
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Diploma Thesis

Integration of Heterogeneous Data Sources Based
on a Catalog of Master Entities

Bc. Ondřej Pánek

Supervisor: Mgr. Martin Nečaský, Ph.D.

Study Program: Open Informatics

Field of Study: Software Engineering

May 7, 2015

iv

v

Aknowledgements
I would like to thank Mgr. Martin Nečaský, Ph.D. for his willing help and devoted time
when supervising this thesis. I extend my gratitude to Ing. Ondřej Straník for valuable
consultations and helpful advice from practice. My deepest thanks goes to my girlfriend,
family and friends for their support in my studies.

vi

vii

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on May 11, 2015 .

viii

Abstract

This diploma thesis addresses the problem of integrating heterogeneous data sources. Its
aim is to design and implement a general and configurable integration system capable of
providing simple and transparent access to data integrated from multiple heterogeneous
data sources. The architecture is based on a modified wrapper-mediator principle extended
by a catalog keeping the metadata and thus forming the integrated global schema. Since
the architecture follows the RESTful principles, clients can query the integrated data via
a standard, transparent, easy-to-use and self-descriptive API.

keywords: integration, heterogeneous data source, wrapper, mediator, catalog, transparent
access, RESTful architecture

Abstrakt

Tato diplomová práce se zabývá problémem integrace heterogenních datových zdrojů. Jejím
cílem je navrhnout a implementovat obecný a konfigurovatelný integrační systém schopný
poskytnout jednoduchý a transparentní přístup k datům integrovaným z více heterogen-
ních datových zdrojů. Architektura je založena na principu wrapper-mediator rozšířeném
o katalog, který uchovává metadata a formuje tak integrované globální schéma. Jelikož ar-
chitektura dodržuje principy RESTful, klienti systému se mohou dotazovat na integrovaná
data prostřednictvím standardního, transparentního, snadno použitelného a samopopisu-
jícího API.

klíčová slova: integrace, heterogenní datové zdroje, wrapper, mediator, katalog, transpar-
entní přístup, RESTful architektura

ix

x

Contents

1 Introduction 1

2 Background 3
2.1 Problem Statement . 3
2.2 Interoperability . 4

2.2.1 About interoperability . 4
2.2.2 Interoperability Difficulties . 4

2.2.2.1 Autonomy . 5
2.2.2.2 Distribution . 5
2.2.2.3 Heterogeneity . 5
2.2.2.4 Instability . 5

2.2.3 Heterogeneity . 5
2.2.3.1 System level . 6
2.2.3.2 Syntactic level . 6
2.2.3.3 Structural level . 6
2.2.3.4 Semantic level . 7

2.2.4 Interoperability Approaches . 7
2.2.4.1 Standardization . 7
2.2.4.2 Federation . 7
2.2.4.3 Mediation . 8
2.2.4.4 SOA . 9
2.2.4.5 Ontology and Semantic Web 9

2.3 Master Data Management . 11

3 Related Works 13
3.1 Selected Integration Systems . 13

3.1.1 TSIMMIS . 13
3.1.2 Virtual Query System for SemanticLIFE 14
3.1.3 OWSCIS . 16
3.1.4 Virtual-Q . 17

3.2 Discussion . 19

4 Analysis 23
4.1 Basic Vision . 23
4.2 Key Features . 24

xi

xii CONTENTS

4.3 Major Problems . 24
4.3.1 Different Identifiers . 24
4.3.2 Traffic Minimization . 24
4.3.3 Identification of weak entities . 25

4.4 Glossary . 25
4.5 Principle and Business Process . 26
4.6 Requirements . 26

4.6.1 Functional Requirements . 27
4.6.2 Non-Functional Requirements . 28

4.7 Use Cases . 30
4.7.1 Client’s Perspective . 30
4.7.2 Administrator’s Perspective . 30

4.8 Domain Model . 33

5 Architecture 35
5.1 Architecture Overview . 35
5.2 Components of the Architecture . 38

5.2.1 Catalog . 38
5.2.2 Wrapper Module . 38
5.2.3 Mediator Module . 39
5.2.4 Querying Web Service . 40
5.2.5 Catalog Web Service . 41
5.2.6 Admin Client . 41

5.3 REST . 41
5.3.1 Constraints and properties of REST 41
5.3.2 RESTful system architecture . 42

6 Design 45
6.1 Catalog . 45

6.1.1 Master Entity and Attribute Types . 45
6.1.2 Owned Master Entity Types . 46

6.2 Wrapper Module . 46
6.2.1 Principles of Wrapper’s Work . 47
6.2.2 Building Wrappers . 48
6.2.3 Dependent Keys . 48
6.2.4 Cache . 48

6.3 Mediator Module . 49
6.3.1 Mediation Process . 49
6.3.2 Waiting for Dependent Keys . 51
6.3.3 Lazy Loading . 52
6.3.4 Filtering . 53
6.3.5 Stability . 53
6.3.6 Usage Statistics . 53

6.4 Querying Web Service . 53
6.4.1 REST API Design . 53
6.4.2 Response Building . 55

CONTENTS xiii

6.4.3 Cache . 55
6.4.4 Errors Handling . 55

6.5 Catalog Web Service . 55
6.5.1 Public API . 55
6.5.2 Admin API . 56

6.6 Admin Client . 57
6.6.1 Dashboard . 57
6.6.2 Data Sources Management . 58
6.6.3 Wrappers Management . 58
6.6.4 Master Entity Types Management . 59

6.7 Database Design . 59

7 Implementation 61
7.1 Used Platform and Technologies . 61

7.1.1 Spring Framework . 61
7.1.1.1 About Spring . 61
7.1.1.2 Dependency Injection . 61
7.1.1.3 Aspect-Oriented Programming 62

7.1.2 REST . 62
7.1.3 ORM . 63

7.2 Multithreading . 64
7.3 Implementation of Wrappers . 66
7.4 Cache . 67

7.4.1 Wrapper Cache . 67
7.4.2 HTTP Cache Control . 68

7.5 Exceptions Handling and Logging . 69
7.6 Admin Client . 70

8 Testing 73
8.1 Unit and Integration Tests . 73
8.2 Requirements Fulfillment . 74

8.2.1 Functional Requirements . 74
8.2.2 Non-Functional Requirements . 74

8.3 Demonstration on Real Data . 75
8.3.1 Connected Data Sources . 76
8.3.2 Defined Master Entity Types . 77
8.3.3 Implementation of Wrappers . 77
8.3.4 Performance Tests . 79

9 Conclusion 83
9.1 Future Work . 84

Bibliography 85

A List of Abbreviations 89

xiv CONTENTS

B Installation Manual 91
B.1 System Installation . 91

B.1.1 Database Preparation . 91
B.1.2 Deployment . 91

B.2 Example on Real Data . 92
B.2.1 ARES RDB . 92
B.2.2 ARES REST . 92
B.2.3 System Configuration . 92

C Administration Manual 93
C.1 Login . 93
C.2 Dashboard . 93
C.3 Entity Types . 95

C.3.1 Overview . 95
C.3.2 Add Master Entity Type . 95
C.3.3 Edit Master Entity Type . 97
C.3.4 Remove Master Entity Type . 97

C.4 Data Sources . 97
C.4.1 Overview . 97
C.4.2 Add Data Source . 97
C.4.3 Edit Data Source . 99
C.4.4 Remove Data Source . 99
C.4.5 Clear Cache . 99

C.5 Wrappers . 99
C.5.1 Overview . 99
C.5.2 Add Wrapper . 99
C.5.3 Wrapper Implementation . 99

C.5.3.1 SQL . 101
C.5.3.2 REST . 101
C.5.3.3 CSV . 101
C.5.3.4 SOAP . 102
C.5.3.5 Other . 102
C.5.3.6 Deployment . 102

C.5.4 Edit Wrapper . 102
C.5.5 Remove Wrapper . 102
C.5.6 Clear Cache . 102

D User Manual 103
D.1 API Entry Point . 103
D.2 Catalog Web Service . 103
D.3 Querying Web Service . 104

E DVD Content 107

List of Figures

3.1 TSIMMIS architecture based on wrappers and mediators (taken from [11]) . . 14
3.2 The architecture of the Virtual Query System (taken from [21]) 15
3.3 OWSCIS architecture (taken from [13]) . 17
3.4 Virtual-Q - overview of the main parts (taken from [47]) 18
3.5 The architecture of the Virtual Query Engine (taken from [47]) 18

4.1 Process of data retrieval and integration . 26
4.2 Basic schema of the system . 27
4.3 Use cases from the client’s perspective . 31
4.4 Use cases associated to the catalog management 31
4.5 Use cases from associated to the data sources management 32
4.6 Use cases from associated to the wrappers management 32
4.7 A composite use case to integrate a new data source with all the circumstances 33
4.8 Analytical domain model . 34

5.1 Basic overview of the architectural components 36
5.2 Deployment schema of the integration system 37
5.3 Catalog . 38
5.4 Wrapper Module . 39
5.5 Mediator Module . 40
5.6 Querying Web Service . 41

6.1 Design classes of the Catalog . 46
6.2 Design classes of the Wrapper Module . 47
6.3 Design classes for caching of wrappers’ results 49
6.4 Design classes of the Mediator Module involved in mediation by key 50
6.5 Sequence diagram of mediation by key . 51
6.6 Design classes specific for mediation all . 52
6.7 Design classes of the Querying Web Service 54
6.8 Design classes of the public part of the Catalog Web Service 56
6.9 Design classes of wrappers administration . 57
6.10 Database design . 60

7.1 Page for master entity types management . 70
7.2 Dialog for editing a master entity type . 72

xv

xvi LIST OF FIGURES

8.1 Data sources in the example of use . 76
8.2 Master entity types in the example of use . 78
8.3 Performance tests results - lazy loading off, cache off 79
8.4 Performance tests results - lazy loading on, cache off 80
8.5 Performance tests results - lazy loading on, cache on 80
8.6 Performance tests results - average times of all situations 81

C.1 Login page . 93
C.2 Dashboard . 94
C.3 Error log . 94
C.4 Master entity types management . 95
C.5 Add a master entity type dialog . 96
C.6 Specification of attribute types . 96
C.7 Data sources management . 98
C.8 Add a data source dialog . 98
C.9 Wrappers management . 100
C.10 Add a wrapper dialog . 100

List of Tables

3.1 Comparison of selected integration systems 20

8.1 Results of performance tests . 81

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

This diploma thesis addresses the problem of integrating heterogeneous data sources. Or-
ganizations of any size need to effectively work with data to support business requirements
and nowadays, enormous amounts of data are available over public or corporate networks.
However, the rapid growth of the Internet as well as information technology in general led
to a coexistence of different ways of data storing and providing, and that brought certain
restrictions on working with multiple different data sources.

The aim of this thesis is to design and implement a general and configurable integration
system capable of providing simple and transparent access to data integrated from multiple
heterogeneous data sources. Among other essential requirements belong supporting of a wide
range of data sources, simple extensibility with new ones and orientation on essential business
entities, internally called master entities. An important condition is to be able to work with
original data without the need to preprocess them and store in a more suitable storage.

Several related works are introduced but since no existing system supports all the desired
features, a different approach is proposed. Nevertheless, the integration system uses the
best practises from the existing solutions as a modified wrapper-mediator principle and
introduces a catalog component to store metadata forming the integrated global schema. As
a result, a standard RESTful API is formed on top of the system offering both transparently
integrated data and metadata from the catalog enabling to better understand the data and
build dynamic client applications above them.

This text is organized as follows. Chapter 2 gives background information - states the
problem and explains the issue of interoperability and master data management. In Chapter
3, several selected related works are introduced and compared. Next, Chapter 4 begins the
development of the integration system with the analysis. In Chapter 5, the architecture of
the integration system is proposed. Chapter 6 addresses the software design phase, Chapter
7 deals with the implementation part and Chapter 8 describes system testing. Finally,
Chapter 9 concludes the diploma thesis including some future work remarks.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter provides background information about the thesis’ topic. Firstly, the problem
statement is proposed in general. Then, the main part of the chapter is dedicated to the
problem of interoperability, describes its difficulties with emphasis on heterogeneity and
introduces various approaches to achieve it. At the end, a discipline called Master Data
Management is briefly discussed.

2.1 Problem Statement

Nowadays, enormous amounts of data are available over public or corporate networks and
a plenty of new on-line data sources are continuously appearing. People often access more
or less structured data, which tend to be very dynamic. However, the rapid growth of
the Internet as well as information technology in general led to a coexistence of different
ways of data storing and providing, and that brought certain restrictions on working with
multiple different data sources. Heterogeneity of data sources is an obstacle in the access to
information, its processing and combination.

Organizations of any size need to effectively work with data to support their business
requirements. Even at a single organization level, information from several different data
sources is necessary for making business decisions. That usually is both time consuming
and demanding of knowledge about the locations of required data and ways of retrieving
them. Acquisition of information from heterogeneous data sources involves working with
various data models and requires the ability to use different query methods and languages.
In addition, in order to correctly and accurately interpret information from diverse data
sources, one has to be cautious of its intended meaning.

In such an environment it is still more and more important to develop software sys-
tems, applications and tools that manage to combine relevant data from heterogeneous data
sources and present them to the user in an understandable manner. Sometimes it is not
possible to preprocess the data and move them into a more suitable storage in order to
support their better linking and enrichment. Therefore, we often need applications based
on original data integration in practice.

Data integration refers to the combination of data stored by various technologies in mul-
tiple disparate sources and providing users with a unified view of these data. As a result, the

3

4 CHAPTER 2. BACKGROUND

unified view offers better accessible and more meaningful and valuable information. Com-
bining technical and business processes, data integration overcomes the barriers in the form
of system, syntactic, structural and semantic heterogeneity. One of the key requirements on
a good integration solution consists in a fact that the end user or data consumer should be
as little involved in the technical integration process as possible without having to be aware
of the real data origin.

2.2 Interoperability

2.2.1 About interoperability

Data integration offers a possibility to transparently manipulate with information across
multiple data sources. The term of data integration is a part of a wider concept of interop-
erability between systems.

According to [12], interoperability is the ability of two or more systems or components
to exchange information and use the information that has been exchanged. Because of
an increasing amount of independently developed information systems, more significant
specialization in work demanding data reuse and analysis and a great diversity of paradigms
in data representation and modelling, the interoperability is becoming a center of interest.

[35] introduces four degrees of interoperability which are intended to classify how struc-
turing and automating the exchange and interpretation of data can enhance operational
effectiveness.

� Unstructured Data Exchange – involves the exchange of human-interpretable un-
structured data such as the free text extracted from operational estimates, analysis
and papers

� Structured Data Exchange – involves the exchange of human-interpretable struc-
tured data intended for manual and/or automated handling, but requires manual
compilation, receipt and/or message dispatch

� Seamless Sharing of Data – involves the automated sharing of data among systems
based on a common exchange model

� Seamless Sharing of Information – an extension of the previous degree to the
universal interpretation of information through data processing based on co-operating
applications

2.2.2 Interoperability Difficulties

Interoperability remains a complicated problem and still creates new challenges for many
areas of computer science. [45] presents main difficulties of interoperability - autonomy, dis-
tribution and heterogeneity. [13] emphasises the significance of a fourth aspect - instability.

2.2. INTEROPERABILITY 5

2.2.2.1 Autonomy

Data sources are usually autonomous - managed separately and independently. If the in-
formation system bases on multiple sites - components, the autonomy becomes a major
problem. The information system anatomy can be classified to three areas [4]:

� Design anatomy – includes the property of a component to have an independent
design suitable for inner data representation, management and integrity constraints
changeable at any point in time, which can lead to complication within the cooperating
infrastructure

� Communication autonomy – means that a component can decide which other
systems it communicates with

� Processing autonomy – ensures the independence of a component in the matters of
scheduling and processing of incoming requests

2.2.2.2 Distribution

Physical location of data may become another obstacle in interoperability. Data could be
distributed among multiple data sources, which could be spread over one or more computer
systems. The request then cannot be answered by the data available from a single data
source, but it has to merge the distributed answer fragments. In addition, the distribu-
tion methods may vary considerably (e.g. vertical vs. horizontal distribution in relation
databases).

2.2.2.3 Heterogeneity

The major difficulty of data integration is the heterogeneity of information sources. The
differences consist in areas from hardware platforms over various data models, way of data
representation, query languages to the interpretation of information meaning. A more de-
tailed description of heterogeneity is given in the next section.

2.2.2.4 Instability

The information sources appear every day, others change or disappear. Any minor change
in data source schema, like adding or removing an attribute, influences the integration of
these sources.

2.2.3 Heterogeneity

Heterogeneity arises in situations when there is a conflict in meaning, interpretation or in-
tended usage of the same or related data [6]. Bridging the heterogeneity belongs to the most
important tasks of data integration. Based on a research of various aspects of heterogeneity,
[44] distinguishes four levels of heterogeneity - system, syntactic, structural and semantic.

6 CHAPTER 2. BACKGROUND

2.2.3.1 System level

System level of heterogeneity involves technical differences on the lowest level of abstraction
- hardware, operational system and communication systems and protocols. [44] divides
system heterogeneity into two subareas:

� Information system heterogeneity – includes the heterogeneity of database man-
agement systems, data models, system capabilities such as concurrency control and
recovery

� Platform heterogeneity – includes operation system related aspects (heterogeneity
of file system, naming, file types, operation, transaction support), and hardware related
aspects (heterogeneity of instruction set, data representation/coding)

2.2.3.2 Syntactic level

This level comprises of distinction in data models, languages and representations. Syntactic
differences seen from the view of heterogeneity include:

� Data model heterogeneity – information can be modeled according to various
paradigms (relational database, XML database, graph database, object database etc.),
which brings differences in the semantics of used concepts

� Interface heterogeneity – this type of heterogeneity consists of different approaches
to retrieve data including diverse query languages with their constraints and query
restrictions (e.g. only certain queries are allowed, only certain conditions can be
expressed, optional vs. required input parameters)

� Format heterogeneity – refers to different data types (e.g. integer vs. long) and
data formats (e.g. 2014-12-24 vs. 24-12-2014)

2.2.3.3 Structural level

This level lies in a different data modelling. It comprises of representation heterogeneity
involving data modelling constructs and schematic heterogeneity, which refers especially to
structured databases.

� Representation heterogeneity – this heterogeneity is caused by inconsistencies in
information modelling and representation in different schemas (e.g. the same informa-
tion can be represented by one or more attributes)

� Schematic heterogeneity – is concerned with using of different elements of a data
model to describe the information (relation vs. attribute name, attribute name vs.
attribute value, relation vs. attribute value)

2.2. INTEROPERABILITY 7

2.2.3.4 Semantic level

The meaning of data can be expressed in various ways, and that brings semantic hetero-
geneity. This level is focused on the correct interpretation of information, when the key
aspect is to know its intended meaning. The goal is to properly evaluate which concepts are
equivalent or related. [15] identifies three major reasons of semantic heterogeneity:

� Confounding conflicts – occurs when two pieces of information seem to have the
same meaning but vary in reality, e.g. due to different temporal contexts

� Scaling and units conflicts – lies in using different units of measures or scales
(different currencies, different granularity in scales etc.)

� Naming conflicts – consists of significant differences caused by naming schemes,
a conflict usually occurs when using synonyms (different terms used to refer to the
same concept) or homonyms (the same term used to refer to different concepts)

2.2.4 Interoperability Approaches

Various approaches to the interoperability have been introduced during the technological
development.

2.2.4.1 Standardization

Standardization approach says that each cooperating system communicates using the same
standard and has the same model for data representation merging all system domains.
Design of such a complex data model is not only a very difficult task but also poorly
resistant to changes. Any change, even of only one data source, reflected in the integrated
model can significantly affect many others which have to be adopted subsequently.

2.2.4.2 Federation

This approach is based on a cooperation of independent heterogeneous databases which are
connected by one or more virtual federated schemas [33]. A federated schema associates
exported schemas of one or more data sources. Generally, two types of federations are
distinguished - tightly coupled and loosely coupled [39].

In a tightly coupled federation, each source defines an optional subset of its schemas
to be shared in a federation. Based on these schemas, the federation administrator then
has to put them together into a global federated schema, which acts as an entry point for
a transparent access to data without any need for knowledge of its real location.

On the other hand, a loosely coupled federation does not perform any global schema
integration but incorporates a subset of schemas available in the federation for specific
purposes. These federation schemas are created by users or administrators of local databases
involved in the federation. User has to specify schemas of the used databases in order to
access the data, which removes any levels of location transparency.

8 CHAPTER 2. BACKGROUND

[45] extended the classical three-level database schema to a five-level architecture in
order to support autonomy, distribution and heterogeneity of federated database systems.
The five-level schema architecture consists of following layers:

� Local schema – a local conceptual schema on a database (federation component)
level expressed by a native data model

� Component schema – derived from translating local schemas to a canonical or
common data model, which allows to describe the heterogeneity of local schemas by
a uniform representation and to refine them with some additional semantics (plays the
integrating role in a tightly coupled federation)

� Export schema – defines a subset of component schemas intended to share in a fed-
eration, hence accessible to non-local users (may include access control mechanisms
using filters)

� Federated schema – integrates multiple export schemas and keeps the information
about distribution generated during the integration process, which is used to a trans-
lation of federated schema to export schemas

� External schema – determines a schema for end users/applications, can simplify
the federated schema for some specific purposes including new integrity constraints or
access control rules specification

2.2.4.3 Mediation

The mediation extends the federation approach for the integration of a large number of
information sources that can be dynamically added, removed or often modified. The aim
of the mediation approach is to benefit from the transparent access of a tightly coupled
federation and the flexibility of a loosely coupled federation in order to provide a solution
in data integration.

The mediation architecture is based on two types of software components - wrappers,
designed for communication with data sources, and mediators, which are responsible for the
integration and interfacing with users or applications.

Wrapper operates on top of a data source and maps its native representation into a com-
mon data model. In order to achieve such a mapping, wrapper must be able to convert
a request of the common data model in a request that is specific for the particular source
and the obtained data translate back to the common data model [10].

Mediator forms an integrated view on data from one or more wrappers. Its task is to
process an incoming request, delegate it to appropriate wrappers and combine, integrate and
abstract the obtained data. The mediators can cooperate with each other, for example to
decompose a query into subqueries and schedule their execution plan. The rules in mediators
determine how to map each data source into an integrated view.

As regards the specific types of heterogeneity, wrappers overcome the syntactic hetero-
geneity by hiding the inner data representation and providing the data independently of
the nature of their source. Mediators bridge the gap in heterogeneity on the structural

2.2. INTEROPERABILITY 9

level, since they map the data from wrappers into a homogeneous data structure. Semantic
heterogeneity belongs also to a responsibility of mediators, so it must be taken into account
[52]. However, heterogeneity on the semantic level makes the development of mediators
a time consuming and complicated task.

2.2.4.4 SOA

SOA (Service Oriented Architecture) represents a flexible set of design principles used during
the phase of system development and integration. It determines a way of integration of
various applications and systems in a distributed world using multiple different platforms.

A service is generally implemented as a course-grained, discoverable software entity that
exists as a single instance and interacts with applications and other services through a loosely
coupled (often asynchronous), message-based communication model [3]. The services and
their consumers communicate with each other by passing data in a shared format or by
orchestrating an activity between multiple services to create advanced functionality.

Basic protocols enabling discoverability and describing the methods of using the web
services are SOAP (Simple Object Access Protocol) [46], WSDL (Web Services Description
Language) [55] or UDDI (Universal Description Discovery and Integration) [51]. The com-
munication is commonly based on HTTP (Hypertext Transfer Protocol) [23] and the data
is usually transferred in standard formats like XML (Extensible Markup Language) [56],
JSON (JavaScript Object Notation) [28] or YAML (YAML Ain’t Markup Language) [2].
In recent years, an architectural style REST (Representational State Transfer) [9], which
is based on a set of stateless web services designated to manipulate the resources through
their representation, has been coming to the fore.

A set of web services can be independently built requiring more or less effort from any
information source. These services then forms a system interface providing an access to
the data and functionality. It is a very flexible solution leading to an interoperability of
heterogeneous information sources.

2.2.4.5 Ontology and Semantic Web

According to [53], the Semantic Web provides a common framework that allows data to be
shared and reused across application, enterprise, and community boundaries. It is a col-
laborative effort led by W3C with participation from a large number of researchers and
industrial partners. It is based on the RDF (Resource Description Framework) [40]. The
Semantic Web refers to a group of technologies that seek to build a global data space of
semantically linked information, which would be well readable and processable by machines.

The above mentioned approaches to the interoperability focused especially on the syn-
tactic and structural level of heterogeneity, while the semantic heterogeneity was slightly in
the background. Overcoming the semantic heterogeneity, which would result in a correct
interpretation of the meaning of information across each system, is considered to be the most
difficult problem on the way to data integration. Tools of the Semantic Web, ontologies in
particular, concentrate on this vital aspect of heterogeneity.

The term ontology stands for an explicit specification of a conceptualization [16]. Con-
ceptualization refers to a set of objects, human commonly think they exist in the world of

10 CHAPTER 2. BACKGROUND

interest. It represents an abstract model of how we think about the real things. Explicit
specification denotes a hierarchically organized structure of explicitly named and defined
concepts and relations between them. Such a structure defines the meaning of objects of
the abstract model.

Generally, an ontology composes of a set of organized terms to describe the reality on
a concept base. A dictionary provided by the ontology serves as a stable conceptual model
to the information sources independent on the source schemas. The language of ontologies is
expressive enough to address even a very complex knowledge. To define ontologies, languages
as OWL (Web Ontology Language) [36] or RDFS (Resource Description Framework Schema)
[41] are most often used.

The strong expressiveness allows to define a concept in a precise manner, which is pro-
cessable and interpretable by computer systems. The interpretation of knowledge described
in ontologies enables to translate the information sources into the common data model. All
these features make the ontology an appropriate technology for data integration.

In the vast majority of integration approaches based on ontologies, an ontology is used
for the explicit description of information sources semantics. But there are different ways
of how to employ an ontology. [54] distinguishes three different directions: single, multiple
and hybrid.

Single ontology approach

This approach uses one global ontology to provide a shared vocabulary for a description of
knowledge. The global ontology may also be a combination of multiple specialized ontologies
due to a better maintainability.

All information sources are mapped to one global ontology. An independent model
of each source must be described by relating the objects of the source to the concepts of
the global ontology. Based on these mappings, it is possible to identify semantic relations
between information from different sources.

Single ontology approach is suitable in situations when all information sources provide
nearly the same view on its domain. If a view of some information source differs from others,
i.e. has another level of granularity, finding a minimal ontology becomes a problem. [17].

Multiple ontology approach

In a multiple ontology approach, each information source is described by its own ontology.
This ontology could again be a combination of several ontologies, but the essence is that
information sources share neither a dictionary nor a schema.

The advantage of this approach consists in no need for a common minimal ontology,
which is often hard to assemble due to the heterogeneity in data granularity. On the other
hand, the lack of a global dictionary makes it exceptionally difficult to compare different
source ontologies. This shortage is solved by creating inter-ontology mappings which identify
relations between the concepts of the compared ontologies. However, these mappings must
take into account the different views of data, and that makes their definition very complex.

2.3. MASTER DATA MANAGEMENT 11

Hybrid approach

To overcome the drawbacks of both above mentioned approaches, a hybrid approach was
introduced. Information sources are described by their own ontologies like in the multiple
ontology approach, but in order to be comparable, these local ontologies are built upon one
global dictionary. To describe a domain, this shared dictionary contains primitive terms,
which can be combined to cover more complex knowledge on the local ontology level. This
approach requires two kinds of mappings: 1) mappings between information sources and
their local ontologies and 2) mappings between local ontologies and the global dictionary.

The advantage of the hybrid approach lies in an easy adding of new sources without the
need to modify neither the shared dictionary nor the mappings. The presence of the global
dictionary allows to compare local ontologies eliminating the disadvantage of multiple ontol-
ogy approach. But the drawback of the hybrid approach is that existing ontologies cannot
be easily reused because of the dependencies of local ontologies on the shared dictionary, so
the local ontologies have to be developed from scratch.

2.3 Master Data Management

Master Data Management (MDM) is a collection of best data management practises that
intend to support organization’s business needs by providing access to a single view of
the master data entities across the operational infrastructure [31]. [43] describes MDM
as a business-driven practice of defining and maintaining consistent definitions of business
entities and data about them across multiple IT systems and possibly beyond the enterprise.
Master Data Management gained its name by the data it governs - master data.

Master data represents the most essential core business entities shared across multiple
transactional applications. It involves the key objects that matter the most, which are the
subjects of measuring, analysis and reporting processes. Master data forms a single version
of the truth about these objects across the operational landscape [5]. Common examples of
master data include the following:

� Customers

� Products

� Employees

� Suppliers

� Locations

� Contracts etc.

MDM has reached the stage that it is a mainstream activity today, because organizations
increasingly need, among other things, a single view of their essential data to support their
business decisions. The master data may often be enriched by information even beyond the
organization level, which subsequently brings a need for the integration.

12 CHAPTER 2. BACKGROUND

Chapter 3

Related Works

This chapter addresses several selected integration systems, including: TSIMMIS [10, 11],
the Virtual Query System for SemanticLIFE [20, 21, 22], OWSCIS[14, 13] and Virtual-Q
[48, 47, 34]. At the end, properties of the introduced systems are discussed resulting in a set
of best practises to use within this thesis.

3.1 Selected Integration Systems

Firstly, several selected integration systems are described including the used approach, the
architecture, a way of representing data model, a way of querying etc. All these systems
work with original data querying original data sources every time a user makes a request
(excluding caching).

There are numerous ways of integration that need to store the data in a different storage
more suitable for purposes of integration, linking and enriching. These approaches generally
provide more advanced integration possibilities and more complex operations on the data.
On the other hand, they need to host and maintain an infrastructure for storing the data and
manage the updates of original data in order to provide fresh and up-to-date information.
Such approaches include e.g. data warehousing on an organization level or Linked Data [18]
on a global level. However, this thesis is not concerned with such a situation.

3.1.1 TSIMMIS

TSIMMIS - The Stanford-IBM Manager of Multiple Information Sources - is a project
whose main goal is to develop tools that facilitate the rapid integration of heterogeneous
information sources including both structured and unstructured data [10].

This system is a typical example of the mediation approach (see Figure 3.1). Wrappers
(or translators) stand above each data source converting application queries into source
specific queries and translating obtained data into a common data model. Mediators are
used for the integration part refining in some way information from one or more sources.
To properly describe the common data model, TSIMMIS introduced its own simple and
self-describing object model called OEM (Object Exchange Model) [37] and an SQL-like
query language for requesting OEM objects named Lorel Query Language [1].

13

14 CHAPTER 3. RELATED WORKS

Figure 3.1: TSIMMIS architecture based on wrappers and mediators (taken from [11])

Both mediators and wrappers export the same interface taking a query as an input
and returning OEM objects. Such a unified approach allows to access the data sources
transparently either directly from the wrappers or the mediators. Hence, a new data source
becomes useful as soon as a wrapper is supplied.

In TSIMMIS there is not a single global schema. Furthermore, mediators and wrappers
are not required to provide objects according to a fixed schema or type, but each query
determines the form of the matching objects’ schema. No end user knows the global view
of all the information handled by the system. Therefore, in order to build a new mediator
or wrapper, it is necessary only to understand the data source that it will use.

TSIMMIS concentrates especially on flexibility, so it is well prepared for unexpected
occurrences of heterogeneity. Accessing very diverse and different information which may
frequently change its content or meaning is the basis of this system. The downside of such
an approach is that in some cases, the integration must be performed manually by the end
user. So, as the authors of this project say, TSIMMIS does not perform fully automated
integration but rather provides a framework and tools to assist the users in information
processing and integration efforts.

3.1.2 Virtual Query System for SemanticLIFE

SemanticLIFE is a framework for managing information of a human lifetime from the Seman-
tic Web [20]. Its query system, the Virtual Query System [21] (VQS), focuses on retrieving
information from huge ontology-based repositories in a very efficient, yet user-friendly way.

3.1. SELECTED INTEGRATION SYSTEMS 15

Figure 3.2: The architecture of the Virtual Query System (taken from [21])

The motivation of this project is based on an easement of querying semantic web appli-
cations without knowledge of RDF query languages. For this purpose, the Virtual Query
Language [22] (VQL) was also developed.

The Virtual Query System uses the hybrid ontology approach simplified by the fact
that the local ontologies are already provided by the ontology-based information sources,
hence not required to be redeveloped from scratch. The global ontology offers a better
understanding of the available data to users in order to enable formulating of non-ambiguous
queries. Based on the mappings between the common global ontology and local ontologies,
the VQS refines the queries and decomposes them to sub-queries for individual data sources.

The architecture of the VQS composes of six modules (see Figure 3.2):

1. Meta-data sources: Contains the metadata of data sources and acts as a virtual
data source enabling the user to explore the semantics of the available data and form
more specific queries.

2. The Ontology Repository: Comprises the global ontology, its mappings from the
local ontologies and inference ontology.

3. Sub-Queries Formulation: Based on the ontologies mappings, this module trans-
forms a virtual query to sub-queries for the particular data sources in a form of a spe-
cific RDF query language.

4. The VQS Services: Involves services dealing with generating mappings from local
ontologies of newly added information sources to the global ontology, caching of queries
and results and an interactive process of query refinement.

5. Ontology-based Inference: Provides a basis for analysis and deduction on the
concepts of specified ontologies. This module helps the system with generating sub-
queries based on the inference ontology.

16 CHAPTER 3. RELATED WORKS

6. The Virtual Query User Interface: A graphical user interface provides an overview
of the system schema and helps the user to formulate queries.

The Virtual Query Language is used to model the query patterns and generate the
virtual queries. The queries are coded in XML and specify schemas, sources, constraints
and specific data. After a user formulates a virtual query with a help of the client-side tools,
the VQS evaluates it on the foundation of the ontology-based services. The analyzed virtual
query is sent to the Sub-queries formulation module, where the specific queries for each real
data source are generated. Finally, the results are integrated and returned to the user.

3.1.3 OWSCIS

OWSCIS (Ontology and Web Service based Cooperation of Information Sources) is an
ontology-based cooperation system between heterogeneous information sources [14]. It aims
at transparent querying on the information sources in an integrated centralized way.

This system is a prime example of the hybrid ontology approach based on the mediation
architecture. Each data source is wrapped by a local ontology that is mapped to the source
schema in order to be linked to the actual information. That allows to preserve the source’s
autonomy, transparency and extensibility. Beside local ontologies, there is a global ontology
that provides the mediation schema describing the semantics of the whole domain of interest.
The global ontology represents a global model for all participating local ontologies and acts
as a mediator. Therefore, another type of mappings between the global and local ontologies
is required.

OWSCIS architecture is composed of the following modules and web services, each fo-
cused on a specific activity (see Figure 3.3) :

1. Knowledge Base Module: Encapsulates the global ontology and mappings with
the local ontologies.

2. Data Provider: A wrapper above a data source described by a local ontology in-
cluding the mappings to the source schema.

3. Mapping Web Service: Establishes mappings between local ontologies and the
global ontology.

4. Querying Web Service: Serves to decompose queries into sub-queries and rebuild
the results.

5. Visualization Web Service: Visualizes the global ontology and presents the results
to the user.

A user specifies a query in SPARQL (SPARQL Protocol and RDF Query Language) [49],
a query language for RDF, according to the global ontology. Based on the mappings between
the local ontologies and the global one, OWSCIS decomposes the query and rewrites it to
several SPARQL queries using the terms from the local ontologies. On the data provider
level, the SPARQL query is translated to a specific query language of the underlying data
source according to the mappings between the local ontology and the source schema. The

3.1. SELECTED INTEGRATION SYSTEMS 17

Figure 3.3: OWSCIS architecture (taken from [13])

results are then translated to RDF and returned to the integration processing. Finally, the
combined RDF data is presented to the user.

OWSCIS supports, with certain limitations, SPARQL-to-SQL [50] query translation and
SPARQL-to-XQuery [57] query translation, so it is able to work with relational databases
and XML data sources.

3.1.4 Virtual-Q

Virtual-Q is a virtual query system whose creation is related to CALIMERA (Conference
Advanced Level Information ManagEment & RetrievAl) framework [48] aiming at the en-
hancement of the information management, retrieval and visualization of recorded talks of
scientific conferences.

This system is not a representative of any interoperability approaches described in the
previous section per se, but studying its architecture we could notice some parallels with the
mediation. Also, by the manner of working with data sources’ schemas, this engine could
be likened to the multiple ontology approach, although the local schemas do not have to
always be ontologies. What is clear is that Virtual-Q does not have an established global
schema.

The model of Virtual-Q system (see Figure 3.4) consists of four main parts: 1) The user
interface, 2) the Virtual Query Engine (VQE), 3) the data and metadata storage and 4) the
external reasoning models. VQE (see Figure 3.5), the essential part of the system, involves
the following modules [47]:

1. Query Receiver: Receives the original user query and transforms it in the format
used inside the Virtual Query Engine.

18 CHAPTER 3. RELATED WORKS

Figure 3.4: Virtual-Q - overview of the main parts (taken from [47])

Figure 3.5: The architecture of the Virtual Query Engine (taken from [47])

3.2. DISCUSSION 19

2. Query Analyzer: Analyses the user query in order to retrieve the most precise
information. Cooperating with the Metadata Manager and the Wrapper Manager
modules, the Query Analyzer proceeds with accordance to this approach:

� Data sources schemes: Each data is compliant to a schema, even the most basic
one. The idea is to request the schemas of data sources, which is in most cases
possible.

� Ranking the schemas: Schemas could be described by different ways, some are
stronger than others. So, the second idea is to rank the schemas for each theme
in order to let the virtual query engine know the best schemas.

� Using a schema: Since the analyzer knows the best schema for a given theme, it
can use it to analyze a query and refine the creation of sub-queries. This could
be done by e.g. exploiting the field names and using associate metadata.

3. Query Processor: Composed of the Sub Query Builder and the Sub Query Dis-
patcher modules. The Sub Query Builder generates a first query to be run on the
most adequate data source and transfers this query called virtual query to the Sub
Query Dispatcher. The Sub Query Dispatcher sends the virtual query to the cor-
responding wrappers, merges the results and passes them to the Results Reasoner
module.

4. Results Reasoner: Reasons on the results with an assistance from external reasoning
models.

5. Response Formulator: Converts the queries results into proper format and sends
them to the user.

6. Metadata Manager: Manages the metadata, connected data sources, installed wrap-
pers, schema rankings etc.

7. Wrapper Manager: Forwards queries to the appropriate wrappers.

The major aim is to provide an easy-to-use system by avoiding complicated adminis-
tration work and automating as many processes as possible. It allows to simply add data
sources at any time without a need to describe in advance their structure by the adminis-
trator. The method of querying is the easiest possible from the view of a user - a text field,
which can be complemented by a theme/topic specification to improve the results [34]. The
query is then wrapped in XML.

3.2 Discussion

The purpose of this diploma thesis is not to design an integration system that is better
in all possible aspects than the existing ones but to propose a solution for querying the
essential business entities of a specific domain from multiple heterogeneous data sources.
This might also be interpreted as one of the disciplines of Master Data Management where
a part of the information about organization’s master data comes from data sources beyond
the organization.

20 CHAPTER 3. RELATED WORKS

Each integration system introduced in the previous section has its pros and cons. The
author of this text attempted to compare these approaches by several aspects that are
important for the desired objective of this thesis. Reflecting the presented systems on these
properties, Table 3.1 has been obtained. The comparing aspects include:

Table 3.1: Comparison of selected integration systems

TSIMMIS Virtual Query
System for
SemanticLIFE

OWSCIS Virtual-Q

Approach Mediation Hybrid
Ontology

Hybrid
Ontology

Multiple
Ontology
(not exactly)

Data Model OEM XML, RDF,
OWL

RDF, OWL various

Global
Schema

no yes yes no

Query
Language

Lorel XML SPARQL XML

Degree of
Automation

semi manual full full

Quality of
Answers

medium high high low

Support of
Data Sources

high very low low medium

� Approach – says which of the interoperability approaches (presented in Section 2.2.4)
the system is based on

� Data Model – determines the way of representing the common data model and/or
data sources’ schemas

� Global Schema – indicates whether the system keeps a global schema of its data
model

� Query Language – identifies the method of querying the integration system

� Degree of Automation – measures the level of automation, the extent to which the
user is needed to be involved in the process of integration

� Quality of Answers – estimates the level of accuracy, how the results correspond to
what the user really asked for and how a user/application using the system can rely
on the form and content of the answers

� Support of Data Sources – specifies how disparate sources could be appended to
the integration system, especially from the perspective of the level of structure (struc-

3.2. DISCUSSION 21

tured, semi-structured, unstructured data) and methods of querying (SQL, XQuery,
SPARQL, a web service call, preprocessing of unstructured data etc.)

According to the results of the comparison, no presented integration system can be
considered as a versatile solution. Each of them has at least one handicap limiting its usage
in the desired situation. We can notice some patterns proving that by fulfilling a specific
requirement we might inevitably lose other advantages.

For example, looking at the aspects evaluation for OWSCIS, this system provides fully
automated and high quality answers with a lot of querying possibilities thanks to SPARQL.
But its bottleneck lies in a very limited range of supported data sources because of significant
limitations in SPARQL translation. This means that requesting the support of a wide variety
of data sources must be balanced with lesser possibilities in querying.

In addition, the comparison shows that in order to provide a high quality answer, the
system should have a global schema. Having a global schema, the user can look at the global
data model and submit a clear and precise query.

The pros and cons of OWSCIS has already been discussed. The Virtual Query Sys-
tem for SemanticLIFE works exclusively with ontology-based data sources and Virtual-Q is
rather a full-text searching mechanism across various data sources returning a wide range
of information often with a poor precision. The only referenced system supporting a large
variety of data sources is the mediation-based TSIMMIS. Unfortunately, it lacks of standard
technologies for querying and representing the data model and does not guarantee the fully
automated information integration with high quality results.

To sum up, inspiring by the related works, the integration system developed within this
diploma thesis should be built on the following principles:

1. provide a global schema in order to achieve full transparency and high quality answers

2. use the mediation-based approach

3. use standard technologies for querying and a description of the data model

4. restrict the possibilities of querying enough to enable support of wide variety of data
sources

22 CHAPTER 3. RELATED WORKS

Chapter 4

Analysis

This chapter is dedicated to the first phase of the integration system development - the
analysis. Firstly, a basic vision including the motivation and the system’s purpose is given.
Then, there are proposed key features of the system and major problems expected to occur
during its development. After explaining specific terminology, the essential principles and
processes of the system are introduced. An important part of the analysis is a list of func-
tional and non-functional requirements followed by a specification of use cases a introducing
a basic domain model.

4.1 Basic Vision

Today, a huge amount of data is available throughout the public or corporate networks.
Organizations more and more need to have a unified view of their essential data in order to
support their business. However, various types of heterogeneity of information sources build
an obstacle in both data access and evaluation. The integration system should resolve this
problem and transparently provide more valuable and better accessible information.

The purpose is to develop an integration system capable of merging data from remote
heterogeneous data sources. The target solution should provide the highest possible level
of automation and quality of answer and allow to work with nearly arbitrary data sources.
From the user’s point of view, the communication with particular information sources is
fully transparent. The system should offer an easy-to-use standard way of querying to
enable a flexible client application to be built upon.

As discussed in Section 3.2, no integration system is universal and well-suited for every
purpose. Apparently, requiring some features we might lose some other possibilities. It is
important to note that the system must be able to work with the original data without
the need to preprocess them and store in a more suitable form or storage. Furthermore,
the system is restricted with the requirements for support of various data sources including
their fundamental or other limitations.

Among the specifics of this integration system belong orientation on the essential busi-
ness entities (master data) and advanced configuration to overcome various access restric-
tions (regarding especially web services) in order to enable feasible behaviour and provide
reasonable performance.

23

24 CHAPTER 4. ANALYSIS

4.2 Key Features

The crucial features forming the system characteristics are:

� Support of a wide variety of data sources

� Simple extensibility with new data sources (no need to modify existing source code)

� Transparent integration approach

� Standard and easy-to-use way of querying

� Orientation on essential business entities (master entities)

� Advanced configuration regulating access to data sources (e.g. due to access limitations
or high latency of web services)

4.3 Major Problems

This section presents the major problems expected to occur during development of the
integration system that should be solved within this thesis.

4.3.1 Different Identifiers

One of the non-trivial obstacles the integration system ought to overcome are different
identifiers. Nature of this problem lies in the fact that various data sources might identify
the same entity by different keys, e.g. one data source identifies a user by his/her e-mail
address while another data source identifies him/her by a personal identification number.

When such a situation occurs, it is important to choose the most suitable key as the
main key within the integration system. In order to deal with the inconsistency, the system
must know how each information source identifies the particular entity and keep relations
between the keys. These relations may basically be of the two following types:

� Dependency on the main key – The primitive relation when the wanted key can
be gained by a simple transformation of the main key (e.g. the main key contains
leading zeros, the other one does not).

� Dependency on another attribute – In this relation, the wanted key is or can be
derived from an attribute that is not the main key. Consequently, fetching data from
a data source with such a key is dependent on fetching the needed attribute.

4.3.2 Traffic Minimization

One of the typical problems every integration system has to deal with is to minimize traffic
between the system and data sources, resp. the system and its clients. The integration
system should provide the answer in reasonable time and ought not to cause unnecessary

4.4. GLOSSARY 25

load to the data sources. Moreover, public data sources are usually limited with a number
of accesses per a time unit so sensible communication is desirable.

There are several relevant possibilities of how to reduce traffic between the integration
system and data sources, resp. clients. All of the followings will be designed and imple-
mented in the integration system.

� Cache - Caching of responses from data sources should be an integral part of the
integration system. In many cases, the system has to produce responses for identical
requests in a short period of time and a cache would make the process a lot more
efficient. Knowing the frequency of a data source’s change, the system can combine
cached data from such a source with fresh data from other ones. Cache control can
be used on the system-client communication as well.

� Filtering - Next possibility of traffic reduction lies in filtering, i.e. sending a more
specific query to a data source in order to reduce a number of results. Since the
integration system should support a wide variety of data sources and each data source
will surely have different possibilities of filtering as well as various filterable attributes,
advanced requirements on configuration and integration mechanism arise.

� Lazy Loading - Lazy loading represents another way of performance increase and un-
necessary traffic reduction. The principal consists in loading the particular information
only when it is directly asked for. This approach is required especially in communica-
tion with public data sources providing data through restricted web services when the
system must be careful when to call such an “expensive” service. Moreover, lazy load-
ing addresses the issue of system availability because there are numerous situations
when it is even not feasible to fetch all the data. Instead of assembling a complete
response with all the information at once, the integration system should provide a lazy
loading mechanism without breaking the integration transparency.

4.3.3 Identification of weak entities

Another problem which is needed to solve is identification of weak entities. A weak entity
is dependent on another entity, i.e. to identify such a weak entity the another entity’s
identification is required. The design of querying the integration system must take this
situation into account.

4.4 Glossary

Before a closer look at the processes, requirements and use cases, a short glossary of basic
terms is introduced. Some terms may have a quite different meaning or a different level of
granularity than in other domains or contexts so it is important to clarify them.

� Master entity – An essential business entity the integration system is oriented on
that consists of a set of attributes. Clients query the system by specifying a type of
the master entity and eventually a key or other additional information.

26 CHAPTER 4. ANALYSIS

� Catalog – Metadata storage containing information about types of the master entities,
their attributes and relations between each other.

� Data source – Information source that can be either local or remote offering data in
various formats by various ways, e.g. a relational database, a CSV document, a web
service etc.

� Wrapper – A software component standing above a data source responsible for query-
ing, processing the results and mapping them in the global schema according to the
metadata from the catalog.

4.5 Principle and Business Process

The system is oriented on master entities in terms of both integration and querying. That
means the integration process builds instances of master entities composed from multiple
data sources. Clients query the system to retrieve a master entity, resp. a collection of
master entities by specifying information as a type of the master entity, a key, filters etc.

Figure 4.2 shows a schema of the integration system. The basic idea lies in creating
wrappers above each data source, building a solid metadata storage in the form of a catalog
and making an integration mechanism capable of building master entities from data of par-
ticular wrappers according to information from the catalog. A sequence of system processes
is concisely illustrated in Figure 4.1.

Get data about a master
entity

Find metadata in the
catalog

Call wrappers Formulate requests for
data from data sources

Process data sources'
results and translate them

in the global schema

Integrate wrappers'
results into a master

entity

Build a response from the
integrated master entity

Querying Integration Mechanism Wrapper

Response

Client's
request

Figure 4.1: Process of data retrieval and integration

Above the integration system stands a UI client that dynamically generates a user in-
terface according to metadata from the catalog and provides integrated data to end users.
Within this diploma thesis, the integration system including an API for this UI client is
to be designed, implemented and tested. However, development of the UI Client itself is
a subject of a diploma thesis of Bc. Tomáš Hladík from the Faculty of Mathematics and
Physics at the Charles University and is not a concern of this thesis.

4.6 Requirements

In this section the demands on the integration system are summed up in a set of functional
and non-functional requirements. Functional requirements describe functions and behaviour

4.6. REQUIREMENTS 27

«xml»
XML Docum ent

«database»
Relational Databas e

«csv»
CSV Docum ent

«SOAP»
SOAP WS

Integration System

W rapper A

Master Entity

Dynamic UI Client

Catalog

W rapper B W rapper C W rapper D

Integration
Mechanism

«create»

Figure 4.2: Basic schema of the system

of the system and its components. Non-functional requirements rather specify criteria,
qualities and certain restrictions laid on the system and its development.

4.6.1 Functional Requirements

Functional requirements focus on the functions of the system, i.e. what the system is sup-
posed to do. There are two primary perspectives we can look at the integration system
functionalities from: the client’s perspective (data accessing) and the administrator’s per-
spective (system management).

Client’s Perspective

1. The system shall enable to find a list of all master entities of a type.

2. The system shall enable to find a filtered list of master entities of a type.

28 CHAPTER 4. ANALYSIS

3. The system shall enable to find a detail of a master entity.

4. The system shall enable to find a list of all types of master entities.

5. The system shall enable to find metadata about a type of a master entity.

6. The system shall enable to find metadata about an attribute type.

Administrator’s Perspective

7. The system shall enable to register/edit/remove a data source.

8. The system shall register a name, a type, type-specific attributes and a cache validity
time for each data source.

9. The system shall enable to define/edit/remove a master entity type.

10. The system shall register a name and a set of attribute types for each master entity
type.

11. The system shall enable to define/edit/remove an attribute type of a master entity
type.

12. The system shall register a name and fetching settings for each attribute.

13. The system shall enable to define/edit/remove a wrapper.

14. The system shall register a relation to a data source, a relation to a master entity
type, a schema with mappings to attribute types and optionally a reference to imple-
mentation for each wrapper.

15. The system shall enable to clear cache for a data source.

16. The system shall enable to display usage information about data sources, master entity
types and wrappers.

17. The system shall enable to display an error log.

4.6.2 Non-Functional Requirements

Integration Circumstances

18. The integration process shall be transparent to clients.

19. The system shall support a wide variety of data sources (at least relational databases,
REST web services, SOAP web services, CSV documents).

20. The data model of the system (global schema) shall be described with a catalog in the
form of a relational database or an XML document.

21. The system shall provide a solution for a situation when data sources use different
keys for the same entities.

4.6. REQUIREMENTS 29

Demands on Design

22. The system shall support expandability with new data sources without needing to
modify the system’s source code.

23. The system architecture shall enable scalability.

24. The system architecture shall enable a transparent embedding of intermediaries.

25. The system interface shall provide a standard API to enable interoperability with
other systems.

26. The system interface shall be explorable and self-describing.

Availability and Stability

27. Stability of the system shall be preserved if any data source fails or is not available.

28. The system maximal response time shall be set to 30 seconds to prevent too much
long-standing load.

29. Incorrect client’s input shall not put the system in an inconsistent state.

30. The system shall support a configurable lazy-loading mechanism to specify when an
attribute should be fetched in order to enable feasible behaviour and better perfor-
mance.

Security

31. The administration client shall not be accessible to an unauthorized user.

32. The web services for the administration purposes shall not be accessible to an unau-
thorized user.

Performance

33. The system performance shall be supported by caching of data retrieved from a data
source.

34. The system performance shall be supported by cache control between the system and
clients.

Documentation

35. The system documentation shall involve an installation manual.

36. The system documentation shall involve a manual for users (clients).

37. The system documentation shall involve a manual for system administrators.

38. The system documentation shall involve a documentation of source code.

30 CHAPTER 4. ANALYSIS

4.7 Use Cases

Use cases capture what the actors are able to do with the system. There are two types of
actors interacting with the integration system:

� Client – The UI Client or another software or human client querying the integration
system.

� Administrator – The human administrator managing the integration system having
extended the authorities.

4.7.1 Client’s Perspective

An ordinary client can query the system for the integrated data and metadata. A diagram
of relevant use cases can be seen in Figure 4.3.

4.7.2 Administrator’s Perspective

Management of the catalog involves creating, updating, removing and finding master entity
types including their attribute types and displaying the usage statistics (see Figure 4.4).
The definition/update of a master entity type consists of the following actions:

1. Fill in the master entity type’s name and its unique identification used for querying.

2. If the entity type is weak, select the entity type this type is dependent on.

3. For each attribute type specify its name, cardinality, type, whether it is a key and
other settings used for intern processing.

Management of data sources includes creating, editing, removing and finding data sources,
clearing their cache and displaying the usage statistics (see Figure 4.5). The definition/up-
date of a data source consists of the following actions:

1. Fill in the data source’s name.

2. Select a type of the data source. If the proper type is not available, select other.

3. Specify caching settings.

4. Specify type-dependent properties (e.g. information needed to establish a connection
to a database).

Management of wrappers includes creating, editing, removing and finding wrappers,
clearing their cache and displaying the usage statistics (see Figure 4.6). The definition/up-
date of a wrapper consists of the following actions:

1. Fill in the wrapper’s name.

2. Select a data source the wrapper communicates with.

4.7. USE CASES 31

Integration System

Client

Administrator

Find a list of master
entities of a type

Find a master entity of a
type by a key

Find metadata about a
master entity type

Find metadata about an
attribute type

Find a filtered list of
master entities of a type

Find an attribute of a
master entity

«extend»

Figure 4.3: Use cases from the client’s perspective

Administrator

Integration System

Find all master entity
types

Register a master
entity type

Edit a master entity
type

Remove a master
entity type

Find usage stats of
master entity types

Define an attribute
type

Edit an attribute type

Remove an attribute
type

«include»

«include»

«include»

«include»

Figure 4.4: Use cases associated to the catalog management

32 CHAPTER 4. ANALYSIS

Administrator

Integration System

Register a data
source

Find all data
sources

Update a data
source

Remove a data
source

Clear cache of a
data sourceDisplay usage stats of

data sources

Figure 4.5: Use cases from associated to the data sources management

Administrator

Integration System

Find all wrappers Register a wrapper

Edit a wrapper

Remove a wrapper

Display usage stats of
wrappers

Clear cache of a
wrapper

Add a schema item
mapping

Edit a schema item
mapping

Remove a schema
item mapping

«include»

«include»

«include»

«include»

Figure 4.6: Use cases from associated to the wrappers management

4.8. DOMAIN MODEL 33

3. Select a master entity type the wrapper fetches data for.

4. If there is an own implementation for the wrapper, specify the class name.

5. For each schema item, select an attribute type it maps to.

The above mentioned use cases still represent rather atomic operations. In reality, the
administrator often needs to perform multiple atomic use cases to achieve a complex goal.
A typical example of administrator’s job is to integrate a new data source into the system,
which requires the following tasks (see Figure 4.7):

1. Register a new data source.

2. If the data source brings a new master entity type, register it with its attribute types
in the catalog.

3. Edit a master entity type to be enriched by data from the new data source.

4. Register one or more wrappers for the data source and map its or their schema to the
global schema. If necessary, provide own implementations of the wrappers.

Administrator

Integration System

Integrate a new data
source to the system

Register a data
source

Edit a master entity
type

Define an attribute
type

Register a wrapper Add a schema item
mapping

Register a master
entity type «include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 4.7: A composite use case to integrate a new data source with all the circumstances

4.8 Domain Model

A domain model diagram involving basic domain classes from a general, analytical point of
view is shown in Figure 4.8. The diagram focuses on relationships between the core domain
objects mentioned within the analysis.

34 CHAPTER 4. ANALYSIS

Master Entity Type

- name
- resource

Attribute Type

- name
- fetch settings

Wrapper

- name

Schema Item

- name

Data Source

- name
- connection properties

«enumeration»
Data Source Type

SQL
REST
SOAP
XML
CSV

Master Entity

- key

Attribute

- value

0..*

master entity type

1

0..*key type

0..1

0..*data source

1

0..*

referenced entity type

0..1

0..*

attribute types

1 0..*

mapped attribute type

1

0..*

schema

1

0..*type

1

0..*
attributes

1

0..*type

1

0..*

type

1

Figure 4.8: Analytical domain model

Master Entity composed of Attribute instances represents the object to be built during
the integration process. Both of these classes are defined by types - Master Entity Type and
Attribute Type, the essential objects specified in the catalog. These type classes determine
all properties of master entities and their attributes and thus constitute the global schema
of the integration system.

Each Wrapper stands above one Data Source and is able to request data and translate
them into the global schema. To manage such a translation, Wrapper consists of Schema
Item instances representing mappings between the schema of a data source and the global
schema - Attribute Type instances. It is a common expected practice to build multiple
wrappers above more complex data sources (e.g. relational database).

Chapter 5

Architecture

The design of the software architecture is a vital step in the software design process. The ar-
chitecture describes the major system components and their relationships with the principles
guiding the system design. It lays solid foundations which the system is built upon.

This chapter addresses the design of the architecture and the description of the particular
system components with respect to the requirements derived from the analysis in Section 4.6.
Thanks to knowledge gained from related works, the architecture is based on the best
practices from existing solutions.

5.1 Architecture Overview

The architecture of the integration system is built upon the wrapper-mediator principle (see
Section 2.2.4.3). A wrapper operates on top of a data source and maps its native represen-
tation into a common data model. A mediator processes incoming requests, delegates them
to appropriate wrappers and combines, integrates and abstracts the obtained data. Such an
approach allows to divide data accessing from the integration business logic leading to better
maintainability. Also, thanks to flexibility of the data access it is possible to form a wrapper
above a wide variety of data sources while the mediation part is completely independent on
the data sources’ paradigms.

Experience learned from the TSIMMIS (see 3.1.1) project says that the development of
mediators could often be hard and time-consuming. To overcome this inconvenience, let
us transfer the complexity from the mediator development into building a solid metadata
storage (inspired by the Knowledge Base in OWSCIS (see 3.1.3)) by introducing a catalog.
The catalog will maintain all metadata needed for the integration part of the process posing
as the global schema. As a consequence, the mediator will then stand for a universal
mechanism performing the integration according to the metadata obtained from the catalog.
Therefore, to include a new data source to the integration system, the administrator has to
create a wrapper together with its mapping to the global schema. The mediator does not
need to be modified at all.

The essential idea of this integration system lies in master data orientation. From the
user’s point of view, the system will provide data about master entities specified with an

35

36 CHAPTER 5. ARCHITECTURE

CatalogMediator Module

Querying Web
Service

Wrapper Module

Catalog Web
Service

Admin ClientUI Client

Figure 5.1: Basic overview of the architectural components

identifier. This draws an intuitive image of how the catalog could look like - a list of master
entities definitions along with their relations and attributes.

The focus on master entities also indicates the way of querying the integration system.
The desired solution requires an easy-to-use, standard method of communication between
clients and the system. Since the possibilities of querying have to be restricted in order
to work with various data sources with access limitations returning high quality answers,
no complex query language is needed. Among the desirable features, which the integra-
tion system should dispose of, belong scalability and caching to achieve better performance.
Therefore, REST seems to meet these requirements and so becomes a well-suited architec-
tural style to be followed here.

Combining the wrapper-mediator and the REST architectural principles, a basic skeleton
of the integration system architecture can be introduced. Figure 5.1 shows the seven modules
and web services forming the system architecture:

1. Catalog: A central element of the integration system managing the metadata storage.
It provides all the information about master entities and their attributes forming the
global schema.

2. Wrapper Module: The bottom of the system is formed by the Wrapper Module
containing the particular wrappers and their management. Wrappers are intended to
communicate with data sources and translate their data representation into a common
data model using mappings between data sources’ schemas and the global schema.

5.1. ARCHITECTURE OVERVIEW 37

3. Mediator Module: Based on the metadata from the catalog, the Mediator Module
delegates the incoming requests on wrappers, processes the received data and returns
an integrated master entity, resp. a list of master entities.

4. Querying Web Service: A web service providing the integrated data to the end
user/application following the REST principles. It processes a request into a form the
Mediator Module understands and transforms its answer to a standard, well trans-
portable and processable format.

5. Catalog Web Service: This web service provides an API for managing of data
sources, managing of master entities, managing of wrappers and creating mappings
between data sources’ schemas and the global schema. Then, it offers public metadata
to the UI Client to enable to build a dynamic UI on top of the integration system.

6. Admin Client: A tool intended for system administrators serving for the catalog,
data sources and wrappers management that communicates with the system via the
Catalog Web Service.

7. UI Client: A client application intended for end users capable to build dynamic UI.
It explores the global schema using the Catalog Web Service and submits the queries
to the Querying Web Service.

User's Client

UI Client

Administrator's Client

Admin Client

Integration system

Querying Web
Service

Mediator Module Catalog Catalog Web
Service

W rapper Module

Data Sources

Figure 5.2: Deployment schema of the integration system

38 CHAPTER 5. ARCHITECTURE

How to deploy the integration system components is shown in Figure 5.2. This diagram
clearly illustrates the physical location of particular components.

As the basic system components and their relationships are found, we can look at them
in a more specific way. However, the UI Client is not a concern of this thesis, so the following
section describes only the components belonging to the subjects of this work.

5.2 Components of the Architecture

5.2.1 Catalog

This is the essential component of the system, a central knowledge repository needed for
the integration process. It contains Catalog Service and Master Entity Type Manager (see
Figure 5.3).

Catalog

Mediator Module

Wrapper Module

Catalog Service

Catalog Web
Service

Master Entity Type
Manager

Master Entity Type

Figure 5.3: Catalog

The Catalog Service provides knowledge for internal purposes of the integration system.
It prepares complete metadata needed by the Mediator Module including information about
the registered wrappers.

The Master Entity Type Manager is responsible for the catalog management, i.e. defini-
tion of master entity types and its attribute types. It includes functionalities to create, edit,
remove and retrieve the content of the catalog and is intended to be used by the Catalog
Web Service.

5.2.2 Wrapper Module

This module takes care of the communication with data sources. It includes the Data Source
Manager, the Wrapper Manager and particular wrappers and data sources definitions (see
Figure 5.4).

5.2. COMPONENTS OF THE ARCHITECTURE 39

Wrapper Module

Wrapper Manager

Mediator Module Catalog

Wrapper

Catalog Web Service

Data Source Manager
DataSource

Figure 5.4: Wrapper Module

The data sources definition holds the information about the data sources which the
integration system works with. Each data source is described by a type and type-specific
information needed for establishing a connection.

The wrappers definition contains settings of all wrappers. For each wrapper, it includes
an implementation of retrieving and processing the data and mapping its schema to the
global schema. A common practice is to have more than one wrapper on top of a data
source, especially regarding more complex data sources like a relational database.

The Data Source Manager provides functionalities to manage data sources definition
intended to be used by the Catalog Web Service.

The Wrapper Manager is responsible for wrappers management including definitions of
mappings from data sources’ schemas to the global schema. Based on these mappings, the
Catalog is able to find relevant wrappers and provides them along with necessary metadata
to the Mediator Module.

5.2.3 Mediator Module

The Mediator Module has two main tasks - query decomposition managed by the Query
Decomposer and result merging arranged by the Results Merger (see Figure 5.5). This

40 CHAPTER 5. ARCHITECTURE

module is responsible for the integration process itself depending on information from the
Catalog.

Mediator Module

Query Decomposer Results Merger

Querying Web
Service

Wrapper Module

Catalog

Figure 5.5: Mediator Module

The Query Decomposer receives a query from the Querying Web Service, then gains
metadata about the master entity from the catalog and based on this information, it for-
mulates the subqueries for the relevant wrappers.

The Results Merger collects responses returned from the wrappers, recomposes them in
a master entity object, resp. a collection of master entity objects, which then sends back to
the Querying Web Service.

5.2.4 Querying Web Service

This component plays the role of the entrance gate to the integration system that users or
client applications communicate through. It is a RESTful web service (more information
in Section 5.3.2) consisting of two main parts - the Query Processor and the Response
Formatter (see Figure 5.6).

The Query Processor takes an incoming query formed simply by an HTTP request -
a combination of a URI and optional HTTP headers. It processes all the useful information,
i.e. a master entity identification, a key or other filters from the request and hands it over
to the Mediation Module.

The Response Formatter serves for formatting the master entity object, respectively
a list of master entity objects, returned from the Mediator Module to a standard, well
transportable and processable format. As soon as the formatting is ready, the Querying
Web Service returns an HTTP response with the integrated data to the client.

5.3. REST 41

Querying Web Service

Query Processor Response
Formatter

Mediator Module

Figure 5.6: Querying Web Service

5.2.5 Catalog Web Service

The Catalog Web Service is a RESTful web service representing an API focused on catalog
and wrappers management. First of all, it provides means for managing master entity
types, attribute types, data sources and wrappers as well as creating mappings between the
wrappers’ schemas and the global schema. The public part of the API serves for accessing
metadata from the catalog according to which the UI Client is able to build a dynamic user
interface. Then, it offers secondary supporting functionalities for the Admin Client.

5.2.6 Admin Client

This component stands for an administration client application communicating with the
system through the Catalog Web Service. It is intended to enable the administrator to
easily manage the integration system, e.g. add a new data source with associated wrappers
together with an extension of the global schema.

5.3 REST

5.3.1 Constraints and properties of REST

The architecture is based on the REST principles which have been widely accepted across the
Web and adopted in the field of web services development. Among the great benefits of this
approach belong good scalability, cacheability and an easy-to-use uniform interface. Note-
worthy, these significant advantages bring a trade-off lying in a slightly lower performance
due to the stateless communication and a standardized form of information transferring.

Roy Fielding [9] introduced specific constraints that compose the REST style:

1. Client-Server – Separation of clients from servers. Clients are not concerned with
data storage and servers are not concerned with the user interface.

42 CHAPTER 5. ARCHITECTURE

2. Stateless – The client-server interaction is stateless meaning that every request must
contain all the information needed to be understood and processed. This indicates
properties as visibility, reliability and scalability.

3. Cache – In order to compensate the performance loss of REST, one of the con-
straints refers caching. Responses should be labeled as cacheable or non-cacheable,
the cacheable could be later reused by a client for an equivalent request.

4. Uniform Interface – This fundamental property of REST services decouples the
architecture making it simpler and more intuitive. The uniform interface is defined by
four constraints: identification of resources, manipulation of resources through repre-
sentations, self-descriptive messages, and HATEOAS (Hypermedia As The Engine Of
Application State).

5. Layered System – The layered system within this context ensures transparency of
client-server communication enabling to place intermediaries in front of the server, e.g.
shared caches, load balancing or a security proxy.

6. Code-On-Demand – The only optional constraint of REST saying that services
might extend/pre-implement client’s functionality by downloading and executing code
as scripts or applets.

A web service can be characterized as RESTful if it fulfills all of these constraints [42]. If
any of them is violated, the service cannot be considered RESTful.

5.3.2 RESTful system architecture

The design of the integration system architecture ought to be RESTful, so it should conform
to each of the required constraints. From the look at the components introduced in the
previous section, the client-server architectural style is evident. The UI Client and the
Catalog Editor are the clients while the rest of the components stands on the server side
separating the user interface from the integration logic and data access.

The communication between a client and the server is utterly stateless. The integration
system does not hold any sessions or other information about a client’s state. Each request
contains all the required information as the master entity identification, its key or other
additional information in HTTP header fields. In addition, since the Querying Web Service
provides data exclusively for reading, not its creating, modifying or removing, every request
is idempotent, i.e. can be called multiple times without changing the result.

In order to provide reasonable latency and enable more comfortable and fast-acting
client’s behaviour, caching should be applied to the integration system. It is convenient
to label each response of the Querying Web Service as cacheable and thus notify the client
that the response may be reused later after sending the equivalent request.

The subject of caching also relates to another constraint - a layered system architec-
ture. Important parts of the system architecture are the intermediaries standing transpar-
ently between the server and the clients.

5.3. REST 43

� One of them is a web cache which could be a third-party proxy caching HTTP re-
sponses. It saves HTTP requests and responses for some given time and in case the
same request comes, the caching proxy serves it and thus saves the computing perfor-
mance of the integration system.

� Another intermediary is a security one - an anti-DDoS (Distributed Denial of Service)
proxy service protecting the integration system against DDoS attacks. This component
guards not only the security of the system itself but also protects the data sources that
are not secured with a suchlike technology.

� Based on the performance testing in practice, the architecture might be enhanced with
a load balancer distributing workloads across multiple instances of the integration
system.

The Querying Web Service respects the rules of a REST uniform interface. The
data provided by the integration system are in fact resources - the master entities identi-
fied by a URI that are manipulated (only read in this case) through their representation
(JSON). Each response is self-descriptive enough to be understood (MIME type, cacheabil-
ity indicator, HTTP code etc.). The web service offers a single entry point capable of data
exploration so the client needs to know only the root URI. Each resource (master entity)
having a relation to another resource includes a hyperlink enabling its easy retrieval.

This section proves the system architecture to be RESTful, i.e. it fulfils all the re-
quired constraints of REST. Among the gained benefits belong better scalability, transparent
cacheability and security, a uniform, easy-to-use and self-descriptive interface based on stan-
dard technologies and finally separation and decoupling of concerns leading to more effective
and better maintainable development. In relation to the requirements laid on the system
in the analysis (see Section 4.6.2), the RESTful interface guarantees the non-functional
requirements 23, 24, 25 and 26.

44 CHAPTER 5. ARCHITECTURE

Chapter 6

Design

This chapter refers to the design phase of software development proposing a specific descrip-
tion of how to implement the functionalities specified during the analysis (see Section 4).
Within this chapter, the analytical model will be transformed to an object model, where
there will figure not only entities of real world but software classes in particular.

The architecture of the integration system has already been proposed in previous Section
5. In this chapter, a more detailed design of particular software components, according to
which it would be possible to implement the essential parts of the system, is introduced.

6.1 Catalog

The catalog is a central element of the integration system managing the metadata storage.
It provides all information about master entity types and their attribute types forming the
global schema.

6.1.1 Master Entity and Attribute Types

The class diagram in Figure 6.1 illustrates major classes participating in the catalog. The
core classes of this component are MasterEntityType and AttributeType forming the
global schema of the system. The Catalog interface defines necessary operations needed by
other system components communicating with the catalog and the ApplicationCatalog
stands for its referential implementation. To retrieve the underlying data about master
entity types and their attribute types, the ApplicationCatalog uses a DAO (Data Access
Object) class - MasterEntityTypeDAO.

Each master entity type is uniquely specified with a resource - a string used by REST
to identify the resource type. Attribute types are uniquely identified with its master entity
type and a name. An attribute type can be marked as multiple which means that instead
of one value, it contains a list of values. There are two kinds of attribute types within the
meaning of its possible values:

� Literal – value(s) of the attribute is/are literals

� Referential – value(s) of the attribute is/are references to another master entity

45

46 CHAPTER 6. DESIGN

ApplicationCatalog

«interface»
Catalog

+ findMasterEntityType(String) :MasterEntityType
+ findAllMasterEntityTypes() :List<MasterEntityType>
+ findIndependentMasterEntityTypes() :List<MasterEntityType>

MasterEntityType

- name :String
- resource :String

+ getKeyAttributeType() :AttributeType
+ getAttributeTypeByID(long) :AttributeType
+ getAttributeTypeByName(String) :AttributeType

AttributeType

- name :String
- key :boolean
- multiple :boolean
- owner :boolean

MasterEntityTypeDAO

- class :Class = MasterEntityTyp... {readOnly}

GenericDAO

+ findAll(Class<T>) :List<T>
+ findByProperty(Class<T>, String, Object) :List<T>
+ findOneByProperty(Class, String, Object) :T
+ findByID(Class, long) :T
+ persist(T) :T
+ merge(T) :void
+ remove(T) :void

«enumeration»
FetchLevel

COLLECTION
ENTITY
ATTRIBUTE

«enumeration»
ReferenceType

LINK
INSTANCE

0..*referencedMasterEntity0..1

0..*fetchLevel

1

0..*

attributeTypes

1

0..*

owningMasterEntityType

0..1

0..*

dao

1

«instantiate»

Figure 6.1: Design classes of the Catalog

6.1.2 Owned Master Entity Types

There are situations when a master entity type is dependent on another master entity type
in the sense of identification, i.e. a master entity of such a type needs for its identification
also the information about the entity which it is dependent on. It is an analogy to weak
entities in terms of relational databases. Within this integration system, such a master
entity type is called owned.

In the REST environment, each resource has to be identified by a unique URI, so the
master entities of an owned type need the identification of their owner to build up its URI.
That is the reason for the self-reference owningMasterEntityType in the MasterEntityType
class. The AttributeType has a field owner indicating whether it stands for a reference to
the owning master entity.

6.2 Wrapper Module

The wrappers are responsible for communicating with data sources and transforming the
obtained data into the global schema specified by the catalog. Figure 6.2 shows a class
diagram of the Wrapper Module containing the most important classes of this component.

6.2. WRAPPER MODULE 47

«abstract»
Wrapper

- name :String
- className :String

+ fetchAllData() :Collection<DataContainer>
+ fetchAllData(Set<Filter>) :Collection<DataContainer>
+ fetchDataByKey(Object) :DataContainer
+ fetchDataByKey(Object, Object) :DataContainer

DataSource

- name
- cacheValidity

MasterEntityType

- name :String
- resource :String

+ getKeyAttributeType() :AttributeType
+ getAttributeTypeByID(long) :AttributeType
+ getAttributeTypeByName(String) :AttributeType

AttributeType

- name :String
- key :boolean
- multiple :boolean
- owner :boolean

SchemaItem

- name

SQLWrapper

- queryByKey
- queryAll

+ buildQuery(Set<Filter>) :String

WhereConditionBuilder

- condition

+ andWhere(Filter) :WhereConditionBuilder
+ getCondition() :String

RESTWrapper

- resource

CSVWrapper

DataContainer

- data :Map<String, Object>

+ addData(String, Object) :void
+ getData(String) :Object
+ getAll() :ImmutableMap<String, Object>

«enumeration»
DataSourceType

SQL
REST
SOAP
SPARQL

0..*

referencedMasterEntityType

0..1

0..*

keyAttributeType

1

0..*

prerequisitedWrappers

0..*

0..*

dataSource

1

«instantiate»0..*
type

1

0..*
masterEntityType

1

0..*

attributeTypes

1

0..*

schemaItems

1

0..*

mappedAttribute

1

0..*
conditionBuilder 0..*

0..*

owningMasterEntityType

0..1

Figure 6.2: Design classes of the Wrapper Module

6.2.1 Principles of Wrapper’s Work

Each wrapper stands above a data source and is connected to a master entity type whose
attributes it fetches. In order to translate data obtained from the data source to the global
schema = attributes of the master entity, wrappers carry these schema mappings within
instances of the SchemaItem class.

Having to support various data sources means to work with various types of wrappers
whose implementations might substantially differ. However, the mediator must not be
concerned about these differences, so it is crucial that all wrappers comply with a common
interface. Abstract class Wrapper represents such an interface defining a contract between
the mediator and all wrappers:

� Fetch all data and return a collection of data containers.

� Fetch all data applying given filters and return a collection of data containers.

� Fetch data by a key and return a data container.

� Fetch data by a key and an owning master entity’s key and return a data container.

All these operations return data in the form of an instance/a collection of instances of
the DataContainer class which keeps its data in a key-value pair data structure. The keys
stand for identification of attribute types so that mediator understands the received data
and knows how to evaluate them.

48 CHAPTER 6. DESIGN

6.2.2 Building Wrappers

The system provides referential implementations of wrappers for some types of data sources.
However, the possibilities of providing default behaviour may differ a lot due to nature of
the type of a data source. Generally, such a default wrapper can be implemented only for
a data source with highly structured data where it is possible to submit a query returning
the data in a fixed schema.

For example, system offers a default behaviour of wrappers for relational databases in
the SQLWrapper class. To work properly, the wrapper needs to have defined SQL queries
for fetching all rows, resp. a row by a key. The wrapper then maps the column names,
resp. column labels specified with column aliases, to the global schema based on the schema
item mappings. If a support of filtering is desirable, the only thing needed to implement is
buildQuery method for building the SQL query overriding the SQL query for all rows while
taking into account given filters.

Since the system should support nearly arbitrary data source, it is often necessary to im-
plement an own wrapper. Sometimes a complete implementation from scratch is needed (but
always has to extend the Wrapper class), but mostly it is enough only to override a method
for results processing and exploit existing functionalities of the referential implementation
for querying the data source. In some situations, the default referential implementation fully
meets the requirements.

In any case, when a referential implementation does not fully satisfy the desired needs,
a wrapper implementation has to be made and submitted to the integration system. The
attribute className in wrappers then stands for a reference to such an implementation, so
when the wrapper is needed the system loads the implementation from the given full class
name. The possibility to create a wrapper with custom logic for retrieving and processing
data in the form of a plugin is one of the essential features of the integration system allowing
to support a wide range of data sources.

6.2.3 Dependent Keys

Not all wrappers can use the main key of a master entity type for fetching, some may need
another attribute to identify the entity within the data source. The reason lies in different
identification across data sources when the same entity is identified by different keys.

When the mediator calls a method to fetch data by key, it already has to pass the right
key so obtaining the dependent key is a mediator’s task. Nonetheless, the wrapper has to
define what key it works with and for that, there is the relation keyAttributeType. When
the integration process begins, the wrapper also needs to know which other wrappers it is
dependent on, i.e. which wrappers fetch the attribute needed to assemble the dependent
key. This information is kept within the prerequisitedWrappers self-reference.

6.2.4 Cache

In order to reduce traffic between the integration system and data sources, wrappers should
cache their results. The reason why caching is dealt with on this level, i.e. caching of
wrappers’ results instead of mediator’s results, is caused by various temporal validity of

6.3. MEDIATOR MODULE 49

«abstract»
Wrapper

- name :String
- className :String

+ fetchAllData() :Collection<DataContainer>
+ fetchAllData(Set<Filter>) :Collection<DataContainer>
+ fetchDataByKey(Object) :DataContainer
+ fetchDataByKey(Object, Object) :DataContainer

CacheProvider

+ findCacheItemAsDataContainer(Wrapper, Object, Object) :DataContainer
+ findCacheItemAsCollectionOfDataContainers(Wrapper, Object, Object) :Collection<DataContainer>
+ saveToCache(long, Wrapper, Object, DataContainer, Object) :void
+ saveToCache(long, Wrapper, Object, Collection<DataContainer>, Object) :void
+ clearCache(Wrapper) :void

CacheItemDAO

- class :Class = CacheItem.class {readOnly}

+ findBy(Wrapper, Object, Object, Object, Object) :CacheItem
+ removeByWrapper(Wrapper) :void
+ invalidate() :void

CacheItem

- data :byte[]
- key :byte[]
- owningEntityKey :byte[]
- primaryFilter :byte[]
- secondaryFilter :byte[]
- created :Date
- validity :int

+ getDataAsCollectionOfDataContainers() :Collection<DataContainer>
+ getDataAsDataContainer() :DataContainer

GenericDAO

+ findAll(Class<T>) :List<T>
+ findByProperty(Class<T>, String, Object) :List<T>
+ findOneByProperty(Class, String, Object) :T
+ findByID(Class, long) :T
+ persist(T) :T
+ merge(T) :void
+ remove(T) :void

0..*wrapper

1

«instantiate»

«use»
0..*dao
1

0..*

cacheProvider

1

Figure 6.3: Design classes for caching of wrappers’ results

particular data sources. Therefore, each data source keeps temporal cache validity telling
their wrappers how long the cached results can be considered as valid.

A class diagram in Figure 6.3 shows the structure of classes involved in the caching
process. A wrapper communicates with the cache via CacheProvider that manages in-
stances of the CacheItem class stored in a local database. Saving the cached data requires
all the necessary information to identify the request on the wrapper in order to distinguish
an identical request next time. Besides a key or an owning entity’s key, there are primary
and secondary filters that have to be general enough to capture various wrappers’ way of
requesting data (e.g. SQL query, HTTP request etc.).

6.3 Mediator Module

Based on the metadata from the catalog, the Mediator Module delegates the incoming
requests on wrappers, processes the received data and returns an integrated master entity,
resp. a list of master entities. This component holds the fundamental business logic of the
whole system.

6.3.1 Mediation Process

The process of mediation lies in an effective decomposition of incoming requests and merging
particular parts of information into an integrated form - master entities. Figure 6.4 includes
the most important classes involved in the mediation, in this casemediation by a key. Classes
specific for mediation all are to be found in Figure 6.6.

To clarify the used terms in this area, it is important to explain the followings:

� Mediation by a key – Refers to a process of integration one master entity specified
by a key

50 CHAPTER 6. DESIGN

� Mediation all – Refers to a process of integration of a collection, i.e. a list of all
master entities of a given type that can be filtered

ConcurrencyMediator

- executorService :ExecutorService

«interface»
Mediator

+ mediateAll(String, Set<Filter>) :List<MasterEntity>
+ mediateByKey(String, Object) :MasterEntity
+ mediateByKey(String, Object, String, Object) :MasterEntity
+ findAttribute(String, Object, String) :Attribute
+ findAttribute(String, Object, String, Object, String) :Attribute MediationByKeyWorker

- key :Object
- owningEntityKey :Object

+ call() :void

MasterEntity

+ MasterEntity(MasterEntityType)
+ getKey() :Object
+ isEmpty() :boolean
+ initiateMissingAttributes() :void
+ getOwner() :MasterEntity

MasterEntityType

- name :String
- resource :String

+ getKeyAttributeType() :AttributeType
+ getAttributeTypeByID(long) :AttributeType
+ getAttributeTypeByName(String) :AttributeType

«abstract»
Wrapper

- name :String
- className :String

+ fetchAllData() :Collection<DataContainer>
+ fetchAllData(Set<Filter>) :Collection<DataContainer>
+ fetchDataByKey(Object) :DataContainer
+ fetchDataByKey(Object, Object) :DataContainer

Attribute

- value :Object

+ Attribute(AttributeType)

«interface»
Catalog

+ findMasterEntityType(String) :MasterEntityType
+ findAllMasterEntityTypes() :List<MasterEntityType>
+ findIndependentMasterEntityTypes() :List<MasterEntityType>

AttributeType

- name :String
- key :boolean
- multiple :boolean
- owner :boolean

AttributeBuilder

- masterEntityType :MasterEntityType

+ build(Entry<String, Object>, FetchLevel) :Attribute

«enumeration»
FetchLevel

COLLECTION
ENTITY
ATTRIBUTE

«instantiate» 0..*

0..*

catalog

1

«instantiate»

1

«use»

1

0..*sharedMasterEntity
1

0..*wrapper
1

0..*

attributeBuilder

1

«intantiate»

0..*

attributeTypes

1 0..*fetchLevel

1

0..*

referencedMasterEntityType

0..1

«instantiate»

0..*type

1

0..*

attributes

1

0..*type
1

Figure 6.4: Design classes of the Mediator Module involved in mediation by key

The interface Mediator defines a contract for mediators, ConcurrentMediator is its ref-
erential implementation focusing on an effective concurrent approach. After getting required
metadata from the catalog, the mediator prepares a set of workers, one for each wrapper,
and asynchronously calls them via the ExecutorService. The processes of mediation by
a key and mediation all are slightly different from this point.

a) Mediation by a key – When mediating by a key, the mediator constructs an instance
of MasterEntity and passes it to each worker (MediationByKeyWorker). Each worker
then requests data from its wrapper, builds full-fledged attributes from the received data
containers and adds them to the shared master entity. A slightly simplified process of
mediation by a key is captured by a sequence diagram in Figure 6.5.

b) Mediation all – Mediation all gradually builds a collection of integrated master en-
tities instead of just one instance. In this case, the mediator initializes an instance
of MasterEntitiesSharedCollection, a thread-safe collection, in which the workers
(MediationAllWorker) send partial master entities built from data of their wrappers.
The shared collection either stores a new master entity or update an existing one.

6.3. MEDIATOR MODULE 51

:ConcurrencyMediator:QueryingResource :Catalog MediationByKeyWorker :MasterEntity :Wrapper:ExecutorService AttributeBuilder

loop for each wrapper in masterEntityType

loop for each attributeEntry in container

mediateByKey(entityResource, key)

findMasterEntityType(entityResource)

«create»

«create»

invokeAll(workers)
*call()

fetchDataByKey(key)

buildAttribute(attributeEntry)

addAttribute(attribute)

initiateMissingAttributes()

Figure 6.5: Sequence diagram of mediation by key

Among other mediator’s operations belongs finding a specific attribute of given master
entity, resp. owned master entity. The process is very similar to mediation by a key except
that only wrappers required to fetch such an attribute are contacted.

6.3.2 Waiting for Dependent Keys

As described in Section 6.2.3, there can be wrappers whose data source uses different key
than the main key within the system to identify an entity. Wrappers define what key they
use and it is up to the mediator to pass the right key.

When mediating by a key, workers whose wrapper uses a dependent key, i.e. is dependent
on results of another wrapper, must wait till the required attribute is fetched. Until then,
it is not possible to fetch the data.

Moreover, the problem of dependent keys does not refer only to mediation by a key
but concerns mediation all, as well. Unlike the mediation by a key, in this case it is possi-
ble to retrieve data from data sources immediately, but waiting is needed before merging.
To properly recognize the same entities when merging data from multiple wrappers, the
MasterEntitiesSharedCollection identifies each master entity with the main key. How-
ever, if a wrapper uses a dependent key, it is difficult to find the proper master entity in
the collection. The solution lies again in waiting till the required attribute is fetched, then
it is possible to find the master entity by this attribute and update it with data from the
dependent wrapper.

52 CHAPTER 6. DESIGN

MediationAllWorker

- filters :Set<Filter>

MasterEntiiesSharedCollection

+ values() :Set<MasterEntity>
+ putOrUpdate(Object, MasterEntity) :void
+ findByAttribute(String, Object) :MasterEntity

ConcurrencyMediator

- executorService :ExecutorService

MasterEntity

+ MasterEntity(MasterEntityType)
+ getKey() :Object
+ isEmpty() :boolean
+ initiateMissingAttributes() :void
+ getOwner() :MasterEntity

«instantiate»

1
«instantiate»

0..*

0..*entities

0..*

0..*

sharedCollection

1

«instantiate»
0..*

Figure 6.6: Design classes specific for mediation all

6.3.3 Lazy Loading

The vital feature of the integration system is to manage when an attribute should be fetched
eagerly and when it is not so convenient or even feasible. Because a lot of data sources might
be public web services with specific restrictions in access, the system should provide possi-
bilities to control their workload. For example, when mediating all data of a master entity
type, the system probably should not call a web service for each found entity. Advanced
configuration of lazy loading should overcome these limitations.

The integration system supports three levels of fetching that each attribute type can be
assigned to:

� Collection Level – Attribute of this level is always fetched. The mediator should
contact each wrapper mapped to the attribute even when mediating all.

� Entity Level – Attribute is fetched only during mediation by a key. When mediating
all, wrappers mapped to such an attribute are not contacted and the attribute remains
with null value.

� Attribute Level – Attribute is fetched only when accessed directly. Neither media-
tion all nor mediation by a key requests data from wrappers mapped to this attribute.

The fetch level of the whole wrapper is determined by the most specific fetch level of mapped
attribute types.

If an attribute stands for a reference to another master entity, there are two ways of how
to represent its value:

6.4. QUERYING WEB SERVICE 53

� Link – Only a link to the master entity represented as its key.

� Instance – Value of the attribute is an embedded instance of the master entity.

6.3.4 Filtering

Another way of how to reduce the amount of unnecessarily transferred information is filter-
ing. Among operations of wrappers belongs according to the interface fetching with filters.
However, it is up to each wrapper whether it really implements the filtering so there is no
guarantee that the retrieved data will really be filtered. Filtering in wrappers reduces the
traffic between data sources and the system and if the wrapper does not implement filtering,
it just returns all the data.

Therefore, filtering is also one of the mediator’s task in order to reduce traffic between
clients and the system and return the corresponding data according to a client’s request. So,
after building a collection of data sources, the mediator should filter the collection according
to given filters.

6.3.5 Stability

The integration system cooperates with multiple data sources. Whenever any of the data
sources does not respond or behaves unexpectedly, the system stays stable and returns
data from the rest of the data sources. To achieve such stability, no mediation worker can
endanger the mediation process so it must be treated as a single thread checked for any
exceptions. Every exception caused by a third party is caught, logged into the database and
clients are notified about unsuccessful communication with the data source along with data
from other data sources.

6.3.6 Usage Statistics

Mediator together with its workers is the ideal place for tracking usage statistics. For every
request, information about usage of the master entity type, all contacted wrappers and their
data sources is registered and stored in the database.

6.4 Querying Web Service

A web service providing the integrated data to the end user/application following the REST
principles. It processes a request into a form the mediator understands and transforms its
answer to a standard, well transportable and processable format. The class diagram in
Figure 6.7 includes the significant classes of this module.

6.4.1 REST API Design

Clients send HTTP requests that are processed by the QueryingResource class. From the
given URI, this class translates the request to a function according to this mapping:

54 CHAPTER 6. DESIGN

QueryingResource

+ PATH :String {readOnly}

+ findAllIndependentMasterEntityTypes() :Response
+ findAllMasterEntities(String, String) :Response
+ findMasterEntityByKey(String, String) :Response
+ findAttribute(String, String, String) :Response
+ findOwnedMasterEntityByKey(String, String, String, String) :Response
+ findAttribute(String, String, String, String, String) :Response

«interface»
Mediator

+ mediateAll(String, Set<Filter>) :List<MasterEntity>
+ mediateByKey(String, Object) :MasterEntity
+ mediateByKey(String, Object, String, Object) :MasterEntity
+ findAttribute(String, Object, String) :Attribute
+ findAttribute(String, Object, String, Object, String) :Attribute

FiltersParser

+ parseFilters() :Set<Filter>

«interface»
Catalog

+ findMasterEntityType(String) :MasterEntityType
+ findAllMasterEntityTypes() :List<MasterEntityType>
+ findIndependentMasterEntityTypes() :List<MasterEntityType>

URITools

+ buildCollectionURI(String) :String
+ buildMasterEntityURI(String, Object) :String
+ buildAttributeURI(String, Object, String) :String
+ buildOwnedMasterEntityURI(String, Object, String, Object) :String
+ parseKeyFromURI(String, String) :String

Filter

- key :String
- value :String

«enumeration»
Relation

EQUALS
GREATER_THAN
LOWER_THAN

+ compare(Comparable, Comparable) :boolean

MasterEntityResponse

- entityMap :Map<String, Object>
- messageLog :List<String>

buildMapFromMasterEntity(MasterEntity) :Map<String, Object>

0..*uriTools

1

0..*

relation

1

«use»

«instantiate»

«use»

«instantiate»

0..*

filtersParser

1

0..*
catalog

1

0..*

mediator

1

Figure 6.7: Design classes of the Querying Web Service

� /data – Acts as a crossroad serving a list of all independent master entities’ URIs in
the form of the next pattern.

� /data/{entityResource} – Corresponds to a request for all master entities of a type
identified with given entityResource. These requests support filtering within a cus-
tom HTTP header in the form:

{attributeName}{relation}{someValue}

where relation stands for =, > or <. Multiple filters can be separated by a semicolon.
The QueryingResource parses these filters using FiltersParser and hands them over
to the mediator as a set of the Filter instances.

� /data/{entityResource}/{entityKey} – Corresponds to a request for a detail of
a master entity with given entityResource identified with entityKey.

� /data/{entityResource}/{entityKey}/{attributeName} – Corresponds to a re-
quest for an attribute named as attributeName which belongs to a specified master
entity.

� /data/{owningEntityResource}/{owningEntityKey}/{entityResource}/
{entityKey} – Corresponds to a request for a detail of an owned master entity.

� /data/{owningEntityResource}/{owningEntityKey}/{entityResource}/
{entityKey}/{attributeName} – Corresponds to a request for an attribute named
as attributeName which belongs to a specified owned master entity.

6.5. CATALOG WEB SERVICE 55

6.4.2 Response Building

The second task of this module is to build a response from the mediator’s result that is
either a master entity, a collection of master entities or an attribute. In every case, the main
objective lies in proper evaluation of attributes’ values, for which several rules have been
stated:

� If the attribute was not fetched due to lazy loading, return its URI.

� If the attribute is a literal, return its value.

� If the attribute is a reference to a master entity, then either return the entity’s URI
(link) or recursively build a response for the entity (instance).

� For previous two rules also applies that if the attribute is multiple, then return a list
of values.

6.4.3 Cache

The REST interface supports standard cache control via HTTP cache headers ([23]) in-
structing clients how to cache responses. Each response is sent with an ETag (Entity Tag)
standing for the hash of the response. Clients are supposed to send this ETag along with
next requests and if the current version has the same ETag, it indicates the response is the
same as the client’s cached copy. In that case, the system responses with 304 Not Modified.

6.4.4 Errors Handling

This module is also responsible for correct interpretation of possible problems.

� If the master entity type does not exist or the entity with given key was not found,
return 404 Not Found.

� If the specified filters are invalid, return 400 Bad Request.

� If any internal exception is not properly caught, return 500 Internal Server Error.

6.5 Catalog Web Service

This web service provides an API for accessing and managing the catalog, wrappers and
data sources including the schemas mappings.

6.5.1 Public API

The public part of the API serves for accessing metadata from the catalog according to
which the UI Client is able to build a dynamic user interface. Public API returns only
information useful for clients omitting configuration data intended only for internal system
needs. The CatalogResource (see Figure 6.8) class offers metadata via the REST API
according to the following way:

56 CHAPTER 6. DESIGN

� /catalog – Returns a list of URIs referencing to metadata details for each master
entity type in the catalog in the form of the next pattern.

� /catalog/{entityResource} – Returns metadata about the given master entity type
including all of its attributes.

� /catalog/{entityResource}/{attributeName} – Returns metadata about the par-
ticular attribute.

CatalogResource

- PATH :String {readOnly}

+ findAllMasterEntityTypes() :Response
+ findMasterEntityType(String) :Response
+ findAttribute(String, String) :Response

«interface»
Catalog

+ findMasterEntityType(String) :MasterEntityType
+ findAllMasterEntityTypes() :List<MasterEntityType>
+ findIndependentMasterEntityTypes() :List<MasterEntityType>

MasterEntityTypeResponse

- uri :String
- resource :String
- name :String

AttributeTypeResponse

- uri :String
- name :String
- referencedMasterEntityTypeURI :String
- key :boolean
- multiple :boolean
- fetchLevel :String
- fetchedAsURI :boolean

0..*

attributeTypes 1

«instantiate»

«instantiate»

0..*catalog

1

Figure 6.8: Design classes of the public part of the Catalog Web Service

6.5.2 Admin API

Admin API provides web services for management of the catalog (i.e. master entity and
attribute types), wrappers and data sources. Access to these services is allowed only to
authorized clients. The REST API is designed in this way:

� /catalog/administration – Returns a list of URIs referencing to root resources of
particular administration areas in the form of the next pattern.

� /catalog/administration/datasource – Root resource for data sources manage-
ment.

� /catalog/administration/wrapper – Root resource for wrappers management.

� /catalog/administration/entitytype – Root resource for master entity types man-
agement.

� /catalog/administration/log – Root resource for accessing logs.

Figure 6.9 displays the structure of design classes for wrappers management. The Wrap-
perService class holding the essential business logic accesses the underlying data through

6.6. ADMIN CLIENT 57

DAO classes. The obtained instances of wrappers together with their schema items are
then transformed into DTO (Data Transform Object) objects standing for the resource
representations. The architecture of other management areas is analogous.

WrapperResource

- PATH :String {readOnly}

+ findAll() :Response
+ findByID(long) :Response
+ add(WrapperDTO) :Response
+ update(long, WrapperDTO) :void
+ delete(long) :void

WrapperDTO

- uri :String
- id :long
- name :String
- dataSourceID :long
- dataSourceURI :String
- masterEntityTypeID :long
- masterEntityTypeURI :String
- keyAttributeID :long
- queryByKey :String
- queryAll :String
- resource :String

+ WrapperDTO(Wrapper)

SchemaItemDTO

- id :long
- name :String
- attributeID :long
- attributeName :String

+ SchemaItemDTO(SchemaItem)

WrapperService

+ findAll() :List<WrapperDTO>
+ findByID(long) :WrapperDTO
+ create(WrapperDTO) :WrapperDTO
+ update(long, WrapperDTO) :void
+ delete(long) :void

WrapperDAO

- class :Class = Wrapper.class {readOnly}

GenericDAO

+ findAll(Class<T>) :List<T>
+ findByProperty(Class<T>, String, Object) :List<T>
+ findOneByProperty(Class, String, Object) :T
+ findByID(Class, long) :T
+ persist(T) :T
+ merge(T) :void
+ remove(T) :void

DataSourceDAO

- class :Class = DataSource.class {readOnly}

MasterEntityTypeDAO

- class :Class = MasterEntityTyp... {readOnly}

«abstract»
Wrapper

- name :String
- className :String

+ fetchAllData() :Collection<DataContainer>
+ fetchAllData(Set<Filter>) :Collection<DataContainer>
+ fetchDataByKey(Object) :DataContainer
+ fetchDataByKey(Object, Object) :DataContainer

«use»

0..*

masterEntityTypeDAO 1

0..*

dataSourceDAO

1

«instantiate»

0..*

wrapperDAO
1

0..*
schemaItems

1

0..*wrapperService

1

«use»

Figure 6.9: Design classes of wrappers administration

6.6 Admin Client

The Admin Client component stands for an administration UI client application commu-
nicating with the system through the Catalog Web Service. It is intended to enable the
administrator to easily manage the integration system via a graphical user interface.

The client is a web application using the REST API respecting the HATEOAS principle.
The application requires the user to be authorized. The structure of the UI is quite simple
- a dashboard, data sources management, wrappers management and master entity types
management.

6.6.1 Dashboard

The dashboard plays the role of a landing page providing useful information about the
integration system. The following information should be present:

58 CHAPTER 6. DESIGN

� Simple summary of numbers of integrated data sources, built wrappers and registered
master entity types.

� Usage of particular data sources, wrappers and master entity types in the form of
charts.

� Error log.

6.6.2 Data Sources Management

Within this page, the administrator can register a new data source, edit information about
an existing one or remove it from the system. Also, there is a possibility to clear cache of
a data source, i.e. clear cache of all wrappers above this data source.

For each data source, the administrator can specify:

� Name

� Type

� Cache validity (in seconds)

� Dynamic fields depending on the type (e.g. base URI for REST services)

6.6.3 Wrappers Management

This page enables to add a new wrapper, edit an existing one or remove it. Then, the
administrator can clear cache of a wrapper. The dialog for creating/editing a wrapper
dynamically updates available form inputs according to a type of selected data source (e.g.
SQL queries for a relational database, resource identification for REST data sources etc.).
An important part of the dialog is the schema mapping settings where the administrator
maps wrapper’s schema items to attribute types of the selected master entity type.

For each wrapper, the administrator can specify:

� Name

� Data source

� Master entity type

� Key attribute type

� Class (full name of the class with the implementation)

� Dynamic fields depending on the data source’s type (e.g. SQL query by a key, SQL
query for all rows for a relation database)

� List of schema mappings, each comprising of:

– Schema item name
– Attribute type

6.7. DATABASE DESIGN 59

6.6.4 Master Entity Types Management

This is the place where the catalog is managed, which includes creating master entity types
including their attribute types, editing existing ones or deleting them.

For each master entity type, the administrator can specify:

� Name

� Resource (used by the REST API)

� Owning master entity type

� List of attributes, each comprising of:

– Name
– Cardinality (single x multiple)
– Fetch level (collection x entity x attribute)
– Type (literal x reference)
– Reference master entity type
– Type of reference (link x instance)
– Is key (marks the main key)
– Is owner (only for owned entity types)

6.7 Database Design

The integration system must store the catalog, wrappers and data sources configuration
in a persistent storage. For this purpose, a relational database has been chosen mainly
because of the possibility of using an ORM (object-relational mapping) framework making
both capturing of complicated relationships and interaction in general easy and comfortable.
Also, it supports quick and well maintainable development. The database design is described
by Figure 6.10.

60 CHAPTER 6. DESIGN

A
tt

ri
b

u
te

T
yp

e

«
c

o
lu

m
n

»
*P

K
id

 :
B

IG
IN

T
*F

K
m

as
te

rE
nt

ity
T

yp
e_

id
 :

B
IG

IN
T

 F
K

re
fe

re
n

ce
d

M
a

s
te

rE
n

tit
y_

id
 :

B
IG

IN
T

na

m
e

 :V
A

R
C

H
A

R
(5

0)

is
K

ey
 :

B
O

O
L

m

u
lti

p
le

 :
B

O
O

L

o
w

n
e

r
 :B

O
O

L

fe
tc

hL
ev

el
 :

V
A

R
C

H
A

R
(5

0)

re
fe

re
nc

eT
yp

e
 :V

A
R

C
H

A
R

(5
0)

de

sc
rip

tio
n

 :T
E

X
T

«
P

K
»

+

id
(B

IG
IN

T
)

«
F

K
»

+

m
as

te
rE

nt
ity

T
yp

e_
id

(B
IG

IN
T

)
+

re

fe
re

nc
ed

M
as

te
rE

nt
ity

T
yp

e_
id

(B
IG

IN
T

)

M
as

te
rE

n
ti

ty
T

yp
e

«
c

o
lu

m
n

»
*P

K
id

 :
B

IG
IN

T
 F

K
ow

ni
ng

M
as

te
rE

nt
ity

T
yp

e_
id

 :
B

IG
IN

T

n
a

m
e

:V

A
R

C
H

A
R

(2
5

5
)

re

s
o

u
rc

e
 :

V
A

R
C

H
A

R
(1

2
7

)

u
s

a
g

e
C

o
u

n
t

:IN
T

E
G

E
R

de

sc
rip

tio
n

 :T
E

X
T

«
P

K
»

+

id
(B

IG
IN

T
)

«
F

K
»

+

ow
ni

ng
M

as
te

rE
nt

ity
T

yp
e_

id
(B

IG
IN

T
)

W
ra

p
p

e
r

«
c

o
lu

m
n

»
*P

K
id

 :
B

IG
IN

T
*F

K
d

a
ta

S
o

u
rc

e
_

id

:B
IG

IN
T

*F
K

m
as

te
rE

nt
ity

T
yp

e_
id

 :
B

IG
IN

T
*F

K
ke

yA
ttr

ib
ut

eT
yp

e_
id

 :
B

IG
IN

T
*

ty
pe

 :
V

A
R

C
H

A
R

(3
1)

n

a
m

e

:V
A

R
C

H
A

R
(2

5
5

)

cl
as

s
 :V

A
R

C
H

A
R

(5
0)

u

s
a

g
e

C
o

u
n

t
:IN

T
E

G
E

R

sq
lQ

ue
ry

B
yK

ey
 :

T
E

X
T

sq

lQ
ue

ry
A

ll
 :T

E
X

T

re
s

o
u

rc
e

 :
V

A
R

C
H

A
R

(2
5

5
)

«
P

K
»

+

id
(B

IG
IN

T
)

«
F

K
»

+

d
a

ta
S

o
u

rc
e

_
id

(B
IG

IN
T

)
+

ke

yA
ttr

ib
ut

eT
yp

e_
id

(B
IG

IN
T

)
+

m

as
te

rE
nt

ity
T

yp
e_

id
(B

IG
IN

T
)

D
a

ta
S

o
u

rc
e

«
c

o
lu

m
n

»
*P

K
id

 :
B

IG
IN

T

n
a

m
e

:V

A
R

C
H

A
R

(2
5

5
)

ty

pe
 :

V
A

R
C

H
A

R
(3

1)

ca
ch

eV
al

id
ity

 :
B

IG
IN

T

u
s

a
g

e
C

o
u

n
t

:IN
T

E
G

E
R

dr

iv
er

 :
V

A
R

C
H

A
R

(2
55

)

ho
st

 :
V

A
R

C
H

A
R

(2
55

)

u
s

e
rn

a
m

e

:V
A

R
C

H
A

R
(2

5
5

)

p
a

s
s

w
o

rd

:V
A

R
C

H
A

R
(2

5
5

)

b
a

s
e

U
R

I
:V

A
R

C
H

A
R

(2
5

5
)

«
P

K
»

+

id
(B

IG
IN

T
)

S
c

h
e

m
a

It
e

m

«
c

o
lu

m
n

»
*P

K
id

 :
B

IG
IN

T
 F

K
w

ra
p

p
e

r_
id

 :
B

IG
IN

T
 F

K
a

tt
ri

b
u

te
_

id
 :

B
IG

IN
T

n

a
m

e

:V
A

R
C

H
A

R
(2

5
5

)

«
P

K
»

+

id
(B

IG
IN

T
)

«
F

K
»

+

a
tt

ri
b

u
te

T
yp

e
_

id
(B

IG
IN

T
)

+

w
ra

p
p

e
r_

id
(B

IG
IN

T
)

C
a

c
h

e
It

e
m

«
c

o
lu

m
n

»
*P

K
id

 :
B

IG
IN

T
 F

K
w

ra
p

p
e

r_
id

 :
B

IG
IN

T

da
ta

 :
B

LO
B

ke

y
 :B

LO
B

ow

ni
ng

E
nt

ity
K

ey
 :

B
LO

B

cr
ea

te
d

 :D
A

T
E

T
IM

E

va
lid

ity
 :

B
IG

IN
T

pr

im
ar

yF
ilt

er
 :

B
LO

B

se
co

nd
ar

yF
ilt

er
 :

B
LO

B

«
P

K
»

+

id
(B

IG
IN

T
)

«
F

K
»

+

w
ra

p
p

e
r_

id
(B

IG
IN

T
)

+
w

ra
p

p
e

r_
id 0
..

*

(w
ra

p
p

e
r_

id
 =

 id
)

«
F

K
»

+
id

1

+
a

ttr
ib

u
te

T
yp

e
_

id0
..

*
(a

tt
ri

b
u

te
_

id
 =

 id
)

«
F

K
»

+
id

1

+
w

ra
p

p
e

r_
id

0
..

*

(w
ra

p
p

e
r_

id
 =

 id
)

«
F

K
»

+
id

1

+
d

a
ta

S
o

u
rc

e
_

id

0
..

*(d
a

ta
S

o
u

rc
e

_
id

 =
 id

)
«

F
K

»

+
id1

+
ke

yA
ttr

ib
ut

eT
yp

e_
id 0
..

*

(k
ey

A
ttr

ib
ut

eT
yp

e_
id

 =
 id

)
«

F
K

»
+

id

1

+
m

as
te

rE
nt

ity
T

yp
e_

id0
..

*
(m

as
te

rE
nt

ity
T

yp
e_

id
 =

 id
)

«
F

K
»

+
id

1

+
re

fe
re

n
ce

d
M

a
s

te
rE

n
tit

yT
yp

e
_

id
0

..
*

(r
e

fe
re

n
ce

d
M

a
s

te
rE

n
tit

y_
id

 =
 id

)

«
F

K
»+

id
0

..
1

+
m

as
te

rE
nt

ity
T

yp
e_

id
0

..
*

(m
as

te
rE

nt
ity

T
yp

e_
id

 =
 id

)

«
F

K
»+

id
1

+
o

w
n

in
g

M
a

s
te

rE
n

tit
yT

yp
e

_
id

0
..

*

(o
w

n
in

g
M

a
s

te
rE

n
tit

yT
yp

e
_

id
 =

 id
)

«
F

K
»

+
id

0
..

1

Figure 6.10: Database design

Chapter 7

Implementation

Within this chapter, the implementation part of the integration system development is
described. The system has been implemented according to the design proposed in Chapter 6
and this chapter refers to several interesting challenges encountered during implementation.
Also, the used platform, technologies and libraries are introduced including some basic
followed principles.

7.1 Used Platform and Technologies

The integration system is implemented on the Java EE [24] platform using the Spring
Framework [27]. The project’s structure, dependencies and build are managed by Maven
[32], a software project management and comprehension tool by Apache. Hence, the project
is not dependent on a single IDE (Integrated Development Environment). The project’s
source code has been versioned in Git [7], a distributed version control system.

7.1.1 Spring Framework

7.1.1.1 About Spring

Spring Framework is an open source Java platform and the most popular application devel-
opment framework for enterprise Java. Among others, it provides extensions for building
Java EE applications that significantly facilitates software development. Thanks to its non-
invasive character, Spring is easily integrable with other libraries.

Being a container itself, Spring does not require an EJB (Enterprise Java Beans) con-
tainer such as an application server but a robust servlet container such as Tomcat is suffi-
cient. The IoC (Inversion of Control) container and POJO-based (Plain Old Java Object)
programming model leads to easier development and good programming practice.

7.1.1.2 Dependency Injection

The integration system uses the pattern called Dependency Injection (DI) to control depen-
dencies between classes and thus lowering coupling. Components of the system are annotated

61

62 CHAPTER 7. IMPLEMENTATION

with the annotation @Component (or its more specific variants @Repository, @Service and
@Controller) to the container as beans involving them in auto-detection in annotation-
based configuration. Such annotated components can be injected to other classes managed
by the container using the annotation @Autowired.

Code Listing 7.1 shows injection of the catalog implementation into the mediator im-
plementation. Note, that the ConcurrencyMediator is dependent only on the Catalog
interface, so a possible substitution of the implementation is very easy.

Code Listing 7.1: Dependency Injection - autowiring a catalog implementation
@Component
@Transactional
public class ApplicationCatalog implements Catalog {

...
}

@Service
public class ConcurrencyMediator implements Mediator {

@Autowired
private Catalog catalog;
...

}

7.1.1.3 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) brings aspects, modularization of concerns that cut
across multiple classes, to the traditional Object-Oriented Programming (OOP). The Aspect
can insert an advice (additional functionality) to a certain point during the execution of
a program called join point that matches to a pointcut predicate. The process of linking
aspects with application code is called weaving and can be done at compile time, load time
or runtime.

The implementation of the integration system uses AOP to include objects created out-
side of the Spring container into DI. For example, domain objects are created either program-
matically with new operator or by an ORM tool as a result of a database query, so the Spring
container does not know about them. Annotating a class with @Configurable, the aspect
weaving arranges that the container is aware of the class. In Code Listing 7.2, the Wrapper
class is annotated with @Configurable and so it may be autowired with CacheProvider
that is managed by the container.

7.1.2 REST

Java EE provides the JAX-RS [38] (Java API for RESTful Web Services) to support creating
web services according to the REST architectural pattern. JAX-RS defines annotations for
mapping a resource class, content negotiation, pulling information out of a request in method
parameters and supports the HATEOAS principle.

7.1. USED PLATFORM AND TECHNOLOGIES 63

Code Listing 7.2: Wrapper class’ annotations
@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "type",

discriminatorType = DiscriminatorType.STRING)
@DiscriminatorValue(value = "default")
@Configurable
public abstract class Wrapper extends AbstractEntity<Long> {

@Autowired
@Transient
protected CacheProvider cacheProvider;
...

}

The project uses the Jersey [26] library, an open source reference implementation of
JAX-RS. Code Listing 7.3 shows how an HTTP request is mapped to a method for a master
entity detail.

� @GET defines an HTTP method

� @Path specifies the mapping path relative to the class’ base path

� @Produces indicates the content type of the response

� @PathParam maps dynamic parts of the path to particular arguments

� @Context return the entire context of the object

Code Listing 7.3: Mapping HTTP request on a method according to JAX-RS
@GET
@Path("/{entity}/{key}")
@Produces({MediaType.APPLICATION_JSON})
public Response findMasterEntityByKey(@Context Request request, @Context

UriInfo uriInfo, @PathParam("entity") String entityResource,
@PathParam("key") String key) {...}

7.1.3 ORM

The system works with a database that stores the catalog, wrappers and data sources
configuration and other system data. To comfortably communicate with the database,
it is recommended to use ORM, a programming technique for converting data between
a relational database and an object-oriented programming language. The Java Persistence
API [8] (JPA) provides a POJO persistence model for ORM. The system implementation
uses the Hibernate ORM library [19] as the implementation of JPA.

64 CHAPTER 7. IMPLEMENTATION

Code Listing 7.2 contains the Wrapper class annotated as @Entity that also specifies
the inheritance strategy for particular types of wrappers. Because the number of wrappers
is not expected to be very high and their properties are generally similar, single table
strategy keeping all of the types in a single table has been chosen. The particular types are
distinguished by a discriminator column, which is in this case type. In Code Listing 7.4,
there is an illustration of the discriminator value specification for the SQLWrapper, a default
wrapper implementation for SQL data sources.

Code Listing 7.4: SQLWrapper class’ annotations
@Entity
@DiscriminatorValue("sql")
public class SQLWrapper extends Wrapper {

...
}

In order to separate business logic from the data access itself, the system divides the code
into service and DAO classes. A DAO class contains methods that either directly specify
SQL queries or call the entity manager of Hibernate. In order to obey the DRY (don’t
repeat yourself) principle, the GenericDAO class has been implemented gathering the most
frequent operations with entities as a common ancestor for all DAO classes. Code Listing
7.5 shows a sample function from the GenericDAO class to find entities by a property, where
the usage of Java generics is worth mentioning.

Service classes call DAO classes in need of interaction with the database. All service
classes are declaratively marked with the @Transactional annotation which means that
each of their methods behaves as one transaction (see the ApplicationCatalog class in
Code Listing 7.1). The advantage of this approach lies in communication with the database
in transactions while exploiting generic methods of DAO classes. The disadvantage is the
inability to catch database exceptions on the service layer.

Code Listing 7.5: Generic function to retrieve entities by a property
public <ENTITY> List<ENTITY> getByProperty(String property, Object value,

Class<ENTITY> clazz) {
return getEntityManager()

.createQuery("SELECT e FROM " + clazz.getSimpleName() +
" e WHERE e." + property + " = :value")

.setParameter("value", value)

.getResultList();
}

7.2 Multithreading

The process of mediation, i.e. delegating a query to wrappers and merging their results,
is a suitable place to use multithreading. Generally, the most time-consuming part of the
system is waiting for the results from data sources so parallelization should significantly
increase the overall performance.

7.2. MULTITHREADING 65

The ConcurrencyMediator creates a worker implementing Callable for each wrapper
that is available for given master entity type and current fetch level. Then, it calls the
invokeAll method on an instance of ExecutorService handing over a collection of the
workers and specifying a maximum time to wait. The ExecutorService asynchronously
calls all the workers and returns a list of Future instances. The method get on an instance
of Future blocks the thread till the computation is done and retrieves its result. Calling it
on all Future instances ensures that by the time the cycle ends, all of the threads will have
completed their job (see Code Listing 7.6).

Code Listing 7.6: Asynchronous calling of workers and waiting for their results
for (Future<Boolean> result :

executor.invokeAll(workers, TIME_LIMIT, TimeUnit.SECONDS)) {
try {

result.get();
} catch (ExecutionException | CancellationException ex) {

LOGGER.error(ex);
}

}

A specific situation occurs when a wrapper is dependent on results of other wrappers
(see Section 6.3.2). In such a case, the worker must wait till the other wrappers complete
their job, i.e. the corresponding workers merge their results into a shared master entity,
resp. a collection of master entities.

In Code Listing 7.7, the worker waits for other wrappers in a synchronized block using
a monitor object that all workers share. When the required wrappers are done, the depen-
dent key is loaded from the shared master entity. However, if it is not found, the worker
cannot call its wrapper and is terminated. After a successful mediation process, the wrapper
is marked as done and all waiting threads are notified (see Code Listing 7.8).

Code Listing 7.7: Waiting for dependent key
if (wrapper.usesDependentKey()) {

try {
synchronized (lock) {

while (wrapper.mustWaitForPrerequisitedWrappers()) {
lock.wait();

}
}
loadDependentKey();

} catch (InterruptedException | CannotFindDependentKeyException ex) {
LOGGER.error(ex);
return Boolean.FALSE;

}
}

66 CHAPTER 7. IMPLEMENTATION

Code Listing 7.8: Marking a wrapper as done and notifying waiting threads
wrapper.done();
synchronized (lock) {

lock.notifyAll();
}

7.3 Implementation of Wrappers

As described in Section 6.2.2, when needing to register a wrapper, the system administrator
can either use a default wrapper for some types of data sources, create a subclass of a default
wrapper and override only necessary parts or implement a wrapper from scratch extending
the Wrapper abstract class.

For example, SQLWrapper provides a default behaviour for wrappers above a relational
database. The administrator configures SQL queries and schema mappings and the wrapper
works as expected - sends the SQL query to the database and processes the results translating
the column labels on particular attributes according to the schema mappings (see Code
Listing 7.9).

Code Listing 7.9: SQLWrapper’s default processing of multiple data
Collection<DataContainer> dataContainers = new HashSet<>();
while (results.next()) {

DataContainer dataContainer = new DataContainer();
for (int i = 1; i <= resultsMetaData.getColumnCount(); i++) {

String column = resultsMetaData.getColumnLabel(i);
Object value = results.getObject(i);
dataContainer.addData(findMappedAttribute(column), value);

}
dataContainers.add(dataContainer);

}
return dataContainers;

When filtering is desired, the administrator only creates a subclass of SQLWrapper and
overrides a method buildQueryAll(Set<Filter>). Code Listing 7.10 shows such an over-
ridden method, an example of building a where condition is contained in Code Listing 7.11.

Code Listing 7.10: Overridden method for building SQL query for fetching all data
@Override
protected String buildQueryAll(Set<Filter> filters) {

return "SELECT id, email, name "
+ "FROM user "
+ buildWhereCondition(filters);

}

7.4. CACHE 67

Code Listing 7.11: Building a where condition for filtering by e-mail
private String buildWhereCondition(Set<Filter> filters) {

WhereConditionBuilder whereBuilder = new WhereConditionBuilder();
SchemaItem schemaItem;
for (Filter filter : filters) {

schemaItem = findMappedSchemaItem(filter.getKey());
if (schemaItem == null) {

continue;
}
if (EMAIL.equals(schemaItem.getName())) {

whereBuilder.andWhere(EMAIL, filter.getValue(),
filter.getRelation());

}
}
return whereBuilder.getCondition();

}

The essential rule when implementing a wrapper is to respect the global schema, i.e.
the wrapper must strictly return data according to the attributes’ properties. Besides the
proper mapping on the attributes, it needs to comply the following:

� If an attribute is multiple, the wrapper must return a list (List<Object>) of values.

� If an attribute is a reference of type link, the wrapper must return the key of the
referenced master entity.

� If an attribute is a reference of type instance, the wrapper must return a map collection
(Map<String, Object>) representing the attributes of referenced master entity where
the keys respects the schema of the master entity type.

When the default implementations are not enough and the administrator creates his/her
own wrapper class, it is necessary to register it in the system which requires two steps:

1. Build a jar from own wrapper classes, go to a directory where the system is deployed
and put the jar to WEB-INF/lib.

2. Specify the class name in the wrapper’s configuration via the Admin Client.

7.4 Cache

7.4.1 Wrapper Cache

In order to reduce traffic between data sources and the system, the integration system sup-
ports caching of wrappers’ results. The cached data is stored in the database in a binary
form together with additional information required to identify the request (e.g. a key,
an SQL query etc.). To serialize the data containers in the database and vice versa,
SerializationUtils provided by Hibernate is used.

68 CHAPTER 7. IMPLEMENTATION

In order to respect cache validity, each time the cache is used its validity must be checked.
Furthermore, a scheduled method was implemented to invalidate out-of-date cache items at
regular time intervals (see Code Listing 7.12).

Code Listing 7.12: Scheduled method to invalidate out-of-date cache items
@Component
public class ClearCacheTask {

@Autowired
private CacheProvider cacheProvider;

@Scheduled(fixedRate = 3600000)
public void run() {

cacheProvider.invalidateCache();
}

}

7.4.2 HTTP Cache Control

HTTP Cache Control instructs clients how to cache responses. The QueryingResource
counts an ETag from the mediator’s result and sends it to a client within the HTTP response
headers. The client is supposed to send this ETag together with next requests and if the
current mediator’s result has the same ETag, the client’s cached copy should be used. JAX-
RS provides a very comfortable way of dealing with HTTP cache control (see Code Listing
7.13).

Code Listing 7.13: HTTP cache control with ETag
...
CacheControl cacheControl = new CacheControl();
cacheControl.setMaxAge(CACHE_MAX_AGE);

EntityTag eTag =
new EntityTag(Integer.toString(mediationResponse.hashCode()));

ResponseBuilder builder = request.evaluatePreconditions(eTag);
if (builder == null) {

builder =
Response.ok(new MasterEntityResponse(mediationResponse, uriTools));

builder.tag(eTag);
}

builder.cacheControl(cacheControl);
return builder.build();

7.5. EXCEPTIONS HANDLING AND LOGGING 69

7.5 Exceptions Handling and Logging

To preserve stability of the integration system, it is necessary to properly work with ex-
ceptions and do not let a problem with one data source endanger not only the system as
a whole but the particular request, as well. The basic principle is to shield the system from
a worker’s failure, the Code Listing 7.6 shows, among others, how each worker is checked
within a try-catch block.

When an exception occurs, it should be caught and logged at the right place. A typical
situation is when a data source is either unavailable or responds unexpectedly. When imple-
menting a wrapper, it is important to take this into account and properly treat such a case.
The Code Listing 7.14 shows such a treatment in the RESTWrapper class where a prepared
response builder requests data from a data source.

Except catching exceptions, it is very useful also to log the encountered problems. The
system uses Log4j library [30] by Apache for this purpose. In Log4J settings, two loggers
are defined - a console log and a database log used to store error logs that are then provided
by the Catalog Web Service for the Admin Client (see the settings in Code Listing 7.15).

Code Listing 7.14: Catching exceptions when contacting a data source in RESTWrapper
ClientResponse response;
try {

response = builder.accept(accept).get(ClientResponse.class);
} catch (ClientHandlerException ex) {

String message = "Couldn’t connect to REST service at " + resourceURI;
LOGGER.error(message);
throw new QueryFailedException(ex, message);

}

if (response.getStatus() != 200) {
String message = "REST service at " + resourceURI + " responded with

HTTP status code " + response.getStatus();
LOGGER.error(message);
throw new QueryFailedException(message);

}

Code Listing 7.15: Log4j settings for logging errors in the database
log4j.appender.DB=org.apache.log4j.jdbc.JDBCAppender
log4j.appender.DB.URL=jdbc:mysql://localhost:3306/integration
log4j.appender.DB.driver=com.mysql.jdbc.Driver
log4j.appender.DB.user=user
log4j.appender.DB.password=password
log4j.appender.DB.sql=INSERT INTO LOGS (dated, logger, level, message)

VALUES(’%d{yyyy-MM-dd HH:mm:ss}’,’%C{1}’,’%p’,’%m’)
log4j.appender.DB.layout=org.apache.log4j.PatternLayout
log4j.appender.DB.Threshold=ERROR

70 CHAPTER 7. IMPLEMENTATION

7.6 Admin Client

The Admin Client has been implemented as a JavaScript application communicating with
the REST API of the Catalog Web Service via AJAX (Asynchronous JavaScript and XML).
Particular HTML pages are served by JSP (Java Server Pages) for what the security settings
requires the user to be authorized by logging in via a login form.

The front-end implementation is based on jQuery1 and Bootstrap2, a popular HTML,
CSS and JS framework for developing responsive web applications. Among other used
libraries belong morris.js3 for charts rendering, Font Awesome4 as an iconic font and Data-
Tables5 adding advanced interaction controls to tables. The UI is fully responsive enabling
positive user experience on a device of nearly any display size.

Figure 7.1: Page for master entity types management

Figure 7.1 illustrates a page for master entity types management. Pages for data sources
management and wrappers management are implemented in a very similar way. The table
containing all registered master entity types supports searching, pagination and sorting by
any column. The Refresh button updates the table content. Add Entity Type opens a dialog

1https://jquery.com
2http://getbootstrap.com
3http://morrisjs.github.io/morris.js
4http://fortawesome.github.io/Font-Awesome
5https://www.datatables.net

https://jquery.com
http://getbootstrap.com
http://morrisjs.github.io/morris.js
http://fortawesome.github.io/Font-Awesome
https://www.datatables.net

7.6. ADMIN CLIENT 71

to define a new master entity type, Edit opens the same pre-filled dialog to edit an existing
master entity type and Delete opens a dialog to confirm removing of the master entity type.
The definition of the table enhancement by DataTables is shown in Code Listing 7.16.

Code Listing 7.16: Setup of master entity types table with DataTables
EntityController.prototype._defineTable = function () {

this._table.dataTable({
language: {

search: "_INPUT_",
searchPlaceholder: "Search...",
emptyTable: "No entity types registered."

},
columns: [

{data: "id"},
{data: "name"},
{data: "resource"},
{data: "id", width: "155px"}

],
columnDefs: [

{
targets: 3,
render: function (data, type, row) {

return ’<button class="btn btn-primary" data-toggle="modal"
data-target="#editEntity" data-id="’ + data + ’">
<i class="fa fa-edit "></i> Edit</button>\n\
<button class="btn btn-danger" data-toggle="modal"
data-target="#confirmDelete" data-id="’ + data + ’">
<i class="fa fa-trash"></i> Delete</button>’;

}
}

]
});

};

In Figure 7.2, there is a sample dialog for editing a master entity type. The master
entity type is called Company, the REST API identifies it as a resource company and it
is an independent entity type. The attribute type identificationNumber is the entity’s key,
a literal with a single cardinality that is always fetched. On the other hand, addresses has
multiple cardinality and represents references to master entities of type Address that are
fetched on the entity level (not fetched when accessing a collection). Not checking Fetch as
URI(s) means that the reference is of the instance type, i.e. contains an embedded master
entity and not just a link in the form of its URI.

72 CHAPTER 7. IMPLEMENTATION

Figure 7.2: Dialog for editing a master entity type

Chapter 8

Testing

This chapter refers to the testing of the implemented integration system. Firstly, the usage
of unit and integration tests is generally introduced. Verification of fulfillment of the require-
ments specified in the analysis is a next step. At the end, the system usage is demonstrated
on real data including performance tests.

8.1 Unit and Integration Tests

The system has been ceaselessly tested with unit tests during development using the JUnit
[29] library. However, a lot of these unit tests do not fully respect the unit testing charac-
teristics as isolation and maximal simplicity and overgrow rather to integration tests. So,
the system is covered with both unit tests focused on particular methods and more com-
plex integration tests that deal with a cooperation between system classes and components
hitting the real database.

Since the application is dependent on the Spring container for the dependency injection,
the integration tests must be aware of the context, as well. The Spring Framework provides
a set of annotations to use in test classes enabling to work with the Spring context. In Code
Listing 8.1, there is a base test class for all context aware tests. The annotation @RunWith
sets a Spring class to run the tests and @ContextConfiguration specifies a location with
the context configuration. Moreover, within @TransactionConfiguration is configured
that all transactions should be rolled back in order not to modify the database and hence,
@Transactional makes each test method a transaction.

Code Listing 8.1: Annotations of a base test class
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = {

"/WEB-INF/context/application-context.xml"})
@TransactionConfiguration(defaultRollback = true,

transactionManager = "txManager")
@Transactional
public abstract class ContextAwareTest {
...

73

74 CHAPTER 8. TESTING

Areas with the largest code and decision coverage involve:

� CRUD operations with master entity types and attribute types

� CRUD operations with data sources

� CRUD operations with wrappers and schema items

� Mapping between wrappers’ schemas and attribute types

� Building attributes from wrappers’ results

� Mediation workers with stubbed wrappers

� Properties of master entities and attributes

� Building responses from the mediation results before serialization to JSON

� Parsing and processing of filters

� Working with cache

8.2 Requirements Fulfillment

Basic testing of the integration system lies in the evaluation of requirements fulfillment
specified in the analysis (see Section 4.6).

8.2.1 Functional Requirements

All functional requirements have been met, the system provides a REST API offering all de-
sired functionalities from the client’s perspective (1-6) and the Admin UI serves for executing
all the required actions from the administrator’s perspective (7-17).

8.2.2 Non-Functional Requirements

Regarding the non-functional requirements, the system also fulfilled all. The integration
circumstances are satisfied because:

� The integration process is fully transparent, a client does not need to know the data
sources. (18)

� The system supports a wide variety of data sources including the required ones with
a potential to cover a lot more. (19)

� The catalog is in the form of a relational database. (20)

� The problem of different keys across data sources is solved by the dependent keys
mechanism (see Sections 6.2.3 and 6.3.2) (21).

8.3. DEMONSTRATION ON REAL DATA 75

Most of the demands on design - scalability (22), support of intermediaries (23), a stan-
dard (24), explorable and self-descriptive (25) API are met thanks to the used REST archi-
tecture. The remaining one lying in easy expandability with new data sources (26) is also
fulfilled. To connect to a new data source, the administrator must register it, create one or
more wrappers, expand the global schema by adjusting the master entity type’s properties
and eventually copy the jar with implementations of wrappers to the WEB-INF/lib system’s
directory. None of the operations requires a change in the integration system’s source code
(see Sections 6.2.2 and 7.2).

As regards the requirements on availability and stability, testing proved them to be met.

� Stability of the system is not endangered if any data source fails, is not available or
responses unexpectedly mainly thanks to the shielding of the mediation process from
particular mediation workers (see Section 7.1.3). Within the testing, a data source has
been turned off, changed its schema or returned an empty result. The way of a proper
logging of the exception depends on the wrapper’s implementation. (27)

� The maximal response time has been tested by shutting down one of the data sources
and measuring time. It can be modified by changing the time limit of threads of the
mediation workers. (28)

� As regards incorrect client’s input, various forms of invalid URIs and the HTTP header
with filters have been successfully tested. The JAX-RS mechanism manages to filter
non existing URI patterns, the system validates the existence of master entity’s re-
source and the filter parsing mechanism also dispose of a strict validation. (29)

� The system provides a three-level lazy loading mechanism enabling to specify when
an attribute should be fetched (see Section 6.3.3). (30)

The security regarded requirements have also been subjected to tests proving that an
unauthorized user does not have access neither to the Admin UI client (31) nor the secured
REST API (32) intended only to administration purposes.

Performance of the system is supported both by caching of wrappers’ results (33) re-
ducing traffic between data sources (more in the following Section 8.3.4) and the system
and HTTP cache control (34) instructing clients how to cache the responses and thus saving
bandwidth, as well.

Finally, requirements on the documentation are met. An installation manual (35), a user
manual (36) and an administration manual (37) are included in the appendices of the thesis.
The documentation of the source code (38) in Javadoc[25] is contained in the attached DVD.

8.3 Demonstration on Real Data

The demonstration of the system usage aims to simulate a real situation the system has
been developed for in the domain of joint-stock companies in the Czech Republic. Six data
sources offering real data in various forms (SQL, SOAP, REST, CSV, XLS) are connected
to build eight types of master entities via sixteen wrappers.

76 CHAPTER 8. TESTING

Integrationp
System

SQL

ARESpRDB

REST

ARESpREST

SOAP

TaxpPortal

CSV

CTIA

XLS

EUpStructuralp
Fonds

XLS

HealthpInsurancepCompanyp
ofpthepMinistrypofpInterior

Figure 8.1: Data sources in the example of use

8.3.1 Connected Data Sources

Within the example of use, the system integrates the following data sources (see Figure 8.1
for a basic schema of the data sources and their types):

1. ARES RDB – The primary data source is a local relational database with all joint-
stock companies in the Czech Republic created from an information system called
ARES1 (Access to Registers of Economic Subjects / Entities) managed by the Min-
istry of Finance of the Czech Republic. It simulates a private base data source (e.g.
a database of company’s clients) to be enriched by public data.

2. Tax Portal – The Tax Portal 2 managed by the General Financial Directorate pro-
vides a SOAP web service for determining the reliability of the VAT (value-added tax)
payers and their bank accounts.

3. ARES REST – A REST web service providing information about company’s subjects
(shareholders, statutory authorities, a board of directors, a supervisory board etc.).
In fact, this data source was built as a REST API above a part of the ARES RDB
to simulate the problem of dependent keys and creating wrappers for a REST web
service.

4. EU Structural Fonds – The Ministry of Regional Development provides a list of
beneficiaries from all operational programs within the European structural fonds3 in
the form of an XLS document.

1http://wwwinfo.mfcr.cz/ares/ares.html.en
2http://adisspr.mfcr.cz/adistc/adis/idpr_pub/dpr_info/ws_spdph.faces
3http://www.strukturalni-fondy.cz/en/Informace-o-cerpani/Seznamy-prijemcu

http://wwwinfo.mfcr.cz/ares/ares.html.en
http://adisspr.mfcr.cz/adistc/adis/idpr_pub/dpr_info/ws_spdph.faces
http://www.strukturalni-fondy.cz/en/Informace-o-cerpani/Seznamy-prijemcu

8.3. DEMONSTRATION ON REAL DATA 77

5. Czech Trade Inspection Authority (CTIA) – The Czech Trade Inspection Au-
thority, an administrative government institution monitoring and inspecting business
and individuals, publishes among others data about inspections and imposed sanctions
as CSV documents4.

6. Health Insurance Company of the Ministry of Interior – A list of payers whose
total dept for public health insurance and penalties in the Health Insurance Company
of the Ministry of Interior is higher than 100 000 CZK as an XLS document5.

Except the ARES REST that identifies the companies by a surrogate key created spe-
cially for this simulation and known only to the REST RDB, all data sources identify the
companies by a registration number specified in the Commercial Register.

8.3.2 Defined Master Entity Types

The key master entity type is the Company whose attributes are fetched from all the men-
tioned data sources. Other master entity types are practically parts of the Company that
a client can further explore. A class diagram capturing the attribute types of particular
master entity types and relationships between each other is to be seen in Figure 8.2.

1. Company – A joint-stock company located in the Czech Republic with a unique
company registration number.

2. Firm – Represents a firm formed by a company with temporal validity (in other words
it catches various names of the company during its existence).

3. Subject – A subject with a relationship to a company (shareholders, statutory au-
thorities, a board of directors, a supervisory board etc.). It could be either a natural
person or a legal entity (e.g. another joint-stock company).

4. Address – Address of a company or a subject.

5. Bank Account – A bank account belonging to a company.

6. EU Grant – A grant from European structural fonds.

7. CTIA Inspection - An inspection executed by the CTIA.

8. CTIA Sanction - A sanction imposed within an inspection executed by the CTIA.

8.3.3 Implementation of Wrappers

Most wrappers are built above the ARES RDB because it contains data for three master
entity types (Company, Firm and Address). The wrappers are basically of two types:

a) Wrappers focused on a particular entity using its key when fetching by a key, e.g. Firm
Wrapper fetching either all firms or a firm by a key.

4http://www.coi.cz/cz/spotrebitel/open-data-databaze-kontrol-sankci-a-zakazu
5http://www.zpmvcr.cz/platci/dluznici/

http://www.coi.cz/cz/spotrebitel/open-data-databaze-kontrol-sankci-a-zakazu
http://www.zpmvcr.cz/platci/dluznici/

78 CHAPTER 8. TESTING

Company

- registrationNumber
- name
- state
- unreliableTaxPayer
- secondaryID
- insuranceDept

Firm

- id
- name
- dateFrom
- dateTo

Address

- id
- county
- municipality
- street
- zip
- houseNumber
- orientationNumber
- dateFrom
- dateTo

Bank Account

- number
- bankCode
- prefix
- publicationDate

Subject

- id
- registrationNumber
- relationship
- function
- firstName;
- lastName
- titleBeforeName
- titleAfterName
- birthday
- note
- dateFrom
- companyName

EU Grant

- project
- program
- fond
- allocatedAmount
- dateOfAllocation
- interimPayment
- dateOfInterimPayment
- state

CTIA Inspection

- id
- region
- county
- municipality
- street
- orientationNumber
- zip
- date

CTIA Sanction

- id
- inspection
- penaltyFee
- law
- paragraph
- effectiveDate

-sanctions

1

-inspection

0..*

-subjectAsCompany

0..*0..1

-address 1

1

-inspections 1

-company 0..*

-grantsFromEU

1

-company

0..*

-subjects

1

-company

0..*

-bankAccounts

1

-company

0..*

-addresses 1
0..*

-firms

1

-company 0..*

Figure 8.2: Master entity types in the example of use

b) Wrappers fetching multiple referenced master entities of another master entity (mostly
Company). Such wrappers do not implement fetching all data, but focus only on par-
ticular multiple references, especially of the Company, e.g. Firms by Company Wrapper
returning all firms by a company’s key.

All own implementations of wrappers significantly exploit functionalities provided by the
default implementations, especially for SQL, REST and CSV data sources. SQL wrappers
of the first type overrides only the method for filters processing (see Section 7.2). Results
processing in wrappers of the second type must have been manually implemented because
the multiple attributes often stand as embedded instance reference types so the mapping on
the global schema is more difficult.

8.3. DEMONSTRATION ON REAL DATA 79

8.3.4 Performance Tests

The integration system with real data described above underwent performance tests to prove
the influence of lazy loading and caching. However, as the analysis already emphasises, the
purpose of lazy loading is not related only to the performance circumstances but supports
the system availability by making the communication with data sources feasible.

The performance test cases lie in querying the integration system for a company’s detail
10 times, once in sequence and once in parallel. A test client makes HTTP requests for the
following URI:

http://{baseURI}/{context}/rest/data/company/26185610

The tests were evaluated on three various configurations of the system depending on cache
and lazy loading settings. The results are available in Table 8.1, all times are in milliseconds.

1. In the first case, caching of wrappers’ results is turned off and lazy loading is set to
fetch all data about the company (except the data from the Tax Portal that is a public
web service whose restrictions do not allow more than 4 parallel requests, which is after
all a perfect example why lazy loading is a necessary part of the system). See Figure
8.3 and first and second row in Table 8.1.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

Sequence

Parallel

Figure 8.3: Performance tests results - lazy loading off, cache off

2. The second case queries the integration system with lazy loading set to fetch only data
from ARES RDB and ARES REST while other data sources are not contacted (i.e.
attributes fetched from the other data sources have the fetch level set to attribute).
See Figure 8.4 and third and fourth row in Table 8.1.

80 CHAPTER 8. TESTING

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

Sequence

Parallel

Figure 8.4: Performance tests results - lazy loading on, cache off

3. Within the third case, caching of all wrappers’ results is turned on. As seen from the
sequence case, the first response takes more time because the results are not cached
yet, the next responses are much faster. See Figure 8.5 and fifth and sixth row in
Table 8.1.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Sequence

Parallel

Figure 8.5: Performance tests results - lazy loading on, cache on

8.3. DEMONSTRATION ON REAL DATA 81

Table 8.1: Results of performance tests
Cache LL1 Type 1 2 3 4 5 6 7 8 9 10
no no S2 516 629 655 722 255 228 294 329 374 403
no no P3 970 1116 1153 1249 1279 1278 1360 1386 1390 1398
no yes S 329 316 292 302 329 319 301 302 294 346
no yes P 727 795 875 947 540 571 616 573 527 622
yes yes S 555 190 126 230 133 141 129 144 327 160
yes yes P 415 313 264 386 255 228 294 329 374 403
1 Lazy Loading
2 Sequence
3 Parallel

0

200

400

600

800

1000

1200

1400

Average Times

Cache off, LL off, sequence

Cache off, LL off, parallel

Cache off, LL on, sequence

Cache off, LL on, parallel

Cache on, LL on, sequence

Cache on, LL on, parallel

Figure 8.6: Performance tests results - average times of all situations

As expected, the performance tests prove that cache and lazy loading have an important
influence on system performance. In this case, having both turned on saves about a half
the time in sequence and three quarters in parallel. The more time a data source’s response
takes, the greater influence these instruments have. The testing also confirms lazy loading,
within the meaning of requesting particular information when a client really needs it, to be
worth using.

82 CHAPTER 8. TESTING

Chapter 9

Conclusion

This diploma thesis proposed an approach to the integration of heterogeneous data sources
oriented on the essential business entities - master entities. As a result, a general and
configurable integration system capable of integrating a wide range of information sources
was developed. The system provides a single view on data from multiple data sources in
a transparent way while enabling to easily include a new data source. Settings of the system
can be managed via a user-friendly administration client application.

The architecture was based on a wrapper-mediator principle modified to enable easy
extensibility with new data sources. The mediator stands for an independent mechanism
performing the integration of data received from wrappers. Building wrappers, components
querying the data sources and processing the obtained data that respect the common inter-
face, represents the way of easy extending the integration system with information sources.
To describe the integrated global schema, a catalog keeping metadata comprising of master
entity and attribute types was designed.

Respecting all the necessary REST constraints, the architecture can be considered as
RESTful. As a consequence, the integration system supports scalability, transparent secu-
rity and cacheability and clients query the integrated data via a uniform, easy-to-use and
self-descriptive interface based on standard technologies. The resource oriented API is des-
ignated by the contents of the catalog. Therefore, the system is very adaptive requiring no
changes in the existing source code after modification of the global schema.

Several interesting problems identified in the analysis had to be solved. Firstly, a mech-
anism to overcome an obstacle in the form of different identifiers across data sources was
designed lying in building a structure of dependent wrappers the mediator complies when
forming the subqueries. By requiring to support a wide range of data sources, the integra-
tion system had to take into account access restrictions to make the querying of data sources
not only more effective but sometimes even feasible. That is the reason why a lazy loading
technique was developed enabling to set when particular data should be fetched and when
it is, on the contrary, not convenient. The communication of the system in both directions,
i.e. with data sources and clients, was supported by caching.

To demonstrate the benefits of the integration system, an example using the real data
was provided. Within this sample, a relational database of all joint-stock companies in the
Czech Republic originating from the Ministry of Finance was linked to various heterogeneous

83

84 CHAPTER 9. CONCLUSION

data sources providing data about the reliability of the VAT payers and their bank accounts,
EU structural fonds beneficiaries, the inspections and sanctions made by the Czech Trade
Inspection Authority or the debtors of the Health Insurance Company of the Ministry of
Interior. So, all the interesting information is thanks to the integration system accessible
from one REST API in a completely transparent way.

9.1 Future Work

At present, a dynamic client for the integration system developed within this thesis begins
to emerge as a subject of another diploma thesis. Therefore, support and possible upgrades
of the system become one of the needed future works. Among the expected requirements,
which will arise from the related project’s analysis, belongs an extension of the metadata
provided by the catalog to support data visualization.

Meanwhile, areas to enhance include improvements of default wrappers’ implementa-
tions, automatic schema mappings for embedded master entities and more detailed statistics
to show on the admin dashboard.

Bibliography

[1] S. ABITEBOUL, D. QUASS, J. MCHUGH, J. WIDOM, and J. WIENER. The Lorel
Query Language for Semistructured Data. International Journal on Digital Libraries,
1:68–88, 1997.

[2] O. BEN-KIKI, C. EVANS, and B. INGERSON. YAML Ain’t Markup Language
(YAMLTM) Version 1.1. W3C, http://yaml.org/spec/1.1/current.pdf, 2005.

[3] A. BROWN, S. JOHNSTON, and K. KELLY. Using Service-Oriented Architecture and
Component-Based Development to Build Web Service Applications. Rational Software
Corporation, 2002.

[4] S. BUSSE, R.-D. KUTSCHE, U. LESSER, and H. WEBER. Federated Information
Systems: Concepts, Terminology and Architectures. ACM Computing Surveys (CSUR)
- Special issue on heterogeneous databases, 22(3):183–236, 1999.

[5] D. BUTLER. Master Data Management. Oracle Corporation, 2011.

[6] J. CARDOSO and A. SHETH. Semantic Web services, processes and applications. NY:
Springer, New York, 2006.

[7] S. CHACON and B. STRAUB. Pro Git. Apress, 2014.

[8] L. DE-MICHIEL. JSR 317: Java Persistence API, Version 2.0. Version 2.0, Final Re-
lease. Sun Microsystems, https://jcp.org/aboutJava/communityprocess/final/
jsr317, 2009.

[9] R. T. FIELDING. Architectural Styles and the Design of Network-based Software Ar-
chitectures. Doctoral dissertation, University of California, Irvine, 2000.

[10] H. GARCIA-MOLINA, J. HAMMER, K. IRELAND, Y. PAPAKONSTANTINOU,
J. ULLMAN, and J. WIDOM. Integrating and Accessing Heterogeneous Information
Sources in TSIMMIS. In Proceedings of the AAAI Symposium on Information Gather-
ing, pages 61–64, 1995.

[11] H. GARCIA-MOLINA, Y. PAPAKONSTANTINOU, D. QUASS, A. RAJARAMAN,
Y. SAGIV, J. ULLMAN, V. VASSALOS, and J. WIDOM. The TSIMMIS Approach to
Mediation: Data Models and Languages. Journal of Intelligent Information Systems,
pages 117–132, 1997.

85

http://yaml.org/spec/1.1/current.pdf
https://jcp.org/aboutJava/communityprocess/final/jsr317
https://jcp.org/aboutJava/communityprocess/final/jsr317

86 BIBLIOGRAPHY

[12] A. GERACKI, F. KATKI, L. MCMONEGAL, B. MEYER, J. LANE, P. WILSON,
J. RADATZ, M. YEE, H. PORTEOUS, and F. SPRINGSTEEL. IEEE Standard Com-
puter Dictionary: Compilation of IEEE Standard Computer Glossaries. IEEE, 1991.

[13] R. GHAWI. Ontology-based cooperation of information systems contributions to
database-to-ontology mapping and XML-to-ontology mapping. Doctoral dissertation,
Universit’e de Bourgogne, 2010.

[14] R. GHAWI, T. POULAIN, G. GOMEZ, and N. CULLOT. OWSCIS: Ontology and
Web Service Based Cooperation of Information Sources. Signal-Image Technologies
and Internet-Based System, 2007. SITIS ’07. Third International IEEE Conference
on, pages 246–253, 2007.

[15] C. H. GOH. Representing and Reasoning about Semantic Conflicts in Heterogeneous
Information Systems. Doctoral dissertation, MIT, 1997.

[16] T. R. GRUBER. A translation approach to portable ontology specifications. Knowledge
Acquisition - Special issue: Current issues in knowledge modeling, 5(3):573–582, 1993.

[17] T. R. GRUBER. Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. International Journal of Human-Computer Studies - Special issue: the role of
formal ontology in the information technology, 43(5-6):907–928, 1995.

[18] T. HEATH and C. BIZER. Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web: Theory and Technology, 1:1, 1-136. Morgan
& Claypool, 1st edition, 2011.

[19] Hibernate. Red Hat, http://hibernate.org, 2015.

[20] H. H. HOANG, A. ANDJOMSHOAA, and A. M. TJOA. Towards a New Approach
for Information Retrieval in the SemanticLIFE Digital Memory Framework. 2006
IEEE/WIC/ACM International Conference on Web Intelligence, 2006.

[21] H. H. HOANG and T. M. NGUYEN. Ontology-based Virtual Query System for the
SemanticLIFE Digital Memory Project: Concepts, Designs and Implementation. World
Academy of Science: Engineering and Technology, 2006.

[22] H. H. HOANG and A. M. TJOA. The Virtual Query Language for Information Retrieval
in the SemanticLIFE Framework. Web Information Systems Modeling, 2006.

[23] Hypertext Transfer Protocol – HTTP/1.1. Network Working Group, http://www.w3.
org/Protocols/rfc2616/rfc2616.html, 1999.

[24] JSR 342: Java Platform, Enterprise Edition 7 (Java EE 7) Specification. Oracle, https:
//jcp.org/en/jsr/detail?id=342, 2011 (updated in 2013).

[25] Javadoc 5.0 Tool. Oracle, http://docs.oracle.com/javase/1.5.0/docs/guide/
javadoc/index.html, 2010.

[26] Jersey. Oracle, https://jersey.java.net, 2015.

http://hibernate.org
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
https://jcp.org/en/jsr/detail?id=342
https://jcp.org/en/jsr/detail?id=342
http://docs.oracle.com/javase/1.5.0/docs/guide/javadoc/index.html
http://docs.oracle.com/javase/1.5.0/docs/guide/javadoc/index.html
https://jersey.java.net

BIBLIOGRAPHY 87

[27] R. JOHNSON, J. HOELLER, K. DONALD, C. SAMPALEANU, R. HARROP, and
T. RISBERG. Spring Framework Reference Documentation. Pivotal Software, 2011.

[28] JSON-RPC 2.0 Specification. JSON-RPC Working Group, http://www.jsonrpc.org/
specification, 2010 (updated in 2013).

[29] JUnit. JUnit Team, http://junit.org, 2014.

[30] Apache Log4j 2. The Apache Software Foundation, http://logging.apache.org/
log4j/2.x, 2015.

[31] D. LOSHIN. Master data management. Amsterdam: Elsevier/Morgan Kaufmann,
2009.

[32] Apache Maven. The Apache Software Foundation, https://maven.apache.org, 2014.

[33] D. MCLEOD and D. HEIMBIGNER. A federated architecture for database systems.
National Computer Conference, 1980, 1980.

[34] E. MUGELLINI, P. S. SZCZEPANIAK, M. CHIARA PETTENATI, and M. SOKHN.
7th Atlantic Web Intelligence Conference, AWIC 2011, Fribourg, Switzerland, January
26-28, 2011. In Advances in Intelligent Web Mastering - 3. Springer-Verlag Berlin
Heidelberg, 2011.

[35] NATO Intelligence, Surveillance, and Reconnaissance (ISR) Interoperability Architec-
ture (NIIA): VOLUME 1: Architecture Description, 2005.

[36] OWL Web Ontology Language Overview. W3C, http://www.w3.org/TR/
owl-features/, 2004.

[37] Y. PAPAKONSTANTINOU, H. GARCIA-MOLINA, and J. WIDOM. Object exchange
across heterogeneous information sources. In Proceedings of the Eleventh International
Conference on Data Engineering. IEEE Comput. Soc. Press, 1995.

[38] S. PEERICAS-GEERTSEN and M. POTOCIAR. JSR-000339 The Java API for REST-
ful Web Services. Oracle, https://www.jcp.org/aboutJava/communityprocess/
final/jsr339/index.html, 2013.

[39] C. RAY. Distributed database systems. New Delhi: Dorling Kindersley, 2009.

[40] RDF 1.1 Primer. W3C Working Group. W3C, http://www.w3.org/TR/2014/
NOTE-rdf11-primer-20140624, 2014.

[41] RDF Schema 1.1. W3C, http://www.w3.org/TR/rdf-schema/, 2014.

[42] L. RICHARDSON and S. RUBY. RESTful Web Services. O’Reilly Media, Inc, 2008.

[43] P. RUSSOM. Next Generation Master Data Management. The Data Warehousing
Institute, 2012.

[44] A. SHETH. Changing Focus on Interoperability in Information Systems: from System,
Syntax, Structure to Semantic. Norwell: Kluwer Academic Publishers, 1999.

http://www.jsonrpc.org/specification
http://www.jsonrpc.org/specification
http://junit.org
http://logging.apache.org/log4j/2.x
http://logging.apache.org/log4j/2.x
https://maven.apache.org
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
https://www.jcp.org/aboutJava/communityprocess/final/jsr339/index.html
https://www.jcp.org/aboutJava/communityprocess/final/jsr339/index.html
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624
http://www.w3.org/TR/rdf-schema/

88 BIBLIOGRAPHY

[45] A. SHETH and J. LARSON. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys:, 22(3), 1990.

[46] SOAP Version 1.2 Part 0: Primer (Second Edition). W3C, http://www.w3.org/TR/
soap/, 2007.

[47] M. SOKHN. Ontology driven framework for multimedia information retrieval in P2P
network. Doctoral dissertation, T’el’ecom ParisTech, 2011.

[48] M. SOKHN, E. MUGELLINI, O. A. KHALED, and A. SERHROUCHNI. Conference
knowledge modeling for conference-video-recordings querying. In Proceedings of the
International Conference on Management of Emergent Digital EcoSystems, 2009.

[49] SPARQL Query Language for RDF. W3C Recommendation. W3C, http://www.w3.
org/TR/rdf-sparql-query/, 2008.

[50] Information Technology - Database Language SQL. Second Informal Review Draft.
ISO/IEC 9075:1992, Database Language SQL. Digital Equipment Corporation. May-
nard, Massachusetts, http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.
txt, 1992.

[51] UDDI Spec Technical Committee Draft. Oasis, http://www.uddi.org/pubs/uddi_
v3.htm, 2004.

[52] U. VISSER, H. STUCKENSCHMIDT, H. WACHE, and T. VÖGELE. Enabling Tech-
nologies for Interoperability. 14th International Symposium of Computer Science for
Environmental Protection, Bonn, Germany, pages 35–46, 2000.

[53] W3C. W3C Semantic Web Activity. http://www.w3.org/2001/sw, 2013. [cited on
19/11/2014].

[54] H. WACHE, T. VOGELE, U. VISSER, H. STUCKENSCHMIDT, G. SCHUSTER,
H. NEUMANN, and S. HUBNER. Ontology-Based Integration of Information — A Sur-
vey of Existing Approaches. IJCAI–01 Workshop: Ontologies and Information Sharing,
pages 108–117, 2001.

[55] Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language. W3C,
http://www.w3.org/TR/wsdl20, 2007.

[56] Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C, http://www.w3.org/
TR/xml, 2008.

[57] XQuery 1.0: An XML Query Language (Second Edition). W3C, http://www.w3.org/
TR/xquery, 2010.

http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.uddi.org/pubs/uddi_v3.htm
http://www.uddi.org/pubs/uddi_v3.htm
http://www.w3.org/2001/sw
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/xml
http://www.w3.org/TR/xml
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xquery

Appendix A

List of Abbreviations

AJAX Asynchronous JavaScript and XML

AOP Aspect-Oriented Programming

API Application Programming Interface

CALIMERA Conference Advanced Level Information ManagEment & RetrieveAl

CRUD Create Retrieve Update Delete

CSS Cascading Style Sheets

CTIA Czech Trade Inspection Authority

DAO Data Access Object

DI Dependency Injection

DRY Don’t Repeat Yourself

DTO Data Transfer Object

EJB Enterprise Java Beans

ETag Entity Tag

GUI Graphical User Interface

HATEOAS Hypermedia As The Engine Of Application State

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

IoC Inversion of Control

Java EE Java Enterprise Edition

89

90 APPENDIX A. LIST OF ABBREVIATIONS

JAX-RS Java API for RESTful Web Services

JPA Java Persistence API

JS JavaScript

JSON JavaScript Object Notation

LL Lazy Loading

MDM Master Data Management

OEM Object Exchange Model

OOP Object-Oriented Programming

ORM Object-Relational Mapping

OWL Web Ontology Language

OWSCIS Ontology and Web Service based Cooperation of Information Sources

POJO Plain Old Java Object

RDF Resource Description Framework

RDFS Resource Description Framework Schema

REST Representational State Transfer

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

TSIMMIS The Stanford-IBM Manager of Multiple Information Sources

UDDI Universal Description Discovery and Integration

UI User Interface

URI Uniform Resource Identifier

VAT Value-Added Tax

VQE Virtual Query Engine

VQL Virtual Query Language

VQS Virtual Query System

WSDL Web Services Description Language

XML Extensible Markup Language

YAML YAML Ain’t Markup Language

Appendix B

Installation Manual

The installation manual consists of two parts. The first part instructs how to install the
system itself on an application server or a servlet container. The second one describes a
process of putting the example of the demonstration on real data into operation.

B.1 System Installation

This section refers to the installation of the integration system itself including the database
preparation and deployment on a server.

B.1.1 Database Preparation

The integration system uses a local relational database to store the data sources, wrappers,
master entity types, cache and logs.

1. Create a database in your RDBMS (relational database management system).

2. Specify the driver’s class name (e.g. com.mysql.jdbc.Driver for MySQL), the URL
of the database (e.g. jdbc:mysql://localhost:3306/databaseName), the username and
the password in WEB-INF/properties/jdbc.properties and log4j.properties.

3. If using a different RDBMS than MySQL, update the property jpa.platform in WEB-
INF/properties/jpa.properties and add a dependency to a Java implementation of the
connector for your RDBMS in pom.xml.

B.1.2 Deployment

The system is based on the Spring Framework being a container itself, so no EJB container
as the application server is necessary but a robust servlet container itself such as Tomcat is
sufficient.

Since the structure, dependencies and build process are managed by Apache Maven,
building of the system is very simple.

91

92 APPENDIX B. INSTALLATION MANUAL

1. Go to the system root directory and run mvn clean install package in the com-
mand line.

2. Deploy target/integration-1.0.war to your server. Alternatively, if a Maven plugin
supports deployment to your server directly you can enhance the mvn command.

To include any jars with implementations of wrappers, copy them to the WEB-INF/libs
directory within the deployed war.

B.2 Example on Real Data

To prepare the example of the system demonstration on real data, you must install a local
ARES RDB, deploy the ARES REST application, copy a jar with wrappers to the system
and import a database with the system configuration. Prepare the files ares.sql, subject-
1.0.war, wrappers.jar and integration-ares.sql, all located on the attached DVD.

B.2.1 ARES RDB

To prepare the ARES RDB, install the PostgreSQL RDBMS in version at least 9.4 together
with the pgAdmin.

1. Open the pgAdmin and create a database called ares.

2. Click on Plugins/PSQL Console in the top menu bar.

3. Type \i /path/to/ares.sql where you replace /path/to by the proper path to the
ares.sql containing the PostgreSQL database located on the attached DVD.

4. Press Enter.

B.2.2 ARES REST

Deploy the subject-1.0.war located on the attached DVD to your server.

B.2.3 System Configuration

1. Copy the wrappers.jar to the WEB-INF/libs directory within the deployed war.

2. Import the integration-ares.sql to the system database created in the step B.1.1.

3. Restart the application.

4. Open the Admin UI, log1 in as admin using the password integration and go to the
data sources management. Check that the host of the ARES RDB is correct as well
as the base URI in the ARES REST.

1To change the credentials, modify WEB-INF/context/spring-security.xml

Appendix C

Administration Manual

Figure C.1: Login page

C.1 Login

Before the system can be used for offering data to clients, it must be properly configured.
Firstly, the administrator has to log in to the Admin Client application with correct creden-
tials on a page shown in Figure C.1.

C.2 Dashboard

The landing page provides a simple dashboard (see Figure C.2). On top, the numbers of
integrated data sources, built wrappers and used master entity types are displayed. Below,
there are charts showing usage of particular data sources, wrappers and master entity types.

93

94 APPENDIX C. ADMINISTRATION MANUAL

Figure C.2: Dashboard

Figure C.3: Error log

C.3. ENTITY TYPES 95

Finally, bottom of the page includes an error log that can be refreshed or cleared (see Fig
C.3). The dashboard can be enhanced with more interesting information in future.

C.3 Entity Types

C.3.1 Overview

By selecting Entity Types from the left menu, you come to a master entity types management
page showing all registered master entity types (see Figure C.4). There, you can add a new
master entity type, edit an existing one or remove it from the system. This is the place
where the system global schema is specified.

Figure C.4: Master entity types management

C.3.2 Add Master Entity Type

To add a new master entity type, click on Add Entity Type button and a dialog will appear
(see Figure C.5). Fill in the master entity type’s name and resource (an identifier for the
REST interface). Optionally, provide a description to better explain the circumstances to
the clients using the Catalog Web Service for getting the metadata. If you want the entity
type to be owned, check the Owned (weak) entity and select the owning master entity type.

The essential task is to properly specify the attribute types (see Figure C.6). For each
attribute, fill in its name, cardinality, fetch level and type and eligibly provide a description.

96 APPENDIX C. ADMINISTRATION MANUAL

Figure C.5: Add a master entity type dialog

Figure C.6: Specification of attribute types

C.4. DATA SOURCES 97

If the type is Literal, you can mark this attribute as a key. On the other hand, for the
Reference type specify the reference master entity type and whether it should be fetched as
a URI or as a nested instance. If the master entity type has been marked as owned, you
can then specify an attribute of a Reference type to be the owner. In any case, note that:

� Multiple attributes contain a list of values (a list of literals, URIs or nested instances)

� Fetch level determines when the attribute should be fetched, i.e. when the wrappers
mapped to the attribute should be contacted.

– Collection – the attribute is fetched always (suitable for general data that can be
fetched collectively)

– Detail – the attribute is fetched when accessing the master entity’s detail or the
attribute directly but not when accessing the collection of master entities

– Attribute – the attribute is fetched only when it is accessed directly (suitable for
attributes whose retrieval is demanding or somehow restricted, e.g. web services
by a key)

C.3.3 Edit Master Entity Type

For editing a master entity type and its attribute types, click on Edit button in the table.
Editing is done via an analogous dialog as when adding.

C.3.4 Remove Master Entity Type

For removing a master entity type from the system, click on Delete button in the table.
Removing a master entity type is possible only when no registered wrapper is using it.

C.4 Data Sources

C.4.1 Overview

By selecting Data Sources from the left menu, you come to a data sources management page
showing all registered data sources (see Figure C.7). There, you can add a new data source,
edit an existing one or remove it from the system. Also, you can manually clear cache of
a data source, i.e. clear cache of each wrapper standing above the data source.

C.4.2 Add Data Source

To add a new data source, click on Add Data Source button and a dialog will appear (see
Figure C.8). Select a data source’s type (SQL Database, CSV document, SOAP service
etc.) and fill in its name. If the desired type is available, select Other. Optionally, you can
specify cache validity (number of seconds to store data from this data source in cache). If
the field is empty, the system will not cache data from this data source at all. Based on
the selected type, some other fields can be shown. For example, if you desire to exploit the

98 APPENDIX C. ADMINISTRATION MANUAL

Figure C.7: Data sources management

Figure C.8: Add a data source dialog

C.5. WRAPPERS 99

benefits of default behaviour for wrappers above a relational database, you should specify
the host (e.g. jdbc:postgresql://192.168.2.1/database), a username, a password and a full
class name of a driver (e.g. org.postgresql.Driver).

C.4.3 Edit Data Source

For editing a data source, click on Edit button in the table. Editing is done via an analogous
dialog as when adding.

C.4.4 Remove Data Source

For removing a data source from the system, click on Delete button in the table. Removing
a data source is possible only when no registered wrapper is using it.

C.4.5 Clear Cache

To manually clear data source’s cache, click on Clear Cache button in the table and cache
of all wrappers standing above the data source will be invalidated.

C.5 Wrappers

C.5.1 Overview

By selecting Wrappers from the left menu, you come to a wrappers management page show-
ing all registered wrappers (see Figure C.9). There, you can add a new wrapper, edit an
existing one or remove it from the system. Also, you can manually clear cache of a wrapper.

C.5.2 Add Wrapper

To add a new wrapper, click on Add Wrapper button and a dialog will appear. Fill in its
name and choose a data source the wrapper should work with. According to a type of the
selected data source, the dialog may be extended by some new fields, e.g. a specification of
SQL queries for a relational database (see Figure C.10). Choose a master entity type whose
attributes are to be fetched by the wrapper. Then, select an attribute type used as a key
when fetching from the underlying data source. If you have created a class with wrapper’s
implementation, specify its full name. Finally, provide mappings between the wrapper’s
schema and the attributes by typing a schema item’s name and selecting a corresponding
attribute type for each desired schema item.

C.5.3 Wrapper Implementation

In a situation when the default implementation is not enough for your purpose or is not
available for the type of the selected data source, you must write a Java class with your
implementation. Such a class must inherit from the Wrapper class or one of its descendants
(e.g. SQLWrapper, CSVWrapper).

100 APPENDIX C. ADMINISTRATION MANUAL

Figure C.9: Wrappers management

Figure C.10: Add a wrapper dialog

C.5. WRAPPERS 101

One of the most often reasons to create an own implementation occurs when the wrapper
should return a nested instance of another master entity, i.e. it cannot refer to a schema
mapping between the wrapper and the primary master entity type. In such a case, it is
necessary to implement the mapping.

If you are overriding a provided default implementation and want to control caching
on your own, override methods fetchDataByKey, resp. fetchAllData. If you are satis-
fied with the default caching mechanism, override methods fetchingByKeyProcess, resp.
fetchingAllProcess.

The result of the fetching methods is an instance of DataContainer, resp. a collection
of DataContainer instances. The essential rule is that keys used in data containers must
match the global schema, i.e. attribute types’ names. If the wrapper does not or cannot
use the schema mapping specified via the Admin Client it must manage the mappings on
its own.

C.5.3.1 SQL

The most advanced default implementation is provided for relational databases within the
SQLWrapper class. When the information needed to establish a connection is available
and the SQL queries are properly specified via the Admin Client, it is mostly sufficient
to override only the results processing in the method processDataByKeyResults, resp.
processAllDataResults, although there is a default behaviour even for that.

When the support for filtering is desired, you do not necessarily have to implement the
whole fetching method. There is a method buildQueryAll(Set<Filter> filters) that
receives the active filters and returns an SQL query. By default, this method returns the
SQL query for all data specified via the Admin Client. Overriding this method is the simplest
way to enable filtering in SQL wrappers. Since the filtering in SQL wrappers typically lies in
specification of the WHERE clause of the SQL query, there is the WhereConditionBuilder
class that helps to easily build the condition. Note, that the recommended behaviour for
filtering by strings with > (greater than) operator corresponds to “starts with”.

C.5.3.2 REST

RESTWrapper provides default functionalities for querying standard REST APIs and pro-
cessing simple JSON responses. If a simple concatenation of the base URI configured in
the data source and the particular resource specified within the wrapper is sufficient, no
special HTTP headers or URL parameters are needed and the received JSON has a simple
structure without any composite values, the default fetching method can be used.

A default method for results processing parses the JSON according to the schema map-
pings. If the JSON has a more complicated structure, you must implement the processing
method (processDataByKeyResults, resp. processAllDataResults).

C.5.3.3 CSV

When building a wrapper for a CSV data source, you can significantly exploit default func-
tionalities of the CSVWrapper class. The default fetching method parses the CSV document

102 APPENDIX C. ADMINISTRATION MANUAL

according to the schema mappings where a schema item’s name corresponds to a column
name. The columns are then translated into particular attribute types’ names.

C.5.3.4 SOAP

A recommended practice of creating a wrapper above a SOAP web service is to generate
the source code from the WSDL, implement a wrapper inheriting the SOAPWrapper class,
build a jar from all the java files and include it in the system the standard way as with other
wrappers.

C.5.3.5 Other

For other types of data sources, you must write a wrapper from scratch. Your implementa-
tion must inherit the Wrapper class.

C.5.3.6 Deployment

When the implementation is ready, it can be deployed to the integration system (testing of
the fetching methods before the deployment is recommended). Build a jar from the class(es),
go to a directory where the system is deployed, put the jar to WEB-INF/lib and redeploy
the application or restart the server.

C.5.4 Edit Wrapper

For editing a wrapper, click on Edit button in the table. Editing is done via an analogous
dialog as when adding.

C.5.5 Remove Wrapper

For removing a wrapper from the system, click on Delete button in the table.

C.5.6 Clear Cache

To manually clear wrapper’s cache, click on Clear Cache button in the table.

Appendix D

User Manual

It is important to note, that the system created within this thesis is not primarily intended
to be used by end users. The UI Client component offering a dynamic user interface above
the integration system is being developed within another diploma thesis. Nevertheless, the
way of the system API usage described in following sections is the same for both the dynamic
client and potential end users.

D.1 API Entry Point

From the client’s point of view, the integration system stands for a RESTful API providing
master entity resources and their metadata. The entry point found at

http://{baseURI}/{context}/rest/

returns a URI of the querying (data) service and the catalog (metadata) service. Thanks
to this self-exploration approach, the above mentioned URI is the only URI the client must
know.

D.2 Catalog Web Service

The catalog web service serves for metadata accessing. The clients can use this service to
explore the global schema and settings of particular master entity types and attribute types
At the root URI

http://{baseURI}/{context}/rest/catalog/

there is a list of URIs of all master entity types registered in the system together with their
resource identifiers.

Each master entity type is described with metadata located at

http://{baseURI}/{context}/rest/catalog/{entityResource}

The metadata includes master entity type’s:

103

104 APPENDIX D. USER MANUAL

� Name

� Description

� Resource identifier

� Information if it is owned – if a master entity is owned, its identification is dependent
on another master entity (in relational database terminology we would say a weak
entity)

� URI of the owning master entity type for an owned type

� List of attribute type’s metadata

The attribute types have also their URI:

http://{baseURI}/{context}/rest/catalog/{entityResource}/{attributeName}

so it is possible to access metadata of the attribute separately. Their metadata involve:

� Name

� Cardinality (single/multiple) – a multiple attribute contains a list of values

� Fetch level - specifies when the attribute is fetched

– collection – the attribute is fetched always
– detail – the attribute is fetched when accessing the master entity’s detail or the

attribute directly but not when accessing the collection of master entities
– attribute – the attribute is fetched only when it is accessed directly

� Referenced master entity type – URI of a referenced master entity type, if null, then
the attribute is a literal

� Fetched as URI (true/false) – indicates whether the referenced master entity is fetched
only as its URI or as a nested master entity

� Key (true/false) – identification of the master entity used by the REST API

D.3 Querying Web Service

The querying web service at

http://{baseURI}/{context}/rest/data/

returns a list of URIs of all strong (not owned) master entities, i.e. such master entities
whose identification is independent on other master entities and URIs of their collections
are in the form:

http://{baseURI}/{context}/rest/data/{entityResource}

D.3. QUERYING WEB SERVICE 105

Accessing this URI for a master entity type results in a collection of all master entities
of the type. To reduce number of results, the client should use filtering by specifying an
HTTP header X-Filter in the following form:

{attributeName}{relation}{someValue}

where relation stands for =, > or <. Multiple filters can be separated by a semicolon.
Each strong retrieved master entity has its own URI in the form:

http://{baseURI}/{context}/rest/data/{entityResource}/{key}

where key stands for the value of the master entity’s key attribute.
If the master entity is owned, then its URI’s form is:

http://{baseURI}/{context}/rest/data/{owningEntityResource}/{owningEntityKey}/
{entityResource}

where owningEntityResource and owningEntityKey identify the owning master entity and
key stands for the value of the master entity’s key attribute.

Appending /{attributeName} to any of the two previous URIs points directly to the
attribute with given name.

In a situation when an attribute is not fetched because of the fetch level settings (e.g.
the fetch level of the attribute is attribute but currently the entity’s detail is accessed), the
value of such an attribute contains a URI of the attribute. This way, the null value can be
recognized from the lazily loaded attribute.

Each response of the integration system is complemented by a URI of the corresponding
metadata (the master entity type when accessing a collection or an entity detail and the
attribute type when accessing directly an attribute). Then, there are additional messages
with errors and info notes. For example, if an attribute could not be fetched from the data
source, a client finds out from an error message.

106 APPENDIX D. USER MANUAL

Appendix E

DVD Content

/
doc.................................documentation of the source code in JavaDoc
example...................................files referring the demonstration of use

ARES REST ..ARES REST data source
subject-1.0.war..WAR to deploy
project..Maven project

wrappers...implementation of wrappers
wrappers-1.0.war...WAR to deploy
project..Maven project

ares.sql...............................PostgresSQL dump of the ARES RDB
integration-ares.sql...............dump of the integration system database

project...............................Maven project with the integration system
src ... Java sources

main...main sources
test..test sources

pom.xml.....................................POM (Project Object Model) file
text...text of the thesis

thesis.pdf...PDF file
latex...LATEXsources

readme.txtDVD content + installation manual

107

	Introduction
	Background
	Problem Statement
	Interoperability
	About interoperability
	Interoperability Difficulties
	Autonomy
	Distribution
	Heterogeneity
	Instability

	Heterogeneity
	System level
	Syntactic level
	Structural level
	Semantic level

	Interoperability Approaches
	Standardization
	Federation
	Mediation
	SOA
	Ontology and Semantic Web

	Master Data Management

	Related Works
	Selected Integration Systems
	TSIMMIS
	Virtual Query System for SemanticLIFE
	OWSCIS
	Virtual-Q

	Discussion

	Analysis
	Basic Vision
	Key Features
	Major Problems
	Different Identifiers
	Traffic Minimization
	Identification of weak entities

	Glossary
	Principle and Business Process
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Use Cases
	Client's Perspective
	Administrator's Perspective

	Domain Model

	Architecture
	Architecture Overview
	Components of the Architecture
	Catalog
	Wrapper Module
	Mediator Module
	Querying Web Service
	Catalog Web Service
	Admin Client

	REST
	Constraints and properties of REST
	RESTful system architecture

	Design
	Catalog
	Master Entity and Attribute Types
	Owned Master Entity Types

	Wrapper Module
	Principles of Wrapper's Work
	Building Wrappers
	Dependent Keys
	Cache

	Mediator Module
	Mediation Process
	Waiting for Dependent Keys
	Lazy Loading
	Filtering
	Stability
	Usage Statistics

	Querying Web Service
	REST API Design
	Response Building
	Cache
	Errors Handling

	Catalog Web Service
	Public API
	Admin API

	Admin Client
	Dashboard
	Data Sources Management
	Wrappers Management
	Master Entity Types Management

	Database Design

	Implementation
	Used Platform and Technologies
	Spring Framework
	About Spring
	Dependency Injection
	Aspect-Oriented Programming

	REST
	ORM

	Multithreading
	Implementation of Wrappers
	Cache
	Wrapper Cache
	HTTP Cache Control

	Exceptions Handling and Logging
	Admin Client

	Testing
	Unit and Integration Tests
	Requirements Fulfillment
	Functional Requirements
	Non-Functional Requirements

	Demonstration on Real Data
	Connected Data Sources
	Defined Master Entity Types
	Implementation of Wrappers
	Performance Tests

	Conclusion
	Future Work

	Bibliography
	List of Abbreviations
	Installation Manual
	System Installation
	Database Preparation
	Deployment

	Example on Real Data
	ARES RDB
	ARES REST
	System Configuration

	Administration Manual
	Login
	Dashboard
	Entity Types
	Overview
	Add Master Entity Type
	Edit Master Entity Type
	Remove Master Entity Type

	Data Sources
	Overview
	Add Data Source
	Edit Data Source
	Remove Data Source
	Clear Cache

	Wrappers
	Overview
	Add Wrapper
	Wrapper Implementation
	SQL
	REST
	CSV
	SOAP
	Other
	Deployment

	Edit Wrapper
	Remove Wrapper
	Clear Cache

	User Manual
	API Entry Point
	Catalog Web Service
	Querying Web Service

	DVD Content

