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Anotace

This thesis studies the in�uence of datacenter network topology on performance of dis-
tributed computing tasks following the MapReduce model. The �rst part of this thesis gives
an overview of MapReduce in general, including an example usecase, and state of the art
technologies and publications in this �eld. The in�uence of datacenter topology on MapRe-
duce performance is evaluated through a series of simulations. Design of those simulation
scenarios as well as choice of simulator and implementation of a network topology simulation
module extending that simulator and improvement of this simulator's scheduling algorithm
are also described in this thesis. The �nal part of this thesis presents results of the conducted
simulations and conclusion of this work.

Index Terms:
cloud, Hadoop, MapReduce, network topology, simulation, CloudSim

Anotace

Tato diplomová práce studuje vliv sí´ové topologie datacentra na dobu trvání distribuo-
vaných výpo£t· typu MapReduce. Úvodní £ást této práce poskytuje obecný p°ehled tech-
nologie MapReduce v£etn¥ jednoduchého p°íkladu jejího vyuºití a zabývá se také nejnov¥j²ími
technologiemi a publikacemi v této oblasti. Vliv topologie datacentra na výkonnost MapRe-
duce je studován pomocí simulací. Návrh simula£ních scéná°·, volba simulátoru i roz²í°ení
zvoleného simulátoru o modul pro simulaci sí´ové topologie a úprava stávajícího algoritmu
plánova£e úloh implementovaného ve zvoleném simulátoru jsou p°em¥tem následující £ásti
této diplomové práce. V záv¥ru jsou prezentovány a vyhodnoceny výsledky simulací.

Klí£ová slova:
cloud, Hadoop, MapReduce, sí´ová topologie, simulace, CloudSim
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Preface

The motivation of this work was to study dependency of performance of distributed comput-
ing tasks following the MapReduce model on workload type and network topology through
simulations. Acquired knowledge can be used in a future work to design a system for dynam-
ically adjusting network topology to the current workload in order to optimize MapReduce
performance.

In this thesis, we devoted signi�cant e�orts to evaluate the state of the art publications
and technologies in the �eld of optimization of MapReduce and datacenter architecture
design and simulation. Based on this research we have chosen a simulator (CloudSimEx
MapReduce) and designed a set of simulation scenarios to gain understanding of the relation
between workload type, network topology and the resulting performance of MapReduce.

During our work towards conducting these simulations we had to tackle several issues
imposed by the chosen simulator. After examining its source code it became apparent that
several of the features of the simulator have to be used individually, but cannot be combined
as was necessary for our research. Moreover, we have identi�ed suboptimal behavior of its
scheduling algorithm that made our simulations run unacceptably long. To overcome these
problems, we have implemented an extension module to this simulator called CloudDynTop,
that addresses all of these issues. The CloudDynTop module is also presented in this thesis.

In the end we have been able to conduct the proposed simulations and we present the
derived conclusions in chapter 7.
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Chapter 1

Introduction

Datacenter design is a broad and complex topic. It's many aspects include design of net-
work topology, routing services, monitoring and resource management services and many
others. Moreover the importance of this �eld still increases, one of the main driving factors
being the "Big Data" trend. New data processing technologies have enabled for example
machine learning systems to digest datasets larger than ever. And datasets are growing at
an increasing speed, partly driven by the emerging era of Internet of Things.

One of the most commonly used data processing technologies is MapReduce. A closer
description of this programming model is given in the following section. The most popular
implementation of MapReduce is part of the Hadoop [1] project family. MapReduce system's
performance is signi�cantly in�uenced by the underlying network, due to the volume of net-
work tra�c that this framework generates. The most signi�cant portion of this tra�c comes
from the shu�e/merge phase of MapReduce when output of the �rst phase is transmitted
from Map nodes to Reduce nodes. The duration of transmission of this data determines
when the Reduce phase can start (due to the serialization barrier of MapReduce). Since
these systems inherently produce often very large volume of network tra�c, network topol-
ogy has a great impact on their performance. Example scenarios are given on �gures 1.1 and
1.2. Figure 1.1 illustrates a scenario, where Map tasks are in a di�erent network segment
than Reduce tasks and the network connecting these segments becomes the bottleneck for
the data �ow during the shu�e/merge phase. Data is being transmitted from each Mapper
to all Reducers and each of these �ows is passing through the links between SW1 and SW2,
resp. SW2 and SW3. These links limit the throughput of the �ows, leaving links connecting
the Mapper and Reducers to SW1, resp. SW3 underutilized. On the other hand, Figure 1.2
presents a topology, where each data �ow has its own dedicated link. Every connection is
utilized to its full capacity.

Another important factor in datacenter architecture are software-de�ned networks (SDN).
This powerful technology o�ers great control over network and tra�c passing through it.
Utilizing the capabilities of these systems in combination with a monitoring system keeping
track of workload being processed by the datacenter would allow for dynamic changes to
network topology with regards to current workload of the MapReduce system, thus creating
time and energy e�cient environment.
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22 CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of topology su�ering from bottleneck. The dotted rectangles rep-
resent capacity of the link. Empty space in a dotted rectangle illustrates wasted resources
(here throughput). Red rectangles represent �ows from the data source (DS) to Mapper
nodes. Their height represents throughput allocated for them. Similarly, the blue rectangles
represent �ows from Mapper nodes to Reducer nodes. This �gure illustrates impact of a
bottleneck links between the data source node and switch SW1 and the links SW1 -> SW2
and SW2 -> SW3 on �ows from the data source to the Mapper nodes, and from Mapper
nodes to Reducer nodes respectively.

1.1 MapReduce

MapReduce is a programming model aimed at distributed processing of large amounts of
data. It's been proposed in the white paper [11]. Publication of this paper is often considered
to have triggered the current "big data" trend and MapReduce became one of key components
of several in industry heavily used systems, such as Apache Hadoop [1].

The MapReduce model de�nes 3 phases:

1. Map

2. Shu�e/Merge

3. Reduce

Figure 1.2: Illustration of well performing topology. Each �ow has its own dedicated link,
therefore there are no bottleneck constraints.
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A MapReduce job consists of M Map tasks (Mappers) and R Reduce tasks (Reducers).
Each Mapper is assigned a portion of the job's input data (typically distributed among Map-
pers uniformly). The data is parsed as key-value pairs and Mappers process them one pair at
a time. Mappers produce on their output new key-value pairs of intermediary data. If several
pairs should have the same key, their values are merged into a list and sent to output under
that key. Each Mapper sorts its output by keys and organizes it into R partitions. The index
r of the partition to which a key-value pair belongs is calculated using the following formula:

r = hash(key)mod R (1.1)

where hash(x) is a function computing hash of the intermediary keys and R is the number
of Reducers.

When a Mapper has processed all of its input, each of the created partitions is sent to
the rth Reducer. This is part of the Shu�e/Merge phase. At Reducer side, all received
partitions are sorted by keys. Each Reducer can start processing its input only after all
Mappers have �nished (end of the Map phase) and its input has been sorted (end of the
Shu�e/Merge phase and start of the Reduce phase). Similarly to Mappers, Reducers process
their input one key-value pair at a time and they produce new key-value pairs. Those pairs
are the �nal output of that MapReduce job. An illustration of data �ow in a MapReduce
job can be found on Figure 1.3.

If the function implemented by Reducers is commutative, the MapReduce job can be
con�gured with an optional step called Combining. If this is the case, the �nished output
partitions of each Mapper are processed by the reduce function locally on the Mapper's
host before they are sent over the network to the Reducer's host. This optimization can
signi�cantly reduce the total volume of intermediary data, but it is not always possible to
utilize it.

1.1.1 MapReduce example usecase

In this subsection, we provide an illustrative usecase to show how the MapReduce model
works. This example will describe the process of obtaining a sorted list of words from a large
data set.

First of all, the input data set is divided into roughly equal-sized input splits. Each
Mapper receives one of those splits and starts processing it. In this case, Mappers could be
con�gured to parse the input into key-value pairs, where key could be o�set within the input
split (number of character already read) and value would be a word at that o�set. This is
the default con�guration of Hadoop MapReduce.

Mappers process their input one key-value pair at a time. For each o�set-word pair,
every Mapper outputs new key-value pair, where the word becomes the key. Value of this
intermediary key-value pair is not important in this particular case. When a Mapper sends a
key-value pair to its output, the key value pair is inserted into one of the Mapper's R output
partitions, which one is determined using formula 1.1. If the partition already contains the
key of the pair being inserted, value of this pair is simply appended to an array of values
associated with that key. The partitions keep the keys in a sorted order. As a result, each
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Mapper will create a sorted list of words (each word appearing at most once). These sorted
list produced by the Mappers need to be merged into a single list - which is the task of the
Reducer. Hence, there will be only one Reducer in this case and therefore each Mapper will
create only one output partition.

At this point the Combining phase would typically follow in some real-life scenarios.
However, this particular usecase has no use for the Combining phase.

Once a Mapper is done with processing all of its input (including the Combining step if
applicable), it sends the resulting partition to the Reducer (generally when there are multiple
Reducers, the ith partition is sent to the ith Reducer). The Reducer organizes the received
key-value pairs into an input partition, sorting the keys and merging values of duplicate keys
into arrays similarly to how Mappers inserted their output key-value pairs into their output
partitions. After all Mappers have �nished processing their input and sending their output,
the Reducer can start processing its input partition, one key-value pair at a time. In this
case the Reducer will simply take the key of the key-value pair and send it to its output.
This will create a sorted list of words, each word appearing only once on the list.
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Figure 1.3: Illustration of data �ow in a MapReduce job. In this example, the MapReduce
job consists of M Mappers and R Reducers. Output of each Mapper is organized into R
partitions (although only 2 are illustrated here). Points where data is being transmitted over
network are highlighted by vertical dotted lines.
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Chapter 2

Related Work

Performance of MapReduce comprises of several factors - among others task scheduling, skew
mitigation, struggler detection, topology optimization. The following sections of this chapter
present some of the research and publications studying those �elds that relate to this thesis.

2.1 Scheduling optimization

In task scheduling, one of the main di�culties is the trade-o� between data locality and
fairness, as is pointed out in paper [30]. Here locality in scheduling means placing the tasks
on machines that have a copy of the data required by the task on their local �le system. But
these machines aren't available all the time, thus to achieve complete locality, the scheduler
would make tasks wait for a machine with a copy of the task's input data, even though
there might be other machines in the datacenter available. In extreme scenarios the waiting
time might be even higher than time needed to transfer the data to another machine. On
the other hand, the data transfer time can often be higher than time spent waiting for a
data-local machine to free up. Fairness in context of task scheduling refers to servicing all
tasks with best e�ort, providing them with a fair share of the datacenter's resources as soon
as they become available.

The paper [30] discusses the following approaches a) waiting for resources to free up, b)
killing tasks in order to free up resources. Proposed algorithm is called Delay Scheduler.
This scheduler waits up to a con�gurable deadline for a task slot to free up on a data-local
node. If such task slot does become available before the time-out a waiting data-local task is
scheduled on that node. If all data-local task slots stay occupied during the whole time-out
period one of the waiting tasks is scheduled on any node with a free task slot, regardless of
data-locality.

Bandwidth-aware scheduling [22] tackles the locality-fairness trade-o� too, but using a
a di�erent approach. The proposed scheduler makes decisions based on current conditions
in the network. It utilizes information about available bandwidth on links in the topology
retrieved from an SDN controller and information about available idle time of individual
nodes in the cluster to estimate, whether to wait for a data-local node or not.

A general approach to the question of VM placement with regards to location of data is
discussed in [6]. Authors present an algorithm for VM placement minimizing several aspects
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of data access latency. Some of the discussed optimization objectives are minimization of
total/average data access time, or minimization of the worst data access time among all access
times in that scenario etc. A series of simulations benchmarking the proposed algorithm is
also presented.

2.2 Shu�e/Merge phase optimization

The term skew in context of MapReduce translates to uneven distribution of input data
and/or computational load among tasks. An overview and some examples of observed skew
in MapReduce is presented in [19]. The issue of skew in computational load is also the
focus of paper [20], among others. In this paper, authors propose SkewTune - an algorithm
for detection of tasks running extraordinarily long, called strugglers. When such a task
is detected, SkewTune terminates it, takes its input that hasn't been processed yet and
redistributes it among a set of new tasks.

A big focus point for optimization e�orts in MapReduce is the shu�e/merge phase.
It's the process of sorting output of Mapper tasks, organizing it into partitions associated
with individual Reduce tasks and transferring it to the nodes where respective tasks are
running. One of the paper focusing on this topic is [29]. In this paper, authors point out
that current implementation of Hadoop MapReduce leads to repetitive copying/merging of
data. They propose an algorithm to minimize volume of data transfered over network during
the shu�e/merge phase. Instead of waiting for all Map tasks to �nish, Reducers fetch small
header �les describing range of keys produced by individual �nished Mappers. Those headers
are used to construct a priority queue (concurrently with map phase) which serves to merge
all Map Output Files at once later on.

The paper [12] is also focused on optimization of the shu�e/merge phase of MapReduce.
The approach taken here is to insert a load balancer into the data �ow between Mappers
and Reducers. The proposed load balancer takes partitions of intermediary data created by
Mappers and repartitions them into more evenly distributed partitions before passing the
data to Reducers. An implementation of this system is also presented in that paper, as well
as results of a benchmark of the proposed system.

2.3 Datacenter architecture design

The papers discussed so far were focusing on management and utilization of a datacenter,
but design of datacenter architecture is also an important topic and in fact a closer one to
the focus of this thesis.

A datacenter architecture based on optical MEMS switches combined with SDN is pre-
sented in [28]. The optical switches compose network connecting racks in a datacenter.
Physical connectivity and forwarding rules are managed by the SDN controller. The SDN
controller communicates with application masters and resource managers in the datacenter
making it application-aware. This becomes an advantage for example during task scheduling
or when handling various tra�c patterns.

This thesis mainly focuses on network topology evaluation. One of the studied topologies
is BCube, which was presented in [14]. The topology itself will be described in more detail
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in later section of this thesis (6.1.2). The paper [14] also proposes an addressing scheme for
servers and switches in the BCube topology and a routing algorithm based on this addressing
scheme.

Another paper focusing on datacenter architecture design is [5]. This paper presents
a network stack called CamCube based on (but not limited to) 3D Torus topology. This
architecture doesn't require any switches, since all routing is done by the servers. One of
the main advantages of this approach is the option for custom implementations of di�erent
routing algorithms. CamCube o�ers to applications running on top of it a routing service
allowing each application to register its own routing algorithm implementation. Other core
services provided by CamCube include VM image distribution, cache services and aggre-
gation services. The 3D Torus topology is described in more detail in section 6.1.5 of this
thesis, as it is one of the simulated topologies.

The DCell topology has been presented in [15]. Similarly to BCube, DCell is a recur-
sively de�ned topology. Figure 2.1 provides an illustration of this topology. It is design for
extremely large datacenters, consisting of millions of servers. Since common routing algo-
rithms aren't suitable for such conditions, the paper also presents several routing algorithms
for this topology.

The FatTree topology has been described in paper [21]. It is a tree topology, where
processing nodes are located at the leaves and internal nodes of the tree are switches. The
key feature of a FatTree topology is that the links closer to the root of the tree have higher
capacity that the links closer to the leaves.

Since the DCell and FatTree topology has been subject to previous studies of MapReduce
performance, it is not included in simulation scenarios of this thesis.

Design of datacenter topology doesn't focus just on performance, but also on e�ciency,
as is the case elaborated in [17]. Architecture called ElasticTree presented in this paper
is designed to increase energy e�ciency while providing reasonable performance. This is
achieved by utilizing an SDN controller, that realizes decisions of an optimizer (proposed
in that paper) determining which links and devices need to be powered on to meet tra�c
demand constraints and which can be powered o� to save energy.

Simulations of datacenter application performance on di�erent network topologies has
been presented for example in [7]. This paper evaluates in detail throughput and delay in
DCell, FatTree and 3-Tier hierarchical topology (a tree topology consisting of 3 layers of
switches and hosts at the leaves) given a typical tra�c in a datacenter (not just MapReduce).
The simulated tra�c patterns were based on logs from several existing datacenters.

Performance of MapReduce speci�cally with respect to di�erent topologies has been the
focus of [27]. Topologies simulated in this paper were star (hosts are connected to a central
"hub" node), double rack (essentially two star topologies with a connection between the
central nodes), tree and DCell. The paper also presented a simulator called MRPerf and
evaluated its performance during those simulations.

Research focused on optimizing e�ectivity of private clouds is also conducted at Depart-
ment of Cybernetics of Czech Technical University. In the paper [25], the authors present a
setup consisting of Eucaliptus private cloud system and queue engine Cloud Gunther. This
setup integrates control of VM provisioning within the job scheduler, thus allowing for max-
imal utilization of the cloud's resources.
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Figure 2.1: Illustration of DCell topology as presented in [15]

2.4 MapReduce Simulation

Since simulation of MapReduce is the core part of this thesis, this section presents comparison
of several simulators that were considered as candidates for running our simulations. Table
2.1 summarizes the following key features (rows) of individual simulators (columns):

• Network Sim. Engine - the network topology simulation engine used by the respective
simulator

• Language - programming language used for implementation of the respective simulator

• Scalability - how well does the simulator perform with increasing simulation scale

• MapReduce detail - the level of detail to which the simulator simulates the MapReduce
framework

• Skew Support - whether the simulator supports simulation of uneven distribution of
intermediary data

The CloudSim simulator has been presented in [9]. Its architecture follows a layered
design composing of i) simulation core, ii) CloudSim and iii) user code layer. Initial releases
utilized SimJava - a discrete event simulation framework, but later releases removed it to
allow for some advanced features not supported by SimJava. The user code layer provides
interfaces for speci�cation of scheduling policies, cloud scenarios, application con�gurations
etc. making CloudSim very �exible.
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Table 2.1: Comparison of MapReduce simulators

CloudSim/
CloudSimEx

MRPerf MRSim MRSG

Network Sim.
Engine

CloudSim NS2 GridSim SimGrid

Language Java C++, tcl,
python

Java C

Scalability great good poor great
MapReduce
detail

low low great low

Skew Support yes no unknown yes

The MRPerf simulator presented in [26] has been designed as an accurate simulator of
Hadoop. The simulator utilizes NS2 for network topology simulation. It provides simulation
at sub-phase level and simulates intra- and inter- rack communication and even statistics
about node usage, such as processor and disk I/O time. A downside of this simulator is that
it doesn't support simulation of unbalanced distribution of intermediary data and assumes
that the data is distributed uniformly.

The paper [16] presents a discrete event based simulator for Hadoop implementation of
MapReduce called MRSim. This simulator highly utilizes Object oriented programming,
as CPU, HDD or Network interfaces are designed to be basic blocks and can be grouped
into server objects. For simulation of network topology MRSim utilizes GridSim, rest of
the systems is modeled using SimJava discrete event engine. GridSim allows for packet-level
simulation of network. It supports space and time shared allocation policies and allows for
representing a cluster as a single entity.

Another MapReduce simulator isMRSG, prosented in [18]. Unlike MRSim, this simulator
is based on SimGrid - a simulation framework for evaluating cluster, grid and peer-to-
peer algorithms. SimGrid's network model allows form faster simulation times than packet-
based GridSim and thanks to that MRSG scales better at cost of lower network simulation
accuracy.
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Chapter 3

Methodology

This thesis focuses on the e�ect of network topology on performance of di�erent workload
types of MapReduce distributed computing model. To study this problematic, several simu-
lation scenarios have been proposed. These simulations cover cases of di�erent MapReduce
job dimensions (numbers of Mappers and Reducers), intermediary data distributions and
network topologies. Performance of MapReduce in individual scenarios is evaluated based
on job �nish times. In each scenario a single MapReduce job is launched in the simulated
cluster. Nodes in the cluster are con�gured with only one task slot and the scheduler only
assigns one task to each machine (as opposed to one machine running several tasks sequen-
tially). These constraints were introduce in order to increase performance of the simulator,
but more importantly to reduce e�ect of other aspects of MapReduce performance than the
impact of network topology. With that in mind, the simulated jobs were con�gured with
relatively small amount of computational workload compared to the con�gured volume of
data. The simulation setup is described in more detail in Chapter 6.

The simulator chosen to run the simulations is the extension of CloudSim [9] called
CloudSimEx MapReduce [2]. It has been chosen for its �exibility, level of detail, as well as

Figure 3.1: Data �ow of presented simulation setup
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ease of implementation and integration of new modules. Downside of this simulator is the
insu�cient accuracy of network tra�c simulation. To address this issue, a network topol-
ogy simulation module, called CloudDynTop, has also been implemented as an extension
of CloudSimEx MapReduce as part of this thesis. This module is discussed in more detail
in Chapter 4. One of the problems tackled by CloudDynTop was method of distributing
throughput of links among �ows passing through them. Chapter 4 discusses two approaches
- fair share allocation and available share allocation. Chapter 7 gives evaluation and com-
parison of these two algorithms (among other results).

Figure 3.1 illustrates the work�ow of the presented simulation setup. The CloudSim sim-
ulator (process CloudDynTop.jar on the diagram) takes input in form of YAML �les de�ning
dimensions of the simulated jobs, distribution of intermediary data, volume of Mappers' in-
put, computational load on Mappers and Reducers or submission time of the simulated jobs.
YAML [4] is a serialization standard, similar to its wider spread peer JSON. It's been designed
to provide more user-friendly access to serialized object editing. CloudSimEx MapReduce
utilized YAML for job con�guration through serialization/deserialization of Experiment
(represents a set of jobs) and Job (represents a single job) classes. To automate creation
of these �les, utility script generateSimulation.py described in Chapter 5 has been imple-
mented. The implemented module CloudDynTop also needs some external con�guration
(such as type of topology, number of nodes, throughput allocation method etc.) - in this
case in form of command line arguments. These parameters are de�ned in script run.py
which launches CloudDynTop passing it those arguments.

The output of the simulation are Matlab functions (also described in more detail in
Chapter 5), which are then processed in Matlab into �gures presented in Chapter 7.



Chapter 4

Simulator Implementation

This chapter discusses the details of the implemented CloudDynTop module. Section 4.1 de-
scribes dependencies between CloudSim, CloudSimEx MapReduce and CloudDynTop. Sec-
tion 4.3 presents algorithms used by CloudDynTop to route �ows through the topology,
assign throughput shares to �ows and calculate job �nish time. Scheduling algorithm imple-
mented in CloudSimEx MapReduce and its improvement implemented during development
of CloudDynTop is discussed in section 4.4.

4.1 Integration with CloudSim

To run the simulations, the CloudSim simulator has been selected, more speci�cally the
MapReduce module of CloudSimEx project, which serves as an incubator for new features of
the main CloudSim project. We have chosen this simulator, because of its good support of
simulating skew in distribution of intermediary data, �exibility and ease of implementation
and integration of new modules, more over it seems to be popular and well accepted in the
datacenter engineering community. However later on the downside of this simulator came
up. The problem is how it simulates network topology.

CloudSim is mostly aimed at simulation of multi-datacenter setups. Although it does sup-
port simulation of intra-datacenter topology in its org.cloudbus.cloudsim.network.datacenter
package, it is only capable of simulating 3-tier hierarchical topology. Unfortunately,
CloudSimEx MapReduce is incompatible with this feature. The root of this incompatibility
is the way these two modules represent a datacenter. CloudSim de�nes class DataCenter,
which is extended for purpose of intra-datacenter topology simulation by class NetworkDat-
aCenter and for MapReduce simulation by class CloudDataCenter. This forces the user to
instantiate one or the other but makes utilization of both features simultaneously impossible.

As mentioned above, CloudSim is mostly oriented at simulating multi-datacenter setups.
That shows on the way it calculates data transfer time between two datacenters. This
functionality is provided by class NetworkTopology. Topology is initialized from a BRITE
�le and then a matrix of node-to-node throughput is derived from it. Unfortunately, values
in this matrix never change and thus make the simulator ignorant to the in�uence several
�ows sharing a link have on each other.
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Figure 4.1: CloudDynTop component diagram - illustration of dependencies between
CloudSim (yellow components), CloudSimEx MapReduce (red components) and our new
CloudDynTop (blue components). Dependencies of CloudDynTop on external components
are illustrated by black dotted lines, dependencies of CloudSimEx MapReduce on Cloud-
DynTop are illustrated by red dotted lines. CloudSim components are not dependent on
CloudDynTop.

Figure 4.2: Sequence Diagram - Interactions between PredictionEngine and CloudDynTop
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Figure 4.3: Sequence Diagram - Interactions between MapReduceEngine and CloudDynTop

Since our simulations greatly depend on the mutual in�uence of �ows and on the ability to
simulate di�erent types of topology, it became necessary to extend CloudSimEx signi�cantly.
We implemented a new module - CloudDynTop - that provides the functionality of computing
a MapReduce job's running time and topology representation to CloudSimEx MapReduce.
Mutual dependencies between CloudSim, CloudSimEx MapReduce and CloudDynTop are
illustrated on component diagram on Figure 4.1.

Details of dependencies of CloudSimEx MapReduce on CloudDynTop - the actual interac-
tions are illustrated on sequence diagrams on Figure 4.3 and Figure 4.2. CloudDynTop's func-
tionality of computing job's �nish time is called from PredictionEngine and MapReduceEngine

classes of CloudSimEx MapReduce.

4.2 MapReduce Job Finish Time Calculation

The CloudDynTop module keeps an instance of the simulated topology and takes input
from CloudSimEx MapReduce. The provided input is in the form of scheduling (mapping
between tasks and VMs) and provisioning plan (mapping between VMs and network nodes).
Based on this input, CloudDynTop calculates the time needed for the tasks included in the
scheduling plan to �nish. For this purpose, approach of simulation with �exible time step
has been used.

The scheduled tasks are used to construct instances of classes Flow and Computation.
The relationship of these classes is illustrated on Figure 4.4. The Flow class represents
the process of transmission of data between two nodes, the Computation class represents
the processing of the data on a node. Each Flow and Computation has the information
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Figure 4.4: Class diagram capturing relationship of classes Flow and Computation. These
classes implement the Process interface. They are used to represent processes a MapReduce
job composes of - �ows of data from the data source to Mapper nodes and from Mappers to
Reducer nodes over the network and the computations on Mapper and Reducer nodes.

about how long will it take to �nish. In case of Computation this is derived form number of
remaining instructions and MIPS of the node where the VM running this task is provisioned.
In case of Flow this is derived from the number of MB yet to be transmitted and bottleneck
throughput and delay of the path taken through the network. Bottleneck throughput of a
path is determined by Algorithm 3.

The processes composing up a MapReduce job generally cannot run all in parallel. Map
computations need to wait for transmission of data from the data source, transfer of in-
termediary data from a Mapper to Reducers can start only after the corresponding Map
computation has �nished and similarly Reduce computations have to wait for intermedi-
ary data from Mappers. To implement these serialization barriers, each Process has a list
of prerequisite processes and can only enter running state after all its prerequisites have
�nished.

For every Map task, the following processes are created:

• a Flow f from data source node to the task's node with no prerequisites,

• a Computation c on the task's node with the Flow f as a prerequisite and

• for each Reduce task one Flow from the Mapper's node to the Reducer's node the
Computation c as prerequisite.

For each Reduce task a Computation on the task's node is created with the inbound Flows

from Mapper nodes as prerequisites.
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The running time of such set of processes is computed using the Algorithm 1.

Algorithm 1 Calculation of �nish time of a set of processes

Require: proc: collection of Flows and Calculations
queued← proc
running ← empty list
while queued ¬empty or running ¬empty do

for p in queued do
if p.allPrerequisitesFinished then

p.state← RUNNING
running.add(p)
queued.remove(p)
if p is Flow then

for link in p.path do
link.passingPathsCnt++

end for
end if

end if
end for
sort running by remaining time (ascending)
rt← smallest remaining time among running
for p in running do

p.updateProgress(rt)
if p.hasFinished then

running.remove(p)
if p is Flow then

for link in p.path do
link.passingPathsCnt−−

end for
end if

end if
end for

end while

4.3 Topology Representation

CloudDynTop module network topology representation is implemented in package
cz.cvut.fel.comtel.rdc.clouddyntop.topology.engine. Class diagram of topology representation
is provided on Figure 4.5.

A network topology is represented by an instance of class GraphController in form of
collection of Node and Link class instances (see attributes of GraphController class nodes

and links respectively). GraphController class also acts as a Controller for the topology
representation functionality as it implements the routing Algorithm 2 (method calculate

FloydWarshall()) and throughput allocation algorithm described in subsection 4.3.2 (method
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Figure 4.5: Class diagram of topology representation

updateFlowThroughputAndDelay(Collection<Flow>)). The calculateFloydWarshall() method
only needs to be called once after the topology has been initialized, as it stores all the rout-
ing information in the metricMatrix attribute. Methods addNode(*) and addLink(Node, Node,

double, double) serve as interface for initialization of a speci�c topology.

Each instance of Link class has references to two instances of Node class. Although these
references are stored in attributes called src and dst, their order is irrelevant since the link
represented by this class is bidirectional. Other important attributes of a Link are its capacity
and delay. For purpose of consistent throughput distribution among �ows passing through a
link described in subsection 4.3.2, Link class also keeps information about throughput that
hasn't been allocated to any �ow yet (attribute remainingCapacity), as well as information
about number of �ows traversing it (attribute tra�c - since a link also needs to keep track of
how much throughput is which �ow using and thus how much throughput is freed up when
a �ow �nishes, the attribute tra�c references instances of Flow class instead of keeping a
simple counter of passing �ows).

Both Node instances referenced by src and dst attributes of a single Link instance also keep
a reference to each other. Nodes store these cross-node references in a HashMap (see attribute
neighbours of class Node), where the adjacent node is the key and the link connecting these
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nodes is the value. The Node class is extended by two classes - Node.VmNode representing
the machine hosting a VM, and Node.DatasourceNode representing the data source. This
distinction is necessary so that CloudDynTop module would be able to associate topology
nodes with VM resp. DataSource objects of CloudSimEx MapReduce.

4.3.1 Routing

The routing algorithm serving to determine which links will travers a �ow between two nodes
implemented in CloudDynTop is the Floyd-Warshall algorithm [13] illustrated on Figure 2.

This algorithm only has to be evaluated once after all nodes and links have been added
to the GraphController instance. The results of the algorithm are stored in metricMatrix

Algorithm 2 Floyd-Warshall routing algorithm

Require: nodes: collection of nodes in the topology, links: collection of links in the topology
metricMatrix← {}
for n in nodes do

metricMatrix.put(n, {})
for nn in nodes do

if n = nn then
metricMatrix[n][nn].metric← 0

else
metricMatrix[n][nn].metric←∞

end if
metricMatrix[n][nn].link ← null

end for
end for
for link in links do

metricMatrix[link.src][link.dst].metric←metric(link.capacity, link.delay)
metricMatrix[link.src][link.dst].link ← link

end for
for n in nodes do

for nn in nodes do
if ¬(n = nn) then

for nnn in nodes do
if ¬(nnn = nn or nnn = n) then

bypass← metricMatrix[nn][n].metric+metricMatrix[n][nnn].metric
if bypass < metricMatrix[nn][nnn].metric then

metricMatrix[nn][n].metric← bypass
metricMatrix[nn][n].link ← metricMatrix[nn][n].link

end if
end if

end for
end if

end for
end for
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Figure 4.6: Available share versus fair share throughput allocation. All the links have same
capacity. Throughput of �ow C is determined by the link between nodes 4 and 5, therefore
�ow C can only use 1/3 of capacity of the link between nodes 5 and 6. Available share
allocation will assign the remaining 2/3 to �ow D, whereas fair share allocation would only
assign 1/2 of the link's capacity to �ow D.

attribute of GraphController in form of two levels of nested HashMap. The outer HashMap's
entry key is the source node of a hypothetical �ow, the entry key of the inner HashMap is
the destination node. Value of the inner HashMap's entries is an instance of RoutingBean
class containing the metric value for that path, next hop link and an instance of Path class
representing the path taken by that hypothetical �ow between the source and destination
node.

The value of metric for a link between two nodes is computed using the following formula:

m = 256 · ( 1250

throughput
+ 100000 · delay) (4.1)

where throughput is in MB and delay is in seconds. This metric follows the formula form
metric of EIGRP routing protocol described in [24]. The advantage of this type of metric is
that it takes into account both throughput and delay of a link.

4.3.2 Throughput Allocation

Allocation of links' throughput to �ows passing through them has been calculated using
Algorithm 3. Determining throughput of a �ow just as the fair share of the link with the
lowest capacity among links the �ow is passing through would lead to suboptimal utilization
of some of the links in the network. Algorithm 3 allows for assigning higher throughput than
a fair share of a link's capacity to a �ow if possible. We call this approach 'available share
allocation'. The di�erence between the fair share and available share allocation is illustrated
on Figure 4.6.

4.4 Selection of Optimal Scheduling Plan

To select the optimal scheduling plan, the CloudSimEx MapReduce module provides Branch-
and-Bound (BB) algorithm implemented in class DecisionTree. This implementation has
only tested running time of the candidate scheduling plan against a prede�ned threshold
speci�ed by user in the con�guration of the simulator prior to launching the simulation.



4.4. SELECTION OF OPTIMAL SCHEDULING PLAN 43

Algorithm 3 Available share allocation

Require: links: collection of links in the topology, flows: �ows passing through the topol-
ogy
while links ¬empty do

bl← minAvailableShare(links)
as← bl.availableCapacity/bl.passingPathsCnt
for flow in flows do

flow.setBottleneckThroughput(as)
for link in flow.path do

link.availableCapacity ← link.availableCapacity − as
link.passingPathsCnt−−

end for
end for
links.remove(bl)

end while

We have improved this algorithm so that running time is evaluated in each node of the
scheduling space tree, e.g. for each candidate (even though incomplete) scheduling plan and
the algorithm only proceeds with testing that node's child branches if the running time of
that node is shorter than the shortest time of so far evaluated leafs.

To increase the performance of the algorithm, we have introduced two constraints to the
scheduling problem:

1. The �rst one is elimination of permutations in Map task placement. Since Mappers
receive the same volume of input data, permuting the Mappers over the selected set of
VMs makes no di�erence with respect to the duration of �ows from the data source to
the Map nodes. In contrast, all permutations in Reducer placement are evaluated, and
since the topologies simulated in this thesis are highly symmetrical, all possible relative
positions of Mappers and Reducers are explored. This constraint greatly increases
performance of the scheduler, because in MapReduce scenarios the number of Reducers
is almost always smaller than the number of Mappers.

2. The second constraint allows only one task to be scheduled on a node. This presents
another measure of trimming down the size of the scheduling space tree and since this
thesis studies only in�uence of network topology on performance of MapReduce, it is
an acceptable constraint.

The �nal version of the scheduling algorithm is described in Algorithm 4.

The DecisionTree class implements the Runnable interface and takes as argument in its
constructor method the initial VM. This way, the scheduling space can be traversed con-
currently by launching several instances of the DecisionTree class in multiple threads with
di�erent starting nodes.
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Algorithm 4 Branch-and-Bound scheduling algorithm

Require: VMs: collection of all available VMs, tasks: collection of this job's tasks,
topology: representation of simulated topology
minTime← Inf
solution← []
procedure search(currTreeNode, candidateVMs, idx)

for i in 0 to candidateVMs.length− 1 do
node← currTreeNode+ candidateVMs[i]
time← runningTime(node, tasks[0 to node.length− 1], topology)
if time < minT ime then

if isLeaf(node) then
minTime← time
solution← node

else
if isNextTaskReducer(node) then

nextIdx← 0
else

nextIdx← idx+ i+ 1
end if
nextCandidates← []
for j in nextIdx to VMS.length− 1 do

if ¬nextCandidates.contains(VMs[j]) then
nextCandidates.add(VMS[j])

end if
end forsearch(node, nextCandidates, nextIdx)

end if
end if

end for
end procedure
procedure isLeaf(node) return node.length == tasks.length
end procedure
procedure isNextTaskReducer(node) return node.length < tasks.length and
tasks[node.length] is Reducer
end procedure



Chapter 5

CloudDynTop simulator deployment

This chapter provides description of input and output �les and arguments needed to run
CloudDynTop simulations, as well as utility scripts for generating the input �les and con�g-
uring and launching CloudDynTop.

5.1 CloudDynTop input arguments and �les

CloudDynTop simulator is con�gured through command line arguments. The arguments are
passed in the following format: key_word <space> value. The keywords, accepted values
and description of the arguments are provided in Table 5.1.

The experiment de�nition �le is a serialization of an Experiment class instance in YAML
format required by CloudSimEx MapReduce. Among other experiment parameters such as
user class policies, job submission time or job execution time and cost budget it de�nes
path to the job de�nition �le. Since the only part of the experiment de�nition �le that was
relevant to the simulations presented in this thesis was the path to the job de�nition �le, the
experiment de�nition �le won't be described in more detail.

The job description �le is also a con�guration �le of CloudSimEx MapReduce in YAML
format. It contains serialization of an instance of the Job class. An example of such a �le is
presented on Figure 5.1.

Values in the mapTasks �eld are:

• the number of tasks of that description,

• input data volume for one such task in MB,

• millions of instructions one such task will process,

• a mapping describing distribution of intermediary data from each Mapper among Re-
ducers (also in MB).

45



46 CHAPTER 5. CLOUDDYNTOP SIMULATOR DEPLOYMENT

Table 5.1: Command line arguments of CloudDynTop

Key word Value Description

node.count integer Number of servers in topology
mapper.count integer Number of Mappers
reducer.count integer Number of Reducers
experiment string Path to experiment de�nition �le
matlab.function.name string Name pre�x of the generated Matlab function.
topology.type see Table 5.2 Type of topology. Available topologies are listed

in Table 5.2
wastefull.routing true/false Determines whether fair-share throughput allo-

cation (string "true") or available-share through-
put allocation (string "false") should be used.

multiple.tasks.per.vm true/false Determines whether the scheduler should con-
sider scheduling plans where multiple tasks are
assigned to the same machine.

branch.elimination true/false Determines whether the Branch-and-Bound
scheduler should eliminate branches before
reaching leafs if performance of their node is
worse than performance of a previous leaf.

topology.bcube.n integer Optional argument. Parameter N of BCube
topology

topology.bcube.k integer Optional argument. Parameter K of BCube
topology

policy.bb.force2exit integer Optional argument. Time after which the
Branch and Bound scheduler is forced to stop.
If not speci�ed, the scheduler evaluates all feasi-
ble scheduling plan candidates.

mind.deadlines true/false Optional argument. Determines whether the
policy.bb.force2exit argument should be ignored
(string "false") or not (string "true").

concurrent.threads integer Optional argument. Number of threads of the
Branch and Bound scheduler that are allowed to
run simultaneously.
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!!org.cloudbus.cloudsim.ex.mapreduce.models.request.Job

dataSourceName: DS_0

mapTasks:

- [10, 640, 640,

{

Reducer_0: 19904,

Reducer_1: 6143,

Reducer_2: 1205

}

]

reduceTasks:

- [Reducer_0, 19904]

- [Reducer_1, 6143]

- [Reducer_2, 1205]

Figure 5.1: Example of job description speci�ed in YAML format

Values in the reduceTasks �eld are:

• reducer name,

• millions of instructions the task will process.

To make con�guration of job parameters easier a Python script for creation of the experi-
ment and job description �les automatically has been implemented, as described in following
subsection.

CloudSimExMapReduce also requires �les simulation.properties and custom_log.properties,
but since these �les are not used for purposes of the presented simulations, we refer the reader
to the documentation of CloudSimEx MapReduce [2] for more details about these �les.

5.1.1 Utility scripts

The following Python scripts have been implemented in order to make con�guration of
CloudDynTop and running it more �exible:

Table 5.2: Topology types supported by CloudDynTop

Enum Value Topology

HIERARCHICAL 3-tier hierarchical topology as described in subsection 6.1.1
BCube BCube as described in subsection 6.1.2
BCube_T BCube as described in subsection 6.1.4
CamCube CamCube as described in subsection 6.1.5
MapReduce MapReduce topology as described in subsection 6.1.3
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generateSimulation.py: This script is used to generate the experiment and job description
�les. It takes two command line arguments: i) path to working directory of Cloud-
DynTop and ii) number of realizations of the exponential and normal distribution of
intermediary data to generate.

generateInterDataDistribution.py: This script is not directly used by the user, but it is
called by the generateSimulation.py script. It implements the functionality of generat-
ing exponential and normal distribution of intermediary data used in the simulations
presented in this thesis.

run.py: This script sets the values of CloudDynTop's arguments and launches the
CloudDynTop.jar, passing it these parameters. It takes three command line arguments:
i) label of the simulation scenario to be launched (see description below), ii) number
of realizations of this simulation to be run and iii) the index of the initial realization
of this simulation to be run

CloudDynTopSim.py: It de�nes values of CloudDynTop's arguments for individual simula-
tion scenarios. This script is referenced from run.py script, rather than being directly
called by the user.

The labels of the simulation scenarios follow the following grammar:

{BC | BC1 | CC | HI | MR}_{M10_R03 | M15_R04 | M20_R05}_{E500}_{EXP | NORM | UNI}

where:

• BC speci�es the BCube topology, BC1 speci�es the BCube1 topology, CC speci�es
the CamCube topology, HI speci�es the hierarchical topology and MR speci�es the
MapReduce topology

• M10_R03 speci�es a job with 10 Mappers and 3 Reducers, M15_R04 speci�es a job
with 15 Mappers and 4 Reducers and M20_R05 speci�es a job with 20 Mappers and
5 Reducers

• EXP speci�es exponential data distribution, NORM speci�es normal data distribution
and UNI speci�es uniform data distribution

5.2 CloudDynTop output �les

CloudDynTop produces its output in form of Matlab function �les. Each run of the simulator
produces two functions:

1. Function providing information about start and �nish times of �ows and computations
of the simulated MapReduce job and utilization of the links in the topology.

<name>_<yyyy><MM><dd><hh><mm><ss><ms>

2. Function generating description of the simulated topology

<name>_<yyyy><MM><dd><hh><mm><ss><ms>_top
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where:

• name is the value of CloudDynTop's argument matlab.function.name,

• yyyy is the year,

• MM month (2 digits),

• dd day of month,

• hh hour in 24-hour format,

• mm minutes,

• ss seconds and

• ms milliseconds of the time the simulator has been launched.

The �rst listed function returns 4 variables:

1. �ows - Matrix with one row for each data transfer �ow triggered by the simulated job.
Columns of this matrix are: i) source VM id, ii) destination VM id, iii) volume of
transmitted data in MB, iv) start time of the �ow, v) �nish time of the �ow, vi) id of
the source topology node, vii) id of the destination topology node.

2. computations - Matrix where each row represents one computation triggered by the job.
Columns of this matrix are: i) task type (0 represents Mapper, 1 represents Reducer),
ii) task's id, iii) VM id, iv) computation's start time, v) computation's �nish time.

3. linkUtilization - Matrix where row index corresponds to index of a link's source node
and column index corresponds with the link's destination node. Values in the matrix
describe the number of �ows that have passed through that link.

4. nodeIDs - A vector providing mapping of node indexes used in linkUtilization matrix
(index of this vector's element) to topology node ids (values of this vector's elements).

An example of a portion of this function is given on Figure 5.2.

The second listed function provides description of the simulated topology in form of 2
variables:

1. id - IDs of the instances of Node class in the topology. The order they appear in this
variable corresponds to the order of columns and rows in the adj matrix.

2. adj - matrix where each row resp. column corresponds to a node and value at position
i, j describes, whether nodes i and j are directly connected.
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function [flows, comp, linkUtil, nodeIDs] = getStats_20150430124744294661()

%HIERARCHICAL n19 m15 r4 fs:false18000000

flows = [

-2, 14, 640.0, 0.0, 9.660599999999999, 175, 189;...

14, 4, 18379.0, 16.0554, 291.4034076190477, 189, 179;...

-- text ommitted --

];

comp = [

0, 34, 33, 9.660599999999999, 16.0554;...

0, 35, 34, 9.660599999999999, 16.0554;...

-- text ommitted --

];

linkUtil = [

0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

-- text ommitted --

];

nodeIDs = [

175, 174, 201, 198, 189, 202, 200, 195, 179, 196, ...

183, 197, 187, 191, 190, 186, 188, 199, 194, 176, 192, 193, ...

177, 180, 178, 182, 181, 185, 184];

Figure 5.2: Example of output of CloudDynTop providing process time statistics.

Determining a job's �nish time is simply the matter of �nding the maximum �nish time
among the computations. This could be done using the following Matlab code:

function [finishTime, taskId] = getJobFinishTime(comp)

% returns latest finish time and ID of corresponding task

[finishTime, taskRowIdx] = max(comp(:,5));

taskId = comp(taskRowIdx, 2);

end



Chapter 6

Simulation setup

This chapter discusses the simulation scenarios designed to study the in�uence of network
topology on MapReduce performance. The section 6.1 provides description of the simulated
topologies. Simulated workloads and the process of generating them is described in section
6.2.

6.1 Simulated Topologies

The simulated datacenters consisted of the same number of nodes as the sum of Mappers
and Reducers plus a data source node. A constraint of only one task per host has been added
since this work studies in�uence of network topology on MapReduce performance and this
constraint signi�cantly lowered computational costs of �nding the optimal scheduling plan.
Hence the speci�ed constraint doesn't byass the simulations.

Simulated topologies were:

• Hierarchical,

• BCube,

• "MapReduce",

• BCube1 (see description below),

• CamCube.

Figure 6.1: Illustration of the 3-Tier hierarchical topology
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Figure 6.2: Illustration of BCube(N = 3, K = 1). A level-k BCube(N , k) consists of N
BCubes(N , k − 1) and Nk+1 switches. The ith switch in this BCube(N , k) connects to the
ith host in each of its level-(k−1) BCubes. In this �gure, squares represent hosts and circles
represent switches.

6.1.1 Hierarchical Topology

The Hierarchical topology is a tree topology consisting of 3 layers of switches - edge, aggre-
gation and core. It has been con�gured so that four hosts connect to a single edge switch, 4
edge switches connect to a single aggregate switch and all aggregate switches connect to a
single core switch. Illustration of this topology is given on Figure 6.1. All used links are the
same with throughput of 1Gb/s.

6.1.2 BCube Topology

The BCube topology [14] has been introduced in paper [14]. It's a recursively de�ned topol-
ogy that can be described by 2 parameters: N and K, where

• N determines the number of hosts in the level-0 BCube (the lowest level of recursion),

• K de�nes index of the highest recursion level.

Illustration of a BCube(N = 3, K = 1) is on Figure 6.2. For the purpose of our
simulations, 1Gb/s links have been chosen for all connections in this topology. Chosen
values for the K and N parameter of BCube shows Table 6.1. Number of hosts in that table
includes Map nodes, Reduce nodes and a data source node.

Table 6.1: Parameters of BCube topology

Hosts N K

14 4 2
20 5 2
26 6 2
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Figure 6.3: Illustration of 3D Torus topology used in CamCube network stack. Servers in
the same plane are represented by rectangles of the same color. Each server connects to 6
of its neighbours, so that every row along each of the x, y and z axes forms a closed circle.
The �gure shows these connections only within each horizontal plane, but vertical planes are
connected in the very same way.

6.1.3 MapReduce Topology

The MapReduce topology is included for reference. In follows data �ow of MapReduce
systems - each Map node is directly connected to the data source node as well as to each of the
Reduce nodes, thus no link in the topology is traversed by more than one �ow. This topology
is the optimal topology for MapReduce, because each network �ow has its own dedicated
set of links and the only constraint is the physical capacity of those links. Unfortunately,
this topology is not �exible and needs to be modi�ed when the job dimensions change. An
illustration is provided on Figure 1.2. All used links have also 1Gb/s of throughput.

6.1.4 BCube1 Topology

The topology labeled as BCube1 is a modi�ed version of the BCube topology. The di�erence
is that the as many nodes as there are Reduce tasks and the data source node are connected
to the respective switches by links with 10 times higher throughput than the rest of the hosts
(10Gb/s links).

6.1.5 CamCube Topology

The CamCube network stack [5] uses 3D Torus topology. In this topology, servers are
connected directly to each other, each server connects to 6 of its neighbours. An illustration
is provided on Figure 6.3.
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6.2 Simulated Workloads

Simulated job dimensions were:

• 10 Mappers and 3 Reducers,

• 15 Mappers and 4 Reducers,

• 20 Mappers and 5 Reducers.

Each of these jobs has been simulated along with the following intermediary data distribu-
tions:

• exponential,

• normal,

• uniform.

Figure 6.4 shows one realization of these data distributions. The exponential and normal
distribution have been simulated in 10 realizations.

Simulated type of MapReduce workload was expansion job (as formulated in [23]). A
typical feature of this kind of workload is that the volume of intermediary data is greater
than the volume of the job's input data. For our simulations we have chosen expansion
ratio of 5, meaning that the sum of all intermediary data volumes produced by all Mappers
totaled to 500% of the sum of input data volumes of all Mappers. This ratio has been
chosen as a realistic value large enough to emphasize the in�uence of network tra�c latency
on MapReduce performance. Realizations of the exponential and normal distribution have
been generated using the following procedure.

The distributions were sampled on interval 〈0; 5〉. The same number of pseudo-equidistant
points as the number of reducers has been chosen on this interval, their exact value deter-
mined by this formula:

xi = i · R
N

+ |Norm(µ = 0, σ2 = 0.5)| (6.1)

Here i = 0, 1, ..., N − 1, R is the width of the sampling interval (here 5), N is the number
of Reducers and Norm(µ, σ2) is the normal distribution with mean µ and variance σ2. The
distributions have then been evaluated in these points, the exponential distribution using
equation 6.2, and the normal distribution using equation 6.3.

E(x,A, λ) = A · λe−λ·x (6.2)

N(x,A, λ) = A · e
x2

2·σ2

σ ·
√
2 · π

, (6.3)

where in both cases the choice of λ has been λ = 0.7 and A has been calculated so that the
sum of the distribution's values in all sample points would meet the condition of intermediary
data volume stated above.
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Figure 6.4: One realization of intermediary data distributions. The three charts correspond
to di�erent job sizes - jobs with 10 Mappers and 3 Reducers, 15 Mappers and 4 Reducers
and 20 Mappers and 5 Reducers respectively. These charts illustrate the volume of data
each Reducer (here represented by its ID R1 - R5) from every single Mapper. In each of the
charts above each of the distribution functions is handling the same total data volume.
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Chapter 7

Results

This chapter presents results of the conducted simulations. Section 7.1 discusses performance
of individual MapReduce workloads on di�erent topologies. The two proposed approaches
to throughput allocation are also compared in that section. Performance of the simulator
itself is evaluated in section 7.2.

7.1 MapReduce Performance

Main output of our simulations are �nish times of the simulated workloads on individual
topologies. These results are presented on Figure 7.1, Figure 7.2 and Figure 7.3.

In case of all distributions the best performance was achieved (as expected) by the
MapReduce topology, where each �ow has its own dedicated link. This topology represents
optimal performance given the limited capacity of links in the network.

The CamCube topology performed only slightly worse than the MapReduce topology,
especially in case of uniformly distributed intermediary data. When skew has been intro-
duced into the distribution, CamCube has been outperformed by BCube1, although that's
not a fair comparison, since BCube1 utilizes faster links to connect its Reduce nodes.

The BCube topology has performed very well, although not as well as CamCube. An
interesting result is that increasing throughput of link connecting the Reducer nodes has
had a great impact on the MapReduce job's performance. As mentioned above, the modi-
�ed BCube topology - BCube1 lead to the best performance (not considering the reference
MapReduce topology) in cases where the intermediary data su�ered from skew.

Performance on hierarchical topology has been the worst for all the simulated workloads,
because of the bottlenecks between edge and aggregation and aggregation and core layer.
Because of these bottlenecks the hierarchical topology has been clearly outperformed by the
other simulated topologies.

Our simulations have also proven that the available share throughput allocation always
leads to better performance than the fair share allocation. Comparison of performance of
MapReduce job with 15 Mappers and 4 Reducers with exponential data distribution when
using these two algorithms is shown on Figure 7.4.
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Figure 7.1: Finish time of jobs with exponential distribution of intermediary data.

Figure 7.2: Finish time of jobs with normal distribution of intermediary data.
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Figure 7.3: Finish time of jobs with uniform distribution of intermediary data.

Figure 7.4: Comparison of job �nish times when available- resp. fair-share throughput
allocation has been used. In all cases available share allocation leads to better performance.
The simulated job had 15 Mappers and 4 Reducers with exponential data distribution.
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7.2 Simulator Performance

Another interesting result of our simulations is the performance of the simulator itself. Run-
ning times of the simulator are plotted on Figure 7.5. Since the most resource-heavy part
of the simulation is the scheduler, these values show how well was the Branch-and-Bound
algorithm able to eliminate branches of the scheduling space before reaching leafs, when
looking for the optimal scheduling plan in case of di�erent topologies.

Figure 7.5: Mean of 10 realizations of simulator's running time in logarithmic scale. The
values have been collected when simulation scenarios for shown topologies and job dimensions
with exponential intermediary data distribution were being processed. The di�erences of
running time for di�erent topologies are caused by varying complexity of job �nish time
calculation on di�erent topologies as well as by the Branch-and-Bound scheduling algorithm
eliminating branches of the scheduling space tree at varying levels with varying frequencies
(caused directly by the job �nish time values).



Chapter 8

Conclusion

In this thesis we have presented setup and results of simulations studying performance of
di�erent types of MapReduce workload on di�erent network topologies, as well as implemen-
tation of network topology simulation module - CloudDynTop - extending functionality of
the CloudSimEx MapReduce simulator.

The Hierarchical topology has performed the worst in all of the simulation scenarios.
Quite well has performed the BCube topology [14], although the CamCube topology [5] has
performed even better. Increasing throughput of links connecting Reduce nodes to the rest of
the BCube topology (topology BCube1) had make it perform better than CamCube in cases
where the distribution of intermediary data has been uneven, but at the cost of using faster
links. In case of uniformly distributed intermediary data the CamCube topology performed
even better than BCube1. The MapReduce topology has met the expectation of having the
best performance, but it is not a very practical topology as it is speci�cally designed to follow
data �ow of a speci�c MapReduce job.

Results of our simulations show that implementing a sophisticated topology such as
BCube or CamCube in a datacenter can improve performance of MapReduce jobs in that
cluster signi�cantly. Best performance would be achieved by dynamically �tting the topology
to the data �ow of the workload being processed as suggests performance of the MapReduce
topology in our simulations. This would be possible to achieve utilizing an SDN controller
working together with a workload monitoring system. Design of such a system could be an
object of future work.

The presented simulations mainly focused on the impact of data transfer over network.
Computational overhead that is imposed on servers by switching and forwarding tra�c, most
signi�cant in case of the BCube and CamCube topologies, has been neglected.

Presented results also show how the simulated topology a�ects running time of the sim-
ulator, due to di�erent complexity of calculating the job �nish time and varying e�ectivity
of the Branch-and-Bound scheduling algorithm in pruning branches of the scheduling space
tree.

The need to implement the CloudDynTop module became obvious after examining the
source code of CloudSimEx MapReduce. As we mentioned earlier, this simulator doesn't
account for network �ow interactions in its topology simulation module. Also the Branch-
and-Bound algorithm implemented in CloudSimEx's scheduler didn't meet our expectations,

61



62 CHAPTER 8. CONCLUSION

since it only eliminated branches that exceeded a prede�ned threshold as opposed to pruning
branches that are certain to lead to a solution that is worse than a previously found one.
The network topology simulation issue has been addressed by the implemented CloudDynTop
module.

Future work on this project would include simulation of more topologies and workload
types as well as running benchmark test on a real cluster. Results of these simulations and
benchmarks should lead to derivation of a network topology management strategy for a SDN
controller designed to optimize the topology for the running MapReduce workload.
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Appendix A

Contents of attached CD

The attached CD contains the following �les and folders:

dist/ Folder containing distribution of the CloudDynTop module integrated into the CloudSImEx
MapReduce simulator, as well as scripts and con�guration �les used to run and evaluate
the simulations presented in this thesis

dist/CloudDynTop_lib/ Folder containing the compiled libraries used by the CloudDynTop
module

dist/inputs/ Folder containing YAML �les de�ning simulated workloads

dist/matlab/ Folder containing the matlab scripts used to evaluate output of CloudDynTop,
as well as �les containing the results of the simulations presented in this thesis

dist/matlab/evalScript.m Matlab script used to plot the charts presented in this thesis

dist/matlab/getAvgFinishTimesMatrix.m Matlab function called by evalScript.m. It con-
structs a matrix of mean values and a matrix of std. variations of job �nish times of
individual simulation scenarios presented in this thesis

dist/matlab/getAvgJobFinishTime.m Matlab function called by getAvgFinishTimesMatrix.m

to determine mean value and std. variation of �nish times of one simulated workload

dist/matlab/getFinishTimesMatrix.m Matlab function called by evalScript.m. It constructs
a matrix of job �nish times of individual simulation scenarios presented in this thesis

dist/matlab/getJobFinishTime.m Matlab function called by getAvgFinishTimesMatrix.m to
determine �nish time of one simulated workload

dist/matlab/getStats_*.m Output �les of CloudDynTop containing data presented in this
thesis

dist/CloudDynTop.jar Executable JAR of CloudDynTop module integrated into CloudSimEx
MapReduce simulator
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dist/CloudDynTopSim.py Python module de�ning parameters of individual simulation sce-
narios

dist/custom_log.properties A con�guration �le of CloudSImEx MapReduce

dist/generateInterDataDistribution.py Python script called by generateSimulation.py to gen-
erated realizations of exponential and normal distributions of intermediary data

dist/generateSimulation.py Python script used to generate YAML �les de�ning the simu-
lation scenarios presented in this thesis. Usage of this script is described in subsection
5.1.1 of this thesis.

dist/run.py Python script used to con�gure and launch CloudDynTop. Usage of this script
is described in subsection 5.1.1 of this thesis.

dist/sim_*.yaml Con�guration �les of CloudSimEx MapReduce de�ning individual simu-
lation scenarios presented in this thesis

dist/simulation.properties A con�guration �le of CloudSimEx MapReduce

src/ Folder containing the source code of CloudDynTop and the source code of CloudSimEx
MapReduce modi�ed to integrate the CloudDynTop module

Kouba_Zdenek.pdf The PDF version of this thesis


	Introduction
	MapReduce
	MapReduce example usecase


	Related Work
	Scheduling optimization
	Shuffle/Merge phase optimization
	Datacenter architecture design
	MapReduce Simulation

	Methodology
	Simulator Implementation
	Integration with CloudSim
	MapReduce Job Finish Time Calculation
	Topology Representation
	Routing
	Throughput Allocation

	Selection of Optimal Scheduling Plan

	CloudDynTop simulator deployment
	CloudDynTop input arguments and files
	Utility scripts

	CloudDynTop output files

	Simulation setup
	Simulated Topologies
	Hierarchical Topology
	BCube Topology
	MapReduce Topology
	BCube1 Topology
	CamCube Topology

	Simulated Workloads

	Results
	MapReduce Performance
	Simulator Performance

	Conclusion
	Contents of attached CD

