
Czech Technical University in Prague

Faculty of Electrical Engeneering

Congruences on Finite Automata

Bachelor Thesis

Study programme: Open Informatics
Branch of study: Computer and Information Science

Thesis advisor: prof. RNDr. Marie Demlová, CSc.

Nela Grimová

Prague, 2015



Czech Technical University in Prague 
Faculty of Electrical Engineering 

Department of Cybernetics 
 

BACHELOR PROJECT ASSIGNMENT 

Student:   Nela   G r i m o v á     

Study programme:  Open Informatics 

Specialisation:  Computer and Information Science 

Title of Bachelor Project:    Congruences on Finite Automata 
 
 
 

 

 
Guidelines: 

 
1. Study congruences on finite automata with output and properties of Myhill-Nerode's  
    Theorem for finite automata.  
2. Choose an appropriate algorithm for constructing congruences and  implement it.  
3. Based on experiments evaluate the implemented algorithm. 
 
 
 
 
 
 
Bibliography/Sources:    
[1] M. Demlová, V. Koubek: Algebraická teorie automatů, SNTL, Praha, 1990 
[2] M. Mohri: Minimization algorithms for sequential transducers, Theoretical Computer  
     Science, 2000 
[3] A. Maletti: Myhill-Nerode theorem for sequentioal tranducers over unique GCD-monoids,  
     2005 

Bachelor Project Supervisor:   prof. RNDr. Marie Demlová, CSc. 

Valid until:   the end of the summer semester of academic year 2015/2016 

 

       L.S. 

 

doc. Dr. Ing. Jan Kybic 
Head of Department 

 prof. Ing. Pavel Ripka, CSc. 
Dean 

Prague, January 14, 2015 



České vysoké učení technické v Praze 
Fakulta elektrotechnická 

Katedra kybernetiky 
 

ZADÁNÍ BAKALÁŘSKÉ PRÁCE 

Student:  Nela   G r i m o v á 

Studijní program: Otevřená informatika (bakalářský) 

Obor:   Informatika a počítačové vědy 

Název tématu:          Kongruence na konečných automatech 

                                   

Pokyny pro vypracování: 
1. Seznamte se s kongruencemi konečných automatů s výstupem a s vlastnostmi Myhill-   
    Nerodovy věty pro tyto automaty. 
2. Vyberte vhodný algoritmus pro výpočet kongruencí a implementujte ho. 
3. Na experimentech proveďte hodnocení implementovaného algoritmu. 
 
 
 
 
 
 
 
Seznam odborné literatury:   
[1] M. Demlová, V. Koubek: Algebraická teorie automatů, SNTL, Praha, 1990 
[2] M. Mohri: Minimization algorithms for sequential transducers, Theoretical Computer  
     Science, 2000 
[3] A. Maletti: Myhill-Nerode theorem for sequentioal tranducers over unique GCD-monoids,  
     2005 
 
 
 
 

Vedoucí bakalářské práce:   prof. RNDr. Marie Demlová, CSc. 

Platnost zadání:   do konce letního semestru 2015/2016 

 

  

       L.S. 

 

doc. Dr. Ing. Jan Kybic 
vedoucí katedry 

 prof. Ing. Pavel Ripka, CSc. 
děkan 

V Praze dne 14. 1. 2015 



Prohlášeńı autora práce

Prohlašuji, že jsem předloženou práci vypracovala samostatně a že jsem uvedla
veškeré použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı
etických princip̊u při př́ıpravě vysokoškolských závěrečných praćı.

Declaration

I declare that I have written my bachelor thesis myself and used only the sources
listed in References in accordance with the methodical observance of ethical principles
in the preparation of university thesis.

Prague, 22th May 2015 Nela Grimová

i



Acknowledgement

I wish to express my sincere thanks to my thesis advisor prof. RNDr. Marie
Demlová, CSc. for all her help, advice, time and comments.

ii



Abstrakt

Ćılem té to práce je seznámeńı s kongruencemi na konečných automatech, a
to zejména s elementárńı stavovou kongruenćı. Jsou zde popsány algoritmy na
konstrukci této kongruence a následně jsou diskutovány jejich výsledky na př́ıkladech.
Dále je popsán zobecněný př́ıpad elementárńı stavové kongruence – nejmenš́ı kongruence
obsahuj́ıćı relaci.

Kĺıčová slova: konečné automaty; stavová kongruence; elementárńı stavová
kongruence; faktorový automat, nejmenš́ı kongruence obsahuj́ıćı relaci.

Abstract

The aim of this thesis is an introduction to congruences on finite automata,
especially to elementary automaton state congruences. Two algorithms for finding
elementary state automaton congruences are described and their result on various
examples are discussed. Further, a generalization of elementary state automaton
congruences is described – the smallest state automaton congruences containing a
relation.

Keywords: finite automata; automaton state congruence; elementary automaton
state congruence; factor automaton; the smallest automaton congruences contating
a relation.

iii



Contents

1 Preface 1

2 Preliminaries 2
2.1 Alphabet, Words over an Alphabet, Language . . . . . . . . . . . . . 2
2.2 Binary Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Equivalence Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3.1 Equivalence Classes . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Finite-state Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4.1 Mealy Automaton . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4.2 Moore Automaton . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4.3 State Automaton . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.5 Notation for Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5.1 Transition Table . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5.2 Transition Diagram . . . . . . . . . . . . . . . . . . . . . . . . 4

2.6 Extented Transition and Extented Output Functions . . . . . . . . . 5
2.6.1 Extented Transition Function . . . . . . . . . . . . . . . . . . 5
2.6.2 Extented Output Functions . . . . . . . . . . . . . . . . . . . 5

3 State of the Art 6
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Automaton State Congruences 9
4.1 Definition of an Automaton State Congruence . . . . . . . . . . . . . 9
4.2 Definition of an Output Automaton Congruence . . . . . . . . . . . . 9
4.3 Intersection of Automata Congruences . . . . . . . . . . . . . . . . . 9

4.3.1 Proposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3.3 Corollary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4 Elementary Automaton State Congruence . . . . . . . . . . . . . . . 10
4.4.1 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4.3 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4.4 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.5 Factor State Automaton . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Construction of Elementary Automaton
Congruences 13
5.1 Algorithm For Finding Elementary Automaton Congruences . . . . . 13
5.2 Speeding Up of the Algorithm . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Correctness of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . 16

5.3.1 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.4 The Estimation of the Worst Processing Time of the Algorithm . . . 19
5.4.1 Original Version . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iv



5.4.2 Accelerated Version . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Implementation of the Algorithm 21
6.1 Representing of the Set Structure and Initialization . . . . . . . . . . 21
6.2 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Experiments 24
7.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.2.1 Automata of 10-60 States . . . . . . . . . . . . . . . . . . . . 25
7.2.2 Automata of 100-1000 States . . . . . . . . . . . . . . . . . . 25
7.2.3 Automata With More Than Two Input Symbols . . . . . . . . 25
7.2.4 Automata With Big Number of States . . . . . . . . . . . . . 26
7.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 The Smallest Automaton State Congruence Containing a Relation 27

9 Conclusion 30

10 Appendix I
A Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
B Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
C Contents of CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X

v



List of Figures

1 Example of a transition diagram . . . . . . . . . . . . . . . . . . . . . 5
2 Example of automaton state and output automaton congruences . . . 9
3 Mealy automaton M . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Factor state automaton M̄ . . . . . . . . . . . . . . . . . . . . . . . . 12
5 State automaton M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 Original version running on trivial and nontrivial automata of 10-60

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
7 Accelerated Version running on trivial and nontrivial automata of

10-60 states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
8 Comparison of OA and AA running on trivial automata of 10-60 states IV
9 Comparison of OA and AA running on nontrivial automata of 10-60

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV
10 The original version running on trivial automata of 100-1000 states . V
11 Original version running on nontrivial automata of 100-1000 states . . V
12 Accelerated version running on trivial and nontrivial automata of

100-1000 states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI
13 Comparison of OA and AA running on trivial automata of 100-1000

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI
14 Comparison of OA and AA running on nontrivial automata of 100-1000

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
15 Original version running on trivial automata with more input symbols VII
16 Accelerated version running on trivial automata with more input

symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII
17 Comparison of OA and AA running on trivial automata with input

symbols incremented by 5 . . . . . . . . . . . . . . . . . . . . . . . . VIII
18 Comparison of OA and AA running on trivial automata with input

symbols incremented by 10 . . . . . . . . . . . . . . . . . . . . . . . . IX
19 Comparison of OA and AA running on trivial automata with input

symbols equal to 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX

List of Tables

1 Example of a transition table . . . . . . . . . . . . . . . . . . . . . . 4
2 Automata of 10-60 states . . . . . . . . . . . . . . . . . . . . . . . . . I
3 Automata of 100-1000 states . . . . . . . . . . . . . . . . . . . . . . . I
4 Automata with more input symbols, the original version . . . . . . . II
5 Automata with more input symbols, the accelerated version . . . . . II
6 Automata of 10 000 and 100 000 states . . . . . . . . . . . . . . . . . II

vi



1 Preface

The theory of finite-state machines is a widely studied theme, which has had
a big influence to the development of computers and the study of computability
and the processing of formal languages. Although, a large area of knowledge about
finite-state machines is already covered, there exist various topics that need a closer
look. A study of automaton state congruences is one of them.

In the second chapter, we will introduce basic definitions and facts covering
words, equivalence relations and automata. Automaton state congruences are the
theme of the third chapter. We will focus especially on elementary automaton state
congruences, these are the smallest automatata congruences merging two distinct
states, and their construction.

In the fourth chapter, we will introduce the algorithm for finding elementary
automaton state congruences and its accelerated version and then we will prove
correctness and the worst processing time of the algorithm.

In the next chapter, we will describe implementation of both versions of this
algorithm, which is used in the following chapter for testing the algorithm on various
automata. The reader can find measured values and graphs in Appendix.

In the last chapter, we will generalize our approach to the following problem:
Given a relation R on the set of states Q of an automaton, we would like to construct
the smallest automaton state congruence containg R.

1



2 Preliminaries

2.1 Alphabet, Words over an Alphabet, Language

An alphabet X is a finite, nonempty set of symbols.

A word over an alphabet X is a finite sequence of symbols of X. If a word
does not contain a single element, we will call it the empty word and donote it by
ε.

A length of a word w is the number of its symbols; we denote it by |w|. The
empty word has length zero.

Further, X∗ indicates the set of all words over the alphabet X, and X+ is the set
of all nonempty words over the alphabet X.

A concatenation of words is the operation on X∗ denoted as · and defined by:
if w ∈ X∗, v ∈ X∗, w = x1x2 . . . xn, v = y1y2 . . . ym (n is length of w and m is length
of v), then w · v = x1x2 . . . xny1y2 . . . ym.

Concatenation is associative ((u · v) ·w = u · (v ·w)) for all u, v, w ∈ X∗ and ε
is its neutral element.

In this text, an alphabet will be the set of input symbols X, and the set of output
symbols Y .

All these definitions are paraphrases from (see [1], p. 28-29).

A language L is a set of words over an alphabet X, L ⊆ X∗ (see [1], p. 30).

2.2 Binary Relation

A binary relation on a set A is a subset of the carthesian product A×A. A binary
relation R on the set A is called:

• reflexive: if ∀a ∈ A, it holds that aR a (every element from A is in relation
with itself)

• symmetric: when ∀a, b ∈ A, it holds that if aR b, then bR a

• antisymmetric: when ∀a, b ∈ A, it holds that if aR b and bR a, then a = b

• transitive: when ∀a, b, c ∈ A, it holds that if aR b and bR c, then aR c

2.3 Equivalence Relation

A relation R on a set A is called an equivalence relation if it is reflexive, symmetric
and transitive.

2



2.3.1 Equivalence Classes

The equivalence class of R containing an element a ∈ A is defined as:

[a]R = {b ∈ X; aR b}

A quotient set A/R of a set A, determined by the equivalence relation R, is
defined as the set of all equivalence classes of R, i.e.:

A/R = {[a]R; a ∈ A}

The quotient set A/R forms a decomposition of A. Indeed, each a ∈ A belongs
to [a]R, and the classes are pairwise disjoint.

As long as it is not misleading, we will write [a] instead of [a]R.

Note that two special kinds of an equivalence relation always exist:

• ∆ is the identical equivalence in which no distinct elements are merged, so
every element corresponds to one equivalence class.

• ∇ is the universal equivalence relation which merges all elements of a set A,
so it has only one equivalence class.

If an equivalence R on A is distinct from ∆ and ∇, we call it a nontrivial
congruence on A.

2.4 Finite-state Machine

A finite-state machine (or a finite-state automaton) is a theoretical model of
computation consisting of a finite set of states, a finite set of input symbols, a finite
set of output symbols, a transition function and an output function. According to
the form of the output function, finite-state machines are divided into:

2.4.1 Mealy Automaton

A Mealy automaton is a quintuple (Q, X, Y , δ, α)[see 2], where

• Q is a finite nonempty set of states

• X is a finite nonempty set of input symbols

• Y is a finite nonempty set of output symbols

• δ (transition function) is a mapping δ: Q×X → Q

• α (output function) is a mapping α: Q×X → Y

2.4.2 Moore Automaton

A Moore automaton is a quintuple (Q, X, Y , δ, β), where Q, X, Y and δ have
the same meaning as above, and the output function β is a mapping β: Q→ Y .

3



2.4.3 State Automaton

Let M be either a Mealy or a Moore automaton. Then a corresponding state
automaton is the triple (Q, X, δ).

2.5 Notation for Automata

There are two commonly used and preferred notations for describing automata
([1], p. 48-49):

2.5.1 Transition Table

A transition table is a tabular represention of the transition function δ and the
output function α or β. The rows of the table correspond to the states of the
automaton and the columns correspond to the inputs. In the case of a Mealy
automaton, the entry for the state q and the input x is a pair δ(q, x)/α(q, x). In the
case of a Moore automaton, the entry for the state q and the input x is the state
δ(q, x) and a new column is added, whose entry for the state q corresponds to the
output β(q).

2.5.2 Transition Diagram

A trasition diagram is a directed graph, such that the set of verticles is the set of
statesQ of the automaton, and the directed edge from the state q to the state r exists
if and only if there is a transition δ(q, x) = r. In the case of a Mealy automaton,
this edge is labeled by the pair x/α(q, x). In the case of a Moore automaton, the
edge is labeled by symbol x and each vertex q is moreover labeled by β(q).

Example

Consider a Mealy automaton M , where Q= {1, 2, 3}, X = {0 ,1}, Y = {0, 1, r},
δ(1, 0) = 1, δ(1, 1) = 2, δ(2, 0) = 2, δ(2, 1) = 3, δ(3, 0) = 2, δ(3, 1) = 2, α(1, 0) = 0,
α(1, 1) = 0, α(2, 0) = 1, α(2, 1) = 0, α(3, 0) = 0 and α(3, 1) = r. This automaton
can be represented by a transition table and a transition diagram as follows:

Table 1: Example of a transition table

0 1
1 1/0 2/0
2 2/1 3/0
3 2/0 3/r

4



Figure 1: Example of a transition diagram

2.6 Extented Transition and Extented Output Functions

2.6.1 Extented Transition Function

An extended transition function δ∗ is the mapping δ∗ : Q × X∗ → Q defined
inductively as follows:

1. δ∗(q, ε) = q for all q ∈ Q

2. δ∗(q, vx) = δ(δ∗(q, v), x) for all q ∈ Q, x ∈ X, v ∈ X∗

Note that ε is the empty word.(See e.g. [2].)

2.6.2 Extented Output Functions

An extended output function of a Mealy automaton is the mapping

α+ : Q×X+ → Y

satisfying the condition α+(q, vx) = α(δ∗(q, v), x) for all q ∈ Q, x ∈ X, v ∈ X∗.

An extended output function of a Moore automaton is the mapping

β∗ : Q×X∗ → Y

satisfying the condition β∗(q, v) = β(δ∗(q, v)) for all q ∈ Q, v ∈ X∗ (see [3], p. 58-59).

5



3 State of the Art

Although, the problem of congruences on finite-state machines is an important
one, there are only a few papers that deal with it. In this section we will mention
them.

In [3] basic facts about the automata theory are introduced, including definitions
of an automaton state congruence, output automaton congruence, an intersection
and an union of state congruences. Further, compositions and decompositions of
automata through automaton state congruences are studied. In the last chapter
there are given various algorithms for finite automata. One of them is an algorithm
for finding minimal automaton state congruences, but not the elementary one, which
is the topic of this thesis.

Papers [5], [6] and [7] also deal with congruences, but in a little different settings
than we do. Because of it we have to bring in a few definitions and mention an
important theorem for studying formal languages – the Myhill-Nerode theorem.

3.1 Definitions

A finite-state transducer is a sixtuple T = (Q,X, Y, I, F, δ) where Q,X, Y and
δ have the same meaning as in 2.4.1, I is a finite set of initial states (I ⊆ Q) and
F is a finite set of output states (F ⊆ Q) (see [5]).

A sequential finite-state transducer is a transducer which has only one initial
state.

A language accepted by a transducer is a set of all words w ∈ L for which
there exists i ∈ I such that δ∗(i, w) ∈ F (see [2]).

Suppose that % is an equivalence relation on a set X∗.
If for all x, y, z ∈ X∗ it holds that x % y, then xz % yz, equivalence % is called a

right congruence on X∗.
If a decomposion X∗/% has a finite number of classes, then we say that % has

a finite index.

Myhill-Nerode theorem: A language L ⊆ X∗ is accepted by a transducer T
if and only if a right congruence % on X∗ of a finite index exists such that L is a
union of some classes of the right congruence % (see [4]).

In the following paragraph, we will explore [5], [6] and [7] in more details.
In [5], various fields are first mentioned where finite-state automata are useful.

The problem is that these automata can be very large so it is required to reduce
the number of their states. Then it is noticed that the problem of a minimalization
is solved for deterministic automata, because algorithms for computing reduced
automata in an efficient way are known. The same does not hold for non-deterministic

6



sequential transducers. Then the algorithm quasi-determination is introduced that
constructs an intermediate transducer which is deterministic. This algorithm affects
only labels of a transducer, the number of states is not increased. Then the algorithm
for a minimalization of sequential transcuders is introduced, which takes a intermediate
transducer as an input. Further, its complexity is discussed and it is noticed that
the algorithm can be also used for minimalization of p-sequential transducers, which
are generalized sequential transducers.

[6] follows [5], there are discussed sequential transducers and their minimalization,
too. The Myhill-Nerode theorem is generalized to sequential transduceres over
unique GCD-monoid (it is mentioned that the Myhill-Nerode theorem also allows
minimalization of transducers over other monoids and groups).

Let A = (A,�,1,0) be a commutative monoid, where A is an algebraic
structure, � is an associative operation, 1 is the indentity element and 0 is the
absorbing element. A monoid is called cancellation one if for all a, a1, a2 ∈ A, a 6= 0
it holds that if a � a1 = a � a2 and a1 � a = a2 � a, then a1 = a2. Let us quote
parts of [5] to introduce result of this paper:

An unique GCD-monoid is a cancellation monoid A = (A,�,1,0) in which 1) a|1 implies a = 1,
2) a gcd (greatest common divisor) exists for every two non-zero elements, 3) a lcm (least common
multiple) exists for every two nonzeroelements having a common multiple. In particular it yields
that every gcd is indeed unique. We extend the definition of a gcd to arbitrary many elements as
follows. Let k ∈ N+ and {a1, . . . , ak} ⊆ A \ {0}.

gcd
i∈{1,...,k}

ai = gcd(a1, gcd(a2, . . . , gcd(ak−1, ak), . . . ))

with gcdi∈{1}ai = a1. Given an infinite set I and a family (ai)i∈I we defined gcdi∈Iai = gcdj∈Jaj

if there exists a finite set J ⊆ I such that for every i ∈ I there exists j ∈ J with aj |ai. Otherwise,

we define gcdi∈Iai = 1.

Any mapping S : X∗ → A is called power series. The set of all such power series is denoted by

A〈〈X∗〉〉. We write (S,w) instead of S(w) for all S ∈ A〈〈X∗〉〉 and w ∈ X∗. The support supp(S)

of S is defined by supp(S) = {w ∈ X∗, (S,w) 6= 0}.
For every w ∈ X∗ let g(w) = gcdu∈X∗,w.u∈supp(S)(S,w.u).

We call a power series S ∈ A〈〈X∗〉〉 directed, if for every w ∈ supp(S) we have (S,w) = g(w).

Then it is proved that if a Myhill-Nerode congruence on a unique GCD-monoid
has a finite index and power series are directed, then a minimal sequential transducer
exists.

[7] deals with determinization of transducers over finite and infinite words. There
is mentioned that determininazation of a transducer is a construction of a new
transducer that defines the same function. The function in this text is a relation
defined by transducers, it is a sequence of input and output symbols from an initial
state to a finite state. Then sequential and subsequential functions and the right
congruence over the set of input symbols are described, which allow to construct
a minimal subsequential transducer realizing a function. Then the algorithm for
finding determinization of transducers over finite words is introduced. The second
part of the work deals with determinization of transducers over infinite words and

7



the algorithm which does so.

We can see that all [5], [6] and [7] are involved with finding the minimalization
of transducers. In [5] an equivalence relation on X∗ for minimalization is used, [6]
and [7] follow the Myhill-Nerode theorem and its utilization for minimalization of
automata.

In contrast with these papers, this thesis deals with a study of congruences
defined over a set of states of automata and with finding elementary automaton
state congruences which are the smallest automaton state congruence merging two
distinct states. Notice that elementary congruences can be used for finding the
minimal state automaton congruences described in [3].

8



4 Automaton State Congruences

4.1 Definition of an Automaton State Congruence

An automaton state congruence is an equivalence % on the set Q of states of a
given state automaton M = (Q, X, δ), such that for all states q, r ∈ Q for which
q % r and for all inputs x ∈ X it holds that δ(q, x) % δ(r, x) (see [3], p. 66).1

4.2 Definition of an Output Automaton Congruence

An output automaton congruence is an automaton state congruence that satisfies
that if q % r, then α(q, x) = α(r, x) for all x ∈ X for a Mealy automaton, or
β(q) = β(r) for a Moore automaton (see [3], p. 66-67).

Thus, every output automaton congruence is an automaton state congruence,
but on the other hand not every automaton state congruence is an output one.

Example

Let us consider a Moore automaton, whose transition diagram is displayed in the
following figure.

The equivalence given by a decomposion {{1}, {2, 4}, {3, 5}} is both an
automaton state congruence and an output automaton congruence, and the equivalence
given by a decomposion {{1}, {2, 5}, {3, 4}} is only an automaton state congruence
and not an output automaton congruence, because β(2) 6= β(5) and β(3) 6= β(4).

Figure 2: Example of automaton state and output automaton congruences

4.3 Intersection of Automata Congruences

4.3.1 Proposition

Given two state automaton congruences (output automaton congruences) % and
σ on M , then % ∩ σ is a state automaton congruence (an output automaton
congruence), too.

1In a general case, a congruence relation R is an equivalence relation on some algebraic
stuctureA with operations �1, ..., �n, which is compatible with all of these operations. Equivalent
elements of the structure belong to the same equivalence (congruence) class.

9



4.3.2 Proof

The proof is straightforward, see e.g. [3].

4.3.3 Corollary

Given %1, . . . , %k, k ≥ 1, state automaton congruences. Then
⋂k

i=1 %i is a state
automata congruence, too (see e.g. [3], p. 67).

4.4 Elementary Automaton State Congruence

Given a state automaton M = (Q,X, δ) and two distinct states q, r ∈ Q. The
smallest state automaton congruence %q,r for which q %q,r r is called an elementary
state automaton congruence ([3], p. 263).

4.4.1 Lemma

Let M = (Q,X, δ) be a state automaton and q, r ∈ Q two distinct states. Then
the elementary automaton state congruence %q,r always exists.

4.4.2 Proof

Since ∇ is a state automaton congruence (s∇ t for all s, t ∈ Q), the collection of
all state automaton congruences σ for which qσr is nonempty. The state automaton
congruence %q,r is now the intersection of all σ for which q σ r.

Corollary 4.3.3 finishes the proof.
Note that there is only a finite number of equivalence relations on a finite

set Q.

4.4.3 Theorem

Let M = (Q,X, δ) be a state automaton and q, r ∈ Q two distinct states, (q 6= r).
Then s %q,r t if and only if either s = t, or there exist a1, . . . , ak ∈ X∗ for k ≥ 1 such
that:

s ∈ {δ∗(q, a1), δ∗(r, a1)}, t ∈ {δ∗(q, ak), δ∗(r, ak)}

and for all i = 1, . . . , k − 1 it holds

|{δ∗(q, ai), δ∗(r, ai)} ∩ {δ∗(q, ai+1), δ
∗(r, ai+1)}| ≥ 1

10



4.4.4 Proof

Denote by σ the relation satisfying proposition in 4.4.3. It holds that q σ r.
Indeed, if we put k = 1 and a1 = ε, then δ∗(q, ε) = q and δ∗(r, ε) = r.

We prove that σ is an equivalence relation on A, so we have to prove that the
relation is reflexive, symmetric and transitive.

It is easy to see from the definition that σ is reflexive.
Let us prove symmetry: Take s σ t, {s, t} 6= {q, r}. Then there is a sequence

a1, . . . , ak ∈ X∗, k ≥ 1 with the properties from the proposition. Now the sequence
a′1 = ak, a

′
2 = ak−1, . . . , a

′
k = a1 proves that t σ s.

We show that σ is transitive. Let s %q,r t and t %q,r u. If s = t or t = u,
then we immediately get s %q,r u. Assume that s 6= t and t 6= u. Then there are
a1, . . . , ak ∈ X∗ and b1, . . . , bl ∈ X∗ such that

s ∈ {δ∗(q, a1), δ∗(r, a1)}, t ∈ {δ∗(q, ak), δ∗(r, ak)}

t ∈ {δ∗(q, b1), δ∗(r, b1)}, u ∈ {δ∗(q, bl), δ∗(r, bl)}
|{δ∗(q, ai), δ∗(r, ai)} ∩ {δ∗(q, ai+1), δ

∗(r, ai+1)}| ≥ 1

for i = 1, . . . , k − 1 and

|{δ∗(q, bi), δ∗(r, bi)} ∩ {δ∗(q, bi+1), δ
∗(r, bi+1)}| ≥ 1

for i = 1, . . . , l − 1.

Put ci = ai for i ≤ k, ci = bi−k for i = k + 1, . . . , k + l. Then since t ∈
{δ∗(q, ck), δ∗(r, ck)} ∩ {δ∗(q, ck+1), δ

∗(r, ck+1)}, the sequence c1, . . . , ck+1 guarantees
that the pair (s, u) is related by σ. That means s σ u.

Hence σ is an equivalence relation merging q and r.

Now, we have to prove that σ merges only those states that “have to be merged”.
We prove that if q σq,r r, then for every a ∈ X∗ we have δ∗(q, a)σq,r δ

∗(r, a).
We will prove this by induction on the length |a| of a.

1. Basic step: If |a| = 0 or |a| = 1, then the assertion follows from the definition
of a state automaton congruence.

2. Inductive step: Let us assume that the assertion holds for all a ∈ X∗, |a| = k.
Take a with a length |a| = k+1, a = x1 . . . xk+1. By the induction assumption
we have:

s1 = δ∗(q, x1 . . . xk) σq,r δ
∗(r, x1 . . . xk) = t1 (since |x1, . . . , xk| = k)

From the basic step, if s1 σq,r t1, then δ(s1, xk+1) σq,r δ(t1, xk+1) and

δ(s1, xk+1) = δ∗(q, x1 . . . xk+1);

δ(t1, xk+1) = δ∗(r, x1 . . . xk+1)

Now, since every equivalence relation is transitive, the proof is complete.

11



4.5 Factor State Automaton

Let us consider an automaton M = (Q, X, Y , δ, α) and its automaton state
congruence %. Denote by [q]% the equivalence class of % which contains the state
q ∈ Q.

A factor state automata M̄ is defined as a quintuple M̄ = (Q̄,X, Ȳ , δ̄, ᾱ) (see
[3], p. 171), where:

• Q̄ = Q/% = {[q]%; q ∈ Q}

• Ȳ = Q̄×X

• δ̄([q]%, x) = [δ(q, x)]%

• ᾱ([q]%, x) = ([q]%, x)

Example

A Mealy automatonM = (Q, X, Y , δ, α) is shown in the Figure 3. An equivalence
% such that 2 % 5 and 3 % 4 is an automaton state congruence. A factor state
automaton M̄ = (Q̄,X, Ȳ , δ̄, ᾱ) is defined as Q̄ = {[1] = {1}, [2] = {2, 5}, [3] =
{3, 4}}, X = {a, b}, Ȳ = {([1], a), ([2], a), ([3], a), ([1], b), ([2], b), ([3], b)} and it is
displayed in the Figure 4.

Figure 3: Mealy automaton M

Figure 4: Factor state automaton M̄

12



5 Construction of Elementary Automaton

Congruences

Let us consider a state automaton M = (Q, X, δ) and a pair of states q, r ∈
Q, q 6= r. We will construct the elementary automaton congruence %q,r merging
these two states. During the work of the algorithm, S will denote a decomposion of
the set Q.

At the beginning of the work, S contains one two-element set {q, r}, and all
other sets are singletons.

During the work the following will be true: The decomposion to equivalence
classes of %q,r is “broader” then S, i.e. for every set A ∈ S there is an equivalence
class [p]% such that A ⊆ [p]%.

A reason for making a union of two distinct sets A,B ∈ S is that there are
s, t ∈ C,C ∈ S and x ∈ X such that δ(s, x) ∈ A and δ(t, x) ∈ B. That is why we
will check all distinct pairs (s, t) in some set of S, and if the sets A and B to which
the transition function leads are not equal, we will make a union of A and B. It
guarantees that at the end of the work of the algorithm, i. e. when there are no
s, t ∈ C, C ∈ S and x ∈ X such that δ(s, x) ∈ A, δ(t, x) ∈ B for A 6= B, the set S
will contain complete congruence classes.

We use different marks and pointers in the algorithm:

• C ∈ S is a working set;

• (s, t) ∈ C is a working pair;

• n points to the next state within A ∈ S;

• f points to the first state of the set A ∈ S;

• l points to the last state of the set A ∈ S;

• d points from some state to the “furtherst” processed state within A ∈ S;

• checked(A) = true or false marks if all states of set A ∈ S were tested or not;

• changedC is set to true if the working set C is expanded and s 6= f(C). The
reason is explained in 5.3.1.4.

5.1 Algorithm For Finding Elementary Automaton Congruences

Input: A state automaton M = (Q, X, δ) and a pair of states (q, r) such that
q 6= r.

Output: The elementary automaton congruence %q,r merging q and r given by
its decomposion S.

13



1. Initialize the set S as follows: S := {{q, r}} ∪ {{p}; p ∈ Q \ {q, r}}.
Set C := {q, r}, s := q, t := r, n(q) := r, f (C) := q, l(C) := r, checked(C)
:= false (for all one-element sets A ∈ S it holds that checked(A) := true),
changedC := false;

2. For every a ∈ X:

S1 := find(δ(s, a)), S2 := find(δ(t, a));

if S1 6= S2:

if S1 = C or S2 = C:

if S1 = C:

A := S2;

else

A := S1;

end

C:= C ∪ A; n(l(C)) := f (A), l(C) := l(A);

if |S| = 1

go to step 6;

end

if s 6= f(C)

changedC = true;

end

else

A := S1 ∪ S2; n(l(S1)) := f (S2), f (A) := f (S1),

l(A) := l(S2);

Set a set A as unchecked (checked(A) := false);

end

end

end for

d(s) := t;

3. If changedC = true, then s := f(C), t := n(d(s)), changedC = false and go
to step 2;
If n(t) exists, then t := n(t) and go to step 2;
If n(t) does not exist go to step 4;

4. if n(s) exists and n(s) 6= l(C):

if d(n(s)) does not exist:

t := n(n(s)), s := n(s) and go to step 2;

else

14



if d(n(s)) 6= l(C)

t := n(d(n(s))), s := n(s) and go to step 2;

end

end

end

5. Set checked(C) := true;
If S ∈ S such that checked(S) = false does not exist, go to step 6;
Otherwise, C := S and s := f (C);
If d(s) does not exist (the set is used for the first time):

t := n(s) and go to step 2;

else

t := n(d(s)) and go to step 2;

end

6. The algorithm finishes and returns the set S.

5.2 Speeding Up of the Algorithm

The main disadvantage of the algorithm above is that we have to check all distinct
pairs of states in each equivalence class. Consider the worst case: S contains two
sets S1 and S2, S1 = Q \ {p}, S2 = {p}. So, during the work of the algorithm
(|Q|−1)(|Q|−2)

2
pairs of states as a pair (s, t) were checked. (|Q| is a size of set of states

and |Q| ≥ 3.) Luckily, there exists a possibility to speed the algorithm up.
Suppose that processing set C ∈ S contains three states u, v, w and it holds

for some x ∈ X that δ(u, x) ∈ U, δ(v, x) ∈ V and δ(w, x) ∈ W . In the first cycle
of the algorithm (s, t) := (u, v) and we unify sets U and V , A1 = U ∪ V . In the
second cycle of the algorithm (s, t) := (u,w) and we unify sets A2 = A1∪W , because
U ⊂ A1. It is clear that A2 = U∪V ∪W , so chosing (v, w) as a working pair becomes
redundant. Of course, we would get the same result if we chose (v, w) instead of
(u,w) as the first pair.

The conclusion is the following: It is not necessary to examine all distinct pairs
in a set, we can hold the first state fixed and only move with t or skip some already
checked block of states.

The accelerated algorithm is the same as the original one with a few differences:
the first one is that it is enough to remember just the last processed element in some
set, so d is not a function of a state but of a class now and we remember d(C) = t.

The next differences are that the step 4 is omitted and steps 3 and 5 looks as
the following:

3a. if n(t) exists

if d(s) exists

t = n(d(s)) and go to step 2;

15



else

t = n(t) and go to step 2;

end

end

5a. Set checked(C) := true;
If S ∈ S such that checked(S) = false does not exist, go to step 6;
Otherwise, C := S and s := f (C);
if d(s) exists

t = n(d(s)) and go to step 2;

else

t = n(s) and go to step 2;

end

Note that variable changedC is not used in the accelerated version.

5.3 Correctness of the Algorithm

We have to prove that the algorithm finishes its work and returns the correct
output. We will consider the algorithm presented in 5.1, the proof of the accelerated
version will be similar.

5.3.1 Termination

In the next paragraph we will prove that the algorithm never suddenly finishes
with some error, and never enters an endless loop.

5.3.1.1 Proposition

The algorithm finishes its work after a finite number of steps.

5.3.1.2 Proof

Q contains a finite number of states (|Q| is a size of Q) and in the beginning of
the algorithm |Q| − 1 sets are in S. For some x ∈ X there are two options in step
2: two sets of S are unified, so in S the number of pairs which have to be checked
is increased, but the number of sets is decreased; or the number of pairs which have
to be checked stays the same. In the worst case all sets except one are unified and
the number of states, that we have to consider, is the biggest - because this number
is finite and no pair of states is chosen twice or more times, the algorithm finishes
after a finite number of steps. The same of course applies if the automaton can be
decomposed to more than one equivalence class - because the number of equivalence

16



classes is finite and in each class there is a finite number of states and no pair of
states is taken twice, the algorithm halts.

The fact that no pair is used more than once is proved in the next Lemma.

5.3.1.3 Lemma

If S is the system from the algorithm, then each pair (s, t) for which there is
A ∈ S such that s, t ∈ A will be checked exactly once.

5.3.1.4 Proof

In the original version of the algorithm it is necessary to make sure that each
distinct pair of states is really checked, but to prevent the entering an endless loop
at the same time. We do not have to check other pairs in the case of S contains only
one set (that means %q, r is the universal equivalence class ∇), checking another pair
(s, t) does not cause any change in S, the algorithm halts and returns the correct
output.

We divide the proof into two parts. At first we prove that for each distinct
states s, t ∈ A,A ∈ S the pair (s, t) was checked. To be sure that no pair of
states is omitted (of course except the case above when all states belong to the only
equivalence class), it is important to keep a logical structure in the working set C.
If the working set C is unified with another set, then s from the working pair (s, t)
is set to the first element of the set C and t to the next unchecked state from s
(t := n(d(s))). This assignment is correct, n(d(s)) has to exist because of the union
of sets. This guarantees that, when we get to the end of the working set C, we
can be sure that all distinct pairs of states in C were really taken and there are no
unchecked “isles”.

Secondly, we prove that no pair of states is checked more than once. Let us
consider all possible situations which may occur during the work of the algorithm:

• A working set C is used for the first time:

A working set C always contains two or more elements because it was
either initialized in step 1, or some set A was assigned as C in step 5 (this set
A is a result of an union of sets in step 2, so A contains two or more states).

In both cases the first element of C is assigned as s and the second one
as t (t = n(s)). Then s is fixed and in step 2 t is always “moved” to the next
element until the end of set is reached – if it is so, then the condition that n(t)
does not exist and the algorithm goes to step 5 where a new s is chosen – this
is described in the third item.

• A working set C was already used

In this case a working set C contains one or more completely checked blocks
of states. Because, when we make a union of a working set C and some set A
in step 2, we put the set A behind the set C, one of the already checked blocks

17



is in the beginning of the set C. Hence we set s := f(C) and t := n(d(s)).
The reason for setting s as f(C) is the same as above, d(s) points to the last
checked state from s, so n(d(s) points to the next unchecked state. Note that
n(d(s)) exists – it is the first element of the set A that was unified with the
set C in step 2.

• A working set C contains some already checked section

In this section we will discuss choosing of s in step 4. There are two possible
situations (we consider that the first condition in step 4 is true, otherwise the
whole step and choosing of s are skipped):

If a state assigned as n(s) was never chosen as s before, then s = n(s)
and t= n(n(s)) and the algorithm goes to step 2.

If the state assigned as n(s) was already chosen as s, then a whole
block, which was already checked, exists. If d(n(s)) is not equal to the last
element of C, then (n(s), n(d(n(s)))) has to be an unchecked pair of states. If
d(n(s)) = l(C), we can be sure that all pair of states from n(s) to l(C) were
already checked. Indeed, this block from n(s) to l(C) had to be assigned as a
working set C, so all pairs of these states were already checked.

We have proved that each distinct pair of states is checked at most once. Hence
the algortihm always terminates.

The situation is of course easier in the accelerated version of the algorithm,
because we do not require to check all distinct pairs of states and we simply remember
the last checked state p in some set and new working pair is a pair (p, n(p)) (if n(p)
exists).

5.3.2 Correctness

5.3.2.1 Theorem

The algorithm constructs %q,r.

5.3.2.2 Proof

According to 4.4.3, it suffices to prove that the decomposion S which is returned
by the algorithm satisfies that δ∗(q, a), δ∗(r, a) belong to the same set of S for all
a ∈ X∗.
The work of the algorithm guarantees that for all a ∈ X∗ the states δ∗(q, a) and
δ∗(r, a) will belong to i. e. the same A ∈ S, to the same equivalence class of %q,r.
We prove it by induction on a length |a|.

1. Basic step: If a = ε then δ∗(q, ε) = q and δ∗(r, ε) = r, q and r belongs to the
set C (initialisation).

18



2. Inductive step: Let δ∗(q, a) and δ∗(r, a) belong to the same set of S for all
a ∈ X∗, |a| = k, k ≥ 1. Let b ∈ X∗ have a length |b| = k+ 1. Then b = ax for
some x ∈ X.

By the induction assumption, s1 = δ∗(q, a) and t1 = δ∗(r, a) belong to
the same S ∈ S. Since all pairs of S are checked, also s, t are checked for
x ∈ X and step 2 guarantees that δ∗(q, b) = δ(s1, x), δ∗(r, b) = δ(t1, x) will be
in the same set of S.

The transitivity is guaranteed by the fact that we make a decomposion
of S. This completes the proof.

5.4 The Estimation of the Worst Processing Time of the
Algorithm

5.4.1 Original Version

5.4.1.1 Proposition

The worst processing time of the algorithm is asymptotically equal to O(|Q|2|X|).

5.4.1.2 Proof

As it was said in 5.2, the worst situation occurs when S contains two sets and
one of them is one-element. In this case we have to check (|Q|−1)(|Q|−2)

2
pairs of states,

so duration of the outer loop of the algorithm (until all distinct pairs are taken) is
asymptotically equal to O(|Q|2). This number cannot be bigger, because no pair of
states is chosen twice or even more on account of using pointers d().

The inner loop of the algorithm takes place in step 2. This loop repeats itself
for each x ∈ X so it is asymptotically equal to O(|X|), where |X| is the size of the
set X. All unions of sets take a constant amount of time because of using pointers
n, f and l.

Steps 1, 3, 4, 5 and 6 also take a constant time because of using pointers.
In summary, the worst processing time of the algorithm is asymptotically equal

to O(|Q|2|X|).
We assume that a finding of a set and an union of two sets take a constant

time. More through discussion will be found in chapter 6.

5.4.2 Accelerated Version

5.4.2.1 Theorem

The worst processing time of the accelerated version of the algorithm is asymptotically
equal to O(|Q||X|).

19



5.4.2.2 Proof

The omitting of the step 4 in the accelerated version of the algorithm does not
cause any change in the worst case analogous estimation, because step 4 has a
constant duration.

The same holds for a modification of function of the pointer d - there is no
change of the estimation again.

The estimation of duration of the outer loop is of course different. The number
of taken pairs of states decreases to |Q| − 1 in the worst case, so the duration is
asymptotically equal to O(|Q|).

The duration of the accelerated version is asymptotically equal to O(|Q||X|)
overall.

20



6 Implementation of the Algorithm

In this section we will focus on implementation of both versions of the algorithm
described in the previous chapter. There we considered sets as something “abstract”
and we did not handle how to represent them in a computer. However, it is imporant
to find a way how to do so. Luckily, an algorithm exists which solves this problem.

The algorithm from chapter 5.1 was implemented in Matlab version R2014a
using the CTU licence for students.

6.1 Representing of the Set Structure and Initialization

Let M = (Q,X, δ) be a state automaton, |X| = l, |Q| = m.
Let us assume that states are assigned by numbers from 1 to m. It can always

be done without loss of generality because two automata will be equivalent if they
differ only in names of states.

Let δ be represented by an array delta on the size m × l where transitions
are stored. So, if for a, b ∈ Q, x ∈ X it holds that δ(a, x) = b, it is represented as
delta(a, x) = b.

Let us assume that all sets S ∈ S are represented by its first element. It helps
us to hold information which set is checked and which is not by creation of an array
checked for which it holds: if a ∈ Q is the first element of some unchecked set S ∈ S,
then checked(a) = 0 and for all elements b ∈ S, b 6= a it holds checked(b) = 1. Of
course, if a set S ∈ S is completely checked, then for all elements a ∈ S it holds
that checked(a) = 1. Let us remind that, in the initilazation of the algorithm, S
contains one two-element set {q, r} and other sets are singletons. So checked is an
array of ones, the only exception is that checked(q) = 0.

To implement step 2 in the algorithm, we have to find a way to easily get a set
to which some element belongs (so-called operation find). So, we need a representant
of every set to which all elements from some set will point to. Because we already
use the first element of a set as its representant, we do it also in this case. Now
it is very straightforward to use the union-find algorithm described in [8] and [9]
using two heuristic for improving the processing time, in [8] they are assigned as the
collapsing rule and the weighted union rule, in ([9], p. 569) as the path compression
and the union by rank.

In the accelerated version of the algorithm we can use both of these heuristic,
but in the original version if we make an union of a working set C with another set
A we are not able to use the weighted union rule. When we use weighted union rule
after an union of two sets the smaller set is a successor of the bigger one. In our
case a working set C has to always be an ancestor of a set A to keep the structure
of C.

Changes appear in the case of the accelerated version too. Because we use the
weighted union rule, it can easily happen that the working set C gets behind another
(bigger) set. In this case, we have to the first element of the unified set assigned as
s to keep the information which pairs of states were checked and which were not.

21



In our description of the algorithm we assumed that operations find and union
take a constant time. Of course, it does not hold anymore when we use the union-find
algorithm. Let us denote by k a number of union operations and by m a number
of find operations. According to [10], if m ≥ k and we use union by rank and path
compression, then the worst processing time is Θ(mα(m, k)), where α is the inverse
Ackermann function, when we use naive linking (union) and path compression, then
the worst processing time is Θ(m log k). If m ≤ k, and we use both union by rank
and path compression, then the worst processing time is Θ(k+mα(k, k)), when we
use only a path compression, then the worst processing time is Θ(k+m log k). Note
that in our case the number of operations find is always bigger than the number of
union operations.

Let us go back to describing the implementation. We need only to remember
some “set index” (this means the first element of a set which is assigned as C) to
represent the working set C.

Implementation of pointers n and d is very straightforward, both are implemented
as arrays of size 1 × m. The same holds for the pointer l. Let us assume that
a ∈ S, S ∈ S is the first element of S. If l(a) = b, it means that b is the last element
of set S.

6.2 Code

The attached CD contains the following:

Data that we used for testing the algorithm, they include data sets we will
describe in the next chapter. They are called: 10-60.mat, 10-60 ns.mat, 100-1000.mat,
100-1000 ns.mat, 10000-100000.mat, trans by 5.mat, trans by 10.mat, 30trans.mat.
Note that these data sets contain arrays with transitions.

main.m is the script, from which the program is launched, and where an array
delta is loaded from data files, and a pair (q, r) is defined.

Functions which are used for finding the elementary congruence:

• elementary congruence.m:

Input: an array delta, a array qr of size 1× 2 containg a pair (q, r), ver
= 1 (the original version) / 2 (the accelerated version)

Output: array output of size 1×m containing for all elements a number
to which equivalence class belong

It is the main function, body of the program, from which all another
functions are called, structure of this function matches the structure of the
algorithm represented in 5.1.

• init.m:

Input: delta, qr

Output: A structure output of the array st of the size 1 × 2 which
contains states s and t, c index which is the number of the set C and the

22



array init arrays which is two dimensional array of the size 5×m, where rows
correspond to the arrays checked, first element, n, l and d.

In this function structures are initialized that are used during the work
of the algorithm. This function is called in the beginning of the fuction
elementary congruence.m.

• finding.m:

Input: array x of elements S1 and S2 (see in 5.1), arrays first element
and l

Output: array o of are the first elements of the set to which S1 and S2
belong, modificated arrays first element and l

Function for finding the representant of sets. There is modificated an
array first element and l too to holding the information to which class some
element belongs.

• union.m:

Input: numbers a, b which represent the set we want to make a union
of, first element, n, l, checked, c index, optional argument which it is used
only if elements are added into the working set C in the original version.

Output: changed arrays first element, n, l, checked, c index

Function which makes a union of two sets. The reason, why c index is
one of input arguments a output ones too, is the following: When we use the
accelerated version and we make a union of a working set C and some bigger
set, we have to s assign as the first element of the bigger set to get correct
output.

• get st :

Input: st, c index, first element, n, l, d, ver and the optional argument
which is used only if elements are added into the working set C in the original
version.

Output: changed st

Finds new (s, t) according to the conditions of one of individual versions.
If new (s, t) is not found, either st(1) or st(2) contains a zero which it is used
as a condition for the entering function get C.

• get C :

Input: checked, st, c index, first element, n, d, ver

Output: changed checked, st and c index

Returns an index of a unchecked set a initializes new (s, t). If all sets are
checked, then program halts (after a condition in elementary congruence).

• write classes :

Intput: first element, Output: classes

Returns all states of a automaton decomposed to the equivalence classes.

23



7 Experiments

In this section we will discuss the differences of both versions of the algorithm due
to the real processing time. The program was launched on a processor Intel Core
i3, the results will be of course different when we will use another processor, but it
suffices to have an idea if the accelerated version is really faster than the original
one (as we suppose) and to find the limits of the algorithm.

Both versions of the algorithm run under the same conditions on the same
data set to get the best comparison of them.

7.1 Data

In this paragraph we will introduce the data we used for testing. We had available
two kinds of automata: The first group let us call as trivial automata, the automata
which have only two congruences – the indentical and the universal congrueneces.
The second group we will call nontrivial automata. These are the automata which
have some nontrivial congruence. The reason, why we chose to testing both groups,
is the following: States of trivial automata will belong to the only congruence class
in the end of the running of the algorithm, so we expect that durations of both
version of the algorithm will be almost the same. On the other hand, if a nontrivial
congruence exists, we expect that the accelerated version will be faster than the
original one.

For testing we used automata of various sizes, the list of them follows:

• five trivial automata, five nontrivial automata of the size |Q| = 10, . . . , 60,
|X| = 2;

• two trivial automata, two nontrivial automata of the size |Q| = 100, . . . , 1000,
|X| = 2;

• one trivial automaton of the size |Q| = 100, . . . , 1000,
|X|= 5.(|Q|/100);

• one trivial automaton of the size |Q| = 100, . . . , 1000,
|X|= |Q|/10;

• one trivial automaton of the size |Q| = 100, . . . , 1000,
|X|= 30;

• one trivial automaton of the size |Q| = 10 000, |X|= 2;

• one trivial automaton of the size |Q| = 100 000, |X|= 2;

The processing time of the algorithm on a automaton also depends on choosing
(q, r). Because of it we launched the algorithm on small automata (ten to sixty
states) with all distinct combinations of (q, r) and then made an average of given
processing times. Each of these settings we launched ten times, because processing
times were small and results could be changed just because of the running of the

24



computer.
On bigger automata we did not use all combinations of (q, r) (e.g. for 100

states we will have to run the program for almost five thousand of pairs (q, r)), we
randomly chose a few distinct pairs (q, r), then we run algortihms on them and also
made an average of given durations.

When there were more than one automata of a category (e.g. five trivial
automata of ten states), we made an average of their processing times, when there
was only one automaton of one setting, we launched the algorithm on this automaton
more times and then made an average of these durations.

7.2 Results

Note that in this paragraph we will write OA when we used the original algorithm
and AA when we used the accelerated version. Trivial automata are assigned as T ,
nontrivial automata as N .

7.2.1 Automata of 10-60 States

We used for testing trivial and nontrivial automata with number of states from
ten to sixty and with two input symbols. The durations of both versions of the
algorithm you can find in Appendix in the Table 2. In the Figure 6, times of the
original version running on trivial and nontrivial automata are compared and you
can see the same for the accelerated version in the Figure 7. Durations between
the original and the accelerated version running on trivial automata are plotted in
the Figure 8, running on nontrivial automata is displayed in the Figure 9.

We can see that the difference of durations of both versions on trivial automata
is minimal, the accelerated version is faster on nontrivial automata than the original
version, and moreover the duration of accelerated version on both groups of automata
is almost the same.

We can see on graphs that all running times resemble linear.

7.2.2 Automata of 100-1000 States

The situation here is almost the same as in 7.2.1. We can see measured values in
Appendix, in the Table 3. We split the graph of durations of the original algorithm
on trivial and nontrivial automata to two graphs Figure 10 and Figure 11 to
preserve legibility. In the Figure 12 we can see comparison of times of the accelerated
version of the algorithm on trivial and nontrivial automata. We see comparison
of original and accelerated version on trivial automata in the Figure 13 and on
nontrivial automata in the Figure 14.

Results are similar as before. The accelerated version runs almost equally on
trivial and nontrivial automata, the original version is slower on nontrivial automata
than on trivial ones. The running time of the original version on nontrivial automata
seems to be quadratic, this responds to the proposition we made in 5.4.1.1.

7.2.3 Automata With More Than Two Input Symbols

The next question is if various size of |X| affect the processing time of the

25



algorithm. We will use only trivial automata. In the previous paragraph, we saw
that if |X| = 2, then processing times of both versions of the algorithm are almost
the same. We would like to figure out if a bigger size of |X| will cause any changes.

Versions of the algorithm are launched on automata that have from hundred
to thousand states. In the first data set, the size of |X| is incremented by five (so if
an automaton has hundred states, |X| = 5, if an automaton has two hundred states,
|X| = 10, etc.), in the second data set the size of X is incremented by ten (if |Q| =
100, |X| = 10, if |Q| = 200, |X| = 20, etc.) and the size of |X| is always 30 in the
third data set.

The measured values are in the Table 4 for the original version and in the
Table 5 for the accelerated version. In the figures Figure 15 (the original version)
and Figure 16 (the accelerated version) these values are plotted. We can see that
all values are practically the same. The same result we get if we compare original
and accelerated version (Figure 17: |X| is incremented by five, Figure 18: |X| is
incremented by ten, Figure 19: |X| = 30).

The results are interesting, because we expected that the more input symbols
are the faster all states get into one class. It is probably caused by the structure of
tested automata, where many input symbols point to states that was already in C.

7.2.4 Automata With Big Number of States

We compared both versions of the algorithm on big data sets – on nontrivial
automata with ten thousand and hundred thousand states. You can find measured
values in the Table 6 in Appendix.

It is clear why chosing of the accelerated version of the algorithm is more
preferable. The duration of the accelerated version on one hundred thousand states
took about ten minutes, the original version took couple hours already on ten
thousand of states.

7.2.5 Conclusion

Let us summerize what we obtained in this section. It does not matter whether we
will use the original or the accelerated version of the algorithm on trivial automata,
the accelerated version is only slightly faster. When we examine nontrivial automata,
the best choice is choosing the accelerated version. Because in practice, we often
cannot know if an automaton is trivial or nontrivial, we recommend to always use
the accelerated version.

We also saw that size of the set |X| does not affect the processing time of the
algorithm on trivial automata. As we mentioned in 7.2.3, it is probably caused by
the structure of examined automata.

26



8 The Smallest Automaton State Congruence Containing

a Relation

In the fifth chapter we introduced an algorithm for finding elementary automaton
state congruences which takes a state automaton M = (Q,X, δ) and two distinct
states q, r ∈ Q, q 6= r as an input and returns the elementary automaton state
congruence that merges these two states q and r.

Let us consider a slightly different problem: Let be M = (Q,X, δ) a state
automaton andR a relation onQ. We would like to construct the smallest automaton
state congruence % that contains R. This problem can be solved by a modification
of the algorithm from chapter 5, we will use the accelerated version.

1. Construct a set C of connected components of the graph G = (V,R).
Put S := C.
For all S ∈ S, S = {a1, . . . , ak}, |S| ≥ 2:

For all i = 1, . . . , k − 1;

n(ai) := ai+1;

end

end

Choose S ∈ S, |S| ≥ 2, put C := S.
checked(C) := false, s := f(C), t := n(s).
For all A ∈ S, A 6= C, |A| ≥ 2 set checked(A) := false.

2. For every a ∈ X:

S1 := find(δ(s, a)), S2 := find(δ(t, a));

if S1 6= S2:

if S1 = C or S2 = C:

if S1 = C:

A := S2;

else

A := S1;

end

C:= C ∪ A; n(l(C)) := f (A), l(C) := l(A);

if |S| = 1

go to step 5;

end

else

A := S1 ∪ S2; n(l(S1)) := f (S2), f (A) := f (S1),

l(A) := l(S2);

27



checked(A) := false;

end

end

end for

d(C) := t;

3. if n(t) exists

if d(s) exists

t = n(d(s)) and go to step 2;

else

t = n(t) and go to step 2;

end

end

4. Set checked(C) := true;
If S ∈ S such that checked(S) = false does not exist, go to step 5;
Otherwise, C := S and s := f (C);
if d(s) exists

t = n(d(s)) and go to step 2;

else

t = n(s) and go to step 2;

end

5. The algorithm finishes and returns the set S.

Proof of the correctness of this algorithm is very similar to the one from 5.3 and
we omit it. The same holds for the estimation of the worst processing time.

Note that the algorithm described in 5.1 is the special case of this algorithm
where R = {(q, r)}.

Example

Consider a state automaton M = (Q,X, δ), Q = {1, 2, 3, 4, 5, 6, 7}, X = {a, b}
which is displayed in the Figure 5 and a relation R which is defined as: for p, o ∈ Q
it holds that pRo when δ(p, b) = δ(o, b). We can see that the relation R decomposed
states of the automaton to the equivalence classes: [1]R = {1, 2, 5}, [2]R = {3, 4},
[6]R = {6, 7}.

When we prepare an input as it was described above and launch the algorithm
on it, we will get S = {{1, 2, 5}, {3, 4, 6, 7}}, which is the smallest automaton state
congruence % containing the relation R. A factor state automaton M̄ = (Q̄,X, δ̄),
where Q̄ = {[1]% = {1, 2, 5}, [3]% = {3, 4, 6, 7}}, corresponds to the state automaton
M . We see that the smallest automaton state congruence contains R.

28



Figure 5: State automaton M

29



9 Conclusion

Let us summerize the content of this thesis. We have introduced an elementary
automaton state congruence and we have proved that this congruence always exists.
Then we brought in two versions of an algorithm for finding this congruence, proved
its correctness, estimated the worst processing time, and then describted its
implementation. We discussed results on various data sets and proved that it is
more advantageous to use the accelerated version than the original one. We also
introduced known results in the area of studying automata congruences.

We believe that presented algorithm will be interesting for people involved in
the study of finite automata and will be helpful in practice. Finding of minimal
automaton state congruences is other not fully discovered field. In [3] the algorithm
for finding the minimal automaton state congruence is introduced, it will be interesting
to implement it and also discuss the results on examples. The algorithm for finding
the elementary automaton state congruence can help in constructing of the minimal
ones.

30



References

1: Hopcroft, J. E., Motwani R., Ullman J. D. (2001) Introduction to
Automata Theory, Languages, and Computation, second edition, Addison-Wesley,
Chapter 1: The Methods and the Madness, p. 1-36,

ISBN: 0-201-44124-1

2: Demlová M. (2014) Lectures to Jazyky, automaty, gramatiky on CTU,
FEE

URL: http://math.feld.cvut.cz/demlova/teaching/jag/predn jag.html

3: Demlová M., Koubek V. (1990) Algebraická teorie automat̊u, Nakladatelstv́ı
technické literatury

IBSN: 80-03-00348-2

4: Kozen D. (2008) Lectures to Theory of Computation on Cornell University,
FCCS

URL: http://www.cs.cornell.edu/Courses/CS682/2008sp/Handouts/MN.pdf

5: Mohri M. (1996) Minimalization algorithms for sequential transducers,
AT&T Laboratories, 177-201

URL http://www.sciencedirect.com/science/article/pii/S0304397598001157

6: Malleti A. Myhill-Nerode Theorem for Sequential Transducers over Unique
GCD-Monoid, Dresden University of Technology, D-1062

URL: http://www.ims.uni-stuttgart.de/institut/mitarbeiter/maletti/pub/mal04b-full.pdf

7: Béal M., Carton O. (2001) .Determinization of transducers over finite
and infinite words, Universite de Marne-la-Vall, 255-251

URL: http://www.sciencedirect.com/science/article/pii/S0304397501002717

8: Tarjan, R. E. (1975) Efficiency of a Good But Not Linear Set Union
Algorithm, Journal of the ACM (JACM), p. 215-225

URL: http://dl.acm.org/citation.cfm?id=321884

9: Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C.
(2009) Introduction to Algorithms, third edition, MIT Press and McGraw-Hill, Chapter
21: Data Structures of Disjoint Sets, p. 561-585

IBSN: 978-0-262-03384-8

10: Tarjan, R. E., van Leeuwen, J. (1984) Worst-case Analysis of Set
Union Algorithms, Journal of the ACM (JACM), p. 245-281

URL: http://dl.acm.org/citation.cfm?id=2160

31



10 Appendix

A Tables

Table 2: Automata of 10-60 states

All values are in seconds.

10 states 20 states 30 states 40 states 50 states 60 states
OA, T 0.00158 0.00238 0.00444 0.00524 0.00615 0.00784
OA, N 0.00285 0.01257 0.02384 0.05395 0.06205 0.07391
AA, T 0.00110 0.00205 0.00417 0.00511 0.00604 0.00731
AA, N 0.00102 0.00227 0.00319 0.00521 0.00584 0.00671

Table 3: Automata of 100-1000 states

All values are in seconds.

100 states 200 states 300 states 400 states 500 states
OA, T 0.01189 0.02396 0.03855 0.04779 0.06552
OA, N 0.21344 1.01214 2.22224 2.12883 6.54510
AA, T 0.01261 0.02334 0.04149 0.04315 0.06155
AA, N 0.00940 0.02063 0.03241 0.03806 0.05362

600 states 700 states 800 states 900 states 1000 states
OA, T 0.07724 0.09685 0.12572 0.15453 0.17232
OA, N 9.68674 12.55752 18.17188 22.35938 30.64867
AA, T 0.07428 0.09428 0.11896 0.14456 0.16235
AA, N 0.07295 0.08046 0.09848 0.11126 0.12941

I



Table 4: Automata with more input symbols, the original version

All values are in seconds.

100 states 200 states 300 states 400 states 500 states
|X|= 5.(|Q|/100) 0.01372 0.03272 0.04717 0.07634 0.09451
|X| = |Q|/10 0.01161 0.02448 0.04538 0.06535 0.07798
X = 30 0.00966 0.03423 0.05379 0.06167 0.07477

600 states 700 states 800 states 900 states 1000 states
|X|= 5.(|Q|/100) 0.12046 0.14077 0.19933 0.20956 0.23842
|X|= |Q|/10 0.11834 0.15942 0.15486 0.16746 0.18951
X = 30 0.139284 0.13172 0.20680 0.21184 0.23609

Table 5: Automata with more input symbols, the accelerated version

All values are in seconds.

100 states 200 states 300 states 400 states 500 states
|X|= 5.(|Q|/100) 0.01390 0.03541 0.04647 0.08994 0.09818
|X| = |Q|/10 0.01103 0.03018 0.04660 0.06629 0.06958
X = 30 0.01096 0.03232 0.05430 0.05888 0.07694

600 states 700 states 800 states 900 states 1000 states
|X|= 5.(|Q|/100) 0.12250 0.14068 0.16766 0.20435 0.27684
|X|= |Q|/10 0.10687 0.16071 0.16177 0.17576 0.19328
X = 30 0.14598 0.12277 0.20513 0.22235 0.23175

Table 6: Automata of 10 000 and 100 000 states

All values are in seconds.

10 000 states 100 000 states
OA 23 075.705 –
AA 4.696 604.461

II



B Graphs

Figure 6: Original version running on trivial and nontrivial automata of 10-60 states

Figure 7: Accelerated Version running on trivial and nontrivial automata of 10-60
states

III



Figure 8: Comparison of OA and AA running on trivial automata of 10-60 states

Figure 9: Comparison of OA and AA running on nontrivial automata of 10-60 states

IV



Figure 10: The original version running on trivial automata of 100-1000 states

Figure 11: Original version running on nontrivial automata of 100-1000 states

V



Figure 12: Accelerated version running on trivial and nontrivial automata of
100-1000 states

Figure 13: Comparison of OA and AA running on trivial automata of 100-1000
states

VI



Figure 14: Comparison of OA and AA running on nontrivial automata of 100-1000
states

Figure 15: Original version running on trivial automata with more input symbols

VII



Figure 16: Accelerated version running on trivial automata with more input symbols

Figure 17: Comparison of OA and AA running on trivial automata with input
symbols incremented by 5

VIII



Figure 18: Comparison of OA and AA running on trivial automata with input
symbols incremented by 10

Figure 19: Comparison of OA and AA running on trivial automata with input
symbols equal to 30

IX



C Contents of CD

Attached CD contains the following:

• Electroning version of this thesis in PDF format

• Folder called program containing the source code describted in 6.2

X


