
master’s thesis

Implementation and Extension of the
Virtual Arc Consistency Algorithm for

Weighted Constraint Satisfaction Problem

Lucie Bužková

June 2015

Ing. Tomáš Werner, Ph.D.

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of

Cybernetics

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ DIPLOMOVÉ PRÁCE

Student: Bc. Lucie B u ž k o v á

Studijní program: Otevřená informatika (magisterský)

Obor: Počítačové vidění a digitální obraz

Název tématu: Implementace a rozšíření algoritmu na virtuální hranovou konzistenci
 pro problém váženého programování s omezujícími podmínkami

Pokyny pro vypracování:
1. Implementujte algoritmus pro uvedení problému váženého CSP (weighted constraint satisfaction problém, WCSP)
 do stavu virtuální hranové konzistence (virtual arc consistency, VAC) podle [1].
2. Algoritmus rozšiřte tak, aby WCSP uvedl do stavu virtuální J-konzistence definované v [2].
3. Algoritmus rozšiřte tak, aby (alespoň částečně) využíval informace z předešlé iterace a byl tak použitelný na velké
 instance (např. obrazy). Inspirujte se předešlou implementací příbuzného algoritmu [3,4].
4. Zamyslet se nad tím, jak by algoritmus šlo rozšířit, aby umožňoval co nejefektivnější 'warm-start' po malé změně
 instance WCSP (např. přidání/odebrání/změna jediného omezení) či úrovně J-konzistence. Tato vlastnost je
 klíčová, má-li se algoritmus použít ve smyčce branch&bound či branch&cut.
Implementace bude v Matlabu (možno ale zvolit i jiný jazyk, např. C++ nebo Java). Kromě výsledného kódu bude
výstupem pseudokód napsaný v terminologii a značení používaných v [2-5].
Práce má výzkumný charakter. Jejím hlavním přínosem má být:
1. Co nejjednodušší a nejpromyšlenější algoritmus.
2. Pečlivé odůvodnění a otestování správnosti algoritmu.
3. Diskuze překážek, které se po cestě vyskytnou, a možných cestách k jejich řešení.
Získané zkušenosti by měly být krokem k budoucí rychlé (C++) implementaci všestranně použitelného algoritmu
umožňujícího velmi efektivní ořezávání hledacího prostoru WCSP.

Seznam odborné literatury:
[1] MC Cooper, S de Givry, M Sanchez, T Schiex, M Zytnicki, T Werner: Soft Arc Consistency Revisited. Artificial
 Intelligence 174(7-8):449-478, May 2010.
[2] T Werner: Revisiting the Linear Programming Relaxation Approach to Gibbs Energy Minimization and Weighted
 Constraint Satisfaction. IEEE Trans. on Pattern Recognition and Machine Intelligence (PAMI) 32(8) August 2010.
[3] T Werner: A Linear Programming Approach to Max-sum Problem: A Review. IEEE Trans. on Pattern Recognition
 and Machine Intelligence (PAMI) 29(7), July 2007.
[4] T Werner: A Linear Programming Approach to Max-sum Problem: A Review. Research report CTU-CMP-2005-25,
 Dec 2005.
[5] V Franc, S Sonnenburg, T Werner: Cutting Plane Methods in Machine Learning. A chapter in: Optimization for
 Machine Learning, MIT Press, 2012.

Vedoucí diplomové práce: Ing. Tomáš Werner, Ph.D.

Platnost zadání: do konce letního semestru 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 17. 2. 2015

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc. Lucie B u ž k o v á

Study programme: Open Informatics

Specialisation: Computer Vision and Image Processing

Title of Diploma Thesis: Implementation and Extension of the Virtual Arc Consistency
 Algorithm for Weighted Constraint Satisfaction Problem

Guidelines:
1. Implement the algorithm to enforce VAC (virtual arc consistency) for weighted constraint satisfaction problem
 (WCSP) according to [1].
2. Extend the algorithm to enforce J-consistency, as defined in [2].
3. Extend the algorithm to (at least partially) use information from previous iterations, which makes it applicable
 to large instances (such as images). Take ideas from the existing implementation of the related algorithm [3-4].
4. Consider an extension of the algorithm to support 'warm-start' after a small change of the WCSP instance (such
 as adding/deleting/modification of a single constraint) or the level of J-consistency. This property is crucial for
 using the algorithm withing a branch&bound or branch&cut search loop.
The implementation will be done in Matlab (but other languages are possible too, such as C++ or Java). Besides
the resulting code, an outcome of the work will be a pseudocode, written in the notation and terminology of [2-5].
The work has a research flavour. Its main expected outcome is:
1. The algoritm, as simple as possible and thoroughly thought over.
2. Thorough justification and testing of the correctness of the algorithm.
3. A discussion of the difficulties encountered and of possible ways of their solution.
The gained experiences should be a step towards a future fast (C++) implementation of a versatile algorithm to very
effectively prune the WCSP search space.

Bibliography/Sources:
[1] MC Cooper, S de Givry, M Sanchez, T Schiex, M Zytnicki, T Werner: Soft Arc Consistency Revisited. Artificial
 Intelligence 174(7-8):449-478, May 2010.
[2] T Werner: Revisiting the Linear Programming Relaxation Approach to Gibbs Energy Minimization and Weighted
 Constraint Satisfaction. IEEE Trans. on Pattern Recognition and Machine Intelligence (PAMI) 32(8) August 2010.
[3] T Werner: A Linear Programming Approach to Max-sum Problem: A Review. IEEE Trans. on Pattern Recognition
 and Machine Intelligence (PAMI) 29(7), July 2007.
[4] T Werner: A Linear Programming Approach to Max-sum Problem: A Review. Research report CTU-CMP-2005-25,
 Dec 2005.
[5] V Franc, S Sonnenburg, T Werner: Cutting Plane Methods in Machine Learning. A chapter in: Optimization for
 Machine Learning, MIT Press, 2012.

Diploma Thesis Supervisor: Ing. Tomáš Werner, Ph.D.

Valid until: the end of the summer semester of academic year 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, February 17, 2015

Acknowledgement
Ráda bych tímto poděkovala své rodině za velkou podporu během studií. Velké
poděkovaní také patří mému vedoucímu práce za konzultace a přínosné rady,
které vedly k sepsání této diplomové práce.

Prohlášení
Prohlašuji, že jsem předloženou práci vypracovala samostatně, a že jsem uvedla
veškeré použité informační zdroje v souladu s Metodickým pokynem o do-
držování etických principů při přípravě vysokoškolských závěrečných prací.

V praze dne 10.5.2015 BROUCAAAAA ..
Lucie Bužková

v

Abstract
Problém splňování vážených podmínek (WCSP) je optimalizační problém daný
množinou proměnných a množinou funkcí definovaných nad nimi. Mnoho pro-
blémů z oblasti zpracování obrazu, rozvrhování nebo bioinformatiky bylo for-
mulováno jako WCSP. WCSP patří do třídy NP-úplných úloh, snahou je však
nalézt algoritmy, které prořezávají vyhledávací prostor. Algoritmus VAC je za-
ložen na postupném zvyšování dolní meze řešení pomocí propagování virtuální
hranové konzistence.

V této diplomové práci rozšíříme algoritmus VAC, aby propagoval virtuální
𝐽-konzistenci, která kontroluje konzistenci pouze u podmínek zahrutých v mno-
žině 𝐽 . Tenhle přístup umožňuje kompromis mezi rychlostí a kvalitou spodní
meze. Dále také vylepšíme algoritmus VAC tím, že budeme využívat informace
z předchozích iterací, čímž zabráníme redundantním testům konzistence. Obě
implementace jsou porovnány a vyhodnoceny na několika datasetech.

Klíčová slova
Programování s omezujcími podmínkami, Problém splňování vážených podmí-
nek, Konzistence pro WCSP

vi

Abstract
Weighted constraint satisfaction problem (WCSP) is an optimization problem
given by a set of cost functions defined over discrete variables. Many prob-
lems in areas such as image processing, scheduling or bioinformatics have been
formulated as WCSP. WCSP belongs to the class of NP-complete problems,
however, there has been an effort to develop algorithms to prune the search
space. VAC algorithm is based on incremental increase in the lower bound on
any solutions by enforcing the virtual arc consistency.

In this thesis, we extend the VAC algorithm to enforce the 𝐽-consistency that
proves consistent only constraints involved in a set 𝐽 . This enable a trade-off
between time and the quality of the solution. Furthermore, we improve the VAC
algorithm by storing some information from the previous iteration to be used
later. Both implementation are compared and evaluated on several datasets.

Keywords
Constraint programming, Weighted constraint satisfaction problem; Soft con-
straint; Soft consistency

vii

Contents

1 INTRODUCTION 1

2 GENERAL CONCEPT OF CONSTRAINT PROGRAMMING 3
2.1 Variables . 3
2.2 Constraints . 5
2.3 Constraint Satisfaction Problem 6

3 CONSISTENCY 10
3.1 First-Order Consistency . 11
3.2 Higher-Order Consistency . 12

3.2.1 Relation-based consistencies 15

4 WEIGHTED CONSTRAINT SATISFACTION PROBLEM 17
4.1 Equivalent-preserving transformations 19
4.2 Soft Consistency . 21

5 VIRTUAL J-CONSISTENCY ALGORITHM 23
5.1 First phase: J-consistency algorithm 23
5.2 Second phase: Computing 𝜆 . 25
5.3 Third phase: Applying equivalence-preserving transformations . 28

6 REUSING INFORMATION FROM PREVIOUS ITRATIONS 30

7 RESULTS 34
7.1 J-Consistency Evaluation . 34
7.2 Reviving Evaluation . 35

8 CONCLUSION 37

Bibliography 38

viii

1 INTRODUCTION
In last years, constraint programming (CP) has been successfully applied in
many areas, such as scheduling, networks and computer vision. CP technigues
have also become a part of engine in many solvers for discrete optimization 1.
The general idea of CP is to offer a powerful tool for solving the problems that
can be naturally described by means of constraints.

Constraint programming covers two large areas. On one hand, it deals with
the formulation and representation of problems. The main class of problems
solved by CP is called constraint satisfaction problems (CSP). A problem is
defined in a natural language of decision variables and constraints and then a
solver is used to find a solution. On the other hand, the CP includes a huge
amount of algorithms and techniques to solve the problems.

Since CSP belongs to the class of NP-complete problems, we cannot expect
an outstanding performance for all the problems of any size. Any algorithm
running in polynomial time is not known to solve the problems in NP-complete
class. However, we can focus on particular properties of the problems and solve
them more efficiently.

Chapter 2 is devoted to the study of the general framework of constraint
programming. We set up notation and terminology concerning the constraint
networks used in this thesis. Variables and constraints are presented here.
Moreover, we touch the concept of constraint support which is necessary for
the definition of consistency that is studied in chapter 3. First-order consisten-
cies are described in the first part of the chapter. We proceed with the study
of higher order consistencies identifying consistency of several values simulta-
neously.

Some real problems are over-constrained and have no feasible solution. How-
ever, a penalty can be paid for the constraint violation. Hence, a new problem
rises: finding a solution with minimal penalty. Here, a weighted constraint sat-
isfaction problem (WCSP) is introduced. Adding weights to constraints gives
us freedom to express preferences among solutions. Chapter 4 provides an
itroduction into the concept of WCSP, which includes the operations on soft
constraints and the consistency of soft constraints.

A WCSP is one of possible extensions of CSP. A classical CSP is a set of
variables and hard (crisp) constraints specifying tuples that are allowed. WCSP
replaces crisp constraints by soft constraints defined by a cost function. The
total cost can be limited by both upper and lower bound that can be used e.g.
in branch and bound algorithm. Bounds on WCSP have been studied in [1] or

1Solvers using CP: ILOG CP Optimizer OPL, SICStus Prolog, Eclipse CLP, JaCoP, MIN-
ION etc.

1

1 INTRODUCTION

[2].
VAC algorithm for increasing the lower bound on solution of WCSP was

introduced in [3]. The algorithm enforces soft arc consistency by applying a
planned sequence of soft arc consistency operations which necessarily leads to
increase in lower bound.

In this thesis, we extend this algorithm to enforce 𝐽-consistency based on
pairwise consistency. Section 5 provides a detailed exposition of the extended
algorihtm. Unlike pairwise consistency enforcing consistency between all pairs
of constraints, 𝐽-constancy proves consistent only pairs listed in a set 𝐽 .

Assuming that unary constraints coincide with domains of variables, general
arc consistency can be transformed into 𝐽-consistency. 𝐽-consistency can be
both weaker and stronger than general arc consistency depending on the number
of pairs in 𝐽 . This enables us a trade-off between time and solution.

Furthermore, in chapter 6, we introduce an extension of the VAC algorithm
so that it remembers information reached in the previous iteration. Finally, the
results are summed up in chapter 7.

2

2 GENERAL CONCEPT OF
CONSTRAINT
PROGRAMMING

Many problems consist in finding an assignment of values to a number of vari-
ables under certain conditions, which leads to the creation of constraint pro-
gramming concept. This concept includes two important components: variables
and constraints. In this chapter, we describe these two objects and their prop-
erties. Then we formulate the constraints satisfaction problem.

2.1 Variables
Definition 2.1 (Variable and domain) In general, variable is an object hav-
ing a name and taking on a value from a set of values, called a domain. We
write 𝑋𝑎 for the domain of variable 𝑎 and 𝑥𝑎 ∈ 𝑋𝑎 for the fact that a value 𝑥𝑎

belongs to the domain of variable 𝑎.

Notation 2.1.1 For abbreviation, we will write a set of variables rather then
a totally ordered set of variables when no confusion can arise. We emphases it
by () notation.

In constraint processing, the domain is always finite. A domain can change
over time by ruling out some values, nevertheless a current domain is a subset
of an initial domain. In case that a variable is explicitly assigned a value,
every other value can be deleted from its domain. Values may be also removed
implicitly by reasoning. A variable whose domain contains only one value is
said to be fixed, and unfixed otherwise.

A value 𝑥𝑎 is called valid iff it is contained in the domain of 𝑎. However,
the value can be invalidated because of lack support (see Def. 2.11) on some
constraint, hence a killer structure is introduced to record it. The fact that
value 𝑥𝑎 has been removed from 𝑋𝑎 because of lack support on 𝑐 is denoted by
𝑘𝑖𝑙𝑙𝑒𝑟𝑥𝑎 = 𝑐.

Example 2.2 Given two variables 𝑎 and 𝑏 with domain {1, 2} and an equality
𝑎 = 𝑏 between them, variable 𝑎 is assigned the value 1. Now we can see that
𝑏 can take only the value 1 and the value 2 can be ruled out from the domain
𝑋𝑏. Hence, both variables are fixed, the first one explicitly and the other one
implicitly. Denoting the equality 𝑎 = 𝑏 by 𝑐, we will write 𝑘𝑖𝑙𝑙𝑒𝑟𝑥𝑏

= 𝑐.

3

2 GENERAL CONCEPT OF CONSTRAINT PROGRAMMING

Analogously, we may assign a tuple of values to a set of variables. Here, we
define a joint domain and a joint state as follows.

Definition 2.3 (Joint Domain, Joint State) For a set of variables 𝐴, a
joint domain, denoted by 𝑋𝐴, is said to be a Cartesian product of initial do-
mains of variables in 𝐴, i.e. 𝑋𝐴 = ×𝑎∈𝐴𝑋𝑎. An element 𝑥𝑎 ∈ 𝑋𝐴 is a join
state.

Notation 2.3.1 For convenience, if a set of variables 𝐴 = {𝑎} contains only
one variable, we write 𝑥𝑎 instead of 𝑥(𝑎).

Example 2.4 Let A = 1,2,3, 𝑋1 = 𝑋2 = 𝑋2 = {𝑎, 𝑏}. Then the joint state
ordered lexicographically is

𝑋𝐴 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑎, 𝑎, 𝑎),
(𝑎, 𝑎, 𝑏),
(𝑎, 𝑏, 𝑎),
(𝑎, 𝑏, 𝑏),
(𝑏, 𝑎, 𝑎),
(𝑏, 𝑎, 𝑏),
(𝑏, 𝑏, 𝑎),
(𝑏, 𝑏, 𝑏)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Definition 2.5 (Relation) Given a set of variables 𝐴 and a sequence of do-
mains 𝑋𝑎, 𝑎 ∈ 𝐴, a relation 𝑅𝐴 over a set of variables 𝐴 is, by definition, a
subset of the Cartesian product ∏︀

𝑎∈𝐴 𝑋𝑎, hence 𝑅𝐴 ⊆
∏︀

𝑎∈𝐴 𝑋𝑎.

Two relations that differ only in order of variables are considered to be same.
Now let’s discuss operations on relations applied in constraint programming.
We take into consideration only two of them: projection and join.

Definition 2.6 (Projection) Given two sets of variables 𝐴 ⊆ 𝐵 and a rela-
tion defined over 𝐴, a projection of 𝑥𝐴 on 𝐵, denoted by 𝜋𝐵(𝑅𝐴), is a set of all
tuples in 𝑅𝐴 restricted to values corresponding to variables in 𝐵, i.e. the scope
of 𝜋𝐵(𝑅𝐴) is 𝐵.

Definition 2.7 (Join) Given two relations 𝑅𝐴 and 𝑅𝐵, a natural join, de-
noted by 𝑅𝐴 on 𝑅𝐵, is a set of tuples that are combined from tuples in 𝑅𝐴

and 𝑅𝐵 such that values corresponding to their common variables equal, i.e.
the scope of 𝑅𝐴 on 𝑅𝐵 is 𝐴 ∪ 𝐵. Left join 𝑅𝐴 on 𝑅𝐵, right join 𝑅𝐴 on 𝑅𝐵

respectively, is defined by 𝜋𝐴(𝑅𝐴 n 𝑅𝐵), 𝜋𝐵(𝑅𝐴 o 𝑅𝐵) respectively.

Example 2.8 We have two sets of variables 𝐴 = {𝑣1, 𝑣2, 𝑣3}, 𝐵 = {𝑣2, 𝑣3, 𝑣4}
and relations 𝑅𝐴, 𝑅𝐵 defined over them given in Figure 1.

4

2.2 Constraints

𝑅𝐴

𝑣1 𝑣2 𝑣3
1 1 2
2 1 2
2 2 2

𝑅𝐵

𝑣2 𝑣3 𝑣4
1 2 3
1 3 3
2 2 3

𝑅𝐴 on 𝑅𝐵

𝑣1 𝑣2 𝑣3 𝑣4
1 1 2 3
2 1 2 3
2 3 2 3

𝜋𝑣2,𝑣3(𝑅𝐴 on 𝑅𝐵)
𝑣2 𝑣3
1 2
3 2

Figure 1 Example of operations join and projection

Relations are necessary to define constraints, an important component of
constraint programming that restricts values in domains.

2.2 Constraints
Definition 2.9 (Constraint) A constraint is an object defined by a relation
over a set of variables containing exactly the set of tuples accepted by the con-
straint. A set of variables involved in a constraint is said to be a scope. A scope
can be assigned a tuple of values called joint state. Hence, a constraint is a pair
consisting of a scope and a relation, denoted by (𝐴, 𝑅𝐴), 𝑅𝐴 ⊆ 𝑋𝐴. The size of
a scope is called an arity of the constraint.

A tuple 𝑥𝐴 accepted by a constraint 𝑐𝐴 is also said to be allowed by 𝑐. We
can also say that 𝑥𝐴 satisfies 𝑐. On the other hand, a tuple 𝑥𝐴 that is forbidden
by 𝑐 is said to violate or unsatisfy 𝑐.

A constraint 𝑐 = (𝐴, 𝑅𝐴) is extensional iff the relation 𝑅𝐴 is described by
listing the tuples allowed, resp. disallowed, by 𝑐. An extensional constraints
(𝐴, 𝑅𝐴) can be represented by a list of tuples.

Since the size of domains changes over time, a joint state can become in-
valid. A valid tuple for a constrains is such a tuple whose values are valid for
every variable in the scope, hence all values belong to the current domains of
corresponding variables in the scope.

Definition 2.10 (Valid tuple) Let 𝑐𝐴 be a 𝑛-constraint over the scope 𝐴 and
𝑥𝐴 = (𝑥𝑎1 , 𝑥𝑎2 , . . . 𝑥𝑎𝑛) be an n-tuple. The tuple 𝑥𝐴 is said to be valid iff ∀𝑎 ∈
𝐴, 𝑥𝑎 ∈ 𝑋𝑎. We define a function 𝑓𝐴 : 𝑋𝐴 → {1, 0} where 𝑓𝐴𝑋𝐴

(𝑥𝐴) = 1 when
𝑥𝐴 is valid and 0 otherwise.

Informally, a valid tuple belongs to the Cartesian product of all current do-
mains in the scope and a set of valid tuples is a subset of joint states of the
scope. Next, we define supports and conflicts.

Definition 2.11 (Support and conflict) Given a constraint 𝑐𝐴, we call sup-
port (resp. a conflict) a tuple 𝑥𝐴 that is both valid on 𝑐𝐴 and allowed (resp.
disallowed) by 𝑐𝐴.

If a support 𝑥𝐴 on constraint 𝑐 contains a value 𝑥𝑎, formally 𝜋𝑎(𝑥𝐴) = 𝑥𝑎, we
say that 𝑥𝐴 is a support for 𝑥𝑎 on 𝑐.

5

2 GENERAL CONCEPT OF CONSTRAINT PROGRAMMING

Example 2.12 Given two variables 1, 2 and their domains 𝑋1 = 𝑋2 = {(𝑎, 𝑏)}
and a constraint 𝑐 = ((1, 2), {(𝑎, 𝑏)}).
∙ A tuple (𝑎, 𝑎) is a valid tuple, however, it is not allowed by 𝑐, hence it is

a conflict.
∙ A tuple (𝑎, 𝑏) is both valid and allowed by 𝑐, hence it is a support.

Now, we delete value 𝑎1, hence 𝑋1 = {𝑎}.
∙ A tuple (𝑎, 𝑎) is neither valid or allowed by 𝑐.
∙ A tuple (𝑎, 𝑏) is not a valid tuple, however, it is allowed by 𝑐.

2.3 Constraint Satisfaction Problem
After describing variables and constraints, we formulate a constraint satisfac-
tion problem as follows.

Definition 2.13 (Constraint Satisfaction Problem (CSP)) A CSP (also
called constraint network) is defined by a triple (𝑉, 𝑋, 𝐶) where 𝑉 is a totally
ordered set of 𝑛 variables 𝑉 = (𝑣1, 𝑣2, . . . , 𝑣𝑛), 𝑋 is a set of corresponding
domains 𝑋 = (𝑋𝑣1 , 𝑋𝑣2 , . . . , 𝑋𝑣𝑛) such that each variable 𝑣𝑖 ∈ 𝑉 takes a value
from its domain 𝑋𝑣𝑖

, 𝐶 is a set of constraints 𝐶 = (𝐶1, 𝐶2, . . . , 𝐶𝑘). Each
constraint 𝐶𝑖 is defined by a pair 𝐶𝑖 = (𝐴, 𝑋𝐴) such that 𝐴 ⊆ 𝑉 and 𝑋𝐴 ⊆ 𝐷𝐴.

It happens that a CSP includes two or more constraints with the same scope.
Such a problem is not normalized.

Definition 2.14 (Normalized Constraint Satisfaction Problem) A CSP,
defined by (𝑉, 𝑋, 𝐶), is said to be normalized iff ∀(𝐴, 𝑅𝐴), (𝐵, 𝑅𝐵) ∈ 𝐶, (𝐴, 𝑅𝐴) ̸=
(𝐵, 𝑅𝐵)⇒ 𝐴 ̸= 𝐵.

Every non normalized CSP can be transformed into a normalized CSP by
replacing constraints (𝐴, 𝑅𝐴) and (𝐵, 𝑅𝐵) where 𝐴 = 𝐵 with a new constraint
defined by a tuple (𝐶, 𝑅𝐶), 𝐶 = 𝐴 = 𝐵, 𝑅𝐶 = 𝑅𝐴 ∩ 𝑅𝐵. In this thesis, we
assume that every CSP is normalized.

A constraint network can be represented by a (hyper)graph where variables
stand for nodes and constraints stand for (hyper)edges. This hypergraph is said
to be a constrained hypergraph.

There are two approaches how to represent a graph of a constraint network.
The primal graph is based on variables corresponding to nodes. The constrained
hypergraph is a primal graph. The other approach considers constraints to be
nodes. Two nodes are connected by an edge iff the constraints corresponding
to the nodes contain at least one variable. This graph is called a dual graph.

The second approach enables reformulate the whole CSP. Each constraint in
the primal problem represents a variable in the dual problem. A domain in
the dual problem consists of tuples allowed by the constraint in the original
problem. New constraints are developed to enable constraint propagation, e.g.
for each pair of variables (i.e. constraints in the primal problem) we create a
new constraint whenever there is a non empty intersection of their scopes.

6

2.3 Constraint Satisfaction Problem

a) Primal graph b) Dual graph

Figure 2 Primal and dual graph associated with the 4 queens problem in example
2.15

While the consistency techniques based on the primal problem remove values
from domains of variables, the techniques based on the dual problem reduces
number of valid tuples in constraints which are incompatible.

Example 2.15 A 4 queens problem is a classical problem in computer science.
It consists of finding a placement of four queens such that they do not threaten
each other. Generally, there are

(︁
16
4

)︁
possibilities how to place the queens. We

can assume that each queen is placed in one columns, hence the task is to assign
a position of the 𝑖𝑡ℎ queen within the 𝑖𝑡ℎ column. The problem is restricted to
44 possibilities.

The four queens problem can be formulated as CPS such that each variable
represents the position within a column and can take a value from 1 . . . 4, i.e.
number of the row (Fig 3a). Let us denote the queens by 𝑎, 𝑏, 𝑐 and 𝑑 respectively.
Formally, let 𝑉 = (𝑎, 𝑏, 𝑐, 𝑑) be a set of variables with domains 𝑋𝑎 = 𝑋𝑏 = 𝑋𝑐 =
𝑋𝑑 = {1, 2, 3, 4} and 𝐶 be a set of constraints defined relations as follows.
∙ 𝑅(𝑎,𝑏)={(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)}
∙ 𝑅(𝑎,𝑐)={(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)}
∙ 𝑅(𝑎,𝑑)={(1,2),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,2),(4,3)}
∙ 𝑅(𝑏,𝑐)={(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)}
∙ 𝑅(𝑏,𝑑)={(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)}
∙ 𝑅(𝑐,𝑑)={(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)}

The purpose of constraint programming is to find such an assignment to
variables that meets all requirements. Here, we need a concept of instantiation
and its extension. The basic idea is that an incompatible part of solution cannot
lead to a correct solution.

Definition 2.16 (Instantiation) Let 𝑃 = (𝑉, 𝑋, 𝐶) be a constraint network.

7

2 GENERAL CONCEPT OF CONSTRAINT PROGRAMMING

∙ An instantiation I of a set of variables 𝐴 = {𝑎1, 𝑎2, . . . 𝑎𝑘} is an assignment
of values 𝑥𝑎1 , 𝑥𝑎2 , . . . , 𝑥𝑎𝑘

to variables in 𝐴, that is I is a sequence of tuples
denoted by {(𝑎1, 𝑥𝑎1), (𝑎2, 𝑥𝑎2), . . . , (𝑎𝑘, 𝑥𝑎𝑘

)}.
∙ An instantiation 𝐼 on 𝐴 is valid iff ∀(𝑎𝑖, 𝑥𝑎𝑖

) ∈ 𝐼, 𝑓𝑎𝑖
(𝑥𝑎𝑖

) = 1.
∙ An instantiation 𝐼 on 𝐴 is locally consistent iff it is valid and ∀(𝐵, 𝑅𝐵) ∈

𝐶, 𝑏 ∈ 𝐵 such that 𝐵 ⊆ 𝐴.

Notation 2.16.1 To emphasis that a variable 𝑎 is assigned a value 𝑥, we write
(𝑎, 𝑥). Notation 𝑥𝑎 refers to a value 𝑥 that belongs to domain of 𝑎.

Definition 2.17 (Extension) Let 𝐼1 be an instantiation on 𝐴, 𝐼2 be an in-
stantiation on 𝐵 and 𝐴 ∩ 𝐵 = ∅. An instantiation 𝐼 on 𝐴 ∪ 𝐵 defined by
𝐼 = 𝐼1 ∩ 𝐼2 is said to be an extension of 𝐼1 over 𝐵, or similarly, an extension
of 𝐼2 over 𝐴.

Informally, an instantiation 𝐼 on 𝐴 is valid iff each value assigned to a variable
in 𝐴 belongs to its current domain and all constraints defined over a subset
of 𝐴 are satisfied. Given an instantiation, we can extend it by adding new
variables and examine consistency of the new instantiation. The instantiation
can be locally (2.16) or globally consistent. Global consistency of instantiation
is defined as follows.

Definition 2.18 (Globally Consistent Instantiation) An instantiation I on
P is globally consistent iff it can be extended to a solution of P. It is globally
inconsistent otherwise. The globally inconsistent instantiation is also called a
nogood.

It is evident that an instantiation which is locally inconsistent is inevitably
globally inconsistent. However, a local consistency does not necessarily lead to
the global consistency. An instantiation that is complete (i.e. covers the whole
set of variables) and locally consistent is called a solution.

Definition 2.19 (Solution) Given a network P = (V,X,C) a solution of P
is an instantiation 𝐼 on 𝑉 that is locally consistent. Let 𝑃 ′ = (𝑉, 𝑋 ′, 𝐶 ′) be a
constraint network. Denoting the set of solution of P (P’) by S (S’ respectively),
we say that P and P’ are equivalent iff 𝑆 = 𝑆 ′.

In the other words, two problems with the same set of variables are equivalent
if the set of all solutions is same.

Example 2.20 Consider the 4 queens problem (example 2.15). Let the first
queen be placed in the first row, hence instantiation 𝐼1 of 𝑎 is {(𝑎, 1)}.
∙ The instantiation {(𝑎, 1)} is locally consistent, since there is no constraint

covered.
Now, we extend 𝐼1 over the variable 𝑏.
∙ The instantiation {(𝑎, 1), (𝑏, 1)} is valid, however, is locally inconsistent,

since (1, 1) /∈ 𝑅(𝑎,𝑏)

8

2.3 Constraint Satisfaction Problem

a) 4 queens problem b) Solution of 4 queens
problem

c) Solution of 4 queens
problem

Figure 3 The 4 queens problem

∙ The instantiation {(𝑎, 1), (𝑏, 3)} is both valid and locally consistent, since
(1, 3) ∈ 𝑅(𝑎,𝑏). {(𝑎, 1), (𝑏, 3)} is locally consistent extension of (𝑎, 1).

Let us {(𝑎, 1), (𝑏, 4)} denote by 𝐼2. We extend 𝐼2 over the variable 𝑐.
∙ The instantiation {(𝑎, 1), (𝑏, 4), (𝑐, 2)} is both valid and locally consistent.

However, it is not globally consistent because there is no value 𝑥𝑑 ∈ 𝑋𝑑

such that instantiation {(𝑎, 1), (𝑏, 4), (𝑐, 2), (𝑑, 𝑥𝑑)} is locally consistent.
The instantiation {(𝑎, 2), (𝑏, 4), (𝑐, 1), (𝑑, 3)} is locally consistent and since |𝐼| =
|𝑉 | it is also a solution (Fig. 3c)

A solution is an assignment to all variables satisfying all constraints. If a
problem has a solution, it is called satisfiable and unsatisfiable otherwise.

In constraint programming, the basic task is to determine whether a problem
is satisfiable or not. Besides that we can search for a solution that is optimal
according to a given cost function. This is described in the chapter 4.

Since CSP is NP-complete problem, any algorithm running in polynomial
time exists. However, there are many techniques pruning the search space and
eliminating the size of the problem. Most of them are based on consistencies
and their propagation.

9

3 CONSISTENCY
A consistency is a property of a constraint network used in many CP algorithms.
A global consistency ensures that there exists a solution, however, it can be
very expensive to find it. On the other hand, a local consistency involves only
a subset of variables and/or constraints. A local consistency can help us to
prune the search space and exclude values that cannot lead to any solution.

Example 3.1 Let us consider an example (see Fig. 4). We have a set of three
variables 𝑉 = (𝑎, 𝑏, 𝑐), 𝑋𝑎 = 𝑋𝑏 = 𝑋𝑐 = {1, 2, 3} and two relations defined over
them:

1. 𝑎 > 𝑏,
2. 𝑏 + 𝑐 = 5.

There are 27 possible combinations combinations of domains. If we take the
first relation into consideration, it it obvious that the variable 𝑎 can never take
the value 1, hence instantiation (𝑎, 1) cannot lead to a solution and 1 is deleted
from 𝑋𝑎. The same goes for value 3 in 𝑋𝑏. Observing the second relation, we
can remove 1 from both 𝑋𝑏 and 𝑋𝑐. Moreover, we remove value 2 from 𝑋𝑐,
since it has no more a support in the relation. Now the second constraint is
consistent. Since the domain of variable 𝑏 has been changed, the consistency of
the relation 𝑎 < 𝑏 can be corrupted and we have to check it again. Now we can
see that the value 2 ∈ 𝑋𝑎 has lost its support, hence can be deleted. The domain
of 𝑏 has not been influence, hence the second constraint remains consistent. Now
we can see that there is only one assignment: {(𝑎, 3), (𝑏, 2), (𝑐, 3)}.

This process, based on constraint propagation, is used by many filtering al-
gorithms that may simplify the problem without loss of any solution. Before

Figure 4 Graphical visualisation of constraints 𝑎 > 𝑏 and 𝑏 + 𝑐 = 5

10

3.1 First-Order Consistency

introducing filtering algorithms, we go through the most known consistencies.
We distinguish two main classes of consistencies: domain based and constraint
based consistencies. Domain based consistencies, which are also called first-
order or domain-filtering consistencies, identify values in domains that are in-
consistent. On the other hand, constraint based consistencies make constraints
compatible. Neither of them modifies the constraint network hence any variable
or constraint is not added.

Definition 3.2 (kth-order Consistency) Let 𝑘 be an integer 1 ≤ 𝑘. The
kth-order consistency is a consistency detecting nogoods of size 𝑘.

3.1 First-Order Consistency
First-order consistency identifies noogoods of size 1. It enables to remove in-
consistent values from domains, however, it does not modify the constraint
network. Node consistency and arc consistency belong to the most known con-
sistencies and are defined as follows.

Definition 3.3 (Node Consistency, NC) Let P = (V,X,C) be a CSP. The
unary constraint c over variable a is node consistent iff every value in 𝑋𝑎 sat-
isfies c. P is node consistent iff every unary constraint is satisfied.

Example 3.4 Given a variable 𝑎 with domain 𝑋𝑎 = {1, 2, 3, 4} and a con-
straint over 𝑎 allowing only even number. The constraint is not node consistent
since 𝑋𝑎 contains values 1 and 3 that do not satisfy it. After 𝑋𝐴 is restricted
to {2, 4}, the constraint becomes node consistent.

Unary constraints are closely related to the domain of variables. A problem
is node consistent iff unary constraints coincide with unary constraints. It is
useful to introduce a consistency covering more variables.

Definition 3.5 (General Arc Consistency, GAC) Let P = (V,X,C) be a
CSP.
∙ A constraint 𝑐 = (𝐴, 𝑅𝐴) ∈ 𝐶 is arc consistent relative to 𝑎 ∈ 𝐴 iff
∀𝑥𝑎 ∈ 𝑋𝑎 there exists a support for 𝑥𝐴 on 𝑐, hence 𝑥𝐴 ∈ 𝑅𝐴 ∧ 𝑥𝐴 ∈ 𝑋𝐴.
∙ A constraint 𝑐 = (𝐴, 𝑅𝐴) ∈ 𝐶 is general arc consistent iff it is general arc

consistent relative to every 𝑎 ∈ 𝐴
∙ P is general arc consistent iff ti is general arc consistent for all variables

in 𝑣 on all constraints in 𝐶.
∙ Arc consistency (AC) is the general arc consistency for binary constraints

(of arity 2).

Note that the node consistency is the general arc consistency for unary con-
straints. For binary constraints, the general arc consistency is called arc consis-
tency. GAC is one of the most important properties in constraint programming.
It can be defined for constraint of arbitrary arity.

11

3 CONSISTENCY

Effective algorithms to solve the arc consistency have always been the cen-
tral point of constraint programming. Not only are they involved in most CP
solvers, but also many ideas have come from in. Since the algorithm in this
thesis is based on an AC algorithm, we will discuss it more in detail.

The most famous algorithm for consistency is known under the name AC3
[4]. It proves all constraints consistent by searching for a support. Whenever
a domain of a variable is modified, all constraints over the variable have to be
proved again. The process of searching for a support is called revision.

The Boolean revise function gets a variable and a constraint defined over
it as an input and iterates the valid values in the domain. If the valid value
cannot be extended into a locally consistent instantiation, it is removed from
the domain. Whenever revise function modifies the domain it returns true and
false otherwise.

For binary networks, the time complexity of AC3 algorithm is 𝑂(𝑒𝑑3) where 𝑒
is number of constraints and d is the size of the greatest domain. Later version
of AC algorithm named AC4 [5] algorithm achieves arc consistency in 𝑂(𝑒𝑑2),
however, the space complexity increases from 𝑂(𝑒) to 𝑂(𝑒𝑑2). The improvement
consists in implementing counters during the revision. The counter stores the
number of supports that each value in domain has on the constraint.

Another well-known first order consistency is path inverse consistency [6].
Since it is actually (1, 2)-consistency, it is stronger than arc consistency.

Definition 3.6 (Path Inverse Consistency) Let 𝑃 = (𝑉, 𝑋, 𝐶) be a CSP
and 𝑥𝑎 be a valid value of variable 𝑎 ∈ 𝑉 . Then 𝑥𝑎 is path inverse consistent
iff for every two different variables 𝑏1,𝑏2 from 𝑉 , 𝑏1 ̸= 𝑎, 𝑏2 ̸= 𝑎, there exists a
locally consistent instantiation {(𝑎, 𝑥), (𝑏1, 𝑦1), (𝑏2, 𝑦1)}, 𝑦1 ∈ 𝑋𝑏1 , 𝑦2 ∈ 𝑋𝑏2.

Example 3.7 Fig. 5 shows situation where each value is arc-consistent, how-
ever, no one is path inverse consistent.

3.2 Higher-Order Consistency
General arc consistency does not guarantee a solution, hence we need to prove
consistency of an instantiation of size greater than one. Higher-order consis-
tencies are stronger first-order consistencies. Here, new constraints are created
as an extension of already existing constraints. However, the time complexity
of creation of new constraints may increase exponentially. To start with, we
introduce a general consistency called 𝑘 − 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 [7].

Definition 3.8 (k-Consistency) Let 𝑃 = (𝑉, 𝑋, 𝐶) be a CSP problem and
1 < 𝑘 ≤ |𝑉 | be an integer.
∙ For a set of 𝑘 − 1 variables 𝐴 ⊆ 𝑉 , a locally consistent instantiation 𝐼 of

𝐴 is said be 𝑘-consistent iff ∀𝑣 ∈ 𝑉 ∖ 𝐴, I can be extended into a locally
consistent instantiation of 𝐴 ∪ 𝑣.
∙ P is said to be 𝑘-consistent iff every set 𝐴 of 𝑘−1 variables is 𝑘-consistent.

12

3.2 Higher-Order Consistency

A problem that is 𝑘-consistent does not have to be necessarily 𝑖-consistent
for 1 ≤ 𝑖 < 𝑘 as shown in example 3.9. That is why strong 𝑘-consistency is
introduced in 3.10.

Example 3.9 Consider a set of variables 𝑉 = (1, 2, 3) with domains 𝑋1 =
𝑋2 = 𝑋3 = {𝑎, 𝑏}. Three binary constraints are defined by relations 𝑅(1,2) =
{(𝑎, 𝑎), (𝑏, 𝑏)}, 𝑅(1,3) = {(𝑎, 𝑎), (𝑏, 𝑏)}, 𝑅(2,3) = {(𝑎, 𝑏), (𝑏, 𝑎)}. We can see, that
this problem is 2-consistent, however, it is not 3-consistent. It is 2-consistent
because every value 𝑥𝑎 ∈ 𝑋1 ∪𝑋2 ∪𝑋3 can be extended over a variable 𝑏,𝑏 ̸= 𝑎,
such that 𝑥(𝑎,𝑏)𝑖𝑛𝑋(𝑎,𝑏). E.g. 𝑎1 can be extended over 2 into (𝑎, 𝑎)(1,2). How-
ever, it is not 3-consistent. E.g. for (𝑎, 𝑎)(1,2) neither {(1, 𝑎), (2, 𝑎), (3, 𝑎)} nor
{(1, 𝑎), (2, 𝑎), (3, 𝑏)} is a local consistent instantiation. The example is demon-
strated in Fig. 5. It is sometimes called a helix.

Figure 5 A problem which is 2-consistent, however, it is not 3-consistent.

Definition 3.10 (Strong k-Consistency) A CSP problem P is strong 𝑘-consistent
iff it it 𝑖-consistent for every 1 ≤ 𝑖 < 𝑘.

Note that a 𝑛-consistent CSP problem where 𝑛 is a number of variables is
globally consistent. The 𝑛-consistency is desirable since it not only guarantees
a solution but also a solution can be found using depth-first search.

While 𝑘-consistency extends the set of variables by adding only one variable,
a more general concept [8] includes an extension of 𝑖 variables into a set of
(𝑖 + 𝑗) variables. Analogously to 𝑘-consistency, (𝑖, 𝑗)-consistency is defined as
follows.

Definition 3.11 ((Strong) (i,j)-Consistency) Let P = (V,X,C) be a CSP
and 0 ≤ 𝑖 < |𝑉 |, 𝑖 ≤ 𝑗 ≤ |𝑉 | be two integers such that 𝑖 + 𝑗 ≤ |𝑉 |.
∙ For a set of 𝑖 variables 𝐴 ⊆ 𝑉 , a locally consistent instantiation 𝐼 of 𝐴 is

said to be 𝑘-consistent iff for every subset of 𝑗 variables 𝐵 ∈ 𝑉 ∖𝐴, 𝐼 can
be extended into a locally consistent instantiation of 𝐴 ∪𝐵.

13

3 CONSISTENCY

∙ P is said to be (𝑖, 𝑗)-consistent iff every set 𝐴 of 𝑗 variables is (𝑖, 𝑗)-
consistent.
∙ P is said to be strong (𝑖, 𝑗)-consistent iff it is (𝑘, 𝑗)-consistent for every

0 ≤ 𝑘 ≤ 𝑖.

It is obvious that 𝑘-consistency is (𝑘 − 1, 1)-consistency. For a node consis-
tent problem (i.e. domains coincide with unary constraints), arc consistency is
equivalent to 2-consistency and (1, 1)-consistency.

Consistencies mentioned above take a set of variables that relate to each
other, i.e. they are involved in the same scope, and prove the consistency. How-
ever, we can take two arbitrary variables and compare it with another variable
to prove it consistent or not. Such a consistency is called path consistency [9].

Definition 3.12 (Path Consistency) Let 𝑃 = (𝑉, 𝑋, 𝐶) be a CSP.
1. A locally consistent instantiation 𝐼 = {(𝑎, 𝑖), (𝑏, 𝑗)} on P is said to be

path consistent iff for any variable 𝑐 ∈ 𝑉 there exists such 𝑘 that both
instantiation {(𝑎, 𝑖), (𝑐, 𝑘)} and {(𝑐, 𝑘), (𝑏, 𝑗)} are locally consistent.

2. A pair (𝑎, 𝑏) of variables is said to be path consistent iff for all (𝑖, 𝑗) ∈ 𝑋(𝑎,𝑏)
it is path consistent.

3. P is path consistent iff every pair of variables is path consistent.

Example 3.13 Consider a set of variables 𝑉 = (𝑎, 𝑏, 𝑐) with domains 𝑋1 =
𝑋2 = 𝑋3 = {1, 2} and a set of constraints 𝐶 = {𝑎 ̸= 𝑏, 𝑏 ̸= 𝑐}. Variables 𝑎
and 𝑏 and pair consistent, however, 𝑎 and 𝑐 are not consistent since neither
{(𝑎, 1), (𝑐, 2)} nor {(𝑎, 2), (𝑐, 1)} can be extended to a locally consistent instan-
tiation. We can make the problem path consistent by adding a constraint 𝑎 = 𝑐.

Figure 6 Example 3.13. Variables (𝑎, 𝑏) are path consistent, however, (𝑎, 𝑐) are not
path consistent.

14

3.2 Higher-Order Consistency

Figure 7 Example 3.14. Instantiation {(𝑎, 1), (𝑏, 1)} is not path consistent.

Example 3.14 Given a set of variables 𝑉 = (𝑎, 𝑏, 𝑐) with domains 𝑋1 = 𝑋2 =
𝑋3 = {1, 2} and constraints defined by relations 𝑅(𝑎,𝑏) = {(1, 1), (2, 1), (2, 2)},
𝑅(𝑎,𝑐) = {(1, 1), (2, 1), (2, 2)}, 𝑅(𝑏,𝑐) = {(1, 2), (2, 1), (2, 2)}, we can see that
{(𝑎, 1), (𝑏, 1)} can not be extended over 𝑐 to a locally consistent solution, how-
ever, both values 1𝑎 and 1𝑏 lead to a solution. Moreover, removing 1𝑎 or 1𝑏

makes other solution disappear.

3.2.1 Relation-based consistencies
So far, we have described consistencies that take into account a variable or a
set of variables and search for a support on constraints. We can also compare
constraints and remove invalid tuples if they are supported on other constraint.
Every domain can be considered as a unary constraint. Thereafter, searching
for a support for an unary constraint is equivalent to searching for a support
for a variable.

Pairwise consistency [10] belongs to the most important relation-based con-
sistencies and it is defined as follows.

Definition 3.15 (Pairwise Consistency) Let P = (𝑉, 𝑋, 𝐶) be a CPS.
∙ A constraint 𝑐𝐴 ∈ 𝐶 on 𝐴 ⊆ 𝑉 is said to be pairwise consistent with

respect to a constraint 𝑐𝐵 ∈ 𝐶, 𝑐𝐴 ̸= 𝑐𝐵, on 𝐵 ⊆ 𝑉 iff for every locally
consistent instantiation of 𝐴 there exists an extension over a set 𝐵 ∖ 𝐴
satisfying the constraint 𝑐𝐵.
∙ P is pairwise consistent iff every constraints 𝑐 ∈ 𝐶 is pairwise consistent

with respect to every constraints 𝑐 ∈ 𝐶, 𝑐 ̸= 𝑐.

A normalized binary constraint network that is arc consistent is also pair
consistent. Or more precisely, arc consistent constraints sharing only one vari-
able is necessarily pairwise consistent. Hence, pairwise consistency should be
applied on constraints with higher arities.

15

3 CONSISTENCY

Figure 8 A problem which is arc consistent, however, it is not pairwise consistent.

Example 3.16 Let X = (1,2,3) be set of variables with domains 𝑋1 = 𝑋2 =
𝑋3 = {𝑎, 𝑏} and 𝑐(1,2), 𝑐(1,2,3) be two constraints defined by relations 𝑅(1,2) =
(𝑎, 𝑏), (𝑏, 𝑎), 𝑅(1,2,3) = (𝑎, 𝑎, 𝑎), (𝑏, 𝑏, 𝑏) respectively as shown Fig. 8. This prob-
lem is arc consistent, but it is not pairwise consistent. E.g. for (𝑎, 𝑏)(1,2), both
(𝑎, 𝑏, 𝑎)(1,2,3) and (𝑎, 𝑏, 𝑏)(1,2,3) are conflicts.

It is expensive to revise every pair of constraints, however it can be reduced
by listing the set of pairs explicitly. We denote this set by 𝐽 and say that a
problem 𝑃 is 𝐽-consistent iff it is pairwise consistent for every pair in 𝐽 . In
this thesis, we assume ∀(𝐴, 𝐵) ∈ 𝐽, 𝐴 ⊆ 𝐵.

Definition 3.17 (J-Consistency) Let P = (𝑉, 𝑋, 𝐶) be a CSP and 𝐽 =
(𝐴, 𝐵), 𝐴 ⊆ 𝐵 be a set of pairs of scopes. P is said to be 𝐽-consistent iff
for every (𝐴, 𝐵) ∈ 𝑃 , 𝑐𝐴 pairwise consistent with respect to 𝑐𝐵.

16

4 WEIGHTED CONSTRAINT
SATISFACTION PROBLEM

While a classical CSP helps us decide whether there exists a solution to the
problem, we may search for a solution optimizing some objective (cost, time,
space, human resources etc.). The aim of weighted constraint satisfaction prob-
lem is finding an assignment to a set of variables so that the objective is min-
imized or maximized. The hard ’YES/NO’ constraints are replaced by soft
constraint defined by a function mapping each tuple into a value.

Definition 4.1 (Weighted Constraint Satisfaction Problem) A weighted
constraint satisfaction problem (WCSP) is defined by a triplet (𝑉, 𝑋, 𝐹) where
𝑉 is a totally ordered set of 𝑛 variables 𝑉 = (𝑣1, 𝑣2, . . . , 𝑣𝑛), 𝑋 is a set of corre-
sponding domains 𝑋 = (𝑋𝑣1 , 𝑋𝑣2 , . . . , 𝑋𝑣𝑛) such that each variable 𝑣𝑖 ∈ 𝑉 takes
a value from its domain 𝑋𝑣𝑖

, 𝐹 = {(𝐴, 𝑓𝐴)|𝐴 ⊆ 𝑉 } is a set of cost functions.
Each cost function (𝐴, 𝑓𝐴) is defined over a scope 𝐴 by a function 𝑓𝐴 : 𝑥𝐴 → 𝑅.
The cost function is also called a soft constraint.

Notation 4.1.1 Referring to WCSP, we write constraint only instead of soft
constraint when no confusion can arise.

Example 4.2 Given a gray scale noisy image, we want to extract vertical and
horizontal lines from it. We can formulate this task as a weighted CSP. Suppose
that white lines cross the black background in the original image. The gray scale
image is a two dimensional array of pixels taking values from the grayscale
0 . . . 1 where 0 is black and 1 white. For each pixel we have to decide whether
it is white (line) or black (background). We represent a pixel as a variable with
domain consisting of four values:

Figure 9 Extracting vertical and horizontal lines from a gray scale noisy image

17

4 WEIGHTED CONSTRAINT SATISFACTION PROBLEM

∙ a stands for black pixel (Fig. 10a)
∙ b stands for white pixel of horizontal line (Fig. 10b), hence left and right

pixels are white and pixels above and below are white.
∙ c stands for white pixel of vertical line (Fig. 10c), hence pixels above and

below are white, left and right pixels are black.
∙ d stands for white pixel of line cross (Fig. 10d), hence the 4-neighbourhood

1 is white.

a) Black pixel b) White pixel of
horizontal line

c) White pixel of
horizontal line

d) White pixel of
line cross

Figure 10 All possible position of a pixel

A binary "YES/NO" constraint is defined for every pair of neighbouring pixels
and the constraint differs for vertically and horizontally adjacent pixels. All
possibles tuples are displayed in Fig. 11.

a) Allowed combination of tuples for
pixel horizontally adjacent

b) Allowed combination of tuples for
pixel vertically adjacent

Figure 11 All possible combinations of pixels

Finally, we can state the cost functions. Let 𝑝𝑖 be a value of pixel 𝑖. For each
variable 𝑖, the unary cost function 𝑓𝑖 is given by

𝑓𝑖(𝑥𝑖) =

⎧⎨⎩𝑝𝑖 if 𝑖 = 𝑎

1− 𝑝𝑖 otherwise

For each pair (𝑖, 𝑗) of adjacent pixels, the binary function 𝑓𝐴 is defined by

𝑓𝐴(𝑥𝐴) =

⎧⎨⎩0 if the tuple 𝑥𝐴 is allowed by 𝑐𝐴

∞ otherwise

1In image processing, 4-neighbourhood expresses the way how pixel relate to each other.
4-neighbourhood of a pixel 𝑝 includes pixels that are vertically and horizontally connected
to it, hence maximal number is 4.

18

4.1 Equivalent-preserving transformations

As already mentioned, a assignment is chosen to minimize or maximize an
objective. We define the total cost (also called valuation or energy) as follows.

Definition 4.3 (Total Cost) Given a WCSP P = (V,X,F), the total cost 𝑔
of assignment 𝑥𝑉 ∈ 𝑋𝑉 is given by

𝑔(𝑥𝑉) =
∑︁

𝑓𝐴∈𝐹

𝑓𝐴(𝜋𝐴(𝑥𝑉))

In WCSP, the aim is to find an assignment 𝑥𝑉 minimizing the total cost.

𝑥𝑉 = argmin
𝑥𝑉 ∈𝑋𝑉

∑︁
𝑓𝐴∈𝐹

𝑓𝐴(𝜋𝐴(𝑥𝑉))

4.1 Equivalent-preserving transformations

Along with the soft constraints, we need to extend the operations on them. The
basic operations are combination and projection. Similarly to join, combination
merges several constraints into a newly created constraint. Projection shifts
weight from a constraint to a newly created constraint. The equivalence is kept
since the new constraint holds the information.

Definition 4.4 (Combination) Let 𝑃 = (𝑉, 𝑋, 𝐹) be a WCSP. Given two
functions 𝑓𝐴 and 𝑓𝐵, combination, denoted by 𝑓𝐴 on 𝑓𝐵, is a function 𝑔 given
by 𝑔(𝑥𝐶) = 𝑓𝐴(𝜋𝐴(𝑥𝐶)) + 𝑓𝐵(𝜋𝐵(𝑥𝐶)) where 𝐶 = 𝐴 on 𝐵.

𝑐1
𝑎1 cost
a 1
b 2

𝑐2
𝑎1 𝑎2 cost
a a 0
a b 3
b a 2
b b 5

𝑐3 = 𝑐1 on 𝑐2
𝑎1 𝑎2 value
a a 1
a b 4
b a 4
b b 7

Figure 12 Example of combination of two soft constraints

Definition 4.5 (Projection) Let 𝑃 = (𝑉, 𝑋, 𝐹) be a WCSP. Given a cost
function 𝑓𝐵 and a set of variables 𝐴 ⊆ 𝐵, projection of 𝑓𝐵 over 𝐴, denoted by
𝜋𝐴(𝑓𝐵), is a function 𝑔 given by 𝑔(𝑥𝐴) = ∑︀

𝑥𝐵∈𝑋𝐵 |𝜋𝐴(𝑥𝐵)=𝑥𝐴
𝑓𝐵(𝑥𝐵).

19

4 WEIGHTED CONSTRAINT SATISFACTION PROBLEM

𝑓𝐴

𝑎1 𝑎2 𝑎3 cost
a a a 2
a a b 3
a b a 1
a b b 0
b a a 4
b a b 0
b b a 0
b b b 1

𝜋(𝑎1,𝑎2)(𝑓𝐴)
𝑎1 𝑎2 cost
a a 5
a b 1
b a 4
b b 1

𝜋𝑎1(𝑓𝐴)
𝑎1 cost
a 6
b 5

𝜋∅(𝑓𝐴)
cost
11

Figure 13 Example of soft constraint projection

Example 4.6 Consider a network of including two variables 1 and 2 with do-
mains 𝑋1 = 𝑋2 = {(𝑎, 𝑏)} and a binary cost function 𝑓(1,2) assigning 𝛼 to pairs
(𝑎, 𝑎) and (𝑏, 𝑏) and 2𝛼 to (𝑎, 𝑏). The figure 14 shows a possible sequence of
equivalence preserving transformations. First, 𝑓(1,2) on 𝑓2 is projected on 𝑎1.
Simultaneously, we modify 𝑓(1,2) by subtracting 𝛼 from pairs (𝑎, 𝑎) and (𝑎, 𝑏).
The same process is applied on 𝑏2. The equivalence is kept since the weight
has been neither added nor lost and the information has been transferred from
𝑓(1,2) to 𝑓1 and 𝑓2. On the other hand, Fig. 15 demonstrates an example of
operations which break the equivalence.

As example 4.6 shows, it turns out to be useful to define operation extracting
cost functions. We call it extraction and it is defined as follows.

Definition 4.7 Let 𝑃 = (𝑉, 𝑋, 𝐹) be a WCSP. Given two functions 𝑓𝐴 and 𝑓𝐵,
extraction, denoted by 𝑓𝐵 ⊖ 𝑓𝐴, is a function 𝑔 given by 𝑔(𝑥𝐶) = 𝑓𝐵(𝜋𝐵(𝑥𝐶))−
𝑓𝐴(𝜋𝐴(𝑥𝐶)) where 𝐶 = 𝐴 on 𝐵.

Figure 14 Sequence of equivalence preserving transformations

Figure 15 Operations where equivalence is broken

20

4.2 Soft Consistency

Soft constraint operations are used to enforce local consistencies. They are
combined to enable the flow of weights in the network. The process of shifting
costs between constraints consists of two steps. First, a new cost function is
created. Then it is extracted from the source functions and added to the target
function. To preserve the equivalence, (𝐾, 𝑌)-equivalence-preserving rule is
defined.

Definition 4.8 ((𝐾, 𝑌)-Equivalence-Preserving Rule) Let 𝑃 = (𝑉, 𝑋, 𝐹)
be a WCSP, 𝐾 ⊂ 𝐹 be a set of functions and 𝑌 ⊂ 𝑉 be a set of variables. The
(𝐾, 𝑌)-equivalence-preserving rule (EP rule) consists in

1. removing 𝐾 from the network,
2. adding 𝜋𝑌 (on 𝐾) and (on 𝐾)⊖ 𝜋𝑌 (on 𝐾) to the network.

The rule explains how to move cost from a set of constraint 𝐾 to scope
𝑌 . Informally, we subtract the cost from functions in 𝐾 and add it to the
function defined over 𝐴. In the following section, we will show how equivalence-
preserving transformations help eliminating local inconsistency.

4.2 Soft Consistency
In this section we briefly introduce soft consistencies and how to achieve them
using equivalent preserving transformations.

Definition 4.9 (Soft Node Consistency) Let 𝑃 = (𝑉, 𝑋, 𝐹) be a WCSP
and 𝜖 be a constant. We call a variable 𝑎 ∈ 𝑉 soft node consistent iff for every
variable 𝑎 ∈ 𝑉 ,
∙ 𝑓𝑎(𝑥𝑎) ≤ 𝜖.

The node consistency can be obtained by projecting the the minimum from
each constraint to ∅. For constraint of any arity, we introduce soft general arc
consistency and soft 𝐽-consistency.

Definition 4.10 (Soft General Arc Consistency) Let 𝑃 = (𝑉, 𝑋, 𝐹) be a
node consistent WCSP and 𝜖 be a constant. We call a variable 𝑎 ∈ 𝑉 generally
arc consistent with respect to constraint 𝑓𝐴 iff for every value 𝑥𝑎 ∈ 𝑋𝑎,
∙ 𝑓𝑎(𝑥𝑎) on 𝑓𝐴(𝑥𝐴) on (on𝑥𝐵∈𝑋𝐵 |𝜋𝐵(𝑥𝐴)=𝑥𝐵

(𝑓𝐵(𝑥𝐵))) ≤ 𝜖.

Definition 4.11 (Soft J-Consistency) Let 𝑃 = (𝑉, 𝑋, 𝐹) be a WCSP and
𝐽 = {(𝐴, 𝐵)|𝐴 ∈ 𝑉, 𝐵 ∈ 𝑉, 𝐴 ⊆ 𝐵} be a set of pairs of scopes. A constraint
𝑓𝐴 ∈ 𝐹 on 𝐴 ⊆ 𝑉 is said to be soft pairwise consistent with respect to constraint
𝑓𝐵 ∈ 𝐹, 𝑓𝐴 ̸= 𝑓𝐵, on 𝐵 ∈ 𝑉 iff for every valid 𝑥𝐴 ∈ 𝑋𝐴 such that 𝑓𝐴(𝑥𝐴) ≤ 𝜖

∙ ∃𝑥𝐵 ∈ 𝑋𝐵 such that on 𝑓𝐵(𝑥𝐵) on 𝜋𝐶(on𝑥𝐶∈𝑋𝐶 |𝜋𝐶(𝑥𝐵)=𝑥𝐶
(𝑓𝐶(𝑥𝐶))) ≤ 𝜖

𝑃 is said to be 𝐽-consistent iff if every pair of scopes in 𝐽 is pairwise consistent.

21

4 WEIGHTED CONSTRAINT SATISFACTION PROBLEM

We can achieve soft 𝐽-consistency by repeating (𝐵, 𝐴) rules where (𝐴, 𝐵) ∈
𝐽 . However, by chaotic application of the rule does not have to lead to 𝐽-
consistency and the sequence of the soft operations should by planned. This is
reached by techniques used in classical CSP to which a WCSP is transformed.
A CSP derived from WCSP is called Bool(𝑃).

Definition 4.12 (Bool(P)) Let P = (V,X,F) be a WCSP. Bool(P) is classical
CSP (V,X,C) where 𝑐 = (𝐴, 𝑅𝐴) ∈ 𝐶 iff ∃(𝐴, 𝑓𝐴) ∈ 𝐹 and 𝑅𝐴 is given by
𝑥𝐴 ∈ 𝑋𝐴(𝑥𝐴 ∈ 𝑅𝐴 ⇔ 𝑓𝐴(𝑥𝐴) = 0).

Enforcing 𝐽-consistency on Bool(P) leads to deletion of allowed tuples in
constraints. When all tuples in a constraint in Bool(P) are disallow, there
exists a sequence of soft consistency operations that leads to increase in the
lower bound. Nullary cost function 𝑓∅, defined over an empty set, constitutes
the lower bound on any solution.

Definition 4.13 (J-Consistent Closure) Given a network P = (V,X,C), a
J-consistent closure of P is a network obtained by deleting all J-inconsistent
tuples from C.

Definition 4.14 (Virtual J-Consistency) A problem P is said to be virtual
J-consistent if there exists a non-empty J-consistent closure of Bool(P) that is
every constraint in Bool(P) contains at least one valid tuple.

In the following section, we introduce an algorithm that applies virtual 𝐽-
consistency on WCSP.

22

5 VIRTUAL J-CONSISTENCY
ALGORITHM

The algorithm in [3] deals with arc consistency which is applied on Bool(P).
We modified this algorithm to detect 𝐽-consistencies. 𝐽-consistency proves
consistent only constraints listed in 𝐽 and is more general than arc consistency.
It can be weaker or stronger than AC depending on number of pairs in 𝐽 . The
algorithm enforces 𝐽-consistency to shift the 𝜆 amount from its source to the
nullary cost function representing the lower bound.

The 𝑉 𝐽𝐶 algorithm consists of three phases as follows.
1. Search for the 𝐽-consistent closure of Bool(𝑃). If the closure exist, stop

the algorithm. Otherwise keep track of all deleted inconsistent values and
the cause of their deletion.

2. Compute 𝜆 amount to be added to the lower bound. Starting from the
constraint 𝑖0 whose all tuple were disallowed, track back to the source of
deletion. Select the lowest value of all sources.

3. Apply the sequence of equivalence-preserving transformations. Shift the
amount 𝜆 from its source toward the nullary cost function 𝑓∅.

5.1 First phase: J-consistency algorithm
During the first phase of the algorithm, we detect J-inconsistency in Bool(P).
Since we delete tuples in relations rather than values from domains of variables,
we define a Boolean function 𝑓𝐴 : 𝑋𝐴 → {0, 1} by

𝑓𝐴(𝑥𝐴) =

⎧⎨⎩0 if ⋁︀
(𝐶,𝐵)∈𝐽 𝑓𝐶(𝑥𝐶) ∨ 𝑘𝑖𝑙𝑙𝑒𝑟𝑥𝐴

> 0 ∨ 𝑓𝐴(𝑥𝐴) > 𝜖

1 otherwise

The process of detecting inconsistencies is based on the AC3 algorithm. First,
we initialize a stack 𝑃 containing all couples of constraints we want to prove
J-consistent, hence the initial stack 𝑃 is set 𝐽 . Then we iteratively revise all
couples 𝑗 ∈ 𝑃 until 𝑃 is empty. The revise procedure consists in iterating all
tuples 𝑥𝐴 ∈ 𝑋𝐴 (𝑋𝐴 is the Cartesian product of current domains) and searching
for their support. If a support does not exist, 𝑥𝐴 is deleted. To record the cause
of the deletion, 𝑘𝑖𝑙𝑙𝑒𝑟𝑥𝐴

is set to 𝑗. 𝑘𝑖𝑙𝑙𝑒𝑟 is used only for 𝑥𝐴 where (𝐴, 𝐵) ∈ 𝐽 .If
any of following conditions is satisfied, 𝑥𝐵 ∈ 𝑋𝐵 is determined to be conflict:

a) 𝑓𝐵(𝑥𝐵) > 𝜖. The tuple 𝑥𝐵 is not consistent on 𝑓𝐵.
b) ⋁︀

(𝐶,𝐵)∈𝐽 𝑓𝐶(𝑥𝐶)∧ 𝑓𝐵(𝑥𝐵) ≤ 𝜖. The tuple 𝑥𝐵 is consistent on 𝑓𝐵, however,
there exists a scope 𝐶 included in 𝐵 that invalidated 𝑥𝐵 ∈ 𝑋𝐵

23

5 VIRTUAL J-CONSISTENCY ALGORITHM

Algorithm 1: Phase 1: Instrumented-JC
1 Function instrumented-JC()
2 𝑃 ← 𝐽
3 while 𝑃 ̸= ∅ do
4 (𝐴, 𝐵)← 𝑃.𝑝𝑜𝑝()
5 if revise(𝐴,𝐵) then
6 if 𝑋𝐴 = ∅ then return 𝐴
7 else
8 𝑃 ← 𝑃 ∪ {(𝐴, 𝐵)|(𝐴, 𝐵) ∈ 𝐽 ,(𝐴, 𝐵) ∈ 𝐽 , 𝐴 ̸= 𝐴}∪

{(𝐴, 𝐴)|(𝐴, 𝐴) ∈ 𝐽}
9 return ∅

10 Function revise(𝐴,𝐵)
11 𝑐ℎ𝑎𝑛𝑔𝑒𝑑← 𝑓𝑎𝑙𝑠𝑒

12 for 𝑥𝐴 ∈ 𝑋𝐴 s.t. 𝑓𝐴(𝑥𝐴) do
13 if @𝑥𝐵 ∈ 𝑋𝐵 s.t. 𝜋𝐴(𝑥𝐵) = 𝑥𝐴 ∧ 𝑓𝐵(𝑥𝐵) = 1 then
14 𝑘𝑖𝑙𝑙𝑒𝑟𝑥𝐴

← (𝐴, 𝐵)
15 𝑛𝑏𝑂𝑓𝐷𝑒𝑙𝑒𝑡𝑒𝑑 + +
16 𝑑𝑒𝑙𝑒𝑡𝑒𝑥𝐴

= 𝑛𝑏𝑂𝑓𝐷𝑒𝑙𝑒𝑡𝑒𝑑
17 𝑐ℎ𝑎𝑛𝑔𝑒𝑑← 𝑡𝑟𝑢𝑒

18 return 𝑐ℎ𝑎𝑛𝑔𝑒𝑑;

c) ∃𝐶 such that (𝐵, 𝐶) ∈ 𝐽 and 𝑘𝑖𝑙𝑙𝑒𝑟𝑥𝐵
> 0. The tuple 𝑥𝐵 is consistent on

𝑓𝐵, however, there exists a scope 𝐶, 𝐶 ⊆ 𝐵 such that 𝑥𝐵 is killed because
of lack support on 𝑓𝐶 .

In addition to setting the 𝑘𝑖𝑙𝑙𝑒𝑟, we also record the order of deletion by
setting 𝑑𝑒𝑙𝑒𝑡𝑒. In next phase, this helps us to identify the killer and build the
minimal structure explaining the wipe-out.

If revise deletes any tuple, some constraints have to be proved consistent
again. Suppose that 𝑋𝐴 has been modified because of lack support on 𝑋𝐵.
This means that any constraint whose scope is involved in 𝐵 may have lost its
support on 𝑋𝐵 and it need to be added to the stack 𝑃 unless already inserted.
Moreover, any tuple 𝑥𝐴, (𝐴, 𝐴) ∈ 𝐽 has to be revised again.

Example 5.1 We have a set of variables 𝑉 = (1, 2, 3, 4) with domains 𝑋1 =
𝑋2 = 𝑋4 = 𝑎, 𝑏 and 𝑋3 = {𝑎, 𝑏, 𝑐}. The cost functions are given as follows.
∙ unary cost functions:

– 𝑓1(𝑎) = 1, 0 otherwise.
– 𝑓2 = 0.
– 𝑓3(𝑐) = 1, 0 otherwise.
– 𝑓4 = 0.

∙ binary cost functions
– 𝑓(1,3)(𝑏, 𝑏) = 𝑓(1,3)(𝑏, 𝑐) = 0, 1 otherwise.
– 𝑓(1,4)(𝑎, 𝑏) = 𝑓(1,4)(𝑏, 𝑎) = 0, 1 otherwise.
– 𝑓(3,4)(𝑎, 𝑎) = 𝑓(3,4)(𝑏, 𝑎) = 𝑓(3,4)(𝑐, 𝑏) = 0, 1 otherwise.

24

5.2 Second phase: Computing 𝜆

Figure 16 Detecting conflicts

Figure 17 Graphical representation of example 5.1

∙ ternary cost functions:
– 𝑓(1,2,3)(𝑏, 𝑎, 𝑐) = 0, 1 otherwise.

The example is demonstrated in Fig. 16. Suppose that value 𝑐3 has been killed
because of some other inconsistency. Now we want to revise (𝐴, 𝐵) where 𝐴 =
(1) and 𝐵 = (1, 3). Value 𝑎1 does not belong to the domain 𝑋𝑎 since 𝑓1(𝑎) = 1.
𝑏1 is killed because all 𝑥𝐵 where 𝜋1𝑥𝐵 = 𝑏 are conflicts.
∙ 𝑥(1,3) = (𝑏, 𝑎) is conflict because 𝑓(1,3)(𝑏, 𝑎) = 1.
∙ 𝑥(1,3) = (𝑏, 𝑏) is conflict because it was killed, since it has no support on

cost function 𝑓(1,2,3).
∙ 𝑥(1,3) = (𝑏, 𝑐) is conflict because 𝑓3 is an unary cost function involved in

binray function 𝑓(1,3) and (3, 𝑎) has been killed.

5.2 Second phase: Computing 𝜆

The JC algorithm runs until all constraints are revised. If any domain has been
wiped out, Bool(P) is not J-consistent. Suppose that 𝑋𝐴0 has been wiped out
then we compute the minimal 𝜆 amount that can be subtracted from some cost
function in the network to remove the cause of the wipe-out. Starting from 𝐴0,
we build a structure explaining the wipe-out. This structure forms a directed
acyclic graph (DAC) whose nodes represent tuples in cost functions. The edges
explain the direction in which 𝜆 amount is computed. An edge leading from 𝑥𝐴

to 𝑥𝐵 is labelled by 𝑗 ∈ 𝐽 that caused deletion of 𝑥𝐴. Note that label can be
either 𝑗 = (𝐴, 𝐵) or 𝑗 = {(𝐴, 𝐶), (𝐶, 𝐵)} ∈ 𝐽 There are three types of nodes
in DAG:
∙ The root node of the DAG symbolizes the nullary function.

25

5 VIRTUAL J-CONSISTENCY ALGORITHM

Algorithm 2: Phase 2: Computing 𝜆

Procedure Compute𝜆()
Initialize all 𝑘,𝑘𝐽 to 0, 𝜆←∞

1 𝐴0 ← instrumented-JC()
2 if 𝐴0 = ∅ then return
3 for 𝑥𝐴0 ∈ 𝑋𝐴0 do
4 if 𝑓𝐴0(𝑥𝐴0) ≤ 𝜖 then
5 𝑘(𝑥𝐴0)← 1, 𝑀(𝑥𝐴0)← 𝑡𝑟𝑢𝑒
6 𝑄.push(𝑑𝑒𝑙𝑒𝑡𝑒𝑥𝐴0

, (𝑥𝐴0 , 𝐴0))
7 else 𝑀(𝑥𝐴0)← 𝑓𝑎𝑙𝑠𝑒, 𝜆← 𝑚𝑖𝑛(𝜆, 𝑓𝐴0(𝑥𝐴0))

8 while 𝑄 ̸= ∅ do
9 (𝑥𝐴, 𝐴)← 𝑄.pop()

10 𝑗 ← 𝑘𝑖𝑙𝑙𝑒𝑟𝑥𝐴
◁ let 𝑗 = (𝐴, 𝐵)

11 𝑅.push(𝑥𝐴, 𝐴)
12 for 𝑥𝐵 ∈ 𝑋𝐵 s.t. 𝜋𝐴(𝑥𝐵) = 𝑥𝐴 do
13 if 𝑓𝐵(𝑥𝐵) > 𝜖 then
14 𝑘(𝑥𝐵)← 𝑘(𝑥𝐵) + 𝑘(𝑥𝐴)
15 𝜆← min (𝜆, 𝑓𝐵(𝑥𝐵)

𝑘(𝑥𝐵))
16 else
17 if 𝑘𝑖𝑙𝑙𝑒𝑟𝑥𝐵

> 0 ∧ 𝑑𝑒𝑙𝑒𝑡𝑒𝑥𝐵
< 𝑑𝑒𝑙𝑒𝑡𝑒𝑥𝐴

then
18 if ¬𝑀𝑥𝐵

then
𝑘(𝑥𝐵)← 𝑘(𝑥𝐵) + 𝑘(𝑥𝐴)

19 𝑄.push(𝑑𝑒𝑙𝑒𝑡𝑒𝑥𝐵
, (𝑥𝐵, 𝐵)), 𝑀𝑥𝐵

← 𝑡𝑟𝑢𝑒

20 else
21 for 𝑥𝐴 ∈ 𝑋𝐴 s.t. (𝐴, 𝐵) ∈ 𝐽 , 𝑥𝐴 = 𝜋𝐴(𝑥𝐴),

𝑑𝑒𝑙𝑒𝑡𝑒𝑥𝐴
< 𝑑𝑒𝑙𝑒𝑡𝑒𝑥𝐴

do
22 if 𝑘(𝑥𝐴) > 𝑘𝐽(𝑥𝐴) then
23 𝑘(𝑥𝐴)← 𝑘(𝑥𝐴) + 𝑘(𝑥𝐴)− 𝑘𝐽(𝑥𝐴)
24 𝑘𝑗(𝑥𝐴)← 𝑘(𝑥𝐴)
25 if 𝑓𝐴(𝑥𝐴) ≤ 𝜖 then
26 if ¬𝑀𝑥𝐵

then
27 𝑄.push(𝑑𝑒𝑙𝑒𝑡𝑒𝑥𝐵

, (𝑥𝐵, 𝐵)), 𝑀𝑥𝐵
← 𝑡𝑟𝑢𝑒

28 else
𝜆← 𝑚𝑖𝑛(𝜆,

𝑓𝐴(𝑥𝐴)
𝑘(𝑥𝐴))

∙ Inner nodes stand for the tuples whose weight is less or equal 𝜖, however,
they have been removed because of inconsistency.
∙ Leaf nodes represent tuples with weight greater than to 𝜖. 𝜆 is computed

as the minimum over the leaf node weights.

Example 5.2 In example 5.1, tuple (𝑏, 𝑐)(1,2) was deleted because of lack sup-
port on 𝑓(1,2,3)). Tuple 𝑏4 was killed because of lack support on 𝑓(1,4). Conse-
quently, 𝑐3 was killed by 𝑗 = ((3), (3, 4) and finally, 𝑏1 killed by 𝑗 = ((1), (1, 3)),

26

5.2 Second phase: Computing 𝜆

Figure 18 Computing 𝜆 in example 5.1

hence 𝐴0 = (1). The DAG is demonstrated in Fig 18.

To build the DAG, we use a priority queue 𝑄 in which tuples are sorted
in descending order of their deletion. The order has to be kept since there
may exist more paths leading from the root to an inner node. First, tuples
𝑥𝐴0 , 𝑓𝐴0(𝑥𝐴0) ≤ 𝜖 are inserted into 𝑄. Then we iteratively process each tuple
in 𝑄 (line 8). For each 𝑥𝐴, we find out and discuss all causes of its deletion
(line 12). Analogously to searching for the support for 𝑥𝐴, there can arise three
causes of deletion. Given a killed tuple 𝑥𝐴, its killer 𝑗 = (𝐴, 𝐵) and a tuple
𝑥𝐵, 𝜋𝐴(𝑥𝐵) = 𝑥𝐴, the causes can be as follows.

a) (line 13) 𝑓𝐵(𝑥𝐵) > 𝜖. This tuple is not 𝜖 consistent, hence it constitutes a
leaf node and 𝜆 is computed from it.

b) (line 17) 𝑥𝐵 is killed and therefore it is no longer a support for 𝑥𝐴. More-
over, we have to check the order of deletion to ensure that 𝑥𝐵 invalidated
𝑥𝐴. 𝑥𝐵 is inserted into 𝑄 to find next 𝜆 sources.

c) (line 20) 𝑥𝐵 is not a support because there exists a tuple 𝑥𝐶 , (𝐶, 𝐵) ∈ 𝐽
that caused deletion of 𝑥𝐵. We iterate all the tuples 𝑥𝐶 that invalidated
𝑥𝐵. Tuples 𝑥𝐶 , 𝑓𝐶(𝑥𝑐) > 𝜖 compose leaves of the DAG, hence they influ-
ence 𝜆. Consistent tuples are added to 𝑄 and the explanation of their
deletion will help to explain the wipe-out later.

It is obvious that one tuple can cause deletion of several tuples, therefore 𝜆
is sent to 𝐴0 through multiple paths. Here, counters on tuples are introduced.
Each tuple explaining the wipe-out records the number of requests for the 𝜆
amount and the direction in which the amount will be send. The counter 𝑘𝑗(𝑥𝐵)
indicates how many tuples were deleted because of 𝑗. The counter 𝑘(𝑥𝐵) stores
the total number of deleted tuples. If there are more tuples 𝑥𝐴 ∈ 𝑋𝐴 killed by
𝑗 that demand some amount from 𝑥𝐵, 𝑥𝐵 remembers only the one with highest
number of requests since one call of extension sends the amount to all 𝑥𝐴 ∈ 𝑋𝐴.
Hence, if there is a new request from a tuple deleted by 𝑗 that is higher than
the yet highest one (line 22), both 𝑘 and 𝑘𝑗 have to increase accordingly. Note
that 𝑘(𝑥𝐵) = ∑︀

𝑗∈𝐽,𝑗=(𝐴,𝐵)(𝑘𝑗(𝑥𝐴))

27

5 VIRTUAL J-CONSISTENCY ALGORITHM

Example 5.3 Consider the example 5.1. The inconsistency of 𝑓1(𝑎1) killed
both tuples 𝑎1 directly and 𝑏1 indirectly. 𝜆 is equally split and a half of 𝜆
amount is send via 𝑓(1,4),𝑓4,𝑓(3,4),𝑓3,𝑓(1,3),𝑓1 to 𝑓∅ and the other half is projected
to 𝑓∅ directly.

5.3 Third phase: Applying equivalence-preserving
transformations

Suppose that 𝐴 ⊂ 𝐵 holds for every (𝐴, 𝐵) ∈ 𝐽 . Equivalence-preserving trans-
formation send weights from cost functions with higher arity to cost functions
to lower arity and vice versa. Weights can be sent between 𝑓𝐴 and 𝑓𝐵 if and
only if (𝐴, 𝐵) ∈ 𝐽 . The project operation sends weights from a cost function
𝑓𝐵 to a cost function of lower arity 𝑓𝐴. The extend operation extends weights
from 𝑓𝐴 to 𝑓𝐵. UnaryProject subtracts energy from a cost function and adds
it to the nullary cost function 𝑓∅ representing the lower bound of any solution.

Example 5.4 Given a cost function 𝑓𝐴, ∀𝑥𝐴 ∈ 𝑋𝐴, 𝑓𝐴(𝑥𝐴) ≥ 𝛼, we can call
UnaryProject until ∃𝑥𝐴, 𝑓𝐴(𝑥𝐴) = 0. Calling UnaryProject function on cost
functions and deducing the minimum value from them leads to the inevitable
increase of the lower bound on the solution.

In the third phase, the direction of edges in DAG is swapped and 𝜆 is sent
from the leaf nodes toward the root of DAG. Iterating the inner nodes, we send
adequate cost from the leaf to the inner node (line 5) if it has non zero 𝑘𝑗. Then
we can project 𝜆 amount.

Example 5.5 After applying equivalence preserving transformations in exam-
ple 5.1, the cost functions are as follows.
∙ unary cost functions:

– 𝑓1(𝑎) = 0 otherwise.
– 𝑓2 = 0.
– 𝑓3(𝑐) = 1, 0 otherwise.
– 𝑓4 = 0.

∙ binary cost functions
– 𝑓(1,3)(𝑏, 𝑏) = 𝑓(1,3)(𝑏, 𝑐) = 0, 𝑓(1,3)(𝑎, 𝑐) = 1.5 and 1 otherwise.
– 𝑓(1,4)(𝑎, 𝑏) = 𝑓(1,4)(𝑏, 𝑎) = 0, 𝑓(1,4)(𝑎, 𝑎) = 1.5 and 1 otherwise.
– 𝑓(3,4)(𝑎, 𝑎) = 𝑓(3,4)(𝑏, 𝑎) = 𝑓(3,4)(𝑐, 𝑏) = 0, 𝑓(3,4)(𝑎, 𝑎) = 𝑓(3,4)(𝑏, 𝑎) =

1.5 and 1 otherwise.
∙ ternary cost functions:

– 𝑓(1,2,3)(𝑏, 𝑎, 𝑐) = 0, 𝑓(1,2,3)(𝑏, 𝑎, 𝑏) = 𝑓(1,2,3)(𝑏, 𝑏, 𝑏) = 0.5 and 1 other-
wise.

28

5.3 Third phase: Applying equivalence-preserving transformations

Algorithm 3: Phase 3: Applying equivalence-preserving transformations
Procedure ApplyEPT()

1 while 𝑅 ̸= ∅ do
2 (𝑥𝐴, 𝐴)← 𝑅.pop()
3 𝑗 ← 𝑘𝑖𝑙𝑙𝑒𝑟𝑥𝐴

◁ let 𝑗 = (𝐴, 𝐵)
4 for 𝑗̄ ∈ 𝐽, 𝑥𝐴 ∈ 𝑋𝐴 s.t. 𝑗̄ = (𝐴, 𝐵), 𝑘𝑗̄(𝑥𝐴) > 0 do
5 extend(𝑥𝐴,𝑗̄,𝜆× 𝑘𝑗̄(𝑥𝐴))
6 𝑘𝑗̄(𝑥𝐴)← 0
7 project(𝑗,𝑥𝐴,𝜆× 𝑘(𝑥𝐴))
8 unaryProject(𝑖0,𝜆)

9 Function project(𝑗,𝑥𝐴,𝛼)
10 𝑓𝐴(𝑥𝐴)← 𝑓𝐴(𝑥𝐴) + 𝛼
11 for 𝑥𝐵 ∈ 𝑋𝐵 s.t. (𝐴, 𝐵) = 𝑗, 𝜋𝐴(𝑥𝐵) = 𝑥𝐴 do
12 𝑓𝐵(𝑥𝐵)← 𝑓𝐵(𝑥𝐵)− 𝛼

13 Function extend(𝑥𝐴,𝑗,𝛼)
14 project(𝑗,𝑥𝐴,−𝛼)

15 Function unaryProject(𝐴,𝜆)
16 for 𝑥𝐴 ∈ 𝑋𝐴 do
17 𝑓𝐴(𝑥𝐴) = 𝑓𝐴(𝑥𝐴)− 𝛼

18 𝑓∅ ← 𝑓∅ + 𝛼

29

6 REUSING INFORMATION
FROM PREVIOUS ITRATIONS

We have observed that many constraints that have already been revised remain
stack 𝑃 , therefore revised again in the next iteration. Some constraints are
not influenced by applying EP transformations, hence they do not need to be
revised unless they are reinserted into the stack 𝑃 during the arc consistency
algorithm. Hence, constraints influenced by EP transformations can be revived
and the information about the killed tuples can be reused in the next iteration.

The algorithm [3] describes one iteration. However, several iteration are
required in most cases. We propose a modification of the algorithm for n-
ary soft constraints that uses effectively the information from the previous
iterations. Since the algorithm propagates general arc consistency and GAC is
a special case of J-consistency, where ∀(𝐴, 𝐵) ∈ 𝐽 , |𝐴| = 1, we will work with
the codes introduced in section pseudocode. Moreover, the algorithm in section
pseudocode builds the DAG dynamically and requires the killer information
only. In this section, we will suppose that the unary scopes coincide with
domains, hence by deleting a value from a domain we mean deleting a tuple
from an unary constraints.

Example 6.1 We try to eliminate the redundant calls of revise. Consider a
network with a large amount of variables and functions, constraints respectively,
defined over them. During the instrumented-JC we have already revised a
great deal of constraints in stack 𝑃 , when a domain of a variable 𝑖0 is wiped out
because of lack support on 𝑐𝐵. We compute 𝜆 and apply EP transformations.
Because the deletion of 𝑖0 was only influenced by 𝑐𝐵, we project the cost from 𝑓𝐵

to 𝑓𝑖0 and then to 𝑓∅. By initializing the structure, we discard the results from
the previous iteration, hence we have to revise all constraints again although
they were not were not influenced by EP transformations.

Motivated by example 6.1, we introduce the process of reviving the values
from domains. In 6.1, if we revive 𝑖0 and revise constraints including the variable
𝑖0, we can process the next iteration with the modified stack 𝑃 instead of
initializing a new one.

While applying EP-transformations, we have to determine which values we
can revive. Every value in DAG was deleted because of some inconsistency.
When the source of the inconsistency is removed by shifting weights to the
nullary cost function, all values influenced by it have to be revived. The revival
is based on following observations.

30

∙ Let 𝑥𝐴 be a leaf node in DAG, hence 𝑓𝐴(𝑥𝐴) > 𝜖. If the cost of 𝑥𝐴 decreases
after an iteration to be less or equal 𝜖, the node comes alive. Hence the
killer and the order of deletion is set zero.
∙ If a 𝑥𝐴 comes alive, tuples killed by inconsistency in 𝑓𝐴 are revived as well.

Tuples that are not involved in DAG can be revived immediately after the
revival of 𝑥𝐴.
∙ A tuple 𝑥𝐴 can be killed by (𝐴, 𝐵) because of two reasons:

– 𝑓𝐵(𝑥𝐵) > 𝜖, 𝜋𝐴(𝑥𝐵) = 𝑥𝐴

– 𝑥𝐵, 𝜋𝐴(𝑥𝐵) = 𝑥𝐴 is inconsistent becausere associated

Example 6.2 Let 𝑉 = (1, 2, 3, 4) be a set of variables with domains 𝑋1 =
𝑋2 = 𝑋3 = 𝑋4 = {𝑎, 𝑏, 𝑐}. Let be cost functions defined as follows.
∙ unary functions {𝑓1, 𝑓2, 𝑓3, 𝑓4}: 𝑓1(𝑏) = 𝑓1(𝑐) = 10, 𝑓3(𝑎) = 1 and 0

otherwise.
∙ binary functions {𝑓(1,2), 𝑓(2,3), 𝑓(3, 4)}: 𝑓(1,2)(𝑎, 𝑎) = 𝑓(1,2)(𝑎, 𝑏) = 𝑓(2,3)(𝑎, 𝑎) =

𝑓(2,3)(𝑏, 𝑏) = 𝑓(2,3)(𝑐, 𝑐) = 𝑓(3,4)(𝑎, 𝑎) = 𝑓(3,4)(𝑏, 𝑏) = 𝑓(3,4)(𝑐, 𝑐) = 0, 𝑓(2,3)(𝑎, 𝑏) =
1 and 10 otherwise.

During the 𝐴𝐶 algorithm domain of variable 1 was wiped-out and killer struc-
ture is stored as follows.
∙ 𝑘𝑖𝑙𝑙𝑒𝑟𝑎4 = (3, 4)
∙ 𝑘𝑖𝑙𝑙𝑒𝑟𝑏3 = (2, 3)
∙ 𝑘𝑖𝑙𝑙𝑒𝑟𝑏4 = (3, 4)
∙ 𝑘𝑖𝑙𝑙𝑒𝑟𝑎2 = (2, 3)
∙ 𝑘𝑖𝑙𝑙𝑒𝑟𝑏2 = (2, 3)
∙ 𝑘𝑖𝑙𝑙𝑒𝑟𝑎1 = (1, 2)

The example is demonstrated in Figure 19. The edges represent binary cost
functions and circles stand for values. During the second phase, we determine
𝜆 = 1. The inner nodes of DAG (i.e. 𝑀 is set true) are 𝑎1, 𝑎2 and 𝑏2. Then,
the EP transformations are executed as described bellow.
∙ extend(𝑎3,(2,3),1). The cost of 𝑎3 decreases, thus 𝑓3(𝑎) = 0 and so

𝑎3 can be revived. Since 𝑎3 caused deletion of 𝑎4, it can be revived as
well. 𝑎3 also killed 𝑎2 and 𝑏2, however, these tuples belong to DAG (i.e.
𝑀(𝑎2) = 𝑀(𝑎3) = 𝑡𝑟𝑢𝑒) and we will need the killer information later.

Figure 19 Reviving killed values

31

6 REUSING INFORMATION FROM PREVIOUS ITRATIONS

∙ project((2,3),𝑎2,1).
∙ project((2,3),𝑏2,1).
∙ extend(𝑎2,(1,2),1). Since 𝑓𝑎(𝑎2) = 0 and 𝑎2 has been already processed,

it can be revived.
∙ extend(𝑏2,(1,2),1). Since 𝑓𝑎(𝑏2) = 0 and 𝑏2 has been already processed,

it can be revived. Moreover, 𝑏3 that is not a part of DAG can be revived
as well.
∙ project((1,2),𝑎1,1)
∙ unaryProject(1,1). Finally, 𝑎1 can be revived.

We introduce the modification of the third phase of VJC algorithm. While
EP transformations are applied, killed values are processed in the reverse order
due to stack 𝑅. When any 𝜆 amount is extended from 𝑥𝐶 , we check if it can
be revived (line 7. While reviving, killer and order of deletion is set zero.
However, value 𝑥𝐶 does not necessarily satisfy all constraints since it can be

Algorithm 4: Phase 3: Applying equivalence-preserving transformations
and reviving tuples
Procedure ApplyEPT()

1 while 𝑅 ̸= ∅ do
2 (𝑥𝐴, 𝐴)← 𝑅.pop()
3 𝑗 ← 𝑘𝑖𝑙𝑙𝑒𝑟𝑥𝐴

◁ let 𝑗 = (𝐴, 𝐵)
4 𝑀𝑥𝐴

← 𝑓𝑎𝑙𝑠𝑒

5 for 𝑗̄ ∈ 𝐽, 𝑥𝐴 ∈ 𝑋𝐴 s.t. 𝑗̄ = (𝐴, 𝐵),𝐴 ̸= 𝐴, 𝑘𝑗̄(𝑥𝐴) > 0,¬𝑀(𝑥𝐴) do
6 extend(𝑥𝐴,𝑗̄,𝜆× 𝑘𝑗̄(𝑥𝐴))
7 if 𝑓𝐴(𝑥𝐴) ≤ 𝜖 ∧ 𝐴 ̸= 𝐴0 then
8 revive(𝑥𝐴)
9 𝑘𝑗̄(𝑥𝐴)← 0

10 𝑘(𝑥𝐴)← 0
11 project(𝑗,𝑥𝐴,𝜆× 𝑘(𝑥𝐴))
12 for 𝑥𝐵 ∈ 𝑋𝐵 s.t. 𝜋𝐴(𝑥𝐵) = 𝑥𝐴 do
13 𝑘𝐵(𝑥𝐵)← 0
14 unaryProject(𝑖0,𝜆)
15 for 𝑥𝑖0 ∈ 𝑋𝑖0 s.t. 𝑓𝑖0(𝑥𝑖0) ≤ 𝜖 do revive(𝑥𝑖0)
16 for 𝑥𝑖0 ∈ 𝑋𝑖0 do 𝑘(𝑥𝑖0) = 0

Function revive(𝑥𝐴)
17 𝑘𝑖𝑙𝑙𝑒𝑟𝑥𝐴

← 0
18 𝑑𝑒𝑙𝑒𝑡𝑒𝑥𝐴

← 0
19 for 𝐵 s.t. (𝐴, 𝐵) ∈ 𝐽 do
20 𝑃 ← 𝑃 ∪ (𝐴, 𝐵)
21 for (𝐴, 𝐵) ∈ 𝐽, (𝐴, 𝐵) ∈ 𝐽, 𝑥𝐴 ∈ 𝑋𝐴 s.t. 𝐴 ̸= 𝐴 do
22 if 𝑘𝑖𝑙𝑙𝑒𝑟𝑥𝐴

= (𝐴, 𝐵) ∧ ¬𝑀(𝑥𝐴) then
23 revive(𝑥𝐴)

32

killed because of some other inconsistency, hence we insert all constraints in
which 𝑥𝐶 is involved into the stack 𝑃 . Then all variables sharing any constraint
𝑐 with 𝑥𝐶 are checked. If any value 𝑥𝐷 of a variable outside of DAG was killed
by 𝑥𝐶 , i.e. 𝑀(𝑥𝐷) is false, it is revived as well. Then we recursively revive all
killed values. When all the unary costs required by j are extended, the amount
is projected to 𝑥𝐴 and the counter is reset. Finally, the 𝜆 amount is sent to 𝑓∅
and values with 𝑓𝐴0 ≤ 𝜖 are revived.

In VAC, a stack 𝑄 with all killed values is created during the first phase. This
structure does not enable reviving the values, hence it is replaced by dynamic
creation of DAG using the priority queue. Although insertion a deletion from
priority queue is 𝑂(log(𝑛)), it contains only few elements.

33

7 RESULTS
The pseudocode was implemented in MATLAB to support the development of
the algorithm. Generally, MATLAB implementation shows lower performance
results than implementation in higher languages such as C++ or Java.

The tests were running on a 2.4 GHz Intel(R) Core(TM) i5-2430M with 8
GB using MATLAB R2013b.

7.1 J-Consistency Evaluation
First test indicates how the size 𝐽 influences time and the result. A set of binary
problems with 400 variables and 1160 constraints (400 unary and 760 binary)
was randomly generated. On every problem arc consistency was applied that is
1560 pairs of unary and binary constraint are prove consistent. Then the size
of 𝐽 was decreased to 1500, 1300, 1200, 900, 600 and 300 randomly selected
pairs. The results of weaker 𝐽-consistency are compared to arc consistency.
Fig. 20 displays lower bound, number of iterations and time relatively to the
arc consistent solution. The big difference in processing time between |𝐽 | =
1500 and |𝐽 | = 1560 is caused by ordering of the set 𝐽 . The algorithm turns
out to run faster when the set 𝐽 is randomly ordered. This observations leads
to the heuristic that may speed up the algorithm: to shuffle the stack 𝑃 . It can
be shuffled at beginning of every iteration not to repeat the same sequence of
revise functions as in the last iteration.

Figure 20 Increasing number of algorithm iterations depending on level of noise
applied on image 23a

With constraints of higher arities, the algorithm runs rapidly slower. In-
stances containing 100 variables and 380 constraints (100 unary, 80 binary, 100

34

7.2 Reviving Evaluation

ternary and 100 quarternary) take approximately 40 minutes to solve. As ex-
pected, 𝑉 𝐽𝐶 found a higher lower bound in longer time. The slight increase in
lower bound involved a 18% growth in time (Tab. 1).

Lower bound Number of iterations Running time
VAC 1569 13883 2050
VJC 1589 15722 2428

Table 1 Results of lower bound in VAC and VJC algorithm.

7.2 Reviving Evaluation
We compared the algorithms for finding lower bound on WSCP with (𝑉 𝐴𝐶𝑟)
and without (𝑉 𝐴𝐶) reusing information from the previous iteration. The two
algorithms were tested on randomly generated binary problems. With increas-
ing number of variables and constraints, the processing time of algorithm with-
out reviving the values grew much faster although the average number of iter-
ations does not differ. This was caused by increase in of average time of one
iteration of 𝑉 𝐴𝐶. The average time increased in every iteration, since 𝑉 𝐴𝐶
called more revise functions (Fig. 21).

Figure 21 Execution time of 𝑉 𝐴𝐶 and 𝑉 𝐴𝐶𝑟 depends on number of variables.

Searching for the support turned out to be very expensive. It takes one third
of processing time. Time complexity of the revise function was studied by
Mohr and Henderson. They proposed an algorithm AC4 to improve the time
complexity ([5]). AC4 stores informations during the revise function for the
case that the same revise is recalled. They achieved 𝑂(𝑒𝑑2) time complexity,
however, the space complexity increased to 𝑂(𝑒𝑑2).

In our algorithm, a tuple 𝑥𝐴 is inconsistent if it the killer is set or 𝑓𝐴(𝑥𝐴) > 𝜖.
The information about killer is stored in constraints 𝑓𝐴 such that (𝐴, 𝐵) ∈ 𝐽 .
Hence when determining a tuple 𝑥𝐵 to a conflict or a support, we have to prove
all tuples 𝑥𝐴 such that (𝐴, 𝐵) ∈ 𝐽 consistent. Another approach would be to
store the information directly in 𝑥𝐵. However, storing this information can be
expensive as well and the information does not have to be used later. This

35

7 RESULTS

topic is open for later research.

Extracting lines from image
Reviving of variables is tested on line extracting problem (see example 4.2).The
complexity of the problem depends on the level of noise. In the range of 0 . . . 1,
zero stands for the image without noise and one is represents a randomly gen-
erated gray scale image. The number of iterations depends on the level of noise
(Fig 22).

An image (Fig. 23a) of a size 50 × 50 pixels contains 15 horizontal and 15
vertical lines. Different levels of noise are used to test the run of the algorithm
reusing information from the previous iteration (Fig. 23b - Fig. 23e). The
algorithm could recognize the images with noise smaller that 0.8. For 50× 50,
it took up to two minutes depending on the level of noise. The maximal size
that the pseudocode was able to solve in few minutes was 100× 100.

Figure 22 Increasing number of algorithm iterations depending on level of noise
applied on image 23a

a) Noise 0 b) Noise 0.2 c) Noise 0.4

d) Noise 0.6 e) Noise 0.7 f) Noise 0.775

Figure 23 Gray scale noisy images of size 50 × 50 pixels containing 15 horizontal
and 15 vertical lines

36

8 CONCLUSION
Constraint programming (CP) is widely applied in many areas. Constraint sat-
isfaction problems (CSP) constitute the main class of CP problems, defined in
a natural language of decision variables and constraints. CSP belong to the
class of NP-complete problems, hence it can be problematic to find a solution
for more complex problems. However, we can focus on improvement in solv-
ing particular parts of the problem. Weighted constraint satisfaction problem
(WCSP) is a modification of CSP where hard constraints are replaced by soft
constraint evaluating the variables.

In this thesis, we introduced 𝑉 𝐽𝐶 algorithm, based on VAC algorithm pub-
lished in [3], which finds a lower bound on WCSP by applying equivalence-
preserving transformations. The sequence of these transformations is carefully
planned to lead to the increase in the lower bound. As results show, the VJC
gives us freedom to choose between time and quality of the solution.

Furthermore, we have extended the 𝑉 𝐴𝐶 algorithm and so we have imple-
mented a mechanism which remembers information reached in during the the
algorithm. The extension leads to the decrease in time required by every iter-
ation, because of less calls of revise function. The combination of 𝑉 𝐽𝐶 with
reusing the informations from the previous iterations may be a topic for a later
research.

37

Bibliography
[1] Javier Larrosa et al. “Solving weighted CSP by maintaining arc consis-

tency”. In: Artificial Intelligence vol. 159.1-2 (2004), pp. 1–26.
[2] Martin Cooper and Thomas Schiex. “Arc consistency for soft constraints”.

In: Artificial Intelligence vol. 154.1-2 (2004), pp. 199–227.
[3] M. C. Cooper et al. “Soft arc consistency revisited”. In: Artificial Intelli-

gence 174.7-8 (May 2010), pp. 449–478. issn: 0004-3702.
[4] Alan K. Mackworth. “Consistency in networks of relations”. In: Artificial

Intelligence vol. 8.issue 1 (1977), pp. 99–118.
[5] Roger Mohr et al. “Arc and path consistency revisited”. In: Artificial

Intelligence vol. 28.issue 2 (1986), pp. 225–233.
[6] Eugene C. Freuder and Charles D. Elfe. “Neighborhood Inverse Consis-

tency Preprocessing”. In: In Proceedings of AAAI-96. 1996, pp. 202–208.
[7] Eugene C. Freuder et al. “Synthesizing constraint expressions”. In: Syn-

thesizing constraint expressions vol. 21.issue 11 (1978), pp. 31–47. issn:
synthezising constraint expressions.

[8] Eugene C. Freuder. “A sufficient condition for backtrack-bounded search”.
In: Journal of the ACM vol. 32.issue 4 (1985), pp. 755–761.

[9] Ugo Montanari. “Networks of constraints”. In: Information Sciences vol.
7 (1974), pp. 95–105.

[10] P. Janssen et al. “A filtering process for general constraint-satisfaction
problems”. In: [Proceedings 1989] IEEE International Workshop on Tools
for Artificial Intelligence (1989), pp. 420–427. url: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=65349.

38

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=65349
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=65349

	INTRODUCTION
	GENERAL CONCEPT OF CONSTRAINT PROGRAMMING
	Variables
	Constraints
	Constraint Satisfaction Problem

	CONSISTENCY
	First-Order Consistency
	Higher-Order Consistency
	Relation-based consistencies

	WEIGHTED CONSTRAINT SATISFACTION PROBLEM
	Equivalent-preserving transformations
	Soft Consistency

	VIRTUAL J-CONSISTENCY ALGORITHM
	First phase: J-consistency algorithm
	Second phase: Computing
	Third phase: Applying equivalence-preserving transformations

	REUSING INFORMATION FROM PREVIOUS ITRATIONS
	RESULTS
	J-Consistency Evaluation
	Reviving Evaluation

	CONCLUSION
	Bibliography

