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Abstract

Many problems in computer vision lead to polynomial systems solving. Therefore, we
need an easy way how to generate an efficient solver for each problem. On this purpose,
the automatic generator has been presented. In this thesis, we improve the automatic
generator so we will be able to generate more efficient and numerically stable solvers.

To improve the automatic generator we review and implement several methods used
in the state of the art Grobner basis solvers. Especially, we focus on the Fy Algorithm
by Jean-Charles Faugere. Solvers, generated by the automatic generator, can be sped
up when efficient methods are used to work with sparse matrices. We describe and
implement method which is based on matrix partitioning. This method significantly
speeds up the Gauss-Jordan elimination of sparse matrices.

We demonstrate the enhancements of the automatic generator on several important
minimal problems. We show that the solvers generated by the new automatic generator
are faster and numerically more stable than the solvers generated by the old version of
the automatic generator.

Keywords: computer vision, robotics, minimal problems, polynomials equations, Grob-
ner basis
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Abstrakt

Mnoho problému v poéitacovém vidéni vede na feSeni polynomidlnich rovnic. Proto
potiebujeme jednoduchy zpusob, jak generovat efektivni postupy reseni kazdého z prob-
1ému. Z tohoto duvodu byl predstaven automaticky generdtor. V této préci vylepsime
automaticky generator, takze budeme schopni generovat jeSté rychlejsi a numericky
stabilnéjsi postupy fesSeni polynomiélnich systému.

Abychom mohli vylepsit automaticky generator, prozkoumédme a nasledné implemen-
tujeme nékolik metod pouzivanych v soucasnych ndastrojich na feSeni soustav poly-
nomialnich rovnic pomoci Grobnerovych bazi. Zaméiime se zejména na algoritmus Fj
predstaveny Jean-Charlesem Faugerem. Postupy feseni problému, vygenerované pomoci
automatického generatoru, mohou byt jesté déle zrychleny, pokud pouzijeme efektivni
metody pro préaci s fidkymi maticemi. PopiSeme a implementujeme metodu, ktera je
zalozend na rozkladu matic. Tato metoda vyrazné urychluje Gauss-Jordanovu eliminaci
tidkych matic.

VylepSeni automatického generdtoru predvedeme na nékolika vyznamnych minimal-
nich problémech. Ukazeme, Ze postupy feseni problému vygenerované novym automa-
tickym generdatorem jsou rychlejsi a numericky stabilnéjsi nez postupy vygenerované
pivodni verzi automatického generatoru.

Kli¢ova slova: pocitacové vidéni, robotika, minimalni problémy, polynomidlni rovnice,
Grébnerovy baze
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1. Introduction

1.1. Motivation

Many problems in computer vision can be formulated using systems of algebraic
equations. Examples are the minimal problems [17] which arise when computing geo-
metrical models from image data. The polynomial systems arising from this problems
are often not trivial and they consist of many polynomial equations of higher degree
in many unknowns, and therefore general algorithms for solving polynomial systems
are not efficient for them. Hence, special solvers for each problem have been developed
to solve these system efficiently and robustly.

Minimal problems have a wide range of applications, for example, in 3D reconstruc-
tion, recognition, robotics and augmented reality. In these applications, the solvers
of minimal problems are only a small, but very important, part of large computation
systems which are supposed be fast or even to work in real-time applications. More-
over, these systems need to compute the solutions of the minimal problems repeatedly
for a large number of inputs. Therefore, very efficient solvers are required in computer
vision.

Many solvers for minimal problems have been designed ad hoc for concrete problems,
and therefore they can not be used or easily modified to solve different or even similar
problems. The automatic generator [13] of minimal problem solvers has been proposed
to make this process of the design and generation of the solvers faster and repeatable.
This tool generates Grobner basis solvers automatically which enables us to generate
an efficient solver for each problem we want to solve.

There are several ways, how the solver using the Grobner basis methods can be gen-
erated. The implementation presented in [13] generates polynomials that are required
for solving the system systematically. But other methods can be used, too. In this
thesis, we review the state of the art methods for solving polynomials systems and
suggest which methods can be taken over to improve the automatic generator and we
implement them.

The automatic generator deals with sparse matrices in most cases. Therefore, we may
consider to implement some methods which enable us to work with sparse matrices in
an efficient way to save computation time and memory. In this thesis, we focus on
how to improve the Gauss-Jordan elimination of sparse matrices. We use the recent
work [12] which presents a significant speedup of Gauss-Jordan elimination of sparse
matrices. The speed up is caused by transforming matrices into the singly-bordered
block-diagonal forms by the paritioning tool PaToH [4]. This method is based on
the fact that more eliminations of smaller matrices are faster than one elimination of
a big matrix.

1.2. Thesis structure

In this thesis, we first review the state of the art methods for computing Grobner basis
of polynomial systems. We start with describing simple, but easily understandable,
algorithms and continue with more difficult, but also more efficient, algorithms. It is



1. Introduction

crucial for us to better understand these algorithms because we will use some techniques
from them to improve the automatic generator later in this thesis.

Secondly, we briefly describe the automatic generator [13]. Then, we suggest some
improvements of the automatic generator to generate efficient and numerically stable
solvers. Some techniques implementened in the automatic generator may be efficient
for one minimal problem but may be inefficient for another. Therefore, we present
a benchmark tool which enables us to choose the best methods to generate an efficient
solver in the end.

Thirdly, we run some experiments to demonstrate how the implemented improve-
ments have enhanced the automatic generator. We compare the solvers generated by
the new automatic generator and the solvers generated by the old implementation.

1.3. Notation used

We have decided to use the notation from [5] in the whole thesis. We just remind that
a polynomial is a sum of terms and a term is a product of a coefficient and a monomial.
Be aware that in some literature, e.g. [1, 7, 8], the meanings of words term and monomial
are exchanged.



2. Polynomial system solving

We first review the state of the art algorithms for computing Grobner bases. Better
understanding of these algorithms helps us to integrate them into polynomial solving
algorithms based on Grobner basis computation more efficiently.

2.1. Buchberger Algorithm

Buchberger Algorithm [2], which was invented by Bruno Buchberger, was the first
algorithm for computing Grébner basis. The algorithm is described in details in [1, 5].

2.1.1. First implementation

The first and easy, but very inefficient implementation of the Buchberger Algorithm,
Algorithm 1, is based on the observation that we can extend a set F' of polynomials to

a Grobner basis only by adding all non-zero remainders S( f;, fj)F of all pairs from F
into F' until there is no non-zero remainder generated.

The main disadvantage of this simple algorithm is that so constructed Grobner basis
are often bigger than necessary. This implementation of the algorithm is also very
inefficient because many of the S-polynomials that are constructed from the critical
pairs are reduced to zero so after spending effort on computing them, there is nothing
to add to the Grobner basis G. How to decide which pairs need not be generated is
described next.

Algorithm 1 Simple Buchberger Algorithm
Input:

F' a finite set of polynomials
Output:

G a finite set of polynomials

1: G+ F
22 B {{g1,92} | 91,92 € G, g1 # g2}
3: while B # () do
4: select {g1,¢92} from B
B« B\ {{g1,92}}
h S(gl,gg)
h() — EG
if hg # 0 then
Be BU{{g,ho} | g€ G}
10: G+ GU{hy}
11: end if
12: end while
13: return G




2. Polynomial system solving

2.1.2. Improved Buchberger Algorithm

The combinatorial complexity of the simple implementation of the Buchberger Algo-
rithm can be reduced by testing out certain S-polynomials which need not be considered.
To know which pairs can be deleted without treatment, we use the first and the second
Buchberger’s criterion [1]. Sometimes, we can even delete certain polynomials from
the set G completely, knowing that every critical pair they will generate will reduce to
zero and hence these polynomials themselves will be superfluous in the output set. In
the next few paragraphs we will describe the implementation of the Improved Buch-
berger Algorithm, and of the function Update, which deletes the superfluous polynomials
from G according to Gebauer and Moller [9].

The Improved Buchberger Algorithm, Algorithm 2, has the same structure as the Sim-
ple Algorithm. The function Update is used at the beginning of the Improved Buch-
berger Algorithm to initialize the set B of critical pairs and the Grobner basis G from
the input set F' of polynomials and at every moment when a new non-zero polynomial
ho = 2 of an S-polynomial h has been found and the sets B and G are about to be
updated.

Algorithm 2 Improved Buchberger Algorithm
Input:

F a finite set of polynomials
Output:

G a finite set of polynomials

1: G0

2: B« @

3: while F # () do

4: select f from F

5: F«+ F\{f}

6: (G, B) «+ Update(G, B, f)
7: end while

8: while B # () do

9: select {g1,92} from B
10: B (—B\ {{gl,gg}}
11: h 5(91,92)
12: ho EG
13: if hg # 0 then
14: (G, B) < Update(G, B, hy)
15: end if
16: end while
17: return G

Now, let us look at the function Update, Algorithm 3. First, it makes pairs from
the new polynomial h and all polynomials from the set G4 and puts them into
the set C. The first while loop (lines 3 — 9) iterates over all pairs in the set C. In each
iteration it select a pair {h,g;} from the set C' and removes it from the set. Then, it
looks for another pair {h, g2} from the set C' or the set D. If there is no pair {h, g2}
such that (h, g2, 91) is a Buchberger triple, then the pair {h, g1} is put into the set D.
The triple (h, g2, 91) of polynomials h, g; and go is a Buchberger triple if the equivalent
conditions



2.2. Fy Algorithm

LM(g2) | lem(LM(h),LM(g1)) (2.1)
lem(LM(R), LM(g2)) | lem(LM(h), LM(g1)) .
lem(LM(g2), LM(g1)) | lem(LM(h), LM(gy)) (2.3)

are satisfied. We know from the second Buchberger’s criterion that if a Buchberger triple
(h, g2, g1) shows up in the Buchberger Algorithm and the pairs {g1, 92} and {h, g2} are
amongs the critical pairs, then the pair {h, g1} need not be generated. That means
that such a pair is not moved from the set C' to the set D but it is only removed from
the set C. Moreover, this while loop keeps all pairs {h, g1}, where LM(h) and LM(g1)
are disjoint, i.e. LM(h) and LM(g;) have no variable in common, even if the pairs could
be removed. The reason of this is that if two or more pairs in C have the same lcm
of their leading monomials, then there is a choice which one should be deleted. So
we keep the pair where the leading monomials are disjoint. Pairs with disjoint leading
monomials are removed in the second while loop, so we eventually remove them all.

The second while loop (lines 11 — 17) eliminates all pairs with disjoint leading mono-
mials. We can remove such pairs thanks to the first Buchberger’s criterion. All remain-
ing pairs are stored in the set E.

The third while loop (lines 19 — 25) eliminates pairs {g1, g2} where (g1, h,g2) is
a Buchberger triple from the set B,y. Then, the updated set of the old pairs and
the new pairs are united into the set Bjeq-

Finally, the last while loop (lines 28 — 34) removes all polynomials g whose leading
monomial is a multiple of the leading monomial of h from the set G,;4. We can eliminate
such polynomials for two reasons. Firstly, LM(h) | LM(g) implies LM(h) | lem(LM(g),
LM(f)) for arbitrary polynomial f. We can see that (g, h, f) is a Buchberger triple for
any f which in future appears in the set G. Moreover, polynomial g will not be missed
in the end because in the Grobner basis G, polynomials with leading monomials that
are multiples of leading monomials of another polynomial from G are superfluous, i.e.
they will be eliminated in the reduced Grébner basis.

In the end of the function, the polynomial h is added into the Grébner basis Gjeq -
The output of the function Update is the Grobner basis Gew and the set By, of critical
pairs.

2.2. F, Algorithm

The Fy Algorithm [7] by Jean-Charles Faugere is an improved version of the Buch-
berger’s Algorithm. The Fy Algorithm replaces the classical polynomial reduction found
in the Buchberger’s Algorithm by a simultaneous reduction of several polynomials. This
reduction mechanism is achieved by a symbolic precomputation followed by the Gaus-
sian elimination implemented using sparse linear algebra methods. F} speeds up the re-
duction step by exchanging multiple polynomial divisions for row-reduction of a single
matrix.

2.2.1. Improved Algorithm F}

The main function of the Fy Algorithm, Algorithm 4, consists of two parts. The goal
of the first part is to initialize the whole algorithm.
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Algorithm 3 Update

Input:
Goiq a finite set of polynomials
Byiq a finite set of pairs of polynomials
h a polynomial such that h # 0
Output:
Grew a finite set of polynomials
Biew a finite set of pairs of polynomials

C <« {{h.g} | g € Gowa}
D+ 0
while C # () do

select {h, g1} from C

C = C\{{h,q}}

if LM(h) and LM(g;) are disjoint or

(lem(LM(h), LM(g2)) 1 lem(LM(h), LM(g1)) for all {h, g2} € C and
lem(LM(h), LM(g2)) t lem(LM(h), LM(g;1)) for all {h,g2} € D) then
T D+ DU{{h,g1}}
: end if
9: end while
10: E<+ 0
11: while D # () do
12: select {h, g} from D
13: D < D\{{h,g}}
14: if LM(h) and LM(g) are not disjoint then
15: E«+— EU{{h,g}}
16: end if
17: end while
18: Bpew < 0
19: while B,y 75 () do
20: select {g1, 92} from B,q
21: B < Boa\{{91,92}}
22: if LM(h) t lem(LM(g;1), LM(g2)) or
lem(LM(g1), LM(h)) = lem(LM(g1), LM(g2)) or
lem(LM(h), LM(g2)) = lem(LM(g1), LM(g2)) then

23: Brew < Bpew U {{gla 92}}
24: end if
25: end while
26: Bpew < Bnew UE
27: Grew < 0
28: while G4 ?é 0 do
29: select g from G,y
30: Gola <+ Goa\{9}
31: if LM(h) f LM(g) then
32: Gnew < Gnew U {g}
33: end if
34: end while
35: Gpew < Gnew U {h}
36: return (Grew, Bnew)

10



2.2. Fy Algorithm

First, it generates the set P of critical pairs and initializes the Grobner basis G. This
is done by taking each polynomial from the input set F' and calling the function Update
on it, which updates the set P of pairs and the set G of basic polynomials.

The second part of the algorithm generates new polynomials and adds them into
the set G. In each iteration, it selects some pairs from P using the function Sel. Many se-
lection strategies are possible and it is still an open question how to best select the pairs
[7]. Some selection strategies are described in the section 2.2.6 on page 13. Then, it
splits each selected pair { f1, f2} into two tuples. The first tuple contains the first polyno-
mial fi of the pair and the monomial m; such that LM(mq f1) = lem(LM( f1), LM(f2)).
The second tuple is constructed in the same way from the second polynomial fs of
the pair. All tuples from all selected pairs are put into the set L, i.e. duplicates are
removed.

Next, function Reduction is called on the set L. It stores its result in the set FT.
In the end of the algorithm, it iterates through all new polynomials in the set F™ and
calls the function Update on each of them. This generates new pairs into the set P
of critical pairs and extends the Grobner basis G.

This algorithm terminates when the set P of pairs is empty. Then the set G is
a Grobner basis and it is the output of the algorithm.

Algorithm 4 Improved Algorithm Fj
Input:

F' a finite set of polynomials

Sel a function List(Pairs) — List(Pairs) such that Sel(l) # () if I # ()
Output:

G a finite set of polynomials

1: G+ 0

2: P+ @

3: d< 0

4: while F # () do

5: select f form F

6: F + F\{f}

7 (G, P) < Update(G, P, f)

8: end while

9: while P # () do
10: d+—d+1
11: Py + Sel(P)

12: P+ P\Pd
13: Ly + Left(Pd) U Right(Pd>
14: (Fj, Fy) < Reduction(Lq, G, (F;)i=1,.. (a-1))
15: for h € F’j do
16: (G, P) <= Update(G, P, h)
17: end for
18: end while
19: return G

11



2. Polynomial system solving

2.2.2. Function Update

In the Fy Algorithm, the standard implementation of the Buchberger’s Criteria such
as the Gebauer and Maéller installation [9] is used. Details about the function Update can
be found in the section 2.1.2. The pseudocode of the function is shown in Algorithm 3.

2.2.3. Function Reduction

Function Reduction, Algorithm 5, performs polynomial division using methods of lin-
ear algebra.

The input of the function Reduction is a set L containing tuples of monomial and
polynomial. These tuples were constructed in the main function of the Fy Algorithm
from all selected pairs.

First, the function Reduction calls the function Symbolic Preprocessing on the set L.
This returns a set F' of polynomials to be reduced. To use linear algebra methods to
perform polynomial division, the polynomials have to be represented by a matrix. Each
column of the matrix corresponds to a monomial. Columns have to be ordered with
respect to the monomial ordering used so that the most right column corresponds to
“1”. Each row of the matrix corresponds to a polynomial from the set F'. The matrix
is constructed as follows. On the (i, 7) position in the matrix, we put the coefficient of
the term corresponding to j-th monomial from the i-th polynomial from the set F'.

We next reduce the matrix to a row echelon form using, for example, Gauss-Jordan
elimination. Note that this matrix is typically sparse so we can use sparse linear alge-
bra methods to save computation time and memory. After elimination, we construct
resulting polynomials by multiplying the reduced matrix by a vector of monomials from
the right.

In the end, the function returns the set F* of reduced polynomials such that their
leading monomials are not leading monomials of any polynomial from the set F' of poly-
nomials before reduction.

Algorithm 5 Reduction
Input:

L a finite set of tuples of monomial and polynomial

G a finite set of polynomials

F = (Fi)i=1,..(d—1), Where F; is finite set of polynomials
Output:

FT a finite set of polynomials

F a finite set of polynomials

F « Symbolic Preprocessing(L, G, F)
F <+ Reduction to a Row Echelon Form of F
e {f e F | LM(f) ¢ LM(F)}

return (F*, F)

2.2.4. Function Symbolic Preprocessing

Function Symbolic Preprocessing, Algorithm 6, starts with a set L of tuples, each
containing a monomial and a polynomial. These tuples were constructed in the main
function of the Fy Algorithm from the selected pairs. Then, the tuples are simplified
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by the function Simplify and, after multiplying polynomials with their corresponding
monomials, the results are put into the set F'.

Next, the function goes through all monomials in the set F' and for each monomial m
looks for some polynomial f from the Grobner basis G such m = m/ LM(f) where m’
is some monomial. All such polynomials f and monomials m’ are, after simplification,
multiplied and put into the set F'. The goal of this search is to have for every monomial
in F' a polynomial in F' with the same leading monomial. This will ensure that all
polynomials from F' will be reduced for G after polynomial division by linear algebra.

Algorithm 6 Symbolic Preprocessing
Input:

L a finite set of tuples of monomial and polynomial

G a finite set of polynomials

F = (F})i=1,...,(a—1), Where F; is finite set of polynomials
Output:

F a finite set of polynomials

F « {multiply(Simplify(m, f,F)) | (m, f) € L}
Done < LM(F)
while M(F') # Done do
m an element of M(F)\Done
Done < Done U {m}
if m is top reducible modulo G then
m = m/ LM(f) for some f € G and some monomial m’
F + F U {multiply(Simplify(m/, f,F))}
end if
end while
: return F

—_
=}

2.2.5. Function Simplify

Function Simplify, Algorithm 7, simplifies a polynomial m f, which is a product of
a given monomial m and a polynomial f.

The function recursively looks for a monomial m’ and a polynomial f’ such that
LM(m’f") = LM(mf). The polynomial f’ is selected from all polynomials that have
been reduced in previous iterations (sets F ). We select polynomial f” such that the total
degree of m’ is minimal.

Function Symbolic Preprocessing inserts polynomials that are mostly reduced and
have a small number of monomials into the set F' of polynomials to be reduced. This,
of course, speeds up the following reduction.

2.2.6. Selection strategy

For the speed of the Fy Algorithm, it is very important how the critical pairs from
the list of all critical pairs P are selected in each iteration. This depends on the imple-
mentation of the function Sel. There are more possible selection strategies:

e The easiest implementation is to select all pairs from P. In this case we reduce
all critical pairs at the same time.
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Algorithm 7 Simplify
Input:

m a monomial

f a polynomial

F = (Fi)i=1,..(d—1), Where F; is finite set of polynomials
Output:

(m/, f') a non evaluated product of a monomial and a polynomial

1: for u € list of all divisors of m do

2 if 35 (1 <j < d) such that (uf) € F; then
3 F ;i is the Row Echelon Form of Fj

4 there exists a (unique) p € Fj such that LM(p) = LM(uf)
5: if u # m then

6 return Simplify (™, p, F)

7 else

8 return (1,p)

9 end if

10: end if

11: end for

12: return (m, f)

o [fthe function Sel selects only one critical pair, then the Fy Algorithm is the Buch-
berger Algorithm. In this case the Sel function corresponds to the selection strat-
egy in the Buchberger Algorithm.

e The best function that Faugere has tested is to select all critical pairs with a min-
imal total degree. Faugere calls this strategy the normal strategy for Fy. Pseu-
docode of this function can be found as Algorithm 8.

Algorithm 8 Sel — The normal strategy for Fy
Input:

P a list of critical pairs
Output:

P, a list of critical pairs

1: d < min {deg(lem(p)) | p € P}
2: Py« {p € P | deg(lem(p)) = d}
3: return Py

2.3. F5 Algorithm

Since in the Buchberger Algorithm or in the Fy Algorithm we spend much compu-
tation time to compute S-polynomials which will reduce to zero, the F5 Algorithm [8]
by Jean-Charles Faugere was proposed to eliminate these reductions to zero. The Fj
Algorithm saves computation time by removing useless critical pairs which will reduce
to zero. The syzygies [5] are used to recognize useless critical pairs in advance.

There are several approaches how to use syzygies to remove useless pairs. For ex-
ample, the idea of [15] is to compute a basis of the module of syzygies together with
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computing of the Grébner basis of the given polynomial system. Then a critical pair
can be removed if the corresponding syzygy is a polynomial combination of the elements
of the basis of syzygies.

The strategy of the F5 Algorithm is to consider only principal syzygies without
computing the basis of the syzygies. The principal syzygy is a syzygy such that
fifj — fjfi = 0 where f; and f; are polynomials. This restriction implies that not
all useless critical pairs have to be removed so a reduction to zero can still appear later.
However it was proved that if the input system is a regular sequence [5] then there is
no reduction to zero.

To show how to distinguish which pairs need not to be considered, we use the following
example taken from [8]. Consider polynomials fi, fo and f3. Then, the principal
syzygies fif; — fjfi = 0 can be written as follows:

u(fofi — fife) +o(fafi — fifs) +w(fafs — fsfa) = 0 (2.4)

where u, v and w are arbitrary polynomials. This can be also rewritten as

(ufo+vfa)fi —ufifo—vfifs+wfofs —wfsfa = 0. (2.5)

We can see that all polynomials hf; are such that h is in the ideal generated by poly-
nomials fo and f3. So if we have computed Grobner basis of the polynomials fy and f3,
it is easy to decide which new generated polynomials can be removed. We can remove
all polynomials in the form tf; such that ¢ is a term divisible by leading monomial
of an element of the ideal generated by fo and f3. Therefore, the F5 Algorithm is
an incremental algorithm. If we have polynomials fi,..., f;, on the input, we have to
compute all Grébner bases of the following ideals: (fin), (fm—1, fm)s---s (f1,--+, fm) in
this order.

Many reviews, implementations and modifications of the Fy5 Algorithm have been
made. Let us emphasize some of them. The first implementation of the F5 was made
by Jean-Charles Faugere himself in the language C. Then, there is an implementation
in Magma by A. J. M. Segers [18]. Another review and implementation in Magma was
done by Till Stegers [19]. Since there is no proof of termination of the F5 Algorithm,
a modification [6] has been introduced such that it always terminates.
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3. Automatic generator

The automatic generator of Grobner basis solvers is used to solve problems leading
to systems of polynomial equations. These systems usually arise when solving minimal
problems [17] in computer vision. Typically, these systems are not trivial so special
solvers have to be designed for concrete problems to achieve efficient and numerically
stable solvers. Moreover, solvers generated for concrete problems can not be easily
applied for similar or new problems and therefore the automatic generator was proposed
in [13]. Solvers generated by the automatic generator can be easily used to solve complex
problems even by non-experts users.

The input of the automatic generator is a system of polynomial equations with a finite
number of solutions and the output is a MATLAB or a Maple code that computes solu-
tions of the given system for arbitary coefficients preserving the structure of the system.
One of the goals of this thesis is to improve previous implementation [13] of the auto-
matic generator to construct more efficient and numerically stable solvers.

The newest version of the automatic genenerator implemented in MATLAB can be
downloaded from [16].

3.1. Description of the automatic generator

In this section, we review the procedure for generating solvers. The procedure is
based on computation of the action matrix from which solutions can be obtained.
The automatic generator consists of several independent modules, see Figure 3.1. Since
all these modules are independent, they can be easily improved or replaced by more
efficient implementations. Next, we describe each of these modules. Full description
can be found in [13, 11].

mmmmmmmmmm—— -
! Definition of : L Remove unnecessary
: the minimal problem : Generate necessary polynomials Yes polynomials and monomials
_______ ¢ [ +
Parse equations Generate polynomials Test if all Construct
Extract monomials and coefficients i up to degree d > necessary the action matrix
Instantiate known parameters polynomials have +
been generated
v
Determine number of solutions | | | +4——r—mmrow—r—7+— 4~} ¥
Compute the basis B : Online solver :

Figure 3.1. Block diagram of the automatic generator.

3.1.1. Definition of the minimal problem

Definitions of minimal problems to be solved are given in separate functions that are
stored in the folder minimalProblems. Each of the definitions has to contain the nec-
essary information about the minimal problem. First of all, the system of polynomial
equations with symbolic variables and parameters have to be provided. Next, we have
to specify the list of unknown variables and known parameters. Optionally, if we know
the monomial basis B of the polynomial system in advance, we can specify it to save
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some computation time. The monomial basis B is a set {m | mC = m} where m is
a monomial and G is the Grobner basis of the given polynomial system. At last, we
have to set some settings for the automatic generator. We recommend to obtain the de-
fault settings by calling the function gbs_InitConfig and only overwrite the settings we
want to change. In the folder minimalProblem, there are some examples which are self
explanatory and can be used as templates to create new minimal problem definitions.

3.1.2. Equations parser, instantiating

In the next step, we have to parse the given equations, which means that we extract
monomials and parameters used and obtain total degrees of the polynomials. Then, we
instantiate each known parameter with a random number from Z,. We assign a unique
identifier to each parameter used. The reason is that we need to track the parameters
through the process of manipulating with the polynomials in order to be able to restore
the process in the solver generation module.

3.1.3. Monomial basis B computation

We need to know the monomials basis B to recognize when we have generated all
polynomials that are necessary to build the action matrix. If the basis B was not
provided within the definition of the minimal problem, we have to compute it. Because
there is no function to compute the basis in MATLAB, we have to do it by calling
an external software.

The easiest solution to implement was to use the Maple toolbox for MATLAB. This
enables us to call Maple functions from the MATLAB environment directly. To use
this option, we have to set cfg.GBSolver = Qgbs_findAlgB maple in the settings of
the automatic generator. Unfortunately, it shows up that the Maple toolbox for MAT-
LAB in not compatible with the MATLAB Symbolic Math Toolbox in versions newer
than R2008 so we do not recommend to use this option nowadays. The option is still
available on older computers.

The second implemented option is to use the algebraic geometry software Macau-
lay2 [10]. In the folder gbsMacaulay there is a template code_template.m2 into which
we simply write the given polynomial system. This updated file is saved as code.m2
which is executed by Macaulay2 and the results are parsed back in MATLAB. To set
up this option, we need to install the software Macaulay2 and set cfg.GBSolver =
@gbs_findAlgB macaulay in the automatic generator settings. A problem could be that
the Macaulay?2 is not easy to set up under the Windows OS. Therefore, the installation
file of Macaulay?2 is provided within the automatic generator. The only thing that has to
be done is to edit the file calc.bat in the folder gbsMacaulay and follow the instructions
in the file.

Because of the modularity of the generator, this part can be replaced by another
function computing the monomial basis B.

The last option is to compute the basis B in advance and set it into the definition of
the minimal problem.

In the end, we have to check the number of solutions of the given polynomial system.
If there is a finite number of solutions, we can continue with the computation.

3.1.4. Polynomial generator

To be able to build the action matrix, we have to generate enough polynomials such
that after their reduction we get polynomials ¢; which have leading monomials from
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the set (zxB)\B where zj is a variable and all remaining monomials of ¢; are from
the set B. That is the reason why we had to compute the basis B in the previous step.

In this part of the automatic generator, we represent polynomials as row vectors so
that systems of polynomials can be represented by matrices. This representation enables
us to easily multiply polynomials with monomials only by shifting the coefficients in
the vectors or to reduce the whole polynomial systems by performing the Gauss-Jordan
eliminations on the corresponding matrices.

Let f; € F be polynomials where F' is a set of polynomials from the input. Let
mazxdeg be the maximal total degree of all polynomials f;. At the beginning, we put
all polynomials {mf; | f; € F'; deg(mf;) = deg(fi),..., maxdeg} into the matrix M,
where m is a monomial. Then, we perform the Gauss-Jordan elimination on the matrix
M and save the result as matrix M. Next we check if there exists a variable xy, for
which all required polynomials ¢; are present in M. If we find such a variable, we
can continue with the construction of the action matrix for the variable. If not, we
have to add more polynomials to the matrix M. We increment maxdeg by one and
add all polynomials {mf; | fi € F; deg(mf;) = maxdeg} to the matrix M. Then, we
continue with the elimination and with the checking the action matrix requirements as
explained above. We repeat these steps until all required polynomials g; are generated so
the action matrix can be built. The pseudocode of this process is shown in Algorithm 9.
The function CheckActionMatrizConditions from this code checks if all polynomials g;
are generated in M for at least one variable from the given list of variables. If such
a variable is found, the function returns it, otherwise it returns an empty set.

Algorithm 9 Polynomial generator — One elimination solver
Input:

F a set of polynomials

variables a list of variables

algB a monomial basis B
Output:

M a matrix representing a set of polynomials

var a variable

1: mazdeg < max{deg(f;) | fi € F'}

22 M« {mf; | fi € F; deg(mf;) = deg(fi),...,maxdeg; m is a monomial}
3: M + Reduction to a Row Echelon Form of M

4: var + CheckActionMatrizConditions(M , variables, algB)

5. while var = () do

6: mazxdeg <— mazxdeg + 1

7: M «— M U{mf; | fi € F; deg(mf;) = mazdeg; m is a monomial}

8: M « Reduction to a Row Echelon Form of M

9: var < CheckActionMatrizConditions(M variables, algB)

10: end while

—_
—_

. return (M, var)

In this whole process, we need to keep track about how the matrix M was built.
Recall that each coefficient of the polynomials f; has a unique identifier assigned to it
in the equations parser. Because the whole matrix M contains only the polynomials f;
or their multiples with monomials, only the coefficients from the polynomials f; appear
in the matrix M. We just have to keep the positions of the coefficients. This is done by
matrix M. The matrix M is built at the same time as the matrix M as follows. When
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we put a coefficient into the matrix M, we also put the corresponding indentifier to
the matrix M at the same possition. The matrix M enables us to recover the process
of polynomial generation later in the code generator module.

3.1.5. Removing unnecessary polynomials and monomials

Since the polynomials were generated systematically in the previous step, there may
appear some polynomials which are not necessary for the construction of the action ma-
trix. The goal of this part of the automatic generator is to remove as many polynomials
which are not necessary as possible.

We can remove a polynomial r from the matrix M if the corresponding eliminated
matrix M still contains all required polynomials g;. In this way, we try to remove all
polynomials from M.

Because the success of removing a polynomial depends on the previous removals,
the number of removed polynomials depends on the ordering in which the polyno-
mials are removed. In the automatic generator, we start removing polynomials from
the one with the largest leading monomial by monomial ordering used. Because it is
very inefficient to remove polynomials one by one and perform each time an expensive
Gauss-Jordan elimination, we can enhance the procedure by trying to remove more
polynomials at the time. In the automatic generator, this heuristic is used. If we have
successfully removed k polynomials, we try to remove 2k polynomials in the next step.
If the removal of k polynomials have failed, we try to remove only %k polynomials in
the next step. The pseudocode of this removing process is shown as Algorithm 10.

Moreover, we can reduce the size of the matrix M by removing unnecessary mono-
mials. A monomial is unnecessary when its removal does not affect the building of
the action matrix. We have to keep all monomials such that they are leading monomi-
als of polynominals in the corresponding matrix M and all monomials that are present
in the basis B. All other monomials can be removed. If we remove all such unnecessary
monomials then the matrix M will have dimensions n x (n+ N) where n is the number
of the polynomials in the matrix M and N is the number of solutions of the given
System.

3.1.6. Construction of the action matrix

This part of the automatic generator starts with the eliminated matrix M of poly-
nomials and variable x; for which all required polynomials g; are present in M.

Let us describe the construction of the action matrix in an informal and practical
way rather than by using more abstract theory. If the theory is needed, it can be found
in [11]. The action matrix M, , corresponding to the variable xy, is a square matrix of
size N x N where N is the number of elements of the monomial basis B. Each row and
column of M,, corresponds to a monomial b; € B. Let the monomials b; be sorted such
that if b; < by then k < [ where < is the monomial ordering used. We put coefficients of

———F
the polynomial m; = (wxb;) to the i-th row where F' are polynomials corresponding
to M. Because M is in a row echelon form, there are two possibilities how the i-th row
can be constructed:

1. Either x;b; = b; for some b; € B. That means that z;b; is irreducible by F' and
m; is a monomial in B. In this case we set M, (i,j) = 1 and M, (i,k) = 0
where k # j,
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Algorithm 10 Remove unnecessary polynomials
Input:
M a matrix representing a set of polynomials
variable a variable
algB a monomial basis B
Output:
M a matrix representing a set of polynomials

1: rows < number of rows of M
2: step <— max{|rows/32],1}
3. up +— 1
4: filter < {1,2,...,rows}
5: while up < rows do
6: down < up + step — 1
7 if down > rows then
8: down < rows
9: step < douwn —up + 1
10: end if
11: filteroyg « filter
12: filter < filter\{up,up +1,...,down}
13: M + Reduction to a Row Echelon Form of M only with rows specified by filter
14: v+ CheckActionMatrizConditions(M variable, algB)
15: if v = variable then
16: up < down + 1
17: step < 2step
18: else
19: if step =1 then
20: up —up+1
21: else
22: step <— max{|step/4],1}
23: end if
24: filter « filterpq
25: end if

26: end while
27: return M only with rows specified by filter

2. or xb; # b; for all bj € B. In this case there is f such that LM(m;) = LM(f)
where f € F so m; = xb; — f. Since all monomials of f except LM(f)
are from B, all monomials of m; are also from B. We put coefficient of m; at
the monomial b; on the (i, 7) position in the matrix M,, .

Now, the solutions of the given system can be found by computing right eigenvectors
of the action matrix M,, .

3.1.7. Solver generator

The last task of the automatic generator is to create a solver which will solve the given
polynomial system for an arbitrary set of parameters preserving its structure. The cur-
rent version of the automatic generator can generate solvers for MATLAB and Maple
but new code generators can be easily added. It can be set in the minimal problem
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definition by setting cfg.exportCode which solvers will be generated. For instance,
to create both MATLAB and Maple solvers, we set cfg.exportCode = {’matlab’
‘maple’}.

To create a solver, we have to restore the process of creation of the matrix M. This
process is saved as the matrix M which contains unique identifiers on the positions
where the given parameters have to be put. So the matrix M can be built for each
given set of parameters. Then, the Gauss-Jordan elimination is called on M so we
get the matrix M. Now, the action matrix is built in the same way as above and
the solutions are extracted from it. To sum up, the final solver just creates the matrix M
by putting parameters to the correct places. After Gauss-Jordan elimination, the action
matrix is built by copying some parts of rows of M and then the solutions are extracted
by using the eigenvectors of the action matrix.

3.1.8. Usage

The automatic generator is designed to be used even by non-expert users and to be
easily expanded or improved.

At first, the script setpaths.m should be executed from the root directory of the au-
tomatic generator. This will add all required paths to the MATLAB environment.

Next, we have to set up the definition of the minimal problem we want to solve. It
is explained in the section 3.1.1 how the definitions have to be specified. All these
definitions are stored in the folder minimalProblems. To generate the solver, we
call the function gbs_GenerateSolver (MinimalProblem) where MinimalProblem is
the name of the definition of the minimal problem, i.e. the name of the function in
the folder minimalProblems. This will generate solvers solver MinimalProblem.m for
the MATLAB solver and solver_ MinimalProblem.txt for the Maple solver. These
solvers are stored in the folder solvers.

For example, let us present generating of a solver for the 6-point focal length prob-
lem [3]. We have defined this problem as a function swépt.m and we have saved it to
the folder minimalProblems. By calling the function gbs_GenerateSolver (’sw6pt’)
we get solvers solver_sw6pt.m and solver_sw6pt.txt in the folder solvers.

3.2. Improvements

The bottleneck of the automatic generator [13] was the polynomial generator module.
Since the polynomials are generated systematically, the matrices in the resultant solvers
are often bigger than necessary which means that the solvers are not efficient. So, many
improvements of the automatic generator [13] can be done. For example, if we want
to generate multiple elimination solvers as suggested in [11], the polynomial generator
module have to be improved or totaly replaced. In the same way, some strategies
from other algorithms, for example from the F; Algorithm [7], can be taken over and
implemented into the automatic generator. Because we are mostly working with sparse
matrices in the automatic generator, Gauss-Jordan elimination for sparse matrices can
be implemented to save some computation time.

3.2.1. Reimplementation

The previous implementation [13] of the automatic generator was implemented in
the MATLAB R2008. It shows up that new versions of MATLAB are not backward

compatible so the automatic generator fails when lauched in some newer version than
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R2008. Our first task was to reimplement the old implementation into new version
of MATLAB. All changes of the code were minor and just on the implementation level.

One important problem was that the Maple Toolbox for MATLAB in not compatible
with the MATLAB Symbolic Math Toolbox anymore. One of the options in the mono-
mials basis B module was to use the Maple toolbox to compute the basis B. Because of
the new incompatibility, this option can no longer be used and the algebraic geometry
software Macaulay2 [10] have to be used instead.

The new version of the automatic generator, as it is desribed in this thesis, is com-
patible with the version R2015 of MATLAB 64-bit and 32-bit under Windows and Unix
operation systems.

3.2.2. Multiple elimination solver

In the section 3.1.4, we describe a strategy how to generate polynomials for one
eliminiation solvers. However, it may be better to create multiple elimination solvers
in some cases. A multiple elimination solver is a solver where polynomials are generated
systematically by multiplying already generated polynomials by monomials and reduced
each time by Gauss-Jordan elimination. So the task of this section is to describe how
the polynomial generator of the automatic generator can be improved to be able to
generate polynomials for multiple elimination solvers.

To generate polynomials for multiple elimination solvers, we generate all polynomials
up to degree d in each step and then we perform a Gauss-Jordan elimination on them.
We increase the degree d when no new polynomials can be generated by multiplying
already generated polynomials by some monomials. We stop this process when all
polynomials ¢; are generated.

This strategy is very usefull especially when we are generating solvers for systems with
many variables. The reason is that increasing the degree d of generated polynomials
leads to a large number of new generated polynomials. The number of monomials
of degree d in n unknowns is (dtﬁzl). Therefore, we add m(dilzﬁhl) polynomials in
one iteration where d is the total degree of new polynomials, D is the total degree of
given polynomials and m is number of given polynomials. This number grows rapidly
when increasing d and n is large. Therefore, we want to hold d as low as possible.

Now, let us look at the process of generating polynomials in more details. The pseu-
docode is shown as Algorithm 11. Let the maxdeg be the maximal total degree of all
polynomials from the given system F. At the beginning, we put into the matrix M all
polynomials up to degree maxdeg such that they are product of polynomials from F
and some monomials. We get the matrix M; by eliminating the matrix M;. We check
if there exists a variable for which all polynomials ¢; are generated in M;. If no such
variable is found, we generate new polynomials with higher total degree. We increase
the degree maxdeg which is the maximal total degree of all already generated polyno-
mials. The variable step tells how much we want to increase the total degree in one
step. We save the maxdeg + 1 from the previous iteration into the variable mindeg to
keep the track to which degree we have generated polynomials already. We get new ma-
trix My by copying the matrix M; and we add all polynomials with total degrees from
mindeg to mazdeg to Ms. These polynomials are multiples of polynomials from M; by
some monomials. We save the result of the Gauss-Jordan elimination as the matrix Mg.
We repeat this process until no new polynomials are added in the iteration. That sit-
uation happens when two matrices ]\7[j and Mj,l have the same number of non-zero
rows. In this case, we check if all polynomials ¢; are generated for some variable. If
not, we have to generate new polynomials with higher total degree. If the variable has
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been found, we return the last generated matrix Mj and the variable. You may notice
that when we are leaving the repeat-until loop on line 13, there are two equivalent
matrices Mj and Mj_l. These matrices have the same non-zero rows and differ only
by the number of zero rows. This is the reason why we can remove the matrix Mj
by decrementing the variable j on line 14.

Algorithm 11 Polynomial generator — Multiple elimination solver

Input:
F' a set of polynomials
variables a list of variables
algB a monomial basis B
step an integer
Output:
M a matrix representing a set of polynomials
var a variable

1: maxdeg < max{deg(f;) | fi € F'}
2: 31
3: My < {mf; | fi € F; deg(mf;) = deg(fi),...,maxdeg; m is a monomial}
4: Ml + Reduction to a Row Echelon Form of M;
5: var < CheckActionMatrizConditions(My, variables, algB)
6: while var = () do
T mindeg < maxdeg + 1
8: mazxdeg < mazxdeg + step
9: repeat
10: j—3+1
11: Mj — Mj_l @) {7’I”LfZ | fi € Mj_l;
deg(mf;) = mindeg,...,maxdeg; m is a monomial}
12: M ; <= Reduction to a Row Echelon Form of M;
13: until number of non-zero rows of Mj = number of non-zero rows of M. -1

4 g1

15: var < CheckActionMatrizConditions(M;, variables, algB)
16: end while

17: return (M;,var)

We have to keep track about how the matrices M; were built to be able to restore
the process of the generation of polynomials and to generate the code of the solver in
the solver generator module. Therefore, we build a matrix Mj for each matrix M;.
The first matrix M is built in the same way as the matrix M when generating one
elimination solver. This matrix contains only the unique identifiers of parameters on
positions were the parameters will be put later. Because each matrix M is built from
the matrix ]\ij_l, the matrix M; contains only coefficients from the matrix Mj_l.
So, when a coefficient from (m,n) position in Mj—1 is put into M; at (k,l) position,
the tuple (m,n) is put at the position (k,l) of M;. When we have the matrix M;_;
and the matrix M j, the matrix M, can be built easily.

To enable the generation of multiple elimination solvers, we assign an integer to
cfg.PolynomialsGeneratorCfg.GJstep in the settings of the automatic generator.
The value of the GIJstep has the same meaning as the variable step from the Algo-
rithm 11. E.g. by setting GJstep = 1 the generated polynomials will be eliminated

23
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each time the total degree of generated polynomials is incremented by 1. If we set
GJstep = 0, the one elimination solver will be generated as described in the sec-
tion 3.1.4.

3.2.3. Removing redundant polynomials

We may notice that there appear matrices Mj with many zero rows in the process
of generation polynomials for multiple elimination solvers. This is because there are
many dependent rows in the corresponding matrices M;. These zero rows in matri-
ces M ; give no new information so we want to remove as many rows as possible from
the matrices M; such that the resulting matrices ]\ij will have the same non-zero rows
as before the removal and will have no zero rows.

We know that we can remove the same number of rows from M as it is the number
of zero rows in ]\ij but we do not know which rows we should remove. Thus, we try to
remove each row r from M; and if the number of non-zero rows of Mj stays the same,
the removal is successful, if not, we have to return the row r back into M;. We end this
process of removal when there is no zero row in the matrix Mj. Because performing
the Gauss-Jordan elimination in each step of removing single row is inefficient we use
the same heuristic as desribed in the section 3.1.5. For better understanding, we are
providing the pseudocode of this removing as Algorithm 12.

Since this removing process removes only zero rows from the matrices M ;7 and no oth-
ers rows are touched it does not influences the process of adding polynomials. Therefore,
this removing process is enabled by default and can not be disabled by any option in
the automatic generator settings.

3.2.4. Matrix partitioning

In the automatic generator, we are dealing with matrices that are mostly sparse,
so some efficient techniques can be used to work with them. This will often result
in generation of more efficient and numerically stable solvers.

In this section, we focus on how to speed up the Gauss-Jordan elimination of sparse
matrices. We use the technique proposed in [12]. We observe that by permuting
the rows and the columns of sparse matrices they can be transformed into matrices
with block-diagonal structure known as singly-bordered block-diagonal (SBBD) form.
Each diagonal block of the SBBD matrices forms an independent problem, and there-
fore it can be independently eliminated. This speeds up the process of Gauss-Jordan
elimination because eliminating more smaller matrices is faster than eliminating one big
matrix. If we divide the matrix into k independent blocks that contain comparable num-
ber of entries, the speed up is approximately n® — k(%)3 Moreover, the permutation
matrices that transform matrices to the SBBD forms are precomputed during the solver
generation process, and therefore the resultant solver is working already with matrices
in the SBBD forms and does not have to spend time by computing the permutation
matrices again.

Let us say we want to eliminate matrix M. First of all, we have to remove columns
that correspond to monomials from the basis B from the matrix because these columns
should not be permuted and eliminated. Then, we need to compute the permutation
matrix. To compute the permutation matrices, we use the state of the art hypergraph
partitioning tool PaToH [4] with settings to divide the matrix into two independent
blocks. We do the permutations of rows a columns and get two diagonal blocks M
and Mss and coupling columns that can not be assigned to any of the diagonal blocks.
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Algorithm 12 Remove redundant polynomials

Input:
M a matrix representing a set of polynomials
M a matrix in a Row Echelon Form representing a set of polynomials

Output:

DN N RN NN N NNLRKN — — ko e e e
SEISTLESESNT SO0 PP E BN

M a matrix representing a set of polynomials
M a matrix in a Row Echelon Form representing a set of polynomials

toRemove + number of zero rows of M
nonZero < number of non-zero rows of M
rows < number of rows of M

step < max{|toRemove/4|,1}

up 1

filter + {1,2,... rows}

while toRemove # 0 do

down < up + step — 1
if down > rows then
doun < rows
step < down —up + 1
end if
filterpig < filter
filter < filter\{up,up +1,..., down}
M + Reduction to a Row Echelon Form of M only with rows specified by filter
if number of non-zero rows of M < nonZero then
if step =1 then
up < up+1
else
step < max{|step/4|,1}
end if
filter < filteroy
else
toRemove <+ number of zero rows of M
up + down + 1
step < min{2step, toRemove}
end if

: end while }
: return (M only with rows specified by filter, M)

Next, we perform two independent eliminations of the blocks M1 and Mss and permute
all rows of M to get the identity matrix in the left top corner. However, we get non-
eliminated submatrix in the right bottom corner of M. After eliminating this submatrix,
the rows above this submatrix are still not eliminated. If this is the last elimination in
the solver, we have to eliminate only the rows which we need to build the action matrix
from. If this is not the last elimination in the solver, we have to eliminate them all.

Example Consider sparse matrix M of size 119 x 143 as it is shown in Figure 3.2a.
Columns 119 — 143 correspond to monomials from the monomial basis B. When we
remove these columns, we get a rectangular matrix of size 119 x 119 on which we execute
the partitioning tool PaToH. After the permutation of the rows and columns, we get

25
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the matrix in the SBBD form which can be seen in Figure 3.2b. We get two diagonal
blocks M of size 71 x 30 and Moo of size 48 x 38 and 51 coupling columns which can not
be assigned to any diagonal block. After two independent Gauss-Jordan eliminations
of the blocks M1 and My and row permutation, we get the identity matrix in the left
top corner, see Figure 3.2c. Now, we have to perform the Gauss-Jordan elimination on
the submatrix of size 51 x 75 in the right bottom corner. After this, we get a matrix
as it is shown in Figure 3.2d. Now, a general, not eliminated, submatrix of size 68 x 75
appears in the right top corner of the matrix. If this is the last elimination in the solver,
we do not have to eliminate it whole but it is sufficient to eliminate only the rows we
need to the constructing of the action matrix. If this is not the last elimination in
the solver, we have to eliminate the whole remaining submatrix.
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(c) A matrix obtained after two indepen- (d) A matrix obtained after elimination of
dent Gauss-Jordan eliminations. the right bottom submatrix.

Figure 3.2. Example of the process of eliminating matrix using matrix partitioning. Colors:
blue — two independent diagonal blocks, green — coupling columns, red — columns correspond-
ing to the basis B.

Since matrix partitioning does not have to be efficient for all minimal problems, it
can be easily enabled or disabled in the automatic generator. By setting cfg.matrix-
Partitioning = ’all’ matrix partitioning is used to all Gauss-Jordan eliminations in
the solver. If cfg.matrixPartitioning = ’last’ is set, matrix partitioning is used
only to the last Gauss-Jordan elimination in the solver. Matrix partitioning can be
totally disabled by setting cfg.matrixPartitioning = ’none’. At last, we want to
warn that the tool PaToH is not available under Windows OS so the matrix partitioning
can not be used under this system.
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3.2.5. F4 strategy

When polynomials are generated systematically in the polynomial generator module,
as it is described in section 3.1.4, many of them are supefluous, and therefore need not
to be generated. Since the automatic generator consists of independent modules, we
can replace the polynomial generator module by some better implementation.

We have described some of the state of the art techniques how polynomial systems can
be solved in the chapter 2. Therefore, we can take over some of them and implement
them into the automatic generator. In the section 2.2, we have understood the Fj
Algorithm [7] so we have implemented this technique into the automatic generator.

Implementation in Maple

Before we could start implementing the F) strategy into the automatic generator, we
had to deeply understand the Fj algorithm. Therefore, we have implemented the F}
Algorithm in Maple according to [7].

We have choosen the software Maple because the Fy Algorithm is implemented there
by J. Ch. Faugere himself in the Groebner package. Therefore, we are able to compare
our implementation with the implementation by Faugere.

Our implementation of the F} algorithm is available at http://cmp.felk.cvut.cz/
~trutmpav/bachelor-thesis/F4 and it is divided into the same functions as described
in [7]. The Grobner basis generated by the Fy Algorithm are not reduced Grébner basis,
and therefore we have added the reduction of Grobner basis to get the reduced Grébner
basis at the end of the algorithm. This enables us to easily compare the results with
results computed by the Faugere’s implementation.

The main function is named FJ in our implementation and it is called F4(F, Sel,
ordering) where F is a set of input polynomials, Sel is a function which selects critical
pairs as descibed in the section 2.2.6 and ordering is a monomial ordering. Output of
this function is the reduced Grobner basis. Our implementation prints information as
the number of pairs, number of selected pairs and their total degree and sizes of matrices
during the computation, see an example of the output in Figure 3.3. The implementa-
tion by Faugere can be called by Groebner [Basis] (F, ordering, method=fgb) where
the parameters F and ordering have the same meanings as the parameters in our imple-
mentation. We can force the Faugere’s implementation to print some information about
the processing by setting infolevel [GroebnerBasis] := 5, see an example of the out-
put in Figure 3.4. Therefore, we can compare, not only the results, but the sizes of
the matrices, too. There are many choices in the Fy Algorithm which can be differently
implemented. For example, the list of divisors may be sorted differently in the function
Sitmplify. Therefore, the sizes of the matrices may differ in our implementation and
in Faugere’s implementation, as you can see in the example below.

Example We show both implementations on the cyclic 4 problem taken from [7]. You
can see the input and the output of our implementation in Figure 3.3 and of Faugere’s
implementation in Figure 3.4.

Integration into the automatic generator

Our implementation of the Fy Algorithm in the automatic generator is the same as
J. Ch. Faugere has described in [7] and we did in the section 2.2. The only difference
is that we need to track how the polynomials are constructed to be able to reconstruct
the process in the solver generator module. In the Fy Algorithm, to be concrete, in
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> F4([axbxcxd - 1, a*b*c + axbkd + a*cxd + b*c*d, a*b

SelMinDeg, tdeg(a, b, c, d));

o O O o

o O O o

o O O o o O O o

o O O o

o O O o

0.10:

.00:
.00:
.01:
.02:

.02:
.02:
.03:
.03:

.03:
.03:
.04:
.05:

.05:
.05:
.06:
.06:

.06:
.07:
.08:
.08:

.09:
.09:
.10:
.10:

|[P| = 3, Selected 1 of degree
Symbolic Preprocessing: |L| =
Reducing matrix of size 3x7
Reduction finished

IP| = 2, Selected 1 of degree
Symbolic Preprocessing: |L| =
Reducing matrix of size 4x9
Reduction finished

|[P| = 2, Selected 2 of degree
Symbolic Preprocessing: |L| =
Reducing matrix of size 8x12
Reduction finished

|[P| = 2, Selected 2 of degree
Symbolic Preprocessing: |L| =
Reducing matrix of size 6x12
Reduction finished

IP| = 3, Selected 3 of degree
Symbolic Preprocessing: |L| =
Reducing matrix of size 10x14
Reduction finished

|[P| = 2, Selected 2 of degree
Symbolic Preprocessing: |L| =
Reducing matrix of size 7x10
Reduction finished

2
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= o
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Computing reduced Groebner basis

|Fd|

|Fd|

|Fd|

|Fd|

|Fd|

|Fd|

b2 + 2bd + d?
a+b+c+d

be? + Ad — bd? — &3
bd*+d° —b—d
SR +AP —c—d

+ b*xc + axd + cxd, a + b + ¢ + d],

15

21

31

d*c® + be — bd + ed — 2d2
bed? + 2d? — bd? + ed® — d* — 1

Figure 3.3. The input and the output of the cyclic 4 problem using our implementation of
the F; Algorithm in Maple.

the function Symbolic Preprocessing, we are constructing matrices F; from the selected
pairs and polynomials from Grébner basis G that are multiplied by a monomial. Poly-
nomials that are constructed from the selected critical pairs are from G and multiplied

by a monomial, too.

However, polynomials in GG are just the input polynomials or

polynomials from Fj from all previous iterations. All these polynomials that are added
into F; are simplified by the function Simplify. That means that such polynomials may
be replaced by other polynomials taken from F;. To sum up, the matrix F; is built
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> infolevel [GroebnerBasis] := 5:
> Groebner[Basis] ([a*b*c*d - 1, axbxc + axb*d + a*c*d + b*ckxd, axb + b*c + a*d + c*d,
a+b+c+d]l, tdeg(a, b, ¢, d), method=fgb);

-> FGb
domain: rat_int_cof
Set offset primes to 0/20000

Lin Bk ignored [NEW 1ib]/S:0 -> 8/
[2] (3x7)100%/

[3]1 (5x10)100%/

[4] (8x12)100%/

[5] (6x12)100%/

[6](11x16)100%/
[71(8x11)0.0%/100%/

Mingbasis2
(7x24)100%/restore Z1 Copy 80.00 for 24/30 exposants
{done}
SWAP Z1/2 Memory usage (estimate): 0.000
7 polynomials, 30 terms
total time: 0.014 sec

b% + 2bd + d?
a+b+c+d
bc® + c?d — bd? — d?
bd* +d® —b—d
S+ AdP—c—d
d*c® 4 bc — bd + cd — 2d?
bed? + 2d? — bd® + ed® —d* — 1

Figure 3.4. The input and the output of the cyclic 4 problem using Faugere’s implementation
of the F, Algorithm in Maple.

from multiples of the input polynomials or polynomials from ]:"1,_,,71;1 and monomials.
So to track the process of building the matrices F;, we just have to keep the track of
which polynomials from which matrices E (we can look at the input polynomials as if
it is a matrix Fo) are multiplied with which monomials. In the end, we have to recover
how the matrix G was build, but this is the same case as reconstructing a matrix F;
because the Grobner basis G consists only of the input polynomials or polynomials from
matrices E

Unnecessary and redundant polynomials can be, of course, removed from the matri-
ces F; as we have described in sections 3.1.5 and 3.2.3. Moreover, if nothing is added
from the matrix F to the Grobner basis G, i.e. the matrix Ff is empty, the matrix F;
can be removed totally. Therefore, there will be no reduction to zero in the generated
solver so much computation time can be saved. We are still working with sparse matri-
ces so the matrix partitioning which is described in section 3.2.4 can be used to speed
up the Gauss-Jordan eliminations.

By default, this strategy is disabled in the automatic generator and the systematic
polynomial generator as described in sections 3.1.4 and 3.2.2 is used. This is done
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by setting cfg.PolynomialsGenerator = ’systematic’. To enable the polynomial
generator using the Fy strategy, set cfg.PolynomialsGenerator = ’F4’ in the auto-
matic generator settings.

The key function in the Fy strategy is the Sel function which is descibed in the sec-
tion 2.2.6. While different Sel functions can be efficient for different minimal problems,
it can be easily changed which function will be used. To use the normal strategy, set
cfg.PolynomialsGeneratorCfg.Sel = @F4_SelNormal and to select only one critical
pair each time, set cfg.PolynomialsGeneratorCfg.Sel = @F4_SelFirst in the au-
tomatic generator settings. This second function emulates the Buchberger Algorithm.
Both this functions are stored in the folder generator/F4 and everybody can implement
and use his own Sel function.

3.3. Benchmark

In the automatic generator, as presented in this thesis, there are many different
methods which can be used to generate solvers. Efficiency of the generated solvers
depends on the method choosen. It shows up that different methods are efficient for
different minimal problems. Therefore, we need a tool which will generate more solvers
for a choosen minimal problem. Each solver will be generated by a different method
used. In the end, the tool will compare the generated solvers so we will be able to choose
which solver we will use in applications. The tool have to compare the solver in many
aspects because different applications have different requirements. For example, in one
application we need solvers which are very fast, in another we may prefere solvers that
are slower but more numerically stable. Therefore, we next present such a tool which
we call the Benchmark of automatic generators.

3.3.1. Structure

We will briefly describe the structure of the benchmark. The structure is shown
in Figure 3.5 and consists of independent blocks which can be easily modified and
replaced.

At the beginning, we have to load the definition of the minimal problem which we
want to generate a solver for. These definitions are described in the section 3.1.1.

Next, we load the benchmark templates. A benchmark template is a set of settings
of the automatic generator that will be used to generate a solver. For example, if
we want to compare one elimination and multiple elimination solvers, we will have
two benchmark templates. In the first one, the settings will be set to generate a one
elimination solver, in the second one, the generation of a multiple elimination solver
will be set. We store a set of benchmark templates, which are related to each other,
in one MATLAB function. In the example above, we will have both the templates in
one function called bench_elimination. Another example can be, that if we wanted to
benchmark the polynomial generation methods, i.e. if the Fy method is better than
the systematic method, we would have two benchmark templates. The first one will set
the automatic generator to generate solvers by the systematical method. The second
one will set the automatic generator to generate solvers by using the F) strategy. Both
this templates will be in one function called bench_polynomialGenerator. We keep all
these functions in the folder benchmark in the automatic generator.

When the benchmark templates are loaded, we use the automatic generator to gener-
ate the solver for each benchmark template. Then, we run each solver on each instance
of parameters and we write down the time spent by the computation. These instances
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Load problem

v

Load benchmark
templates

v

—» | For each template do

—

Generate solver

}

Run solver for many
instances

'

Evaluate results

'

Show results

Figure 3.5. Block diagram of the benchmark of the automatic generator.

of parameters may be specified by a user or if they are not provided, they are randomly
generated. The random generator of parameters sets each parameter to a random num-
ber from the normal distribution with the zero mean and with the standard deviation
equal to one.

The main part of the benchmark is the evaluation of the results. It is left to the user
to implement the evaluation function. This function gets the set of instanced param-
eters, results from the solver and the correct results if they are provided with the set
of instanced parameters. These correct results may be precomputed in other software
only to check the correctness of the results from the generated solvers. The evaluation
function returns the set of errors, e.g. how much the results from the solver differ from
the correct values. If the evaluation function is not provided by the user, the default
evaluation function is used. This function gets the set of given polynomials, substitutes
the unknowns by computed solutions and evaluates each polynomial. In the best case,
we should get zero for each polynomial, but we usually obtain non-zero values. Ab-
solute values of these errors depend on the numerical stability of the solver so we are
comparing the numerical stability of the generated solvers.

Finally, we have to show the results in some well-arranged way. The presentation of
the results is dependent on which data we want to show. Therefore, we leave the im-
plementation of this part to the user. If the user do not specify the function which
presents the results, the default presentation function is used. In this function, we get
logq of absolute values of the errors and show them as histogram. To be able to com-
pute the log;, of the errors we have to remove all zero values from the set of errors. We
also print the percentage of zero errors amongs all errors.
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3.3.2. Usage

The benchmark of the automatic generator is designed to be used easily but also
to be easily modified to give us the results we want to know. The benchmark of minimal
problem minimalProblem is called by the command gbs_Benchmark(minimalProblem,
benchmark, inputData, correctOutput, validationFunction, renderFunction)
where the first two arguments are compulsory and the others are optional. The parame-
ter benchmark is a function handler to the function which provides the set of benchmark
templates. The inputData is a set of parameters on which we want to test the gen-
erated solvers. If this argument is not provided, random generated parameters are
used. The correctOutput is a set of expected results of the solvers. These correct out-
puts are used to compare the numerical stability of the solvers. The function handler
validationFunction is a handler to a function which evalutes the results and returns
the set of errors. The default validationFunction substitutes computed solutions
into the given polynomials and evalutes them. The function handler renderFunction
is a handler to a function which shows the results. If this function is not provided,
the default function is used. This default function renders histogram of log;, of abso-
lute values of errors.

For clarity, we provide an example. We want to benchmark solvers for the 6-point fo-
cal length problem [3] and we are considering one elimination and multiple elimination
solvers. We have no real data to test these solvers, and therefore we have no expected
results. We want to use the default validation function and the default function for pre-
senting the results of the benchmark. In this case, we call the benchmark with these
parameters gbs_Benchmark (’swépt’, @bench elimination). From the shown results,
we decide which solver we will use in a particular application.
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To show the usefulness of our improvements of the automatic generator, we have
compared several solvers of some minimal problems using different methods. We have
used the benchmark tool of the automatic generator to generate the solvers and to
compare the results.

We have divided the experiments into three parts. In each part, we are comparing
easily comparable methods on which the speed up of the new implemented methods
can be straightforwardly seen. In the first section, we are comparing one elimination
solvers against multiple elimination solvers. In the second part, we are comparing
solvers without the matrix partitioning to solvers with matrix partitioning used in
the last elimination only and to solvers with matrix partitioning used in all eliminations.
In the last section, we are comparing solvers with different strategies of polynomial
generation. One solver is generated by the systematical generator while the second one
is generated using the Fj strategy.

To be able to compare the solvers, we have measured the time of computing the so-
lutions for each set of parameters for each solver. In the tables below, we have picked
up the maximal and minimal values and medians of the times for each solver. We
also show the sizes of matrices to eliminate and approximate numbers of operations for
each solver. By the number of operations we mean the number of operations which
are needed to obtain the solutions from the set of parameters including the operations
of the Gauss-Jordan eliminations. To eliminate a matrix of dimensions m x n, we
need to do (max{m,n})3 operations which is the upper bound of the time complex-
ity of the Gauss-Jordan elimination. To be able to compare the numerical stability of
the solvers, we have substituted each computed solution back into the given equations
and wrote down the results as errors. We have removed the errors equal to zero and
computed the log,, of absolute values of errors. We have presented these values as
histograms for each solver. Numbers of errors equal to zero are also written in these
graphs.

We have choosen the 9-point relative pose different radial distortion problem [14]
for the testing. This problem consists of four polynomial equations in four unknowns.
The number of all parameters is 63. The definition of this minimal problem can be
found under the name ku9pt in the folder minimalProblems in the automatic gen-
erator. To generate the solvers, we have used the default settings of the automatic
generator obtained by calling the function gbs_InitConfig if we do not specify differ-
ently in the description of each experiment. We have tested the generated solvers
on randomly generated data which remained the same within each experiment. Each
solver was tried on 1000 instances of parameters. All test were performed on Intel
Xeon E5-2630 2.30 GHz based computer. The MATLAB R2014a 64-bit was used to
run the tests.

4.1. Multiple elimination solver

In this part, we are comparing one elimination solver to multiple elimination solvers.
We have generated one solver according to the description in the section 3.1.4. This first
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solver consists only of one elimination in the end. The second and the third solvers have
been generated as explained in the section 3.2.2. The second solver has been generated
with the variable step set to 1, and therefore an elimination is performed always when
the maximal total degree of the generated polynomials is increased by 1. This second
solver consists of four Gauss-Jordan eliminations. The third solver has been generated
with the variable step set to 2. This means, that an elimination is performed when
the maximal total degree of the generated polynomials is increased by 2. This solver
consists of two eliminations.

We have used the benchmark templates specified in the function bench_elimination
in the folder benchmark in the automatic generator. All other settings remained set to
default values.

The computation times, sizes of matrices to eliminate and numbers of operations
required by these solvers are shown in the Table 4.1. The numerical stabilities of
the solvers are compared in the Figure 4.1 as histogram of log,, of absolute values
of errors.
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Multiple elimination solver (step = 1) (0 zero errors
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Figure 4.1. Histogram of log,, of absolute values of errors for one elimination and multiple
elimination solvers.

You can see that the numerical stabilities of the multiple elimination solvers are
slightly worse than the numerical stability of the one elimination solver. In the con-
trary, the multiple elimination solvers are approximately 1.5 times faster than the one
elimination solver. Interesting is that the second and the third solvers are equivalently
fast, but one of them consists of four eliminations and the second one only of two elim-
inations. Therefore, we can not say that more eliminations lead to faster solvers. So,
it is important to run benchmarks to find the optimal number of eliminations for each
minimal problem and then choose the best solver for the application at hand.

4.2. Matrix partitioning

In this section, we compare solvers using matrix partitioning, as described in the sec-
tion 3.2.4, on multiple elimination solvers as described in the section 3.2.2. We have set
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the variable step to one so the generated solvers consist of four eliminations. The first
solver has been generated without matrix partitioning. In the second one, matrix par-
titioning was used in the last elimination only and the third solver has been generated
with matrix partitioning in all four eliminations.

The benchmark templates used for this comparison are specified in the function
bench_matrizPartitioning in the folder benchmark in the automatic generator. The vari-
able step was set to 1 and all other settings remained set to default values.

The computation times, sizes of matrices to eliminate and numbers of operations
required by these three solvers are in the Table 4.2 and the numerical stability is shown
as histogram of log;, of absolute values of errors in the Figure 4.2.
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Figure 4.2. Histogram of log,, of absolute values of errors for solver without matrix partitioning,
for solver with matrix partitioning in the last elimination only and for solver with matrix
partitioning in all eliminations.

We can see that the numerical stability remained practically the same for all three
solvers. The solver with matrix partitioning in all eliminations is about 20 % faster
than the solver without matrix paritioning. If we compare the numbers of operations
required by these solvers, we would expect that the solver with matrix partitioning in all
eliminations will be three times faster than the solver without matrix partitioning but
the speedup is only 20 %. The problem is that when matrix paritioning is used we have
to copy large parts of the matrices to be able to eliminate them separately and then
concatenate them together. Both these operations are very expensive in MATLAB,
and therefore solvers with matrix partitioning are not as fast as we have expected. We
recommend to rewrite these solvers into some low-level language, e.g. C, to eliminate
these problems.

4.3. F), strategy

At last, we have compared a solver generated by the systematical polynomial gen-
erator with solvers generated with the Fj strategy. The first solver has been gener-
ated according to the decription in the section 3.1.4 using the systematical polynomial
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generator. The second and the third solvers used the Fj strategy described in the sec-
tion 3.2.5. The second solver has been generated without matrix partitioning and in
the third one, matrix partitioning was used in the last elimination.

We have used the benchmark templates that are defined in the function bench_poly-
nomialGenerator, which is stored in the folder benchmark in the automatic generator.
All other settings remained set to default values.

The numerical stabilities of all three solvers are compared in the Figure 4.3 as his-
togram of log;, of absolute values of errors. The computation times, sizes of matrices
to eliminate and numbers of operations required by these solvers are in the Table 4.3.

300 . . T .
Systematical generator (0 zero errors)
Fy strategy without matrix partitioning (0 zero errors

250 - Fy strategy and matrix partitioning (0 zero errors i

N4
w0\
ol

J ~

-15 -10 -5 0 5 10
log1o (|error|)

Frequency

Figure 4.3. Histogram of log;, of absolute values of errors for solver generated by the system-
atical generator and for solvers using the Fj strategy.

From the results, we can see that the numerical stability has remained the same for all
solvers. The solvers which use the Fy strategy are about 2 times faster than the solver
generated by the systematical polynomial generator.
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One elimination Multiple elimination Multiple elimination
solver solver (step =1) solver (step = 2)

minimal time 1.502 s 1.066 s 1.139 s
median of times 2.049 s 1.305 s 1.398 s
maximal time 3.508 s 2.751 s 2.679 s

. . 64 x 104;80 x 119 133 x 181
sizes of matrices 185 x 209 95 x 125:49 x 73 31 x 105

number of operations 9129 329 5 152 165 7 087 366

Table 4.1. Computing times, sizes of matrices and numbers of operations required by one and multiple elimination solvers.

Without matrix Matrix partitioning Matrix paritioning
partitioning in the last elimination in all eliminations
minimal time 1.066 s 1.051 s 0.798 s
median of times 1.305 s 1.286 s 1.051 s
maximal time 2.751 s 2.727 s 2.447 s
15t matrix 64 x 104 64 x 104 30 x 47;34 x 44;14 x 35;50 x 35
2rd matrix 80 x 119 80 x 119 41 x 48;39 x 49;5 x 29; 75 x 29
34 matrix 95 x 125 95 x 125 50 x 24; 45 x 46; 32 x 56;63 x 56
4*h matrix 49 x 73 29 x 18;20 x 15;16 x 40;0 x 0 29 x 18;20 x 15;16 x 40;0 x 0
number of operations 5 152 165 4 859 537 1775775

Table 4.2. Computing times, sizes of matrices and numbers of operations required by the solver without matrix partitioning, by the solver with matrix
partitioning in the last elimination only and by the solver with matrix partitioning in all eliminations. Matrix with the size 0 x 0 means that no rows

required for building of the action matrix have to be eliminated.
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Systematical [} strategy without Fy strategy with
generator used matrix partitioning matrix partitioning

minimal time 1.502 s 0.662 s 0.619 s
median of times 2.049 s 0.943 s 0.739 s
maximal time 3.508 s 1.897 s 1.782 s

2 x 12;13 x 30 2 x 12;13 x 30

22 X 46552 x 85 22 X 46;52 x 85

sizes of matrices 185 x 209 36 X 65;37 x 62 36 x 65;37 x 62

68 x 92;44 x 68 68 x 92;44 x 68

15 x 39 10 x 7;5 x 3;5x 29,0 x0
number of operations 9129 329 2 405 581 2371776

Table 4.3. Computing times, sizes of matrices and numbers of operations required by the solver generated by the systematical generator and by two solvers
using the Fj strategy. One without matrix partitioning and the second one with matrix partitioning in the last elimination. Matrix with the size 0 x 0
means that no rows required for building of the action matrix have to be eliminated.
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5. Conclusion

In this work, we have focused on how to solve systems of polynomial equations fast
and how to automatically generate efficient solvers for these systems.

In the first part, we reviewed the state of the art algorithms for computing Grébner
bases of polynomial systems. We described the Buchberger Algorithm [2], then we
explained the Fy Algorithm [7] by J. Ch. Faugere in details and in the end, we pointed
out the main features of the F5 Algorithm [8].

In the second part, the automatic generator [13] of minimal problem solvers was
reviewed. This tool enables us to easily generate solvers for systems of polynomial
equations which arise when solving minimal problems in computer vision. We described
the process of generation of solvers in detail. Then, we suggested several improvements
of the automatic generator and we have implemented them. For example, we presented
an improvement which allows us to generate multiple elimination solvers, which are
usually better for systems of polynomial equations in many unknowns. We also showed
that the solvers can be sped up when Gauss-Jordan elimination for sparse matrices is
used. Next, we took over a strategy from the Fy Algorithm [7] and we have implemented
it into the automatic generator. For better understanding, we have implemented the Fj
Algorithm [7] in Maple first. The description of this implementation is provided in this
section, too. In the end, we presented the benchmark of the automatic generator. This
tool helps us to decide which generated solver is better for our application.

In the end, we took the 9-point relative pose different radial distortion problem [14]
and compared solvers generated with different methods for this problem on set of ran-
domly generated data. We showed that solvers generated with the new implemented
methods may be faster than solvers generated by the old implementation of the au-
tomatic generator. We noticed the most visible speed up when the Fj strategy was
used. In this case, the solver using the Fj strategy is two times faster than the solver
generated by the systematical generator for the 9-point relative pose problem [14].
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A. Contents of the enclosed CD
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/

L AutomaticGenerator .........

| benchmark .

| _gbsMacaulay

—

, _generator .

— .

ku9pt.m

swbépt.m
test.m .

-

| solvers ...

| license.txt
| setpahs.m .

| F4
LF4.mw .....
| thesis
Lthesis.pdf

| bench_elimination.m ..

| _prerequisites ...........

| installation.txt ........

folder with the automatic generator

folder contaning benchmark templates

........... definitions of benchmark templates
that are used in the experiment 4.1

| bench matrixPartitioning.m ..... definitions of benchmark templates

that are used in the experiment 4.2

| _bench_polynomialGenerator.m ....definitions of benchmark templates

that are used in the experiment 4.3
folder with auxiliary files required for calling
Macaulay?2 [10]

folder with main functions of the automatic
generator

folder with minimal problem definitions
definition of the 9-point relative pose different
radial distortion problem [14]

definition of the 5-point relative pose prob-
lem [20]

definition of the 6-point focal length problem [3]
definition of the test problem (two equations
in two unknowns)

folder with installation files of Macaulay2 [10]
and PaToH [4]

folder where generated solvers are stored
installation how to

license file

script which add all required paths to the MAT-
LAB environment

implementation of the Fy Algorithm [7] in Maple

digital copy of this thesis
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