
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Automatic Name and Snippet Generation of Web pages
with Unknown Content

Bachelor thesis

Jonáš Amrich

Study programme: Open Informatics
Specialisation: Computer and Information Science

Supervisor: Ing. Jan Šedivý, Csc.

Prague, May 2015

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Jonáš A m r i c h

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Automatic Name and Snippet Generation of Web pages
 with Unknown Content

Guidelines:
The information retrieval engines return a ranked list of URL for each search request. Each URL in the
list is described by a title and a short descriptive snippet on text. The snippet is mainly generated from
the URL content stored on the search server. Some of the pages do not allow robots to download the
content, some of them are in graphics, some are written in JavaScript.

The task is to design and develop algorithms for automatically generating the title of pages with unknown
content. Proceed in the following steps:

1. Review the state of the art.
2. Based on the state of the art analysis choose and implement one method.
3. Generate a testing sequence of web pages.
4. Run experiments and estimate the quality of title generation.
5. Summarize the results.

Bibliography/Sources:
[1] Aggarwal, Charu C., Zhai, ChengXiang (Eds.): Mining Text Data, Springer 2012.
[2] Prabhakar Raghavan, Christopher D. Manning, and Hinrich Schütze: Introduction to information
 retrieval, Cambridge University Press, 2008.
[3] Pedregosa, Fabian, et al.: "Scikit-learn: Machine learning in Python." The Journal of Machine
 Learning Research 12 (2011): 2825-2830.
[4] Turpin, Andrew, et al.: "Fast generation of result snippets in web search."Proceedings of the 30th
 annual international ACM SIGIR conference on Research and development in information retrieval.
 ACM, 2007.
[5] Blair-Goldensohn, Sasha, et al.: "Phrase based snippet generation." U.S. Patent No.
 8,010,539. 30 Aug. 2011.

Bachelor Project Supervisor: Ing. Jan Šedivý, CSc.

Valid until: the end of the summer semester of academic year 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, February 5, 2015

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Jonáš A m r i c h

Studijní program: Otevřená informatika (bakalářský)

Obor: Informatika a počítačové vědy

Název tématu: Automatické generování názvu a popisek webových stránek
 s neznámým obsahem

Pokyny pro vypracování:
Algoritmy pro vyhledávání informací obvykle vrací na každý dotaz seřazený seznam URL. Každá URL
adresa v seznamu je popsána názvem a krátkým popisným textem. Popisek je generován především
z obsahu URL uložené na vyhledávacím serveru. Některé URL stránky nedovolují robotům stažení
obsahu, některé jsou v grafice, některé jsou psány v jazyce JavaScript.

Úkolem je navrhnout a vyvinout algoritmy pro automatické generování titulů stránek s neznámým
obsahem. Postupujte podle následujících kroků:

1. Proveďte rešerši stavu používaných technologií.
2. Na základě rešerše vyberte a implementujte jednu metodu.
3. Sestavte trénovací a testovací sekvence webových stránek.
4. Proveďte základní experimenty a odhadněte kvalitu vygenerovaných titulků.
5. Shrňte a okomentujte výsledky.

Seznam odborné literatury:
[1] Aggarwal, Charu C., Zhai, ChengXiang (Eds.): Mining Text Data, Springer 2012.
[2] Prabhakar Raghavan, Christopher D. Manning, and Hinrich Schütze: Introduction to information
 retrieval, Cambridge University Press, 2008.
[3] Pedregosa, Fabian, et al.: "Scikit-learn: Machine learning in Python." The Journal of Machine
 Learning Research 12 (2011): 2825-2830.
[4] Turpin, Andrew, et al.: "Fast generation of result snippets in web search."Proceedings of the 30th
 annual international ACM SIGIR conference on Research and development in information retrieval.
 ACM, 2007.
[5] Blair-Goldensohn, Sasha, et al.: "Phrase based snippet generation." U.S. Patent No.
 8,010,539. 30 Aug. 2011.

Vedoucí bakalářské práce: Ing. Jan Šedivý, CSc.

Platnost zadání: do konce letního semestru 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 5. 2. 2015

Prohlášeńı autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických prin-
cip̊u při př́ıpravě vysokoškolských závěrečných praćı.

V Praze dne 22. 5. 2015

..
Jonáš Amrich

iv

Contents

Abstract 1

Acknowledgments 3

1 Introduction 4
1.1 Motivation . 4
1.2 Problem definition . 5

2 State of the art analysis 6
2.1 Types of summarization . 6

2.1.1 Abstractive summarization . 6
2.1.2 Extractive summarization . 6
2.1.3 Query dependent summarization 6

2.2 Brief history . 7
2.3 Machine learning approaches . 7
2.4 Context based summarization overview . 8

2.4.1 Other web page contexts . 9

3 Proposed approach 10
3.1 Building the context . 10
3.2 Bag of words . 11
3.3 Top n words selection . 12
3.4 Top n words ranking . 12

3.4.1 Learning to rank . 12
3.4.2 Random forests . 12
3.4.3 Features . 13
3.4.4 Training sequence . 14

3.5 Building the snippet . 14

4 Experiments 16
4.1 Dataset . 16

4.1.1 Original dataset . 16
4.1.2 Preprocessing . 16
4.1.3 Derived datasets . 17

4.2 Learning to rank . 17
4.2.1 Features . 17
4.2.2 Models . 18

4.3 Building the snippet . 20
4.3.1 Sentence selection . 20

v

CONTENTS vi

4.3.2 Sample results . 20
4.4 Implementation . 21

5 Conclusion 22

A Additional tables and figures 23

Bibliography 26

List of tables

4.1 Feature importances of fullpage-f3-rfr . 18
4.2 Feature importances of fullpage-f1-rfc . 18
4.3 Comparison of different numbers of trees for the fullpage-f1-rfr model . . . 18
4.4 Scores of regression models . 20
4.5 Scores of classification models . 20
4.6 Selected title and snippet generated by the fullpage-f1-rfr model. 20

A.1 Feature importances of partpage p3-f3-rfr 23
A.2 Feature importances of partpage p3-f3-rfc 23
A.3 Selected titles and snippets generated by the fullpage-f1-rfr model. 25

List of figures

4.1 Comparison of the performance of different ranking models 19

A.1 Effect of size of the forest on the performance of ranking model 24

vii

Abstract

This thesis explores the problem of name and snippet generation of web pages based
on their context rather than on their content. A growing number of web pages is short
on text and rich on multimedia, or is highly interactive, or their content can not be
downloaded for various reasons. But these web pages may still be valuable for users and
search engines need to present their labels. In this thesis a survey of several approaches
to this task is presented, the process of automatic generation of the synthetic content is
proposed and the performance of proposed method is measured. Exemplary snippets are
then generated.

1

Abstrakt

Tato práce se zabývá problémem automatického generováńı názv̊u a popisek webových
stránek, pomoćı jejich okoĺı namı́sto jejich obsahu. Rostoućı počet webových stránek je
namı́sto textem tvořen multimédii či je interaktivńı, př́ıpadně jejich obsah nemůže být
stažen z r̊uzných d̊uvod̊u. Tyto stránky ale mohou být pro uživatele d̊uležité a vyhledávače
potřebuj́ı uživatel̊um prezentovat jejich popisy. V této práci je zkoumána řada př́ıstup̊u
k této problematice a je představena metoda pro automatickou tvorbu názv̊u a popisk̊u.
Jej́ı úspěšnost je následně změřena a jsou vytvořeny ukázkové popisky.

2

Acknowledgments

I would like to thank Ing. Jan Šedivý, Csc. for his support and guidance and to thank
Ing. Tomáš Tunys for his helpful advice.

Access to computing and storage facilities owned by parties and projects contribut-
ing to the National Grid Infrastructure MetaCentrum, provided under the programme
“Projects of Large Infrastructure for Research, Development, and Innovations” (LM2010005),
is greatly appreciated.

3

Chapter 1

Introduction

1.1 Motivation

Almost every article on the topic of modern text mining algorithm starts with the sentence
“With the rapid growth of the world wide web, there is an increasing need of [the application
of the algorithm]”. So does this thesis:

With the rapid growth of the world wide web, there is an increasing need of automatic
labeling and summarization. The Internet nowadays contains more data than ever and
the amount of information online grows like never before. According to a study by IDC
[11], the amount of the information on the Internet is now about 10 000 exabytes1. In this
amount of data, it is virtually impossible to find desired information simply by browsing
the Web using hyperlinks. Hyperlinks are still the very essential part of the World Wide
Web, and this thesis is based on their principles, but for the majority of people the first
everyday interaction with the Web is through the search window.

The key principle of every search engine is to respond to user queries and present the
overview of related documents, that should lead the user to one of them, which contains
the answer to his query. The decision whether the user visits the document or not is
based on the short information provided by the search engine — the title and the snippet,
which is a short summary of the content of the document.

The process of generation of the snippets is tightly coupled with the way how search
engines, or information retrieval engines in general works. First, the inverted index of
documents is built. Next, when the user submits his query, documents are looked up in
the index, ranked, and presented to the user on the search results page.

Those inverse indexes are generated by robots crawling the web and downloading the
content of the web pages. But some web pages can not be downloaded for various reasons.
They may not allow the robots to download the content or may be in a non-textual form,
e.g. in graphics, video, flash or JavaScript. Also, the content of the page may be very
sparse or just insufficient. But these web pages may still be valuable for the user and the
search engine may find them important because of their off-site signals like PageRank.
Under normal circumstances the title and snippet would be gathered from the web page;
but for these pages we need to automatically generate the title or snippets using other
information.

11 EB is 1018 bytes or 1 billion gigabytes

4

CHAPTER 1. INTRODUCTION 5

1.2 Problem definition

In our case, the task is to generate the title, which is usually few words long and should
include the words that are most descriptive for the page and the snippet, which is a
few sentences long extractive summary of the document. Both tasks must be completed
without the access to the target page. This can be formulated as a special case of context
based extractive summarization. Automatic text summarization in general is an well
established and explored domain — the demand for it emerged naturally with the growth
of the Web. Plenty of high quality articles about this topic can be found. The short
overview of history of automatic summarization is presented in 2.2, however this thesis is
not intended to provide a deep overview of all approaches. Such comprehensive overview
of all kinds of summarization can be found in [19]; also the following text will use the
notation presented there for most of the summarization problems.

The task is to utilize knowledge from the web structure and from other accessible web
pages to generate the synthetic content. This is possible because of the very nature of the
web seen as a collection of hypertext documents linking to each other (this hypothesis is
examined in 2.4). The page with unknown content for which we would like to generate
title or snippet is called the target page. Other pages on the web that link to the target
page (e.g. they contain one or more hyperlinks pointing to the target page) are called
source pages. Next, the set of all source pages for one target page is called its context.

The goal is to generate meaningful, discriminative title and snippet characterizing
the document. Both meaningfulness and ability to characterize are in nature subjective
metrics, and it would be another challenging task only to measure them (see [16]), even
with proper gold standard2. Therefore, in this work, the real contents of target web pages
are used as the gold standard. Various metrics are then used to evaluate the quality of
generated content.

2Manually annotated test set

Chapter 2

State of the art analysis

The need for automatic summarization has emerged a long time before the Internet era.
Foundations of the field were laid in Luhn’s paper from 1958 [17]. Since then, with the
rise of the World Wide Web, automatic summarization went through rapid development
and new methods and approaches emerged. In this chapter I present the most important
approaches from my point of view, which are preceded with a short classification of the
field of summarization.

2.1 Types of summarization

2.1.1 Abstractive summarization

Abstractive summarization is the most natural way of reinterpreting the content of the
document. The summary may contain phrases from the original document, but is overall
written with it’s author’s own words. That requires full understanding not only of the
meaning of the document, but also of the language and it’s interpretation. Summaries
written by humans also contain background knowledge about the topic of the document.
In this time, automatic abstractive summarization is a difficult problem that relies on de-
velopment in other fields like natural language generation. Nevertheless, several attempts
were made in this field with promising results - see the work of Yves Petinot, Kathleen
McKeown and Kapil Thadani [24].

2.1.2 Extractive summarization

Extractive summarization follows the hypothesis, that individual sentences that are present
in the document (or in its context in our case) can be extracted and combined into one or
more meaningful paragraphs. This approach simplifies the problem to finding relevant and
important sentences. Nowadays, the majority of real world applications of summarization
are extractive, as the difficulty of the task is in the boundaries of current technology. The
extractive approach is the one that will be further examined in this thesis.

2.1.3 Query dependent summarization

Another possibility of classification of summarization techniques is whether the summaries
are dependent on the users query or are static for each document. As defined by [28],
query dependent (or query biased) summary should provide enough information for user to

6

CHAPTER 2. STATE OF THE ART ANALYSIS 7

make the decision whether to retrieve the proposed document or not — to get the answer
for his query. Some approaches can be found in [29] or [20], however, query dependent
summarization is beyond the scope of this thesis, but may be the subject of my future
work.

2.2 Brief history

The very first paper that has shaped the process of automatic summarization was already
mentioned - Luhn’s “The Automatic Creation of Litarature Abstracts” [17]. His approach
was extractive, following the hypothesis that most frequent words in the document are the
most descriptive. However, some of these most common words are not descriptive at all,
namely stopwords and words that are common for a particular domain. To address these
caveats, he used high and low frequency thresholds to filter out unwanted words. Following
that, he selected sentences with highest density of descriptive words and included these
in a summary. The so-called “auto-abstract” was generated from individual significant
sentences of the article. The mechanism of selection of significant sentences is essential
for majority of future works in summarization and differences are mostly only in ranking
systems. In Luhn’s work, frequencies of words in the article and also relative position of the
word in the sentence were combined into the significance factor. Words with frequencies
between given thresholds were labeled as significant and used for sentence selection, that
has also taken in account the proximity of words in the sentence. Next, whole sentences or
their portions are combined into one auto-abstract, complete with list of most significant
words. This relatively simple principle sets the baseline for future researchers. While the
schema of ranking words or sentences by importance remains, methods of ranking still
evolves.

With the foundations laid by single document summarization, methods for multiple
documents summarization and web page summarization could be developed. Multiple
documents summarization is usually applied on many documents on the same topic - the
first systems were aggregating multiple news articles into one summary (see [18]).

Web page summarization utilizes knowledge about the structure of the web to pro-
duce summarization of web page with known or unknown content. Although the first
approaches use the content of the page only, those may contain relevant and useful prin-
ciples. In 2000, two interesting approaches were introduced, the OCELOT [5], relying on
machine translation principles and the InCommonSense [2], leveraging knowledge from
the structure of the web page.

2.3 Machine learning approaches

While the early approaches were based on statistical models with hand made features,
methods using machine learning techniques emerged soon. In 1995, Kupiec et al. [14]
used Bayesian classifier trained on 188 documents and corresponding human labeled sum-
maries. Another approach to the summary generation using classification model can be
found in [1], where various types of features were used and some of them were also ex-
panded with word clusters built using local context analysis. With this features, a rank-
ing algorithms based on logistic regression and boosting algorithms were trained. Both
approaches were focused on single document summarization, opposed to the approach
proposed in [20]. In this article, a method using Support Vector Regression is applied to

CHAPTER 2. STATE OF THE ART ANALYSIS 8

the problem of query-focused multi-document summarization, otherwise them method is
still based on ranking and extraction of the sentences.

2.4 Context based summarization overview

The hypothesis behind context based summarization (where the context is defined as in
1.2) is that pages that are in source — target relationship share the same topic and contain
some overlap information. This was proved in [9], where textual similarities of web pages
in various relationships were measured. In this work, Davison has used the tf-idf vector
representation of web pages and compared them using cosine similarity measure, which
is defined as:

cos(Dtf−idf
i , Dtf−idf

j) =

∑t
k=0wik × wjk√∑t

k=0 w
2
ik ×

∑t
k=0w

2
jk

(2.1)

Where documents Di, Dj are defined as in 3.2.
He has shown that the similarity of anchor text, or window of 20 terms before and after

the anchor is about at least a magnitude better than random. Within his dataset, the
chance of anchor text appearing on the target page is 65%, while the words surrounding
the anchor has 51% chance. Also the overlap of linked pages shows very similar trend.

The hypothesis of context—target similarity was analyzed even before publication of
the Davison’s article. One of the interesting applications was presented by Attardi in
[4], where he has shown that information from the context leads to better results in web
page classification. In addition to classification, Glover et al.[12] has proposed method
for naming clusters of documents based solely on the context: They used terms both
from the full text of source pages, as from the window surrounding the anchor. Using the
expected entropy loss, they ranked the terms and constructed a list of possible names of
the category of web pages. In their case, every category was successfully named using the
first or the second ranked term.

Proper use of the web page context for summarization was introduced by Delort et al.
in [10], where two algorithms of which one was based only on the context were revealed.
He described three essential kinds of issues, that any context-based summarizer has to
deal with:

1. contextualization - selecting related pieces of information about the target document
from the context and leaving out the unrelated

2. partiality - combining partial information or finding information that covers entire
content of the target

3. topicality - finally, selecting information that describes the content of the target,
opposed to information related to the target though not mentioning its content.

The framework for context based summarization was derived by Delort from these issues.
First, the contextualization issue is faced: only sentences near the anchor are selected,
then annotated using part-of-speech tagger and filtered using various rules. Some of the
rules can be called syntactic - e.g. the sentence must contain a verb; some of the rules
deal with the structure of the web pages - e.g. splits on lists and sections or limits for the
number of links in the sentence. The partiality issue is then solved using the inclusion

CHAPTER 2. STATE OF THE ART ANALYSIS 9

degree of sentences. Details on the definition of the measure of inclusion are in chapter
3.5. The last one is the topicality issue, for which Delort proposes two algorithms - mixed
approach and context-based approach.

2.4.1 Other web page contexts

The context of the web page does not have to be limited only to the hyperlinks representing
web structure. One interesting approach was published by JT Sun et al. [27], that exploits
clickthrough data from user’s search engine queries. In their approach, the selection of
significant words from the page content is determined by the clickthrough data, afterwards
the process continues as a regular single page summarization. Others [21] use specific user
generated labels - social bookmarks from services like YouTube or Amazon, that acts as
a web page context that expands limited information from the web page content.

Chapter 3

Proposed approach

In this chapter, the method for automatic selection of the most descriptive terms from
the web page’s context and for extractive summarization dependent on these terms is
proposed. It is based mainly on the method presented by Delort in [10], but is slightly
modified in various aspects. The most noticeable difference is in use of regression model
for ranking the terms. Similar approaches can be found in [1, 20].

The method consists of a few steps that are described below. At the beginning, dataset
containing source documents, target documents and anchors describing their relations is
provided. In the preprocessing phase, the context for each target document is built and a
bag of words representation is generated. Then, top n candidates for the most descriptive
terms are pre-selected from the context. These are consequently ranked using pre-trained
regression model. The training of the model is also described in the following text. Using
the ranked terms, a pre-selection of sentences suitable to be included in the snippet is
made. For each of these sentences a feature vector is computed and the sentences are
sorted according to manually defined rules. At the end, the snippet is constructed using
the subset of sorted sentences with different content.

3.1 Building the context

The dataset consists of crawled web pages, therefore some basic pre-processing is required.
Exact pre-processing steps performed on the data are described in the next chapter 4.1.2.
When every web page is represented as a set of paragraphs cleaned of HTML markup, the
context of each target page can be built. Based on hypertext links, a set of source pages
for every target page is gathered. All source web pages from the dataset are included in
the context, even pages belonging to the same domain as the target (compared to Delort’s
approach [10], where these source pages are omitted).

Multiple representations of the page are then used, depending on the amount of text
selected from the page. First, a representation that includes a fixed window of three
paragraphs before and after the link is obtained. The second representation uses the
whole content of every source page - this follows the assumption that when the context
is large enough, the noisy parts of web pages, that are not informative about the target
page, are not statistically significant. This assumption needs to be further examined; see
the section 4.2.2 for a short review of the results.

10

CHAPTER 3. PROPOSED APPROACH 11

3.2 Bag of words

In the next step, all documents are represented in a vector representation[26] following
the bag-of-words model. In this representation, syntactic properties including word order
are disregarded and only numbers of appearances of words are kept. Each document Di

is represented by a sparse t-dimensional vector. The dimensionality of the vector t is
determined by a number of terms present in the dictionary W , which is usually built from
the set of all documents (see 4.1.2 for detailed information about the dictionary).

Di = {wi1, wi2, ..., wit} (3.1)

where wij represents the weight of the term j in document i. Two different weighting
schemes are used for the next processing, term frequency and tf-idf, respectively. TF-IDF,
or term frequency—inverse document frequency is a widely used weighting system and is
defined as:

wij = tfij · log
N∑N

k=0 tfkj

ŵij =
wij
|wij|

Dtf−idf
i = {ŵi1, ŵi2, ..., ŵit}

(3.2)

where tfij is the frequency of term Wj in the document Di, and N is the total number
of documents.

With the vector representation of single documents, we can proceed to the represen-
tation of the context. For every target document Dτ ∈ D, a context vector Cτ is built
according to these rules:

context(Dτ) = {Di ∈ D;Di is source document for Dτ}

Cτ = {
∑

Dj ∈ context(Dτ)

wj1,
∑

Dj ∈ context(Dτ)

wj2, ...,
∑

Dj ∈ context(Dτ)

wjt}
(3.3)

After this step, four different vector representations of documents and contexts are
present:

D ={D1, ..., DN}
Dtf−idf ={Dtf−idf

1 , ..., Dtf−idf
N }

C ={C1, ..., CT}
Ctf−idf ={Ctf−idf

1 , ..., Ctf−idf
T }

(3.4)

where T denotes total number of target documents.

CHAPTER 3. PROPOSED APPROACH 12

3.3 Top n words selection

For the ranking phase, it is more meaningful (and much faster) to rank only top n pre-
selected words, instead of whole dictionary present in the context. As we predict the most
significant words in terms of tf-idf, it feels natural to use this metric for pre-selection too.
My selection of top n words from the context contains words with high both tf-idf and tf
scores; precisely all unique words from the set of top 100 words with highest tf and top
100 words with highest tf-idf from sets C and Ctf−idf respectively.

3.4 Top n words ranking

Ranking of the most descriptive terms is the key part of both title and snippet generation.
This is done using the random forest algorithm, which is first trained using the sample
data. The process of feature extraction, training and application of the model is described
in this section.

3.4.1 Learning to rank

Learning to rank is a supervised or semi-supervised machine learning method, whose
purpose is to order a set of items according to some given measure. In general, the goal
of the LTR1 model is to produce ranked permutation of given set based on information
gathered from training data. There are three main approaches to LTR, as defined in [15]:
the pointwise approach, the pairwise approach and the listwise approach.

The task fits best to the pointwise approach, where the input and output spaces are
defined as follows: The input space contains the feature vector of a single document, in
our case the feature vector of a single word (the feature vector is described below); and the
output space contains the relevance label, which is in our case the importance of the word.
The importance label can be represented by a non-ordered category (e.g. important / not
important) or as a real number (higher number means more important word). Depending
on the representation of the importance label and corresponding algorithm we talk about
classification based approach and regression based approach.

Various classification and regression algorithms can be used, for a comprehensive list
and benchmarks see [15]. As the difference in performance of the algorithms is not so
significant, I did not perform additional experiments and selected the widely used Random
forest algorithm.

3.4.2 Random forests

Random forests, as introduced by Leo Breiman [7] is an ensemble learning method2 based
on a collection of decision trees that vote for the final decision - in the case of classification
a mode of the classes is used, in the regression case the mean of outputs is used as
final decision. In following experiments both classification and regression approaches are
compared.

1Learning to rank
2Ensemble methods combines multiple weak learners into one strong

CHAPTER 3. PROPOSED APPROACH 13

3.4.3 Features

There are three different types of features extracted from the data: context-wise (docu-
ment independent) term features which are computed for the whole context of the target
document and does not take in account individual documents; document-wise term fea-
tures, that are computed for each source document individually; and source document
features, that are independent on the term and rather describe the source document in
general. The number in square brackets denotes position in feature vector and may be
used as a legend for the results section. For a given word Wk in document Di from the
context Cτ of target document Dτ , the features are:

Context-wise (document independent) term features:

• Term frequency in the context vector Cτ [1.1]

• TF-IDF in the context vector Ctf−idf
τ [1.8]

• Term frequency3 in anchor texts pointing to the Dτ [1.7]

• Term frequency3 in titles of source documents [1.2]

• Term frequency3 in html meta description [1.5]

• Term frequency3 in html keywords [1.6]

• Term frequency3 in query strings — the query strings that are frequently used to
search the web page using Seznam.cz search engine [1.4]

• Term frequency in tokenized URL [1.3]

• Number of documents in context that contain the term [1.9]

• Number of documents in context that contain the term, normalized [1.10]

Document-wise term signals:

• Term frequency in document Di [2.1]

• TF-IDF in document Dtf−idf
i [2.2]

Source document signals:

• Pagerank of the source document [3.1]

• Body size of the document including boilerplate code [3.2]

• Is document homepage (true for homepage documents like index.html, false other-
wise) [3.3]

The features are listed in arbitrary order, for an overview of learned feature impor-
tances of the LTR model, see the chapter 4.2.

3To be correct, the term frequency here means sum of term frequencies in all source documents

CHAPTER 3. PROPOSED APPROACH 14

3.4.4 Training sequence

As was mentioned before, the input space of the LTR model contains the feature vector of
a single word present in the context. When training only on context-wise features, there
is a single input vector for each word Wj from the pre-selected words from the context
Cτ :

xj =
[
lj f1.1,j f1.2,j · · · f1.n1,j

]
(3.5)

When we have to take in account the document-wise features, each word Wi must be
represented in the training sequence exactly nd times, where nd is number of documents
in context(Dτ) containing the word. For the context Cτ and word Wj, the set of input
vectors consists of “simple” input vectors xj enhanced of document dependent features:


lj f1.1,j · · · f1.n1,j f2.1,j,1 · · · f2.n2,j,1 f3.1,j,1 · · · f3.n3,j,1

lj f1.1,j · · · f1.n1,j f2.1,j,2 · · · f2.n2,j,2 f3.1,j,2 · · · f3.n3,j,2
...
lj f1.1,j · · · f1.n1,j f2.1,j,nd · · · f2.n2,j,nd f3.1,j,nd · · · f3.n3,j,nd

 (3.6)

where f1.n,j is a context-wise feature of word Wj and f2.n,j,i and f3.n,j,i are a document-
wise features of word Wj dependent on document Di.

The label lj depends on the selected approach. For the classification based approach
to LTR, the output space contains only two categories: important / not important. This
is determined by the presence of the word in the target document: lj = 1 iff wτ,j >
0 otherwise 0. In the regression based approach, the label is a real number, in our case
the tf-idf score of the word in the target document: lj = ŵtf−idf

τ,j .

3.5 Building the snippet

The snippet is composed of individual sentences extracted from the context of the target
page. The process of sentence selection is build up on the output of the LTR algorithm,
which is supposed to produce ranked list of important words. As the first step of the pro-
cess, the sentences are preselected from the context according to the number of important
words they contain. This threshold is set heuristically and serves only as mechanism for
reducing the number of candidates for the next step. There are also few features gathered
from sentences in this step:

• Sum of predicted tf-idf scores of important words

• Number of important words

• Distance from the anchor in the source document

• Length of the sentence

• Number of verbs in the sentence

CHAPTER 3. PROPOSED APPROACH 15

Next, the sentences are ranked according to their relation to the target page. At
the present time, the dataset is not annotated by hand, so the ranking of sentences is
done using only heuristics instead of trained model. When the ordered list of sentences
is constructed, the snippet is generated in a greedy way. To address the partiality issue,
after the selection of the first sentence on the list, some remaining sentences are removed,
based on their inclusion degree.

The inclusion degree of two sentences Si and Sk, is computed in a same fashion as in
[10]:

I(Si, Sk) =

∑t
j=0 wij · wkj∑t

j=0 wij
(3.7)

where the sentences are defined as Si = {wi1, wi2, ..., wit} where individual words are
in the boolean representation, which assigns 1 to the word which is present in the sentence
and 0 otherwise.

The final snippet is generated with specific length, which is usually between two and
five sentences. With the ranked set of sentences S = {S1, ..., Sn sentences}, the snippet X
is constructed according to this algorithm:

X ← {}
for 1 to target snippet length do
X ← X ∪ S1

S ← {Si ∈ S; I(Si, X) < 1}
end for

The algorithm takes the first sentence and removes it from the list, along with other
sentences that can be expressed using the first sentence. The steps are repeated until the
target length of the snippet is not reached, removing sentences from the list of candidates
according their inclusion degree with all already selected sentences together.

Chapter 4

Experiments

4.1 Dataset

4.1.1 Original dataset

The dataset for my experiments was provided by Seznam.cz, for what I am very grateful
as it is not easy to obtain data of this kind and size. However this brings some downsides
- while the dataset contains features that directly affect the search results at Seznam.cz,
the data can not be publicly released.

The original dataset contains more than 1 million documents and corresponding an-
chors, which represent a random sample of data crawled by the company. Both docu-
ments and anchors are represented in the protocol buffers format[13]. The documents
went through basic preprocessing and their derivates were build: the content is split into
pseudo-paragraphs (as these are not only html <p> elements) that are extended with
various features. They include features for the whole page as pagerank, language and
various others; and also features for individual paragraphs. One of them and one of the
important ones is a label from the body text extraction algorithm, which is used to distin-
guish body text and boilerplate content, such as site-wide headers, menu or footer. This
labeling and first preprocessing was done internally in Seznam.cz.

4.1.2 Preprocessing

Working with the whole dataset is impractical and computationally expensive, thus it was
split into various smaller datasets differing both in document selection and preprocessing
applied. It is common for all derived datasets, that only pages written in English were se-
lected - although the proposed method is language independent1, avoiding the complexity
of Czech or multilingual documents makes things little bit easier.

As the first thing, the dictionary is built. It contains words from the paragraphs
marked as body text that are between 2 and 25 characters long. The words with ap-
pearance in less than 5 documents were discarded, so were the words present in more
than 80% documents. Also, the stopwords were not included in the dictionary, based on
the stopwords list from the NLTK toolkit [6]. After this process the dictionary contains
847 743 tokens.

1There are actually few points where language specific methods are used, e.g. the stopwords list and
the POS tagging, but only minor modifications are needed for extension to other languages

16

CHAPTER 4. EXPERIMENTS 17

Next, the web pages were filtered according to their context. The list of target pages
was built, which included pages with 100-2000 source pages. Only links that appear in
the body text part of page were considered.

4.1.3 Derived datasets

From the pre-selection of documents, two datasets were constructed: fullpage and part-
page p3. Each of them uses different representation of page, according to the amount
of text used from the page. The dataset labeled fullpage contains all paragraphs from
the body text section of web page, contrary to the dataset labeled partpage p3, which
contains only the paragraph with the link and three paragraphs directly before and after
it. As this may sound as a large window, keep in mind that the paragraphs are actually
pseudo-paragraphs and they may be also headings, lists and other html elements. The
mean size of the document is then 206 words for the partpage p3 and 1277 for the fullpage
dataset.

Both datasets contain 1672 target documents and 444 291 source documents - the
average is almost 266 source documents for one target. Due to the preprocessing, 192 of
the target documents ended as blank. These documents were removed from the ranking.

4.2 Learning to rank

4.2.1 Features

Two different selections of features were made, as noted in 3.4.3. The models trained only
on context features are labeled f1, the ones trained on both context-wise and document-
wise features are labeled f3. For the models from the group f1, the number of training
data was by orders of magnitudes smaller then for f3. For a comparison, there were
167 200 input vectors for the fullpage-f1-rfr model against 18 080 003 input vectors for the
fullpage-f3-rfr model. The large number of input vectors was caused by expansion of the
data with document-wise features, as presented in 3.6, and is one of the reasons of worse
performance of later models, as it causes overfitting.

Of the training vectors, usually more than a half of them are positive examples, with
target labels important or nonzero target tf-idf score (for the fullpage-f3-rfr the ratio of
positive to negative training data is 70:30).

The feature importances of the learned model can be computed, which provides useful
insights. In case of models I have used, the importance is computed as a mean decrease
accuracy - more information about the implementation can be found in [8]. There is an
interesting trend, that can be seen from the data in the tables 4.1 and 4.2: the regression
based models use mainly tf-idf features, as they try to predict the tf-idf value of words in
target document. On the other hand the classification models find the number of source
documents containing the term (feature 1.9) as the most important, as their task is only
to differentiate important and unimportant words. It also seems that the importance of
document-wise features is fairly low, but this may be caused by the expansion of training
vectors. The trend is similar for other classification and regression based models; the full
list of features importances of most of the mentioned models can be found in A.

CHAPTER 4. EXPERIMENTS 18

Table 4.1: Feature importances of fullpage-f3-rfr

tf-idf [1.8] # docs [1.10] # docs [1.9] tf [1.1] tf/anchors [1.7]
0.48 0.09 0.09 0.08 0.08

tf/meta [1.5] doc tf-idf [2.2] body size [3.2] tf/url [1.3] tf/query [1.4]
0.04 0.03 0.02 0.02 0.02

pagerank [3.1] tf/titles [1.2] tf/keywords [1.6] doc tf [2.1] is hp [3.3]
0.02 0.01 0.01 0.01 0.00

Table 4.2: Feature importances of fullpage-f1-rfc

docs [1.9] # docs [1.10] tf [1.1] tf-idf [1.8] tf/meta [1.5]
0.26 0.24 0.20 0.16 0.04

tf/query [1.4] tf/titles [1.2] tf/keywords [1.6] tf/url [1.3] tf/anchors [1.7]
0.03 0.03 0.02 0.02 0.01

4.2.2 Models

Two different ranking models were compared: Random Forest Classifier and Random
Forest Regressor. These were trained using data obtained in the previous step, when the
whole dataset was split into train and test parts, in the 50:50 ratio. As the data was split
on whole contexts (one target document and corresponding context is the elementary part
of the dataset), the ratio can be ±10% off in terms of number of input vectors.

In addition to different datasets and models, I have also experimented with model
parameters, mainly with number of trees and the maximum number of features considered
for the best split. As the effect of different parameters was not so significant for the task,
the evaluations were done with 60 decision trees in the forest for the f1 models and
with 30 trees for the f3 models (the later is mostly due to computing requirements).
Other parameters were left with the default values. The detailed comparison of models
with different forest sizes can be found in table 4.3, where scores for fullpage-f1-rfr are
presented.

Table 4.3: Comparison of different numbers of trees for the fullpage-f1-rfr model

10 30 60 100 500

R2 0.3042 0.3432 0.3537 0.3563 0.3616
MSE 0.0019 0.0018 0.0017 0.0017 0.0017

The performance of models is measured using standard metrics for evaluation of ran-
dom forests, as well using the metric more suitable to the application - the ability to
predict the target word which is most descriptive for the page. The models output ranked
list of words, from which the first one is selected as the prediction of the most descriptive
word. This is then compared with the ordered words in the target document and a mean

CHAPTER 4. EXPERIMENTS 19

position of the predicted word is computed. For the highest ranked model, the fullpage-
f1-rfr, the predicted word is in the top five words on the page for 56% predictions. The
full comparison can be seen in the figure 4.1.

Figure 4.1: Comparison of the performance of different ranking models

Two metrics that are also used are coefficient of determination (R2) and mean squared
error (MSE). If we mark the true labels from the dataset as y1, ..., yn, the predicted labels
as f1, ..., fn and the mean as ȳ = 1

n

∑
i yi, then the R2 is defined as:

R2 = 1−
∑

i (yi − fi)
2∑

i (yi − ȳ)2
(4.1)

And the mean squared error:

MSE =
1

n

∑
i

(fi − yi)
2 (4.2)

The coefficient of determination R2 computed according to the definition 4.1 can
actually be a negative number. This is caused by high variance in the data, which is the
case of the data from partpage p3-f3 dataset. The overview of R2 and MSE scores for
both datasets and both feature sets is in the table 4.4.

For the classification based models, the mean accuracy score is used, which is defined
as:

accuracy =
1

n

∑
i

1 iff fi = yi otherwise 0 (4.3)

The mean accuracy scores of the classification models can be seen in the table 4.5.

CHAPTER 4. EXPERIMENTS 20

Table 4.4: Scores of regression models

fullpage-f3-rfr fullpage-f1-rfr partpage p3-f3-rfr partpage p3-f1-rfr

R2 0.1859 0.3537 -0.3197 0.2242
MSE 0.0036 0.0017 0.0079 0.0005

Table 4.5: Scores of classification models

fullpage-f3-rfc partpage p3-f3-rfc

mean accuracy 0.7885 0.6096

4.3 Building the snippet

4.3.1 Sentence selection

For each target document, the list of top 15 most important words is predicted using
the LTR algorithm (the fullpage-f1-rfr is used for the following experiments). From the
context of the target, sentences are extracted from the body text part of each source
document. This is done using the Punkt Sentence Tokenizer module from NLTK, that
contains pre-trained model for English sentences. From these sentences, only those that
contain at least three important words are selected to be included in the possible snippet.
Sentences with more than three verbs are discarded and others are ranked according the
sum of predicted tf-idf scores. The snippet is then generated using the algorithm 3.5.

4.3.2 Sample results

A selection of sample results was made by hand, to present some of the capabilities of the
model. Apparently, the best results are achieved on target pages that represent a single
entity, which could be seen on the example 4.6. Entities from the Wikipedia, items from
e-commerce sites and articles focused on one topic belongs to the group of target sites
where the snippet generation is successful. More examples could be found in the appendix
A.3.

Table 4.6: Selected title and snippet generated by the fullpage-f1-rfr model.

URL
titles
Generated snippet

http://en.wikipedia.org/wiki/YLE
film, channel, eurofighter, including, funding
Number 3 was added later, when the channel was allocated the third
nation-wide television channel and it generally became known as “Chan-
nel Three” – Finnish Broadcasting Company’s Yle TV1 and Yle TV2
being the first two – and also to distinguishing it from the later MTV
Finland. YLE, Finland’s public broadcasting station, operates five tele-
vision channels and thirteen radio channels in both national languages.

CHAPTER 4. EXPERIMENTS 21

4.4 Implementation

The source code of the implementation of proposed method and a framework for running
the experiments is available on GitHub [3]. The code is written mainly in python and
makes use of various libraries, of which I would like to mention gensim [25], which was used
for the pre-processing tasks and corpus representation; scikit-learn [22] which contains
implementations of the random forest algorithms; NLTK [6] that contains models used
for sentence tokenization and part of speech tagging; and I also appreciate the ipython[23]
notebook for interactive python environment.

Chapter 5

Conclusion

In this thesis, various approaches to the problem of context based labeling and snippet
generation were surveyed. A combination of two approaches was selected and imple-
mented. The framework for the task was proposed and a comparison of two algorightms
and various preprocessing tasks was performed, resulting in six different models. The
influence of the amount of data gathered from each web page’s context was examined;
and the effects of different features to the selection of the most discriminative terms were
studied.

The performance of these models was then measured and using the best model, exem-
plary snippets were generated. Due to the lack of labeled data, that could act as a gold
standard for generated snippets, the evaluation of snippet quality will have to be done
manually. Moreover, with labeled data, the use of a learning model for snippet generation
would also be possible.

The context based content generation is a complex problem and as the topic is valued
by Seznam.cz, the further research on the topic could be done. The learning model for
snippet generation was already mentioned, but the other parts of the process can be
explored more deeply, e.g. the semantic expansion for better coverage of title genaration,
improved feature engineering and more.

22

Appendix A

Additional tables and figures

Table A.1: Feature importances of partpage p3-f3-rfr

tf [1.1] tf-idf [1.8] # docs [1.9] tf/anchors [1.7] # docs [1.10]
0.29 0.16 0.12 0.11 0.08

tf/meta [1.5] tf/query [1.4] tf/url [1.3] tf/titles [1.2] tf/keywords [1.6]
0.07 0.04 0.04 0.03 0.02

doc tf-idf [2.2] doc tf [2.1] body size [3.2] pagerank [3.1] is hp [3.3]
0.02 0.01 0.00 0.00 0.00

Table A.2: Feature importances of partpage p3-f3-rfc

docs [1.9] # docs [1.10] tf [1.1] tf-idf [1.8] doc tf-idf [2.2]
0.20 0.19 0.14 0.13 0.09

tf/titles [1.2] tf/keywords [1.6] tf/query [1.4] doc tf [2.1] tf/url [1.3]
0.05 0.04 0.04 0.04 0.04

tf/meta [1.5] body size [3.2] pagerank [3.1] tf/anchors [1.7] is hp [3.3]
0.03 0.01 0.01 0.00 0.00

23

APPENDIX A. ADDITIONAL TABLES AND FIGURES 24

Figure A.1: Effect of size of the forest on the performance of ranking model. Shown on
the fullpage-f1-rfr model.

APPENDIX A. ADDITIONAL TABLES AND FIGURES 25

Table A.3: Selected titles and snippets generated by the fullpage-f1-rfr model.

URL
titles
Generated snippet

http://wn.com/Nevada Senate
committee, arizona, hawaii, american, judiciary
2014 Nevada State Senate District 4 Election Interview by Asian Amer-
ican Group Michele Fiore (Incumbent) http://www.VoteFiore.com This
is a must see for all voters!!

http://therecipedaily.in/category/party-food/
sausage, biscotti, pantry, bark, breakfast
Recipe: Southwestern Butternut Squash Soup — Recipes from The
Kitchn. SPONSORED POST: Recipe: Crunchy Chicken Salad with
Grape-Nuts and Cranberries — Recipes from The Kitchn Sponsored by
Grape-Nuts

http://www.masonlec.org/
institute, papers, including, infrastructure, homepage
Program Description: The Global Antitrust Institute (GAI) at the Law
& Economics Center at George Mason University School of Law is a
leading international platform for research and education that focuses
on the legal and economic analysis of key antitrust issues confronting
competition agencies and courts around the world. Moderator: James
C. Cooper, Director, Research and Policy, Law & Economics Center
and Lecturer in Law, George Mason University School of Law

http://www.dx.com/p/sewor-m113-2-men-s-pu-leather-band-
self-winding-mechanical-analog-wristwatch-bla
resin, keychain, leather, women, cree
Sewor M113-2 Men’s PU Leather Band Self-winding Mechanical Analog
Wristwatch - Black + Silver

Bibliography

[1] Massih R Amini, Nicolas Usunier, and Patrick Gallinari. Automatic text summa-
rization based on word-clusters and ranking algorithms. In Advances in Information
Retrieval, pages 142–156. Springer, 2005.

[2] Einat Amitay and Cécile Paris. Automatically summarising web sites: is there a way
around it? In Proceedings of the ninth international conference on Information and
knowledge management, pages 173–179. ACM, 2000.

[3] Jonáš Amrich. Repository for the code from this thesis on github. https://github.
com/JonasAmrich/SyntheticContent.

[4] Giuseppe Attardi, Antonio Gulli, and Fabrizio Sebastiani. Automatic web page
categorization by link and context analysis.

[5] Adam L Berger and Vibhu O Mittal. Ocelot: a system for summarizing web pages.
In Proceedings of the 23rd annual international ACM SIGIR conference on Research
and development in information retrieval, pages 144–151. ACM, 2000.

[6] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with
Python. ” O’Reilly Media, Inc.”, 2009.

[7] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[8] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classifica-
tion and regression trees. CRC press, 1984.

[9] Brian D Davison. Topical locality in the web. In Proceedings of the 23rd annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 272–279. ACM, 2000.

[10] J-Y Delort, Bernadette Bouchon-Meunier, and Maria Rifqi. Enhanced web document
summarization using hyperlinks. In Proceedings of the fourteenth ACM conference
on Hypertext and hypermedia, pages 208–215. ACM, 2003.

[11] John Gantz and David Reinsel. The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east. 2012.

[12] Eric J. Glover, Kostas Tsioutsiouliklis, Steve Lawrence, David M. Pennock, and
Gary W. Flake. Using web structure for classifying and describing web pages. In
Proceedings of the 11th International Conference on World Wide Web, WWW ’02,
pages 562–569, New York, NY, USA, 2002. ACM.

[13] Google. Protocol buffers. https://developers.google.com/protocol-buffers/.

26

https://github.com/JonasAmrich/SyntheticContent
https://github.com/JonasAmrich/SyntheticContent
https://developers.google.com/protocol-buffers/

BIBLIOGRAPHY 27

[14] Julian Kupiec, Jan Pedersen, and Francine Chen. A trainable document summarizer.
In Proceedings of the 18th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 68–73. ACM, 1995.

[15] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval, 3(3):225–331, 2009.

[16] Annie Louis and Ani Nenkova. Automatically assessing machine summary content
without a gold standard. Computational Linguistics, 39(2):267–300, 2013.

[17] Hans Peter Luhn. The automatic creation of literature abstracts. IBM Journal of
research and development, 2(2):159–165, 1958.

[18] Kathleen R McKeown, Regina Barzilay, David Evans, Vasileios Hatzivassiloglou,
Judith L Klavans, Ani Nenkova, Carl Sable, Barry Schiffman, and Sergey Sigelman.
Tracking and summarizing news on a daily basis with columbia’s newsblaster. In
Proceedings of the second international conference on Human Language Technology
Research, pages 280–285. Morgan Kaufmann Publishers Inc., 2002.

[19] Ani Nenkova, Sameer Maskey, and Yang Liu. Automatic summarization. In Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguistics:
Tutorial Abstracts of ACL 2011, page 3. Association for Computational Linguistics,
2011.

[20] You Ouyang, Wenjie Li, Sujian Li, and Qin Lu. Applying regression models to query-
focused multi-document summarization. Information Processing & Management,
47(2):227–237, 2011.

[21] Jaehui Park, Tomohiro Fukuhara, Ikki Ohmukai, Hideaki Takeda, and Sang-goo Lee.
Web content summarization using social bookmarks: A new approach for social
summarization. In Proceedings of the 10th ACM workshop on Web information and
data management, pages 103–110. ACM, 2008.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[23] Fernando Pérez and Brian E. Granger. IPython: a system for interactive scientific
computing. Computing in Science and Engineering, 9(3):21–29, May 2007.

[24] Yves Petinot, Kathleen McKeown, and Kapil Thadani. Cluster-based web summa-
rization. 2013.

[25] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.cz/
publication/884893/en.

[26] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for auto-
matic indexing. Communications of the ACM, 18(11):613–620, 1975.

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

BIBLIOGRAPHY 28

[27] Jian-Tao Sun, Dou Shen, Hua-Jun Zeng, Qiang Yang, Yuchang Lu, and Zheng Chen.
Web-page summarization using clickthrough data. In Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 194–201. ACM, 2005.

[28] Anastasios Tombros and Mark Sanderson. Advantages of query biased summaries in
information retrieval. In Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, pages 2–10. ACM,
1998.

[29] Andrew Turpin, Yohannes Tsegay, David Hawking, and Hugh E Williams. Fast gener-
ation of result snippets in web search. In Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval, pages
127–134. ACM, 2007.

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Problem definition

	State of the art analysis
	Types of summarization
	Abstractive summarization
	Extractive summarization
	Query dependent summarization

	Brief history
	Machine learning approaches
	Context based summarization overview
	Other web page contexts

	Proposed approach
	Building the context
	Bag of words
	Top n words selection
	Top n words ranking
	Learning to rank
	Random forests
	Features
	Training sequence

	Building the snippet

	Experiments
	Dataset
	Original dataset
	Preprocessing
	Derived datasets

	Learning to rank
	Features
	Models

	Building the snippet
	Sentence selection
	Sample results

	Implementation

	Conclusion
	Additional tables and figures
	Bibliography

