
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Master's Thesis

Optimization of Shelf Space Allocation Considering
Customer Behavior

Bc. David Tomá²

Supervisor: Ing. Ond°ej Van¥k, PhD.

May 11, 2015

ii

Aknowledgements

This thesis would not exist without support of my supervisor, Ing. Ond°ej Van¥k,
PhD., who gave me numerous advices during making practical part and writing of this
thesis.

I would like to thank to my family for their endless support during my whole life.

iii

Prohlá²ení

Prohla²uji, ºe jsem p°edloºenou práci vypracoval samostatn¥ a ºe jsem uvedl ve²keré
pouºité informa£ní zdroje v souladu s Metodickým pokynem o dodrºování etických prin-
cip· p°i p°íprav¥ vysoko²kolských záv¥re£ných prací.

V Praze dne 11. 5. 2015 .

Dave
Stamp

Abstract

Shopping is an everyday part of our lives. People spend there lots of money every
day. Supermarkets use this phenomenon and try to maximize their pro�t. They do
researches focused on customer's behavior to in�uence his purchasing decisions. The
goal of this thesis is to create supermarket designer, model customer's behavior and
run simulation in simulation framework and provide optimization method for product
placement. Problem is formed by agent-based simulation. Simulated annealing algo-
rithm is the main component of the thesis, it is used for optimization. Results show
dependencies between product popularity and its location in the supermarket.

Keywords: Agent-based model, simulation, shelf space allocation, optimization, su-
permarkets

Abstrakt

Nakupování je kaºdodenní sou£astí na²eho ºivota. Lidé utrácí nakupováním spoustu
pen¥z. Supermarkety toho vyuºívají a snaºí se maximalizovat jejich zisk. Zkoumají
chování zákazník· a snaºí se tak ovlivnit jejich rozhodování p°i nakupování. Cílem
práce je vytvo°it nástroj na tvorbu supermarketu, formulovat a vymodelovat chování
zákazník·, spustit simulace v simula£ním frameworku, který poskytuje optimalizaci ro-
zloºení produkt·. Je vytvo°ena agetní simulace daného problému. Algoritmus Simulo-
vaného ºíhání je hlavním prvkem práce; slouºí k optimalizaci alokace produkt·. Výsledky
ukazují závislosti mezi oblíbeností produktu a jeho umístení v supermarketu.

Klí£ová slova: Agentní model, simulace, alokace regálového prostoru, optimalizace,
supermarkety

iv

Contents

1 Introduction 1
1.1 Structure of the Thesis . 2

2 Domain Background 3
2.1 Supermarkets . 3
2.2 Layout . 3
2.3 Product placement . 4
2.4 Metrics . 4
2.5 Optimization . 5
2.6 Customer behaviour . 5

3 Methods & Technology 6
3.1 Local Search . 6

3.1.1 Local Search Techniques . 7
3.1.1.1 Hill Climbing . 7
3.1.1.2 Simulated Annealing . 7
3.1.1.3 Tabu Search . 7

3.2 Travelling Salesman Problem . 7
3.2.1 Integer Linear Program . 8
3.2.2 Approximation methods . 9

3.2.2.1 r-opt heuristic . 9
3.2.2.2 Nearest Neighbor . 9

3.3 A* . 9
3.4 Java & JavaFX & JFXtras . 11

3.4.1 JFXtras . 11
3.5 Business Intelligence Tool . 12

4 Related work 13
4.1 Product Placement . 13
4.2 Agent-based Simulation . 14

4.2.1 Agent and Environment . 14
4.2.2 Creating an Agent-based Model 14

5 System Architecture 16
5.1 Layout designer . 16

5.1.1 Wizard . 16

vi

CONTENTS vii

5.1.1.1 Step 1 . 16
5.1.1.2 Step 2 . 17
5.1.1.3 Step 3 . 18
5.1.1.4 Step 4 . 19

5.2 Simulation framework . 19
5.2.1 Shopping list generator . 19

5.3 Behaviour modelling . 20
5.3.1 Behavior diagram . 20

5.3.1.1 Wait . 20
5.3.1.2 Plan . 21
5.3.1.3 Follow . 21
5.3.1.4 Choose . 21
5.3.1.5 Leave . 21
5.3.1.6 Out . 22
5.3.1.7 Done . 22

5.3.2 Implemented models . 22
5.3.2.1 Travelling Salesman Problem Model 22
5.3.2.2 Random Model . 22
5.3.2.3 Partial knowledge Model 23

5.4 Placement optimizer . 23

6 Implementation 25
6.1 Layout designer . 25

6.1.1 Products . 25
6.2 Optimization . 25
6.3 Planning . 26
6.4 Maven . 27

7 Evaluation 28
7.1 Layout designer use-case . 28

7.1.1 Scenario 1 - small . 28
7.1.2 Scenario 2 - bigger . 28

7.2 Optimization . 29
7.2.1 Scenario 1 - small . 29

7.2.1.1 One customer . 29
7.2.1.2 More customers . 30

7.2.2 Scenario 2 - bigger . 30
7.2.3 BI Tool . 31

7.3 Summary . 32

Bibliography 36

A CD Content 38

B JSON 39

C Correlation Matrix 42

CONTENTS viii

D Categories and products 43

Chapter 1

Introduction

Supermarkets became an everyday part of our lives long time ago. People spend there
a lot of time to buy everything they need. Nowadays, the shopping in supermarkets is
not only about shopping, but also about marketing and psychology research conducted
to in�uence customers' visits in the supermarkets. Shelf space allocation and product
placement problem are issues in retailing which can have an a�ect on the customers'
purchasing decisions. The goal of the supermarket is thus pro�t maximization through
various means, including the two aforementioned problems.

We focus on optimization of product placement in supermarkets. Agent-based ap-
proach is used to capture decision-making process of customer.

We developed a tool for creating and customizing layouts, which can be subsequently
used in simulation framework. It was necessary to make a list of products which will be
placed in the supermarket shelves and be available for customers.

To substitute real customers' shopping lists we implemented Shopping list generator,
which creates random list according to actual product properties - buying probability,
correlation with other products.

Customer's activity is decomposed into a set of activities. We designed behavior for
each this activity for di�erent kinds of customer model. Models use di�erent planners
which characterize their behavior. We used A* algorithm to compute optimal route
between 2 points.

To optimize product placement we de�ned number of metrics of shelf space allocation
which were minimized and maximized by Simulated annealing algorithm which is based
on Local Search algorithms and it uses swapping shelf contents to generate neighbour
solution. This algorithm provides very good performance for big data.

The results show that there exists a connection between product buying probability
and its location in supermarket. The products that people buy most are usually placed
at the remote side of the supermarket which lengthen the total distance customers have
to walk.

1

CHAPTER 1. INTRODUCTION 2

1.1 Structure of the Thesis

1. Study the problem of shelf space allocation (SSA) and customer behavior modeling
- Chapter 2 focuses on the high-level problem description, i.e. supermarkets and
their layouts. Section 4.1 describes product placement researches.

2. Create a SW tool for manual design of supermarket layout including SSA - In
section 5.1 we aim on the Layout designer application with all its components and
functions.

3. Design and implement a set of customer shopping behavior models - Section 5.3.2
describes three model implementations with their common behavior diagram.

4. Implement an agent-based simulation simulating customers with de�ned behav-
iors in supermarket layouts designed in (3) - We design simulation framework for
executing customer simulations in created supermarket. Section 5.2 is focused on
the simulation framework.

5. De�ne a number of metrics for SSA - Introduction and description of metrics is in
Section 2.4. We propose with three metrics relevant with the problem of product
placement.

6. Propose and implement an algorithm optimizing SSA with respect to metrics
de�ned in (5) - We implemented a optimization algorithm based on Simulated
annealing in Section 6.2

7. Create a scenario based on a real-world supermarket, model its its layout and SSA.
Evaluate the quality of your algorithm w.r.t. the real-world SSA. - Chapter 7 is
aimed on simulation results and their comparing.

Chapter 2

Domain Background

The aim of this thesis is to model customer agents with speci�c behavior, create
supermarket by real template and run reliable simulation with these environment and
apply optimization algorithm which relocate product locations in supermarket and re-
turn better product placement according to optimization criterion.

2.1 Supermarkets

Supermarkets are placed almost in each city. We can �nd all sizes of supermarkets
which have with di�erent shelf layout and di�erent product o�er. This o�er is changing
with followings factors:

• supermarket size - bigger supermarkets o�er more products from more producers
and give customers more options to choose.

• supermarket location - comparing big cities or cities against small villages

• customers' purchasing power - similar factor as supermarket location, in region
with richer people we heavily �nds cheap and not so quality products.

Markets are not placed anywhere, the location is usually strategic. The bigger ones
we can �nd at the suburbs of cities where the tra�c connection is the best (usually
at the exits) and the number of people moving around it is big. There should be also
enough space for a parking lot.

The smaller supermarkets can be placed in the centres, where people uses public
transport and do shopping almost every day but with small shopping lists.

2.2 Layout

We can describe a supermarket layout as a two-dimensional grid which de�nes basic
supermarket shape, mentioned in Figure 2.1. In supermarket there are three important
types of objects (cells) of the grid determining paths where people can move - entrances,
shelves and cash desks. The paths are de�ned by free cells between these three types of
objects.

3

CHAPTER 2. DOMAIN BACKGROUND 4

Figure 2.1: Grid allocation space in supermarkets

2.3 Product placement

Products in the shelves are not placed randomly. We can notice there are some
basic rules supermarkets take into consideration while placing the products [5]. The
most favourite products lie in the furthest locations from the entrances, If there is
the possibility, the products which are somehow related (such as bread and the meat
products) are not placed next to each other.

There is also di�erence in vertical product placement. Products have di�erent pop-
ularity, according to the popularity products are placed in the shelf. The favourite ones
can be found at the middle at the customer eye level. The less favourite lie at the top
or at the bottom of the shelf.

2.4 Metrics

Metric is a property of the supermarket describing it layout. There are many metrics
that can be used to characterization, but not all are useful for every situation. Layouts
can be compared by their dimensions, number of entrances, shelves, space between
shelves, etc. To describe layout for marketing purposes we de�ne following metrics
which will be computed by simulation:

• number of steps customers have to do to collect all items from their shopping list
- we use maximization and minimization of this metric

• number of steps customers have to wait to avoid con�ict with other customers

CHAPTER 2. DOMAIN BACKGROUND 5

2.5 Optimization

Product placement optimization is a process which is used to maximize/minimize
a supermarket layout metric 2.4. There are many algorithms which can be applied to
solve the optimization process. Optimization is based on creating a neighbour solution
from the current one and �nding the optimum metric value.

2.6 Customer behaviour

Customers are not the same, we can distinguish customers by their age, gender,
salary or their home place. These factors have in�uence on their behavior and shopping
list. In the supermarkets there are many and many kinds of products of all categories
and prices. We have for example rich scale of meats and every kind of this meat will
�nd its buyer.

Chapter 3

Methods & Technology

This chapter contains description and formulation of the main algorithms and prob-
lems which are used in the thesis. At �rst we describe Local Search algorithm and its
usage. We use optimization algorithm based on Local Search to �nd optimal solution
of product placement. Next section is aimed on combinatorial problem called Travel-
ling Salesman Problem which is used in customer path planner to optimize the shortest
route. Planning and optimization algorithm is described in the next part this chapter.
We introduce A* algorithm and Simulated Annealing algorithm. The last two sections
are focused on JavaFX and its tools and on Business Intelligence tools for providing
statistics.

3.1 Local Search

Local search is a method for solving hard optimization problems. It can be used
when we want to �nd a solution with maximum or minimum criterion among many
other possible solutions.

P. Moscato [12] describes basic intro for Local Search algorithm as follows: "A local
search algorithm, starting from an initial solution s0 ∈ S, iterates using the moves
associated with the de�nition of neighborhood, such that it navigates the search space.
At each step it makes a transition between one solution s to one of its neighbors s′.
When the algorithm makes the transition from s to s′, we say that the corresponding
move tm has been accepted and we also write that s′ is equal to s⊕ tm."

We can say Local search applies local changes on the current solution to create
another solution from the search space. It proceeds from one solution to another until
the solution is considered optimal or the time given to �nd solution is over.

Local Search algorithms are used with all kinds of problems, involving mathematics,
bioinformatics, etc.

The most common usage of Local Search algorithm:

• Travelling salesman problem

• Boolean satis�ability problem

6

CHAPTER 3. METHODS & TECHNOLOGY 7

• Shifts scheduling problem

S ← an arbitrary feasible solution in S
while ∃S ′ ∈ B(S) such that cost(S ′) < cost(S) do

S ← S ′

end
Algorithm 1: Pseudo code of Local Search algorithm

3.1.1 Local Search Techniques

This section introduce the three most favourite local search techniques. We describes
Hill Climbing, Simulated Annealing and Tabu Search.

3.1.1.1 Hill Climbing

The simples technique of Local search. It is based on choosing a neighbor node with
the highest value. This process is repeated until we have no nodes with higher value
than the current node. The pros of this approach is time complexity, the cons is that
the algorithm do not have to reach the global maximum.

3.1.1.2 Simulated Annealing

By Aarts [1] the main feature of Simulated Annealing algorithm is: "it accepts
de deteriorations to a limited extent." That is di�erence compared to Hill Climbing
approach which accepts only better solution, this approach can accept a worse solution
in small range.

3.1.1.3 Tabu Search

P. Moscato [12] de�nes basic mechanism of Tabu Search as: "At each iteration a
subset Q ⊆ N(s) of the neightborhood of the current solution s is explored. The
member of Q that gives the minimum value of the cost function becomes the new
current solution independently of the fact that its value is better or worse than the
value in s. To prevent cycling, there is a so-called tabu list, which is the list of moves
which it is forbidden to execute. The tabu list comprises the last k moves, where k is
a parameter of the method, and it is run as a queue; that is, whenever a new move is
accepted as the new current, the oldest one is discarded."

3.2 Travelling Salesman Problem

Travelling salesman problem is hard optimization problem de�nes as follows:

CHAPTER 3. METHODS & TECHNOLOGY 8

Data: iterationsmax, tempmax, inputData
Scurrent ← CreateInitialSolution(inputData)
Sbest ← Scurrent for i = 1 to iterationsmax do

Si ← CreateNeighborSolution(Scurrent) tempcurrent ←
CalculateTemperature(i,tempmax)
if Cost(Si) ≤ Cost(Scurrent) then

Scurrent ← Si

if Cost(Si) ≤ Cost(Sbest) then
Sbest ← Si

end

end

else if exp(CostScurrent−CostSi

tempcurrent
) > Rand() then

Scurrent ← Si

end

end
return Sbest

Algorithm 2: Pseudo code of Simulated annealing algorithm for �nding the best
solution of product placement

"Let be C a set of cities and D matrix of distances between all the cities from C. Our
goal is to visit each of given city from C and only once with the same starting and

�nishing city. We try to minimize total distance travelled on this route with distances
from D."

3.2.1 Integer Linear Program

Mathematically TSP can be formulated as an Integer Linear Program. One of the
earliest formulation of ILP is due to Dantzig, Fulkerson and Johnson [3]:

Minimize
∑
i 6=j

cijxij (3.1)

subject to
n∑

j=1

xij = 1, i = 1, . . . , n (3.2)

n∑
i=1

xij = 1, j = 1, . . . , n

n∑
i,j∈S

xij ≤ |S| − 1

(3.3)

S ⊂ V, 2 ≤ |S| ≤ n− 2

xij ∈ {0, 1}
(3.4)

i, j = 1, . . . , n, i 6= j (3.5)

CHAPTER 3. METHODS & TECHNOLOGY 9

Figure 3.1: Demonstration of 2-opt algorithm.

TSP is NP − complete and NP −hard problem. This means there is no polynomial
algorithm which can �nd a solution in polynomial time.

3.2.2 Approximation methods

We know many heuristics and approximation algorithms which quickly �nd a good
solution. This solution does not have to be the best one, but it can be found quicker
than the optimal solution.

3.2.2.1 r-opt heuristic

Laporte [8] de�nes r-opt heuristic in 2 steps:

1. Consider an initial tour.

2. Remove r arcs from the tour and tentatively reconnect the r remaining chains
in all possible ways. If any reconnection yields a shorter tour, consider this tour
as a new initial solution and repeat step 2. Stop when no improvement can be
obtained.

Example of 2-opt algorithm is shown at Figure 3.1.

3.2.2.2 Nearest Neighbor

Nearest neighbor belongs to the easiest and fastest algorithm for TSP. Karkory [6]
formulates this approach as follows: "Select a starting point, as long as there are cities
that have not yet been visited, visit the nearest city that still has not appeared in the
tour, �nally, return to the �rst city." The time complexity of this approach is O(n2).

3.3 A*

A* [13] is a planning algorithm used for �nding a path in a graph with given start
and given end points. Best-�rst search algorithm is used to �nd an optimal path between
points X and Y ; optimal is meant as the shortest or cheapest, etc. We de�ne function
f(x) 3.6 which determines node value and with this value it sorts out the nodes to the
right order in which these nodes will be visited and evaluated. Function f(x) is composed
of these 2 fuctions [9, 11]:

• g(x) - cost function - distance between start and parameter point x

CHAPTER 3. METHODS & TECHNOLOGY 10

• h(x) - heuristic function - the best predicted distance to end, must be admissible
(distance to target must not be overestimated)

and is given as:
f(x) = g(x) + h(x) (3.6)

Pseudocode 3 below shows how A* works 1.

init Priority Queue;
init closed list;
put start point to the queue;
while open list is not empty do

pop (q) o� the queue;
generate q's successors and set their parents to q;
foreach successor do

if successor == goal then
return;

end
successor.c = q.c + distance between successor and q;
successor.h = distance from goal to successor;
successor.f = successor.g + successor.h;
if queue contains node with the same position and with lower f than
successor then

break;
end
if closed list contains node with the same position and with lower f than
successor then

break;
end
put the node to the queue;

end
push q on the closed list;

end
Algorithm 3: Pseudo code of A* algorithm

A* is complete algorithm; it will always �nd a solution if there is someone. It's also
optimal if:

• closed list (list of visited nodes) is not used

• closed list is used and heuristic function h(x) is consistent; for any pair of nearby
nodes a, b:

h(x) ≤ h(y) + d(a, b) (3.7)

where d(a,b) is distance between a and b.

1http://web.mit.edu/eranki/www/tutorials/search/

http://web.mit.edu/eranki/www/tutorials/search/

CHAPTER 3. METHODS & TECHNOLOGY 11

3.4 Java & JavaFX & JFXtras

JavaFX is a Java framework for making applications with rich and intuitive GUI.
It was introduced in May 2007 at JavaOne conference. In the third quarter of 2008
JavaFX was published for desktop and web browsers. In the course of the years JavaFX
o�cially replaced Swing library, which was considered to be an old technology lacking
useful features (e. g. it does not support touch screens, animations, etc.).

Summary of JavaFX features:

• Scene Builder - Tool for creating GUI without writing code. It supports Drag&Drop
technology to customizing the interface. It generates FXML code, which contains
all interface properties with all components and their position and providing meth-
ods for interacting.

• FXML - language used only for de�ning application interface, based on XML

• Rich UI Controls - it provides charts generator, SVG shapes

• 2D/3D Graphic Support - it provides technology for animations and transitions.
It is possible to manipulate with 3D objects.

• CSS-Like Styling - we can style component by setting css styles instead of updating
objects one property by another property.

3.4.1 JFXtras

JFXtras2 is a supporting library for JavaFX. It provides helper classes, new extended
layouts, improved controls, menus and many others widgets not available in standard
JavaFX. It is an open-source software under BSD License. It is available in maven
repository and it is possible to download only a part of the components. JFxtras consists
of the following parts which can be downloaded separately:

• jfxtras-common - layouts, utilities, etc.

• jfxtras-fxml - utilities for working with FXML �le format

• jfxtras-controls - time and date pickers

• jfxtras-agenda - Google Calendar control

• jfxtras-window - non standard Window implementation

• jfxtras-menu - corner, circular or radial menu implementations

• jfxtras-labs - incubator classes

2http://jfxtras.org/

http://jfxtras.org/

CHAPTER 3. METHODS & TECHNOLOGY 12

3.5 Business Intelligence Tool

Business Intelligence are experiences, knowledge, risks and methods in entrepreneur-
ship which help for better understanding of business connections and market behavior.
Business Intelligence collects data and makes analysis for better business decision mak-
ing process.

Business Intelligence applications (tools) provides all kinds of data projection, re-
porting, corporate performance management, support for planning to the future, etc.

There are lot of corporate tools used by many companies. The most used are these
ones:

• IBM Cognos 3

• SAP Business Object 4

For some little projects or small companies there is also a solution of open-source or
freeware tools which have similar functions but they cannot be used for so many data.

• Tableau Software 5

• QlikView 6

• icCube 7

3http://www-01.ibm.com/software/analytics/cognos/
4http://go.sap.com/solution/platform-technology/business-intelligence.html
5http://www.tableau.com/
6http://www.qlik.com/
7http://www.iccube.com/

http://www-01.ibm.com/software/analytics/cognos/
http://go.sap.com/solution/platform-technology/business-intelligence.html
http://www.tableau.com/
http://www.qlik.com/
http://www.iccube.com/

Chapter 4

Related work

This chapter focuses on publications and papers with similar goals or methods.
We introduce researches in product placement problem and Agent-based simulation
approach for modeling reality.

4.1 Product Placement

Mu-Chen Chen in his article A data mining approach to product assortment and
space allocation [2] studies problem with product placing to shelves according to their
values and in�uence to pro�t. "This study developed a data mining approach to make
decisions about which products to stock, how much shelf space allocated to the stocked
products and where to display them."[2]. He propose a procedure of shelf space man-
agement which consists of three steps:

• Multi-level association rule mining - relations between product items, product
subcategories and product categories

• Product assortment - estimation of the frequent item pro�ts, resolving mathe-
matical model of product assortment, generating basic and added products for
store

• Shelf space allocation - allocation shelf space for each type of category, subcategory
and items.

He cites Yang article about shelf space allocation algortihms [14]: "Product assort-
ment and shelf space allocation are two important issues in retailing which can a�ect
the customers' purchasing decisions. Through the pro�cient shelf space management,
retailers can improve return on inventory and consumer's satisfaction, and therefore
increase sales and margin pro�t".

According to M. Levy [10], retailers usually adopt the grid display to allocate the
shelf space. The grid display has the longer demonstration shelf and walkway as shown
in Figure 2.1. This layout is known from many supermarkets.

13

CHAPTER 4. RELATED WORK 14

Figure 4.1: Illustration of agent-based model structure.

4.2 Agent-based Simulation

The best known paper about Agent-based Simulations is written by Franzisca Klügl
and it is the Agent-Based Modeling and Simulation article [7]. She describes agent-
based modeling and simulations as follow: "Multi-Agent Systems provide a description
framework that is appropriate for many real world systems consisting of a set of inter-
acting autonomously deciding actors. Human and animal societies form prominent and
intuitive examples for real-world multi-agent systems." Basically we can transform real
world to agent-based one. We de�ne people, animals, etc. as agents who are interacting
with environment or with other agents and who make sense of the real world. Figure 4.1
provides an illustration of models interacting1.

4.2.1 Agent and Environment

Autonomous agent is described by Franklin and Graesser [4] as follows: "An au-
tonomous agent is a system situated within and a part of an environment that senses
that environment and acts on it, over time, in pursuit of its own agenda and so as to ef-
fect what it senses in the future." Environment in agent-based simulations is everything
the agents can interact with.

4.2.2 Creating an Agent-based Model

According to Klügl [7] the creation of an Agent-based model is formed by these three
elements which have to be de�ned:

1http://jasss.soc.surrey.ac.uk/12/4/4/ref-model.gif

http://jasss.soc.surrey.ac.uk/12/4/4/ref-model.gif

CHAPTER 4. RELATED WORK 15

• The set of agents is the most characteristic element. These agents are autonomous
with respect to the other entities within the simulated environment.

• Next comes the speci�cation of the interactions of the agents among themselves
and with their shared environment.

• The third element, the simulated environment, contains all other elements. These
may be resources, other objects without active behavior, as well as global proper-
ties.

Chapter 5

System Architecture

Following chapter describes the main components of the project. We introduce
Layout designer - application for creating supermarket layout, Simulation framework -
a set of components for running simulations with optimization goals, customers models
which represent real customers in supermarkets and optimization process of product
placement.

5.1 Layout designer

Layout designer is an application for modelling supermarket layouts 2.2 which can
be used in Simulation framework. It allows us to create a new custom layout or update
an existing one. Designer is fully accessible via UI to be easier for the usage.

It consists of two main cooperating components. Themain content component is
for the interaction with the user and the info panel is for navigating between windows
and for displaying some useful information.

Layout modelling �ow consists from 4 steps:

1. Setting supermarket's dimensions or loading existing one

2. Placement of supermarkets objects

3. Product placement on shelves

4. Saving layout

5.1.1 Wizard

Wizard component provides methods for navigating in this step �ow. Steps (pages)
are validated to o�er only the correct solutions. Figure 5.1 captures wizard with its
components.

5.1.1.1 Step 1

The initial step (shown at Figure 5.2 provides input �elds for supermarket's dimen-
sions and button for loading an existing supermarket. Input �elds are validated to
accept only positive values and multiples of �fteen (�fteen units are a supermarket cell).

16

CHAPTER 5. SYSTEM ARCHITECTURE 17

Figure 5.1: Wizard component description with its highlighted parts. Content - red,
Controls - blue

Loading button reads the supermarket �le and presets values to input �elds which
can be edited to customize the loaded supermarket.

5.1.1.2 Step 2

Figure 5.3 contains page with number two which shows supermarket layout in the
big canvas covering most of the window and controls for customizing this layout, i.e.
checkboxes in the right panel. Layout can be customized by clicking on it cells. The
click places the selected value from checkbox to layout and shows the change on the
canvas. Checkboxes are supplemented by image which describes their meaning.

Supermarket's layout is represented by two-dimensional array where each cell of this
array is de�ned by one of these following objects:

• Entrance

• Shelf

• Cashier

• Wall

• Empty space

Step two provides zooming layout by slider component in the middle of right panel.
We can apply zoom from 1 to 5 to get bigger layout projection and more precise cus-
tomizing.

The last components is a small layout with legend which describe cell meaning by
its color.

CHAPTER 5. SYSTEM ARCHITECTURE 18

Figure 5.2: Step 1 for setting the supermarket's dimensions

To get to the next step layout has to contain at least one item from each of these
types: entrance (green), shelf (blue) and cash desk (red).

5.1.1.3 Step 3

The third step is aimed on product placement; On this step we can put products
to shelves. Figure 5.4 shows layout of the step 3 which is divided into 2 vertical parts.
The left one contains the same canvas as the step 2; i.e. supermarket layout with all its
objects. The right one shows shelf detail with product o�er.

Shelf space used for products is inspired by typical shelf in supermarkets, a rectan-
gular space with grid layout. A shelf usually contains one type of products from various
producers.

To add a product to shelf it is necessary to perform these tasks:

1. Select shelf we want to modify - selected shelf is highlighted by light blue color.

2. Click on the one of the "Fill" buttons or click on the certain shelf space.

3. Select product from menu

Product selection uses a hierarchical menu as shown at Figure 5.5. Each menu level
corresponds to product hierarchy levels:

1. level - category

2. level - subcategory

3. level - product

The menu remembers the last used product to provide its new quick usage. It helps the
faster product selection.

CHAPTER 5. SYSTEM ARCHITECTURE 19

Figure 5.3: Model behavior diagram

5.1.1.4 Step 4

Last step of all with only one button for provoke the saving dialog. Supermarket's
layout is stored in JSON format which is suitable for little corrections and modi�cations.
In this layout, there are supermarket's dimensions, list of shelves with their product
placement and location in the supermarket and list of entrances and cash desks with
their locations. Demonstration of stored supermarket in JSON format is in Appendix B.

5.2 Simulation framework

Simulation is runnable in a framework which runs the evaluation using the super-
market and its de�ned models. Simulation is step-based, i.e., it runs in steps which
de�ne certain action of the model according to its state. Simulation starts with initial-
izations of supermarket (loading layout and products properties) and models (starting
positions and shopping list). Shopping lists are automatically generated by Shopping
list generator 5.2.1

5.2.1 Shopping list generator

Some of the products are to be bought more frequently and some other products are
purchased only irregularly. It can be said that some products have a higher probability
or purchase, which signi�es their popularity.

Another feature of the probability of the purchase of a product is a relation which
can exist between a pair of products (P1, P2). It deals with the probability that if we
buy a product P1 the we buy a product P2. The relation is symmetric; it is the same
in both of the directions. All relations are stored in a correlation matrix. The matrix

CHAPTER 5. SYSTEM ARCHITECTURE 20

Figure 5.4: Model behavior diagram

contains all products values in the column and row labels and the values at a position
told us the probability. Example of correlation matrix is in the Appendix C

5.3 Behaviour modelling

Customer models are big part of whole simulation framework and its evaluation.
The model represents a real customer in a supermarket with de�ned shopping list and
familiarity with the supermarket. The knowledge determines which planning algorithm
will be used.

Each model is de�ned by these properties:

• Familiarity with the supermarket's layout

• Planning (behavior) algorithm

• Shopping list

5.3.1 Behavior diagram

Model's behavior is controlled by behavior state diagram 5.7. It de�nes states and
transitions between them.

5.3.1.1 Wait

Model is created and waits for his starting position in the environment.

CHAPTER 5. SYSTEM ARCHITECTURE 21

Figure 5.5: Menu for selecting products

5.3.1.2 Plan

This state contains creating route according to model type. It plans complete route
from start to end.

5.3.1.3 Follow

Following state represents one model move. The move can be a step on another cell,
waiting on the current cell to avoid con�icts with other models or waiting in sense of
choosing the current item from list as described in Section 5.3.1.4.

5.3.1.4 Choose

It state is only virtual, is not implemented. It is used for describing customer be-
havior in real. In the code, this state is substitute by planning state which controls all
the customer moves.

5.3.1.5 Leave

Leave state is also only virtual to distinguish 2 di�erent types of customer moves:

• Move to next product in list

• Move to random cashdesk

CHAPTER 5. SYSTEM ARCHITECTURE 22

Figure 5.6: Window for storing supermarkets

5.3.1.6 Out

In this state model reach his destination (cashdesk) and is ready for leaving out of
simulation.

5.3.1.7 Done

State Done means model is not act in the simulation. He bought all items from
shopping list, paid for them at cashdesk and leave the supermarket.

5.3.2 Implemented models

In the simulation there are 3 types of customer models implemented.

5.3.2.1 Travelling Salesman Problem Model

So called TSP model represents a person who �nds the shortest way to buy all of the
products on the list and goes away. The model is well informed about the supermarket,
he knows where all products are placed.

5.3.2.2 Random Model

Random model is the simplest model. From its shopping list it chooses always
random item and go for it. It is also well informed about the supermarket as TSP
model.

CHAPTER 5. SYSTEM ARCHITECTURE 23

Figure 5.7: Model behavior diagram

5.3.2.3 Partial knowledge Model

Model with the partial knowledge of the supermarket is a model who knows positions
of a given percentage of the products. The rest of the percentage is a knowledge about
the product categories. This means that the model does not know the exact location of
the product he wants, but he knows where to look for the category to which the product
belongs.

The planner this model uses iterates all products from shopping list and �nds the
nearest product to him. If the product position is unknown, the planner use nearest
point of the category the product belongs to. If there is a Partial Knowledge in the
simulation the software initialize category info provider which is used by the planner
a keep information about all categories and its products. Algorithm is described by
pseudo-code 4

5.4 Placement optimizer

Placement optimizer used Simulated annealing algorithm to �nd an optimal solution
of the metric in the selected supermarket.

The optimizer controls supermarket simulations and collects results to �nd the best
the best supermarket con�guration. Thirty simulations in each algorithm iteration are
run to get relevant results. After each iteration the neighbour solution is generated by
swapping shelves content. Number of swapped shelves are given by this equation:

swap = min((temperature/50) + 1, 20); (5.1)

CHAPTER 5. SYSTEM ARCHITECTURE 24

product ← �ndNearestProduct()
if product position is known then

getPathTo(productPosition)
end
else

categoryPoints ← getCategoryPoints(product)
nextPosition ← getNearestCategoryPoint() getPathTo(nextPosition)
while current position != product position do

nextPosition ← getNearestCategoryPoint()
categoryPoints → remove(nextPosition)
getPathTo(nextPosition)
currentPosition ← nextPosition

end

end
Algorithm 4: Pseudo code of Partial Knowledge model planner

Number of swapped shelves is not greater than twenty and greater than zero. This
guarantees that the higher the temperature is the higher the number of swapped shelves
is.

Chapter 6

Implementation

Chapter Implementation aims at particular components implementation. We intro-
duce components from JavaFX library used for Layout designer, algorithm for path
planning with no collisions and Maven tool for managing projects.

6.1 Layout designer

Layout designer is step-based �ow creator. A wizard component for manipulating
with the pages is the main part of designer GUI. Wizard comprises two parts as shown
in 5.1:

• Content

• Controls

Content part displays page layout, component with controls is responsible for �ow.

6.1.1 Products

Customer in simulation can buy lot of products from many categories. List in Ap-
pendix D shows all available products which represents set of typically bought products.

Products are divided into categories and subcategories to provide a simple and easy
navigation in the designer product menu. Each of these products has its picture which
is shown in the designer and is used for graphic shelf layout description.

For the products' selection, Radial menu from JFXtras library is used. JFXtras
contains controls and add-ons for JavaFX. Radial menu is control component providing
intuitive �ow which makes the product selection easier. The �ow for products with a
subcategory is di�erent from the �ow without any subcategory.

6.2 Optimization

Product placement optimization uses Simulated annealing algorithm. Component
SimulatedAnnealingService is responsible for running this algorithm with given param-
eters. This service implements Runnable interface to be run in separate thread. It

25

CHAPTER 6. IMPLEMENTATION 26

Figure 6.1: Simple class diagram of Layout module

provides method for run given number of simulations and returns the result to be pro-
cessed by optimization algorithm.

The simulation parameters consist from Supermarket object and List with model
de�nitions to be used in simulation. List of models is consist for the whole simulation
run, the supermarket is changed after each temperature recomputing. SimulatedAnneal-
ingService applies operator which swaps the shelves' content.

We de�ne an equation for the temperature lowering:

temp = temp ∗ (1− coolingRate) (6.1)

where coolingRate is equal 0.03 and initial temperature value is equal to 2000. These
values provides 251 simulation runs.

6.3 Planning

Customer planners use A* algorithm on three-dimensional graph. Two of the dimen-
sions are based on the supermarket layout (x and y coordinate). The third dimension is
step (time) variable. This structure provides all the properties needed to �nd multiple
paths which are not crossed (in reality there cannot be two people on the same place -
their paths cannot be crossed).

Graph is implemented as java.util.Map with key of type Long that represents coor-
dinate unique ID and value type Coordinate describing a location on graph. Coordinate
ID is computed by this equation:

id = (y ·X + x) + (S − 1) ·X · Z (6.2)

where x and y are coordinate position on graph (layout), X and Y are layout di-
mensions and S describes coordinate step property (time variable).

Because of the big memory requirement, the graph is implemented as lazy, it adds
it coordinates dynamically when they are required. This solution provides a fast access
to a certain node and it is useful for a big layout with lots of steps.

CHAPTER 6. IMPLEMENTATION 27

Figure 6.2: Maven module diagram describing project structure

cz.cvut.dp:dp:pom:1.0-SNAPSHOT

org.jfxtras:jfxtras-controls:jar:8.0-r2

org.jfxtras:jfxtras-fxml:jar:8.0-r2

org.jfxtras:jfxtras-common:jar:8.0-r2

org.jfxtras:jfxtras-menu:jar:8.0-r2

org.jfxtras:jfxtras-labs:jar:8.0-r1

com.google.code.gson:gson:jar:2.3

Figure 6.3: Maven tree of external library dependencies

6.4 Maven

Maven is a tool for managing, controlling and build automation. It is used mostly
with Java. It describes software build properties - how the software is built and what
external sources and libraries it depends on.

Project implementation is built on the Maven module structure to keep the man-
agement of dependencies and libraries for all the modules simple. Project structure is
described by the diagram 6.2 which shows all of the used modules and the dependencies
between them.

Chapter 7

Evaluation

We evaluated two real-life scenarios: one small supermarket, one bigger supermarket.
Each time we ran these three optimization metrics:

• Minimization of customers' steps

• Maximization of customers' steps

• Minimization of customers' waiting time

To compare two di�erent alternatives, we evaluated one customer as well as more
customers. We use TSP model and model with partial knowledge to get the results.
Random model is used only for making noise in more customers scenarios.

7.1 Layout designer use-case

At �rst we evaluated small scenario with small number of customers, than the bigger
scenario with more customers.

7.1.1 Scenario 1 - small

The small scenario uses the supermarket 7.1 which is inspired by Tesco Express in
Taborska street, Prague. It is small local market with limited range of products. It is
designed for small a short shopping.

7.1.2 Scenario 2 - bigger

Next simulation scenario uses bigger supermarket. We use supermarket Tesco in
Uni£ov. This supermarket is a center for about ten thousand people from Uni£ov and
adjacent districts. It serves for all kinds of people so it o�ers many products of all prices.

Instead of one and ten people from the small scenario we use 30 customers to buy
there with only one simulation run.

28

CHAPTER 7. EVALUATION 29

Figure 7.1: Small supermarket layout

7.2 Optimization

Simulated annealing algorithm which is used for all metrics. Simulation result is com-
puted as arithmetic mean from 30 simulation executions with same settings to achieve
relevant results. This simulated annealing process is run three times to verify similar
results.

7.2.1 Scenario 1 - small

At �rst the small scenario is evaluated.

7.2.1.1 One customer

For the �rst scenario we have one customer with Travelling Salesman Problem plan-
ning strategy. On the Figure 7.3 there are progress of minimization and maximization
of total steps customer has to do. We can see the di�erence between maximum and
minimum value of 20. It is about 9-10 percent change compared to default layout.

Second evaluation uses one Partial Knowledge model with 50 percent familiarity
with the supermarket. The result of minimization is the same is at TSP model. The
maximum value is twice bigger compared to TSP (he has familiarity of 100 percent). The
biggest weakness of this model the low value of familiarity with the supermarket. He has
to do many steps to �nd a product. Bigger familiarity would cause less maximum value.
This model path is very in�uenced by the familiarity. Figure 7.4 captures optimization
process of a Partial Knowledge model.

The reason of minimization is that the favourite products were placed near entrance
or cash desk and less favourite ones were placed on the other side of the entrances or
cash desks.

CHAPTER 7. EVALUATION 30

Figure 7.2: Big supermarket layout

7.2.1.2 More customers

Now we put 10 TSP customers to the small supermarket to do shopping. The
di�erence of maximum values compared with scenario with one customer is about 10
percent (captured at �gure 7.5 and it is given by more density of customer in the same
area. Customers have to do more steps to avoid con�icts.

Ten Partial Knowledge customers have similar results (�gure 7.6 as ten TSP cus-
tomers. The maximum value is bigger about �fteen percent, the minimum value is
equal to the one from the evaluation with one customer. The reason is the same - more
density.

The last measuring was focus on waiting steps, i.e. how many time customers have
to wait on its position to avoid con�icts with other customers. The result at Figure 7.7
of 20 steps is about 20 percent of done steps. The result is in�uenced by little space to
move and high number of customers.

7.2.2 Scenario 2 - bigger

This section is focused on evaluation of the bigger scenario. We ran only one simu-
lation to get results but with higher number of customers (30).

We put thirty TSP models to bigger supermarket. Figure 7.8 shows result that is
relevant to the supermarket size. Customers do not have to avoid con�icts, there are
lots of space between shelves and many shelves with the same product.

Big supermarkets shows the di�erence between TSP models (with 100 percent famil-
iarity and Partial Knowledge models (with 50 percent familiarity) at �gure 7.9. Knowl-
edge of the supermarket strongly decreases the total steps needed to collect all items
from list. Finding products through all shelves in the main reason of the high number
(about 420 steps - twice as much compared with TSP). Figure 7.10 captures the progress

CHAPTER 7. EVALUATION 31

Figure 7.3: Optimization progress of 1 TSP customer in small supermarket

Figure 7.4: Optimization progress of 1 Partial Knowledge customer in small supermarket

of optimization the waiting steps.
The number of waiting steps is in�uenced by number of shelves with product category

(customers do not have wait for customer who is choosing the same type of product)
and the width of lane between shelves.

The evaluation of the wait steps at the big scenario is about 30 steps. That is about
10 steps higher than at small scenario. Big supermarkets have usually more spaces
between shelves so customers can easily �nd a way without waiting for other customers.

7.2.3 BI Tool

We used Tableau software1 to show statistics from simulations. Simulation saves
statistics from the best solution in Microsoft Excel �le which can be loaded by Tableau.
Tableau can show paths of all models, usage of each cell, i.e. how many customers go

1http://www.tableau.com/

http://www.tableau.com/

CHAPTER 7. EVALUATION 32

Figure 7.5: Optimization progress of 10 TSP customer in small supermarket

Figure 7.6: Optimization progress of 10 Partial Knowledge customers in small super-
market.

through each cell, etc. The statistic �le contains number of wait steps of each model
and their complete path.

A demonstration of BI tool we propose a �gure 7.11 with small scenario layout which
shows usage of each cell.

7.3 Summary

The goal of the thesis was to create supermarket creator, to model customer behavior
models and to optimize shelf space allocation according to de�ned metrics. Optimization
considers customer's behavior in speci�c environment.

I studied the problem of the shelf space allocation and proposed complex tools for
demonstration this problem. In product placement there exists relation between product
items, product subcategories and product categories. This relations then have e�ects

CHAPTER 7. EVALUATION 33

Figure 7.7: Optimization progress of Waiting steps of 10 TSP customers in small super-
market.

Figure 7.8: Optimization progress of 10 TSP customers in big supermarket.

on product placement.
I implemented a tool for creating supermarket layout which can be �lled by products

from available hierarchical list of product categories, subcategories and items. I mod-
elled three customer behavior models which represents di�erent kind of real customer. I
used A* algorithm to solve problem with path planning in time. Next goal was to imple-
mented simulation framework which takes the supermarket layout, set of customers and
executes the Simulated annealing algorithm on that settings. Agent-based simulation is
used for capturing the decision-making process.

I tested two scenarios with many di�erent settings (number and type of customer
�guring in simulation). The result of the thesis is that placing favourite products to
the opposite ends of the supermarkets increases the total time customers stay inside the
supermarket. This leads to bigger supermarket pro�ts.

This work has certainly some limits; o�ering more products would bring more precise

CHAPTER 7. EVALUATION 34

Figure 7.9: Optimization progress of 10 Partial Knowledge customers in big supermar-
ket.

results. We would consider more customers with one shopping cart (a family). This
factor would provide more accurate path planner. Next option is to implement cash
desk queue.

CHAPTER 7. EVALUATION 35

Figure 7.10: Optimization progress of Wait steps of 30 Partial Knowledge customers in
big supermarket.

Figure 7.11: Statistic shown in BI Tool Tableau. Light blue - small usage, dark blue -
big usage

Bibliography

[1] E. Aarts, J. Korst, and W. Michiels. Simulated Annealing. In E. . Burke and
G. Kendall, editors, Search Methodologies, chapter 7, pages 187�210�210. Springer
US, Boston, MA, 2005.

[2] M.-C. Chen and C.-P. Lin. A data mining approach to product assortment and
shelf space allocation. Expert Syst. Appl., 32(4):976�986, May 2007.

[3] G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a large-scale
traveling-salesman problem. Operations Research, 3, 1954.

[4] S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy
for autonomous agents. In Proceedings of the Workshop on Intelligent Agents III,
Agent Theories, Architectures, and Languages, ECAI '96, London, UK, UK, 1997.
Springer-Verlag.

[5] H. Hwang, B. Choi, and M.-J. Lee. A model for shelf space allocation and inventory
control considering location and inventory level e�ects on demand. International
Journal of Production Economics, 97(2):185 � 195, 2005.

[6] F. A. Karkory and A. A. Abudalmola. International Journal of Mathematical,
Computational, Natural and Physical Engineering, 7(10):987 � 997, 2013.

[7] F. Klügl. Agent-based modeling and simulation. AI Magazine 33.3, pages 29�40,
2012.

[8] G. Laporte. The traveling salesman problem: An overview of exact and approximate
algorithms. European Journal of Operational Research, 59(2):231�247, June 1992.

[9] S. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[10] M. Levy and B. A. Weitz. Retailing management. Chicago: Irwin, 1995.

[11] G. Luger. Arti�cial intelligence: structures and strategies for complex problem
solving. Pearson education. Addison-Wesley, 2005.

[12] A. S. P. Moscato. Local Search Techniques for Scheduling Problems.
online. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.

2651&rep=rep1&type=ps.

36

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.2651&rep=rep1&type=ps
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.2651&rep=rep1&type=ps

BIBLIOGRAPHY 37

[13] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards. Arti�cial
intelligence: a modern approach, volume 2. Prentice hall Englewood Cli�s, NJ,
1995.

[14] M.-H. Yang. An e�cient algorithm to allocate shelf space. European Journal of
Operational Research, 131(1):107 � 118, 2001.

Appendix A

CD Content

CD attached with the thesis contains:

• Layout designer � \Application\designer.jar

• Simulation application � \Application\simulation.jar

• Product properties � \Application\products_properties.xlsx

• Designer runner � \Application\runDesigner.bat

• Simulation runner � \Application\runSimulation.bat

• Source code � \Source code

• Thesis in PDF � \Thesis\tomasda2_DP.pdf

38

Appendix B

JSON

Example of JSON format of saved supermarket layout with all its properties

{

"length": 240,

"width": 135,

"shelves": [

{

"layout": [

[

{

"name": "Beet"

},

{

"name": "Beet"

},

{

"name": "Beet"

}

],

[

{

"name": "Beet"

},

{

"name": "Beet"

},

{

"name": "Beet"

}

],

[

{

"name": "Beet"

39

APPENDIX B. JSON 40

},

{

"name": "Beet"

},

{

"name": "Beet"

}

],

[

{

"name": "Beet"

},

{

"name": "Beet"

},

{

"name": "Beet"

}

]

],

"position": "BOTTOM",

"layoutX": 0,

"layoutY": 8

}

],

"entrances": [

{

"layoutX": 0,

"layoutY": 4

}

],

"cashiers": [

{

"layoutX": 2,

"layoutY": 0

},

{

"layoutX": 3,

"layoutY": 0

}

],

"walls": [

{

"layoutX": 7,

"layoutY": 1

APPENDIX B. JSON 41

},

{

"layoutX": 7,

"layoutY": 2

},

{

"layoutX": 4,

"layoutY": 8

},

{

"layoutX": 15,

"layoutY": 8

}

]

}

Appendix C

Correlation Matrix

Product correlation matrix example.

Milks Yoghurts Cheese Eggs Butter Sausages Sliced meat
Sugar 0 0 0 0 0 0 0
Flour 0,1 0 0 0,1 0 0 0
Pasta 0 0 0 0 0 0,1 0
Spices 0 0 0 0 0 0 0
Soups 0 0 0 0 0 0 0
Rice 0 0 0 0 0 0 0
Biscuits 0,2 0,15 0 0 0 0 0

42

Appendix D

Categories and products

List of categories and products which can be placed into the supermarket shelves.

• Dairy

� Milk

� Yoghurt

� Cheese

� Egg

� Butter

• Meat

� Cooked Meat

∗ Sausages

∗ Sliced Meat

∗ Oil

� Fresh Meat

∗ Bacon

∗ Beef

∗ Lamb

∗ Pork

∗ Poultry

∗ Minced Meat

• Sea food

� Fresh Fillets

� Fish Fingers

� Prawns and Shell�sh

• Deli

43

APPENDIX D. CATEGORIES AND PRODUCTS 44

� Olive Oil

� Olives

� Pate

� Tinned �sh

� Jam

� Ketchup

� Mustard

� Sauce

• Bakery

� Bread

� Roll

� Croissant

• Fruits and Vegetables

� Fruits

∗ Apple

∗ Orange

∗ Grapefruit

∗ Banana

∗ Grape

∗ Strawberry

� Vegetables

∗ Potato

∗ Tomato

∗ Cucumber

∗ Pepper

∗ Lettuce

∗ Cellery

∗ Beet

• Frozen

� Pizza

� Ready Meals

� Frozen Meats

� Ice-cream

� Frozen Fishes

APPENDIX D. CATEGORIES AND PRODUCTS 45

� French Fries

• Health and Beauty

� Shampoo

� Shower Gel

� Soap

� Sun care

� Oral care

� Perfume

• Household

� Cleaning Stu�

� Toilet Paper

� Dishwasher Products

• Beverages

� Alcoholic

∗ Champagne

∗ Red Wine

∗ White Wine

∗ Beer

∗ Spirit

� Non-alcoholic

∗ Still Water

∗ Sparkling Water

∗ Flavoured Water

∗ Lemonade

∗ Syrup

∗ Juice

∗ Energy Drink

∗ Tea

∗ Co�ee

• Snacks

� Cracker

� Crisps

� Sticks

• Sweets

APPENDIX D. CATEGORIES AND PRODUCTS 46

� Chocolate

� Wafer

� Bar

� Candy

� Biscuits

• Packaged Foods

� Rice

� Soup

� Spice

� Pasta

� Flour

� Sugar

	Introduction
	Structure of the Thesis

	Domain Background
	Supermarkets
	Layout
	Product placement
	Metrics
	Optimization
	Customer behaviour

	Methods & Technology
	Local Search
	Local Search Techniques
	Hill Climbing
	Simulated Annealing
	Tabu Search

	Travelling Salesman Problem
	Integer Linear Program
	Approximation methods
	r-opt heuristic
	Nearest Neighbor

	A*
	Java & JavaFX & JFXtras
	JFXtras

	Business Intelligence Tool

	Related work
	Product Placement
	Agent-based Simulation
	Agent and Environment
	Creating an Agent-based Model

	System Architecture
	Layout designer
	Wizard
	Step 1
	Step 2
	Step 3
	Step 4

	Simulation framework
	Shopping list generator

	Behaviour modelling
	Behavior diagram
	Wait
	Plan
	Follow
	Choose
	Leave
	Out
	Done

	Implemented models
	Travelling Salesman Problem Model
	Random Model
	Partial knowledge Model

	Placement optimizer

	Implementation
	Layout designer
	Products

	Optimization
	Planning
	Maven

	Evaluation
	Layout designer use-case
	Scenario 1 - small
	Scenario 2 - bigger

	Optimization
	Scenario 1 - small
	One customer
	More customers

	Scenario 2 - bigger
	BI Tool

	Summary

	Bibliography
	CD Content
	JSON
	Correlation Matrix
	Categories and products

