QAT -value of NaN configuration QAT F H , ' NaN '  drops under treshold ε = 0.25.

Robot can move forward a bit and it gets again into a situation that there is an unknown

terrain in front. QAT F H , ' NaN '  becomes again higher than ε and hence, exploration

by the arm is invoked again and new points are added to DEM.

After several tactile measurements, the robot is able to get safely over aluminium foil.

Without usage of the arm for tactile exploration, such obsatcles like the foil could not be

traversed because of incomplete terrain data or it would be at least hazardous if operator

forced the robot to continue to unknown terrain anyway.

55

Finally, the operator commanded robot to drive backward to return to the same position

as in the beggining of the experiment. As the points which were obtained by touching

the ground by the arm were stored in separated point cloud, they persisted in memory. When

the same aluminium foil was seen again by the robot, the touched points were already present

in DEM. When the robot was overcoming the foil for the second time, no further exploration

by the arm was therefore not needed.

9.2 Experiment on a downward step

Second experiment was captured on a video AT_with_JACO_2.mp4 which is accesible

on enclosed DVD.

In the beginning of this experiment robot found itself on an elevated platform and operator

wanted to drive it downwards. However, an aluminium foil was located under the step and

it caused that robot had not enough information about the terrain under the platfrom. Hence,

tactile exploration by arm had to be used. When exploration was finished, robot correctly

chose U-shape of the flippers which is the most suitable configuration for overcoming

a descending step.

56

10.Discussion

Performed experiments suggest that our approach to adaptive traversability, which

is exploiting information about pose of the robot and Digital Elevation Map (DEM) and is

using decision trees to predict Q-values, is promising. The robot is able to adjust flippers

in order to overcome obstacles in front of itself. The main contribution of this work is then

extension of the process which is used to construct DEM. Formerly only data from laser

scanner were used. It showed up that laser alone may be insufficient for certain scenarios,

particularly it is unable to detect reflective surfaces or it performs poorly in the presence

of smoke. As the both mentioned situations may be expected during USAR missions, it has

been decided to equip the robot by JACO robotic arm.

The idea that the arm may be utilized for tactile exploration of terrain in front of the robot

was proved to be practicable. The experiments with an aluminium foil have indicated that

the robot is really able to update DEM in this way. This may help make safer decisions in case

of incomplete data about terrain in front of the robot.

However, some issues were encountered during tests which may be subject of the future

work. One of them is that robot sometimes (in slightly less than 10% cases, see section 6.3.1)

chooses incorrect flipper configuration. It is not bad if we take into account that decisions are

made with frequency cca. 2 Hz and an incorrect decision is often immediately followed

by a correct one, so robot´s safety is not actually endangered. It just lead to a situation when

robot starts switching flippers to the incorrect configuration and it is immediately followed

by switching back to the optimal configuration before it even finishes switching

to the incorrect one. This behaviour may be also seen on the video AT_with_JACO_1.mp4

on enclosed DVD. Addition of some heuristic which would prevent this behaviour may

contribute to more fluent movement.

Secondly, movement of the arm is slow, therefore it takes some time to measure even

one value in DEM. This setting is chosen deliberately for now in order to prevent rash

movement which could lead to bumping with arm to surrounding objects. One also has

to be cautious during tactile measurement by arm. It is the principle of this subtask, that one

does not know in advance actual height of the terrain which has to be explored. Thus, at first,

57

arm points the stick at a greater height and it slowly moving down towards ground until

a touch is recognized.

Recognition of the touch is also a bit problematic. Contact with the ground has to

be identified indirectly from currents in arm´s joints when the arm starts to push against

the ground. This contact recognition method burdens motors in joints and some joints may

get overheated after some time. The held stick may also “slide” on the surface so that contact

is not recognized. Usage of some kind of tactile sensor would be more effective

and comfortable.

Thirdly, as the arm has been mounted on the robot, robot´s center of gravity has moved

upward. Additionally, as the arm moves, the center of gravity moves as well. It has influence

on stability of the robot and it may not be neglected in some critical situations. It is double-

edged, because arm may do both—cause tipping over or prevent tipping over—it depends

only on the way how it is controlled. Intelligent balancing may be subject of the future work.

Some drawbacks were discussed in previous paragraphs. However, we argue that

researched potential of arm´s contribution may compensate second and third mentioned

drawbacks as the arm allows the robot to explore more places than before. Tactile exploration

by arm may be very useful, particularly if the hand was enhanced with direct tactile sensors

which would make recognition of the touch much easier and more reliable.

In parallel with this project, Vojtěch Šalanský was implementing 3D terrain reconstruction

algorithm in his diploma thesis. [36] He models conditional probability of height value

in each DEM cell with respect to other cells whereas he uses method of maximum likelihood

to describe how value in one cell is influenced by values from other cells. DEM is divided

into two subsets—known and unkwnown cells. Two properties are used to describe unknown

cells (which are candidates for tactile measurement by the arm)—accuracy (particular cell has

high accuracy if it depends on already known cells) and usefulness (particluar cell has high

usefulness if it may potentially bring valuable information on other unknown cells, i.e. values

in other unknown cells highly depend on this one). The algorithm chooses unknown cell

to be measured by the arm, which has high usefulness and low accuracy, so it helps

to estimate values in all unknown cells (including itself) more accurately.

58

Model implemented in this thesis, which is used to choose cell which should be measured

by the arm, was trained using reinforcement learning. It chooses such cell which may

potentially lower QAT F H , ' NaN '  which is used as safety measure. (The lower this value

is, DEM is better known.) The observed learned strategy is that cells for tactile measurement

are chosen in such order to complete information in vector of computed high-level

features FH. In contrast with the algorithm implemented by V. Šalanský, it does not aim

to estimate values in all DEM cells and to model the whole DEM. It just aims to collect

enough information to make safe dicision if the robot may or may not move forward and what

flipper configuration should be used.

59

11.Conclusion

This thesis was focused on solving adaptive traversability (AT) task for a tracked

unmanned ground vehicle (Niftibot). The main goal was to propose a semi-autonomous

system to control auxiliary articulated tracks of the robot, called flippers, so that the robot

would be able to move fluently across terrain and to safely overcome obstacles on the way

while forward speed and heading of the robot is controlled by its operator. The main

contribution of such system is lowering cognitive load of the operator who is no longer

required to adjust flippers manually.

The author took up previous progress on AT system which was based on Q-learning

and decision trees. [2] Several flipper modes (configurations) were designed for various

situations. The trees then estimated Q-value QAT F , c . for all configurations c ∈ C

in particular state described by feature vector F, which included Digital Elevation Map

(DEM) of adjacent terrain. The mode with the highest Q-value was ultimately chosen

for control. However, this system had difficulties when it had to deal with situations with

incomplete terrain data. (It leaned only on laser scanner which barely detects reflective

surfaces or performs badly in smoke leaving blank spaces in a model of environment.)

Therefore a new mode, denoted as NaN mode, was introduced to the system. This mode

is invoked whenever there is too much missing information in DEM. All decision trees were

re-learned on manually collected and annotated datasets in consideration of this extension.

The learning process also included introduction of high-level features FH extracted from

the original feature vector F in an attempt to lower susceptibility to overfitting (see

Chapter 6.2.1 and Appendix).

As a result of the learning process, new decision trees estimating Q-values have been

obtained and it also included a tree which estimates Q-value of NaN mode

QAT F H , ' NaN '  . This value serves as a safety measure determining whether the robot

may move on or not. The value is highest when there is no information in DEM at all. On the

contrary, it is negative when information in DEM is complete. When QAT F H , ' NaN ' 

is higher than a specified treshold ε = 0.25, movement forward is forbidden, because there

is little information in DEM and safety of robot cannot be guaranteed.

Kinova JACO robotic arm has been mounted on the top of the robot to deal with such

situations. The robot is now able to touch terrain in front of itself and use terrain height

60

measured this way to update DEM. Concretely, an agent, which has been learned using

reinforcement learning, selects an unknown DEM cell which may potentially bring useful

information to the model. The arm touches terrain at coordinates of selected DEM cell, height

value is retrieved and filled in DEM. QAT F H , ' NaN '  value is estimated again after

the update and if it is still higher than ε, a new measurement has to be made. This means that

arm is used to explore unknown terrain in front of the robot until there is enough information

in DEM. Only after that the robot is allowed to choose optimal flipper configuration c* with

the highest estimated QAT F H , c and move forward.

Functionality of the implemented system was tested under lab conditions, see video-

recordings on enclosed DVD. Artificial obstacles were used to simulate possible situations

which may happen in real environment. It includes using aluminium foil which has a property

that it reflects majority of laser rays, thus it is hardly detectable by laser scanner. The system

performed quite well—the robot was able to touch terrain in front of itself. It made several

measurements this way and finally chose viable flipper configuration to move forward across

the aluminium foil.

Proposition of the future work includes testing of the implemented algorithm in a realistic

environment. This process may also include collection of more training samples for learning

of decision trees in order to improve the trained model. Better behaviour of the model

is expected after that.

61

References

[1] Zimmermann, K.; Zuzanek, P.; Reinstein, M.; Hlavac, V., "Adaptive Traversability of unknown

complex terrain with obstacles for mobile robots," Robotics and Automation (ICRA), 2014 IEEE

International Conference on, pp.5177,5182, May 31-June 7 2014

[2] Zimmermann, K.; Zuzanek, P.; Reinstein, M.; Petricek, T.; Hlavac, V., "Adaptive Traversability of

Partially Occluded Obstacles," Robotics and Automation (ICRA), 2015 IEEE International Conference

on; May 26-30 2015

[3] Mission. TRADR: Long-Term Human-Robot Teaming for Robot-Assisted Disaster Response

[online]. [cit. 2015-05-01]. www: http://www.tradr-project.eu/?page_id=73

[4] Partners. TRADR : Long-Term Human-Robot Teaming for Robot-Assisted Disaster Response

[online]. [cit. 2015-05-01]. www: http://www.tradr-project.eu/?page_id=30

[5] Fragoulopoulou, Z.; First TRADR EU FP7 Joint Exercise (TJEx). Robohub [online]. [cit. 2015-05-

01]. www: http://robohub.org/first-tradr-eu-fp7-joint-exercise-tjex/

[6] Bluebotics [online]. [cit. 2015-05-01]. www: http://www.bluebotics.com/

[7] Redmine, CIIRC, CTU; internal documentation of TRADR project;

www: https://redmine.ciirc.cvut.cz/

[8] Ladybug3 1394b. PointGrey [online]. [cit. 2015-05-01].

www: http://www.ptgrey.com/ladybug3-360-degree-firewire-spherical-camera-systems

[9] Kinova Robotics [online]. [cit. 2015-05-01].www: http://kinovarobotics.com/

[10] O´Kane, J., M.; "A Gentle Introduction to ROS," Version 2.1.1, Independently published; ISBN

978-14-92143-23-9; Oct. 2013; www: http://www.cse.sc.edu/~jokane/agitr/

[11] ROS [online]. [cit. 2015-05-03]. www: http://www.ros.org/

[12] Browsing packages for indigo. ROS [online]. [cit. 2015-05-03].

www: http://www.ros.org/browse/list.php

[13] Sutton, R., S.; Barto, A., G; Reinforcement Learning: An Introduction. Cambridge, Mass.: MIT

Press, 1998, xviii, 322 p. ISBN 0262193981.

[14] Russell, S., J.; Norvig P.; Davis, E.; Artificial Intelligence: A Modern Approach. 3rd ed. Upper

Saddle River: Prentice Hall, c2010, xviii, 1132 p. ISBN 0136042597.

[15] Watkins, C.; Dayan, P.; Technical Note: Q-learning; Machine Learning; Vol. 8, Issue 3-4; pp. 279-

292; May 1992

[16] Byoung-Ho Kim, "Centroid-based analysis of quadruped-robot walking balance," Advanced

Robotics, 2009. ICAR 2009. International Conference on, pp.1-6, 22-26 June 2009

62

http://www.tradr-project.eu/?page_id=73
http://www.ros.org/browse/list.php
http://www.ros.org/
http://www.cse.sc.edu/~jokane/agitr/
http://kinovarobotics.com/
http://www.ptgrey.com/ladybug3-360-degree-firewire-spherical-camera-systems
https://redmine.ciirc.cvut.cz/
http://www.bluebotics.com/
http://robohub.org/first-tradr-eu-fp7-joint-exercise-tjex/
http://www.tradr-project.eu/?page_id=30

[17] Komatsu, H.; Endo, G.; Hodoshima, R.; Hirose, S.; Fukushima, E.F., "Basic consideration about

optimal control of a quadruped walking robot during slope walking motion," Advanced Robotics and

its Social Impacts (ARSO), 2013 IEEE Workshop on, pp. 224-230, 7-9 Nov. 2013

[18] Woosub Lee; Sungchul Kang; Munsang Kim; Mignon Park, "ROBHAZ-DT3: teleoperated

mobile platform with passively adaptive double-track for hazardous environment applications,"

Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International

Conference on , vol.1, pp.33-38, 28 Sept.-2 Oct. 2004

[19] Guarnieri, M.; Debenest, P.; Inoh, T.; Takita, K.; Masuda, H.; Kurazume, R.; Fukushima, E.;

Hirose, S., "HELIOS carrier: Tail-like mechanism and control algorithm for stable motion in unknown

environments," Robotics and Automation, 2009. ICRA '09. IEEE International Conference on,

pp.1851-1856, 12-17 May 2009

[20] Ohno, K.; Morimura, S.; Tadokoro, S.; Koyanagi, E.; Yoshida, T., "Semi-autonomous control

system of rescue crawler robot having flippers for getting Over unknown-Steps," Intelligent Robots

and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pp.3012-3018, Oct. 29-Nov. 2

2007

[21] Yamada, Y.; Endo, G.; Fukushima, E.F., "Blade-type crawler vehicle bio-inspired by a wharf

roach," Robotics and Automation (ICRA), 2014 IEEE International Conference on, pp.806-812, May

31 2014-June 7 2014

[22] Colas, F.; Mahesh, S.; Pomerlau, F.; Liu, M.; Sirgwart, R., "3d path planning and execution for

search and rescue ground robots," in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ

International Conference on, pp. 722-727. Nov. 2013

[23] Mihankhah, E.; Kalantari, A.; Aboosaeedan, E.; Taghirad, H.D.; Ali, S.; Moosavian, A.,

"Autonomous staircase detection and stair climbing for a tracked mobile robot using fuzzy controller,"

Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on, pp.1980-1985, 22-

25 Feb. 2009

[24] Okada, Y.; Keiji Nagatani,; Kazuya Yoshida,; Yoshida, T.; Koyanagi, E., "Shared autonomy

system for tracked vehicles to traverse rough terrain based on continuous three-dimensional terrain

scanning," Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on,

pp.357,362, 18-22 Oct. 2010

[25] IRobot 510 PackBot®: the Multi-mission Robot. IRobot [online]. [cit. 2015-05-11].

www: http://www.irobot.com/for-defense-and-security/robots/510-packbot.aspx#PublicSafety

[26] Brunner, M.; Bruggemann, B.; Schulz, D., "Towards autonomously traversing complex obstacles

with mobile robots with adjustable chassis," Carpathian Control Conference (ICCC), 2012 13th

International, pp.63-68, May 2012

63

[27] Singhv, S.; et al., "Recent progress in local and global traversability for planetary rovers,"

In: Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference on. IEEE,

2000. pp. 1194-1200.

[28] Goldberg, S.B.; Maimone, M.W.; Matthies, L., "Stereo vision and rover navigation software for

planetary exploration," Aerospace Conference Proceedings, 2002. IEEE , vol.5, pp. 2025-2036, 2002

[29] Shirkhodaie, A.; Amrani, R.; Tunstel, E., "Soft computing for visual terrain perception and

traversability assessment by planetary robotic systems," Systems, Man and Cybernetics, 2005 IEEE

International Conference on, vol.2, pp.1848-1855, Vol. 2, Oct. 2005

[30] Chunxin Qiu; Xiaorui Zhu; Liping Liu, "Robot Terrain Inclination model extracted from laser

scanner data for outdoor environment," Mechatronics and Automation (ICMA), 2012 International

Conference on, pp.1727-1731, 5-8 Aug. 2012

[31] Braun Tim; Bitsch Henning; Berns Karsten; "Visual Terrain Traversability Estimation Using a

Combined Slope/Elevation Model," AI, KI 2008, 31st Annual German Conference on, pp. 177-184 ,

September 23-26, 2008

[32] Martin, S.; Murphy, L.; Corke, P.; "Building Large Scale Traversability Maps Using Vehicle

Experience," Springer Tracts in Advance Robotics, Vol. 88, pp. 891-905, 2013

[33] Dongshin Kim; Jie Sun; Sang Min Oh; Rehg, J.M.; Bobick, A.F., "Traversability classification

using unsupervised on-line visual learning for outdoor robot navigation," Robotics and Automation,

2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pp.518,525, 15-19 May 2006

[34] Hesch, J.A.; Mariottini, G.L.; Roumeliotis, S.I., "Descending-stair detection, approach, and

traversal with an autonomous tracked vehicle," Intelligent Robots and Systems (IROS), 2010

IEEE/RSJ International Conference on, pp.5525-5531, 18-22 Oct. 2010

[35] Okada, Y.; Keiji Nagatani,; Kazuya Yoshida,, "Semi-autonomous operation of tracked vehicles on

rough terrain using autonomous control of active flippers," Intelligent Robots and Systems, 2009.

IROS 2009. IEEE/RSJ International Conference on, pp.2815-2820, 10-15 Oct. 2009

[36] Šalanský, V.; Kontaktní průzkum terénu pro mobilního robota; Diplomová práce; Fakulta

elektrotechnická, Čvut v Praze; květen 2015

[37] Octomap_server: Package Summary [online]. [cit. 2015-05-01].

www: http://wiki.ros.org/octomap_server

64

http://wiki.ros.org/octomap_server

Appendix

A.1 Extraction of high-level features FH from vector F

Vector F was introduced in chapter 6.1.1. It contains 210 members:

F = [100 x height values for each bin in DEM; pitch; speed_r (real speed of robot);

speed_c (speed demanded by control); 6 x currents in tracks; roll; 100 x counter].

As it was mentioned in chapter 6.2.1, it was decided to use high-level features as input

for decision trees. Five different models, which differ in the way how high-level feature

vector FH is constructed from F, were made. This section provides information about

construction of FH, namely it presents source codes of Matlab functions getFeaturesFromF.m,

which are responsible for this process.

There are five files model_X.m which contain Matlab implementation of function

getFeaturesFromF(F) on enclosed DVD. These files differ, each of them creates own

collection of high-level features which are extracted from vector F. Source code

of getFeaturesFromF(F) for Model 4 (model_4.m on DVD) is presented as an example

in the following section.

65

A.1.1 Model 4

 function [features] = getFeaturesFromF(F)
 DEM = F2DEM(F);

 PITCH = F(101);
 ROLL = abs(F(110));

 LIN_AVGS = zeros(8,1); index = 0;
 for line = 9:16
 index = index + 1;
 DEM_line = DEM(line,:);
 if (sum(isnan(DEM_line)) > 3)
 LIN_AVGS(index) = NaN;
 else
 LIN_AVGS(index) = nanmean(DEM_line);
 end
 end
 LIN_AVGS_STD = nanstd(LIN_AVGS);
 NAN_INFO = isnan(LIN_AVGS(3:6));

 lin_averages = LIN_AVGS(isfinite(LIN_AVGS(3:end)));
 gradient = diff(lin_averages);
 GRAD_MAX = max(gradient);
 if(isempty(GRAD_MAX))
 GRAD_MAX = NaN;
 GRAD_MAX_nan = 1;
 else
 GRAD_MAX_nan = 0;
 end
 GRAD_MIN = min(gradient);
 if(isempty(GRAD_MIN))
 GRAD_MIN = nan;
 GRAD_MIN_nan = 1;
 else
 GRAD_MIN_nan = 0;
 end
 GRAD_MEAN = mean(gradient);

 features = [PITCH;
 ROLL;
 LIN_AVGS;
 LIN_AVGS_STD;
 NAN_INFO;
 GRAD_MAX;
 GRAD_MAX_nan;
 GRAD_MIN;
 GRAD_MIN_nan;
 GRAD_MEAN;
];
 end

66

	DIPLOMA THESIS ASSIGNMENT
	ZADÁNÍ DIPLOMOVÉ PRÁCE
		Abstract
		Keywords

		Abstrakt
		Klíčová slova

		Acknowledgement
		Prohlášení autora práce
		Contents
		List of annexes
		List of abbreviations
	1.	Introduction
	2.	TRADR project
	2.1	TRADR Consortium
	2.2	TRADR mission
	2.3	TRADR Joint Exercises
	2.4	Niftibot
	2.4.1	Platform description
	2.4.2	Sensor suite
	Ladybug 3 omnicamera
	Sick LMS-151 laser scanner
	XSens Mti-G IMU

	2.4.3	Kinova JACO Robotic Manipulator

	3.	Robot operating system
	3.1	Basic Concepts
	3.2	Framework
	3.2.1	Package
	3.2.2	Node
	3.2.3	Roscore
	3.2.4	Topics and messages
	3.2.5	Services

	4.	Reinforcement learning
	4.1	Markov Decision Processes
	4.2	Q-function
	4.3	Reinforcement Learning process

	5.	Terrain traversability—State of Art
	5.1	Chassis construction
	5.2	Artificial intelligence for autonomous traversal
	5.2.1	Planetary rovers
	5.2.2	Search and rescue UGVs
	5.2.3	Planning approach to traversability
	5.2.4	Reactive approach to traversability

	6.	Adaptive traversability
	6.1 Existing AT algorithm
	6.1.1 Utilized features—Feature vector F
	6.1.2 Flipper configurations
	I-shape (maximazes traction)
	V-shape (provides observability)
	L-shape (climbing up)
	U-shape (climbing down)

	6.1.3 Reinforcement learning framework for AT
	6.1.4 Decision trees

	6.2 Enhancement of AT algorithm
	6.2.1 High-level features FH
	6.2.2 Active tactile exploration of terrain by robotic arm
	6.2.3 Introduction of NaN Mode

	6.3 Testing of AT algorithm
	6.3.1 Offline testing on recorded datasets
	6.3.2 Online testing of AT algorithm on Niftibot

	7. Tactile exploration of DEM
	7.1 Reinforcement learning for tactile exploration
	7.1.1 RL Framework
	7.1.2 Learning process

	7.2 Testing of strategy learned by Q-learning

	8. Documentation
	8.1 Launching instructions
	8.2 Base station nodes
	8.2.1 mapAndNav.launch
	8.2.2 AT_with_MATLAB_JACO_base.launch
	Node: icp_odom_transformer
	Node: octomap_server_node
	Node: gen_msg_node
	Node: at_publ

	8.3 Robot nodes
	8.3.1 JACO_for_AT.launch
	Node: service_arm_touchDEM

	8.3.2 AT_with_MATLAB_JACO.launch
	Node: AT_MATLAB_JACO

	8.4 Matlab node
	8.4.1 init_nodes.m
	8.4.2 F_callback.m
	8.4.3 F_choose_arm_action_callback.m

	9.	Experiments
	9.1	Experiment on flat terrain
	9.2	Experiment on a downward step

	10.	Discussion
	11.	Conclusion
		References
		Appendix
	A.1	Extraction of high-level features FH from vector F
	A.1.1 Model 4

