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Abstrakt / Abstract
Tato práce je zaměřena na plánovací

a zkracovací algoritmus produkující
hladké trajektorie pro roje vzájemně
kooperujících bezpilotních helikoptér
podléhajících omezením na vzájemné
vzdálenosti a kolize s překážkami.

Jejich úkolem je nalézt cestu prostře-
dím s překážkami a monitorovat cílovou
oblast pomocí zabudovaných kamer.

Následující postup byl inspirován ně-
kolika vyhlazujícími a optimalizačními
algoritmy používanými v mobilní robo-
tice.

Algoritmus generuje trajektorii v pro-
středí s překážkami použitím variace ra-
pidně rostoucího náhodného stromu.

Pro vyhlazení trajektorie na ní al-
goritmus opakovaně vybírá dva body a
snaží se nahradit díl mezi nimi kratší,
splnitelnou trajektorií.

Body trajektorie jsou následně posou-
vány v jejich nejbližším okolí pro nale-
zení lokální nejkratší splnitelné trajek-
torie.

Výsledky ukazují účinnost optima-
lizační části. Vzhledem k nedostatku
funkčního vybavení bylo experimentální
testování provedeno jen v robotickém
simulátoru.

Klíčová slova: mikroletoun; bezpi-
lotní letou; bakalářská práce; vzájemná
lokalizace; plánování trasy; zkracování;
optimalizece; rapidní náhodný strom;
mobilní robotika.

This thesis considers a planning
and shortcutting algorithm producing
smooth trajectories for swarm of closely
cooperating micro aerial vehicles sub-
jected to proximity constraints and
collision constraints.

Their task is to find a way through en-
vironment with obstacles and use their
onboard cameras for surveillance of tar-
geted zone.

The following approach takes inspi-
ration in number of various trajectory
smoothing and optimization algorithms
used in mobile robotics.

The algorithm generates a trajectory
in environment with obstacles using a
variation of rapidly exploring random
tree.

To smooth the trajectory it repeat-
edly picks two points on it. Then it at-
tempts to replace the segment between
these points with a shorter, feasible tra-
jectory.

The points of the trajectory are then
shifted in their proximity to find the lo-
cal shortest feasible trajectory.

The results show efficiency of the op-
timization part. Due to lack of function-
ing equipment, experimental testing has
been done only in robotic simulator.

Keywords: micro aerial vehicle; un-
manned aerial vehicle; bachelor thesis;
mutual localization; path planning;
shortcutting; optimization; rapid ran-
dom tree; mobile robotics.
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Chapter 1
Introduction

Autonomous robots today are faced with many tasks such as generating safe collision
free trajectories, cooperating with other autonomous robots, finding a path in unknown
environment, and keeping a natural looking motion. The latter is often omited at the
expense of functionality or optimality of the first three.

This paper focuses on trajectories generated with cooperative behaviour of unmaned
aerial vehicles (UAVs) in mind. More specificaly multirotor helicopters, also known as
quadcopter, hexacopters, octacopter, depending on their amount of rotors, or simply
multicopters.

The multicopter trajectory planning problem is inherently different from the trajec-
tory planning problem for other kinds of unmaned aerial vehicles incapable of hovering
state. As those non-helicopter aerial vehicles depend on constant propulsion and wing
generated upward lift to stay in the air, they have severe constraints on trajectory
curvature due to their heading rate constrains as well as minimum velocity constraints.

Althought the task considered by this paper has less problems with dynamics con-
straints of vehicles involved, it encounters problems with their mutual localization. The
helicopters use their on-board cameras to determine their position within the swarm,
and thus are able to travel in a group without collision.

The goal of this thesis is to design and implement trajectory planning algorithm for a
multi-robot application described at the end of chapter 2.1. Next step is to learn various
trajectory smoothing algorithms. Then, with their inspiration, design and implement a
method that will smooth and optimize trajectories generated by the previous algorithm.

This paper is organized as follows. First part 2.1 of this thesis takes a closer look at
UAVs and their problems related to their usage in a multi-robot application described
at the end of said chapter.

Following chapter 3 briefly describes a number of various trajectory smoothing algo-
rithms. Then it presents an opinion on their relevance to the specific application from
second chapter, or which parts of them might be used or adjusted for that application.

After briefly explaining these various approaches, the solution itself is presented 4.
The solution was divided into three seperate parts. First part starts with explanation of
the original path planning algorithm and its modifications making it usable for multi-
robot application. Second part describes smoothing process inspired by preivously
stated smoothing approaches. And last part explains how the obtained trajectory is
optimized and what sort of demands does it put on the previous part.

The functionality of proposed algorithm has been tested on series of runs. It has also
been tested in virtual simulator, which is shortly presented. The results are presented
and discussed in chapter 5
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Chapter 2
Micro Aerial Vehicles

Military aircraft design has recently focused on the development of UAVs1). This class
of aircraft has been successfully adapted to perform many of the same roles as manned
aircraft but at lower cost. The absence of a pilot on board eliminates many of the
safety and life support requirements as well as physical limitations, and also changes
the control objectives. For example, rapid acceleration or aggressive maneuvering can
hinder a pilot’s ability to control the aircraft but do not affect the control system of a
UAV. Therefore UAVs can be utilized in many more applications than manned aircraft.

Micro aerial vehicles (MAVs) are a class of unmaned aerial vehicles limited by size,
often small enough to be man-portable. MAVs are far more common in civil use, as
it is much simplier for ordinary hobbist to become owner of a multicopter 2) than to
become owner of a military drone3).

2.1 Multicopters
A sub-class of MAVs are multi-rotor helicopters which have recently become very pop-
ular. Their use has spread from military and research purposes to civil and hobby
purposes. Example of a civil use is Amazon Prime Air project 4) currently in develop-
ment, which hopes to achieve package delivery via multirotor helicopters.

The reason unmaned multicopters became the most popular of all the variety of
MAVs is their simplicity and safety. Compared to winged, jet propelled drones, multi-
copters are much more suitable for urban environment due to their ability to hover in
place and taking very sharp turns. Furthermore multicopters can also fit their blades
with protective frames, which makes them suitable for inside use with minimal risk of
damaging the blades or obstacles in case of collision.

However, multicopter are far less stable than their single rotor counterparts. They
are so unstable, they require on-board flight controller to stay in the air. Without one,
they are unflyable by a human operator. Althought this seems like a huge disadvantage,
the mechanical simplicity greatly outweights all advantages that conventional helicopter
has on multicopters. As nearly any home-made design is flyable with sufficient amount
of rotors and properly tuned controller5).

1) PopularMechanics.com, The Future For UAVs in the U.S. Air Force http://www.popularmechanics.
com/military/a5383/4347306/
2) Ebay.com, search result for quadcopter http://www.ebay.com/sch/i.html?_from=R40&_trksid=
p2050601.m570.l1313.TR0.TRC0.H0.Xquadcopter.TRS0&_nkw=quadcopter&_sacat=0
3) telegraph.co.uk, How to buy an American military drone http://www.telegraph.co.uk/news/
worldnews/northamerica/usa/11419566/How-to-buy-an-American-military-drone.html
4) Amazon.com, Amazon Prime Air http://www.amazon.com/b?node=8037720011
5) Forbes.com, Various news and articles http://www.forbes.com/sites/quora/2013/12/23/
what-makes-the-quadcopter-design-so-great-for-small-drones/
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Figure 2.1. multicopter blades rotations 1)

As mentioned above, multicopters have no mechanical parts, except for the motors,
and all control is done by adjusting the speed of individual blades. Each blade spins in
opposite direction from the blades next to it. It turns by speeding up blades spinning
in one direction and slowing down blades spinning in the opposite direction. It rolls by
speeding up blades on one side and slowing down blades on the other side. Horizontal
motion is accomplished by speeding up all blades while the multicopter is leaning in the
direction of travel. Slowing down or stopping is done in the same manner, by leaning
in the opposite direction of travel and speeding up all the blades.

Figure 2.2. multicopter horizontal motion 1)
1) ThomasTeisberg.com, Autonomously-Stabilized Quadcopters www.thomasteisberg.com/quadcopters
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2. Micro Aerial Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Multi-robot application

The goal of the application [1] used in this paper is to guide a swarm of mutually
localized MAVs through an environment with obstacles to a goal area, which needs to
be monitored using their on-board cameras.

This application has two major problems distinguishing it from most path planning
tasks.

First problem is, there is no set ending location or position. Usually there is a given
point or location that must be reached. A set end position allows for algorithms, that
search a path from both the start and the end. A set end position also allows for
greedier search in its direction. In this case the goal is to monitor as much predefined
area as possible, but the swarm has to find a viable position on its own.

Second problem is the mutual localization. In most path planning tasks, the only
limitations are obstacles in the way, and robots dynamic properties, such as its turning
radius. In a cooperating group application, the MAVs have to stay within each others
field of vision, which is also limited in maximum distance given by the resolution of
their on-board cameras.

It is apparent, that to generate a trajectory in this application, a path planning
algorithm is needed as well as some sort of heuristic for finding a viable distribution
of MAVs above the goal area. Rapidly exploring random tree [8] (RRT) was chosen
for this task. RRT is relatively easy to implement, which makes it ideal candidate for
being experimented on. It will have to be modified in order to plan for a group of
robots, instead of a single robot. It will have to respect new conditions given by mutual
localization. And lastly, a modification for optimized search will be attempted.

The problem could also be simplified into 2 dimensions. As the multicopters need
to be all at approximately the same altitude, which will be given by their onboard
surveillance camera. That is altitude at which they see the most area, while still having
sufficient picture quality needed for surveillance.

4



Chapter 3
Smoothing approaches

A number of different approaches for trajectory smoothing is presented in this chapter.
Each one of them will be briefly described along with explanation why it is, or isn’t
applied to the final solution offered by this paper. Their options of collision checking
are also important, as those will have to be expanded on mutual localization checking.

3.1 Fast smoothing of manipulator trajectories using
optimal bounded- acceleration shortcuts

This paper [2] presents a shortcutting heuristic. This heuristic repeatedly picks two
points on a given trajectory of a manipulator and attempts to interpolate a new collision-
free segment between the two endpoints with specified velocity. These segments consist
of parabolic and straight-line curves.

This heuristic uses a recursive bisecting technique [7] to check for collision with
obstacles. It rejects the simplier method of discretizing the curve to resolution ε and
checking for collision in each point due to demands on algorithm speed. If ε is too small,
the checker would be too slow, but if ε is not small enough, the chance of missing a
collision rises.

To put it simply, the bisecting techniqu covers the segment with a neighborhood
which is checked for collision. In case of collision, the segment is bisected and both
segments are covered with new neighborhoods. The bisecting point is also covered with a
robot-environment distance neighborhood. If the points neighborhood detects collision,
the segment has collision. If one of the bisected neighborhoods detects collision, it is
recursively bisected.

This method was picked for its major effect on resulting trajectory length. It may
need to be simplified to straight lines instead of parabolic curves, before being modified
for multi-robot application.

3.2 Trajectory Smoothing Algorithm Based on
Empirical Mode Decomposition

This paper [4] puts forward a novel trajectory smoothing algorithm based on empirical
mode decomposition which is mainly used for decomposition of signals. In this method,
the x and y coordinates series of the trajectories are thought of as individual signals
and they are respectively decomposed into different frequency parts through empirical
mode decomposition. Then the high frequency parts of the coordinates are adaptively
discarded. Finally the residual and low frequency intrinsic mode functions are retained
as the smoothed result.

This approach provides convenient results in terms of trajectory smoothing for any
robot. However it isn’t easily appliable to the multi-robot application considered in
this paper, as there wasn’t any uncomplicated way to account for the restrictions given
by mutual localization of the swarm during the decomposition.

5



3. Smoothing approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Trajectory Smoothing Using Motion Primitives

The approach proposed in this paper [5] takes as input a sequence of waypoints con-
nected by straight flight trim conditions, and “smooths” it in an optimal way with the
goal of making it compatible with the vehicle dynamics. The smoothing step is achieved
by selecting appropriate sequences of alternating trims and maneuvers from within a
precomputed library of motion primitives. The idea here is to make the resulting tra-
jectory compatible with the vehicle and therefore trackable with small errors.

This approach would make an excellent last step in the multi-robot application as it
makes the trajectory more easily trackable. However, it doesn’t ensure that the vehicles
will reach their waypoints at the same time, which is a major condition given by the
way, the original trajectory is generated.

3.4 Real-time dynamic trajectory smoothing for
unmanned air vehicles

This approach [6] is similar to the previous one in a sense of creating transitions between
straight line segments on a waypoint defined trajectory. It gives the options of interpo-
lating neighbouring line segments with a curve that either has the same length as the
original pieces of segments it is replacing, or goes through the waypoint connecting the
two segments, or minimizes the transition time. It does that by knowing the vehicles
turning radius and calculating the maneuver as the vehicle approaches its waypoint.

Much like the previous approach, this one would also make excellent last step. The
fact, that this approach offers curve of the same length as the segment it’s replacing,
cancels out the issue presented with previous approach. However this approach is aimed
more at winged aircraft, that cannot stop at the waypoint or make a sharp turn. Also
this method doesn’t consider any obstacles.

6



Chapter 4
Path planning

4.1 Trajectory generation
To generate a trajectory a modification of RRT [8] algorithm is used. In this approach
RRT algorithm grows a tree rooted at the starting configuration by expanding it towards
random point P from the search space.

The tree is represented by a matrix where each column represents a configuration of
MAVs. 

i
j
x1
y1
x2
y2
...
xn

yn


(1)

Where i is number of current column, j is number of column representing previous
configuration, n is number of MAVs, and xl, yl are coordinates of l-th MAV.

As each sample is drawn, an expansion is attempted between it and the nearest
configuration in the tree. As each state can expand in virtually infinite amount of
configurations, algorithm simplifies the expansion process by discretizing the expansion
options into k possibilities based on current and previous configuration.

The vector representing current configuration is reshaped into matrix Cur for simplier
use in the following operations

Cur =
[
x1 x2 . . . xn

y1 y2 . . . yn

]
(2)

The vector representing preceding configuration is reshaped into matrix Prev in the
same way as Cur. This allows us to calculate the vector of four-quadrant inverse tangents
for each MAV more easily.

−−−→
angle = atan2

(
Cur(2, :)− Prev(2, :), Cur(1, :)− Prev(1, :)

)
(3)

Then matrix Newp is sequentially put together by MAV closest to the P point picking
one of its k possible new positions closest to the point P . Then the rest of MAVs are
one by one picking only those new positions which won’t collide with the choices of
MAVs that already picked a new position.

Newp(:, l) = Cur(:, l) +
[
d ∗ cos

(−−−→
angle(l) +−−−−→offset(h)

)
d ∗ sin

(−−−→
angle(l) +−−−−→offset(h)

) ] (4)

7



4. Path planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Where −−−−→offset is vector of k values ranging from −π/4 to π/4. l is ranging from 1 to
n. And h is ranging from 1 to k. If there are feasible versions of Newp, it is reshaped
back into a column vector and added to the tree.
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Figure 4.1. tree growth process

After a set amount of iterations, the algorithm checks if any of the MAVs in the
tree overlap the goal area. If so, the MAVs don’t expand based on distance towards a
random point, but based on a cost function calculating coverage cost of the goal area.

The cost function works as follows. The goal area, or areas, is represented by a single
matrix of ones and zeros, overlapping all the areas. Its dimensions are given by goal
area size and set resolution. Each MAV has its own polygon of ground vision. With the
use of Matlab function poly2mask which turns region of interest into a matrix, where
the region of interest is the goal area, cost function adds up all MAVs contributions to
the goal area matrix. Then it applies log2 to all elements and piecewise multiply the
new matrix with the original goal area matrix. That will ensure that cost function will
not count MAVs vision that adds to part of matrix representing space between multiple
goal areas 4.4 . The output of the cost function is a sum of all elements greater than 0.

This way MAVs profit much more from monitoring new area than from monitoring
already monitored area, since log2(a) + log2(b) > log2(a+ b) where a, b > 1.
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valuefield=fin.mask;
for j=1:MAVs
vision{j}=poly2mask(res*([rob.p(1,j)-0.5, rob.p(1,j)-0.5,...
rob.p(1,j)+0.5,rob.p(1,j)+0.5]-fin.minX),...
res*([rob.p(2,j)-0.5,rob.p(2,j)+0.5,...
rob.p(2,j)+0.5,rob.p(2,j)-0.5]-fin.minY),fin.Ydim,fin.Xdim);
valuefield=valuefield+vision{j};

end
valuefield=valuefield.*fin.mask;
valuefield=log2(valuefield);
cov=sum(sum(valuefield(valuefield>0)))
end

Figure 4.2. Part of matlab code calculating cost function
In this process, each MAV picks a new step that contributes the most to the cost

function. However if none of the steps increase the value of the cost function, it picks
a new step on random. This process is limited only by set number of iterations and all
collision restrictions.

After the maximum number of iterations is reached, or after the MAVs come to a
deadlock, algorithm picks a position with the highest cost function value as the end
point. Then it traces the trajectory back to the root 4.3 by using the references on
previous column vector as shown in (1).
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Figure 4.3. backtracing trajectory from finished tree
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Figure 4.4. matrix representation of goal area in cost function

4.2 Smoothing
The product of the trajectory generator is a feasible yet lengthy and chaotic trajectory
containing large amount of points in a form of matrix similar to the tree. This matrix
is however missing first two rows, which are no longer necessary and has the following
format. 

x1,1 x1,2 . . . x1,r

y1,1 y1,2 . . . y1,r

x2,1 x2,2 . . . x2,r

y2,2 y2,2 . . . y2,r

...
... . . . ...

xn,1 xn,2 . . . xn,r

yn,1 yn,2 . . . yn,r


(5)

Where r is number of configurations forming the trajectory.
From the nature of RRT algorithm, which tends to cover as much of the free space

as possible, this trajectory tends to have plenty of unnecessary turns and detours that
human operator would never make. To reduce the number of these turns and points, a
variation of shortcutting heuristic [2] is used

Two random points on the path are selected and connected with a new segment. New
segment is checked for collision with obstacles as well as MAV positioning constrains.
Collision with obstacles is done by searching for an intersection between a trajectory
segment and all lines defining obstacles.

MAVs positioning constrains checking is done by discretizing the the new segment
into a number of formation that MAVs go through as they move over the segment.
MAVs are expected to reach their waypoints at the same time. Thus the discretization
si done as follows

P = P1 + i(P2 − P1) (6)

Where P1 and P2 are columns of (5) and endpoints of the segment, i = {0, 1
res , . . . , 1}

and res dictates the efficiency of discretization. Each formation P is then checked for
minimum distance between all MAVs. If the new segment is feasible, it replaces the
original trajectory.

If the segment is not feasible due to collision with obstacle, the smoothing continues
into next iteration with no changes where new random two points are selected.

If the segment is not feasible due to MAV positioning constrains, the algorithm takes
advantage of MAVs interchangeability and tries a different combination of MAVs start-
ing position and ending position and checks for both obstacles collision and positioning

10



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Smoothing

constrains again. This resolves problems with segments that weren’t originaly feasible
due to two or more MAVs colliding during their flight over the segment 4.5. If no fea-
sible solution is found after checking all !n combinations, shortcutting continues into
next iteration with no changes.
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Figure 4.5. MAVs collision resolution

Waypoints P1 and P2 are already checked for maximum distance from previous tra-
jectory generation. And since they are connected with straight lines, the MAVs cannot
move apart, when moving along the segment, more than they already are in one of the
two endpoints. This operation goes on until either the amount of points defining the
trajectory meets set minimum amount, or until maximum set number of iteration is
reached.
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Figure 4.6. shortcutting reached minimum amount of points
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4.3 Minimizing

After smoothing is finished, we’re left with a path consisting of fewer states. It is
apparent to the human eye that this smoothed path could use a few touches to be
shorter.

Matlab offers fminsearch function, which uses Nelder-Mead simplex algorithm as
described in Lagarias et al.[3] to find a local minimum of a scalar function starting at
given initial estimate.

One input of this function is the product of smoothing as the initial estimate.

x1,1 x1,2 . . . x1,s

y1,1 y1,2 . . . y1,s

x2,1 x2,2 . . . x2,s

y2,2 y2,2 . . . y2,s

...
... . . . ...

xn,1 xn,2 . . . xn,s

yn,1 yn,2 . . . yn,s


(7)

Where s is number of configurations forming the trajectory after smoothing.
Another input to this function is a scalar function that needs to be minimized. The

scalar function calculates the total sum of lengths of all trajectory segments. Therefore
the only thing being optimized is travel distance.

To be usable by fminsearch, it needs to have only one input which is the matrix
representing the trajectory of MAVs. However the start location and end location
should stay unchanched. It also needs to consider all restrictions and return NaN in
case of collision with obstacle or violation of proximity limits on any pair of MAVs.

Time consumption of this operation depends on previous smoothing process as every
column of the trajectory adds 2n extra dimension of search space to the fminsearch
function.

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.7. result of length minimizing process
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Chapter 5
Numerical results

5.1 Length minimizing results

A series of experiments was conducted to demonstrate the procedure described above.
While an experiment on real equipment would be more demonstrative, the analysis in
virtual environment is important for quantifications of its performance.

The analysis consists of repeatedly smoothing and minimizing generated trajectory,
for a series of different generated trajectories, for a number of different maps.

As such the smoothing and minimizing proces ran 10 times for 20 different generated
trajectories on 3 different maps.

Recorded values are length of original trajectory, number of points reached by
smoothing, as smoothing does not necessarily reach set amount of waypoints, time
spent in fminsearch, and length of minimized trajectory.

Table 5.1 shows example of statistics for one series of 10 smoothing runs for 1 gen-
erated trajectory. Fig. 5.1 shows length statistics for all series.

total length [m] amount of points minimizing time [s]
56 283 0
33.37 4 10.45
33.38 3 11.22
33.61 4 10.21
32.57 4 10.59
33.32 3 5.14
33.20 3 4.99
32.80 4 10.60
33.42 3 7.42
33.57 4 10.35
33.54 4 10.47

Table 5.1. 10 data entries for 1 trajectory

The minimum amount of points was set to 3. The amount of points, that smoothing
converged to, ranged from 3 to 5. However the amount of points doesn’t have a signifi-
cant effect on minimized length as all cases converged to ∼ 70% of original length. On
the other hand it has significant effect on time spent minimizing, as it grows propor-
tional to number of MAVs. Growing from ∼ 6 seconds at 3 points to ∼ 100 seconds at
10 points, with only 3 MAVs.
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Figure 5.1. Trajectory length statistics

Fig.5.1 shows all recorded runs. The first value of each line represents the original tra-
jectory length. Following values are trajectory lengths after smoothing and minimizing
the original trajectory.

5.2 V-REP simulation

With no working equipment available at the time when this algorithm was completed
comes no practical experiment. However V-REP 1) experimentation platform offers
sufficiently sophisticated simulation environment.

1) CoppeliaRobotics.com, V-REP virtual robot experimantation platform http://www.coppeliarobotics
.com
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Figure 5.2. Matlab outcome

A trajectory generated by the algorithm was picked on random. This trajectory was
generated with the following parameters

MAVs=3;
BF=5;
NumPoints=3;
\vdots
rob.minradius = 0.5;
rob.maxradius = 4;

Figure 5.3. Part of matlab code declaring variables

Where NumPoints sets minimum amount of points the algorithm is allowed to reach.
And rob.minradius and rob.maxradius sets the lower and upper limit on distance be-
tween MAVs.

Apparently algorithm couldn’t remove any more points after reaching 5 waypoints. It
also seems that passing through a corridor, combined with mutual localization, doesn’t
allow the minimizing function to stray too far from initial estimate.
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Figure 5.4. V-Rep simulation

MAVs in V-REP must behave closely to the way the algorithm expects them to. This
means mainly passing through waypoints at the same time. The way V-REP handles
motion control of majority of the robots is by having a controller already implemented
in them, and then making them follow a dummy 1). Dummy is yours to control. After
creating paths from the waypoints, dummies will follow them exactly the way MAVs
are thought of in the algorithm.

The algorithm also expects obstacles to be bigger then they are in reality, since it
thinks of MAV as a point, than as a volumetric object. The opposite is done in this
case, obstacles will shrink to compensate for MAVs volume.

V-REP allows tracking of nearly any value you can think of and implement. In this
case, the distances between the MAVs during the flight will be tracked. Fig. 5.4 shows
the simulation process in V-REP.

1) CoppeliaRobotics.com, V-REP User Manual http://www.coppeliarobotics.com/helpFiles/
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Figure 5.5. mutual distances during the simulation

The graph in fig.5.5 shows the development of distances between each pair of MAVs
throughout the flight. It is apparent that the MAVs reached a waypoint every 11 seconds
and also reached the end without crashing. However there is a slight overshoot at 20th
second. This is due to a dummy moving too quickly through a turn and tracking error
taking its toll.

Most preferable way to move the dummies along the path would be, if they didn’t
have constant speed profile, but instead sped up when moving across the line segment,
and slowed down when approaching waypoints.
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Chapter 6
Conclusion

The goal of this paper was to design, implement, and experimentally verify algorithm
for planning feasible trajectories for a group of mutually localized MAVs in a specific
application [1]. Particle Swarm Optimization /cite[PSO] (PSO) technique was used in
the original approach. PSO is primarily an optimization technique and the paper was
experimenting with its application on path planning task.

This paper uses a modified version of RRT. RRT is primarily a path planning tech-
nique and as such has much less issues with finding a path than PSO. But as a path
planning technique, it isn’t very fond of finding an optimal solution. Although, after
all the modifications done in order to respect mutual localization, and further mod-
ifications for maximizing MAVs vision of goal area, the algorithm can barely still be
associated with RRT.

Next task was to design and implement an algorithm for smoothing and optimization
of obtained trajectories while keeping all the previous constraints. The solution for this
task was inspired by studying existing approaches for trajectory smoothing [2] [4] [5]
[6].

In the end, smoothing was achieved by utilizing the shortcutting heuristic and con-
necting it with numerical length optimization. The outcome of the proposed method
is a series of waypoints optimized for shortest trajectory for all MAVs while respecting
their proximity constraints.

Originally the MAVs only carried a pair of cameras on each side. Furthermore these
cameras didn’t have very wide field of view (FOV), and even narrower field of vision
where they could safely recognize other helicopter. The resolution of the cameras put
more constraints on minimum and maximum detection range.

As a result, these constraints on mutual positioning were so strict, that the whole
group moved as a very slightly changing block of MAVs. As such, it could have been
replaced with a single robot representing the whole group.

Later on, the MAVs were supposed to be fitted with four cameras with overlapping
FOV, allowing for a full 360◦ vision. Thus reducing the constraints only to minimum
and maximum recognition distance between each two closest helicopters.

However the experimental MAVs ended up being unoperational. Thus the proposed
method has been demonstrated using only numerical data and a simulated model.
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Appendix A
DVD

Included DVD contains the following:.PDF version of this thesis BP_2015_hobzamar.pdf..Matlab source codes for generating trajectory and for trajectory smoothing and min-
imizing + all necessary functions..video of V-Rep simulation from chapter 5..V-Rep safe file containing the scene in the video.
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