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Abstrakt

Rozpoznavani textu v redlnych scé-
nach se s vysokou dostupnosti fotoapa-
ratu a chytrych telefont stalo zajimavou
oblasti vyzkumu. Na rozdil od strojo-
vého Cteni textu ve skenovanych doku-
mentech je zatim povazovano za nevy-
feSeny problém.

V této praci se soustiedime na pro-
blémy, které vznikaji, kdyz scéna obsa-
huje text v rtznych abecedich. Proto
nejprve provadime analyzu vykonnosti
existujictho systému na doposud ne-
znamé abecedé. Systém sice pouziva
co nejobecnéjsi metody, doposud byl
ale testovan jen na latince a okrajové
na azbuce. Identifikujeme, které mo-
duly systému jsou citlivé na vyménu
abecedy, a hleddme Teseni pro nékteré
nalezené problémy. Poté navrhujeme
dvé rozdilné metody na rozpoznavani
abecedy, kterou je napsan text ve scéné.
Obé metody dosahuji vykonu srovnatel-
ného s dostupnou literaturou. Nakonec
popisujeme syntézu obou pristupt.

Pro tcely vyhodnocovani byla vytvo-
fena puvodni datova sada s napisy pre-
vazné v hebrejstiné a latince.

Klicova slova: detekce textu; rozpo-
znavani textu; text v redlnych scénach;
rozpoznavani abecedy; OCR; TextSpo-
tter.

/ Abstract

Vi

Text recognition in natural images
became an interesting research area
with the advent of affordable cameras
and smartphones. Unlike the tradi-
tional character recognition in scanned
documents, it is still considered an
unsolved problem.

We focus on the problems that arise
when different alphabets are present in
the scene. Therefore, we first analyse
the impact of recognizing a previously
unknown script on an existing system.
Although developed with generality in
mind, it has been tested only on the
Latin and Cyrillic scripts so far. We
identify which modules are sensitive to
changing the script and propose solution
for some of the found problems. Second,
we propose and implement two different
methods for script recognition. Both of
the methods show state-of-the-art per-
formance. In the end, we provide a syn-
thesis of these approaches.

An original dataset with mainly
Hebrew and Latin inscriptions was col-
lected and annotated for the evaluation
purposes.

Keywords: text detection; text recog-
nition; text-in-the-wild; text in natu-
ral images; script recognition; OCR;
TextSpotter.
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Chapter ].
Introduction

Automatic detection and recognition of text-in-the-wild, often called text in natural
images, is an active research area in the field of computer vision for more than a
decade. The phenomenon of affordable digital cameras and smartphones enabled us
to conveniently collect images of our surroundings thus creating a possibility for many
interesting applications of automatic text recognition.

However, many problems arise when we move from the traditional Optical Character
Recognition (OCR) systems that operate on scanned documents to text-in-the-wild.
The images may contain text in arbitrary positions, scales or wider set of fonts and its
skew and other distortions may be significant. Therefore, different methods must be
employed. While OCR is largely considered a solved problem for the Latin alphabet,
the problem of text-in-the-wild is still open and receives significant attention.

TextSpotter is one of the state-of-the-art end-to-end systems for text recognition
in natural images that is being worked on. It is developed at Centre for Machine
Perception at Czech Technical University in Prague. A number of papers have been
published about its advances, e.g. [1], [2], or [3].

The aims of this thesis are twofold. First is to evaluate and potentially improve per-
formance of TextSpotter on unfamiliar alphabets (scripts) as only Latin and Cyrillic
scripts have been tested so far. One of the goals of TextSpotter is to develop a recogni-
tion method independent of script and font of the text. Therefore, such an analysis is
important for the future direction of development. The analysis should point out which
modules of TextSpotter are sensitive to changing the script.

Second aim is to implement a script recognition method in TextSpotter. At present,
TextSpotter is able to recognize only one script set by the user before runtime. This
is acceptable for some applications but there are many situations where more than one
script appear within the image. For instance, more than one script regularly appear
next to each other in the streets of countries such as India, Israel, or Ukraine. A method
able to recognize a previously defined set of scripts should be developed and evaluated.
The classification should be done on text line or word level to be useful in situations
when more scripts appear in one image.

For evaluation of both these goals, a dataset containing inscriptions in an exotic
script should be collected and annotated. Signs in another script should be present to
evaluate the script recognition method.

The rest of this thesis is organized as follows. Chapter 2 provides a light introduction
to the topic and state-of-the-art in two areas—mnon-Latin character recognition and
script recognition.

Information about the collected dataset can be found in Chapter 3 including details
about the nature of the images, alphabets of the inscriptions, or the annotation process.

In Chapter 4, the prerequisites to the evaluation stage are described first, then the
performance of TextSpotter on the Hebrew dataset is measured and compared to a
similar Latin dataset and to a synthetically created ideal Hebrew dataset. Section 4.2.2
offers analysis of the found problems. At the end of the chapter, the two pipelines that



coexist in TextSpotter at the moment are compared on an even more exotic Kannada
script in Section 4.3.

We can find solutions to chosen problems connected with the Hebrew script in Chap-
ter 5. Each solution is evaluated and the performance is compared with the best
previous result.

Chapter 6 explains two different methods proposed to solve the script recognition
problem and evaluates them. We have experimented with a combination of these two
approaches and we compare the performance.

Finally, Chapter 7 summarizes the problems we discovered during the analysis and
discusses the results we had with different methods of script recognition. Possible
direction of future work is offered.

I 1.1 Architecture of TextSpotter

Every aspect of this thesis—Dbe it performance analysis, functional extensions, or dataset
annotation—is conducted with respect to one specific text recognition software and that
is TextSpotter. Therefore, we need to discuss its architecture and features first. The
purpose of this section is to give a quick overview of TextSpotter modules. For a
rigorous definition of the problem and the theoretical foundations, please refer to the
original paper by Lukas Neumann and Jifi Matas [1].

Text detection and recognition in TextSpotter can be divided into several sub-
problems. Although multiple solutions may have been implemented to solve each sub-
problem, we shall describe the setup that was used throughout this thesis. Please,
examine the schema in Figure 1.1 that illustrates the different stages of TextSpotter.

e N ( 7
SVM region
MSER detection . .gl .
classification
. ) = J
Image
e N e M)
Typographical k-NN character Text line
model recognition formation
= J .

l

Text line output

Figure 1.1. Text recognition in TextSpotter has several stages. The schema is based
on the original one from [1] but adapted to describe our specific setup. Some aspects
that we do not touch in this thesis were left out.

First, Maximally Stable Extrema Regions (MSER) are detected in the image. Ideally,
every character would correspond to some extrema region, however, a small amount of
characters might be lost even during this first stage.

Since the MSER detection is set to lose as little characters as possible, large amount of
extrema regions corresponds to the background. Therefore, a Support Vector Machine
(SVM) classifier is used to classify regions as character regions or non-character regions
(background).

The character regions from SVM are then grouped into text line hypothesis which
filters out large amount of background regions that were incorrectly classified as char-
acters because these background regions appear quite randomly and only rarely form



a text line. Thanks to the feedback loop, character regions that were incorrectly clas-
sified as background may be introduced again if they seem to be part of some text
line hypothesis. Formation of the line hypothesis is based on the assumption that font,
colour, or size of characters rarely change within one line of text.

The next stage is character recognition. An approximate k-Nearest Neighbour (k-NN)
search (see introduction of Chapter 6.1 for more details) results into several character
hypothesis. The k-NN classifier is trained using only synthetic fonts which is one of the
biggest advantages of TextSpotter. There is no need to collect a training dataset for
the characters. Each vector in the k-NN space corresponds to one image of a character
drawn using one of the fonts. It is obvious that the k-NN search can return neighbours
corresponding to different letters of the alphabet. Therefore, the classification is often
ambiguous.

The typographical model is constructed at this point. The top, middle and bot-
tom line of the text line are extrapolated from the characters (see Figure 5.4 for an
illustration) and the characters inconsistent with the model are removed.

We still have several possible classifications for each region on the line. To find the
optimal classification for each region, an adjacency graph of the character hypothesis is
formed. Every hypothesis has a score comprising of multiple factors (confidence of the
classification, deviation from the expected position on the line, and more). Finding the
optimal classification for all the characters equals to solving the longest path problem
in the adjacency graph by dynamic programming.

At this point, we have extracted and read text lines from the input image. There are
other aspects such as segmentation into words, segmentation of connected characters,
or employing the language model which we do not cover here.



Chapter 2
State-of-the-Art

The objective of this chapter is to provide an overview of the state-of-the-art in two
different areas. First is text recognition of non-latin scripts and the second is script
recognition which is a sub-problem of text recognition and therefore presented as second.
In both cases, the overview is done in the context of the text-in-the-wild problem.

I 2.1 Text Recognition of Non-Latin Scripts

Text recognition in the wild has attracted a lot of attention in the past years due to its
many applications. Examples of applications are mentioned in [4], including multimedia
retrieval where reading the text in the images or video can be used to retrieve the
relevant multimedia or automatic translation of the text in images which has became
very interesting with the wide availability of smartphones, lowering language barriers.
Just as important are text-to-speech systems allowing the visually impaired to navigate
in unfamiliar surroundings by being able to read the signs around them. Industrial
automation is another important application, consider for instance the usefulness of
automatic sorting of envelopes based on address in a post office.

The number of interesting applications brings the problem to the attention of re-
searchers in most countries and systems designed specifically to recognize scripts dif-
ferent from the Latin script exist. Before we present the state-of-the-art for various
non-latin scripts, let us briefly discuss the challenges of text detection and recognition
in natural images.

Compared to the traditional OCR, the scene complexity makes the mere detection of
the text non-trivial. The text can be present anywhere in the scene at arbitrary scale
or not present at all. When scanning documents, we can guarantee certain resolution
of the text and only minimal skew, whereas in natural images we cannot. We do not
describe the typical stages of a text-in-the-wild detection and recognition as we have
already done so for the specific case of TextSpoter in Section 1.1.

B 2.1.1 Middle-Eastern Text Recognition

The scripts used in the Middle-East have common origin in the Phoenician alphabet and
have a structure different from the Latin script (see [5] for more details about the history
and properties of these scripts). Most of the scripts (with the exception of Hebrew) are
cursive—meaning the characters of one word are connected. Therefore, segmentation
of the words into characters becomes a crucial problem for Arabic and Syriac writing
systems. Complex diacritic marks both above and below letters are another common
trait. The number of character classes is higher for some of the scripts than in the Latin
script due to the letters having different shape depending on their position in the word
(start, end, middle and isolated). In the following text, we provide an overview of the
methods used to recognize Middle-Eastern scripts with the focus on how they tackle
the mentioned characteristics.



An end-to-end system for translation of Arabic text in natural scenes was developed
in [6]. The candidates for text regions are extracted at different resolutions of the input
image by a set of heuristics to increase speed of the system—these are classified as
text and non-text using SVM classifier and Gradient Boosting Tree with feature vector
consisting of highest values of colour channels (based on the assumption that colour
distributions are significantly different in the two classes). A commercial OCR is run
on the detected text areas. However, due to the inferior performance of the OCR in
the non-optimal conditions of natural images, a noisy channel model is applied on the
OCR output to achieve higher performance.

Another end-to-end system was proposed in [7] for recognition of Arabic text from
TV video sequences for the purpose of extracting metadata. The Rolling Ball Trans-
form—a special case of the top-hat morphological transformation—is used to highlight
thin and continuous objects in the scene and the structural properties of the Arabic
script are used to extract the text. The diacritics is removed and wertical projection
profile is used for character segmentation since all Arabic letters are connected into
words at the baseline (see example of horizontal projection profile in Figure 2.5). The
diacritics is then re-introduced and used to correct the mistakes in segmentation—refer
to Figure 2.1 for an example. The extracted features include various projection pro-
files, number of transitions between black and white in columns and rows and diacritics
marks which are necessary to discriminate between characters that differ only in the
marks. Classification is performed by a k-NN classifier.

| & ¢
I

Figure 2.1. Example of an over-segmentation of the letter Dad (left) marked in red dashed
line. Although the left part of the segmentation resembles the letter Nun (right), it is
missing the diacritical mark, therefore, the segmentation is incorrect and can be removed.

Although the vertical profile is used for character segmentation in the previous paper
and many others (see [8] for more examples), it suffers from under/over-segmentation
problem (an example of over-segmentation is shown in Figure 2.1). So-called holistic or
global approaches attempt to solve the recognition problem for cursive scripts without
the need for segmentation. The disadvantage is that such system only recognizes the
words from the training set which is not an issue for some applications (e.g. traffic
signs).

A recent example of this effort is the method based on Hidden Markov Models (HMM)
in [9]. The problem of word detection is not covered, the system assumes the words
have already been extracted. Each word is divided into N x M sub-blocks on which
Discrete Cosine Transform (DCT) is applied and its coefficients with lower frequencies
(containing most of the image energy of the sub-block) are used as a feature vector. The
feature vector of the word is simply a concatenation of the individual sub-block vectors.
The usage of DCT coeflicients as features makes the method script-independent and it
could be used for other scripts. A HMM classifier was trained using a synthetic dataset
of Arabic words in different fonts and it shows promising results on the testing dataset
with different fonts and font sizes.

In the area of text detection, a novel approach designed with cursive Arabic script
in mind has been proposed in [10]. An image operator called Stroke Width Transform



was introduced as being able to detect text regardless of scale, skew, colour, font, or
language. In natural images, there are many objects with properties similar to text but
one feature that sets the text apart is the nearly constant stroke width. First, edges are
extracted using the Canny edge detector. Second, it is determined which edges belong
to text strokes. If a pixel p belongs to the edge of a stroke, its gradient direction is
perpendicular to the stroke and there is a pixel ¢ on the opposite edge of the stroke
with roughly opposite gradient direction. If subsequent pairs of pixels p, ¢ have similar
distances, the edges belong to a text stroke. The detected characters (or words in the
case of the cursive Arabic script) are grouped together into text lines thus filtering out
standalone characters which are likely to be false positives.

In case of the mentioned multimedia retrieval systems, it is not always necessary to
recognize every single character but only spot a specific word image. A word-spotting
search system proposed in [11] enables to find relevant documents in large volumes of
historical Hebrew documents which share many properties with images from natural
scenes (such as skew, complicated background or degraded characters). Among the
tested features, distance between upper and lower boundary of the letter (see DULP
in Figure 2.2) and vertical projection profile proved to be the most effective. Sliding
window over text lines is used to extract features of words and Dynamic Time Warp-
ing algorithm (DWT) matches it to the feature vector of the query image. Since the
recognition is done using simple features, the method is more resistant to degraded
characters than traditional OCR.

uG
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The window

Figure 2.2. Features used for word spotting in [11]. Image taken from [11].

B 2.1.2 CJK Text Recognition

The scripts developed from the the ancient Chinese Han ideographs are denoted as CJK.
The abbreviation stands for the most prominent languages using these scripts—Chinese,
Japanese, and Korean. Since the scripts are based on ideographs, a common trait is
the large number of characters. Although there are tens of thousands of characters,
4000 cover 99% of the characters used in practice. Still, the large number of character
classes is the most difficult issue with CJK scripts [12].

Since CJK characters are not connected, segmentation is not a difficult problem
compared to the Arabic script and most of the algorithms designed for the Latin script
are applicable. However, the recognition phase is fundamentally different from Latin
since a CJK character is composed of several non-connected components. As for the
classification sub-problem, the same variety of tools is used just like for the Latin
script recognition including Nearest Neighbour, Neural Networks, or Fisher’s Linear
Discriminant. The recent examples of these different approaches follow and the focus
is on how the problem of large number of classes is tackled.



An end-to-end system for recognition of Chinese signs in natural images and their
translation to English is proposed in [13]. First, Laplacian of Gaussian is used to
detect edges at different scales. Second, the patches with edges are assigned features
(size, intensity, mean, or variance) which are used to filter out unsuitable edges. The
edges with similar properties are recursively merged into characters using the fact that
all Chinese characters have almost the same aspect ratio and that characters in one
context (on one sign) have similar properties. The background is segmented for each
character individually using the most promising component of RGB and HSI colour
spaces. After affine rectification, the character is divided into 7 x 7 sub-blocks and
Gabor features are extracted. Fisher Linear Discriminant (FLD) reduces the problem
into one dimension and finally NN finds the nearest match in the set of 3755 level
1 Chinese characters. The wvector angle distance showed superior performance to the
Euclidean distance.

A more rigorous approach for detection of Japanese Kanja characters was designed in
[14]. The connected components extracted using Niblack thresholding are classified as
character components or background. First, by an initial classifier with a simple set of
rules to reduce number of components and then by a strong classifier constructed using
AdaBoost. The features of connected components used in the strong classifier include
compactness, eccentricity, standard deviation of stroke width, and more. AbaBoost
creates different weak classifiers using FLD by decreasing the weight of the already cor-
rectly classified samples. The character components are clustered using Markov random
field into text area candidates (words, lines, or individual characters), which also filters-
out some of the remaining noise. The text areas are fed to the OCR module and the
output is subjected to post-processing, e.g. areas with many suspicious characters such
as “#” or “$” are removed.

A text detection system designed and tested on both Chinese and Latin script is
proposed in [15]. It focuses on text with arbitrary orientation. The method shows state-
of-the-art performance on nearly horizontal text and achieves superior performance in
case of arbitrary orientations. SWT (explained in Section 2.1.1) is used to extract
connected components. A trained classifier filters out non-character components leaving
only character candidates (using contour shape, edge shape, background/foreground
ratio, and other features). These are recursively linked into chains based on similar
structural properties and another classifier discards chains with low scores (features
include candidate count, average probability across candidates, average turning angle
from candidate to candidate, and more).

A very different approach from all the methods reviewed so far is [16]. SIFT features
and a version of RANSAC generalized to the problem of matching multiple objects is
employed. Each character of the particular script has one reference image forming the
reference set. During the learning phase, SIFT features are extracted from the reference
images and stored in a database. In the classification stage, following operation (see
Figure 2.3 for a simplified example) is performed for each R € referenceSet on the
query image Q:

m Take a SIFT feature f € () such that also f € R.

m Select (2 + ¢€) features closest to f.

® Run standard RANSAC on this subset of features.

m If the number of votes is larger than a threshold, project the character R onto Q.

When this procedure is done, there are multiple overlapping (conflicting) characters
projected to the image ). These conflicts are resolved by always removing the character
with fewer votes until there are no overlapping characters. The method was tested on



2. State-of-the-Art

3 widely used Japanese scripts—Kangji script derived from Chinese Han characters and
modern syllabic alphabets Hiragana and Katakana. The experiments suggest it is
suitable for scripts with very complicated characters (Kanji) because more features are
extracted from such characters and RANSAC matching then shows better performance.
The structurally much simpler Hiragana and Katakana performed worse.

Reference images Query image

ﬂ
0 votes i1 VR

_

Figure 2.3. A simplified example of the recognition procedure with only one character in
the query image. Image taken from [16].

I 2.2 Script Recognition

Script recognition is a prerequisite for creating an text recognition system that is able
to cope with the text in different scripts. As [17] or [18] explain, there are two basic
strategies to build such a system:

1. Develop a generalized system that can recognize all the characters in the required
scripts.

2. Perform script recognition first and then use a specialized text recognition for the
given script (see Figure 2.4).

The first option is considered to be more difficult due to the growing number of
character classes. Moreover, the generalized system cannot take advantage of the unique
properties of the script which is often used to achieve higher recognition performance.
The differences between some scripts are so fundamental that they require different
methods for successful recognition. E.g. in Arabic scripts, segmentation of words into
letters is necessary prior to the recognition process (e.g. [5] describes many segmentation
techniques) whereas in the printed Latin script the segmentation is easy.

Script recognition attracts most interest in countries and regions where multiple
scripts commonly occur next to each other such as India (Latin, Devanagari, Bangla,
etc.), the Middle East (Hebrew and the variety of different writing styles of the Syriac
and Arabic systems) and the Eastern European countries (mainly Latin and Cyrillic
scripts). The interest in recognition of the script in the Western countries—where the
Latin script is dominant—is somewhat lower although existent [19].

The main issue when composing this review was that the problem of script iden-
tification is seldom addressed in the context of text-in-the-wild. Therefore, we had
to broaden the scope by reviewing script identification in the context of scanned doc-
uments where we focused on digitalization of historical documents. This area shares
some of its main issues with text-in-the-wild such as distortion and low quality of the
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Figure 2.4. Possible architecture of a multi-script text recognition system.

segmented text, complex background, or skew of the text. But it is not burdened by,
for example, the difficulty of text localization.

The identification has been done on different levels—page level, paragraph level, line
level, and word level [18]. However, for the context of text-in-the-wild problem, only
the line and word levels are relevant and we focus on these.

Most of the found publications present methods to recognize a particular set of
scripts, e.g. the method proposed in [20] is motivated by the need to distinguish Latin,
Cyrillic and Glagolitic scripts. The authors typically examine the scripts and then
choose such features that allow them to correctly discriminate the scripts. These
schemas show very good performance, usually close to 100%, but have poor gener-
ality. Adding another script to the schema requires finding and adding appropriate
features (e.g. horizontal projection profile in Section 2.2.1 is useful when disciminating
Latin and Devanagari but useless for Devanagari and Bengali). This is not only im-
practical but can lead to problems with dimensionality as features are being added to
the set [17].

A review of the interesting methods using a predefined set of features designed to
recognize a particular set of scripts with the emphasis on the chosen features is presented
in Section 2.2.1. Later, more general approaches whose features are not designed for a
specific set of scripts are shown in Section 2.2.2. These methods usually employ some
sort of unsupervised learning.

B 2.2.1 Recognition of Pre-defined Set of Scripts

A simple classifier for English, Tamil and Hindi scripts that operates on the line level
was proposed in [21]. The sole feature used to distinguish between the scripts was
the horizontal projection profile of the line. This feature takes advantages of the fact
that the textline has a concept of upper, middle and lower zone and the scripts have
different average amount of texture in these these zones. E.g. all characters in Hindi
are connected through their top part. This creates one distinct peak in the horizontal
histogram in the middle zone whereas an English line typically has two peaks. Refer to
Figure 2.5 for an example.

The horizontal profile has been also employed in a more complex scheme in [22] which
was successfully used to classify 10 different Indian scripts plus the Latin script. Other
interesting features used there include the water reservoir analogy. The water could be
poured into the characters and some of the characters have such a shape to hold the
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Figure 2.5. Example of horizontal projection profiles for Tamil, Hindi and English lines of
text. Notice the distinct peak in Hindi text. Image taken from [21].

water (see Figure 2.6). The amount of water that the characters hold from left, right,
top and bottom side were used as 4 different features. The usefulness of these features
can be demonstrated on the fact that there are 5 characters in the Latin script with
the left reservoir (a, s, x, y, z) but in some Indian scripts, most of the characters have
left reservoirs.

Top Reservor ‘ Bottom Reservoir ‘ Left Reservorr| | Right Reservorr

Figure 2.6. Example of top, bottom, left and right reservoirs of the letter X. Image taken
from [22].

The method in [20] takes advantage of Latin, Cyrillic and Glagolitic scripts having
the concept of lower, middle and upper part of the line. Letters are divided into 4
classes—they can spread only over the middle part (e.g. a, c, e), some also over the
lower part (e.g. g, j, p) or the upper part (e.g. A, B, k) or over all the parts (e.g. Q).
The text is transformed into coded text by substituting each character by the label of
its class. Co-occurence analysis is then done on the coded text to determine the script
of the text sample. The paper does not state if the method was tested document-wise
or paragraph-wise, but we can assume the performance would be poor on the line level.
Nevertheless, we mention this approach due to its unusual procedure.

To identify Latin and Arabic scripts, a different set of features was extracted for each
word in [23]. The number of pieces (not characters since the Arabic script is cursive),
number of upper and lower diacritical dots, number of loops, number of strokes above
and below the baseline, etc. A Multilayer Perceptron is used for classification. The
interesting result is that the segmentation of the Arabic words into individual characters
is not necessary for successful script identification although being a prerequisite for the
character recognition itself.

B 2.2.2 Script-independent Methods for Script Recognition

The first interesting attempt to solve the problem of script recognition in a general
way was found in [19]. Total of 13 scripts including Arabic, Hebrew, Latin, Chinese, or
FEthiopic were present. In the learning phase, clusters of similarly looking characters are
created. Each character (or word in case of cursive scripts such as Arabic) is rescaled to
30x30 pixels and if there already is a cluster with sufficiently small Hamming distance,
the character is added to the cluster. Otherwise, new cluster is created. A template
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is made from each cluster by averaging the pixel values of the images in the cluster
and thresholding this average image into a binary template. All the templates are then
verified to be reliable on the training set. The classification of the script of a new
character is simply a matter of finding the best match among the templates using the
Hamming distance across the templates in all the scripts.

An improvement in terms of generality was proposed in [24] where they used a large
pool of features such as normalised moments, Hu moments, compactness, number of
holes, eccentricity and others to describe the structural features of the characters.
Rather than using all the features in a classifier such as AdaBoost, only the features
able to discriminate between the required scripts are automatically selected. This is
achieved by the RELIEF-F algorithm proposed in [25]. It assigns weight to each feature
based on its ability to separate one class from all the other classes. The features with
low weights are discarted. During classification, k-NN classifier is used to assign a script
label to each character. Then a simple voting algoritm is used to determine the script
of the text line.

A different approach relying more on the overall appearance of the words or lines is
using Gabor filters. Gabor filters can be used to approximate the human vision system,
capturing some of the important features often used by the human eye [17]. Since
the filters can be used to extract structural properties of any script, this method is
considered quite general and received a lot of interest. E.g. [26] shows a comparison of
Gabor filters and horizontal projection profiles for discriminating the Latin and Tamil
scripts on the word level. The performance of Gabor filters was significantly better.

While most of the systems operate on line or word level, the method proposed in [27]
operate on the level of individual characters and discriminates between Latin charac-
ters, Latin digits, Gurmukhi characters, and Gurmukhi digits. A set of aforementioned
Gabor features and another set of gradient features are extracted and used for classi-
fication in a SVM classifier. Although the method was tested on scanned documents
rather than natural images, we mention this method nonetheless due to the level it
operates on and good performance around 98%.

A combination of gradient and texture features was used in [28] to provide a general
solution to the problem. Two variants of this approach are discussed in the paper.
In the first, Histogram of Gradients (HoG) is computed at the word level to describe
the shape and Local Binary Patterns (LBP) are used to capture the texture. The two
vectors are concatenated, normalised to compensate for font size changes, and classified
using SVM. In the second variant, novel versions of HoG and LBP invariant to text
inversion (reading the text upside-down) are proposed. It is argued that these versions
are needed because typically a skew correction unit is used before the script recognition
and for extreme angles of the text in the input images, it may lead to completely
inverting the text. A total of 11 Indian scripts were recognized with the success rate
around 97% (depending on the size of the training set).
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Chapter 3
Hebrew Dataset

Prior to the evaluation in Chapter 4 and the work on script recognition in Chapter 6,
a dataset of an exotic script had to be collected and annotated since we did not find a
suitable dataset in our chosen script. Details about the collected dataset are described
in the rest of this chapter.

The dataset consist of 100 images—all collected on Wikimedia. The inscriptions
are mainly in the Hebrew script, some are in Latin, Arabic, or Cyrillic scripts. For
the reasons why we chose to collect a primarily Hebrew dataset, please refer to the
introduction to Chapter 4.

The pictures are either in Public Domain or under a permissive licence such as
Creative Commons. The nature of the images could be described as photos randomly
taken by a tourist in the streets of Israel cities or as images collected from Google
Street View in Israel. Details about individual pictures (link, licence, and number of
annotated Hebrew words) are available in Appendix C. Each picture is assigned an
ID in the table. Appendix B holds thumbnails for all the pictures labeled with the
respective ID to allow for easy browsing.

If we were to compare this dataset with some popular public datasets, we should say
that it contains much more urban scenes and less images of smaller objects shot indoors
than the ICDAR 2013 dataset. On the other hand, the images are comparable to the
ones in the Char74k dataset (also used later in this thesis) where signs in urban and
nature surroundings dominate.

I 3.1 Character of Images and Inscriptions

The 100 images contain well over a thousand annotated words. Refer to Table 3.1 for
statistics about word and character counts for each annotated script—the occasional
Arabic signs are ignored.

| Hebrew Latin Cyrillic

words 1141 179 27
characters 6086 1113 205

Table 3.1. Character and word counts of annotations for each script.

The images have been collected with the emphasis on diversity in text density, objects
in the scene, background, or lighting conditions. Some of the images contain only
one word (e.g. a traffic sign on an empty road), others have up to 200 words (e.g. a
board describing a landmark). The annotated inscriptions belong to several prominent
categories that shall be described now along with examples.

For instance, common objects in the scene are traffic signs in both urban and natural
surroundings, their examples can be seen in Figure 3.1.
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3.1 Character of Images and Inscriptions

Figure 3.2. Tourist boards contribute most to the total number of words in the dataset.

Various boards describing landmarks contribute most to the total number of words
and correspond with an important application of text recognition—translation of text
in images, e.g. for tourists. Examples of such boards are available in Figure 3.2.

The rest of the dataset consists mainly of street signs and other short signs such as
the ones in Figure 3.3. Please refer to the Appendix B for thumbnails of all the pictures.
As for the illumination conditions, there are several pictures taken at night but most
are in daylight. Since the pictures were collected on Wikimedia, the photos are taken
with different cameras with different resolutions ranging from 0.5 MP to 10 MP.

PR3 NN e
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Figure 3.3. The most common objects are street signs and other short signs.
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3. Hebrew Dataset
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Figure 3.4. Various images are challenging in different aspects such as skew, font, or
damaged inscriptions.

A number of challenging pictures was selected such as advertising signs in many
colours and artistic fonts, banners with severe skew of the inscriptions, or signs with
degraded inscriptions. See examples of these challenging images in Figure 3.4.

We believe that the presented variety of images correspond with the tourist scenario
and it is safe to say that the dataset suits at least some of the use-cases of TextSpotter,
e.g. offer a translation of the text present in the picture to the tourist.

For the purposes of script recognition, we can consider the dataset quite challenging.
The text lines are usually short as we can see in the distribution of text line lengths in
Figure 6.6. The shorter the text, the more difficult the task of script classification as
we learned from the reviewed literature.

I 3.2 Annotation Procedure

The dataset was annotated using the pylabelme annotation tool available at https://
github.com/mpitid/pylabelme that was adapted at Centre for Machine Perception
at CTU for the needs of TextSpotter prior to this thesis.

TextSpotter evaluation tools work best if each annotated rectangle corresponds to
one word which means we annotated individual words rather than text lines. This is
a bit inconvenient when evaluating the script classifier that works on the level of text
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lines. Nevertheless, we did not find this to be an issue since there are no serious reasons
not to do the evaluation on the word level. Moreover, annotation on word level is
compatible with the rules of the ICDAR competition.

The tool can access TextSpotter interface and create annotation for each MSER
detected by TextSpotter and classifies it individually. Such classification does not form
the text line and does not take language model into account, therefore, it is often
incorrect. Non-character regions are often classified as characters or character regions
are assigned an incorrect class. We have corrected all annotation of the MSERs and
sorted out the non-character regions. As a result, the dataset can provide ground truth
information at the lowest level of individual characters. This was a demanding process
as one character in the image can correspond to multiple MSERs. To illustrate the
annotation process, we provide a example of an annotation of one selected sign.

W ox>-awin

Figure 3.5. Screenshot from the annotation tool, both words and characters are annotated
in the image. One character is highlighted in magenta.

The annotations are organized in the following manner. Each image has several
associated text files:

= imageName.gt contains bounding box of each word and the word string in plain text
as required at the ICDAR competition

m imageName.lif contains the same information but in JSON format

= imageName_regions.json contains mask images and corresponding annotation of
each detected MSER

Moreover, there is a single ground truth file in XML required by TextSpotter con-
taining the bounding boxes and annotation of the words in all images. For convenience,
we provide several version of this ground truth file. Each contains words in a different
subset of scripts:

= gt_only_hebrew.xml
= gt_hebrew_latin.xml
m gt_hebrew_latin_cyrillic.xml

Should the mask images of all MSERSs be required, they can be easily found in a sub-
folder with the same name as the corresponding image. A imageName.txt file in the
same sub-folder contains bounding boxes and annotations for each MSER. or question
mark in the case of a non-character region. The file ends with a list of MSER IDs
forming the words.
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Chapter 4
TextSpotter Performance Analysis

One of the goals of TextSpotter is to create a text recognition method that is indepen-
dent of the used script. Ideally, providing TextSpoter with a diverse set of fonts of a new
script would achieve performance comparable to the already tested Latin and Cyrillic
scripts. Therefore, one of the objectives of this thesis is to asses the performance of the
TextSpotter engine on an unfamiliar script.

Hebrew was chosen as an instance of the unfamiliar script for its fairly similar struc-
tural properties to the Latin script (as opposed to e.g. Arabic scripts where different
problems arise as explain in Section 2.1.1). Its characters have a clear bounding box
and in the printed form of Hebrew do no overlap which makes the basic text recogni-
tion method of TextSpotter feasible for Hebrew. Moreover, it has a similar number of
character classes as the Latin script (as opposed to the CJK scripts where there may
be as many as several thousand classes, see Section 2.1.2).

After familiarising with the interface of TextSpotter and its evaluation tools, a dataset
with text in an exotic script had to be created as a prerequisite to the evaluation stage.
See Chapter 3 for details about the dataset.

In order to measure performance of TextSpotter when it is used to detect an unfamil-
iar script, various tools were created besides the standard evaluation framework. The
reason behind this decision is that the existing tools do not provide good visualization
of the problematic character classes. These tools are described in Section 4.2.1.

The analysis of TextSpotter performance on our Hebrew dataset is presented in
Section 4.2.2 along with the list of properties of the Hebrew script that we found prob-
lematic. We believe these properties make the recognition of Hebrew a more difficult
task than recognition of the Latin script. To validate the problems are universal and
not limited to the collected dataset, a comparison with a synthetically created dataset
is made to simulate ideal conditions of recognition. Please note that the revision of
TextSpotter used during the measurements was r2462 unless specified otherwise.

When the analysis on the Hebrew dataset was performed, we saw that it would be
beneficial to experiment with a script that differs from the Latin script more profoundly.
Because an experimental pipeline of TextSpotter was being developed during the work
on this thesis, we selected the Char74k public dataset with Kannada inscriptions and
compared the performance of both the traditional pipeline and the experimental one.
See Section 4.3 for details about the new pipeline and the experiments.

I 4.1 Preparatory Tasks

Preparatory tasks needed prior to the analysis such as training the Hebrew character
classifier or creating the Hebrew dictionary are described in this section.

B 4.1.1 Training of the Hebrew Character Classifier

In order to classify Hebrew characters, the character classifier must be trained first—
using synthetic fonts. The Hebrew alphabet consists of 22 letters and 5 of these letters
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have two forms (the special form is used when the character is at the end of the word).
In the following text, we treat these forms as different characters which yields 27 classes.
The FLANN classifier is used to classify the characters in the conducted experiments.
For more details about the FLANN classifier, please refer to Section 6.1.

Total of 19 typefaces were used for training. The typefaces were chosen to represent
distinctly different designs of the Hebrew letters. Conservative typefaces such as Times
New Roman, Arial, or DejaVu were chosen as well as the more artistic-looking ones such
as Stam or Shofar. Monospaced fonts were also present (Miriam Mono, Free Mono).
The Table 4.1 shows the font families with the different fonts that were used.

typeface fonts
Arial Regular, ITtalic, Bold, Bold Italic
BABEL Unicode Regular, Italic
Courier New Regular, Italic, Bold, Bold Italic
David CLM Medium, Medium Italic, Bold, Bold Italic
DejaVu Sans Bold, Bold Oblique
Droid Sans Hebrew Regular, Bold
Frank Ruehl CLM Medium, Medium Oblique, Bold, Bold Oblique
FreeMono Regular, Oblique, Bold, Bold Oblique
FreeSans Regular, Oblique, Bold, Bold Oblique
FreeSerif Regular, Ttalic, Bold, Bold Italic
Hadasim CLM Regular, Regular Oblique, Bold, Bold Oblique
Keter YG Medium, Medium Oblique, Bold, Bold Oblique
Miriam CLM Book, Bold
Miriam Mono CLM Book, Book Oblique, Bold, Bold Oblique
Shofar Regular, Regular Oblique, Bold, Bold Oblique
Simple CLM Medium, Medium Oblique, Bold, Bold Oblique
Stam Ashkenaz CLM Medium
Stam Sefarad CLM Medium
Times New Roman Regular, Ttalic, Bold, Bold Italic

Table 4.1. Typefaces and their fonts used to train the character classifier.

B 4.1.2 Optimizations Prior to the Analysis

Two minor optimizations were performed prior to the analysis based on the collected
dataset. First, a custom model of the Hebrew alphabet was defined, specifying which
characters exceed the baseline (7, 9, p, ], 1) and which exceed the top line (only 5 in
Hebrew). This allows TextSpotter to distinguish between several pairs of Hebrew letters
which differ only in height. The configuration file describing the model can be found
in testData/config/Hebrew.cfg.

Second, a dictionary of the most common words in Hebrew was added in order
to correct minor errors in classification. A frequency list of words from https://
invokeit.wordpress.com/frequency-word-lists/ was used. The list is constructed
from a large sample of Hebrew subtitles available on http://opensubtitles.org. It
is available under the terms of the Creative Commons — Attribution/Share-Alike 3.0
licence. We used the 150 000 most frequent words as a dictionary for TextSpotter.

The dictionary had very little impact on the performance since only a few words
were corrected using it but the custom alphabet model improved the OCR performance
by 4%. As performing these tasks is a common routine when adding a new script,
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we do not analyse their impact in more detail and we consider them to be more of a
preparatory task than optimizations.

I 4.2 Analysis on Hebrew Dataset

The performance of the entire pipeline was measured using the standard TextSpotter
evaluation tools. Recall reached 61% which is comparable to Latin datasets which reach
from 60% to 75%. Precision was 38% —much lower than for Latin datasets which reach
precision around 80%.

The performance of the OCR module is 68% for the Hebrew dataset which is lower
than for the Latin datasets used to test TextSpotter (usually around 90%). From the
total of 1141 words, 236 were detected without an error—that means success rate of
21%.

For a more detailed comparison, we provide Table 4.2, where we compare the per-
formance on our Hebrew dataset with the ICDAR 2013 dataset. This dataset contains
images of similar nature to the Hebrew dataset although there are much more photos
of objects taken from close range and the scenes are often less complex.

| Precision Recall OCR Precision Perfect words ratio
Wikimedia 37.9% 61.1% 67.8% 20.7%
ICDAR 2013 83.1% 66.0% 87.9% 45.7%

Table 4.2. Performance comparison with the ICDAR 2013 dataset. Different key mea-
surements are provided.

We can see the performance is generally lower than for Latin datasets. To achieve
a deeper understanding of the problem and to measure progress in the future work,
additional tools for analysis were created.

B 4.2.1 Evaluation Tools

In order to assess which characters are hard to classify, a confusion matrizis constructed
using the Scikit-learn and Matplotlib libraries in Python (Figure 4.1). The matrix is
constructed from the results.xml file using a diff tool. The characters for which it is
apparent that it has been classified correctly, or for which the diff tool can find a reliable
misdetection, are added to the matrix. E.g. if the string “5™1” is detected as “57”, we
cannot be sure if the letter 7 was incorrectly detected as 9 and the » was lost in the
lower stages of the pipeline or if it was the other way around.

To emphasise problematic characters, we provide Tables 4.3 and 4.4 with false nega-
tive and false positive rates for each character ordered by the respective measure. This
allows us to quickly glance at the first line to see which characters are often misde-
tected (FNR) and which characters are often used instead of the correct ones (FPR).
The total number of true occurrences is always present so we can filter out the rarely
used characters (where the rates do not have significant value).

The last used indicator is the number of cases when each character was missing (not
misdetected). In this case, the character was either lost before the OCR stage (the
more like scenario) or the OCR engine failed to classify it. Table 4.5 shows the figures
for each letter.
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B 4.2.2 Problems in Hebrew Text Recognition

If we examine the FNR and FPR and the confusion matrix, we can clearly see the
groups of problematic characters. Very common misdetections (ignoring the characters
with only a few occurrences) are the following ones.

® D is mostly classified as i or .

m 71 is often classified as 9

= 1 is often classified as ] or *.

= " is often detected instead of a number of characters (7,1, 5,9, ...)

The letter n is problematic due to its high similarity with the letters i and n. There is
no pair of letters in the Latin alphabet so similar to each other, therefore, TextSpotter
didn’t need such a sensitive OCR so far. The groups of very similar characters has been
also stated in [11] as one of the problems in recognition of the Hebrew text.

The letters m and p break the assumption of a single connected component currently
present in TextSpotter (and valid for alphabets such as Latin or Cyrillic). In conse-
quence, these characters are among the top 5 letters with regard to FNR. When the
smaller component is eliminated, the letter 7 looks like 7 and the letter p does not di-
rectly resemble anything, therefore it gets classified as a number of different characters.

The last group of problems is connected to the letter Yod (*). The Latin script does
include the concept of the baseline. Some characters are completely above the baseline
(e.g. m, n, u) and some do exceed the baseline (e.g. p, q, y). However, the Yod in
Hebrew effectively adds an extra line since it covers no more than half of the usual
character height. If the shape of the letter were more distinct, this would not pose an
issue. But the letter is a simple vertical line and can have drastically different shapes
in different fonts. When the shape of a character is not clear, it often starts to resemble
Yod (particularly = or ).

Furthermore, Yod (°) is the most often lost character in both absolute and relative
measures. This is probably due to its small size and indifferent shape which allows font
designers a great degree of freedom. To remedy the problems connected with Yod, the
position of the character could be taken into account during the classification process.

letter n n P i ! ) T
FNR 100.0% 93.9% 45.5% 40.0% 37.0% 36.2% 29.6%
count 179 147 44 10 27 58 88
letter 7 5 o " > 1 0
FNR 28.1% 26.9% 21.1% 20.4% 18.1% 15.8% 15.8%
count 32 216 76 240 94 392 95
letter » T i 1 1 2 v
FNR 14.3% 14.3% 13.7% 12.5% 11.0% 10.9% 10.2%
count 196 7 52 48 163 238 176
letter 3 D 3 n v R

FNR 9.2% 6.4% 6.1% 5.3% 4.3% 3.9%

count 65 78 378 113 117 207

Table 4.3. False negative rates for each Hebrew letter with the number of true occurrences.
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letter n R ) L 1 1 m
FPR 4.15% 3.85% 3.29% 2.61% 2.29% 1.33% 1.12%
count 113 240 378 392 48 163 147
letter 7 i =) » v ° y
FPR 0.71% 0.60% 0.58% 0.42% 0.38% 0.38% 0.35%
count 27 52 95 196 117 76 88
letter b 2 > l 5 b 3
FPR 0.26% 0.24% 0.20% 0.14% 0.09% 0.09% 0.09%
count 58 238 94 32 216 78 65
letter N P 4 n n ]

FPR 0.06% 0.06% 0.06% 0.03% 0.00% 0.00%

count 207 44 7 10 179 176

Table 4.4. False positive rates for each Hebrew letter with the number of true occurrences.

letter ) n 1 n 4 ! R
lost 21.9% 21.1% 20.2% 19.1% 15.4% 14.3% 13.7%
count 595 19 84 324 13 49 321
letter u q ] 3 P a) 1
lost 13.5% 13.4% 13.2% 13.1% 13.0% 13.0% 13.0%
count 74 127 68 84 92 131 224
letter n 5 n ) ° ) >
lost 12.5% 12.3% 11.3% 10.7% 10.5% 10.1% 9.7%
count 264 301 151 103 105 515 124

Table 4.5. The percentages of lost characters for each letter and the total number of
occurrences for each letter.

B 4.2.3 Comparison with the Synthetic Dataset

In order to assess the problems in the lower stages of the pipeline (before the OCR
module), a synthetic dataset was generated from all the fonts used for training of the
character model (see Section 4.1.1) and 25 common Hebrew phrases.

The synthetic dataset does not suffer from the effects present in real-world pictures
such as complicated backgroud, skew of the inscriptions, or partial occlusions of the
characters. Also, the text covers most of the picture and all the text is in one scale,
thus diminishing the problem of text in different scales. These simplifications reduce the
task to a simple OCR problem. An example synthetic image can be found in Figure 4.2.

Rg‘?zzﬁ\ﬁ:ﬁ "'lﬂﬁ\?R‘b

Figure 4.2. Example of an image from the synthetic dataset meaning “Can you speak
more slowly?”
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Figure 4.1. Confusion matrix highlighting the problematic classes of letters in the Hebrew

script.
‘ Precision Recall OCR Precision Perfect words ratio
Synthetic 70.1% 58.5% 81.0% 23.9%
Wikimedia 37.9% 61.1% 67.8% 20.7%
ICDAR 2013 83.1% 66.0% 87.9% 45.7%

Table 4.6. TextSpotter performance on the synthetic dataset and the Wikimedia dataset.
ICDAR 2013 also included to provide better overview.

The comparison of important metrics for the Wikimedia dataset and the synthetic

one is available in Table 4.6. We can see the performance on the synthetic dataset is
either comparable or better than on the Wikimedia dataset.

We can come to a conclusion that Hebrew alphabet does not have properties that

would had a substantial negative effect on the lower stages of the pipiline (MSER, char-
acter candidates detection, and line detection). If this were the case, TextSpotter would
perform worse on the Wikimedia dataset. The lower performance can be attributed to
the problems in the OCR stage—even on the synthetic dataset, the OCR performance
is poorer than on real-world Latin datasets by approximately 10%. Another indicator
supporting this theory are the recall rates—recall is lower on the Wikimedia dataset
only by 4% compared to the ICDAR 2013 dataset which means a character candidate
or a text line have more or less the same chance of being detected no matter the script.
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Table 4.7 shows top 7 worst characters regarding the false negative rate. It confirms
the most promiment problems of the Hebrew script as the worst 3 letters are exactly
the same. In fact, the problems of the first 3 letters stand out even more if we examine
the false negative rates. The confusion matrix of the synthetic dataset is left out for
the sake of brevity (it shows the same problems as the confusion matrix in Figure 4.1).

letter | 1 P T 1 n o
FNR 100% 97.5% 56.4% 16.3% 13.7% 9.0% 8.0%
count 554 317 126 178 666 310 224

Table 4.7. Top 7 false negative rates for the characters on the synthetic dataset.

I 4.3 Analysis on Char74k Dataset

The Hebrew script was a good choice to measure performance of TextSpotter on a script
similar to Latin. However, we would like to perform a comparison on a wildly different
script as well. The publicly available Char74k dataset gives us such opportunity as it
contains inscriptions not only in Latin, but also in Kannada script.

There is another reason for adding evaluation on the Kannada script. While working
on this thesis, a completely new pipeline was being developed (refer to [29] for details)
and the need to evaluate its performance against a publicly available dataset arose.
Moreover, the new pipeline should be more suitable to recognize such a complex script
than the traditional pipeline and a comparison of their performance is offered.

Unlike the traditional pipeline in Figure 1.1, the new pipeline classifies found MSERs
into 3 classes: characters, multi-characters—meaning connected characters or whole
words—and background. The multi-characters are then segmented into individual char-
acters using the graph cut method. Therefore, one of the basic assumptions of one
character corresponding to one connected component is not needed in this pipeline. As
a result, it should be applicable to a wider set of scripts such as Arabic or the mentioned
Kannada since it performs the segmentation.

Kannada is one of the official scripts in India with 14 vowels and 36 consonants.
There are no capital forms of letters which would mean the number of character classes
is similar to the Latin script. However, consecutive consonants form clusters where one
consonant is written under the other (see an example in Figure 4.3) or the cluster has
a special ligature. Moreover, vowels are often written in the form of diacritics added
to the preceding consonant (see Figure 4.4). All the combinations make up several
hundred character classes. Unless we want to train the character classifier to recognize
hundreds of classes, segmentation is necessary due to the ligatures of consonant clusters
and vowels written in the form of diacritics.

T &)+
3J

Figure 4.3. Two consecutive consonants form a consonant cluster in Kannada.

The Char74k dataset has been created in [30]. The dataset concentrates on character
annotations but many words are also annotated (sometimes both). Single character
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4.3 Analysis on Char74k Dataset

T ¢35 - T
Figure 4.4. A vowel is written in diacritic form if it follows a consonant in Kannada.

annotations are not suitable for evaluation system of TextSpotter, therefore, we created
char74k2icdar.py script that creates the ground truth file TextSpotter expects from the
word annotations only. A total of 249 Kannada words were found in the dataset. An
example of an image from the dataset can be examined in Figure 4.5.

IS

Figure 4.5. An example from the Char74k dataset. Notice the multi-script sign and the
high similarity between Kannada characters.

The character classifier has been trained in the same manner as in Section 4.1.1
only with different fonts. The lack of wide variety of synthetic Kannada fonts is a
serious issue. We were able to collect only 15 different fonts, see Table 4.8. This
probably diminishes performance of the classifier but since we use the same one for
both pipelines, we are still able to do a comparison.

typeface fonts

Akshar Unicode Regular

Arial Unicode MS Regular

Kedage Normal, Bold, Italic, Bold Italic
Lohit Kannada Regular

Malige Normal, Bold, Italic, Bold Italic
Navilu Normal

Noto Sans Kannada Regular, Bold

Sampige Regular

Table 4.8. Typefaces and their fonts used to train the Kannada character classifier.

We cannot expect high performance since having 2 letters on top of each other in a
word is something TextSpotter cannot handle. However, the vowels written as diacritics
are effectively a ligature and if the graph cut pipeline were able to segment the diacritics,
the recognition of the vowel would be possible since we have trained the diacritics as
separate characters.
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4. TextSpotter Performance Analysis

B 4.3.1 Comparison of TextSpotter Pipelines

The Char74k dataset was processed by both the traditional pipeline and the experimen-
tal graph cut pipeline. The revision r2616 of TextSpotter was used. We have discovered
that Kannada script is very demanding—both pipelines show very poor performance
on the Kannada script which is immediately apparent in Table 4.9.

By examining the output, we saw that difficulty of detection of Kannada text is
comparable to the detection of Latin text for both pipelines (see Figures 4.7 and 4.8).
MSER proved to be a general method able to detect even characters of the Kannada
script.

| Precision Recall OCR Precision Perfect words ratio
Traditional 6.0% 15.7% 8.8% 0%
Graph Cut 7.4% 25.6% 2.7% 0%

Table 4.9. Performance comparison of the traditional pipeline and the graph cut pipeline.

The problem is in the OCR stage for both pipelines. Many characters in the Kannada
script differ from each other only by a dot in the centre or a different end of the stroke.
The consonant clusters are an unfamiliar concept to TextSpotter which is why their
lower parts may be mistaken for an independent word which happened e.g. in Figure 4.6.
The most notable difference between the pipelines is that graph cut pipeline achieved
much higher recall which is most likely due to its ability to detect multi-characters
which is advantageous in a script with many ligatures.

Figure 4.6. The unusual properties make text detection of Kannada difficult. Notice the
word incorrectly formed from the lower parts of the consonant clusters in magenta.

However, our expectations about its ability to perform segmentation on Kannada
words to obtain the diacritical form of vowels did not confirm. While useful for the
connected characters of the Latin script, the segmentation technique would have to be
adapted for the Kannada script.

We have examined the text detected by both pipelines and found that the graph cut
pipeline was much more successful in the detection in majority of images. This obser-
vation corresponds to the higher recall of the experimental pipeline. To illustrate the
difference in performance, we provide several examples of text detection in Figure 4.7.

There are rare cases where the graph cut pipeline does not detect the text but
the traditional pipeline does. More serious issue is that the graph cut pipeline quite
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4.3 Analysis on Char74k Dataset
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Figure 4.7. Text detections by the graph cut pipeline (green) are typically more accurate
than by the traditional pipeline ( ).
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Figure 4.8. Rarely, the traditional pipeline ( ) performs better than the graph cut
pipeline (green). Notice how graph cut often misclassifies background as character or
multi-character.

often classifies background as characters or multi-characters. Both these problems are
illustrated in Figure 4.8.

To sum up, the new graph cut pipeline showed significantly better performance in
text detection but the FLANN-based character classifier used in both pipelines during
our measurements is not general enough to handle a complex script such as Kannada.
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We believe that even with a larger number of Kannada fonts, the performance would
not improve by much. Our results confirm that recognition of Kannada script is a
difficult problem which is in accordance with the results published by the authors of
the dataset in [30] whose method was not applicable to Kannada as well.
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Chapter 5
Improvements for Hebrew Script

In the following chapter, we attemp to extend the existing methods of TextSpotter to
be more applicable to the Hebrew script thus improve the performance on the script.
In Section 4.2.2; we have discovered inherent structural properties of the script that are
not present in the Latin script. Therefore, these were not accounted for in the original
design of TextSpotter.

We modify the existing methods rather than develop a specialized character classifier
since one of the goals of this thesis is to make the methods used in TextSpotter more
general. The modifications are implemented in a manner that does not affect the
performance on other scripts.

First problem are the letters comprising of 2 connected components—He (77) and Qof
(p)—and the solution is offered and evaluated in Section 5.1. Second problem is the
high similarity of the letter Yod (*) to a number of other letters in the alphabet due to
its indistinct shape. We use the unusual positioning of the letter on the line to solve
this issue in Section 5.2.

I 5.1 Two-component Letters

Two different approaches are presented to solve the problem of the two-component let-
ters. Section 5.1.1 offers a straightforward method of removing the smaller component
of the letter while Section 5.1.2 describes a method of merging the components together.
The performance of both methods is then compared in Section 5.1.3.

B 5.1.1 Removing the Smaller Component

The most straightforward solution is removing the smaller component of the letter be-
fore training the FLANN matcher. The advantages are its simplicity and not requiring
any internal changes to TextSpotter. It is be expected to solve the issue provided the
chosen component of the letter is distinct from the other characters. If we examine the
letters, the larger part of Qof is quite distinct but the larger part of He is very similar
to Resh (1) and in most of the fonts, it is indeed the same.

The implementation of the solution is as follows. The ocrTrainGenerator.py script
creates an image for each letter of the script and for each training font. The FLANN
matcher is then trained using these images.

As usual, the script creates an image of the letter. Before the image is saved, the
following procedure is called to remove all but the largest connected component.

1. binarize the image (pixels with intensity lower than 50 are considered background)
2. label the connected components

3. remove all pixels from the original image except the pixels of the largest component
4. save the image of the letter

Then the FLANN is trained as usual from the set of these images.
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B 5.1.2 Merging the Components

Instead of simply discarding the smaller component of He(n) and Qof(p) letters, one
might find suitable criteria that would allow to merge the components into one charac-
ter. While being more complicated than the previous solution, it should solve the issue
of He(7) resembling Resh(7) after removing the smaller component and also solve the
problem in its generality.

If we examine the two letters, we see that they comprise of one curved component
(we shall call it outer) and one simple stroke (inner component). Following criteria for
merging the components were derived from the structural properties of the letters.

1. Outer component must have one deep defect in its convex hull.
2. Inner contour cannot have any large defects in its convex hull.
3. The bounding boxes of the components must overlap.

4. The contours of the components cannot overlap.

Let us examine the criteria. Both letters have indeed one large defect in the convex
hull of the outer component. The defect is marked in Figure 5.1 for the letter He(77). In
some of the more decorative fonts, there are other defects present in the outer part of
the letter but these are easily filtered-out using the depth of the defect—the threshold
was set empirically but the method is not sensitive to changes in this threshold since
the depth difference is quite high.

start

end

Figure 5.1. The large defect in the convex hull of the curved component is marked in
red. Start and end points of the defect are the red dots and the depth of the defect is
marked with a dashed line.

The situation is similar for the inner components. Although it is a simple stroke,
there might be small defects present in the decorative fonts. These are filtered out in
the same manner as in the case of the outer components.

The first two criteria filter most of the wrong pairs of components that might be
merged but not all, e.g. consider the string “11”. Therefore, the third criterion is added.
For the two letters in question, it is very difficult to find a rotation where the bounding
boxes would not overlap which makes this condition suitable yet simple.

The last condition is merely of a technical nature. Since multiple scales of all charac-
ter candidates are present at this point of the pipeline, there are some bizarre contours
whose multiple scales comply with the previous conditions. Such contours are present
in the real-world Wikimedia dataset, not the synthetic one.
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Unfortunately, characters with more than one component are very rare, therefore,
the method cannot generalize to other alphabets. The only other character consisting
of two components we were able to find is Jeran in the Runic alphabet. This character
breaks the second assumption of our method but Runes are such an edge case that we
did not find it necessary to design the method to account for the character. The CJK
scripts are completely different, their characters consist of many components where
different techniques must be used (refer to Section 2.1.2 for some examples).

B 5.1.3 Comparison of Methods for Two-component Letters

To assess if the two approaches solve the problem at hand and to compare them, we
provide a confusion tables for both characters in Tables 5.1 and 5.2. It was mentioned
in the analysis that He and Qof are among the top 5 letters regarding the FNR. The
performace improved for both letters when either of the proposed methods was used,
especially the true positive rates.

1 — before 7 — removed 7 — merged

9TP 38 FP 98 TP 34 FP 81 TP 38 FP
138 FN 3351 TN 73 FN 3327 TN 110 FN 3312 TN

Table 5.1. He () confusion tables showing the performance before and after each
method—after removing the smaller component or after merging the components.

p — before p — removed p — merged

24 TP 2 FP 35 TP 14 FP 37 TP 5 FP
20 FN 3490 TN 16 FN 3457 TN 18 FN 3481 TN

Table 5.2. Qof (p) confusion tables showing the performance before and after each
method—after removing the smaller component or after merging the components.

Although Qof is showing an increase in false positive rate, the overall precision of
the OCR module was slightly improved by 1% in both cases. The number of perfect
words increased slightly when removing the smaller component and significantly when
merging the components, see Table 5.3.

before | removed | merged
236 | 239 | 217

Table 5.3. Total number of perfect words before and after each method—after removing
the smaller component or after merging the components.

The better overall result when using the merging method has two reasons. First is
that when the smaller component is eliminated, the TP rate of He(71) indeed increases
but it leads to increasing FN rate in Resh(n) since the characters are almost indistin-
guishable (although it still is an improvement). The second reason is that merging of
the components helps in other situations as well. E.g. in some fonts, the middle stroke
of Shin(w) is not connected to the rest of the letter and the proposed method correctly
merges the two components together.

While experimenting with the first solution in Section 5.1.1, it was discovered that
the described preprocessing of the synthetic fonts actually measurably improves the
overall performance of the pipeline if done on all the letters of Hebrew alphabet.
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5. Improvements for Hebrew Script

The thresholding has the effect of ‘sharpening’ the letter, possibly removing the parts
of the letter that are lost during the recognition process, thus making the learning
process more focused. An enlarged example of the preprocessing effect on the letter
Mem (n) can can be found in Figure 5.2, the background is coloured blue to emphasise
the difference.

Figure 5.2. The effect of thresholding on the letter Mem (). We can see the brightest
pixels are removed. The background is coloured blue to emphasise the difference.

Following measurements relate to the case when the preprocessing is done on all
letters, not just the aforementioned two, and the merging method is used. In order to
provide a thorough comparison to the state before the optimizations, we provide the
confusion matrix again in Figure 5.3 and false negative and false positive rates (only
for top 7 characters for the sake of brevity) in Tables 5.4 and 5.5. If we compare the
tables with the Tables 4.3 and 4.4, we see that the rates have dropped for most of the
characters.

Arguably, the most important metric is the total number of correct words. This
improved from 277 before the optimisations to 311 after.

In the case of the characters we focused on, the FNR rate for He (71) has dropped by
a third although it is still maintaining the second worst position. Thanks to merging
the components, there is no regression in recognition of Resh (7). In fact, only one
Resh was classified as He (7). The FNR rate for Qof (p) has dropped from 45.5% to
32.7% which does not seem as much but if we take a look at the confusion matrix in
Figure 5.3, we can see the situation has quite improved.

letter | ) o 1 P 7 1 T
FNR 100.0% 61.4% 34.6% 32.7% 30.0% 28.6% 26.5%
count 166 207 26 49 10 42 34

Table 5.4. False negative rates for the top 7 worst characters after the optimizations.

letter | n ’ 1 ) i 1
FPR 3.94% 3.05% 2.711% 2.46% 1.32% 1.27% 0.61%
count 261 116 372 405 173 207 42

Table 5.5. False positive rates for the top 7 worst characters after the optimizations.
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Figure 5.3. Confusion matrix after the all the optimizations—merging of components and
the pre-processing.

That being said, we can draw a conclusion that the more complicated method of
merging the components together is more suitable to solve the problem of letters with
two components. Mainly because of its substantial impact on the total number of perfect
words but also because it does not suffer from the regression in Resh (7) classification.

I 5.2 Issues with the Letter Yod

We have identified two different problems connected to the letter Yod (*) in Section 4.2.2.
First problem is that since it has a very similar shape to the letters Vav (1) and Nun
(1), the confusion among these character classes is high.

Second problem is that Yod (*) has a very indistinct shape and a number of different
letters tend to be classified as Yod (e.g. 7,5, or 1), probably when parts of their contours
are missing. As a result, FPR of Yod is quite high.

There is only one feature of Yod that can help us distinguish it from other similar
characters—its unique position on the line. As in the Latin script, the Hebrew line can
be divided into 3 regions. Some characters extend under the bottom line (underline
letters), some extend above the top line (high letters) and some are between the top
and bottom lines (low letters). Yod belongs to the last group of low letters. However,
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while it does start at the top line, it does not extend to the bottom line like the other
characters. Consequently, we can say it creates a new group of characters that extend
from the top line to the Yod line, see Figure 5.4 for illustration of this phenomenon.

Top line
Middle line

Bottom line

Under line

Figure 5.4. There is one more region in the Hebrew line of text due to the letter Yod.

The problem of finding the optimal classification of letters in a text line is formulated
in TextSpotter as a longest path problem in the adjacency graph of the character
hypothesis to find a sequence of hypothesis with maximal score (see [3] for a rigorous
definition).

The score assigned to each character hypothesis is a combination of multiple factors.
One of these is the character position on the text line. If the character region is classified
as the letter “x”, its bottom should be close to the bottom line and its top close to the
middle line—it is a low letter. The position deviation for a low letter r is defined as

d(lpm, ) + d(lp,7)
h Y
where [, and [ refer to the middle line and bottom line. The deviation is normed by
the height of the line h.
When Yod was listed among the low letters, it always strongly deviated from the
bottom line. To account for this, we introduce a new class of letters containing only
Yod. The top of these characters lies on the middle line and the bottom lies on the Yod

line (refer to Figure 5.4 again). The position deviation of the Yod character region vy is
defined as

dev(r) =

A(bn,y) + [d(l, y) = h/2]

dev(y) = A

Since we cannot detect the Yod line (there is rarely more than one Yod character
within one line), we take advantage of the fact that Yod character covers about half
of the text line in most fonts. The distance of the character to the Yod line is then
approximated by ‘d(lb, y) — h/2|.

B 5.2.1 Evaluation of the Yod Optimization

The proposed solution has been evaluated but as it was implemented at a later time,
a newer revision r2616 of TextSpotter was used to conduct the experiments in this
section. This revision already includes the improvements from the Section 5.1.

The solution has improved the confusion between Yod and the other classes of similar
characters as we can see in the confusion matrix in Figure 5.5 if we compare it to the
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before ‘ after
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Table 5.6. Perfect words before and after the Yod optimization.
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Figure 5.5. Confusion matrix of character classification after the Yod optimization.

previous matrix in Figure 5.3. The most important metric—total number of perfect
words—improved as well as we can see in Table 5.6.

The high false positive rate indicated that many characters were misclassified as Yod.
Situation improved in this regard as well. We provide Table 5.7 with FPRs before the
optimization once more because the used revision of TextSpotter is different and as a
result the FPRs slightly differ from the tables in the previous section. Kindly compare
the values with the 7 worst FPR after the optimization in Table 5.8. The FP rate of
Yod has decreased almost by half while the rest of the FPRs only slightly increased.
Some of the Yod characters were lost by re-defining the position deviation but the total
performance increased—it is apparent from the increase of total perfect words.

letter \ q n 1 . m 1 1
FPR 3.59% 2.71% 2.64% 2.59% 1.31% 1.23% 0.77%
count 262 115 403 377 210 169 43

Table 5.7. False positive rates for the top 7 worst characters before the Yod optimizations.
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5. Improvements for Hebrew Script

letter | 1 1 n , p a 1
FPR 3.64% 2.94% 2.84% 1.42% 1.37% 1.30% 0.80%
count 268 405 117 350 172 213 45

Table 5.8. False positive rates for the top 7 worst characters after the Yod optimizations.
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Chapter 6
Script Recognition

Script recognition is an important pre-requisite for complex tasks such as recognition of
text in multiple scripts in one scene image (explained in Section 2.2) or for identification
of the language used in the image. This chapter describes the implementation of script
recognition in TextSpotter, which was not present prior to this thesis, and the rational
and theory behind the chosen approaches.

First method was proposed and evaluated in Section 6.1. The scripts are discrim-
inated by structural features of individual characters using a combination of several
k-Nearest Neighbour classifiers—one for each script—and while the method did show
promising results, a different approach based on bigram frequencies was explored in Sec-
tion 6.2. Although it showed lower performance than the first classifier, we successfully
combined these two approaches to achieve slightly higher performance.

As for the implementation details, ScriptClassifier class implements both of the clas-
sifiers. If needed, please refer to the enclosed DVD for its source. The model for
the script classifier can be trained from the character images and data created by
the ocrScriptTrainGenerator.py using the TrainScriptClassifier method in TextSpot-
ter. The script classifiers were developed and tested using the traditional pipeline of
TextSpotter. There is also an experimental graph cut pipeline able to detect multi-
characters that we compared to the traditional pipeline in Section 4.3. Plugging the
script recognition into this pipeline should not pose an issue.

I 6.1 Nearest Neighbour Script Recognition

In the original TextSpotter pipeline, character candidates are first detected and assem-
bled into text lines without the need for the knowledge of the script. The proposed
method for classification of script is based on following assumptions:

m The text lines and individual character candidates are already detected.
® The script rarely changes within one line of text.
m Different lines of text within an image are likely to be in different scripts.

In order to explain the chosen strategy for script classification, we must briefly discuss
the classifier used for character classification in the traditional pipeline because we
combine them later to create a script classifier.

The classification is done via k-Nearest Neighbour search (k-NN) in a high dimen-
sional feature space. Each feature vector f stored during the training corresponds to
the feature vector of a letter image i. The image ¢ is created from character ¢ € S
(where S is a script) using one of the synthetic fonts.

To speed-up the computation of k-NN, only an approximate search is performed.
Fast Library for Approximate Nearest Neighbours (FLANN) is used for this purpose
(first proposed in [31]). It is suitable for an approximation of Nearest Neighbour in
higher dimensions in sub-linear time. As the authors claim, many approximations of
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NN were proposed but the speed often depends on the dataset. FLANN is able to
choose the most suitable approximation algorithm for the given dataset.

Since the distances in high dimensional spaces are all huge and differ only slightly
from each other, the currently used classification strategy in TextSpotter is voting rather
than directly assigning the character class ¢ belonging to the nearest vector f. FLANN
is used to find the set of K nearest neighbours F' = {fi,..., fx} (specifically K = 11)
in the feature space. If label(c, f) is a function returning 1 if feature vector belongs
to class ¢ and 0 if not, confidence can be assigned to each character class ¢ € S quite
intuitively as

ZfeF label(c, f)
I .

In other words, the higher the number of neighbours of the same character class, the
more confident we are that this class is the right one.

For the purposes of script classification, a text line L is a sequence of character
images. For each character of line L, we obtain its K nearest neighbours using an
instance of FLANN trained to recognize the script S. Let us define Lg = {F3,..., F,}
to be the set of outputs. Then the confidence of the whole line when presumed to be
in script S is defined as

conf(c, F) =

lineConf(S, L) = Z max (conf(c, F)),
Fels ceS

which can be informally formulated as a sum of maximal confidences across all charac-
ters of the line. The decision of the classifier is equal to solving following optimization
problem

S* = argmax (hneConf(S, L)),

ergo deciding for the script that provides the highest confidence on the line.

The advantage of this approach is its generality. If the script can be recognized by the
traditional pipeline, we can discriminate the script without additional information other
than the images of each letter generated using the synthetic fonts. One of the objectives
while designing the classifier was to preserve this desirable property of TextSpotter.

Similar approach was proposed in [24] where k-NN search was also employed. How-
ever, they used a simpler voting scheme to classify script of the text line. Each character
was assigned a script thus voting for the script. The script with the most votes was
chosen. We experimented with this approach as well but found its performance lower
than using the script with the highest sum of maximal confidences. We believe our
approach offers better granularity. Consider for instance recognition of Hebrew and
Latin text in an image. The Latin letter “n” is very similar to the Hebrew letter “n”. In
the voting scheme, confidence for one of the scripts would be slightly higher and that
script would gain the vote. On the other hand, in our scheme, both characters will
contribute to the sum of confidences similarly and other characters with more unique
appearance will effectively make the decision.

The performance will most likely depend on the length of the line but this is a
common trait of all the methods explored in the literature. The methods showing zero
error rates operate on larger portions of the text—paragraphs or whole pages of text.

The proposed script classifier was implemented in TextSpotter and the ability to
dynamically switch character classifiers based on the result of the script classification
was added. This allows TextSpotter to recognize text in multiple scripts within one
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6.1 Nearest Neighbour Script Recognition

Figure 6.1. Example of a successful script recognition of Hebrew and Latin text lines. The
chosen script is in the annotation above the text line.

image which was previously not possible. An example of a successful script recognition
may be examined in Figure 6.1.

B 6.1.1 Evaluation of FLANN-based Classifier

To evaluate the proposed solution, we took advantage of the dataset collected in Chap-
ter 3. There is text in languages other than Hebrew present which was not annotated
during the evaluation stage where annotations in only one script were a necessity. The
Latin signs were annotated as well at this point and the proposed script classifier was
tested on the dataset.

The Hebrew classifier was trained using the same fonts as in Table 4.1. To pro-
vide complete information, we list the fonts used for training of the Latin classifier in
Table 6.1.

The script classifier was tested on two script classes—Hebrew and Latin—because
the number of Cyrillic words is very low and we could not draw any conclusions about
the Cyrillic class. The success rates are encouraging, see Table 6.2 for details.

script | Latin Hebrew
success rate 85.88% 90.71%
word count 177 1077

Table 6.2. Success rates of Hebrew and Latin script classification.

We can argue that the classifier provides state-of-the-art performance when we com-
pare the results to the methods presented in Chapter 2. The classifiers reviewed there
were often tested on more favourable datasets of printed documents where the quality
of the characters is higher (although the distortion of characters in scanned historical
documents is closer the the problem of text-in-the-wild). A viable candidate for com-
parison is the method for Latin and Cyrillic recognition in scanned documents presented
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typeface fonts
Andale Mono Regular
Arial Regular, Black Regular, Italic, Bold, Bold Italic
BABEL Unicode Regular, Ttalic
Courier New Regular, Italic, Bold, Bold Italic
DejaVu Sans Book, Bold, Oblique, Condensed,
DejaVu Sans Mono Book, Bold, Oblique, Bold Oblique
DejaVu Serif Mono Book, Bold, Italic, Bold Italic, Condensed
Droid Sans Regular, Bold, Mono
Droid Serif Regular, Bold, Italic, Bold Italic
Inconsolata Medium
Liberation Mono Regular, Bold, Italic, Bold Italic
Liberation Sans (Narrow) Regular, Bold, Italic, Bold Italic
Oxygen Book, Mono
Times New Roman Regular, Italic, Bold, Bold Italic
Ubuntu Mono Regular, Italic, Bold, Bold Italic
Ubuntu Regular, Light, Medium, Bold, Italic, ...
Ubuntu ..., Medium Italic, Light Italic
Verdana Regular, Italic, Bold, Bold Italic

Table 6.1. Typefaces and their fonts used to train the Latin FLANN classifier.

by Ablavsky and Stevens in [24]. Their method was tested on two script classes as well
and the scanned documents are quite noisy and degraded, see Figure 6.2. The success
rates for Latin and Cyrillic scripts measured first on scanned documents and then on
more degraded ones can be found in Table 6.3.

Figure 6.2. Examples from the dataset used by Ablavsky and Stevens in [24]. Quite similar
to the TextSpotter segmentation output on which the script recognition method operates.

script ‘ Latin Cyrillic
scanned 86% 99%

scanned copies 51% 99%

Table 6.3. Success rates of a comparable method by Ablavsky and Stevens in [24] on
scanned documents and the more degraded scanned copies of documents.

It is difficult to say which case in Table 6.3 is closer to TextSpotter use-case but we
can see the success rates on Hebrew and Latin (see Table 6.2) are somewhere in the
middle of these two cases. In other works reviewed in Chapter 2, the success rates were
typically around 95-99%. We believe it is safe to say the FLANN-based method shows
performance comparable to the state-of-art considering the more difficult conditions it
operates in.

To be consistent with Chapter 4, we use similar confusion matrices to visualise the
problems. The confusion matrix for Hebrew and Latin script classes can be examined
in Figure 6.3. We can see the performance is somewhat lower in the case of Latin text.
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Figure 6.3. Confusion matrix of Latin and Hebrew script classification. The counts refer
to the number of words.

To give illustration of incorrect decisions made by the classifier, we provide mask
images of the Latin lines classified incorrectly as Hebrew in Figure 6.4 and images of
Hebrew lines classified as Latin in Figure 6.5. In both cases, the mis-classified line
usually has some challenging aspect such as considerable skew, non-character regions,
or severely degraded character contours. Nevertheless, there are lines where the reason
of failure is not directly apparent.

Figure 6.4. Mask images of most of the Latin lines classified as Hebrew. The proportions
of the images were preserved.

As mentioned before, we expect the classifier to be more successful on longer lines. To
validate this assumption, we collected the lengths of lines written in both Hebrew and
Latin script for two separate classes—correctly classified and incorrectly classified—and
we show histograms of their lengths in Figure 6.6.

We can notice a slight tendency of longer lines being classified correctly but compari-
son is difficult due to the much larger size of the correctly classified class. Therefore, we
provide the same histograms but normalized to form a probability density in Figure 6.7,
where the tendency is much more apparent.
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6. Script Recognition

~

Figure 6.5. Mask images of some of the Hebrew lines classified as Latin. The proportions
of the images were preserved.
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Figure 6.6. Histograms showing the lengths of text lines for the correctly and incorrectly
classified lines for both Hebrew and Latin lines.

Another observation that can be made is that text lines comprising of more than
15 characters are quite rare. Although natural for our use-case of text-in-the-wild, it
makes our task more difficult. Effectively, the recognition is done somewhere between
line level and word level.
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6.2 Bigram Script Recognition
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Figure 6.7. The same histograms but normed to form a probability density. The values
have been smoothed using moving average to make it more readable. Therefore, short lines
up to 5 characters are not visible.

I 6.2 Bigram Script Recognition

Script recognition methods using structural features such as the one proposed in Sec-
tion 6.1 might be unsuitable for very similar scripts which share many characters. E.g.
there are Cyrillic words that have only one character not present in the Latin script.
In this case, the border between script recognition and language recognition becomes
somewhat blurred.

Therefore, we experimented with applying a technique commonly used in language
identification in our context of script recognition. A classifier using n-gram frequencies
is proposed in this section. The usage of n-gram frequencies for language classification
is well-established in the field of pattern recognition not only for text processing [32]
but also has been generalized for speech recognition [33].

An n-gram is a sequence of consecutive primitives (letters) of length n in a
document—-be it a paragraph or a text line. E.g. the word “hello” has 4 bigrams:
“he”, “el”, “lII”, and “lo”. In the case of speech recognition, n-grams are sequences of
phonemes (instead of letters) in speech (instead of text). See [32-33] for more details
about n-grams.

We can use the FLANN classifiers trained in Section 6.1 to obtain hypothesis of
text in each language by choosing the hypothesis with the highest confidence for each
character. The text will contain more errors than the final output of TextSpotter
because at this stage, we do perform segmentation or construct the adjacency graph of
characters (on which dynamic programming is run to obtain the sequence with highest
score).
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A desirable property of bigrams is their tolerance to noise in the document. It is
said in [32] that retrieval systems based on n-grams preserve their performance up to
30% error rate. Due to this, n-grams are a viable option for our task even under the
previously explained conditions of noisy text.

The first step in construction of the classifier is to obtain the frequencies of the n-
grams for every language we want to recognize. We chose to use bigrams, n-grams of
length 2. The benefit of adding also trigrams or four-grams was deemed questionable
since we deal with such a noisy text, bigrams are short and therefore less bigrams are
affected by one incorrectly recognized character.

The relative frequencies of all possible bigrams in a language are estimated from a
large corpus of text. We do realize that we are solving the script recognition problem and
that very different languages might be written in one script—this is most pressing for
the Latin script, other scripts tend to be specific to only a handful of similar languages.
For instance, only Hebrew, Yiddish, Ladino and Judeo-Arabic languages are written
in the Hebrew script. However for the testing purposes, we decided to use a corpus in
one distinctive language of each script. We believe this is a viable option since some
properties are preserved across the languages, e.g. a vowel is more likely to be followed
by a consonant than another vowel.

The probability of an occurrence of the bigram xy in a script S is estimated from
the corpus as

count(x
Playls) = )

where n is the total number of all bigrams in the corpus. Analogically, we estimate the
probability of the letter x in script S as

P(2|S) = count(a:)’

n

where n is the total number of characters in the corpus. From these relations, we
derive the maxzimum likelihood estimation of the conditional probability of the letter y
following letter x as

Plle.s) = 0.

Then the likelihood that a text line L is in script S is equal to the product of the
conditional probabilities of all letters y given the preceding letter x on the line

c(rls) = I[ Plz. ).
zyeL

The classifier chooses the script that maximises the log-likelihood for numerical rea-
sons. In other words

S* = argmax L(L|S) = argmax Z log(P(y|x, S)).
TyEeL
B 6.2.1 Implementation Details of Bigram Classifier

The details about the corpora of Hebrew and Latin text used for training the probabili-
ties are shown in Table 6.4. The English corpora was collected from news commentaries
and was originally used for the purposes of ACL 2013 Workshop on Statistical Machine
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script ‘ Latin Hebrew

source ACL Workshop MILA research center

licence Free Free for research purposes

URL http://is.gd/DQsDG4 http://is.gd/gK0osB
# of words 1 510 590 1 851 605

Table 6.4. Details about Hebrew and Latin corpora.

Translation. The Hebrew corpus is a collection of news and articles from the Arutz7
website combined with Spoken Israeli Hebrew corpus, both made available for free for
research purposes by the MILA center in [34].

One of the difficulties when using bigrams is that their probability distribution is
often very sparse. There are bigrams not present even in large corpora but that can
appear in the evaluated text—we would estimate the probability of such bigram to be
0 which is obviously not the case. This can lead to problems during evaluation, as
explained in [35]. The most straightforward solution is to add 1 to the occurrences of
all bigrams. Although simple, we found this solution to enhance the performance.

While conducting experiments, we found that using only the probability P(zy|S)
actually shows better performance than using P(y|z,S), therofore we take advantage
of this finding.

B 6.2.2 Evaluation of Bigram Classifier

Our standard tools were used to measure the performance. The success rates for Hebrew
and Latin can be found in Table 6.5 and the confusion matrix can be examined in
Figure 6.8. We can see from the success rates that the bigram classifier perfoms better
on Latin text lines then the Hebrew textlines.

script | Latin Hebrew
success rate 90.34% 84.30%
count 176 1083

Table 6.5. Success rates of Hebrew and Latin script classification using bigrams.

Latin Hebrew

900
800
Latin 700
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Hebrew
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Detected script
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Figure 6.8. Confusion matrix of Latin and Hebrew script classification using bigrams. The
counts refer to the number of words.
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We showed that bigram-based classification can be used in the context of script
recognition even if we use a corpus from one particular language and the signs are in a
variety of languages. The classifier shows poorer performance than the purely FLANN-
based one on the same set of scripts. In case of more structurally similar scripts (e.g.
Latin and Cyrillic), the situation may be reversed. Nevertheless, we combine the two
approaches in the next section to achieve superior performance.

I 6.3 Combining Proposed Script Classifiers

We have presented 2 different classifiers, the first one in Section 6.1 uses structural
features of the individual characters and classifies according to the sum of confidences
of each detected character on the line. The second one in Section 6.2 takes advantage of
different probabilities of two letters appearing consecutively in the text. In this section,
we experimented with a combination of these approaches.

The FLANN-based classifier assigns a confidence for each script to the text line. We
take advantage of this. The confidences can be compared and used as a measure of
the classification ambiguity. If the classification is too ambiguous, we switch from the
FLANN-based classifier to the bigram classifier.

The ambiguity of the classification is defined as the difference between two highest
line confidences accross the supported scripts. In case of only 2 scripts 51,52, a line
classification is considered ambiguous if

|lineConf (Sy, L) — lineConf (S, L)| < t,

where ¢ is a threshold. We set the threshold empirically to ¢ = 0.05.

This scheme proved to be more effective than the individual classifiers. The success
rates for both classes have improved slightly as we can see in Table 6.6 and again in the
corresponding confusion matrix in Figure 6.9. However, the gain was not as significant
as we had hoped for.

script | Latin Hebrew
success rate 93.22% 91.57%
count 177 1079

Table 6.6. Success rates of Hebrew and Latin script classification using the combination
of the FLANN-based classifier and the bigram classifier.

This scheme would be more useful in situations in which we knew the domain of
the text beforehand. Then the corpus used to train the bigram classifier could be
more specific and provide superior performance. For instance, we could create a corpus
mainly from city names and other common words occurring often in these circumstances
if we knew the system was used to to recognize only traffic signs in cities. However, we
do not presume to have such prior knowledge about the text in the scene at this stage.
Therefore, we had not explored this possibility.

The advantage of the bigram classifier is that it can be easily used to recognize also
the language of the text. A different synthesis could be achieved by using the FLANN-
based classifier to classify the script and then use the bigram classifier trained with
different corpora for each language of the script to classify the language.

44



Latin Hebrew

900
800
Latin
700
600

500

True script

400

300
Hebrew

200

100

Detected script

Figure 6.9. Confusion matrix of Latin and Hebrew script classification using the combined
of the FLANN-based classifier and the bigram classifier. The counts refer to the number
of words.
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Chapter I
Conclusion

In this thesis, we have followed the given guidelines to explore and improve usability of
TextSpotter in scenes with text in multiple scripts. In order to do so, state-of-the-art
has been examined in Chapter 2.

To learn about the possible challenges and also the specifics of different scripts, we
have reviewed the literature about recognition of non-Latin scripts such as the Middle
Fastern and CJK scripts in Section 2.1.

Script recognition was reviewed in Section 2.2 to be able to propose an effective
method of script recognition in TextSpotter. We struggled with the lack of literature
on the topic in the context of text-in-the-wild and reviewed the methods designed for
situations closest to ours (historical and degraded documents).

An original dataset compiled from 100 Wikimedia images and annotated for the
purposes of evaluation is described in Chapter 3. The dataset contains mainly Hebrew
and Latin inscriptions and the images are of similar nature to tourist photographs or
Street View scenes.

This dataset was primarily used to evaluate which modules of TextSpotter are sen-
sitive to changing the script in Chapter 4. We showed from several angles that the
problems arise not in the lower stages of extrema regions detection or text line forma-
tion (which are general enough for a wide range of scripts) but in the OCR stage and are
caused by high similarity of some groups of letters in the script or by other fundamental
difference from the Latin script. Either by breaking the assumption of one letter being
connected component in Hebrew or by the unusual composition of consonant pairs in
the Kannada script.

As we mainly concentrated on the Hebrew script, we addressed the found issues and
improved the performance of TextSpotter on Hebrew significantly in Section 5 from 236
perfectly recognized words to 321 out of 1147 present in the dataset.

Finally in Chapter 6, we proposed two different methods for script recognition oper-
ating on text line level (and often effectively on word level due to our dataset containing
very short lines). We implemented a scheme of one k-NN classifier for each script which
is used in the literature but improved on its decision strategy. The first strategy was
based on the confidence of the k-NN classifiers and the second strategy on the likeli-
hood of bigram occurrences—a technique often used in document analysis for language
classification but not for script recognition as far as we are aware. Both strategies
show state-of-the-art performance as argued in Section 6.1.1. A combination of these
approaches was tested and achieved slightly better performance.

TextSpotter is now able to recognize text in different scripts within one image and
the script classifier is trained only from a set of synthetic fonts in the same way as
character classifiers or from the fonts and a corpus of text when using the bigram-
based classifier. Consequently, the script recognition method preserves the desirable
generality of TextSpotter and does not work only on a predefined set of scripts like
most of the classifiers in the literature.
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I 7.1 Further Improvements

We propose following improvements or extensions to the work presented in this thesis
that occured to us and were not explored due to the time constraints or being out of
the scope of the guidelines.

Generalize the method of merging components from Section 5.1.2 to the much more
complex case of CJK scripts. This would be the first step to make TextSpotter usable
for a new set of scripts that, at the moment, is too different to be recognized by its
methods.

Perform language classification using the bigram script classifier. Before this thesis,
TextSpotter had no script classification, therefore, no language classification either.
Language detection may be useful especially for the Latin script that is used for many
languages, e.g. to automatically extend the character set with language specific char-
acters often present in Slavic languages or Turkish.

A classifier sensitive to finer details in the characters would improve performance for
some scripts. Although there are characters similar to each other in the Latin script,
the tested Hebrew and Kannada scripts have whole groups of very similar characters
which makes the performance of the character classifier poorer.

A more specialized script classifier could be developed if the set of scripts was known
beforehand using a set of features suitable to discriminate between the scripts. This
approach seems to be dominant in the literature. While it could probably provide better
performance, our classifier would still be needed due to its generality.

An application specific corpora for the bigram classifier. If the nature of the text in
the scenes is known beforehand, e.g. when recognizing traffic signs, the corpora used
to train the bigram classifier could be compiled accordingly. This would most likely
improve the performance.
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Appendix A
Contents of the DVD

/
| COTPOTA/ ot corpora used to train bigram classifier
- v o IO v« v English corpus
Hebrew. Xt . oottt Hebrew corpus
SOULCES . BXE vt sources of both corpora
| hebrew_set/.............. original Hebrew and Latin dataset with annotations
| _trunk/..... complete TextSpotter revision containing all the work in this thesis
SOUTCES/ ettt e actual sources
SupportFiles/........... Python scripts for generating the training images
testData/
| cont = configuration files for e.g. Hebrew or Kannada
L teX/ TEX source codes for the text of the thesis
tf g/ figures used in this text
hollmann dp.pdf ........... electronic version of the text compiled to PDF
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Appendix B
Hebrew Dataset Thumbnails
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B Hebrew Dataset Thumbnails
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Appendix C
Hebrew Dataset Details

ID Image name Link Licence Words
1 amir_peretz_election http://is.gd/g0T811 CC-BY-SA-3.0 10
2 amshalem_sign_jerusalem http://is.gd/YgXxPN CC-BY-SA-3.0 7
3 Anti-Zionism_in_Israel http://is.gd/GM7ZjC CC-BY-SA-3.0 6
4 area_a http://is.gd/i3jrxv CC-BY-SA-4.0 19
5 armenian_church_in_er2 http://is.gd/qhRMG6 CC-BY-SA-3.0 5
6 assa_kadmoni_str._in_tel_aviv http://is.gd/SdGG4w CC-BY-SA-3.0 25
7 Asyrian_convent_road_sign http://is.gd/RHwB6U CC-BY-SA-4.0 4
8 beach_of_rlz_10_-_swimming http://is.gd/MbubG9 CC-BY-SA-3.0 6
9 beach_of_rlz_11_-_danger_sign http://is.gd/4Mt355 CC-BY-SA-3.0 2

10 benamram http://is.gd/6iu7jH  Attribution 3

11 Benny_Sela http://is.gd/aC4WsKk CC-BY-SA-3.0 5

12 bethelsign http://is.gd/CJ6Ra9 CC-BY-SA-3.0 4

13 deleksonol http://is.gd/MZX7kC Public Domain 1

14 detail_of_little_windows http://is.gd/cpLMMj CC-BY-SA-3.0 3

15 dizengof_center_tel_aviv http://is.gd/YIsofu CC-BY-SA-4.0 6

16 eged-says-no-to-passenger http://is.gd/yztnsB CC-BY-SA-3.0 21

17 embassy_tel_aviv_6926 http://is.gd/EOFIAp CC-BY-3.0 4

18 emh_img_6482 http://is.gd/nkFzKs CC-BY-SA-3.0 20

19 Ezuz http://is.gd/DCVhCg CC-BY-SA-3.0 5

20 gllsprng_090 http://is.gd/L4qTW1 CC-BY-SA-3.0 1

21 haifa,_israel_bilingual _sign http://is.gd/nxZIfI CC-BY-SA-2.0 6

22 hanukkah_bus http://is.gd/v2ShDb CC-BY-SA-3.0 4

23 happy_hour http://is.gd/TNV7Dd Public Domain 5

24 hebrew-_do_not_hate_your_brother http://is.gd/Cy4hyl CC-BY-SA-3.0 11

25 hebrew_arabic_english_road_signs http://is.gd/PzcIHQ CC-BY-2.0 11

26 hebrew_english_grocery_sign http://is.gd/jWs7Sp CC-BY-2.0 7

27 hebrew_legend_wall_paintings http://is.gd/QuwIhgm CC-BY-SA-2.0 207

28 hebrew_reali_school_of_haifa http://is.gd/jIGp9qQ CC-BY-SA-3.0 19

29 Hebrew_sign_at_auto_display http://is.gd/JO7SCE Public Domain 36

30 hebrewnoparkingtrucksign http://is.gd/un0zk4 Public Domain 5

31 hebrewrussiansignholon http://is.gd/t2veTj Public Domain 32

32 hitorerut_party_2013 http://is.gd/3SHr1l CC-BY-SA-3.0 5

33 HRM_TLV_091211_177 http://is.gd/UorWnF CC-BY-SA-3.0 8

34 israel_batch_2_(163) http://is.gd/HOkPTr Public Domain 18

35 israel_batch_3_(443) http://is.gd/4vreyH Public Domain 5

36 israel_elections_2012_amsalem http://is.gd/EXqt76 CC-BY-SA-3.0 3

Table C.1. Details about dataset images.
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http://is.gd/g0T811
http://is.gd/YqXxPN
http://is.gd/GM7ZjC
http://is.gd/i3jrxv
http://is.gd/qhRMG6
http://is.gd/SdGG4w
http://is.gd/RHwB6U
http://is.gd/Mbu5G9
http://is.gd/4Mt355
http://is.gd/6iu7jH
http://is.gd/aC4W5K
http://is.gd/CJ6Ra9
http://is.gd/MZX7kC
http://is.gd/cpLMMj
http://is.gd/YIsofu
http://is.gd/yztnsB
http://is.gd/E0FIAp
http://is.gd/nkFzKs
http://is.gd/DCVhCg
http://is.gd/L4qTW1
http://is.gd/nxZIfI
http://is.gd/v2ShDb
http://is.gd/TNV7Dd
http://is.gd/Cy4hyl
http://is.gd/PzcIHQ
http://is.gd/jWs7Sp
http://is.gd/QwIhqm
http://is.gd/jIGp9Q
http://is.gd/JO7SCE
http://is.gd/un0zk4
http://is.gd/t2veTj
http://is.gd/3SHr1l
http://is.gd/UorWnF
http://is.gd/HOkPTr
http://is.gd/4vreyH
http://is.gd/EXqt76

ID Image name Link Licence Words
37 israel_elections_2012_bennet http://is.gd/3nPT4Q CC-BY-SA-3.0 7
38 israel_elections_2012_gimmel http://is.gd/pOPUFv CC-BY-SA-3.0 4
39 Israel_Elections_2012_Haavodal http://is.gd/yBzljw CC-BY-SA-3.0 7
40 israel_elections_2012_hatnual http://is.gd/aVeal0 CC-BY-SA-3.0 15
41 israel_elections_2012_hatnua?2 http://is.gd/5t95a2 CC-BY-SA-3.0 12
42 israel_elections_2012_lapid http://is.gd/88cpcl CC-BY-SA-3.0 10
43 Israel_Elections_2012_Meretz http://is.gd/Q7N5bx CC-BY-SA-3.0 11
44 israel_elections_2012_ozmal http://is.gd/sa2DeW CC-BY-SA-3.0 8
45 israel_elections_2013_shelli http://is.gd/RGValu CC-BY-SA-3.0 5
46 israel_lebanon_border http://is.gd/ZRGsBb CC-BY-SA-3.0 5
47 TIsrael_rent_protest_2011 http://is.gd/ssSsUM CC-BY-SA-2.0 8
48 jerusalem_washington_pull http://is.gd/IF4tql CC-BY-SA-4.0 1
49 jerusalem_washington_push http://is.gd/opEf45 CC-BY-SA-4.0 1
50 jerusalem_hebrew_pull_sign http://is.gd/wGulel CC-BY-SA-4.0 3
51 Jerusalem_hebrew_Push_sign http://is.gd/s4XWIW CC-BY-SA-4.0 1
52 jerusalem_slow!_(6035877073)  http://is.gd/KN9COh CC-BY-SA-2.0 1
53 Jewish_cemetery_in_Vodnany http://is.gd/gUrHQu Public Domain 3
54 kaf tet_benovember_st http://is.gd/gHvFtx CC-BY-SA-2.5 4
55 Kikar_Masaryk_Tel_Aviv_6929 http://is.gd/cd¥fnA CC-BY-SA-3.0 2
56 krakow_synagoga_tempel http://is.gd/oGnrkg CC-BY-SA-4.0 34
57 krakéw_1744 http://is.gd/FlqlpF CC-BY-SA-3.0 8
58 kulturhauptstadt_linz_hebrew http://is.gd/iQvtpq CC-BY-3.0 1
59 languages_of_israel http://is.gd/vHZPJT CC-BY-SA-3.0 5
60 lutherking street_jerusalem http://is.gd/PugbmS CC-BY-3.0 4
61 Makolet http://is.gd/dDiMnt CC-BY-SA-3.0 4
62 Masaryk_street_Tel_Aviv_1015 http://is.gd/Aq9u6z CC-BY-SA-3.0 2
63 MichelangeloStreet http://is.gd/hemLSA CC-BY-3.0 18
64 Ministry_of_foreign_affairs http://is.gd/9wXADn CC-BY-SA-3.0 4
65 multilingualism_in_israel http://is.gd/yMUsnl CC-BY-SA-3.0 2
66 nabi_elias http://is.gd/PqVLpY CC-BY-SA-3.0 5
67 naharayim_memorial_15 http://is.gd/UhiDfK Public Domain 3
68 Nayot_1 http://is.gd/qU1dOV Public Domain 7
69 nayot_3 http://is.gd/ZR9rBM Public Domain 4
70 nof_ayalonl http://is.gd/nkUJhZ CC-BY-SA-3.0 4
71 pikiwiki_israel_18676_entrance http://is.gd/MvYP4K CC-BY-2.5 2
72 pikiwiki_israel_5010_bir_asluj http://is.gd/0gd7XZ CC-BY-2.5 146
73 pikiwiki_israel_5784_economy http://is.gd/gbbMQR  CC-BY-2.5 7
74 Polard2 http://is.gd/f9060B  Attribution 7
75 pride_tel_aviv_2014 http://is.gd/cPCtJS CC-BY-SA-3.0 12
76 Protective_Edge_Patriotic http://is.gd/Ipludl CC-BY-SA-4.0 6
77 rami_levi_original_store http://is.gd/8zBF2I CC-BY-SA-3.0 11
78 Rivka_and_Shlomo_Abulafia http://is.gd/QWXJkm Public Domain 71
79 ShabatSign http://is.gd/EZ14pT Public Domain 4
80 shahak_industrial_park http://is.gd/BWgiy9 CC-BY-SA-4.0 5
81 shawish_neighbourhood http://is.gd/9G7nTV  CC-BY-3.0 2

Table C.2. Details about dataset images.
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http://is.gd/3nPT4Q
http://is.gd/p0PUFv
http://is.gd/yBzljw
http://is.gd/aVeal0
http://is.gd/5t9Sa2
http://is.gd/88cpc1
http://is.gd/Q7N5bx
http://is.gd/sa2DeW
http://is.gd/RGVaUu
http://is.gd/ZRGsBb
http://is.gd/ssSsUM
http://is.gd/IF4tqI
http://is.gd/opEf45
http://is.gd/wGuOel
http://is.gd/s4XWIW
http://is.gd/KN9C0h
http://is.gd/gUrHQu
http://is.gd/gHvFtx
http://is.gd/cdYfnA
http://is.gd/oGnrkg
http://is.gd/Flq1pF
http://is.gd/iQvtpq
http://is.gd/vHZPJT
http://is.gd/PugDmS
http://is.gd/dD1Mnt
http://is.gd/Aq9u6z
http://is.gd/hemLSA
http://is.gd/9wXADn
http://is.gd/yMUsnl
http://is.gd/PqVLpY
http://is.gd/UhiDfK
http://is.gd/qU1d0V
http://is.gd/ZR9rBM
http://is.gd/nkUJhZ
http://is.gd/MvYP4K
http://is.gd/Ogd7XZ
http://is.gd/g55MQR
http://is.gd/f9o6OB
http://is.gd/cPCtJS
http://is.gd/Iplu9L
http://is.gd/8zBF2I
http://is.gd/QWXJkm
http://is.gd/EZ14pT
http://is.gd/BWqiy9
http://is.gd/9G7nTV

C Hebrew Dataset Details

ID Image name Link Licence Words
82 shelet_60 http://is.gd/NKL8xF CC-BY-SA-3.0 3
83 signsinisraell http://is.gd/leVaBr Public Domain 6
84 signsinisrael2 http://is.gd/leVaBr Public Domain 2
85 SignsInlsrael3 http://is.gd/leVaBr Public Domain 4
86 signsinisraeld http://is.gd/1leVaBr Public Domain 3
87 simtat_aluf_batslut http://is.gd/nxzVz2 CC-BY-3.0 8
88 Tel_Aviv_44105 http://is.gd/DjBjRT CC-BY-SA-2.0 5
89 tel_aviv_dog_parka http://is.gd/sIWsA5  CC-BY-3.0 6
90 tel_aviv_yaffo_sign http://is.gd/AMnNXz CC-BY-3.0 4
91 terra_sancta_sign_(jerusalem) http://is.gd/h37cDY CC-BY-SA-3.0 33
92 veradim_street http://is.gd/8G8p75 Public Domain 2
93 yad_sarah_signpost http://is.gd/GsfQ6o CC-BY-SA-3.0 6
94 yavne_street_tel_aviv http://is.gd/Velwh2 CC-BY-SA-3.0 2
95 wxaT_5p_pan http://is.gd/gpNXT9 CC-BY-2.0 5
96 mEMS_oNam_oWo1Ma http://is.gd/GémW0i CC-BY-SA-3.0 3
97 vweI_DON http://is.gd/b4iHou CC-BY-2.0 3
98 OPNYAN_pIsn_nomwa_owl_Tn http://is.gd/01uRFA CC-BY-2.0 17
99 2117_nSw-osb_dwm http://is.gd/UlOWA8 CC-BY-2.0 2
100 20110223 _Israel_0268_Jerusalem http://is.gd/JrryPH CC-BY-SA-2.0 7

Table C.3. Details about dataset images.
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http://is.gd/NKL8xF
http://is.gd/leVaBr
http://is.gd/leVaBr
http://is.gd/leVaBr
http://is.gd/leVaBr
http://is.gd/nxzVz2
http://is.gd/DjBjRT
http://is.gd/sIWsA5
http://is.gd/AMnNXz
http://is.gd/h37cDY
http://is.gd/8G8p75
http://is.gd/GsfQ6o
http://is.gd/Ve1wh2
http://is.gd/gpNXT9
http://is.gd/G6mWOi
http://is.gd/b4iHou
http://is.gd/0luRFA
http://is.gd/Ul0WA8
http://is.gd/JrryPH
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