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Abstract
This diploma thesis deals with control and trajectory planning of het-
erogeneous teams of ground robots and helicopters, in which a system of
relative localization carried onboard of unmanned aerial vehicles is used
for formation stabilization. The proposed planning method is based on
the model predictive control technique. The main goal of this diploma
thesis is design, implementation and experimental verification of two ex-
tension of the formation driving methodology being developed within
Department of Cybernetics, FEE, CTU. The first extension of the sys-
tem enables usage of rapidly-exploring random tree method for initial-
ization of the model predictive control algorithm. The second extension
of the system enables possibility of making complex maneuvers in envi-
ronments with obstacles. The purpose of both extensions is discussed,
and particular algorithms and the entire system are verified in various
numerical experiments in environments of different complexity. Further-
more, the behaviour of the system is statistically analyzed in dynamic
and partially unknown environment. Influence of different settings of the
algorithm on the quality of obtained trajectories and time complexity is
evaluated as well.

keywords:
[multi-robot formation, trajectory planning, model predictive control,
complex maneuvers, dynamic environment, rapidly-exploring random
tree]



Abstrakt
Tato diplomová práce je zaměřena na vývoj metod pro ř́ızeńı a plánováńı
trajektorie heterogenńıch týmů pozemńıch robot̊u a helikoptér, ve
kterých je použ́ıván systém vizuálńı relativńı lokalizace instalovaný na
palubě bezpilotńıch helikoptér. Navrhovaná metodologie je zaměřena
na použit́ı prediktivńıho ř́ızeńı (MPC). Hlavńım ćılem této práce je
navrhnout, implementovat a experimentálně ověřit dvě rozš́ı̌reńı systému
pro ř́ızeńı formaćı robot̊u vyv́ıjeného na katedře kybernetiky, ČVUT
v Praze. Prvńı rozš́ı̌reńı systému umožńı inicializaci MPC algoritmu
založenou na rychle rostoućıch náhodných stromech. Druhé rozš́ı̌reńı
systému umožńı provádět komplexńı manévry (opakovanou změnu směru
pohybu formace) ve složitém prostřed́ı s překážkami. Důvod obou
rozš́ı̌reńı je diskutován a jednotlivé algoritmy i systém jako celek ver-
ifikovány sadou numerických experiment̊u v prostřed́ıch r̊uzné složitosti.
Dále je staticky analyzováno chováńı systému v dynamicky se měńıćım
a částečně neznámém prostřed́ı a je porovnán vliv r̊uzných nastaveńı
algoritmu na kvalitu źıskané trajektorie a výpočetńı náročnost.

kĺıčová slova:
[multi-robotické formace, plánováńı trajektorie, metoda prediktivńıho
ř́ızeńı, komplexńı manévry, dynamické prostřed́ı, rychle rostoućı náhodné
stromy]
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1 INTRODUCTION

1 Introduction

With advancing technological progress, mobile robots become more spread than ever
and also multi-robot systems become frequently used. One of the currently investigated
problems dealing with multi-robot systems is coordination of formations of robots and their
motion planning into a target zone. In this task, a group of robots has to find and follow a
collision free trajectory while it maintains a desired shape of the formation. For solving this
problem positions of the members of the formation need to be known. Unfortunately, the
GPS module that is well known as a way how to get the global position cannot be always
used (e.g. in indoor application) and its precision is insufficient for control of compact
formations. One of the possible ways how to locate the positions of the members of the
formation is to use relative visual localization. This diploma thesis deals with a system for
control and trajectory planning of heterogeneous teams of ground robots and helicopters
where a system of relative localization carried onboard of unmanned aerial vehicles is used
for formation stabilization.

The system of control and trajectory planning for the formation presented in this thesis
is based on the model predictive control method that is described in [23] and [19]. This
system tries to find a solution that satisfies constraints of movement of the formation
and also constraints of direct visibility between the members of the formation that is
required for relative visual localization. The main purpose of this diploma thesis is design,
implementation and experimental verification of two extensions of the mentioned system.

The first extension of the system will enable usage of rapidly-exploring random tree
method for initialization of the model predictive control algorithm. The second extension of
the system will enable performing complex maneuvers in environments with obstacles. The
purpose of both extensions will be discussed and particular algorithms and the entire system
will be verified in various numerical experiments in environments of different complexity.
Furthermore, the behaviour of the system will be statistically analyzed in dynamic and
partially unknown environment. Influence of different settings of the algorithm on the
quality of obtained trajectories and time complexity will be evaluated.
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2 STATE OF THE ART

2 State of the art

Several methodologies and formulations of controlling multi-robot systems to reach the
target region have been proposed. According the literature, these methods are categorised
as follow:

• the behaviour-based approach

• the leader-follower approach

• the virtual structure approach.

In the behaviour-based approach, a local behaviour is assigned to each individual robot
[1]. The main advantage of this approach is in decentralisation of the problem of the con-
trolling multi-robot system. This approach was inspired by behaviour of animals in nature
(e.g. school of fish, group of birds). Based on their perception animals are trying to min-
imize the chance of being detected by predators or to gather food more efficiently. Craig
Reynolds developed a simple egocentric1 behavioural model for group of birds[11]. Each
member of the group follows this model and its behaviour consists of several separate com-
ponents including: collision avoidance (avoidance of collision with others robots), velocity
matching and flock centring.

(a) The behaviour-based ap-
proach - swarm of robots
(Source: wikipedia.org) (b) The virtual struc-

ture approach - space-
crafts (Source: http://www.super-
nexus.com/riftspace/LIBERTY.htm)

(c) The leader-follower ap-
proach - formation of one
ground and 2 aerial vehicles

Figure 1: Examples of using approaches to control a multi-robot system.

In the leader-follower approach, one or more of the robots in the group are typically
assigned as leader, and the rest of members become followers[23]. Behaviour of the leader
specifies behaviour of the whole group. The advantage is that the global trajectory is
computed only for the leader and not for all robots in the group. The control inputs for
followers are computed from the leader trajectory with the aim to follow this trajectory.

1Egocentrism is a behaviour in which each individual predominantly focuses on himself rather than on
others.
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2 STATE OF THE ART

The disadvantage of this approach lies in absence of feedback from behaviour of followers
to the leader. So if follower fails or temporarily slows down, the leader will not react to it.

In the virtual structure approach, the entire robot formation is considered as a single
structure [9]. The formation is not created from leaders and followers (there is no hierarchy
in the formation). In this method the desired trajectory for the entire structure is computed
and this trajectory is used for controlling the individual robots in the formation.

3/56



3 PRELIMINARIES

3 Preliminaries

An introduction of methods used in this thesis is given in this chapter.

3.1 Leader-follower approach

This thesis is built on achievements presented in [15] and [19]. These works are based
on the leader-follower approach. It means that the whole trajectory to the desired area is
computed only for the leader and trajectory of robots in a formation (followers) is defined
relatively to the leader trajectory. In the leader-follower concept, virtual leader, which is
located in the front and simultaneously in the axis of the formation, is used.

This approach enables us to meet the requirements of different types of robots as
members of the formation. It was also chosen because it satisfies requirements of the direct
visibility between team members, which is used for localization of the robots. During the
movement it cannot happen that this visibility is lost because this would lead to destruction
of coherence of the formation. An example of an area which can not be blocked by an
external object is shown in Figure 2.

Figure 2: The example of projection of the zone in which the direct visibility has to be
satisfied into a plane of the virtual leader.

3.2 Configuration space of robots

Let us define fundamental terms required for the method description. The configuration
space of the robots denoted as C−space, represents set of all possible configurations of the

4/56



3 PRELIMINARIES

robots in the environment2 W. A search in this C − space must be conducted for finding
a solution of motion planning problem[7].

We suppose that the environment includes obstacles Oobs that divide the C−space into
two subsets. The first subset of C − space is obstacle configuration space Cobst ⊆ C. It is
a set of all configuration ~ψj of the j-th robot, in which the robot intersects with obstacle
and can be defined as

Cobst = { ~ψj ∈ C|A( ~ψj) ∩Oobs 6= ∅}, (1)

where A( ~ψj) represents body of the robot in configuration ~ψj. The second subset of C −
space is free configuration space Cfree, that represents space, where the robot is without
collision with an obstacle. It can be defined as

Cfree = C \ Cobs. (2)

Configuration of the virtual leader L and nr numbers of the followers in this work is
described by vector ~ψj = (xj, yj, zj, phij) ∈ C, where j ∈ {L, 1, . . . , nr}. So configuration
of the j-th robot is set by its position in Cartesian coordinates p̄j = (xj, yj, zj) and by its
heading phij.

3.3 Kinematic model

This approach requires that the kinematic model must be suitable for each robot in the
formation. It must be suitable for both ground and aerial vehicles. The solution is to use
the extended model for car-like robot[19].

The standard kinematic model for car-like robot was created for ground vehicles and
uses two parameters for describing robot movement, velocity v and curvature K. The
curvature K is defined as

K(t) =
tan (θ(t))

d
, (3)

where d represents a distance between the front and rear wheels, and θ is angle of the
front pair of wheels (see Figure 3). This model extended by another parameter w, which
represents ascent velocity, can be used as the kinematic model for both the mentioned
types of robots. So the kinematic model of j-th robot is described by following equations

ẋj(t) = vj(t) cos (ϕj(t)) ,

ẏj(t) = vj(t) sin (ϕj(t)) ,

żj(t) = wj(t),

ϕ̇j(t) = Kj(t)vj(t),

(4)

2In this work a 3-dimensional space is considered.
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3 PRELIMINARIES

and ascent velocity w is limited to zero for the ground vehicles. Three parameters of the
kinematic model represent control inputs for the robot and can be represented by a vector
~uj(t) = (vj(t), wj(t), Kj(t)) .

(x,y)

φ

θ
d

R

ICC

Figure 3: Car-like model

Computed trajectory from initial state to target state is described by a sequence of vec-
tors ~u1, . . . , ~uend−1, which contains control inputs, and by a sequence of the durations of con-
trol inputs ∆t1, ...,∆tend−1. For the time interval ∆tk = tk+1−tk, where k ∈ {1, . . . , end−1},
the control inputs are constant (from here index k is used instead of tk). The model for
transition points, where the controls inputs change can be deduced by integration of the
kinematic model (eq. (4)) over interval [tk, tk+1]:

xj(k + 1) =


xj(k) + 1

Kj(k+1)
[sin (ϕj(k)+

Kj(k + 1)vj(k + 1)∆t(k + 1))−
sin (ϕj(k))] , if Kj(k + 1) 6= 0;
xj(k) + vj(k + 1) cos (ϕj(k)) ∆t(k + 1),
if Kj(k + 1) = 0,

yj(k + 1) =


yj(k)− 1

Kj(k+1)
[cos (ϕj(k)+

Kj(k + 1)vj(k + 1)∆t(k + 1))−
cos (ϕj(k))] , if Kj(k + 1) 6= 0;
yj(k) + vj(k + 1) sin (ϕj(k)) ∆t(k + 1),
if Kj(k + 1) = 0,

zj(k + 1) = zj(k) + wj(k + 1)∆t(k + 1)
ϕj(k + 1) = ϕj(k) +Kj(k + 1)vj(k + 1)∆t(k + 1),

(5)

where xj(k), yj(k), zj(k) and phij(k) are configuration of the j-th robot in transition point
with index k. vj(k+ 1), wj(k+ 1) and Kj(k+ 1) are control inputs from vector ~uj(k+ 1) =
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~uj(tk, tk+1 − tk) which are used at tk and for ∆tk+1 = tk+1 − tk.

3.4 Robot’s constraints

Every robot has limitations of its movement given by the vehicle’s mechanical capabil-
ities. This is presented by limitation of control inputs as follows:

vmin,j ≤ vj(k) ≤ vmax,j,

|Kj(k)| ≤ Kmax,j,
(6)

and moreover for aerial vehicles

wmin,j ≤ wj(k) ≤ wmax,j.

As was mentioned before ground vehicles have limited ascent velocity wj to zero.

Furthermore, we must define two boundary ra and rd. Robots should respond only to
obstacles that are closer than avoidance boundary rd to its positions. It is not allowed for
robots to come to obstacles closer than avoidance boundary ra during the movement. It
must be satisfied ra < rd.

3.5 Formation driving

Curvilinear coordinates p, q, h are used for description of the relative states of the
followers to the virtual leader states. Conversion from these curvilinear coordinates to
Cartesian coordinates for j-th member of the formation can be described by the following
equations

xj(t) = xL(tpj)− qj sin(ϕL(tpj)),

yj(t) = yL(tpj) + qj cos(ϕL(tpj)),

zj(t) = zL(tpj) + hj,

ϕj(t) = ϕL(tpj),

(7)

where ψL(tpj) =
(
xL(tpj), yL(tpj), zL(tpj), phiL(tpj)

)
is state of the virtual leader in time

tpj . So the state of j-th robot is determined from the virtual leader state ψL(tpj), which
represents state of the virtual leader in the past when it was in distance pj from its actual
state ψL. Follower’s state is then set by distance qj in state ψL(tpj(t)) which is perpendicular
to the virtual leader trajectory and by distance hj above state ψL(tpj(t)). An example of
shape of the formation described in curvilinear coordinates is shown in Figure 4.
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Figure 4: An example of shape of the formation described in curvilinear coordinates.

3.6 Constraints of virtual leader

As was mentioned each robot in the formation has its own limitations of control inputs,
which depends on the robot design. These limitations of the members of the formation
and with their positions in the formation have to be considered in trajectory planning for
the virtual leader. If the formation is turning, each robot has to move with different value
of curvature and velocity. All these limitations are included into constraints of the virtual
leader movement by following equations

Kmax,L = min
i=1,...,nr

(
Kmax,i

1 + qiKmax,i

)
,

Kmin,L = max
i=1,...,nr

(
−Kmax,i

1− qiKmax,i

)
,

vmax,L(t) = min
i=1,...,nr

(
vmax,i

1 + qiKL(t)

)
,

vmin,L(t) = max
i=1,...,nr

(
vmin,i

1 + qiKL(t)

)
,

wmax,L = min
i=1,...,nr

(wmax,i) ,

wmin,L = max
i=1,...,nr

(wmin,i) .

(8)

The virtual leader trajectory must be collision free for the virtual leader but also for the
members of the formation. So the shape of the formation must be included into planning.
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That is done by following equation

rd,L(t) = rs + max
i=1,...,nr

|qi(t)| ,

ra,L(t) = ra + max
i=1,...,nr

|qi(t)| , (9)

where rd,L(t) is detection zone and ra,L(t) is avoidance zone of the virtual leader.

3.7 Model predictive control

Figure 5: Illustration of the model predictive control approach.[19]

The Model Predictive Control (MPC) is an optimization method for stabilization of
nonlinear systems over a finite time horizon. This method is often used in industry but can
be also used in mobile robotics. In this thesis, the MPC is used for trajectory planning to
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desired area and simultaneously for computing control inputs feasible for the members of
the formation.

The standard model predictive control solves a finite horizon optimization control prob-
lem starting from current state with constant sampling time ∆t between N transition
points. This approach uses actual perception of the world for solving. Only first n of the
control steps from the result are used and the optimization problem is solved again from
the newly achieved state. The perception of the world may change during the movement
of the formation and this method allows the robots to react to these changes.

Illustration of the proposed method is shown in Figure 5. This method is divided into
2 parts. In the Virtual leader part, the Trajectory Planning block provides control inputs
for the virtual leader and a complete trajectory to the target zone feasible for the entire
formation. For this task, the standard model of the predictive control was extended by a
horizon in which the sampling time is variable between M transition points. The entire
horizon is therefore formed from two horizons. The first horizon 〈t0, t0 +N∆t〉 is denoted
as the control horizon and the second 〈t0 +N∆t, t0 + (N +M)∆t〉 as the planning horizon.
The control horizon with the constant sampling time is used to obtain immediate control
and the planning horizon where lengths of time intervals between transition points are also
variables taking part in the planning problem. The resulting trajectory is used as an input
for the second main block, which transforms the plan to the desired trajectory for the
followers (using eq. (7)), and for re-initialization of the optimization in the next planning
step.

In the Follower block, the Trajectory Following module is responsible for computing
trajectory (input controls), which is feasible (avoid collisions with the obstacles and the
other members in the formation), and which is as close as possible to the desired trajectory
provided by the virtual leader. Only the first n of the computed control inputs are used
according to the model predictive control.

The solution of the optimization control problem for the model predictive control is
formed by minimizing the cost function. The sequential quadratic programming is a pow-
erful process for solving this problem with nonlinear constraints. Unfortunately, its disad-
vantage is missing ability to overcome local extrema in the cost function. This problem
will be described in section 5, where the initialization of optimization will be solved.
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4 Implementation details

In this section the proposed approach for solving optimization problem of trajectory
planning will be described. Detailed description of planning will be presented in subsection
4.1 for the virtual leader and in subsection 4.2 for the followers.

4.1 Virtual leader’s trajectory planning

As was mentioned in section 3.7, trajectory planning presented in this thesis is defined as
optimization problem over two time horizons (control horizon and planning horizon). The
trajectory is coded into the optimization vector ΩL for the purpose of the MPC method,
with N+M elements, where N is length of control horizon and M is length of planning
horizon. Each element contains control inputs and time that represents the duration of
every control input. The sampling time is constant for the first N elements and for the rest
of elements the sampling time is variable.

The trajectory planning and obstacle avoidance problem can be then transformed into
the minimization of cost function λL(·) subject to sets of inequality constraints gN(·), gM(·), gra,L(·),
and gSF

(·), that is

minλL(ΩL), s.t. gN(k) ≤ 0,∀k ∈ {1, . . . , N},
gM(k) ≤ 0,∀k ∈ {N + 1, . . . , N +M},

gra,L(ΩL,Oobs) ≤ 0,

gSF
(ψL(N +M)) ≤ 0.

(10)

4.1.1 Objective function

The cost function is given by

λL(ΩL) = α

(
N+M∑
k=N+1

∆t(k)

)
+ βmin

{
0,
dist(ΩL,Oobs)− rd,L
dist(ΩL,Oobs)− ra,L

}2

+ γ

N+M∑
k=1

|v(k)− v|+ η

N+M∑
k=1

|w(k)− w|+ µ

N+M∑
k=1

∣∣K(k)−K
∣∣

+ ξ ‖(ψL(N +M), CSF
)‖

(11)

as a weighted sum of several parts. The first part symbolizes the time required to reach
the target area. The duration time of each control input is constant for control horizon
but for planning horizon variable. So it does not make sense to include the time in control
horizon into formula. The second part of λL(·) represents influence of obstacles close to
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the planned trajectory. Function dist(ΩL,Oobs) provides minimal Euclidean distance from
all obstacles Oobs to the leader planned trajectory ψL(.). The cost of this part is zero if
distance dist(ΩL,Oobs) is bigger than rd,L. The obstacles that are farther than rd,L from
ψL(.) do not have influence on the cost function. The next three parts of λL(·) are added
because control inputs of trajectory without big changes are preferred. Last part of the
formula is included for improvement of convergence to desired solution. The desired region
is represented as a circle with radius rSF

and center CSF
.

By setting constants α, β, γ, η, µ a ξ user can set which trajectory is preferred. For
example increasing parameter β results in longer trajectories with larger distances from
obstacles.

4.1.2 Constraint function

Inequality constraints gN(·) and gM(·) of the cost function represent limitations of the
virtual leader movement (eq. (8)). Inequality constraint gra,L(·) that characterizes safety
regions around the trajectory is defined as

gra,L(ΩL) := ra,L − dist(ΩL,Oobs). (12)

If inequality constraint gra,L(·) is satisfied, the trajectory cannot lead to collision with an
actually known external objects.

Last term gSF
(ψL(N +M)) is stability constraint ensuring that the virtual leader tra-

jectory ψL will lead to the desired region. The stability constrain is given by

gSF
(ψL(N +M)) := ‖(ψL(N +M), CSF

)‖ − rSF
. (13)

The trajectory that satisfies all these constraint is considered as a feasible collision free
trajectory from actual state of a robot to a desired region.

4.2 Trajectory following for followers

The trajectory of the virtual leader, which is result of the previous section, will be used
according to the leader-follower concept as an input of trajectory following for followers.
The virtual leader trajectory must be transformed for every follower of the formation using
equation (7). Unfortunately, this plan can be used only for followers with p = 0 and for
followers, with p 6= 0, another approach must be used. The idea of this approach is to
use history of the virtual leader movement together with the actual computed trajectory.
The states of the virtual leader ψL(tpj(t)) where the leader used to be in the past and
that are behind its actual computed states in distance pj need to be determined for each
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follower. The states ψL(tpj(t)) are then used for computing the desired states of followers
using equation (7).

The proposed approach has a problem to compute the desired position for j-th follower
when state ψL(tpj(t)) do not exist. It happens when the virtual leader does not travel the
distance pj. In this case, state ψL(tpj(t)) is computed as remaining distance lr(t) behind the
start state of the virtual leader. The remaining distance is computed as

lr(t) = lt(t)− pj, (14)

where lt(t) is leader travelled distance.

In a similar way to the leader planning in section 4.1, the trajectory is coded into
optimization vector Ωj for the purpose of the MPC method. Vector Ωj is created from N
elements, where N is length of control horizon. Every element contains control inputs and
constant time.

The trajectory tracking for j-th follower, where j ∈ (1, . . . , nr), can be transformed to
the minimization of cost function λj(·) subject to sets of inequality constraints gN(·), gra(·),
and gra,j(·), that is

minλj(Ωj), s.t. g(k) ≤ 0,∀k ∈ {1, . . . , N},
gra(Ωj,Oobs) ≤ 0,

gra,j(Ωj,Ωnn) ≤ 0.

(15)

4.2.1 Objective function

Similarly as for the virtual leader, the cost function of j-th follower is created as a
weighted sum of several parts as

λj(Ωj) = α

N∑
k=1

‖(p̄D,j(k)− p̄j(k))‖2 + βmin

{
0,
dist(Ωj,Oobs)− rd
dist(Ωj,Oobs)− ra

}2

+ τ
N+M∑
k=1

|v(k)− v|+ η
N+M∑
k=1

|w(k)− w|+ µ
N+M∑
k=1

∣∣K(k)−K
∣∣

+ γmin

{
0,
dist(Ωj,Ωnn)− rd
dist(Ωj,Ωnn)− ra

}2

.

(16)

The first part symbolizes deviation of computed positions p̄j from desired positions p̄D,j(k),
where k ∈ (1, . . . , N). The proposed approach, presented in section 4.1, ensures that the
virtual leader trajectory is collision free, but virtual leader is located in the front of the
formation and an external object can be detected behind its position. So, it is not sure
that precomputed trajectory for followers will be collision free. This is reason why the
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cost function λj(·) has a second part that represents influence of obstacles close to the
planned trajectory. Meaning of this part is the same as the second term of eq. (11). It
is not preferred if control inputs (forward velocity vj(k), ascent velocity wj(k) and cur-
vature Kj(k)) of robots are changing often. This is ensured by the next three terms of
the cost function λj(·). We also can not expect that the trajectory will be followed by
the robot as is planned. The last part of the cost function has to protect the robot from
dangerous behaviour of others members of the formation. Function dist(Ωj,Ωnn) provides
minimal Euclidean distance from all planned neighbours positions in the formation Ωnn ,
where nn = (1, . . . , j − 1, j + 1, nr), to the follower planned trajectory ψj(.). The idea of
the proposed approach is that the desired trajectories are provided to each follower after
computing the leader trajectory and the followers start to parallely solve the trajectory
tracking. When they complete computing of the trajectories in the actual planning step,
they will communicate between themselves by messages about their planned positions. So
each follower knows the planned positions of the other members of the formation computed
in the previous planning step. We suppose that the planned positions in the actual plan-
ning step will be similar to the part of planned positions in the previous planning step. So
function dist(Ωj,Ωnn) can be computed as

dist(Ωj,Ωnn) := min
i∈nn

(
min

k∈{1,...,N−n}
‖(p̄j(k)− p̄i(k + n))‖

)
, (17)

where p̄i(·) is planned position of i-th robot in the previous planning step and n represents
the number of used control inputs.

4.2.2 Constraint function

Inequality constrains g(·), defined in (15), are identical to inequality constrains gN(·)
in (10), where k ∈ (1, . . . , N). Inequality constraints are defined for safety regions around
the robots to avoid obstacles as

gra(Ωj) := ra − dist(Ωj,Oobs), (18)

and to avoid other members of the formation as

gra(Ωj) := ra − dist(Ωj,Ωnn). (19)

4.3 Experimental verification

This subsection is focused on experimental verification of the proposed approach. For
this purpose, A situation was chosen where formation with 8 members has to move into a
target region through an environment with one static obstacle. This obstacle is detected
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during the movement. Parameters of the formation are shown in Table 1. Progress of values
of the cost function (eq. (11)) used for the virtual leader trajectory planning is displayed
in Figure 6. Snapshots from the experiment are shown in Figures 7, 8, and 9.

i 1 2 3 4 5 6 7 8

pi 0 0 0.55 1.1 1.1 1.65 2.2 2.2
qi -0.8 0.8 0 -0.8 0.8 0 -0.8 0.8
hi 0 0 1 0 0 1 0 0

Table 1: Curvilinear coordinates of the followers in the formation used in the experiment
presented in section 4.3.

The shape of the formation is presented in Figure 7. The formation is created from 6
ground vehicles and 2 aerial vehicles. As was mentioned before, the proposed approach is
suitable for planning of the movement of the formation to the desired region. Localization
of members of the formation is realised using onboard visual system[5]. In this experiment,
the ground vehicles are in principle localized by two aerial vehicles. The trajectory obtained
in the first planning loop of the presented MPC algorithm is shown in Figure 8, which shows
that the found trajectory is collision free (in perspective of knowledge about environment
at the beginning). Response of the planning approach to an obstacle detected during the
movement at time 36 sec is visualised in Figure 9. The trajectory was correctly changed to
avoid the collision with the obstacle.
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Figure 6: Progress of values of the cost function (eq. (11)) used for the virtual leader
trajectory planning for the experiment presented in section 4.3.

Progress of values of the cost function used for the virtual leader trajectory planning
is presented in Figure 6. The decrease of values shows convergence of the formation to the
desired region. Last three values of the cost function are almost equal to zero, since the
control horizon already reached the target region and the obstacles do not influence the
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cost function. Length of the control horizon in this experiment is N = 5 and according
the MPC concept only a few computed control inputs are used (in this experiment, first 2
control inputs). So if the desired area is reachable in 5 constant time intervals ∆t, and in
each planning step the first 2 constant time intervals are used, then the desired area will
be reached in 3 planning steps.

Figure 7: Initial position and shape of the formation for the experiment presented in sec-
tion 4.3.

Figure 8: Plotted plan to the target region found by the proposed method in the first
planning step.
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(a)

(b) t=34s (c) t=36s

Figure 9: The result of replanning after detecting an obstacle during movement.
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5 Initialization of the MPC method

The leader-follower approach and the MPC method for trajectory planning, which
were implemented in C++ within this thesis using literature [19] were introduced in pre-
vious sections. From this section, new methodology that is designed, implemented and
experimentally verified to extend the existing system will be explained.

5.1 Purpose of the initialization

The scheme of the leader-follower approach for cooperative control of a group of mobile
robots is visualized in Figure 5. The MPC method, which was described in section 3.7,
is used for solving the optimization control problem of formation movement to the target
region. Finding the solution of this problem is achieved by minimizing the cost function
with several nonlinear constraints, where satisfying these nonlinear constraints represents
feasible and collision free trajectory. The Sequential Quadratic Programming (SQP) is a
process used for finding this solution. It is a generalization of the Newton’s method and it
has disadvantage in missing ability to overcome local extrema in the cost function. Thus the
quality of the solution strongly depends on the initialization of the optimization, because
the cost function usually in our approach contains local extrema, where the SQP process
can easily get stuck. Using a global optimization method for avoiding the local extrema
and for finding globally optimal solution would lead to slowing the optimization process,
which is not acceptable.

The initialization of the MPC method is necessary for trajectory planning of the virtual
leader and also for trajectory tracking of each follower. The initialization for followers
is done according to the concept of leader-follower stabilization from the virtual leader
trajectory. The problem of the initialization of the MPC method is solved in the first
planning step for the virtual leader. In the next planning steps, the initialization is provided
from the trajectory obtained in the previous step of MPC method by the reinitialization
(see Figure 5).

The manual method, when user sets individually the initial trajectory by hand for
each situation, is one way to provide the initialization for the first planning step. The
trajectory that was set by such simple method was used as the initialization for the first
planning step of the MPC method in the experiment presented in section 4.3. This method
of providing the initial trajectory could be appropriate for the simulations, where the
correct functionality of the proposed approach is presented, but in the real experiments this
approach is insufficient. Obviously, it takes too much time to set the correct initialization
from the actual state of the formation (the virtual leader) to the desired region. So, it
would be a big benefit, if the initialization could be provided by an automatic method.
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5.2 Approaches of trajectory planning for the initialization

Numerous methods of trajectory planning can be found in literature. These methods
can be divided into classes given by the type of the approach, namely:

• grid-based approaches [4],

• geometric algorithms [10],

• potential fields [2],

• sampling-based algorithms [7],

• and others.

All of the mentioned approaches have both advantages and disadvantages. The potential
fields methods combines attraction to the goal and repulsion from the obstacles for creating
the field. The resulting trajectory is a path from the robot’s position to the desired position
in this field. The advantage of this approach is that the trajectory can be computed quickly.
However, the robot can become trapped in a local minima of the potential field, thus
failing to find a path. The sampling-based algorithms avoid the problem of local minima.
Unfortunately, they are unable to determine that no path exists and the algorithm may
run indefinitely[7].

The sampling-based algorithms were chosen in this thesis for finding the initialization
of the MPC method for the trajectory planning of the virtual leader, namely the rapidly-
exploring random tree.

5.3 Rapidly-exploring Random Tree (RRT)

5.3.1 Description of the algorithm

The RRT was introduced by Steven M. LaValle in [6] and [8]. The objective of this
algorithm is to start from an initial configuration and find a path to the goal configuration.
This is done by continuously expanding tree using control inputs that drive the system
towards randomly-selected points. This tree is expanded in the free configuration space
of the robot Cfree until the desired state is achieved, or until a maximum number of
iteration is reached. The RRT algorithm is probabilistically complete. With enough points
the probability that it finds an existing solution converges to one [7]. Unfortunately, as
it was mentioned before, the sampling-based algorithms are unable to determine that the
desired state cannot be achieved and the algorithm may run indefinitely. This is the reason
why the RRT is limited by maximum number of iterations to prevent this situation. The
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resulting trajectory will be feasible for the robot when control inputs used for expansion
of the tree satisfy the kinematic model of the robot.

Algorithm 1: RRT algorithm

The standard RRT algorithm can possibly grow into the entire feasible space.
input : xinit− initial configuration of a robot
MaxIteration − maximum number of iteration

output: Trajectory from xinit to the desired region

begin
Tree = xinit ;
xnew = xinit ;
i = 0 ;
while Distance(xnew,goal)> ErrorTolerance do

xrandom = SampleTarget() ;
xnearest = NearestVertex(Tree, xrandom) ;
xnew = ExtendTowards(xnearest, xrandom) ;
if not Tree .contains (xnew) then

Tree .add (xnew);

i = i+ 1 ;
if i = MaxIteration then

break;

return Trajectory(Tree, xinit)
end

The structure of the RRT algorithm is visualised in Algorithm 1. The detection, that the
tree is already expanded enough, is necessary for a correct functionality of this algorithm.
That is the reason why each newly added vertex into tree is checked, whether it is already
located near enough to the desired position. It is also necessary to check the tree if it wasn’t
already expanded by the vertex xnew. Without that the tree could have duplicate vertices.
Particular functions of the algorithm are described in the following paragraph.

• Distance - This method returns a distance between two points (Euclidean distance
is used in this thesis).

• SampleTarget - No input parameters are needed for this method. The method
returns a random point, that has to be located in the free configuration space of a
robot Cfree.

• NearestVertex - The tree must be expanded towards the randomly-selected points
xrandom and therefore the nearest vertex of the tree to the point xrandom needs to be
found. The easiest way how to do this is to compute distances from all vertices of
the tree to the point xrandom and the vertex with the minimal distance represents the
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result. However, this method is not effective if the tree has higher number of vertices.
A more effective approach will be explained in subsection 5.3.3.

• ExtendTowards - In this method, expansion of the tree is done. The method needs
two input parameters xrandom and xnearest from the previously mentioned functions.
The steering that represents all possible trajectories from the vertex in the RRT
method is used in the expanded node xnearest. Only non-collision trajectories from the
expanded node xnearest are then used for finding the nearest endpoint of trajectories
to a randomly-selected point xrandom. The trajectory with the nearest endpoint is
returned as the result. The structure of this method is described by the pseudocode
in Algorithm 2 and an example of its functionality is visualized in Figure 10.

Algorithm 2: RRT algorithm - ExtendTowards method

input : xnearest− the nearest node of the tree to the point xrandom
xrandom− the randomly-selected point

output: xnew− extension vertex of the tree

begin
U = Steer() ;
mindist = inf ;
for u ∈ U do

traj = ComputeTrajectory(xnearest,u) ;
if CollisionFree(traj) then

if Distance(traj .endpoint, xrandom)< mindist then
best.node =traj .endpoint ;
best.parent = xnearest ;
best.u = u ;
mindist =Distance(traj .endpoint, xrandom) ;

return best ;
end

• Trajectory - This method returns a trajectory from the initial configuration of a
robot xinit to the vertex of the tree which is closest to the goal configuration. In
this part of the algorithm the tree structure is already known and root of the tree
represents the initial configuration of a robot xinit. Therefore the trajectory can be
easily constructed by backtracking through this structure. The advantage of this
method is in situations when the tree does not achieve goal configuration in the
maximum number of iteration. The trajectory that leads to a configuration that is
situated closest to the goal configuration is returned in these situations. The structure
of this method is described by the pseudocode in Algorithm 3.

21/56



5 INITIALIZATION OF THE MPC METHOD

xnearest

xrandom

xnew

obstacle

xinit

Figure 10: RRT algorithm- extension of the tree towards a randomly-selected point

Algorithm 3: RRT algorithm - trajectory method

input : Tree − the tree of RRT algorithm
xinit− the initial configuration of a robot

output: traj − the resulting trajectory

begin
x = NearestVertex(Tree, goal) ;
traj = ∅;
while x.parent 6= ∅ do

traj = x.u ∪ traj;
x = x.parent;

return traj;
end

5.3.2 Modifications of the RRT

The tree is continuously expanded towards a randomly-selected points in the standard
RRT algorithm until the desired state is achieved, or until a maximum number of iterations
is reached. However, the random character of expansion of the tree means that tree is
expanded also into locations which are useless. Numerous modifications of the standard
RRT were presented to solve this problem [24].

If the algorithm is informed about the desired position and tries to expand the tree
towards it, it is possible that the algorithm will find the solution faster. Unfortunately,
it is also possible that it will get stuck because of an obstacle if the algorithm goes only
straight forward to the goal. That is the reason why the algorithm also needs to have some
random exploring of the area. The structure of the RRT algorithm biased towards the goal
is same as the standard RRT described in Algorithm 1, only the function SampleTarget
is different. Its functionality is described by the pseudocode in Algorithm 4.
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Algorithm 4: RRT algorithm biased towards goal - SampleTarget method

output: xrand− the selected point

begin
if Rand() < GoalSamplingProbability then

return goal;
else

return RandomConfiguration() ;

end

Another modification of the RRT algorithm expands the tree by selecting a random
vertex of the tree and then extending it towards the goal with a probability p. With a
probability 1− p it generates a random point then finds the nearest vertex in the tree and
expands the tree towards it (same expansion of the tree as the standard RRT algorithm).
This modification has similar behaviour as previously mentioned one, since it is also biased
towards the goal. The structure of the modification of the RRT algorithm is described by
the pseudocode in Algorithm 5.

Algorithm 5: RRT algorithm biased towards goal 2

input : xinit− the initial configuration of a robot
MaxIteration − maximum number of iteration

output: Trajectory from xinit to the desired region

begin
Tree = xinit ;
xnew = xinit ;
i = 0 ;
while Distance(xnew,goal)> ErrorTolerance do

if Rand() < GoalSamplingProbability then
vrandom = RandomVertex(Tree) ;
xnew = ExtendTowards(vrandom, goal) ;

else
xrandom = SampleTarget() ;
xnearest = NearestVertex(Tree, xrandom) ;
xnew = ExtendTowards(xnearest, xrandom) ;

if not Tree .contains (xnew) then
Tree .add (xnew);

i = i+ 1 ;
if i = MaxIteration then

break;

return Trajectory(Tree, xinit)
end
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The previously mentioned modifications of the RRT algorithm try to expand the tree
from the initial configuration of a robot in the direction towards the goal. Another modifica-
tion of algorithm uses two trees for searching in both directions. The first tree is expanded
from the initial position of a robot and the second from the goal. This modification is
called bidirectional RRT algorithm and in every iteration, it tries to expand one of these
two trees, which can be done by any of the previously mentioned methods. In every iter-
ation, the algorithm also tries to check if the trees are already big enough that they are
connected to each other. When they are connected, the resulting trajectory from the initial
position of a robot to the goal already exists and is returned as the solution.

5.3.3 Kd-tree - Efficient finding of nearest points

The RRT algorithm can solve planning problems quite quickly. The structure of the
standard RRT algorithm is visualized in Algorithm 1. All its functions can be implemented
easily. However, the speed of the algorithm depends on how it is done especially in the
NearestVertex method. This method finds the nearest vertex of the tree to the point.
Several alternatives how to implement this method can be found in literature [7].

The easiest method is to compute the distances from all vertices of the tree to the point
in space. Then the vertex with minimal distance to the point represents the result. The
time complexity of this method increases linearly with the number of the vertices in the
tree. So, this method is not effective if the tree has higher number of vertices. The solution
how to speed up the process of finding the nearest point is to insert the vertices into an
efficient data structure.

(6,3)

(4,4)

(2,1) (5,7)

(9,6)

(8,2)

0

0

2 4 6 8 10

2

4
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Figure 11: Kd-tree decomposition of 2D space and the resulting kd-tree by a set of points
{(4, 4) , (2, 1) , (5, 7) , (8, 2) , (9, 6) , (6, 3)}

Widely used and useful data structure is the k-dimensional tree (abbreviated as kd-
tree). The kd-tree was developed by Jon Louis Bentley in [3] and can be considered as
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5 INITIALIZATION OF THE MPC METHOD

a multi-dimensional generalization of a binary search tree. Each node in the kd-tree is
associated with one of the k-dimensions. For example, if a node is associated to x-axis,
all points with a smaller x value than this node will appear in the left subtree and all
points with a larger x value will be in the right subtree. An example of the created kd-tree
for some points in 2-dimensional space is shown in Figure 11. The 2-dimensional space is
divided by switching between the x and y coordinates. The time complexity of the kd-tree
is described in Table 2.

average worst case

Search O(log n) O(n)
Insert O(log n) O(n)
Delete O(log n) O(n)

Table 2: The time complexity of the kd-tree.

5.4 Initialization of the MPC method by the RRT algorithm for
trajectory planning of the virtual leader

As was mentioned in section 4.1 for the purpose of the MPC method, the trajectory
of the virtual leader is gathered into the optimization vector ΩL , with N+M elements,
where N is the length of the control horizon and M is the length of the planning horizon.
Each element contains control input and time that represents the duration of every control
input. The sampling time is constant ∆t for the first N elements and the sampling time is
variable for the rest of the elements. The initial trajectory of the MPC method has to be
gathered into the optimization vector ΩL. The first N elements of this vector have to have
the sampling time equal to ∆t.

Unfortunately, the trajectory provided by the RRT algorithm gathered into the vector
ΩRRT cannot be usually directly used as the initialization of the MPC method, because of
the following reasons:

• the sampling time in the first N elements of the vector ΩRRT is not equal to ∆t,

• the vector ΩRRT is created from too many parts.

All these reasons depend on the time interval ts, which has an effect on expanding the tree
in the RRT algorithm. The value of the time interval ts represents the sampling time of
the trajectory. The influence of the different settings of values of the time interval ts will
discussed in section 7.2.
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5 INITIALIZATION OF THE MPC METHOD

Algorithm 6: RRT2MPC algorithm - ExtendTowards method

input : xnearest− the nearest node of the tree to the point xrandom
xrandom− the randomly-selected point

output: xnew− extend vertex of the tree

begin
if depth(xnearest)<N then

U = Steer(ts,N) ;
else

U = Steer(ts,M) ;

mindist = inf ;
for u ∈ U do

traj = ComputeTrajectory(xnearest,u) ;
if CollisionFree(traj) then

if Distance(traj .endpoint, xrandom)< mindist then
best.node =traj .endpoint ;
best.parent = xnearest ;
best.u = u ;
mindist =Distance(traj .endpoint, xrandom) ;

return best ;
end

5.4.1 RRT2MPC modification of the RRT algorithm (RRT2MPC algorithm)

The firstly mentioned problem, why the trajectory provided by the RRT algorithm
cannot be usually directly used as the initialization of the MPC method, can be solved by
setting the sampling time of the RRT algorithm to ts = ∆t. However, if the sampling time
∆t of the control horizon is a small number, the trajectory provided by the RRT algorithm
will be sampled with high sampling rate. This means that the vector ΩRRT will be created
from too many elements. An obvious solution, how to solve it, is to use two sampling times
ts,N and ts,M for expanding the tree in the RRT algorithm. The values of these sampling
times are ts,N = ∆t and ts,M = td, where td is value defined by the user. The idea is that
the expanding of the tree of the RRT algorithm to the depth N will be done with the
sampling time ts,N and for the higher depth of the tree with the sampling time ts,M . The
consequence of this is that the major part of the provided trajectory will be sampled with
the bigger sampling time than ∆t and the vector ΩRRT will be create from the less parts
than vector ΩRRT provided by the RRT algorithm with only one sampling time ts = ∆t.
The modified ExtendTowards method using this idea is described in the pseudocode in
Algorithm 6.

By using the previously mentioned solution, the first N parts of the vector ΩRRT is
sampled with the sampling time ts,N and rest of the parts with the sampling time ts,M .
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Algorithm 7: Reduction of numbers of elements that describe the trajectory in the
RRT2MPC algorithm

input : traj− the trajectory
output: new− the simplified trajectory

begin
new = ∅ ;
actual = traj[N + 1] ;
for i = N + 2 to length(traj) do

if actual. hasEqualSteering(traj[i]) then
actual.t = actual.t+ traj[i].t ;

else
new = new ∪ actual ;
actual = traj[i] ;

new = new ∪ actual ;
return new ;

end

The problem is that the vector ΩRRT still have too many elements with the sampling time
ts,M that represent the trajectory in the planning horizon of the proposed MPC method.
It is eventually possible to use the trajectory in this form as the initial trajectory for the
MPC method, but the length of the planning horizon M has to be set to the number of
parts with the sampling time ts,M . However, the time complexity of finding the solution
by the SQP process is too high and its usage for the real-time planning is impossible.

A method for minimizing the number of the elements in the vector ΩRRT in the planning
horizon is necessary for using the provided trajectory as the initialization of the MPC
method. The trajectory can have neighboring parts in the planning horizon with the same
control inputs, because of random expansion of the tree of the RRT algorithm. These
parts can be joined together into one part of the trajectory. The proposed method solving
this problem is described by the pseudocode in Algorithm 7, and can be applied on every
provided trajectory. The consequence of this method is that the same trajectory is described
by the vector ΩRRT with a smaller number of elements than the original one, if it is possible.
An example of the proposed reduction of number of elements that describe the trajectory
is shown in Figure 12.

The RRT algorithm has to be modified for applying the solutions mentioned above
(the two sampling times ts,N and ts,M and the method for reduction of the number of
elements that describe the trajectory). This modification is called RRT2MPC modification
of the RRT algorithm in this thesis (further this modified RRT algorithm will be called
as the RRT2MPC algorithm). The RRT2MPC algorithm is described by the pseudocode
in Algorithm 8. The RRT2MPC algorithm can be also modified by any of the mentioned
modifications in section 5.3.2. In this thesis, the information about the desired position is
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5 INITIALIZATION OF THE MPC METHOD

Figure 12: The reduction of the number of elements that describe the trajectory provided
by the modified RRT algorithm. The first N parts of the trajectory are sampled with the
sampling time ts,N and the rest of the parts with the sampling time ts,M . The points in the
figures represent transition points of the trajectory. The black points represents transition
points in the control horizon, and the white points in the planning horizon. The original
trajectory is on the left side of the figure and the simplified one on the right side. The
original trajectory is created from 26 segments and it is simplified by the proposed method
to 19 segments.

used for changing the behaviour of the expanding tree. This is done by the modification of
the SampleTarget method in the same way as is explained in Algorithm 4.

Unfortunately, the proposed method for the reduction is not effective enough (about

28/56



5 INITIALIZATION OF THE MPC METHOD

Algorithm 8: RRT2MPC algorithm

input : xinit− the initial configuration of a robot
MaxIteration − maximal number of iteration

output: trajectory from xinit to the desired region

begin
Tree = xinit ;
xnew = xinit ;
i = 0 ;
while Distance(xnew,goal)> ErrorTolerance do

xrandom = SampleTarget() ;
xnearest = NearestVertex(Tree, xrandom) ;
xnew = ExtendTowards(xnearest, xrandom) ;
if not Tree .contains (xnew) then

Tree .add (xnew);

i = i+ 1 ;
if i = MaxIteration then

break;

traj = Trajectory(Tree, xinit) ;
return ReductTrajectory(traj)

end

30%) because the vector ΩRRT still consists of too many elements for most of the trajec-
tories. So, the resulting trajectory cannot be directly used as the initial trajectory for the
MPC method because of the previously mentioned reasons. However the trajectory pro-
vided by the RRT2MPC algorithm can be used for the modified MPC method, which will
be explain in section 5.4.2.

The growth of the tree generated by the RRT2MPC algorithm in an environment
is shown in Figure 13. The free configuration space of the virtual leader Cfree in this
environment can be seen in Figure 13(f), where the tree covers this space almost completely.

5.4.2 Modificatition of proposed MPC method

As was described before, the initial trajectory for the proposed MPC method, which
is applied in the first planning step for the virtual leader, has to be provided. In the next
planning steps, the initialization is done from the trajectory obtained in the last MPC
step by the reinitialization which is described in [23]. The RRT2MPC algorithm provides
the trajectory gathered into the vector ΩRRT that still consists of too many elements for
most of the trajectories. Therefore this trajectory cannot be directly used as the initial
trajectory for the MPC method. The provided trajectory can be used for initialization of
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(a) 100 nodes (b) 250 nodes (c) 500 nodes

(d) 1000 nodes (e) 2500 nodes (f) 5000 nodes

Figure 13: The growth of the tree generated by the RRT2MPC algorithm.

the MPC method if the approach presented in Figure 5 will be changed as follows.

The idea of this modification is to use only the first N+M elements of the trajectory
provided by the RRT2MPC algorithm as the initial trajectory for the MPC method (N and
M represent lengths of the control and planning horizon, respectively). Then optimize this
part of the trajectory and use the first n control inputs, according to the MPC concept.
After that not to use reinitialization for computing the initial trajectory for the next
planning steps of the MPC method, but instead of that, use the same approach as for
the first planning step. This idea affects the Virtual leader block, which was introduced in
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Virtual Leader

Map,

Target region,

Actual state

Figure 14: Modified MPC method - Virtual Leader block

Figure 5. The new scheme of this block is shown in Figure 14.

The MPC method is used in this thesis for solving the optimization control problem of
the formation movement into the desired region. Unfortunately, the first N+M elements
of the trajectory provided by the RRT2MPC algorithm usually do not lead to the desired
region and therefore this initial trajectory is considered as an incorrect initialization for
the proposed MPC method. This is caused by the stability constraint gSF

(ψL(N + M))
that ensures that the virtual leader trajectory will lead to the target region. The endpoint
of this initial trajectory has to be signed as the goal for the MPC method. Then the MPC
method can be used for optimization of the trajectory that will not lead to the target
region.

5.5 Experimental verification

This subsection is focused on experimental verification of the proposed approach. For
this purpose, the same situation was chosen as for the experiment presented in section 4.3.
The same formation with 8 members has to move into a target region through an environ-
ment with one static obstacle. This obstacle is detected during its movement. Parameters
of the formation are shown in Table 1. Progress of the values of the cost function (eq. (11))
used for the virtual leader trajectory planning is displayed in Figure 15. Snapshots from
the experiment are shown in Figures 16, 17 and 18.
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Figure 15: Progress of value of the cost function (eq. (11)) used for the virtual leader
trajectory planning.

Progress of values of the cost function used for the virtual leader trajectory planning is
presented in Figure 15. It is not clear from the progress of values at the first 20 second of the
graph if the formation converges to the desired region in contrast to the graph in Figure 6.
It is because the initial trajectories (first N + M parts of the trajectory proposed by the
RRT2MPC algorithm) do not lead to the desired region and their lengths differ. In the next
part of the graph, similar trajectories are found by the RRT2MPC algorithm besides the
optimization at 46s. At this time, the RRT2MPC algorithm found a longer trajectory. The
trajectory depends on the expansion of the tree generated by the RRT2MPC algorithm
which has a random character. Therefore different trajectories can be found. The finding
a longer trajectory than in the previous cases is visualised by the increase of the value of
the cost function.

The result of replanning after detecting an obstacle during movement is shown in Fig-
ure 16. Plotted plan to the target region found by the RRT2MPC algorithm and the result
of optimization of the trajectory created from the first N+M elements of the plan is pre-
sented in Figure 17. The paths passed by the members of the formation are shown in
Figure 18.
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(a) t=34s (b) t=36s

Figure 16: The result of replanning after detecting an obstacle during movement. The
trajectory (red points) is the result of local optimization of the initial trajectory (green
points).

Figure 17: Plotted plan to the target region found by the RRT2MPC algorithm and the
optimization of the trajectory created from the first N+M elements of the plan. The plan
is visualised in the figure by green points (the first N + M elements) and by black points
(the rest elements). The trajectory (red points) is the result of local optimization of the
trajectory (green points).

5.6 Summary

The purpose of the initialization for the proposed MPC method was described in this
section. The problem lies in the unknown initial trajectory for the virtual leader trajectory
planning in the first planning step. For finding this initial trajectory, the RRT algorithm
was selected and described. The advantages and disadvantages of this algorithm were
mentioned. For example, the advantage is that the algorithm quickly finds the solution, if
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Figure 18: The paths passed by the members of the formation.

exists. Furthermore, the proposed trajectory is feasible for the robot, if the algorithm is
run with robot kinematic model. However, the provided trajectory is too complex and can
not be directly used as the initial trajectory. For this reason, the modification of the RRT
algorithm (so-called the RR2MPC modification in this thesis) was introduced.

This method provides an extension of the tree generated by the RRT algorithm using
two sampling times ts,N and ts,M . The idea is that the expanding the tree of the RRT
algorithm to the depth N (length of control horizon) will be done with the sampling time
ts,N and for the higher depth of the tree with the sampling time ts,M . This part of the
modification ensures that provided trajectory can be used for the proposed MPC method.
However, the trajectory often consists of too many segments and finding the optimization of
this trajectory takes too much time. So the next part of the modification solves reduction
of the trajectory. Unfortunately, this reduction is not effective enough to minimize the
length to a usable size. Other approach needs to be used in order to use this trajectory as
the initial trajectory for the proposed MPC method.

The idea is that only the first N +M segments of the provided trajectory are used as
the initial trajectory for the MPC method, where N a M are the numbers of the transition
points in the control and planning horizon. This initial trajectory is locally optimized and
only the first n control inputs are applied according to the MPC concept. The same idea
is used in next planning steps. This solution works as was illustrated by the experiment in
section 5.5. However, finding the new trajectory and optimizing it in every planning step
means waste of time.
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For future work, other idea how to reduce the length of the trajectory is to use the local
optimization for parts of the trajectory. For example, to optimize five parts of trajectory,
then to optimize another five parts of trajectory and so on. This approach could minimize
the difference of control inputs between the neighboring parts of the trajectory. After that,
the reduction of the trajectory described in this thesis can be applied.
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6 Complex maneuvers

Only the forward movement of the formation was consider for reaching to the desired
area in the experiments in the previous sections. However, a backward movement is nec-
essary for general solutions of the movement of the formation, because in many situations
solution of the formation motion problem without any backward movement does not exist.
These situations where it is necessary to reverse of the movement of the formation are
considered in this section. This part of thesis is based on [23] where these situations are
studied.

The proposed MPC method for solving the optimization control problem of the move-
ment to the target region is already general enough to provide a complete plan for the
virtual leader including changes of polarity of forward velocity vL(·) without any modifica-
tion. The motion constraints of the virtual leader (eq. (8)) allow negative velocity and its
maximal value is computed from the allowed maximum negative velocities of all members
of the formation. So, the plan for the virtual leader created according to the formation
driving concept described in section 3.5 is in principle feasible for each follower in the for-
mation. Unfortunately, the proposed concept for the formation driving works properly only
in situations where the forward movement is applied. Applying the reverse of the movement
of the virtual leader to the followers exactly following this concept leads to the collision
with other members of the formation or to the loss of the desired shape of the formation.
This problem arises because the followers behind the leader (with p > 0) continue with the
direction of the movement until the state where the virtual leader changed the polarity of
its velocity has been reached. All members of the formation should change the polarity of
their velocity in the same moment for a correct change of the direction of the movement
and for keeping the desired shape of the formation. However, this is not possible by the
formation driving concept described in section 3.5, because each follower with different
value of pj will achieve the state, when the leader changes the polarity of its velocity in
a different time. This problem is demonstrated in Figure 19. In this figure, the proposed
formation driving concept leads to collision with other members of the formation and also
to the loss of the desired shape of the formation during the reverse of the movement of the
formation.

The planned trajectory has to be modified to avoid this problem. An approach solving
this problem is shown in Figure 20, where the planned trajectory is extended by a path
that has the length equal to maximal value of pj of the followers in the formation. The
reverse of the movement of the formation is applied after the virtual leader travelled this
path. The consequence of this extension is that the formation can smoothly continue with
a movement while keeping the desired shape.
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(a) (b) (c)

(d) (e) (f)

Figure 19: Problem of the proposed formation driving concept during the reverse of the
movement of the formation.

6.1 Concept of two alternating virtual leaders

Unfortunately, such simple extension of the planned trajectory may not be feasible
because the extended plan could lead to a collision with an obstacle. So the proposed
method for trajectory planning has to be improved for finding a plan to the desired area
that considers this requirements for applying the reverse of the movement of the formation.
In [23], the concept of two alternating virtual leaders was presented. It is an approach that
modifies the basic method for the virtual leader in such a way that it plans with two
virtual leaders, one for the forward movement and one for the backward movement. Their
leading role is always switched when the polarity of the leader velocity changes. So in each
moment, one virtual leader leads the formation and other virtual leader controlled as a
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(a) (b) (c)

(d) (e)

Figure 20: Proposed solution of the problem with the formation driving concept during the
reverse of the movement of the formation.

virtual follower. The first virtual leader assigned for the forward movement is located in
front of the formation and the second virtual leader in back of the formation. Further, the
both virtual leaders are located on axis of the formation.

The plan for both virtual leaders can be solved in a similar way as the plan for the
one virtual leader described in section 4.1 where the trajectory is represented as the one
optimization vector ΩL. The vector ΩL = [~uL,1, . . . , ~uL,N , ~uL,N+1, . . . , ~uL,N+M ] is created
from N + M elements where N is the length of the control horizon and M is the length
of the planning horizon. Each of these element contains control inputs and time that
represents duration of every control input. The vector ΩL provides the desired trajectory
for both leaders. The parts of the trajectory which have the positive polarity of the value
of vL are assigned to one virtual leader and the rest of the trajectory with the negative
polarity to other virtual leader. Furthermore, for the complete plan for both virtual leaders,
these trajectories have to be extended by additional paths which are used for shifting the
position of one virtual leader to the other one. This is necessary when the polarity of the
value of vL is changed (the leadership is shifted from one virtual leader to the other one) for
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a smooth continuation of the movement of the formation while keeping the desired shape.

The maximum number of possible changes of the leadership in the formation during
the proposed plan is N +M − 1 therefore the plan can be possibly extended by the same
number of additional paths. The additional path pk, where k ∈ {1, . . . , N +M − 1}, which
is used for shifting the position of the new virtual leader to the old one can be described
by control inputs vk, wk, Kk and by a time duration ∆tk of the control inputs which are
applied in the state of the old virtual leader. These parameters can be represented as a
vector ~qk = [vk, wk, Kk,∆tk]. The value of vk can be determined from the virtual leader
constraints as the maximum or minimum allowed value of vL as the minimization of the
driving time is preferred. The decision which one of these values is assigned to vk depends
on the polarity of velocity of the virtual leader in k-th element of ΩL due to the fact that
these polarities have to be the same. The value of ∆tk can be computed as

∆tk =
la
vk
, (20)

where la is the minimal length of additional paths which is defined as

la = max
i=1,...,nr

(pi). (21)

Therefore, only the values wk and Kk are not uniquely determined and have to be computed
for each additional path. An example of trajectories and appropriate control inputs of the
two virtual leaders is shown in Figure 21, where the parameters of the optimization are:
N = 3,M = 3.

The complete plan including the additional paths for both virtual leaders from the
actual position to the target region can be represented as an extended optimization vector
ΩL = [~uL,1, . . . , ~uL,N , ~uL,N+1, . . . , ~uL,N+M , w1, K1, . . . , wN+M−1, KN+M−1]. Finding this plan
can be solved in a similar way as finding the plan for the one virtual leader, where this
problem is transformed to the minimization of the cost function λL(·) (eq. (10)) with
nonlinear constraints. Satisfying these constraints represents finding a feasible and collision
free trajectory.

The relative positions of the followers described by curvilinear coordinates p, q, h to the
virtual leader states have to be changed if the leadership is shifted from the one virtual
leader to the other one. The positions of the virtual leaders in the formation is not same
and therefore the relative positions to the old virtual leader are not the same as the relative
positions to the new one. The computation of new values of the coordinates for the follower
j, where j ∈ {1, . . . , nr}, can be done by following equation

pj,new =

∣∣∣∣pj,old − max
i=1,...,nr

(pi,old)

∣∣∣∣ ,
qj,new = qj,old,

hj,new = hj,old,

(22)
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(a) Trajectory of the first virtual leader. (b) Trajectory of the second virtual leader.

Figure 21: Trajectories and appropriate control inputs of the two virtual leaders going from
the initial point S. The solid black curves denote trajectories where the virtual leader is
leading the formation while the gray curves denote the trajectories where the virtual leader
is the virtual follower. The initial positions of the robots are visualised by coloured bodies
of the robots. The target positions after applying appropriate control inputs are shown by
gray bodies.

where pj,old, pj,old, pj,old are curvilinear coordinates describing vehicle’s relative position to
the old virtual leader.

6.2 Experiments

This subsection is focused on experimental verification of the proposed approach.

6.2.1 Turning 180 degrees

Turning 180 degrees on narrow roads is one from the expected situations where the
proposed approach can be used. The scenario, in which a formation of the nine robots has
to find and realize this maneuver, is presented in Figure 24. Parameters of the formation
are shown in Table 3.

In this scenario one static obstacle is located in the environment. The collision free plan
that was found for turning the formation 180 degrees is shown in Figure 24(b). This plan
contains two switches of the virtual leader. The movement of the followers tracking the ob-
tained plan is presented in snapshots of the simulation in Figure 24(c) and in Figure 24(d).
The average values of the heading of the followers in rows during the simulation is shown
in Figure 22. The complete trajectories travelled by the followers during the maneuver are
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i 1 2 3 4 5 6 7 8 9

pi 0 0 1 1 1 1 2 2 2
qi -0.6 0.6 -1.2 -0.6 0.6 1.2 -1.2 0 1.2
hi 0 0 0 1.1 1.1 0 0 0 0

Table 3: Curvilinear coordinates of the followers in the formation.

denoted in Figure 24(e).

0 10 20 30 40 50 60 70
−100

−50

0

50

100

t [s]

h
e
a
d
in

g
 [
d
e
g
re

e
]

 

 

Followers − first row

Followers − second row

Followers − third row

Figure 22: The average values of the heading of the followers in rows during the simulation
presented in Figure 24.

6.2.2 Complicated environment with static and dynamic obstacles

The second scenario presented in this section is complicated environment with both
static and dynamic obstacles. A formation composed of four members has to move to the
target region through narrow paths. The polarity of velocity has to be changed during
the movement of formation in order to accomplish the task. Parameters of the formation
are shown in Table 4. Snapshots from the simulation of this scenario are shown in Fig-
ures 26, 27, and 28. The average values of the heading of the followers in rows during the
simulation shown in Figure 23 and applied control inputs of the third follower are presented
in Figure 25.

The complete plan for both virtual leaders found in the first planning step is shown
on Figure 26(a). This plan includes two changes of leadership in the formation. Snapshot
from changing the leadership from the first virtual leader to the second one is shown in
Figure 26(b) and from the second virtual leader back to the first one in Figure 26(c).
After this the formation detected a static obstacle during the movement thus the plan was
changed to avoid the collision. The result of replanning is shown in Figure 26(d).
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i 1 2 3 4 5

pi 0 0 1.1 1.1 0.55
qi -0.8 0.8 -0.8 0.8 0
hi 0 0 0 0 1

Table 4: Curvilinear coordinates of the followers in the formation.

The proposed method in this form is also suitable for planning of the formation move-
ment in an environment with dynamic obstacles. The approach uses the expected positions
of obstacles to find a feasible collision free plan. Trajectories after detection of a dynamic
obstacle in this scenario are shown in Figure 28. More information about the formation
trajectory planning problem using the MPC method in a dynamic environment can be
found in our previous work in [16].
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Figure 23: The average values of the heading of followers in rows during the simulation
presented in section 6.2.2.

6.3 Summary

The problem of the proposed formation driving method in situations where the change
of the polarity of vL has to be applied was introduced in this section. The concept of two
alternating virtual leaders was mentioned as a solution of this problem. It is an approach
that modifies the basic method with the virtual leader in such a way that plans with two
virtual leaders, one for the forward movement and one for the backward movement. Their
leading role is always switched when the polarity of the leader velocity is changed. So in one
moment, one virtual leader leads and other virtual leader is in a role of a virtual follower.
Further, the modified MPC method for finding the feasible collision free trajectory for both
virtual leaders was introduced and experimentally verified.

42/56



6 COMPLEX MANEUVERS

(a) The initial position of the formation
with an initial plan for both virtual leaders.

(b) Complete plan for both virtual leaders
found in the first planning step of the MPC
method.

(c) The second virtual leader overtakes the
leadership.

(d) The leadership is returned to the first
virtual leader.

(e) The paths passed by the members of the
formation in order to accomplish the task.

Figure 24: Snapshots of turning 180 degrees on a blind narrow road.
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Figure 25: Applied control inputs of the third follower in the experiment presented in
section 6.2.2.
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6 COMPLEX MANEUVERS

(a) The initial position of the
formation with a complete plan
for both virtual leaders found in
the first planning step. The initial
plan is denoted by gray points.

(b) The second virtual leader
overtakes the leadership.

(c) The leadership is returned to
the first virtual leader.

(d) The result of replanning after
detection of a static obstacle dur-
ing movement. The plan found in
previous planning step is denoted
by gray points.

Figure 26: Snapshots of the experiment presented in section 6.2.2.
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6 COMPLEX MANEUVERS

(a) (b) (c) (d)

Figure 27: Applied trajectories after detecting a dynamic obstacle during the movement
in the experiment presented in section 6.2.2. The motion model of the obstacle is known.
The proposed system uses this information for prediction of the positions of the obstacle
in the future. Therefore, the system found collision free plan for the formation movement.

Figure 28: Trajectories passed by followers in the experiment presented in section 6.2.2.
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7 STATISTICAL ANALYSES OF SYSTEM PERFORMANCE

7 Statistical analyses of system performance

In the first part of this section, the behaviour of the proposed system will be statistically
analysed in dynamic and partially unknown environment. Influence of different settings of
the algorithm on the quality of obtained trajectories and time complexity will be evaluated
in the next part.

7.1 Analysis of the movement of the formation in dynamic and
partly unknown environment

The proposed way how to use trajectory provided by the RRT2MPC algorithm as the
initial trajectory for the MPC method used in this thesis for trajectory planning to the
desired area was described in section 5.4.2. The trajectories provided by the RRT2MPC
algorithm under the same initial conditions are not typically equal. The reason of this is
that the resulting trajectory of the RRT2MPC algorithm is created from the tree that is
done by the random expansion.

In this subsection, the capability of this approach, that uses the RRT2MPC algorithm as
the initial trajectory for the MPC method to find collision free plan in dynamic and partially
unknown environment (an obstacle is detected during the movement of the formation) is
presented. For this purpose, scenario where the formation is composed of five robots has
to reach the desired area throw an environment with one undetected dynamic obstacle
was chosen. Parameters of the formation are described in Table 5. The initial position of
the formation and the environment where the formation has to perform the movement is
presented in Figure 29. This scenario was solved 50 times using the mentioned method.
Results of each simulation are the total time to reach the target region, and minimum
distances from the virtual leader and from the followers to the walls and to the obstacle
during accomplishing the task.

i 1 2 3 4 5

pi 0 0 0.4 0.4 1.1
qi 0 -0.6 0.6 -0.8 0.8
hi 0 1 1 0 0

Table 5: Curvilinear coordinates of the followers in the formation.

The analysis of the total times to reach the target region is shown in Table 6 and is
visualised in Figure 30. The analysis of the resulting minimum distances from the virtual
leader and from the followers to the walls are shown in Table 7 and to the obstacle in Ta-
ble 8. Travelled trajectories for accomplishing the task were collision free in all simulations
because the minimum distances are positive values only.
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Figure 29: The initial position of the formation, the target area, position of an obstacle (its
time of detection and the direction of its movement) in environment used in the experiment
presented in section 7.1.
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Figure 30: Graph of total times of simulations obtained from 50 runs.

min max mean

total time [s] 56 72 57.36

Table 6: Total times to reach the target region obtained from 50 runs.

leader follower 1 follower 2 follower 3 follower 4 follower 5

min 0.0052 m 0.8104 m 0.8243 m 1.6733 m 0.1519 m 1.006 m
max 0.1288 m 0.9284 m 0.8807 m 1.7836 m 0.2489 m 1.006 m
mean 0.1103 m 0.9100 m 0.8713 m 1.7669 m 0.1816 m 1.0006 m

Table 7: Minimum distances from the virtual leader and from the followers to the walls
during accomplishing the task obtained from 50 runs.
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leader follower 1 follower 2 follower 3 follower 4 follower 5

min 0.0246 m 0.8199 m 0.8149 m 0.6505 m 0.3412 m 0.1455 m
max 0.2406 m 1.0453 m 1.5295 m 1.9906 m 1.2515 m 2.1778 m
mean 0.0749 m 0.8779 m 0.9706 m 1.7897 m 0.7430 m 2.0392 m

Table 8: Minimum distances from the virtual leader and from the followers to the obstacle
during accomplishing the task obstacles obtained from 50 runs.

(a) Total time to reach the target region = 56s

(b) Total time to reach the target region = 72s

Figure 31: An example of trajectories passed during the simulation.
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7 STATISTICAL ANALYSES OF SYSTEM PERFORMANCE

7.2 Influence of different settings of parameter ts,M

In this subsection, the influence of different settings of time interval ts,M of the RRT2MPC
algorithm on the provided trajectory will be presented. The time interval ts,M has effect on
the expansion of the tree generated by the proposed RRT2MPC algorithm. 100 trajectories
were generated for each of the seven different settings of the value of ts,M in the environ-
ment presented in Figure 32 using AMD A4-3300M CPU 1.9GHz. Results of a statistical
test of performance of the algorithm are shown in Table 9.

goalinitial 

position

Figure 32: The initial position of the virtual leader and the target region in an environment.

ts,M [s] 1 2 3 4 5 6 7

comput. time [ms] 278.15 159.42 195.79 159.7 175.5 415 919
length [m] 29.5954 29.1634 28.5120 29.2830 31.4197 31.2237 32.8154
length of ΩL [-] 38.3 24.29 19.4 17.68 16.36 15.19 15.99

Table 9: Mean computation time, average length of the trajectory and average length of
vector ΩL that describes the trajectory for different setting of ts,M obtained from 100 runs.

The results presented in Table 9 show that different settings of parameter ts,M have
influence on the length of the trajectory, the computation time and the length of vector
ΩL that describes the trajectory. The setting of ts,M between 1s and 5s should be the
best choice when the minimum computing time is preferred as is in real-time systems.
However, small value of ts,M has effect on the length of vector ΩL therefore the RRT2MPC
algorithm provides a trajectory with many changes of the values of control inputs (which
is not convenient).
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7 STATISTICAL ANALYSES OF SYSTEM PERFORMANCE

(a) ts,M = 1 (b) ts,M = 2

(c) ts,M = 3 (d) ts,M = 4

(e) ts,M = 5 (f) ts,M = 6

(g) ts,M = 7

Figure 33: Trajectories found by the RRT2MPC method with different settings of the value
of ts,M .
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8 Conclusion

This diploma thesis deals with control and trajectory planning for heterogeneous for-
mations of ground and aerials vehicles based on the approach described in [15] and [19].
The core of our method is based on leader-follower technique and on the model predictive
control approach that offers solutions considering known structure of the environment for
finding a feasible collision free trajectory. The method is suitable for any group of robots
where the visual relative localization system is used.

The first task of this thesis is to implement a modification of the approach using an
initial trajectory provided by the method based on the Rapidly-exploring Random Trees
(RRT). This task is solved in section 5 in which a proposed modification is described and
experimentally verified.

The second goal of this thesis is to extend system for control and stabilization of het-
erogeneous teams of ground robots and helicopters with the possibility of making complex
maneuvers. In section 6, an extension with two alternating virtual leaders was introduced.
It is an approach that modifies the basic method with the single virtual leader in such a way
that it plans with two virtual leaders, one for the forward movement and one for the back-
ward movement. The extended approach is then suitable for finding the complete plan that
considers complicated maneuvring (repeated reverse of the movement) for accomplishing
the task while compact shape of the formation is preserved.

The statistical analysis of the behaviour of the system and influence of different settings
of the system is presented in section 7. The analyse shows the capability of our approach,
that uses the modified RRT algorithm as the initial trajectory for the MPC method, to
find collision free plan in dynamic and partially unknown environment.

Correct functionality of particular algorithms and the entire system were experimentally
verified in various scenarios in which the formation succeeded to move from the initial posi-
tion to its destination without loss of the shape and direct visibility between the members
of the formation. Therefore, all goals of the thesis were completely fulfilled.

The presented work exceeds thesis assignment by contributing in relevant research
areas of Department of Cybernetics at CTU in Prague. Author of this thesis significantly
contributed as a co-author in the following publications. A trajectory planning method for
formations of ground vehicles using a similar MPC mechanism as proposed in this thesis
is presented in [16]. A study of failure tolerance principles in MPC formation control of
heterogeneous MAVs-UGVs groups is proposed in [13]. Finally, an extension of the system
in [16] that enables formation driving along predefined spline paths is presented in [17].

Furthermore, relevant results in the field of formation control, which were achieved by
other members of Multi-robot Systems group, can be found in [19, 12, 14, 22, 18, 21, 20].
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8.1 Future work

The extension of the proposed approach with two alternating virtual leaders enables to
find a solution of the movement of the formation, if the kinematic model of car-like robots
is used. However, if the formation is composed only from aerial vehicles the movement
constraints of the formation will be different than for the heterogeneous formation with at
least one ground robot. The future work could find and integrate a method that enables
complex maneuvers of groups composed only from unnamed aerial vehicles.
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APPENDIX A CD CONTENT

Appendix A CD Content

In Table 10 are listed names of all root directories on CD.

Directory name Description
Spurny DT.pdf diploma thesis in pdf format.
DT sources.zip LATEX– source code of the diploma thesis
code.zip source codes of program
180 degrees.avi video from the experiment in section 6.2.1
complicate environment.avi video from the experiment in section 6.2.2
experiment 1.zip data from the experiment in section 7.1
experiment 2.zip data from the experiment in section 7.2

Table 10: CD Content
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