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Abstract

The internet infrastructure is heavily abused to deliver malware and to control infected
computers. Blacklisting techniques are used to prevent the user from being infected while
sur�ng the web. The problem of those techniques is that a domain must be detected to
actually serve a malicious purpose before it is blacklisted. In this thesis we propose a novel
reputation based system which is able to give an estimate of maliciousness even for domains
which it have not yet observed. To build the prior estimate the system utilizes information
extracted from WHOIS records.

Abstrakt

Internet je zneuºíván jako médium pro ²í°ení vir· a ovládání jiº in�kovaných po£íta£·. Tech-
niky vyuºívající blacklisty se snaºí ochránit uºivatele procházející internet od potenciálních
infekcí. Problem t¥chto technik je, ºe doména se objeví na blacklistu aº poté, co je zazna-
menána n¥jaká záke°ná aktivita s ní spojená. V této práci p°edstavujeme reputa£ní systém,
jenº je schopen dát odhad záke°nosti domény i v p°ípad¥, ºe jsme je²t¥ nezaznamenali ºádnou
aktivitu s ní spojenou. Systém k tomu vyuºívá informace získané z WHOIS záznam·.

ix



x



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Used notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Prior art 5

2.1 DNS analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 EXPOSURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Notos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Probabilistic Threat Propagation . . . . . . . . . . . . . . . . . . . . . 6

2.2 WHOIS analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 We know it before you do . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Predictive domain blacklisting . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Meta-data driven classi�cation . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Reputation system based on observed evidence . . . . . . . . . . . . . . . . . 9

3 Proposed Solution 11

3.1 Proposed model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Inference using Variational Bayes . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Marginals of the md . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Marginals of the ak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Marginals of the bk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Approximation of the normalizing coe�cient . . . . . . . . . . . . . . 21

3.3 Algorithm in steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Initialization strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Processing WHOIS records . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Compact graph structure . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.4 Problems with the approximation . . . . . . . . . . . . . . . . . . . . . 25
3.4.5 Handling missing keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Evaluation 27

4.1 Empirical analysis of convergence . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xi



xii CONTENTS

4.3 Measures used to evaluate the performance . . . . . . . . . . . . . . . . . . . 30
4.4 Discussion of meaning of the parameters Θ . . . . . . . . . . . . . . . . . . . 32
4.5 Optimization of the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Comparison with the Probabilistic Threat Propagation . . . . . . . . . . . . . 33
4.7 Analysis of the inferred values . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Overall performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusion 39

A Variational Bayes method 43
A.1 Factorized distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B Nomenclature 45

C CD content 47



List of Figures

1.1 Malware samples analyzed by AV-TEST p.a. . . . . . . . . . . . . . . . . . . 1
1.2 Spam message from String of Pearls . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The credentials used in String of Paerls . . . . . . . . . . . . . . . . . . . . . 3
1.4 WHOIS query result example . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Bipartite graph of keys and domains . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Histogram of number of observed connections per domain . . . . . . . . . . . 13
3.3 Graphical representation of the tensor extrapolation. . . . . . . . . . . . . . . 14
3.4 Dependecy of the variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Supplying missing keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Example of convergence of the proposed algorithm . . . . . . . . . . . . . . . 28
4.2 Convergence of the Beta prior . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Training and testing data explained using Venn Diagram . . . . . . . . . . . . 30
4.4 Optimization of the parameters Θ . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Comparison of the proposed algrithm with PTP . . . . . . . . . . . . . . . . . 35
4.6 Evaluated performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 Correlation between # of connections and error in inference . . . . . . . . . . 37
4.8 Overall performance of the classi�er based on md . . . . . . . . . . . . . . . . 38

C.1 Content of the attached CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xiii



xiv LIST OF FIGURES



List of Tables

3.1 Number of keys per domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Initial parameters of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Statistics of the available datasets . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Relative occurrences of TLDs in the Sophos blacklist . . . . . . . . . . . . . . 30
4.4 De�nitions of outcomes of hypothesis testing . . . . . . . . . . . . . . . . . . . 31
4.5 Basic measures used to evaluate binary classi�ers . . . . . . . . . . . . . . . . 31
4.6 The chosen parameters of the model Θ . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Optimal operating point according to the F-Measure . . . . . . . . . . . . . . 37

xv



xvi LIST OF TABLES



Chapter 1

Introduction

Malicious software, often shortened to malware, is nowadays a serious threat. People do
not realize how vulnerable their computer is connected to the Internet. With the rapidly
rising number of di�erent technologies we use and their complexity, no-one can be aware
of all their vulnerabilities. For example with the current popularity of smart-phones a new
generation of malicious software targeting this platform appeared. Using this software at-
tackers are able to intercept SMS communication of victims to get, for example, con�rmation
codes for banking transactions [4],[1]. This might be a rare example, but as you can see in
Fig. 1.1 the number threats on the Internet is growing exponencialy over time. It is therefore
important to deeply focus on computer and network security.

20142013201220112010200920082007200620052004
106

107

108

109

Year

Number of samples of malware analyzed by AV-TEST

Figure 1.1: The count of malware samples analyzed by AV-TEST institute since 2003.
The y-axis has logarithmic scale. You can see that the number of analyzed samples grows
exponentially.

1.1 Motivation

The days when viruses were written by programmes to simply show o� their skill are now
gone. Malicious software is nowadays created for the sole purpose of monetization. After a
successful infection malware usually resides in the infected computer waiting for commands
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CHAPTER 1. INTRODUCTION

from its master. When activated it might be used for example to send spam, be part of
denial of service attacks, mine Bitcoins, to deploy another malware to the infected host, etc.

To be able to keep the population of infected hosts viable by spreading the malware and
to control the already infected hosts, the malicious actors need an infrastructure of internet
domains and servers. During the summer of 2014, Craig Williams from TALOS posted a
series of two interesting articles on their blog [3, 2] about unrevealing of such structure.

Dear Sir,

The payment was made today.

Kindly check the attached freight payment from charterers.

Regards,

Maesrk

Figure 1.2: A spam message which was used to deliver the infected document.

The investigation started with a Microsoft Word document 2014-05.doc, which con-
tained malicious Visual Basic script. The �le was distributed by spam in the form of an
invoice, purchase order, or receipt, written speci�cally for the recipient (see Fig. 1.2). After
executing the script contacted few di�erent domains on the Internet to download and deploy
an executable binary of malware. Those domains were

• dl.dropboxusercontent.com

• londonpaerl.co.uk

• selombiznet.in

The �rst domains is simply a download server of Dropbox, but the other two domains
were interesting. They were registered during the same day, by the same organization, and
using similar email addresses. Also there was a suspicious pattern in the postal address used
by the registrant. Both addresses contained phrase number 2 close off medical road.
Other previously unknown domains with suspiciously similar WHOIS information were found
by searching for this string in WHOIS records.

By thorough analysis, the operatives from Talos were able to reveal the structure of the
malicious campaign. It consisted of 23 di�erent domains which were used to deliver several
di�erent types of malware. As you can see in Figure 1.3, 5 di�erent email addresses and 2
di�erent organization names were used to registering the domains. This example shows how
valuable the WHOIS records might be for identifying of possibly malicious domains.

The WHOIS protocol, which provides the records, was de�ned in RFC 3912 [11]. In its
early years the protocol was simply used as a directory service. Nowadays the spectrum of
information which it provides is much broader including registrant, technical, billing, and
administrative contact information.
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1.1. MOTIVATION

Email addresses:

• selom70@gmail.com

• mobday70@gmail.com

• davieesselonet@info.ee

• wamglu795@126.com

Organization names:

• Adadans Ltd

• MediaServicePlus Ltd

Figure 1.3: The unique credentials used by the malicious actor to register the domains.

Domain name:

londonpaerl.co.uk

Registrant:

MediaServicePlus Ltd.

Registrant type:

Unknown

Registrant's address:

2 close medicle road

london

Bexley

DA5 1ND

United Kingdom

Registrar:

PDR Ltd.

Relevant dates:

Registered on: 21-Mar-2014

Expiry date: 21-Mar-2016

Last updated: 08-Apr-2015

Registration status:

Registered until expiry date.

Name servers:

ns1.suspended-domain.com

ns2.suspended-domain.com

Figure 1.4: Example of a result of a WHOIS query for a domain londonpaerl.co.uk

An example of query is shown in Figure 1.4. From the historical reasons the protocol
provides results to queries results in a human readable form, lacking any formating speci�-
cation [5]. This causes that even individual registrars does not guarantee to have consistent
formating for the records which they provide. This makes automation of processing of the
WHOIS records really hard. Custom parsers are needed to parse the records, but parsed
values are not always correct, which brings a lot of noise into the data.

For the methodology and maintenance of the gathering of registrant information is re-
sponsible Internet Corporation for Assigned Names and Numbers (ICANN). According to
this non-pro�t organization the registrars are responsible for validity of the WHOIS records
they provide. Despite this fact a lot of WHOIS records is now being anonymized. There
are services on the Internet which o�er registering domains on their behalf, so that the true
registrants remain private. Those services are widely used not only to cover malicious ac-
tivity, but also by individuals which do not want to expose their contact information in the
publicly available WHOIS records. It is because the email and even the postal address is
often used to deliver fake bills, contracts, and spam to the registrants [14].
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CHAPTER 1. INTRODUCTION

As you can see the information in WHOIS records is quite coarse-grained. However, as
was demonstrated by Craig Williams, the WHOIS records can be used to �nd previously
unknown malicious domains by exposing relationships between otherwise unrelated domains.
Our goal is to design a reputation system for domains which would utilize this property to
get a prior estimate about maliciousness of domains if little or no evidence about their
behaviour is available. The prior should be build upon information about relationships of
domains extracted from the WHOIS records and actually observed evidence.

1.1.1 Used notation

Before we start analysing the prior art we have to introduce an important notation. Let
us have two functions f(x), and g(x). The operator proportional to

f(x) ∝ g(x) (1.1)

is usually used in the sense that there exists a constant c such that

f(x) = c g(x) (1.2)

In the case when the f(x) and g(x) describe probability distributions we often omit the
coe�cient c and use the notation with ∝. The normalizing constant might have very complex
form and it is therefore more convenient to work without it. In the end the, the c can be
obtained by normalization of g(x) as

c =

∫
x∈X

g(x)dx (1.3)

and then f(x) = g(x)
c is a valid probability distribution.

In the following text we mostly work with logarithms of probability distributions. We
therefore reuse the operator ∝ as

log f(x) ∝ log g(x) (1.4)

in a sense that there exist a constant c′ such that

log f(x) = c′ + log g(x) (1.5)

where c′ = log c. The form is di�erent, but the meaning of the operator ∝, with respect to the
probability distributions, remains the same. This allows us to continually omit coe�cients
which are constants with respect to x, because we can normalize the g(x) in the end. You
should be able to easily distinguish between the two cases from the context of the text.
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Chapter 2

Prior art

Malicious actors use the Internet infrastructure to infect computers and to remotely con-
trol the infected computers. Because of the low accuracy of standard techniques involving
static analysis of malware [6], such as anti-virus solutions, detecting of domains possibly
involved in malicious activity is becoming increasingly more important. The prior art de-
scribed below address this problem and include analysis of passive DNS data and WHOIS
records to reveal indirect relationships between domains, as for example shared IP address,
and to extract features for training classi�ers. In this section we will review some of the
articles which are relevant to this thesis.

2.1 DNS analysis

Analysis of passive DNS data has been thoroughly studied recently. It contains �ne-
grained information about mapping between domain names and IP addresses of servers.
This data can be used to �nd relationships between otherwise unrelated domains and used
to expose previously unknown malicious domains based. Their usage might be similar to the
WHOIS records and we should therefore focus on studying results achieved in this area.

2.1.1 EXPOSURE

Bilge et al. have proposed a system called EXPOSURE, which is designed to classify
domains to malicious / benign [7]. The system uses a decision tree algorithm trained on
features extracted from historical DNS data. Those features include

1. Time-Based Features daily similarity of the queries, repeating patterns etc.

2. Answer-Based Features number of distinct IP addresses, number of domains sharing
single IP etc.

3. Time-To-Live-Based Featues average TTL, standard deviation of TTL etc.

4. Domain-Name-Based Features longest meaningful substring, numerical characters
etc.

5



CHAPTER 2. PRIOR ART

To get a ground truth they collect publicly available blacklists and whitelists and use
it to train the classi�er. The whole solution is prepared to be used in an on-line setup,
continually collecting passive DNS data and retraining the classi�er every day. When tested
in o�-line mode on heavily pre-�ltered data the authors claim that the system to has a 98%
true positive rate and around 1% of false positive rate.

This approach relies on the way how the DNS is abused by malicious actors to hide
their infrastructure. It might be therefore hard to evade such technique, because without
this e�ort the malicious networks would be much more liable to be taken down. The major
limitation is that at lest 20 observed resolved DNS queries are needed to extract the features
for a single domain.

2.1.2 Notos

Concurrently to Bilge, Antonakakis et al. proposed a system called Notos, which is also
supposed to �nd malicious domains based on analysis of DNS data. Although they collect
the data in a similar way as Bilge, their approach di�ers. The features they use are much
more complex, depending on DNS zones and IP addresses associated with di�erent domain.
The main three categories of features were

1. Network-Based Features statistics about relationships between domains and IPs

2. Zone-Based Features statistics about other domains sharing the same DNS zone
with d

3. Evidence-Based Features collected data from sand-boxed malware captures and
blacklists

The system has an o�-line learning mode and on-line classifying mode. The learning
mode is quiet complicated. It relies on clustering of the domains based on the features
mentioned above and deriving new nontrivial feature vectors from them.

Although they showed that using the clustering the system was able to identify machines
infected by the Zeus botnet, in the terms of performance they perform similarly to the Bilge's
approach.

2.1.3 Probabilistic Threat Propagation

Carter et al. proposed a general algorithm for estimating a probability that a given entity
is malicious given its relationships with other entities and demonstrated it on passive DNS
data [9]. To compute the probabilities a graph G = (V,E) needs to be constructed. Vertices
of the graph V are the entities, for example domains and IP addresses of servers, and there
is and edge (v1, v2) ∈ E if the two entities v1 and v2 are related. Also the algorithm requires
the relationships to be quanti�able, i.e. it requires to assign weights to the edges.

The resulting values are interpreted as probabilities, so they must be kept in the range
[0, 1]. To ensure that, it must hold for all i ∈ V , that

∑
j∈V wi,j = 1.

6



2.2. WHOIS ANALYSIS

A set of known malicious entities T , i.e. tips, is needed to initialize the algorithm. For
all tips t ∈ T the value p(t;G) is given in advance and �xed. The probability is then de�ned
as

p(xi;G) =
∑

j∈N(xi)

wijp(xj ;G− xi) , (2.1)

where the G − xi is a graph G without the vertex xi and its adjacent edges. You can
see that this equation has a recursive structure. The vertices are being removed from the
graph so they can not contribute to their own values, the authors call this phenomenon a
direct feedback Because of the number of combinations which needs to be evaluated grows
exponentially with the number of vertices, this equation can not be e�ciently computed on
a larger graph.

To solve this problem the calculation is approximated using iterative algorithm as

pk(xi) =
∑

j∈N(xi)

Ck(i, j)) =
∑

j∈N(xi)

wij(pk−1(xj)− Ck−1(j, i)) , (2.2)

where the Ck−1(j, i) is the portion of Pk−1(xj) which was directly obtained from xi.

The algorithm mainly focuses on learning from data with only positive class labels,
because the tips are supposed to be known malicious entities and the assigned probability
p(t;G) should require our con�dence in the maliciousness. The authors themselves interpret
the values as a threat.

The major disadvantage of this approach is that it has a lot of parameters which need
to be tuned. It suits well the problems, in which the weight can be naturally interpreted as
a similarity between the two connected entities.

2.2 WHOIS analysis

The WHOIS records has been mostly used as a source of additional features to train
classi�ers, as for example Support Vector Machines or Decision tree algorithm. Although
some of the articles showed more creative way to use them. Same as the DNS data, the
WHOIS records can be used to �nd connections between otherwise unrelated domains based
on common registrant information. In this section we will review the usage of WHOIS records
in the recent articles.

2.2.1 We know it before you do

Xu et al. have described the life-cycle of a malicious domain [19]. According to their
study it consists of three main phases:

1. Preparation name of the domain is selected, registered and the DNS record is set up

2. Activation the period of time in which the domain is actively used

3. Deactivation deactivation and parking for future reuse or reselling of the domain

7



CHAPTER 2. PRIOR ART

The length of each phase varies, but they showed that before activation a domain might be
kept unused for months. It means that there is still a time window in which we can identify
a domain which has not been used yet.

The authors also proposed a solution to how to predict future usage of malicious domains.
It consists of four di�erent heuristic approaches:

• Estimation of re-use of malicious domains Based on a scoring function, which
is not described in the text, the authors estimate the possibility of re-using of known
malicious domain, which has been already deactivated.

• Reverse engineering of DGA algorithms Using a sand-boxing technique the au-
thors to identify malware samples which uses DGA algorithm to generate set of possible
rendezvous domains. For the malware samples which do use it, the authors claim to
generate a list of domains which will be used in the future.

• Observed patterns in DNS queries Based on observed patterns in DNS queries, as
for example CNAME record pointed to some known malicious domain, authors identify
other possibly malicious domains.

• Connections between malicious domains The authors use WHOIS records to
identify domains which share registrant information with some known malicious do-
mains. They also use passive DNS data to identify domains which are hosted on a
same server as some known malicious domains.

All of the approaches are explained very vaguely, leaving out details important for their
understanding. Therefore it is not possible to reproduce, or verify their results.

2.2.2 Predictive domain blacklisting

Felegyhazi et al. analyzed the potential of proactive domain blacklisting [12] They ob-
served that malicious domains are often registered in bulk. Based on this observation they
�nd previously unknown malicious domains which were co-registered with some known ma-
licious domains on the same day, sharing the same nameserver.

They have also mentioned that malicious domains often migrate between name servers.
This is not usual for benign domains, their network pro�le is often settled. If a known
malicious domain switches its authoritative nameserver from a to b, they look for another
domains which changed from a to b at the same time.

Using this heuristic approach they collect suspicious domains, which are potentially ma-
licious. Then they group those domains based on their WHOIS records. Domains in groups
which contain some known malicious domain are assumed to be malicious as well.

This approach takes into account primarily the correlations of registrations of malicious
domains in time and the WHOIS records are used only to prevent false positives. The authors
claim to have achieved 93% precision, from which 73% are domains which were blocked later
after the discovery and 20% are domains �agged suspicious by the McAfee SiteAdvisor. The
remaining 7% of domains are not labeled as false positives, but as "unknown".

8



2.3. REPUTATION SYSTEM BASED ON OBSERVED EVIDENCE

2.2.3 Meta-data driven classi�cation

One of the possible ways to detect a connection to malicious website is by analysis of the
URL from the connection. Most of the previous research in this area focused on creating
novel features which would discriminate between malicious and benign domains. Some of
the articles also mention using WHOIS records as one of the sources of the features [18, 15].

Ma et al. showed in [15] that registration date of a domain and the time of the last
update of its WHOIS record are relevant features. They also used the WHOIS records to
extract information about registrar, and registrant and converted it into categorical features.
A lot of those featured turned out to be relevant, because some of registrars are know to
host malicious content more frequently then others.

Those approaches seems to be working well during experimental phase but are hardly
applicable in the real world. It is due to the limited sizes of datasets which are used for the
training and evaluation. It is not easily possible to train a classi�er which would be able to
capture all possible values of registrant names, organization names etc. and keep it up to
date. Current state of technology render those techniques to be unusable in practice.

2.3 Reputation system based on observed evidence

Reputation is a term previously used in social and economical studies. In the days of the
e-commerce, the reputation based systems were studied as a possible way of ranking buyers
and sellers on the Internet.

Jøsang et al. proposed a reputation system called Beta Reputation system [10]. The
reputation was represented as an estimated probability that a seller gets a positive feedback.
They modeled the posterior probability of the reputation using Beta distribution, which also
served as an uniform prior. The reputation is then simply de�ned as

ψ(n, p) = Ex[Beta (n+ 1, p+ 1)] =
n+ 1

n+ p+ 2
(2.3)

where the p is the number of positive feedbacks and n is the number of negative feedbacks.

Years later West at al. used this system to calculate reputation of domains on the
Internet [18]. The calculated value was then used as one of features to train a classi�er
of URLs to malicious / legitimate class. The authors showed that the reputation had the
highest information gain of all the features which were used.

Subsequently it can be useful to track reputation of domains to get an overview about
their maliciousness. Problem of such system is that it can not give an opinion about a domain
which was not observed before. We will target this problem by introducing a system which
do not only take into account the observed evidence to give the opinion about a domain.
We can therefore a priori estimate a maliciousness of a domains without the need to actual
observe them.

9
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Chapter 3

Proposed Solution

The goal of this thesis is to create a system which would be able to estimate a probability
that a domain d is malicious, i.e. maliciousness of the domainmd, based on observed evidence
and data stored in WHOIS records. As it was shown in the introduction, malicious actors
often reuse email addresses and other resources to register multiple domains. If extracted
from the WHOIS records, such keys might connect otherwise unrelated domains, which were
possibly registered by the same registrant. Those keys must be well discriminative, in our
case we use following four types of keys

• kn registrant's name

• ko organization
• ke contact email address

• kp postal address

For each domain d we therefore have quartet Kd = (knd
, kod , ked , kpd). The other �elds,

as for example authoritative nameserver of a domain, can provide some information about
maliciousness of the domains as well, but they can not be used to distinguish di�erent
registrants.

The relationships between the domains and the keys can be described using bipartite
graph, shown in Figure (3.1). The graph consists of observed domains O, unobserved domain
U , and keys K. The di�erence between the O and U is that we have both evidence and keys
for the domains in O, but only keys for the domains in U . Our goal is to create a reputation
system, which would be able to give an opinion about a domains from both O and U .

Information in WHOIS records is very coarse-grained because the records are available
only for the registered domains, such as example.com, but not for it's sub-domains. It
therefore can not be directly used to classify domains into malicious / benign class. But it
can be used to get a prior estimate about maliciousness of a domains d given it's keys Kd,
which is our goal.

To be able to create the desired system we �rst need to build a ground-truth. The data
we have available come from a major Intrusion Prevention System (IPS). It consists of a
few terabytes of proxy-logs captured during the �rst week of several subsequent months.
The logs consists of information about time, target IP, client IP, URL, HTTP header and

11
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Figure 3.1: Bipartite graph of keys and domains. The domains are on the left side, and the
keys are on the right. The domains consists of two sets, the set of observed domains, and
the set of unobserved domains. For the observed domains we have both keys and evidence,
but for the unobserved keys we have only their keys. The red nodes are domains for which
we observed mostly malicious behaviour, the green are domains for which we have observed
legitimate behaviour.

several other �elds including a �ag signifying whether the connection was blocked or not. In
each log, we are interested in the domain name d from the URL and the �ag b whether the
connection was blocked. The data can be therefore represented as tuples (b, d) ∈ T .

The IPS blocks access to malicious domains based on the latest intelligence feeds and
near real-time analysis of the tra�c. We use this labeling as a ground truth because the
system aggregates both publicly available and commercial blacklists plus information from
it's own analytic systems.

It is also important that the data capture the state of belief about the maliciousness of
domains at the time of the connections. This property is important and we will use it during
the evaluation of the proposed algorithm. It allows us to train the system on observed data
from one month and then evaluate the performance on actually observed evidence from the
following month. Comparing our approach to the usual way of splitting data to training
and testing sets, this approach captures the true predictiveness of the evaluated algorithm,
making the results more trustworthy.

3.1 Proposed model

Let us assume that the probability that an observed connection is blocked, given the
target domain d, follows the Bernoulli distribution which is de�ned as

p(b|d,M) = md
b (1−md)

1−b , (3.1)

where M = {md}d∈D is the set of probabilities of maliciousness for all domains d ∈ D. The
data is assumed to be i.i.d. and so the md can be interpreted as the relative portion of

12
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blocked connections targeting the domain d. To learn the md we �rst need to specify the
likelihood of observing of the set of connections T which is

p(T |M) =
∏

(b,d)∈T

p(b|d,M) =
∏

(b,d)∈T

md
b (1−md)

1−b . (3.2)

We can easily �nd a Maximum Likelihood (ML) estimate of the md for each d ∈ O as

mdML = arg maxmd
log p(T |M) =

Nblocked(d)

Nallow(d) +Nblock(d)
, (3.3)

where the Nallow(d), Nblock(d) is the number of blocked, allowed �ows targeting the domain
d respectively. This estimate is not really useful, because it tends to heavily over-�t the
data and does not generalize to previously unknown domains, which is our goal. Take for
example the case when we observe a single blocked connection to the domain d. We know
almost nothing about the domain, but the maliciousness md is already estimated to one.
This problem has to be dealt with, because as you can see in Figure 3.2, even with the
amount of data we have available, we often observe only a very few samples per domain.

100 101 102 103 104 105 106 107 108 109
0

2

4

·105

# connections

#
do
m
ai
ns

Histogram of number of observed connections per domain

Figure 3.2: Histogram of number of observed connections. The data was collected during
the �st week of September 2014. You can see that we have observed only single connection
to over a half of million unique domains. The most frequently accessed domains had over
a 100M of unique connections during the week. On average a domain is accessed 575 times
per day.

To avoid this problem we take the Bayesian approach to statistics, which is to treat all
sources of uncertainty as random variables [13]. We therefore assume that all the md are
also random variables, which allows us to introduce a prior distribution to them. We choose
a Beta distribution, because it is a conjugate prior to the Binomial distribution. It is de�ned
as

Betax(a, b) =
xa−1(1− x)b−1

β(a, b)
, (3.4)

where a, b ∈ R+ and the

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
(3.5)

is a normalization coe�cient and the Γ(x) is the factorial x! generalized to real numbers.
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In general a prior is conjugate to a likelihood if the posterior distribution has the same
form as the prior distribution. Conjugacy is an important property as it ensures that the
posterior has a known form. This is crucial for further analytical operations and analysis,
because the properties and moments of such distribution are known. Also as the form of the
prior and the posterior is the same, the posterior can be continually updated by the Bayes
rule, as more evidence is observed.
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Figure 3.3: Graphical representation of extrapolation of the partially observed tensor. The
observed combinations of keys Kd are represented by red color. The brightness of the color
is proportional to the value of the tensor. The black areas are the combinations of Kd which
have not been observed before. The tensor is extrapolated as a product of two marginals,
which best �t the actually observed values.

As we have said before, we would like to have a prior estimate of maliciousness md of a
domain d based on it's WHOIS record. To do so we let the parameters of the prior a and b
to be functions of the set of keys Kd. Because the keys can be divided into groups according
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to their type and enumerated we can also think of a and b as of tensors, where the Kd are
the coordinates of the appropriate values.

In Figure 3.3 you can see a graphical representation of the tensor a for some of the
observed combinations of Kd. To be able to plot it we have selected only two axis out of the
four, particularly the ke and ka. The black colored areas are the combination of Kd which
were not observed in the available data.

Our goal is to extrapolate the information from the observed combinations of keys to all
of the possible combinations. The approximation must be simple because we want the �nal
inference algorithm to produce closed form, tractable results. One possible way to do it is
by decomposition of the aKd

, bKd
as

aKd
=
∏
k∈Kd

ak (3.6)

bKd
=
∏
k∈Kd

bk , (3.7)

where the values aKd
,bKd

are approximated as products of marginal values ak, bk for all
k ∈ Kd. The intuition behind the ak and bk is the same as behind the composed values, they
provide us some prior estimate about maliciousness of the key k.

Let us analyse the original tensor in Figure 3.3. The address ka = 31 is used together
with all the emails ke ∈ [31, 55] to register some domains. It might belong to a P.O. box
of an organization o�ering an anonymization service. Those services usually assign unique
email for each domains so the registrant is able to receive communication, but all the other
keys are shared by all of the other registered domains. As you can see in the extrapolated
tensor, those values are approximated well, with almost no details blurred.

On the other hand the group of pairs of keys around the ke = ka = 15 is more tangled
up between each other and therefore the marginalization might blur out some details. Those
cases are fortunately rare. Also we might ask how likely is it that those domains were not
registered by the same registrant. Hence the blur is not necessarily a bad thing, because
it propagates information across the keys. Moreover it only in�uences the prior estimates,
which should fade away as the actual evidence is obtained.

Since we have already de�ned the prior distribution to md we can proceed in compos-
ing the model. The posterior distribution is proportional to the product of the prior and
likelihood as

p(M |A,B, T ) ∝ p(T |M) p(M |A,B) , (3.8)

where the A, B are the sets of ak, bk for all k ∈ K respectively and the p(M |A,B) is a
product of prior distributions of md for all d ∈ D de�ned as

p(M |A,B) =
∏
d∈D

p(md|A,B) (3.9)

=
∏
d∈D

md
aKd
−1 (1−md)

bKd
−1 . (3.10)
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By substituting (3.10) to (3.8) we get

p(M |A,B, T ) ∝ p(T |M) p(M |A,B) (3.11)

=
∏

(b,d)∈T

md
b (1−md)

1−b ∏
d∈D

md
aKd
−1 (1−md)

bKd
−1 (3.12)

=
∏
d∈D

md
Nblock(d)+aKd

−1 (1−md)
Nallow(d)+bKd

−1 (3.13)

∼ Beta (Nblock(d) + aKd
, Nallow(d) + bKd

) . (3.14)

Unfortunately, because of the normalizing coe�cient of the Beta distribution (3.5), the ML
estimate of the parameters ak, bk is not tractable. Instead, following again the Bayesian
approach, we choose to model the parameters as random variables and introduce prior dis-
tributions to them.

In the (3.14) you can see that the values directly compete with the observed evidence in
a sense, that the greater the value of the aKd

, bKd
is the more observed evidence we need to

make the prior insigni�cant. Therefore the priors, which we are about to introduce, should
restrict the ak, bk to have some "reasonable" value. For example, we might want take into
account the evidence only if the number of observed connections targeting a domain is larger
than 10. On the other hand the priors should not interfere with the inference process. By
setting too strong priors the inference might be forced to learn values close to the speci�ed
mean, ignoring the observed evidence. The strength of a prior is determined by its variance,
which should be therefore large. The exact choice of the parameters will be further discussed
in Section 4.5.

Unfortunately the Beta distribution does not have any standard conjugate prior. Ma
et al. proposed an Extended Factorisation Approximation based on a Variational Bayes
method, to solve this problem while estimating parameters of Beta Mixture Models [16] .
By following their approach we can we assume that for all k ∈ K the ak, bk are independent,
mathematically speaking

p(A,B) ≈ p(A) p(B) =
∏
k∈K

p(ak) p(bk) . (3.15)

Then any well known distribution de�ned on interval [0,∞) can be used as the prior. For the
Variational Bayes method to be feasible we have to ensure that the posterior distribution is
conjugate to the factorized prior. If it was not then we would have to deal with possibly un-
known forms of distributions, which would make analytical operations with the distribution
di�cult. Ma showed that if we choose a Gamma distribution as the prior

p(ak) ∼ Gamma (ua, va) =
∏
k∈K

va
ua

Γ(ua)
aua−1k e−va ak (3.16)

p(bk) ∼ Gamma (ub, vb) =
∏
k∈K

vb
ub

Γ(ub)
bub−1k e−vb bk , (3.17)

then under certain approximations, as it will be described later in Section 3.2.2, the approx-
imated posterior distributions q(ak), q(bk) are also Gamma.
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We do not need to a priori distinguish between the di�erent keys, thus the parameters
of the Gamma prior are set to be the same for all k ∈ K. The values of the parameter
Θ = (ua, va, ub, vb) are therefore the only four parameters of the model which need to be
tuned.

bdmd

ak

bk

ua

va

ub

vb

Figure 3.4: Dependency of the proposed variables described using a graph. Each two
adjacent variables are dependent. Variable on the right side always depends on the variable
on the left side of the edge, which is also represented by the fading colour.

In Figure 3.4 you can see the dependencies between the proposed variables. The depen-
dency is represented by the fading color and it goes from right to left. We observe the tuples
(b, d) ∈ T , or bd. A block bd given the domain d depends on the maliciousness of the domain
md. The md depend on the values ak, bk of the keys of the domain Kd. And �nally the ak
depend on the parameters of the Gamma prior ua,va and similarly for the bk.

3.2 Inference using Variational Bayes

The complete model is then de�ned as

p(M,A,B|T ) ∝ p(M,A,B, T ) (3.18)

= p(T |M) p(M |A,B) p(A) p(B) , (3.19)

which is also not tractable, because the integral

c(T ) =

∫
M∈M

∫
A inA

∫
B∈B

p(M,A,B, T ) dB dAdM , (3.20)

does not have an analytical solution.
In theory the posterior distribution could be evaluated numerically, as for example by

Gibbs sampling. Unfortunately those methods are computationally demanding making them
impractical for large datasets as we have. We therefore focus on approximating it using the
VB method by �nding marginals q(md), q(ak), q(bk) such as

p(M,A,B|T ) ≈ q(M,A,B) =
∏
d∈D

q(md)
∏
k∈K

q(ak) q(bk) . (3.21)
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As described in Appendix A, the VB is an iterative method, which minimizes the Kull-
back�Leibler (KL) divergence between original distribution p(M,A,B|T ) and the factorized
distribution q(M,A,B) by setting the approximate marginals to

log q(bk) ∝ EM,A,B\bk [log p(M,A,B|T )] (3.22)

for all k ∈ K, and similarly for the q(md) and q(ak).
Now we want to derive the marginal distributions. The very �rst step is to write down

the logarithm from the right hand side of the (3.22), which is

log p(M,A,B|T ) ∝
∑

(b,d)∈T

b log(md) + (1− b) log(1−md) (3.23)

+
∑
d∈D

(aKd
− 1) log(md) + (bKd

− 1) log(1−md)− log β(aKd
, bKd

)

(3.24)

+
∑
k∈K

(ua − 1) log(ak)− va ak + (ub − 1) log(bk)− vb bk . (3.25)

The whole probability distribution is composed of pairs of distributions from the expo-
nential family. It holds that a logarithm of a distribution from exponential family is a sum of
products of functions, each of which is a function of only a single variable. This is crucial for
the VB method because we can simply replace occurrences of the functions in the products
by their expected values, as long as the variables are independent. Without loss of generality
we can demonstrate it on the case of two independent variables X,Y and functions g(x),h(y)
as

Ex,y[g(x)h(y)] = Ex[g(x)]Ey[h(y)] = g(x)
∧

h(y)
∧

. (3.26)

3.2.1 Marginals of the md

To get the marginal of md we have to apply the expectation operator from (3.22) to
integrate out all the variables except of md, which leads to

log q(md) ∝
∑

(b,d)∈T

b log(md) + (1− b) log(1−md) (3.27)

+
∑
d∈D

(aKd

∧
− 1) log(md) + (bKd

∧

− 1) log(1−md)− log β(aKd
, bKd

)
∧

(3.28)

+
∑
k∈K

(ua − 1) log(ak)
∧

− va ak
∧

+ (ub − 1) log(bk)
∧

− vb bk
∧

. (3.29)

As it was described in Section 1.1.1 the summands which are constants are simply part of the
normalizing coe�cient of the distribution. Therefore the terms which now became constants
w.r.t. the md can be omitted.

After reordering the rest of the terms we get

log q(md) ∝ log(md)

aKd

∧
+

∑
b:(b,d)∈T

b

+ log(1−md)

bKd

∧

+
∑

b:(b,d)∈T

(1− b)

 , (3.30)
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where the aKd

∧
, bKd

∧

are products of the expected values of ak, bk as

aKd

∧
=
∏
k∈Kd

ak
∧

, bKd

∧

=
∏
k∈Kd

bk
∧

. (3.31)

This equation might seem familiar to you, because it is a logarithm of a Beta distribution.
So the marginal q(md) can be identi�ed to be

q(md) ∼ Beta (ad, bd) , (3.32)

where the hyper parameters as, bs are

ad = aKd

∧
+

∑
b:(b,d)∈T

b , bd = bKd

∧

+
∑

b:(b,d)∈T

1− b . (3.33)

Interestingly, you can see that the form of the approximated marginal is the same as the
exact posterior in the model with no Gamma prior applied (3.14). Even though we assumed
the md to be independent of ak, and bk the marginals approximated by VB take into account
both prior and observed evidence as we would expected.

3.2.2 Marginals of the ak

Derivation of this marginal is more complicated. By applying of the expectation operator
from (3.22) we get

log q(ak) ∝
∑

(b,d)∈T

b log(md)
∧

+ (1− b) log(1−md)
∧

(3.34)

+
∑
d∈D

(ak aKd\k
∧

− 1) log(md)
∧

+ (bKd

∧

− 1) log(1−md)
∧

− EB,A\ak
[
log β(ak aKd\k, bKd

)
]

(3.35)

+
∑
k∈K

(ua − 1) log(ak)− va ak + (ub − 1) log(bk
∧

)− vb bk
∧

, (3.36)

where the aKd\k
∧

, bKd\k
∧

are products of the expected values of ak, bk as

aKd\k
∧

=
∏

k′∈Kd\k

ak′
∧

, bKd\k
∧

=
∏

k′∈Kd\k

bk′
∧

. (3.37)

After omitting constants and reordering of what is left we obtain

log q(ak) ∝
∑

s:k∈Kd

ak aKd\k
∧

log(md)
∧

− EB,A\ak
[
log β(ak aKd\k, bKd

)
]

(3.38)

+ (ua − 1) log(ak)− va ak . (3.39)

You can see that we could not replace the coe�cient log β(ak aKd\k, bKd
) by it's expected

value, because the ak could not be separated from the rest of the aKd
and bKd

.
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Ma showed that if we �nd an unnormalized lower-bound to the log p(M,A,B|T ) such
that

log p(M,A,B|T ) ≥ log pLB(M,A,B|T ) , (3.40)

then the lower-bound L(q) from (A.3) is also lower-bounded as

L(q) =

∫
q(ak) log

p(M,A,B|T )

q(ak)
dak (3.41)

≥
∫
q(ak) log

pLB(M,A,B|T )

q(ak)
dak , (3.42)

and therefore by substituting the pLB(M,A,B|T ) into (3.22)

log q(ak) ∝ EM,B,A\ak [log pLB(M,A,B|T )] , (3.43)

we can maximize the lower-bound of the L(q). Ma stated that although we can not maximize
the L(q) directly, by maximizing its lower-bound we can reach an optimum of the L(q)
asymptotically.

The only term in (3.38) which is not tractable is −EB,A\ak
[
log β(ak aKd\k, bKd

)
]
, so we

need to �nd the lower-bound for it. Also we want the approximate posterior to have a form
of a Gamma distribution, so it is conjugate to the prior. If the posterior has a standard
form, the expected values of ak have a known, closed form solutions making the iterations
of VB easy to proceed.

The expression (3.39) is the logarithm of the Gamma prior to ak. You can see that the
only way for the lower-bounded term to became a part of a hyper-parameter of the posterior
distribution is to have a form of ζ log ak, where the ζ is a scalar constant w.r.t. the ak. It is
because the ζ would then get summed up with the ua to create the posterior hyper-parameter
uak . As we will show in the Section 3.2.4 the term can be lower-bounded as

− EB,A\ak
[
log β(ak aKd\k, bKd

)
]
≥ ζd,ak log(ak) , (3.44)

where ζd,k is a constant which depends on the key k of and a domain d.
By substituting (3.44) into (3.39) we can identify the �nal form of the posterior as

q(ak) ∼ Gamma (uak , vak) , (3.45)

where the hyper-parameters uak and vak are

uak = ua +
∑

s:k∈Kd

ζd,k (3.46)

vak = va −
∑

s:k∈Kd

aKd\k
∧

logmd

∧

. (3.47)

3.2.3 Marginals of the bk

The derivation of the marginal q(bk) is almost identical to the q(ak) so we will only
present you the result, which is

q(bk) ∼ Gamma (ubk , vbk) , (3.48)
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where the hyper-parameters ubk and vbk are

ubk = ub +
∑

s:k∈Kd

ζd,k (3.49)

vbk = vb −
∑

s:k∈Kd

bKd\k
∧

log(1−md)
∧

. (3.50)

3.2.4 Approximation of the normalizing coe�cient

We need to �nd a lower-bound for the function Q(ak) = −EB,A\ak [β(ak aKd\k, bKd
)]. Ma

has already provided a lower-bound for Q′(a) = −Eb[β(a, b)], which is insu�ciently general
for us to use directly, because the a, b are only scalar variables. In our case the parameters
are not scalars, but products of multiple variables. By following the derivation steps from
the original paper we will �nd the lower-bound generalized for Q(ak).

The following two properties are necessary to derive the lower-bound.

Property 1. The normalization coe�cient of Beta distribution can be approximated in point

x0 using pseudo-Taylor approximation as

− log β(x, y) ≥ − log β(x0, y) + [ψ(x0 + y)− ψ(x0)]x0 (log x− log x0) , (3.51)

where the ψ is Digamma function, which is de�ned as �rst derivative of a logarithm of

Gamma function. This inequality holds for y > 1, and x, x0 ∈ R.

Property 2. Digamma function can be approximated in point x0 using pseudo-Taylor ap-

proximation as

ψ(x+ y) ≥ ψ(x0 + y) + ψ(x0 + y)′ x0 (log x− log x0) , (3.52)

where the ψ′ is Trigamma function, which is de�ned as second derivative of a logarithm of

Gamma function. This inequality holds for y > 1, and x, x0 ∈ R.

The derivation proceeds as follows

EB,A\ak [− log β(aKd
, bKd

)] (3.53)

≥ EB,A\ak [− log β(a0, bKd
) + (ψ(a0 + bKd

)− ψ(a0))a0(log aKd
− log a0)] (3.54)

∝ EB,A\ak
[
(ψ(a0 + bKd

)− ψ(a0))(log ak + log aKd\k − log a0)
]
a0 (3.55)

∝ log ak (EB [ψ(a0 + bKd
)]− ψ(a0)) a0 . (3.56)

In the (3.54) we apply the Property 1 to approximate the Beta function in point a0. You
can see that several terms then became constants w.r.t. the ak so we omit them in (3.55).
Also the term log aKd

can be rewritten as log ak + log aKd\k, so we separate the ak from the
rest of the variables. Finally in the (3.56) we drop all the remaining constants and move the
expectation operator inside the brackets.

To expand the term EB [ψ(a0 + bKd
)] we use the Property 2.

EB [ψ(a0 + bKd
)] ≥ EB

[
ψ(a0 + b0) + ψ′(a0 + b0) b0 (log bKd

− log b0)
]

(3.57)

= ψ(a0 + b0) + ψ′(a0 + b0) b0 (EB[log bKd
]− log b0) , (3.58)

21



CHAPTER 3. PROPOSED SOLUTION

where the approximation is done in point b0 and the expectation operator is moved deeper
inside the brackets.

By substituting (3.58) into (3.56) we obtain the desired solution as

EB,A\ak [− log β(aKd
, bKd

)] (3.59)

≥ log ak {EB [ψ(a0 + bKd
)]− ψ(a0)} a0 (3.60)

≥ log ak
{
ψ(a0 + b0)− ψ(a0) + b0 ψ

′(a0 + b0) (EB[log bKd
]− log b0)

}
a0 (3.61)

= log ak ζd,ak . (3.62)

Points a0 and b0, in which we do the Taylor expansion, must be selected properly. The
derived approximation is valid for a0, b0 > 1. We therefore set the values to be the expected
values of aKd

, bKd
from the previous iteration if the values are greater than one, and one

otherwise.

3.3 Algorithm in steps

Because of the closed forms of the marginals, the algorithm itself is very simple. As you
can see in Algorithm 1, all you need to do is to iteratively recompute the marginals based
on the de�nitions from the previous sections.

Algorithm 1 Variational Bayes inference of parameters of the model

1. choose the parameters Θ = (ua, va, ub, vb)

2. ∀k ∈ K choose initial estimates of q(ak) and q(bk)

3. For it = 1 to max_iterations

(a) ∀d ∈ D recompute q(md)

∀d ∈ D evaluate logmd

∧

, log(1−md)
∧

(b) ∀ak ∈ A recompute q(ak)

∀ak ∈ A, d ∈ D evaluate ak
∧
, log aKd

∧

(c) ∀bk ∈ B recompute q(bk)

∀bk ∈ B, d ∈ D evaluate bk
∧

, log bKd

∧

(d) If convergence_criteria < threshold Then break

In the further sections we will discuss the initialization strategy and the choice of the
convergence criteria.

3.3.1 Initialization strategy

During the initialization of the inference process an initial estimates of q(ak) and q(bk)
are needed for all k ∈ K. We will discuss several strategies which might be used.
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A seemingly obvious choice is to use a random initialization. This is usual in some other
variational algorithms, as for example Expectation Maximization (EM) or k-means. Such
strategy might feed misleading input to the algorithm, because the values of ak and bk are
not independent of each other. In the terms of k-means, this is similar to randomly assigning
points to the centroids, instead of random initialization of centroids, which is quiet di�erent.

Another possibility is to use the data to create an informative prior. Let us de�ne the
malicious ratio of a key rk as the relative number of blocked connections targeting domains
featuring the key k. We might think of the expected values ak

∧
, bk
∧

to be parameters of an
imaginary Beta distribution over mk, which is a maliciousness of the key k. Then from the
de�nition of the expected value of the Beta distribution we can �nd the expected values of
q(ak), q(bk) for which hold that

mk
∧

=
ak
∧

ak
∧

+ bk
∧ = rd . (3.63)

Although informative, this initialization can not provide any additional information to the
algorithm, because it is based on the same data which is used during the learning phase.

Finally we can simply use the parameter Θ to initialize the Gamma priors as

q(ak) ∼ Gamma (ua, va) (3.64)

q(bk) ∼ Gamma (ub, vb) (3.65)

for all k ∈ K. This way we let the algorithm to learn purely from the data, not forcing it
any additional belief about the values of ak, bk other than Θ.

We tried the initialization strategies mentioned above but none of them seemed to have
any measurable deterministic impact on the quality of the inferred values. We therefore use
the simplest non-informative strategy.

3.3.2 Convergence criteria

As shown in Appendix A the VB method is guaranteed to converge. Therefore any simple
stopping condition should be su�cient for the algorithm to determine whether it has already
converged or not.

Unfortunately in our case we have encountered some problems with the convergence.
In some rare cases it happened that the mean values of ak converged, but the variance
kept decreasing. This problems might be caused by the Taylor approximation, which is
used in (3.39). Because we are primarily interested in the expected values of the marginal
distributions we can avoid this problem simply by checking whether the maximum change
of the expected values between iterations is lower than some threshold.

3.4 Implementation

During the implementation we had to face several challenges, such as memory e�ciency
and data representation. In this section we will brie�y sketch up some of the important
solutions, which we have introduced.
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3.4.1 Processing WHOIS records

The amount of the available WHOIS records is massive and it therefore needs to be
stored in the Hadoop Distributed File System (HDFS) and accessed using Map-Reduce.
The processing is done by a cascade of Map-Reduce jobs. The �rst job �nds the sets of keys
Kd for all observed domains d ∈ O. This is followed by second job, which for all the keys
Kd of domains d ∈ O �nds other domains u ∈ U such that Ku ∩Kd 6= ∅.

Unfortunately it often happens that a key connects millions of otherwise unrelated do-
mains. Examples of such keys might be organization names and addresses of P.O. Boxes of
anonymization services. The point of the keys is to connect together domains which might
be registered by the same registrant to get some prior estimate about their maliciousness.
Such keys clearly do not satisfy this property and we can therefore prune them. Without the
pruning the amount of domains in U would be so high that we would not be able to process
it further.

The output of the second job has a format

k → (Ok, Uk) , (3.66)

where the Ok, and Uk are the observed, and other domains which feature the key k respec-
tively.

3.4.2 Compact graph structure

Any graph algorithm which runs in at least Ω(|E|) might not be feasible on the complete
bipartite graph of domains D and keys K. To reduce the number of edges and vertices we
have created a compact representation of the graph. It groups together all domains sharing
the same combination of keys κ.

The �rst step is to invert the relation (3.66) as

d→ (o,Kd) , (3.67)

which is a mapping from domains to a tuple, where the o is the �ag specifying, whether the
domain belongs to O or U , and the keys of the domain Kd. This representation resembles the
original WHOIS records but it is not compact at all. The trick is in inverting this relation
once again such that we get

κ→ (Oκ, Uκ) , (3.68)

which is a mapping from all unique combinations of keys κ to the observed, other domains
which were registered using them.

The idea behind this representation is that in the case of the unobserved domains Uκ all
the u ∈ Uκ are indistinguishable. It is because all we know about them are the keys which
they share. The domains therefore should share the same inferred label. Hence we can save
time by focusing on inferring a single label for each κ instead of for all domains d.
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3.4.3 Parallelization

Algorithms de�ned on the graph composed of domains and keys can be easily parallelized.
Using the compact graph representations described in the previous section, we can �nd
all connected components of the graph. The connected components are independent of
each other, because any two domains from di�erent components can not share any key and
therefore can not be related. Thus the inference algorithms can run separately on each of
the components.

3.4.4 Problems with the approximation

Because of the Taylor approximation, it sometimes happens that the hyper-parameter

uak = ua +
∑

s:k∈Kd

ζd,ak (3.69)

of the Gamma prior from (3.45) is negative. We deal with this problem simply by setting
the value uak zero if the result was lower than zero and keeping it otherwise.

3.4.5 Handling missing keys

It is not unusual that a key is missing. Actually as you can see in Table 3.1 approximately
half of the domains have at least one key missing. This is due to the fact that we process a
large amount of data and therefore we have to prune frequent keys.

Number of keys 1 2 3 4
Number of domains 77932 44838 135836 221705

Table 3.1: Number of keys per domain

A solution might be to create a single key k′t for each type t and substituting it as
a replacement for all the missing keys of the type. This would have undesirable e�ects,
because it would connect a lot of the unrelated keys. Also the values of ak′t , bk′t would
contribute to the composed values aKd

, bKd
and the values would get blurred.

To avoid this problem we might introduce a substituting keys k′t,d unique to all the do-
mains. This would solve the blurring problem, because the substituted keys would contribute
only to values of its own domain d. On the other hand it would cause massive increase in
the overall number of keys, which would slow down the already computationally intensive
operations with the data. Also the compact graph representation from the Section 3.4.2
would not be compact anymore, because the unique sets of keys κ would be unique to each
of the domains.

This leads us to a compromise, which we use in our experiments. Each node of the
compact graph consists of a unique combination of keys κ and the domains which share it
Dκ. Then if there are some missing keys in the κ, the supplied keys k′td should be shared by
all domains in Dκ, but no other. This way only the most related domains would be connected
by the newly introduced keys. You can see an example of this approach in Figure 3.5.
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d1

d2
d3

d4

ka

kb

kc

kd

k′a

k′d

Figure 3.5: Supplying missing keys. You can see that the substitutional keys k′ are supplied
to groups of domains which share the same set of keys κ.
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Chapter 4

Evaluation

4.1 Empirical analysis of convergence

The basic properties of the algorithm can be shown on a simple example with a single
domain d and a key k. We initialize it with 50 observed connections from which 80% was
blocked. The complete list of parameters can be found in Table 4.1.

Parameter ua0 va0 ub0 vb0 Nblocked Nallowed

Value 1 0.2 2 0.2 40 10

Table 4.1: Initial parameters of the algorithm

The ak and bk were initialized directly from the de�nition of mean value of Gamma
distribution as

ak0 =
ua0
va0

= 5 , bk0 =
ub0
vb0

= 10 , (4.1)

and the md from the de�nition of mean value of the Beta distribution as

md0 =
ak0

ak0 + bk0
=

1

3
. (4.2)

Then the iterations proceeds as described in Algorithm 1 and the convergence is shown
in Figure 4.1. You can see that in this simple setup the algorithm converges rather quickly.
The md-prior curve is the inferred prior probability that the domain d is malicious, which
does not take into account the observed evidence. The md-posterior is the inferred posterior
probability. Both of the probabilities converged to values very close the malicious ratio rd,
which is de�ned as the relative number of blocked connections targeting domain d

rd =
Nblocked

Nallowed +Nblocked
. (4.3)

It is also interesting to see to see how the inferred values of md depend on the overall
number of observed connections Nd if we keep the malicious ratio rd �xed at 0.8. As you
can see in Figure 4.2, with the Nd growing to in�nity, the expected value of md converge to
value close to the malicious ratio rd. Also the variance of md converges to non zero values.
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Figure 4.1: Example of convergence of the proposed algorithm. The experimental data
consisted of a single key and a single domain. The number of observed connections targeting
the domain was 50 from which 40 was labeled as blocked.

This is important, because it signi�es that the model does not tend to over-�t the available
data. The �gure also shows how the variance of the Gamma prior a�ect the inferred values.
You can see that the lower the variance is the stronger the prior is, i.e. the more are the
inferred values restricted to the expected values of the prior.

4.2 Datasets

As a part of it's portfolio of security products, Cisco systems o�ers a Cloud Web Security
(CWS) service to enterprise customers. This service provides the customers get near-real-
time web protection against potential infections and attacks. If a user inside a covered
network tries to access a server which might potentially contain malicious content, the service
blocks the request.

As a part of a research team developing anomaly detection system we have access to
captures of logs from the CWS. The logs consists of information about time, target IP,
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Figure 4.2: An example of convergence of the beta prior. On the left you can see how the
actually inferred values of ak, bk depend on the variance of the Gamma prior. On the right
you can see how the inferred value of md converges to the malicious ratio rd with the growing
number of observed �ows.

client IP, URL, HTTP header and several other �elds including a �ag signifying whether the
connection was blocked or not. The available data sets consists of captures from the �rst week
of several subsequent months. The quality of the labeling is better than we could achieve
by manually collecting publicly available data, because the system utilizes latest commercial
and public intelligence feeds. In Table 4.2 you can see the statistics of the available data.

Dataset # connections # domains # domains with blocks

2014-September 7.68G 1.90M 21.9k
2014-October 6.85G 1.78M 12.0k
2014-November 6.71G 1.75M 14.5k
2015-January 7.98G 1.95M 15.9k
2015-February 8.06G 1.97M 16.7k

Table 4.2: Statistics of the available datasets. Intersections of domains between two sub-
sequent months have all approximately 1M domains. Also you can see that approximately
1% of observed domains was connected with some malicious activity.

The form of the data allows us to naturally create training and testing sets. As you
can see in Figure 4.3 we can take the observed domains OPRED from the �rst month. Than
we can use the WHOIS records to �nd all domains UPRED, which share some key with
some of the domains in OPRED. If we than infer the probability of maliciousness md for
all d ∈ UPRED we can test the results using the actually observed data from the following
month OSUCC. This way the evaluated performance re�ects the actual state of belief about
domains a month after the training data were captured. In comparison to the usual way of
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splitting the available data to training and testing sets, this approach can re�ect the true
predictiveness of the system.

Please note that to create the training and testing sets we use only the pairs of datasets
which come from subsequent months. Also September dataset we mean that the September
dataset was used to train the algorithm, but October dataset was used to test the predictions,
etc.

OPRED UPRED

OSUCC

DTEST

Figure 4.3: Training and testing data explained using Venn Diagram. As it was de�ned in
the beginning of Chapter 3, the OPRED, OSUCC are the domains which we observed in two
subsequent time windows, in our case months. The UPRED are the domains which we did
not directly observe in the �rst month, but which share some key with some of the domain
from OPRED. We can use the intersection DTEST = UPRED ∩OSUCC to test our predictions
from the �rst month on actually observed evidence in the second month.

The WHOIS records which we have available cover the following top level domains (TLD):

- com, info, net, org, biz, us, asia, mobi, pro, coop

The number of covered TLDs might seem to be insu�cient, but if you look at Table 4.3 you
will see the relative occurrences of TLDs in the Sophos blacklist. The Sophos is a anti-virus
company which daily produces a list of newly emerged threats on the Internet. If you count
the relative occurrences, the available WHOIS data cover up to 70% of all known malicious
domains, which is more than su�cient for our experiments.

TLD com org ru net info cc biz de
Frequency 40.11% 7.68% 7.54% 7.31% 6.69% 6.66% 4.72% 1.54%

Table 4.3: Relative occurrences of TLDs in the Sophos blacklist

4.3 Measures used to evaluate the performance

There are two major points of view from which we need to analyse the proposed algorithm.
Firstly we need to discuss the overall precision of the inferred values md. Secondly we need
to focus on how well does the technique predict the prior on previously unseen domains. To
evaluate quality of the inferred prior we use the intersection of domains DTEST as described
in the previous chapter.
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Using the data from the �rst month we infer the probabilities md. Then simply by
selection of a threshold τ we use the inferred probability to classify the observed connections
TTEST, which are de�ned as

TTEST = {(b, d) | (b, d) ∈ T ∧ d ∈ DTEST} . (4.4)

In Table 4.4 you can see the four cases which we can encounter while comparing the actual
label b with the inferred labels.

Case Actual Label Inferred Label

(TP) True Positive blocked malicious
(FP) False Positive allowed malicious
(TN) True Negative blocked legitimate
(FN) False Negative allowed legitimate

Table 4.4: De�nitions of outcomes of hypothesis testing

When used in text, by the FP we usually mean the overall number of all false positives
in the whole dataset, and the same for the rest of the shortcuts. The absolute numbers are
more or less meaningless, we usually seek some measures derived from them to evaluate the
performance of the classi�er [17]. You can see the basic measures in Table 4.5.

Name Formula

(TPR) True Positive Rate (TP )/(TP + FN)
(FPR) False Positive Rate (FP )/(FP + TN)
Precision (TP )/(TP + FP )
F-measure (2TP )/(2, TP + FP + FN)

Table 4.5: Basic measures used to evaluate binary classi�ers. The TPR and FPR are just
relative values of TP and FP . The precision is a relative number of correctly labeled blocked
connections. The F-Measure is a harmonic mean of the TPR and precision.

All of the measures depend on the choice of the threshold τ . The usual way to graphically
display the performance is using Receiver Operating Characteristics (ROC) curve. The ROC
curve is obtained by varying the τ over its all possible values and displaying the TPR as a
function of FPR.

The proposed solution is intended to be used in anomaly detection system to �nd possible
malicious domains among domains which are anomalous. The system presents its �ndings
to a network administrator, and so we have to focus on keeping the number of false positives
presented to the operator as low as possible. From our previous experience we want the false
positive rate to be below 0.1%.

Focusing on maximizing of the TPR w.r.t. �xed FPR is not su�cient, because the
overall precision might be still low. Maximizing only the precision is not su�cient also,
because it might lead to low TPR. The TPR is important for the system to be even worth
using, so we can not ignore it. The precision is also important, because with low precision
the operator of the system has to deal with a large portion of presented false positives, so
we can not ignore it also. To avoid the problem with multi-criteria optimization we use the
F-measure, which averages those two metrics using harmonic mean.
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4.4 Discussion of meaning of the parameters Θ

To evaluate the performance of the proposed algorithm we �rst need to optimize the
parameters Θ = (ua, va, ub, vb) of the Gamma prior. Because the Θ ∈ R4

+ it is not an easy
task to optimize it. Thus we need to �rst study the meaning of the parameters and check
whether we can reduce the space of Θ.

From the de�nition of the expected value of Gamma distribution we know that the
expected value of a,b is

a =
ua
va
, b =

ub
vb

(4.5)

and that its variance is
σ2a =

ua
v2a
, σ2b =

ub
v2b
, (4.6)

which is valid for all ak and bk, but we will omit the lower index k for the sake of convenience.
As discussed earlier a variation of a prior de�ne its strength. We do not have any reason to
a priori assume that the strength of the prior to a di�er from the strength of the prior to
b. To reduce the number of free variables we therefore set the two variances to be the same
and introduce the strength sγ ∈ R+ of the Gamma priors as

s−1γ = σ2a = σ2b (4.7)

and use it to de�ne the original parameters as

ua = a2 sγ , va = a sγ , (4.8)

and similarity for b.
This representation is much more pleasant to work with, because we understand the

meaning of all the variables. On the other hand we still do not know how to set the desired
value of a, b.

From the de�nition of the Beta prior we know that

m =
a

a+ b
, σ2m =

a b

(a+ b)2(a+ b+ 1)
, (4.9)

where the value m is the overall expected maliciousness of a domain.
You can see that the variance of the m decreases with both a and b, and it is symmetric

in both variables. Using this observation we can de�ne the variables as

a = msβ , b = (1−m) sβ , (4.10)

where the sβ ∈ R+ is the strength of the Beta prior. You can verify that if you substitute
the (4.10) into (4.9) than the equality of mean values hold and the variance decreases with
sβ .

The sβ could not be de�ned using the variance of Beta distribution, because we can not
just select any value from R+ as the variance. The Beta distribution is de�ned on closed, unit
length interval and therefore for each possible mean value there exists appropriate maximum
value of the variance. Also the fact that the two strengths are de�ned di�erently does not
matter because the variances of the distributions are not comparable anyway.
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Parameter m sγ sβ ua0 va0 ub0 vb0
Value 0.6 0.08 5 0.72 0.24 0.32 0.16

Table 4.6: The chosen parameters of the model Θ

We have therefore replaced the original vector of parameters Θ by three new parameters
σ, m, s as

ua = m2 s2β sγ va = msβ sγ , (4.11)

ub = (1−m)2 s2β sγ vb = (1−m) sβ sγ , (4.12)

which all have well de�ned meaning and therefore can be analyzed and optimized more easily.

4.5 Optimization of the parameters

In the previous section we have de�ned the original parameters Θ using a triplet of new
variables with a well de�ned meaning. Because the space in which we need to �nd the optimal
parameters is still three dimensional, it would be too computationally demanding to run a
grid search to �nd the optimal settings. Also there is no way to optimize the parameters
analytically. We therefore focus on optimizing all of the parameters separately, keeping the
other parameters �xed.

In Figure 4.4 you can see the performance evaluated on the datasets from September and
October. The graphs on the left were generated using the September dataset, the graphs on
the right were generated using the October dataset. Graphs on each row were generated by
varying one of the parameters but keeping the rest �xed.

At �rst we guessed the parameters to be sβ = 5, sγ = 0.04, and m = 0.5. Then we
optimized the parameter separately in the same order.

If you look at the graphs you will see that with increasing sβ the observed FPR changes
inversely in the two datasets. Unfortunately this phenomenon is even more obvious during
optimization of the prior maliciousness m. As you can see the optimal setting for the
September dataset is the worst for October dataset and vice versa.

Our goal is to create a stable system with as low FPR as possible. By stable we mean
that it would perform well over time. To prevent over-�tting we therefore focus on minimizing
the maximum FPR between the datasets. By analysis of the measured values in Figure 4.4
we choose the settings described in Table 4.6.

4.6 Comparison with the Probabilistic Threat Propagation

To evaluate the quality of the inferred values we implemented the Probabilistic Threat
Propagation algorithm (PTP) described in Section 2.1.3. The two approaches are hardly
comparable, because the PTP needs as an input a list of malicious domains. On the other
hand our algorithm infers the probability of maliciousness which can be than used to dis-
criminate between malicious and legitimate domains automatically. This is why our goal is
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Figure 4.4: Optimization of the parameters sβ , sγ , and md. Each of the rows shows
optimization of one of the parameters, keeping the other parameters �xed. The columns
represent evaluation of the parameters on di�erent dataset. The classi�ers on the left, and
right were trained on September, and October dataset respectively and evaluated on actually
observed evidence from following month.
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Figure 4.5: Comparison of the proposed algorithm with the Probabilistic Threat Propaga-
tion.

not to select the better performing of those two algorithms, but to analyse possible failure
of our approach.

To get the list of malicious domains we created a rule of thumb. We consider a domain
to be malicious, if the malicious ratio rd, i.e. the relative number of blocked connections, is
greater than 20%. We choose this threshold from our previous experience to �lter nontrivial
false positives, such as yahoo.com.

You can see the comparison in Figure 4.5. With the exception of the October dataset,
our algorithm outperforms the PTP in the terms of FPR. On the other hand the PTP
seems to be able to get to higher values of TPR. Interestingly both approaches failed on the
January dataset, which might be caused by insu�cient information contained in the WHOIS
data.

In the Figure 4.6 you can see the evaluated metrics. Unfortunately the optimal threshold
is not stable. This might be caused by the fact that the leaps in the precision and F-
Measure are generated by a few malicious domain which had high tra�c during the time of
observation. We might just need even more data to �nd the optimal threshold on md.

4.7 Analysis of the inferred values

In this section we want to analyse how well does the model learn from the data and what
is the impact of the Beta prior to the inferred values of md. We can answer those questions
by analysing the correlation between the number of observed connections per domain Nd,
the observed malicious ratio rd, and the actually inferred value md.

The valuemd was de�ned using Bernoulli distribution as probability of observing blocked
connection. Therefore if the observed samples are i.i.d., than with the Nd growing to in�nity,
the rd should be equal to md. On the other hand if the Nd is low the expected value of md

should be determined by the Beta prior.
To evaluate the described behaviour we plotted 2D histograms. On the horizontal axis

there is a logarithm of the Nd and on the vertical axis there is a di�erence between md and
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Figure 4.6: In this �gure you can see the evaluated performance metrics on each of the
available datasets. Please note that this is not the overall performance of the inference, but
only the quality of the inferred prior. You can see that, for example, the precision ranges
from as low as 15% to as much as 70%.

rd. To learn how the prior a�ect the malicious and legitimate domains we treated those
two groups of domains separately. For this analysis we considered domains to be potentially
malicious if there was at least one block connection targeting the domain. We took the
values of md from both testing and training data to see how the model learns from the given
evidence and it generalizes.

In Figure 4.7 you can see the four resulting histograms. The brightness of the colours
is proportional to logarithm of number of domains in the bins. The histograms on the left
were generated using the evidence rd, and Nd from the training data. It is clear that the
model needs at least 100 samples to completely learn the behaviour of a domain. The values
inferred from less than 100 samples are corrected by the conservative prior.

The histogram on the right were generated using evidence from testing data. The noise
is probably caused by the high number of domains for which we have observed only a few
connections in the following month. Overall the inferred values seem to match the evidence
well. The important thing is that the values are clearly centralized around the line md−rd =
0.

4.8 Overall performance

In the previous experiments we used the intersection of domainsDTEST = UPRED∩OSUCC

to evaluate the performance on previously unseen domains. To get a general knowledge about
the performance of the model as a whole, we need to evaluate it on the intersection

D′TEST = DPRED ∩OSUCC = (OPRED ∪ UPRED) ∩OSUCC . (4.13)
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Figure 4.7: Histograms showing correlation between the number of connections to domain
Nd and the di�erence between the inferred value md and actually observed relative number
of blocked connections rd. The graphs on the left get the value rd from the training data.
The graphs on the right get the value rd from the testing data. The graphs on the top take
into account only domains with rd > 0. The graphs on the bottom take into account only
domains with rd = 0.

In Figure 4.8 you can see the evaluated performance. We chose the operating point
according to the F-Measure, as you can see in Table 4.8. As we have already mentioned, it
is because the F-Measure balances the two important measures; precision and TPR.

τ TPR FPR Accuracy Precision F-Measure
0.498 0.522 0.000269 0.997 0.928 0.668

Table 4.7: Optimal operating point according to the F-Measure

Overall the performance is better than in the experiments with unseen domain only (see
Figure 4.6), but it still could be possibly improved. This is due to the fact, that we do
not distinguish sub-domains, as for example a.example.com and b.example.com from the
example.com itself. Thus the actual evidence about the sub-domains gets mixed up. This
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Figure 4.8: Overall performance of a linear classi�er derived from md. The performance
measures were evaluated on the intersection of all domains between the subsequent months.
You can see that with the FPR equal to 1% we can get up to 90% TPR. Such FPR would
be too high so with the FPR equal to 0.03% we can get 52% TPR and 93% precision.

causes that the sub-domains a and b are classi�ed equally, which leads to false inference. We
will tackle this problem in future research.
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Chapter 5

Conclusion

In this thesis we have proposed a novel reputation system. The system builds a belief
about observed domains based on their behaviour and is able to generalize to other, pre-
viously unobserved domains, based on information extracted from WHOIS records. It is
build upon purely probabilistic model and uses the tools of Variational Bayes to learn its
parameters.

In our experiments we were working with proxy-logs from a major Intrusion Prevention
System (IPS). In each log, we were interested in the domain name from the URL and the �ag
whether the connection was blocked. The system uses this data, together with keys extracted
from the WHOIS records, to build a belief about maliciousness of domains occurring on the
internet.

The form of the available data allowed us to naturally create training and testing sets
from subsequent time windows. Using the true evidence from the future instead of splitting
the labeled data into training and testing sets brings a noise to the data but it is able to
capture the true predictiveness of the system.

During the evaluation we have analyzed how the inferred probability of maliciousness
would perform as a feature. We found that with reasonable false positive rate, around
0.03%, the system has 52% true positive rate and 92% precision.

In similar manner we also evaluated the how the inferred prior, not taking into account
any direct evidence, preforms as a feature. The both precision and true positive rate ranged
from 20% to 70% on di�erent datasets with false positive rate as low as 0.1%.

We found out that with more than 100 observations of a domain the system is able to
completely learn its behaviour. If less than 100 samples is present, the prior in�uence the
belief about the domain.

The system is currently designed for o�-line learning, but as the model is composed of
conjugate pairs of distributions it can be easily extended for continual on-line learning. Also
from historical reasons we took into account only the level of domain name following the
public su�x, ignoring the sub-domain. Future experiments can be done to show the impact
of distinguishing di�erent sub-domains on the precision of the system.
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Appendix A

Variational Bayes method

Let us assume that we have a complete Bayesian model p(z,x), where the z are parame-
ters of the model, and the x are the observed data. Also let us assume that the distribution
is not tractable, because it can not be analytically evaluated. The Variational Bayes seeks
an approximation q(z) to the posterior distribution p(z|x).

The derivation proceeds as follows

log p(x) = log p(z,x)− log p(z|x) (A.1)

=

∫
z∈Z

q(z) [log p(z,x)− log p(z|x)] dz (A.2)

=

∫
z∈Z

q(z) log
p(z,x)

q(z)
dz −

∫
z∈Z

q(z) log
p(z|x)

q(z)
dz (A.3)

= L(q) + KL(q||p) , (A.4)

where the KL(q||p) is KL divergence between the distributions q and p which is in general
de�ned as

KL(q||p) =

∫
z∈Z

q(z) log
p(z)

q(z)
dz (A.5)

and it is equal to the number of extra bits needed to compress an information channel
described by probability distribution q if we use an algorithm optimized for p. We will state
without a prove that KL(q||p) ≥ 0 and that KL(q||p) = 0 if, and only if, the p and q are the
same. Therefore the L(q) is a lower-bound to the log p(x) because it holds that

L(q) ≤ log p(x) (A.6)

and it is maximized by minimizing the KL divergence between the q(z) and p(z|x).
Now let us have a space of tractable probability distributions Q. To approximate the

posterior distribution p(z|x) by a tractable distribution q(z), where q ∈ Q, we must maximize
the lower-bound L(q).

The approximation problem can be interpreted as an optimization problem of �nding
such q ∈ Q for which hold that the KL(q||p) is minimal. It just depends on the way how we
specify the set of tractable distributions Q.
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A.1 Factorized distributions

On way to select the space Q is by assuming that the vector z can be partitioned into N
disjoint sets as z = (z′1, ..., z

′
N ). Then the Q is de�ned as

Q =

{
q | q(z) =

N∏
i=1

qi(z
′
i)

}
, (A.7)

which is a space of all distributions over z which are de�ned as products of its marginals. This
de�nition does not require the q ∈ Q to be from any speci�c family of distributions, or to be
parametrized by any speci�c parameter. The partitioning is done to simplify the intractable
distribution and it is selected in advance. Hence we must be careful while selecting the
partitions, because from the (A.7) it holds that each two variables which are not in the same
partition are forced to be independent.

By plugging the (A.7) into the (A.3) we get

L(q) =

∫
q(z) log

p(z,x)

q(z)
dz (A.8)

=

∫ N∏
i=1

qi(z
′
i)

[
log p(z,x)−

N∑
i=1

log qi(z
′
i)

]
dz , (A.9)

where we just replaced both occurances of q(z) by the product of its marginals.
Now because all of the marginals qi are independent we can focus on optimizing each of

them separately by assuming all qj such that j 6= i to be �xed. It was shown in [8] that by
rearrangement of the (A.9) we can obtain

L(q) =

∫
qj(zj)

∫ log p(z,x)
∏
i 6=j

qi(zj) dzi 6=j

 dzj −
∫
qj(zj) log qj(zj) dzj + cons.

(A.10)

=

∫
qj(zj)Ei 6=j [log p(z,x)] dzj −

∫
qj(zj) log qj(zj) dzj + cons. (A.11)

=

∫
qj(zj) log

p̃(z,x)

qj(zj)
dzj + cons. , (A.12)

where the distribution p̃(z,x) is de�ned as

log p̃(z,x) = Ei 6=j [log p(z,x)] . (A.13)

You can see that the (A.12) has a form of negative KL divergence. To maximize the L(q)
we thus need to minimize it. The minimum is obtained if the distributions p̃(z,x) and qj(zj)
are equal and therefore we set the qj to be

log qj(zj) = Ei 6=j [log p(z,x)] . (A.14)

Because the KL divergence is minimized by recalculating the i-th marginal, the L(q)
is guaranteed to be maximized. We can therefore reach an optimal value of L(q) in an
iterative manner by successive recalculating of the qi. On the other hand we do not have any
guarantees about uniqueness of the found solution, and therefore its quality might depend
on the initial estimates of the parameters of the marginals.
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Appendix B

Nomenclature

CWS Cloud Web Security

EM Expectation Maximization

HDFS Hadoop Distributed File System

ICANN Internet Corporation for Assigned Names and Numbers

IPS Intrusion Prevention System

KL Kullback�Leibler

ML Maximum Likelihood

ROC Receiver Operating Characteristics

URL Uniform resource locator
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Appendix C

CD content

-- 2015-letalvoj-thesis.pdf

Figure C.1: Content of the attached CD
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