
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Master's Thesis

Salzella - A Declarative Language for Music Generation

�t¥pán Volf

Supervisor: doc. Ing. Karel Richta, CSc.

Study Programme: Open Informatics, Master's Program

Field of Study: Software Engineering

January 11, 2016

iv

v

Aknowledgements

I would like to express my gratitude to doc. Ing. Karel Richta, CSc. for the time he invested
in supervising my thesis. I would also like to thank the participants of the usability tests
and interviews whom I annoyed relentlessly and without mercy. Special thanks goes to Petr
Bl²´ák and Jan Herzán for helping me set up and perform these tests. Last but de�nitely
not least, thanks to my family for supporting me throughout my studies.

vi

vii

Declaration

I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic �nal thesis.

In Prague on May 15, 2015 .

viii

Abstract

Salzella is a domain speci�c declarative language. Its primary focus lies in the �eld of music
generation. The key principle upon which the language is built can be summarized as follows:
For any existing piece of music it must be possible to create a Salzella program which will
describe it in a way that running this program will output a piece of music similar to the
original. Salzella programs are presumed to be generated rather then written by hand. The
sole purpose of Salzella is to make creation of music generating tools easier. Bundling Salzella
interpreter with music generating software and using it as an engine can provide a signi�cant
level of abstraction and thus make the development of such software a lot easier. Tools built
on top of Salzella can generate Salzella programs and let the interpreter worry about the
actual music generation. To prove that Salzella interpreter can indeed be used as internal
engine of music generating tools, a prototype of an algorithm for converting musical pieces
into Salzella programs was created.

Apart from creating Salzella speci�cation, the following tools were developed as part of
this thesis: Salzella interpreter, Salzella development environment and Salzella extensions.

Abstrakt

Salzella je doménov¥ speci�cký deklarativní jazyk, jehoº vyuºití lze nalézt p°edev²ím v oblasti
generování hudby. Klí£ový princip, na kterém je jazyk postaven, lze shrnout následovn¥: Pro
jakékoli existující hudební dílo musí být moºné vytvo°it program v jazyku Salzella, který toto
dílo popí²e tak, ºe spu²t¥ním tohoto programu dojde k vygenerování hudební díla podobného
hudebnímu dílu originálnímu. Hlavním cílem jazyka Salzella je usnadnit vývoj nástroj· pro
generování hudby. Nástroje postavené nad platformou Salzella mohou místo hudby generovat
programy v jazyku Salzella a samotné generování hudby ponechat na interpretovi tohoto
jazyka. Pro ilustraci moºnosti vyuºití interpreta jazyka Salzella jakoºto interní komponenty
nástroje pro generování hudby byl vytvo°en prototyp algoritmu pro p°evod hudebních d¥l
do program· zapsaných v jazyku Salzella.

Krom speci�kace jazyka Salzella byly v rámci této práce vytvo°eny následující nástroje:
interpret jazyka Salzella, vývojové prost°edí pro jazyk Salzella a n¥kolik ukázkových roz²í°ení
jazyka Salzella.

ix

x

Contents

1 Introduction 1

1.1 Fundamental requirements . 1

1.1.1 Descriptive nature . 1

1.1.2 Bundle requirement . 1

1.1.3 Absorption requirement . 2

1.2 Goal declaration . 2

1.2.1 Speci�cation and interpreter . 2

1.2.2 Development environment . 3

1.2.3 Extensions and conversion tool . 3

1.3 Platform overview . 3

1.4 Related works . 3

1.4.1 Open source music libraries . 4

1.4.2 MIDI speci�cation . 4

1.5 Early attempts . 4

1.6 Name of the language . 6

2 Speci�cation 7

2.1 Program structure . 7

2.2 Pitch literal . 8

2.3 Duration literal . 8

2.4 Signature matrix . 9

2.5 Surface matrix . 9

2.6 Track matrix . 10

2.7 Header segment . 11

2.8 Filter segment . 12

2.9 Extensions . 13

2.9.1 SimpleDrums . 13

2.9.2 GeneralMelody . 14

2.9.3 RhythmGuitar . 15

3 Realization 17

3.1 Interpreter . 17

3.1.1 Architecture overview . 17

3.1.2 Salzella object model . 18

3.1.3 Lightweight MIDI entities . 18

xi

xii CONTENTS

3.1.4 Implementation . 19
3.1.5 Extenision APIs . 20

3.2 Development environment . 21
3.2.1 User guide . 21
3.2.2 Implementation notes . 24

4 Experiments 25

4.1 Genre independence . 25
4.2 Conversion tool . 25

4.2.1 Problem statement . 25
4.2.2 Limitations . 26
4.2.3 Generating header segment . 26
4.2.4 Applying �lters . 27

5 Conclusion 29

5.1 Evaluation . 29
5.1.1 Descriptive nature . 29
5.1.2 Bundle requirement . 30
5.1.3 Absorbtion requirement . 30

5.2 Future work . 30
5.2.1 Verse and chorus support . 30
5.2.2 Surface matrix convention . 30
5.2.3 Manual creation of surface matrices . 31

A Example programs 35

A.1 Program 1 - Rock . 36
A.2 Program 2 - Blues . 37
A.3 Program 3 - Jazz . 38
A.4 Program 4 - Folk . 39
A.5 Program 5 - Classical . 40

B Contents of the enclosed CD 41

Chapter 1

Introduction

1.1 Fundamental requirements

1.1.1 Descriptive nature

Salzella is a domain speci�c declarative language. Its primary focus lies in the �eld of music
generation. The key principle upon which the language is built can be summarized as follows:
For any existing piece of music it must be possible to create a Salzella program which will
describe it in a way that running this program will output a piece of music similar to the
original. The extent to which the resulting piece of music will resemble to the original can
vary and is entirely in the hands of the creator. Note that running the same Salzella program
repeatedly may or may not produce di�erent outputs. However, as illustrated by Figure 1.1,
producing di�erent outputs upon repeated execution is presumed to be the typical behavior.
The fact that Salzella programs must be capable of capturing the essence of arbitrary musical
piece implies music genre independence.

input Salzella

program

pass Salzella

interpreter

output

Salzella platform
Similar musical piece 1

Similar musical piece 2

Existing musical piece ...

Similar musical piece n

Figure 1.1: Using Salzella to capture the essence of an existing musical piece

1.1.2 Bundle requirement

The sole purpose of Salzella is to make creation of music generating tools easier. Bundling
Salzella interpreter with music generating software and using it as an engine can provide a
signi�cant level of abstraction and thus make the development of such software a lot easier.
Tools built on top of Salzella platform are not assumed to generate music directly. They can
generate Salzella programs and let the interpreter worry about the actual music generation.

1

CHAPTER 1. INTRODUCTION

The fact that Salzella programs are presumed to be generated rather than written by hand
had great impact on design of the language. Neither human readability nor ease of manual
creation can be found on the list of requirements. Figure 1.2 illustrates the typical work�ow
of application built on top of Salzella platform.

input

Music generating software

output

Salzella

program

pass Salzella

interpreter

Salzella platform

Figure 1.2: Salzella interpreter as internal component of a music generating tool

1.1.3 Absorption requirement

The most important architectural aspect of Salzella platform is extensibility. Absorption
requirement states that Salzella must be able to integrate any existing music generating
algorithm in a form of a plugin. As illustrated by Figure 1.3, arbitrary number of external
algorithms can be run during execution of a single Salzella program. Capability of absorbing
external algorithms is a key structural feature which allows Salzella users to customize its
behavior.

Salzella

interpreter

use

Salzella platform External music generating algorithm 1

External music generating algorithm 2

...

External music generating algorithm n

Figure 1.3: Salzella can leverage already existing music generating algorithms

1.2 Goal declaration

1.2.1 Speci�cation and interpreter

Primary goal of this thesis was to create a speci�cation which would satisfy the fundamental
requirements presented in the previous chapter. In attempt to make Salzella more versatile
in terms of satisfying the music genre independence requirement, I have decided to design the
language without explicit support for abstract structures like chords, scales and keys. Instead
of relying on built-in support of these structures, Salzella users are meant to de�ne these

2

1.3. PLATFORM OVERVIEW

manually within individual programs. Secondary goal of this thesis was to test feasibility
of this approach. And �nally, in order to be able to test the designed language in practice,
implementing its interpreter was necessary.

1.2.2 Development environment

To make creation and execution of Salzella programs easier, realization of Salzella develop-
ment environment was added on the list of goals. The key requirements regarding its func-
tionality were possibility of manual creation and execution of Salzella programs and ability
to visualize and play back the generated snippets of music.

1.2.3 Extensions and conversion tool

To prove that absorption requirement was met, it was necessary to implement several Salzella
extensions. To show that Salzella interpreter can indeed be used as internal engine of music
generating tools, I decided to create a prototype of an algorithm for converting musical pieces
into Salzella programs. By encapsulating the essence of an already existing musical piece by
means of a Salzella program, this tool should be able to generate musical contents similar to
the original piece.

1.3 Platform overview

Figure 1.4 illustrates the so far implied structural relations of Salzella platform components.
Both the development environment and conversion tool use Salzella interpreter. Salzella
interpreter implements Sazlella speci�cation and uses external plugins. Conversion tool can
be executed directly from the development environment.

Salzella

specification

Salzella platform

Salzella

interpreter

use

Salzella extension 1

Salzella extension 2

...

Salzella extension n

Development

environment

use

use

Conversion

tool

integrate

Figure 1.4: Overview of the so far implied structural relations

1.4 Related works

There are dozens of music generating programs and algorithms. Some solutions are robust
and aim to generate whole compositions [1], some are designed to perform speci�c tasks such

3

CHAPTER 1. INTRODUCTION

as generating jazz guitar solos [2]. To some extent, all of them leverage existing principles
described in music theory. This often includes outlining the bounds in which a certain
level of randomness is introduced. But there are also more exotic approaches like deriving
music from cellular automaton patterns [3]. Salzella is designed in a way which makes it
possible to integrate any existing music generating algorithm in a form of a plugin. In other
words, Salzella doesn't compete with other solutions, it is capable of absorbing them. No
attempts to make such framework seem to have taken place in the past. In order to make
the process of absorption of these algorithms as painless as possible, possibilities of adopting
some standardized computer representation of musical content were researched.

1.4.1 Open source music libraries

Open source libraries such as [4] or [5] provide their own data types not only for elementary
entities such as notes, but also for more complex structures like chords and scales. These
libraries could be useful when creating actual music generating algorithms. But there would
be little to no bene�t from building Salzella on top of any of them. As mentioned above,
Salzella does not provide explicit support for high level structures such as chords, scales
and keys. This means that the only relevant content of open source music libraries would
include several data types and enumerations related to representing a note. Developing these
structures from scratch is not a challenging task and the added bene�t of being in control
over the APIs of these structures is indisputable.

1.4.2 MIDI speci�cation

MIDI speci�cation [6] is primarily a communication protocol designed to deal with real time
communication between synthesizers. Several years after its original release in 1983, storage
of this communication by means of time stamping individual messages was standardized.
Using MIDI speci�cation as basis for structural representation of music seems to be most
bene�cial. Its popularity and platform independence increases the likelihood of compati-
bility with musical content representations used by the already existing music generating
algorithms. Furthermore, possibility of storing the generated musical contents in MIDI com-
patible format would allow Salzella users to import the generated snippets of music into
external software such as music notation editors or digital audio workstations.

Note For more detailed description of the MIDI speci�cation, see the article I wrote when
working on semestral project from Y14TED. This article can be found on the enclosed CD,
see Appendix B.

1.5 Early attempts

Before diving into speci�cation of the language, let me shortly explain the motivation behind
the topic of this thesis. When working on my bachelor thesis, I created a music generating
tool called M-Architect. M-Architect was a full featured music editor with additional capa-
bilities such as generating harmonies and bass lines under existing melodies. Shortly after
submitting the bachelor thesis, a series of usability tests was performed. In attempt to �x the

4

1.5. EARLY ATTEMPTS

discovered usability issues, various modi�cations were made. These included adding support
for copy/paste functionality, allowing the user to store/load settings of music generating
algorithms or implementing more responsive editor controls. Perhaps the most important
improvement, however, was introduction of concept of scenarios. Scenarios allowed the user
to prede�ne complex sequences of actions and store them as macros. The existence of sce-
narios allowed the application's functionality to be wrapped up and presented in a form of
a list of prede�ned macros and a single generate button. Figure 1.5 illustrates the process
of converting low �delity paper prototypes to a fully functional application.

Note For full documentation on designing the user interface of M-Architect, see A4M39NUR
semestral project documentation `Assistive tool for music composers`. For more details about
the related qualitative research, see A4M39PUR semestral project documentation `Habits of
music composers'. Both documents can be found on the enclosed CD, see Appendix B.

Figure 1.5: Converting low �delity prototypes to a fully functional application

The aforesaid modi�cations solved the most critical usability issue: the overall complexity.
Unfortunately, where one problem disappeared, another arose. Once advantageous de�nition
of music as triplet <melody, harmony, bass> was suddenly a cause of unnecessary limitations
in terms of variety of outputted music. Instead of redesigning the very basis of this particular
music generating tool, I decided to create a platform upon which music generating tools could
be built. For now, M-Architect is in a dormant state. But in the future, it could be made
less restrictive and rebuilt to use Salzella internally.

5

CHAPTER 1. INTRODUCTION

1.6 Name of the language

The language is named after Mr. Sazella, a character from Terry Pratchett's novel Maskerade
[7]. As a reference to the book, an arbitrary number of exclamation marks can be inserted
anywhere in a Salzella program without a�ecting its functionality, see Figure 1.6.

´What sort of person,´ said Salzella patiently, ´sits down and writes

a maniacal laugh? And all those exclamation marks, you notice? Five?

A sure sign of someone who wears his underpants on his head. Opera

can do that to a man.´

Terry Pratchett

Maskerade

Figure 1.6: A quote from Terry Pratchett's book Maskerade

6

Chapter 2

Speci�cation

2.1 Program structure

Salzella program is a list of key-value pairs. Each key-value pair is terminated by a semicolon
and the key/value parts are separated by a colon. Key-value pairs are divided into segments.
Segments are separated by three consecutive dashes. A snippet shown in Figure 2.1 consists
of three segments. First two contain three key-value pairs, third one contains two key-value
pairs. Note that Salzella is case sensitive and whitespace characters outside the value part
of key-value pairs have no signi�cance. When a program is parsed, all whitespace characters
which are not inside the value part of a key-value pair are removed. The contents of the
value part of all key-value pairs are trimmed and all sequences of whitespace characters are
replaced with a single space character.

Convention Because the value parts of key-value pairs will be typically parsed by exter-
nal algorithms, format of the actual string representations of values is not predetermined by
Salzella speci�cation. However, for sake of uniformity, the following convention was estab-
lished: Should the contents of the value part of some key-value pair be complex enough to
require usage of delimiters, white space character should be used as primary delimiter and
comma should be used as secondary delimiter.

1

2

3

4

5

6

7

8

9

10

 key: value;

 key: value;

 key: value;

 key: value;

 key: value;

 key: value;

 key: value;

 key: value;

Segment 1

key:

key:

value;

value;

key: value;

. . .

Segment 2

key:

key:

value;

value;

key: value;

. . .

Segment n

key:

key:

value;

value;

key: value;

. . .

. . .

Figure 2.1: Salzella program is a list of key-value pairs

7

CHAPTER 2. SPECIFICATION

2.2 Pitch literal

Pitch literals represent frequencies of tones. Table 2.1 shows a complete list of pitch literals.
With the total of 127 pitch literals, Salzella programs can address pitches ranging from C0
to G10. As mentioned earlier, Salzella is case sensitive. The names of tones must be written
in lower case.

Table 2.1: A complete list of pitch literals

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c#0

c#1

c#2

c#3

c#4

c#5

c#6

c#7

c#8

c#9

c#10

d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d#0

d#1

d#2

d#3

d#4

d#5

d#6

d#7

d#8

d#9

d#10

e0

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

C C# D D# E F

f#0

f#1

f#2

f#3

f#4

f#5

f#6

f#7

f#8

f#9

f#10

F#

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

G

g#0

g#1

g#2

g#3

g#4

g#5

g#6

g#7

g#8

g#9

G#

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

A

a#0

a#1

a#2

a#3

a#4

a#5

a#6

a#7

a#8

a#9

A#

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

B

0

1

2

3

4

5

6

7

8

9

10

Oct.

2.3 Duration literal

Duration literals represent relative durations of tones. Each duration literal consists of two
parts: duration base and duration multiplicity. Duration bases represent standard duration
symbols used in musical scores. Table 2.2 shows a complete list of duration bases.

Table 2.2: A complete list of duration bases

 1

 2

 4

 8

16

32

64

Regular Triplet Dotted

 1t

 2t

 4t

 8t

16t

32t

64t

 1d

 2d

 4d

 8d

16d

32d

64d

Type

whole

half

quarter

eighth

sixteenth

thirty-second

sixty-fourth

8

2.4. SIGNATURE MATRIX

To create a duration literal, duration base must be pre�xed with a duration multiplicity.
Duration multiplicity is an integer number from interval [0..255] followed by symbol `x`.
The actual duration represented by a duration literal can be computed by multiplying the
duration de�ned by duration base by duration multiplicity. Table 2.3 shows a few examples
of duration literals.

Table 2.3: A few examples of duration literals

two whole notes

one half note

four eighth notes

one sixty-fourth note

one half triplet

three dotted whole notes

MeaningLiteral

2x1

1x2

4x8

1x64

1x2t

3x1d

2.4 Signature matrix

When creating a Salzella program, one must always de�ne the overall rhythmic structure to
which the generated musical piece will be bound to adhere. This can be achieved by creating
a signature matrix. Each line of signature matrix consists of two integer numbers followed
by a duration literal. The second integer and the duration literal denote the top and bottom
part of a time signature, respectively. The �rst number denotes how many times should be
this time signature applied in the sequence of measures. For example, the signature matrix
shown in Figure 2.2 says the following: There are 3 measures of 4/4 time signature, then a
single measure of 7/8, and then 4 measures of 4/4 time signature.

1

2

3

 3 4 1x4,

 1 7 1x8,

 4 4 1x4

Measure 1 top bottom

Measure 2 top bottom

. . .

Measure n top bottom

Figure 2.2: Example of a signature matrix

2.5 Surface matrix

Another type of matrix Salzella speci�cation de�nes is surface matrix. This type of matrix
allows the user to specify the tonal surface upon which the musical piece will be built.
Surface matrix divides the musical piece into one or more snippets. Each line of this type

9

CHAPTER 2. SPECIFICATION

of matrix consists of a duration literal followed by twelve integer numbers from the interval
[0...255]. The duration literal de�nes how long the snippet is. The twelve integer numbers
label individual pitch classes. There are 12 pitch classes and their implicit order goes as
follows: C, C], D, D], E, F, F], G, G], A, A], B. The actual meaning of these integer labels
may vary among individual Salzella programs and is in no way predetermined by Salzella
speci�cation.

Convention In all example programs created in this thesis, surface matrix is used to
determine which scale/chord should be used within individual snippets. To achieve this, the
following convention was established: Pitch classes labeled with 0 are not contained in the
scale. Pitch classes labeled with 1 are contained in the scale. Pitch classes labeled with 2
are contained in the scale and are also contained in the chord. Pitch class labeled with 3 is
a root of the chord and is also contained in the scale. Surface matrix shown in Figure 2.3
divides the musical piece into four snippets. All of them are one whole note long and all of
them are built on top of the e minor scale. The chord progression de�ned by this particular
surface matrix is: Emi, Dmaj, Cmaj, Bmaj.

1

2

3

4

 1x1 1 0 1 0 3 0 1 2 0 1 0 2,

 1x1 1 0 3 0 1 0 2 1 0 2 0 1,

 1x1 3 0 1 0 2 0 1 2 0 1 0 1,

 1x1 1 0 0 2 1 0 2 1 0 1 0 3

Snippet 1 chord scale . . .

Snippet 2 chord scale . . .

. . .

Snippet n chord scale . . .

Figure 2.3: Example of a surface matrix

2.6 Track matrix

The last type of matrix Salzella de�nes is track matrix. This matrix de�nes a list of tracks of
which the musical piece will be made. Each track is described in a form of a quintuplet de�n-
ing a unique identi�er of the track, instrument, volume and mute and solo �ags. Instrument
and volume are integers from the interval [0..127], solo and mute are boolean values. Instru-
ment values are interpreted as de�ned by the MIDI speci�cation [6]. Note that if value 128 is
speci�ed as instrument, the a�ected track will be considered to be percussive. Track matrix

1

2

3

 vocal 73 127 false false,

 piano 0 127 false false,

 drums 128 127 false false

Track 1 identifier instrument volume mute solo

Track 2 identifier instrument volume mute solo

. . .

Track n identifier instrument volume mute solo

Figure 2.4: Example of a track matrix

10

2.7. HEADER SEGMENT

shown in Figure 2.4 de�nes three tracks. All of them are set to be as loud as possible and
their solo/mute �ags are switched o�. The �rst track uses instrument 73 (�ute) and its
identi�er is `vocal`. Second track uses instrument 0 (piano) and its identi�er is `piano`. The
last track uses instrument 128 (percussion) and its identi�er is `drums`.

2.7 Header segment

Every Salzella program must begin with a header segment. Within this segment, the general
structural properties to which the generated musical piece should adhere must be de�ned.
Signature, surface and track matrices must be speci�ed within this segment. Also, an integer
number from the interval [1..999] must be provided to determine tempo of the resulting
musical piece. Table 2.4 shows a complete list of properties of header segment. Figure 2.5
shows an example of a header segment.

Table 2.4: Header segment has four mandatory properties

tempo: number from [1, 999] 120

signature: signature matrix 4 4 1x4

surface: surface matrix 1x1 1 0 1 0 3 0 1 2 0 1 0 2

tracks: track matrix piano 0 127 false false

Property Expected value Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 tempo: 120;

 surface: 1x1 1 0 1 0 3 0 1 2 0 1 0 2,

 2x1 1 0 3 0 1 0 2 1 0 2 0 1,

 1x1 0 2 1 0 2 0 1 1 0 3 0 1,

 1x1 2 0 1 0 2 0 1 1 0 3 0 1,

 2x1 1 0 1 0 3 0 1 2 0 1 0 2,

 3x4 1 0 3 0 1 0 2 1 0 2 0 1,

 1x1 1 0 1 0 3 0 1 2 0 1 0 2,

 1x1 1 0 3 0 1 0 2 1 0 2 0 1,

 1x1 0 2 1 0 2 0 1 1 0 3 0 1,

 1x1 2 0 1 0 2 0 1 1 0 3 0 1,

 7x8 1 0 1 0 3 0 1 2 0 1 0 2,

 7x8 1 0 3 0 1 0 2 1 0 2 0 1;

 signature: 7 4 1x4,

 1 3 1x4,

 4 4 1x4

 2 7 1x8;

 tracks: vocal 73 127 false false,

 guitar 25 127 false false,

 drums 128 127 false false;

Figure 2.5: Example of a header segment

11

CHAPTER 2. SPECIFICATION

2.8 Filter segment

Salzella programs can contain zero or more �lter segments. Each �lter segment has exactly
four mandatory properties. The source property decides which plugin should be used when
execution of this �lter is requested. The input property contains a list of track identi�ers
determining which tracks will be passed at the input of the �lter. Start and duration pro-
perties contain duration literals de�ning a time window at which the �lter should be applied.
Table 2.5 shows a complete list of mandatory properties of �lter segment. Figure 2.6 shows
a few examples of �lter segments.

Custom properties Note that each �lter may also de�ne a set of custom properties. Since
parsing of custom properties is handled by �lters themselves, there are almost no limitations
as to what can be passed to the value part of a custom key-value pair. However, creators
of �lters are encouraged to use standard pitch and duration literals whenever possible and
adhere to space/comma character delimiter convention.

Restrictions The following characters/strings have special meaning in Salzella and there-
fore can not appear in either part of a key-value pair: ;, :, ---. Also, keep in mind that
requirement stated in 1.6 renders exclamation marks e�ectively useless. Finally, in case mul-
tiple key-value pairs with the same key are declared within one segment, the last occurring
pair counts.

Table 2.5: Each �lter segment has four mandatory properties

source: plugin indentifier com.example.CustomPlugin

input: one or more track identifiers vocal guitar

start: duration literal 0x1

duration: duration literal 1x1

Property Expected value Example

1

2

3

4

 source: cz.stepanvolf.salzella.plugin.GeneralMelody;

 input: vocal;

 start: 2x1;

 duration: 2x1;

1

2

3

4

 source: cz.stepanvolf.salzella.plugin.SimpleDrums;

 input: drums;

 start: 0x1;

 duration: 4x1;

Figure 2.6: A few examples of �lter segments

12

2.9. EXTENSIONS

2.9 Extensions

Sazella program will typically contain more than one �lter. When Salzella program is exe-
cuted, all �lters will be applied one by one in order in which they were declared. Note that
all Salzella �lters are distributed in form of plugins. To illustrate structural capabilities of
Salzella, three simple �lters were created as part of this thesis. In the rest of this chapter,
these will be described in greater detail.

2.9.1 SimpleDrums

SimpleDrums �lter generates simple kick/snare/hihat drum beats. Table 2.6 shows a com-
plete list of custom properties of this �lter. Hihat property de�nes rate at which hihat should
be played. Crash property de�nes probability of substituting closed hihat hit with open hi-
hat hit. Kick property de�nes approximate kick usage in relation to the hihat rhythm grid.
Snare property de�nes list of duration literals determining exact time marks at which snare
should be played. Loop property de�nes duration of loop. Variety property de�nes degree
of syncopation. Figure 2.7 shows an example usage of SimpleDrums �lter.

Table 2.6: List of SimpleDrums properties

loop: single duration literal 1x1

hihat: single duration literal 1x8

snare: one or more duration literals 1x4 3x4

kick: number from [0.0, 1.0] 0.3

crash: number from [0.0, 1.0] 0.1

variety: number from [0.0, 1.0] 0.2

Property Expected value Example

1

2

3

4

5

6

7

8

9

10

 source: cz.stepanvolf.salzella.plugin.SimpleDrums;

 input: inputTrack;

 start: 0x1;

 duration: 1x1;

 loop: 1x1;

 hihat: 1x8;

 snare: 1x4 3x4;

 kick: 0.3;

 crash: 0.2;

 variety: 0.1;

Figure 2.7: Example usage of SimpleDrums �lter

13

CHAPTER 2. SPECIFICATION

2.9.2 GeneralMelody

GeneralMelody �lter generates random melodies. Table 2.7 shows a complete list of custom
properties of this �lter. Low/high properties de�ne the lowest and highest allowed pitch.
Min/max properties de�ne size of the smallest and biggest allowed step within the scale.
Chord property de�nes probability of chord consonance enforcement. If a generated tone is
not contained in the underlaying chord, its pitch will be changed to the closest acceptable
pitch based on the aforesaid probability. Grid property uses a single duration literal to create
evenly distributed time marks at which tones in this melody are allowed to start/end. Relax
property de�nes a probability of prolonging a note by postponing its end to match start of
the next note in melody. Finally, structure property determines the overall structure of the
melody in terms of note density and directional curve. Figure 2.8 shows an example usage
of GeneralMelody �lter.

Table 2.7: List of GeneralMelody properties

grid: single duration literal 1x1

chord: number from [0.0, 1.0] 0.8

relax: number from [0.0, 1.0] 0.5

min: number from [0, 127] 0

max: number from [0, 127] 3

Property Expected value Example

low: single pitch literal c4

high: single pitch literal f#5f#5

structure: one or more numbers from [0.0, 1.0],

one or more elements from {UP, DOWN, STEADY}

f#50.3 0.8 0.9,

UP DOWN

1

2

3

4

5

6

7

8

9

10

11

12

13

 source: cz.stepanvolf.salzella.plugin.GeneralMelody;

 input: inputTrack;

 start: 0x1;

 duration: 1x1;

 grid: 1x8;

 structure: 0.7 0.8 0.5,

 UP STEADY DOWN UP;

 chord: 0.5;

 relax: 0.8;

 min: 0;

 max: 1;

 low: e4;

 high: e5;

Figure 2.8: Example usage of GeneralMelody �lter

14

2.9. EXTENSIONS

2.9.3 RhythmGuitar

RhythmGuitar �lter generates simple guitar complement. Table 2.8 shows a complete list
of custom properties of this �lter. Mode property determines the type of complement. Grid
property de�nes rate at which should the virtual guitar player move his hand up and down.
Figure 2.9 shows an example usage of RhythmGuitar �lter.

Table 2.8: List of RhythmGuitar properties

mode: one element from {RHYTHM, STRUM} RHYTHM

grid: single duration literal 1x8

Property Expected value Example

1

2

3

4

5

6

 source: cz.stepanvolf.salzella.plugin.RhythmGuitar;

 input: inputTrack drumTrack;

 start: 0x1;

 duration: 1x1;

 mode: RHYTHM;

 grid: 1x8;

Figure 2.9: Example usage of RhythmGuitar �lter

15

CHAPTER 2. SPECIFICATION

16

Chapter 3

Realization

3.1 Interpreter

3.1.1 Architecture overview

Figure 3.1 shows an overview of Salzella platform architecture. This is how individual com-
ponents work together: Program execution begins by invoking the parser which creates an
instance of Salzella object model. Once the parsing is complete and the Salzella object model
created, execution of the program is a fairly straight forward process. The execution begins
by creating a lightweight object representation of a MIDI sequence. The overall structure
of this sequence is derived from the track matrix. After the sequence is created, �lters are
applied to it one by one. Given the external nature of these �lters, the algorithm responsible
for execution is very careful to make defensive copies of the original sequence and checks for
unexpected runtime exceptions. In case an error occurs during execution of the program,
appropriate exception is thrown. Salzella de�nes its own exceptions which hold information
not only about the kind of error, but about what segment of program caused it.

Salzella

parser

Salzella platform

implement

Plugin 1 ...

Salzella

object model

Lightweight

MIDI entities

Custom

exceptions

Salzella

utilities

Plugin

interface

Plugin 2 Plugin 3 Plugin 4 Plugin 5 Plugin 6 Plugin n

Figure 3.1: An overview of Salzella platform architecture

17

CHAPTER 3. REALIZATION

3.1.2 Salzella object model

Prior to execution, each program is converted into Salzella object model. The structure of
this model closely copies the program structure presented in the previous chapter. Diagram
shown in Figure 3.2 should therefore not require a more detailed description. Note however,
that some of the classes provide convenience methods which can be used when implementing
the actual music generating algorithms. For example, the Segment class provides a method
which can determine whether the given beat is o�-beat, on-beat or down-beat.

Figure 3.2: Salzella object model

3.1.3 Lightweight MIDI entities

Salzella provides its own lightweight implementation of elementary MIDI entities, see Figure
3.3. Convenience methods for converting the Salzella lightweight MIDI entities to standard
MIDI format and vice versa can be found in the Converter class.

Figure 3.3: Salzella implementation of elementary MIDI entities

18

3.1. INTERPRETER

3.1.4 Implementation

Salzella is implemented using the Java programming language. Both the source code and
javadoc documentation can be found on the enclosed CD, see Appendix B. Figure 3.4 shows
the package overview as can be seen on the javadoc landing page. Source codes were version
controlled using Git. Figure 3.5 shows last few commits.

Figure 3.4: Salzella interpreter package overview

Figure 3.5: Last few Git commits

19

CHAPTER 3. REALIZATION

3.1.5 Extenision APIs

As mentioned earlier, Salzella �lters are distributed in form of plugins. Creation of a custom
plugin is a simple matter of subclassing the cz.stepanvolf.salzella.plugin.Plugin
class and implementing the abstract run() method. Figure 3.6 shows an example source
code for a very simple plugin which adds a note at the given position. Duration and velocity
of this note will be passed to the plugin as part of custom settings. The pitch of the added
note will be derived from root note of surface snippet in which the start property lies.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

 package cz.stepanvolf.salzella.plugin;

 import cz.stepanvolf.salzella.entity.Event;

 import cz.stepanvolf.salzella.entity.Sequence;

 import cz.stepanvolf.salzella.parser.Parser;

 import cz.stepanvolf.salzella.parser.Signature;

 import cz.stepanvolf.salzella.parser.Surface;

 import java.util.Map;

 public final class SamplePlugin extends Plugin {

 private static final String NAME = "Sample plugin";

 private static final String AUTHOR = "Stepan Volf";

 private static final String DESCRIPTION = "Use this plugin to...";

 private static final String TEMPLATE = "source: cz.stepanvo...";

 public SamplePlugin() {

 super(NAME, AUTHOR, DESCRIPTION, TEMPLATE);

 }

 @Override

 public Sequence run(Sequence sequence, Surface surface,

 Signature signature, int[] input, int start,

 int duration, Map<String, String> settings) {

 // Parse settings

 int pitch = surface.getSnippet(start).relevantIndexes(3)[0] + 60;

 int velocity = Integer.parseInt(settings.get("velocity"));

 int length = Parser.parseDuration(settings.get("length"));

 int end = start + Math.min(duration, length);

 // Add new event

 Event event = new Event(start, end, pitch, velocity);

 sequence.getTracks().get(input[0]).getEvents().add(event);

 return sequence;

 }

 }

Figure 3.6: Source code of a very simple plugin

20

3.2. DEVELOPMENT ENVIRONMENT

Figure 3.7 shows a Salzella program which uses the sample plugin. In this particular example,
the �lter will ensure that eighth note E5 will be played at the beginning of �rst measure and
half note D5 will be played at the beginning of second measure. Both notes will be played
by the guitar.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

 tempo: 120;

 surface: 1x1 1 0 1 0 3 0 1 2 0 1 0 2,

 1x1 1 0 3 0 1 0 2 1 0 2 0 1,

 1x1 0 2 1 0 2 0 1 1 0 3 0 1,

 1x1 2 0 1 0 2 0 1 1 0 3 0 1,

 1x1 1 0 1 0 3 0 1 2 0 1 0 2,

 1x1 1 0 3 0 1 0 2 1 0 2 0 1,

 1x1 0 2 1 0 2 0 1 1 0 3 0 1,

 1x1 2 0 1 0 2 0 1 1 0 3 0 1,

 1x1 1 0 1 0 3 0 1 2 0 1 0 2,

 1x1 1 0 3 0 1 0 2 1 0 2 0 1,

 1x1 0 2 1 0 2 0 1 1 0 3 0 1,

 1x1 2 0 1 0 2 0 1 1 0 3 0 1;

 signature: 12 4 1x4;

 tracks: guitar 24 127 false false;

 source: cz.stepanvolf.salzella.plugin.SamplePlugin;

 input: guitar;

 start: 0x1;

 duration: 1x8;

 velocity: 127;

 length: 1x8;

 source: cz.stepanvolf.salzella.plugin.SamplePlugin;

 input: guitar;

 start: 1x1;

 duration: 1x2;

 velocity: 127;

 length: 1x2;

Figure 3.7: Using the sample plugin within a Salzella program

3.2 Development environment

3.2.1 User guide

A development environment for creating Salzella programs was created as part of this thesis.
The user interface of Salzella development environment consists of a source code editor,
playback controls and three Salzella control buttons. These buttons allow the user to run a
Salzella program, load an existing Salzella program from a built-in database and generate
a program based on contents of a MIDI �le. Figures 3.8 - 3.12 illustrate the basic use case
scenarios.

21

CHAPTER 3. REALIZATION

Figure 3.8: Use case 1 - Run program and playback the result

Figure 3.9: Use case 2 - Load program from the built-in database

22

3.2. DEVELOPMENT ENVIRONMENT

Figure 3.10: Use case 3 - Generate program based on contents of a MIDI �le

Figure 3.11: Use case 4 - Export the generated snippet of music to a MIDI �le

23

CHAPTER 3. REALIZATION

Figure 3.12: Use case 5 - Use code completion

3.2.2 Implementation notes

Salzella development environment is built on top of the MVC architecture. The communi-
cation between layers is handled by standard design patterns. Undoable changes in Model
are performed using the command pattern and Model-View synchronization is achieved by
means of the observer pattern. Figure 3.13 shows the package overview as can be seen on
the javadoc landing page. Executable version of the development environment can be found
on the enclosed CD, see Appendix B.

Figure 3.13: Salzella development environment package overview

24

Chapter 4

Experiments

4.1 Genre independence

To illustrate that Sazella is capable of generating music of various music genres, �ve Salzella
programs addressing the following musical styles were created: Rock, Jazz, Blues, Folk and
Classical music. Snippets of these programs can be found in Appendix A. Full versions of
these programs are stored in the built-in database of Salzella development environment. To
test whether the aforesaid programs work as intended, �ve experienced musicians were asked
to listen to 10 snippets of music generated by these programs (2 snippets per program).
Upon listening to a snippet of music, each participant was asked to classify this snippet in
terms of music genre. Each participant was presented with a di�erent, newly generated,
randomly ordered sequence of snippets. Figure 4.1 shows recognition success rates for all
tested music genres. Note that the participants were not presented with a list of options and
only exact matches were accepted as correct answers.

Blues 100%

Jazz

Classical 90%

Rock 60%

Folk 10%

Genre Recognition rate

90%

Figure 4.1: Recognition success rates for the tested music genres

4.2 Conversion tool

4.2.1 Problem statement

To illustrate that Salzella interpreter can indeed be used as internal engine of music generat-
ing tools, a prototype of an algorithm for converting musical pieces into Salzella programs

25

CHAPTER 4. EXPERIMENTS

was created as part of this thesis. Figure 4.2 illustrates the way this algorithm is meant to be
used. The user supplies a standard MIDI �le containing an arbitrary musical piece. Based
on the contents of this �le, a Salzella program is generated. Since this program encapsulates
the essence of the original musical piece, passing this program to Salzella interpreter results
in producing musical piece which is bound to be musically similar to the contents of the �le
at the input.

MIDI

file

input Conversion

algorithm

create Salzella

program

pass Salzella

interpreter

output MIDI

file

Conversion tool

Figure 4.2: Converting MIDI �les to Salzella programs

4.2.2 Limitations

Since the algorithm presented in the rest of this chapter is a prototype, it has several limita-
tions. For example, it assumes 3/4 signature throughout the whole song. Or, to put it more
precisely, it assumes that changes in harmony occur only at intervals of three quarter notes.
It also assumes that second track of the original MIDI sequence contains a melody. And
even though it takes into account all input tracks, it always produces only two tracks. First
track contains a melody similar to the melody from the second input track. Second track
contains a sequence of chords harmonizing the melody. Also, the conversion algorithm only
supports natural form of major/minor scale and major/minor triad based harmonies.

4.2.3 Generating header segment

As illustrated by Figure 4.3, deriving contents of header segment from an already existing
musical piece is simple. Tempo will always be the same as the tempo of the original MIDI
sequence. Because the conversion tool will always limit the output to contain exactly two
tracks, generation of track matrix is trivial. And because 3/4 signature is assumed through-
out the whole song, creating signature matrix is a simple matter of counting how long the
original sequence is. Creating a surface matrix is a bit harder, see the note below.

1

2

3

4

5

 tempo: <same as tempo of the input track>;

 surface: <provided by the harmony analysis algorithm>;

 signature: <derived from length of the input sequence> 3 1x4;

 tracks: melody 0 127 false false,

 harmony 0 127 false false;

Figure 4.3: Generating header segment

26

4.2. CONVERSION TOOL

Note In order to create a surface matrix, harmony of the original piece must be determined.
To solve this task, I used a melody harmonization algorithm I came up with when working on
A4M35KO semestral project. For more detailed description of this algorithm, see A4M35KO
semestral project documentation `Melody harmonization`. This document can be found on
the enclosed CD, see Appendix B.

4.2.4 Applying �lters

When creation of the header segment is complete, RhythmGuitar �lter is used to generate a
simple guitar complement. As shown in Figure 4.4, duration property is the only property
which may vary between individual executions of the conversion algorithm. Value of this
property will always match duration of the whole musical piece.

1

2

3

4

5

6

 source: cz.stepanvolf.salzella.plugin.RhythmGuitar;

 input: harmony;

 start: 0x1;

 duration: <derived from length of the input sequence>;

 mode: STRUM;

 grid: 3x4;

Figure 4.4: Applying the RhythmGuitar �lter

Contents of the melody track are generated by repeated application of GeneralMelody �lter.
The size of time window assigned to each GeneralMelody �lter application is two measures
and the �lter itself is applied as many times as necessary to cover the whole input track.
As shown in Figure 4.5, all properties are statistically derived from the relevant portion of
the input track. Note that making the time window smaller or larger results in increase or
decrease in overall similarity.

1

2

3

4

5

6

7

8

9

10

11

12

 source: cz.stepanvolf.salzella.plugin.GeneralMelody;

 input: melody;

 start: <multiple of 6x4>;

 duration: 6x4;

 grid: <statistically derived from the input sequence>;

 structure: <statistically derived from the input sequence>;

 chord: <statistically derived from the input sequence>;

 relax: <statistically derived from the input sequence>;

 min: <statistically derived from the input sequence>;

 max: <statistically derived from the input sequence>;

 low: <statistically derived from the input sequence>;

 high: <statistically derived from the input sequence>;

Figure 4.5: Applying the GeneralMelody �lter

27

CHAPTER 4. EXPERIMENTS

28

Chapter 5

Conclusion

5.1 Evaluation

As declared at the very beginning of this document, I have decided to take advantage of the
fact that Salzella programs are presumed to be generated rather than written by hand and
designed the language without explicit support for abstract structures like chords, scales and
keys. Instead, I attempted to design the language in a way which would allow Salzella users
to manually de�ne these structures within individual programs. In retrospect, this approach
had the following advantages and disadvantages:

Advantages The most obvious advantage of adopting the low level approach was overall
simpli�cation of the language. Possibility of manual de�nition of arbitrary scales/chords was
achieved by providing speci�cation of a single type of matrix, the surface matrix. Note that
the concept of surface matrices plays the key role in satisfying the music genre independence
requirement. By even the slightest modi�cation of program's surface matrix, contents of the
outputted musical piece can change dramatically. For example, program for generating rock
music, see A.1, uses the surface matrix to de�ne a chord progression made of power chords
and declares usage of pentatonic scale. Program for generating folk music, see A.4, uses the
same data structure to de�ne harmony based on major/minor triads and declares usage of
diatonic scale.

Disadvantages The biggest disadvantage of the low level approach is, of course, delegating
the responsibility of de�ning the high level structures to the user. Adopting the low level
approach also implies growth of Salzella programs in terms of number of lines. Since ease
of manual creation of Salzella programs was not a priority, neither of these disadvantages
presented a problem. In fact, Salzella programs can be as long as tens of thousands of lines
of code and still satisfy the fundamental requirements stated at the very beginning of this
document.

5.1.1 Descriptive nature

As illustrated by the conversion tool described in the previous chapter, describing an existing
musical piece by means of a Salzella program can be achieved by a fairly simple statistical

29

CHAPTER 5. CONCLUSION

analysis. The amount of control over the generated music will, however, always be limited by
abilities of Salzella extensions used for the actual generation of musical contents. The three
simple Salzella extensions created as part of this thesis are certainly not su�cient to fully
satisfy the descriptive nature requirement. For example, program for generating classical
music, see A.5, generates three melodies. Since neither of the three existing Salzella exten-
sions provides enough control over generating multiple melody lines, this program generates
three independent melodies. Sure, these melodies share the same harmony surface and the
resulting musical piece will often sound acceptable. However, by creating Salzella extension
for generating melodies able to respect the already existing musical contents, creators of
Salzella programs would be granted control over the contrapuntal motion between multiple
melody lines.

5.1.2 Bundle requirement

As shown by creating the conversion tool, Salzella interpreter can be easily integrated with
music generating applications. Note, however, that Salzella can be useful even in software
which is not strictly related to music generation. For example, the development environment
created as part of this thesis uses Salzella lightweight implementation of MIDI entities to
represent musical contents.

5.1.3 Absorbtion requirement

To prove that external music generating algorithms can be integrated into Sazlella plat-
form, three Salzella extensions were created. Note that Salzella extensions will be typically
responsible for generating speci�c parts of musical piece such as drum beats, vocal lines,
complementary melodies etc. However, it is possible to use a single Salzella extension to
generate the whole musical piece.

5.2 Future work

5.2.1 Verse and chorus support

The current version of Salzella works best when dealing with musical ideas few bars long.
Even though it would be possible to create an extension which would allow Salzella users
to work with concepts like verses and choruses, adding explicit support for de�ning custom
meaning of manually selected time windows should be considered.

5.2.2 Surface matrix convention

The twelve-integer surface matrix convention doesn't seem to be su�cient when dealing with
more complex music. One possible course of action could be using twenty four integers per
row. This would allow users to store information about scales and chords separately. Going
even further and using thirty six integers per row would make it possible to use di�erent
scales based on direction of melodies. This would be particularly useful when dealing with
melodic minor scales. No matter what approach will be chosen, limiting the size of surface
matrix rows is unnecessary and should be de�nitely removed from Salzella speci�cation.

30

5.2. FUTURE WORK

5.2.3 Manual creation of surface matrices

Even though Salzella programs are presumed to be generated rather than written by hand,
developers of Salzella extension will often want to create surface matrices manually to test
their algorithms. Manual creation of surface matrices is a tedious and error prone task. Once
surface matrix convention is stable enough, a surface matrix generation tool should be added
to the development environment to make manual creation of surface matrices easier.

31

CHAPTER 5. CONCLUSION

32

Bibliography

[1] Biedrzycki, Maciej. "Can Computers Create Music?" CgMusic. May 19, 2008. Accessed
December 23, 2015. http://codeminion.com/blogs/maciek/2008/05/cgmusic-computers-
create-music/.

[2] "User-Customized Jazz Improvisation Generation." Jazzerbot. Accessed December 23,
2015. https://code.google.com/p/jazzerbot/.

[3] "An Experiment in a New Kind of Music." WolframTones. Accessed December 23, 2015.
http://tones.wolfram.com/.

[4] "Music Programming for JavaTM and JVM Languages." JFugue. Accessed December 23,
2015. http://www.jfugue.org/.

[5] "Computer Music Composition in Java." JMusic. Accessed December 23, 2015.
http://explodingart.com/jmusic/.

[6] "MIDI Speci�cation." MIDI Manufacturers Association. Accessed December 23, 2015.
http://midi.org/.

[7] Pratchett, Terry. Maskerade: A Novel of Discworld Series. New York: HarperPrism,
1997.

33

BIBLIOGRAPHY

34

35

APPENDIX A. EXAMPLE PROGRAMS

Appendix A

Example programs

A.1 Program 1 - Rock

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

 tempo: 120;

 surface: 1x1 0 0 1 0 3 0 0 1 0 1 0 2,

 1x1 0 0 3 0 1 0 0 1 0 2 0 1,

 1x1 3 0 1 0 1 0 0 2 0 1 0 1,

 1x1 1 0 1 0 1 0 2 1 0 1 0 3,

 1x1 0 0 1 0 3 0 0 1 0 1 0 2,

 1x1 0 0 3 0 1 0 0 1 0 2 0 1,

 1x1 3 0 1 0 1 0 0 2 0 1 0 1,

 1x1 1 0 1 0 1 0 2 1 0 1 0 3;

 signature: 8 4 1x4;

 tracks: guitar 30 105 false false,

 organ 18 95 false false,

 muted 28 70 false false,

 drums 128 120 false false;

 source: cz.stepanvolf.salzella.plugin.GeneralMelody;

 input: guitar;

 start: 2x1;

 duration: 2x1;

 grid: 1x8;

 structure: 0.7 0.8 0.5,

 UP STEADY DOWN UP;

 chord: 0.5;

 relax: 0.8;

 min: 0;

 max: 1;

 low: e4;

 high: e5;

 source: cz.stepanvolf.salzella.plugin.GeneralMelody;

 + 35 more lines

Figure A.1: Salzella program for generating rock music

36

A.2. PROGRAM 2 - BLUES

A.2 Program 2 - Blues

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

 tempo: 80;

 surface: 4x1 0 0 2 0 3 0 0 1 2 1 0 2,

 2x1 0 2 1 0 2 0 0 2 0 3 0 1,

 2x1 0 0 2 0 3 0 0 1 2 1 0 2,

 1x1 0 0 1 2 1 0 2 1 0 2 0 3,

 1x1 0 2 1 0 2 0 0 2 0 3 0 1,

 1x1 0 0 2 0 3 0 0 1 2 1 0 2,

 1x1 0 0 1 2 1 0 2 1 0 2 0 3;

 signature: 12 4 1x4;

 tracks: sax 65 120 false false,

 piano 4 90 false false,

 drums 128 120 false false;

 source: cz.stepanvolf.salzella.plugin.GeneralMelody;

 input: sax;

 start: 0x1;

 duration: 12x1;

 grid: 1x8t;

 structure: 0.3 0.5 0.5,

 UP DOWN DOWN UP STEADY STEADY STEADY UP UP;

 chord: 0.4;

 relax: 0.2;

 min: 0;

 max: 3;

 low: e4;

 high: b5;

 source: cz.stepanvolf.salzella.plugin.SimpleDrums;

 input: drums;

 start: 0x1;

 duration: 12x1;

 loop: 1x1;

 hihat: 1x8t;

 snare: 1x4 3x4;

 kick: 0.3;

 crash: 0.0;

 variety: 0.0;

 source: cz.stepanvolf.salzella.plugin.RhythmGuitar;

 input: piano;

 start: 0x1;

 duration: 12x1;

 mode: RHYTHM;

 grid: 1x8t;

Figure A.2: Salzella program for generating blues music

37

APPENDIX A. EXAMPLE PROGRAMS

A.3 Program 3 - Jazz

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

 tempo: 60;

 surface: 1x1 0 0 2 0 0 0 2 3 0 0 0 2,

 1x1 3 0 0 0 2 0 0 2 0 0 0 2,

 1x1 2 0 0 0 2 0 0 2 0 3 0 0,

 1x1 0 0 0 2 0 0 2 0 3 0 0 2;

 signature: 4 4 1x4;

 tracks: guitar 26 100 false false,

 piano 26 90 false false,

 bass 32 100 false false,

 drums 128 120 false false;

 source: cz.stepanvolf.salzella.plugin.GeneralMelody;

 input: guitar;

 start: 0x1;

 duration: 2x1;

 grid: 1x8t;

 structure: 0.3 0.5,

 UP DOWN STEADY;

 chord: 0.7;

 relax: 0.3;

 min: 0;

 max: 3;

 low: c4;

 high: e6;

 source: cz.stepanvolf.salzella.plugin.GeneralMelody;

 input: guitar;

 start: 2x1;

 duration: 2x1;

 grid: 1x4;

 structure: 0.8 0.5,

 UP DOWN STEADY;

 chord: 0.7;

 relax: 0.3;

 min: 0;

 max: 3;

 low: c4;

 high: e6;

 source: cz.stepanvolf.salzella.plugin.SimpleDrums;

 input: drums;

 start: 0x1;

 + 26 more lines

Figure A.3: Salzella program for generating jazz music

38

A.4. PROGRAM 4 - FOLK

A.4 Program 4 - Folk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

 tempo: 120;

 surface: 1x1 1 0 2 0 1 0 1 3 0 1 0 2,

 1x1 1 0 1 0 3 0 1 2 0 1 0 2,

 1x1 3 0 1 0 2 0 1 2 0 1 0 1,

 1x1 1 0 2 0 1 0 1 3 0 1 0 2,

 1x1 1 0 2 0 1 0 1 3 0 1 0 2,

 1x1 1 0 1 0 3 0 1 2 0 1 0 2,

 2x1 1 0 3 0 1 0 2 1 0 2 0 1;

 signature: 8 4 1x4;

 tracks: flute 73 100 false false,

 guitar 25 100 false false,

 drums 128 120 false false;

 source: cz.stepanvolf.salzella.plugin.GeneralMelody;

 input: flute;

 start: 0x1;

 duration: 4x1;

 grid: 1x4;

 structure: 0.7 0.5,

 UP DOWN UP STEADY;

 chord: 1.0;

 relax: 1.0;

 min: 0;

 max: 3;

 low: g4;

 high: e6;

 source: cz.stepanvolf.salzella.plugin.GeneralMelody;

 input: flute;

 start: 4x1;

 duration: 4x1;

 grid: 1x4;

 structure: 0.9 0.3 0.5 0.9,

 DOWN DOWN UP UP;

 chord: 1.0;

 relax: 0.5;

 min: 0;

 max: 3;

 low: g4;

 high: f#6;

 source: cz.stepanvolf.salzella.plugin.SimpleDrums;

 + 14 more lines

Figure A.4: Salzella program for generating folk music

39

APPENDIX A. EXAMPLE PROGRAMS

A.5 Program 5 - Classical

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

 tempo: 120;

 surface: 1x1 1 0 1 0 3 0 1 2 0 1 0 2,

 1x1 1 0 2 0 1 0 2 1 0 1 0 3,

 1x1 1 0 1 0 3 0 1 2 0 1 0 2,

 1x1 1 0 2 0 1 0 2 1 0 1 0 3,

 1x1 3 0 1 0 2 0 1 2 0 1 0 1,

 1x1 1 0 3 0 1 0 2 1 0 2 0 1,

 2x1 1 0 1 0 3 0 1 2 0 1 0 2;

 signature: 8 4 1x4;

 tracks: violin 40 105 false false,

 cello 42 95 false false,

 contrabass 43 95 false false;

 source: cz.stepanvolf.salzella.plugin.GeneralMelody;

 input: violin;

 start: 2x1;

 duration: 6x1;

 grid: 1x8;

 structure: 0.2,

 STEADY;

 chord: 0.9;

 relax: 1.0;

 min: 0;

 max: 3;

 low: e5;

 high: e6;

 source: cz.stepanvolf.salzella.plugin.GeneralMelody;

 input: cello;

 start: 1x1;

 duration: 7x1;

 grid: 1x4;

 structure: 0.3,

 STEADY;

 chord: 0.2;

 relax: 1.0;

 min: 0;

 max: 12;

 low: e3;

 high: e4;

 source: cz.stepanvolf.salzella.plugin.GeneralMelody;

 + 10 more lines

Figure A.5: Salzella program for generating classical music

40

Appendix B

Contents of the enclosed CD

javadoc
converter-javadoc.zip
ide-javadoc.zip
plugins-javadoc.zip
salzella-javadoc.zip

latex
documentation.pdf
documentation.zip

samples
greensleeves.mid
jethro.mid
scarborough.mid

semestral
A4M35KO.pdf
A4M39NUR.pdf
A4M39PUR.pdf
Y14TED.pdf

source
converter-source.zip
ide-dependencies.zip
ide-source.zip
plugins-source.zip
salzella-source.zip

ide.jar
presentation.mp4

41

	Introduction
	Fundamental requirements
	Descriptive nature
	Bundle requirement
	Absorption requirement

	Goal declaration
	Specification and interpreter
	Development environment
	Extensions and conversion tool

	Platform overview
	Related works
	Open source music libraries
	MIDI specification

	Early attempts
	Name of the language

	Specification
	Program structure
	Pitch literal
	Duration literal
	Signature matrix
	Surface matrix
	Track matrix
	Header segment
	Filter segment
	Extensions
	SimpleDrums
	GeneralMelody
	RhythmGuitar

	Realization
	Interpreter
	Architecture overview
	Salzella object model
	Lightweight MIDI entities
	Implementation
	Extenision APIs

	Development environment
	User guide
	Implementation notes

	Experiments
	Genre independence
	Conversion tool
	Problem statement
	Limitations
	Generating header segment
	Applying filters

	Conclusion
	Evaluation
	Descriptive nature
	Bundle requirement
	Absorbtion requirement

	Future work
	Verse and chorus support
	Surface matrix convention
	Manual creation of surface matrices

	Example programs
	Program 1 - Rock
	Program 2 - Blues
	Program 3 - Jazz
	Program 4 - Folk
	Program 5 - Classical

	Contents of the enclosed CD

