
master’s thesis

Algorithms for mixed-criticality scheduling
with positive and negative time lags

Petr Cincibus

May 2015

Supervisor: Ing. P�emysl ä�cha, Ph.D.

Czech Technical University in Prague

Faculty of Electrical Engineering, Department of Computer

Graphics and Interaction

Acknowledgement
I would like to express my gratitude to my supervisor Ing. P�emysl ä�cha, Ph.D. for
ideas which inspired me through the entire work, for willingness to discuss problems
whenever I needed and for a friendly attitude.

Declaration

iii

Abstract
Mnoho komplikovan˝ch pr�myslov˝ch produkt� v oblasti letectví, automobilového pr�-
myslu, robotiky nebo zbrojního pr�myslu se skládá z více podsystém� �ídicích speci-
fickou �ást systémov˝ch funkcí. Tyto podsystémy mohou b˝t slou�eny v rámci jedné
v˝po�etní platformy. V tomto p�ípad� se �asto stává, ûe n�které funkce jsou d�leûit�jöí
neû ostatní. V p�ípad� p�etíûení systému se provád�cí �asy t�chto funkcí prodluûují a
je zapot�ebí n�které mén� d�leûité systémové funkce vynechat. �eöení tohoto problému
je plánování s r�zn˝mi stupni kriti�nosti. Funkce systému jsou ohodnoceny kriti�ností
podle d�leûitosti funkce. Plánování s r�zn˝mi stupni kriti�nosti je relativn� neprozkou-
man˝ problém v oblasti o�ine plánování. Tato práce navrhuje algoritmy pro plánování
s r�zn˝mi stupni kriti�nosti s minimálními a maximálními �asov˝mi omezeními. Plá-
nované úkoly jsou vykonávány bez p�eruöení na dedikovan˝ch zdrojích s jednotkovou
kapacitou. V této práci byl navrûen a implementován jeden heuristick˝ algoritmus a dva
algoritmy pro hledání optimálního �eöení. Efektivita algoritm� je porovnána se solverem
celo�íselného lineárního programování a s lazy clause generation SAT solverem.

Klí�ová slova
Plánování; Algoritmy;

iv

Abstract
Many complicated industry products in the area of aircraft production, automobile pro-
duction, robotics or military industry consists of multiple subsystems controlling various
parts of system functionalities. These subsystems can be merged into one computational
platform. In this situation, it is quite frequent that some system functions are more
important then the others. In the case of the system overload when execution times of
functions start to prolongate there is a need to skip some unimportant functions. A so-
lution to this problem is mixed-criticality scheduling where functions are evaluated with
criticalities based on the function importance. Mixed-criticality scheduling is relatively
unexplored problem on the field of o�ine scheduling. This work propose algorithms
for the mixed-criticality scheduling problem with minimal and maximal temporal con-
straints. Tasks have to be scheduled without preemption on dedicated resources with
unit capacity. One heuristic and two exact algorithms were proposed and implemented.
E�ciency of the algorithms is compared with an integer linear programming solver and
a SAT solver with lazy clause generation.

Keywords
Scheduling; Algorithms; mixed-criticality;

v

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Related work . 3
1.3 Contribution and outline . 5

2 Problem statement 6
2.1 Scheduling Example . 8

3 Heuristic algorithm 10
3.1 Iterative resource scheduling algorithm 10
3.2 Problematic example . 12
3.3 Bulldozing . 14

3.3.1 The find schedule procedure with bulldozing 14
3.3.2 The bulldozing procedure . 14

3.4 Problematic example solution . 16
3.4.1 Implemented versions of heuristic algorithm 17

Heuristic 1 . 18
Heuristic 2 . 18
Heuristic 3 . 18

3.5 Bounds . 19
3.5.1 Lower bound . 19
3.5.2 Upper bound . 20

4 Exact algorithms 21
4.1 Disjunctive pairs algorithm . 21

4.1.1 The Disjunctive graph model . 21
4.1.2 Algorithm desription . 23
4.1.3 Branching strategy . 26
4.1.4 Immediate selection . 26
4.1.5 Infeasibility test . 27

4.2 Conflict resolution algorithm . 27
4.2.1 Algorithm description . 28
4.2.2 Preprocessing step . 29
4.2.3 Find resource conflict procedure 30

4.3 SAT solver with lazy clause generation 31
4.3.1 Algorithm principle description 31
4.3.2 G12 framework . 32
4.3.3 Solution description . 32

5 Computational results 33
5.1 Implementation and testing enviroment 33
5.2 Data generator . 33

5.2.1 ProGenMax generator . 33
5.2.2 Mixed-criticality generator . 33

5.3 Heuristic algorithm results . 34
5.4 Exact algorithms results . 36

6 Conclusion 39

vi

Bibliography 40

vii

Abbreviations
RCPSP Resource-Constrained Project Scheduling Problem
RCPSP/max Resource-Constrained Project Scheduling Problem with minimal and

maximal time-lags
SAT Boolean Satisfiability Problem
FD Finite Domain
CNF-SAT Conjunctive Normal Form Boolean Satisfiability Problem
MDA Minimal Delaying Alternative

viii

1 Introduction

Scheduling is the process of assigning tasks to resources at particular times with respect
to a given objective function. It is widely used in civil engineering, management, man-
ufacturing, supply chain planning etc. A typical example of scheduling are factories
where work is assigned to workers, machines or energy resources. In building construc-
tion, foundation of house, sanitation, building of walls, roof or wiring are tasks which
have to be done and a concrete mixers, cranes, excavators or workers are resources
available for tasks completion. In a computer operation system supporting multitask-
ing or multithreading, tasks or threads are scheduled for execution on processor units
by a scheduler.

Di�erent objective functions are used in scheduling, for example project makespan,
tardiness, weighted tardiness or total completion time. If a company optimizes a pro-
duction process, then higher e�ectiveness of production and lower operational costs are
criterions of scheduling. A little change in the objective function can cause enormous
cash profits due to concurrent benefits.

Tasks are a subject of di�erent constraints. Tasks can behave release dates or dead-
lines. In a reality a release time represents situations when a material is available from
some point in time. A Deadline represents time when work must be done for example a
result of a task is a product which must be available for customers or scheduler have to
satisfy task deadlines in a real-time operation system. When task have to be processed
after another task e.g. house walls have to be build after foundations of house are laid
it can be expressed by precedence constraints. If there should be time distance be-
tween tasks e.g. walls must be build thirty days after concrete had been laid in houses
foundations because of concrete hardening, then temporal constraints are considered.

Scheduling is a combinatorial optimization problem. There is a group of scheduling
problems which can be solved by a polynomial algorithm but there are problems where
a polynomial algorithm does not exist. These problems are solved by exact algorithms
only for smaller input instances because computation may take an unreasonable amount
of time. Heuristic algorithms are used for large scale instances. These types of algo-
rithms are searching only in a small part of the search space and that is the reason why
heuristics are a lot of faster then exact algorithms but the solution of a heuristic algo-
rithm is not guaranteed to be an optimal solution. Heuristics are designed for specific
problem and take full advantage of problem properties.

Meta-heuristics are general algorithms which are not problem-dependent and can
be applied on various problems. Meta-heuristics can be seen as frameworks for cre-
ating algorithms for a specific problem. Example of meta-heuristics are local search,
tabu search, simulated annealing, genetic algorithms, evolutionary algorithms, partici-
ple swarm optimization and etc. They can be divided by a number of solutions which
are utilized on single solution meta-heuristics and population-based meta-heuristics.
Local search is a typical example of a single solution meta-heuristic. On the other hand
evolutionary algorithms are typical example of population heuristic utilizing multiple
solutions which are all improved using properties of other solutions within population.

If we are interested in finding an optimal solution, then we have to use exact al-
gorithms. Branch and bound is dominant technique used in scheduling for exact al-

1

1 Introduction

gorithms. The algorithm is searching in whole solution space by construction of the
search tree. Search tree branching divides search space into disjoint sets. It is called
branching. A lower bound can be computed for each search tree branch. If a lower
bound has a higher value then the best solution found so far, then branch is discarded
from searching. It is called bounding.

Scheduling algorithms can also be divided according to input. If an input is com-
pletely defined before execution of the algorithm, then it is called the o�ine scheduling
algorithm. On the other hand an online scheduling algorithm is running continuously
and an input is expanding during time. An online scheduling algorithm is used for ex-
ample in operating systems to schedule tasks for execution in central processing units.

Embedded systems are used in cars, planes, weapons and etc. These devices are
very complex consisting of many embedded systems controlling di�erent functionalities.
Each system contains a processor unit or a communication bus but these components
are often underused. Nowadays, there is a trend to merge more di�erent systems into
one computation platform. It has a positive impact on energy consumption, weight,
size and cost of a device. Because of that, systems with di�erent importance are sharing
computational resources. These systems are called mixed-criticality systems. Each task
has assigned criticality. If a task with higher criticality is not completely processed in
estimated time, it’s processing time can be increased and consequent task with a lower
criticality level can be omitted. Consequently, systems with high criticality can be
mixed with lower ones e.g. flight-by-wire system of airplanes which is critical for flight
share a processor or a bus with lower criticality weapon or communication systems
which are critical for a mission but airplane is able to flight without it. In classical
systems without mixed-criticalities task completion is assured using large pessimistic
estimates of processing times. This approach leads to schedules with low utilization of
resources in the run-time. In contrast, mixed criticality systems are using optimistic
estimates of processing times for lower criticality levels and pessimistic estimates for
higher criticality levels. This approach leads to better utilization of resources in the
running time.

1.1 Motivation
Advantages of mixed-criticality scheduling can be shown on a simple example. There are
three task which represents messages which will be scheduled for communication on bus
in airplane. Transmission of messages is repeating in cycles. We are creating a schedule
which will be repeated in each cycle. Task T1 is fly-by-wire message, T2 is weapon
system message and T3 is temperature sensor message. If the message transmission
fails, message is send again depending on number of allowed repetition.

In classical scheduling without criticalities task processing times must be chosen
pessimistically which will su�ciently assure message delivery. Transmission of one fly-
by-wire message takes two time units. The message is very important therefore message
can be send two times again in case of transmission failure. A weapon system message
takes one time unit and can be resend one time. A temperature system message takes
one time unit and when message transmission fails it is not send again because it is not
so important.

• p1 = 6
• p2 = 2
• p3 = 1

One of possible optimal schedules is illustrated in Figure 1 where schedule makespan is

2

1.2 Related work

nine units. Schedule makespan can be improved if we use mixed-criticality scheduling

Figure 1 An example of a classical schedule

as we can se in Figure 2. Task is now specified by a pair (‰
i

, P
i

) where x
i

is the task
criticality and P

i

is a vector of processing times.
• T1 = (3, (2, 4, 6))
• T2 = (2, (1, 2))
• T3 = (1, (1))

Figure 2 An example of a mixed-criticality schedule

Task T1 is crucial for existence of an airplane and thus it gets the highest criticality. The
Weapon system has lower criticality because it is mission critical but not important for
flight and airplane existence except for a threat from another airplane. The temperature
sensor message has the lowest criticality. Processing times in lower criticality levels can
be chosen more optimistically. The makespan of mixed-criticality schedule is seven
units long. It is four units shorter then schedule without criticalities.

The schedule can be executed in many di�erent ways. Execution of the schedule
starts with T1 in criticality level 1. If T1 is not completed at time 3 then the controlling
system is switched into criticality level 2. If T1 ends before time 4 then the system is
switched back into criticality level 1 and execution of T2 follows. If T2 is not completed
at time 5 then the system is switched into criticality level 2, task T3 is skipped and T2
is allowed to be processed until time 7. If T1 is still running at time 5, then the system
is switched into criticality level 3 and tasks T2, T3 are skipped. The simplest execution
scenario is when every message is successfully sent on first attempt, then the system
completely runs in criticality level 1.

One of possible execution examples is in Figure 3.

1.2 Related work
Most of works describing the mixed criticality task model belong to the domain of
real-time scheduling. The first author who formalize the mixed-criticality scheduling
model was Vestal [1]. Baruah et al. [2] showed that the preemptive mixed-criticality
scheduling problem on a mono-processor is NP-hard and proposed the own criticality
based priority algorithm for the problem. Kelly et al. [3] proposed an algorithm for

3

1 Introduction

Figure 3 A schedule execution example

preemptive mixed-criticality scheduling on multiple processors. The problem is divided
into two phases. Tasks are assigned to processors in the first phase and scheduled
in the second phase. The second phase is realized with Audsley’s algorithm or the
rate monotonic algorithm. The zero slack rate monotonic scheduling was proposed by
de Niz et al. [4]. These works are farther to our problem because we consider non-
preemptive tasks and o�ine scheduling. More connected to our problem is work of
Hanzálek et al. [5] considering non-preemive task model and o�ine scheduling. They
proved that the non-preemptive time-constrained version of mixed-criticality scheduling
on a mono processor is NP-hard in the strong sense by polynomial reduction from the
3-Partition problem. They also formulate an integer linear programming model based
on precedence relations and tasks with release dates and deadlines.

Because there are no other works on the field of o�ine scheduling inspiration for our
work comes from di�erent problems. Well suited problem is The Resource-Constrained
Project Scheduling Problem with Minimal and Maximal Time-Lags (RCPSP/max). It
is frequently used in industry and that is the reason why is well studied in literature.
One of our goals is to propose an exact algorithm. Blazewicz [6] proved that RCPSP
is NP-hard problem in the strong sense and defined basic notation for scheduling prob-
lems. A Survey of works interested in exact algorithms is following. The first work
which proposed an exact algorithm for the RCPSP/max and laid important theoretical
foundations was published by Bartusch et al. [7]. There is a time oriented algorithm
proposed by De Reyck and Herroelen [8] which resolves resource conflicts by adding
precedence constraints between conflicting tasks. Andreas Fest et al. proposed a sim-
ilar algorithm which resolves resource conflicts by dynamic release dates. Dorndorf et
al. [9] proposed an algorithm on principle of constraint satisfaction where domains
are sets of possible task start times. These domains are pruned by temporal and re-
source constraints. Another interesting approach in solving resource-constrained project
scheduling problem is utilization of SAT solver. Ohrimeko [10] described method con-
necting SAT solving technique with finite domain solving technique. This was used
by Horbach [11] who described reduction of feasibility RCPSP to SAT problem. The
problem is then solved by SAT solver using separation of cover clauses which means
that SAT solver starts with an incomplete set of constraints and additional constraints
are generated during the run-time of the algorithm. He used Minisat solver [12] which is
implementation of Davis–Putnam–Logemann–Loveland algorithm with conflict-driven
clause learning [13]. Algorithm of Schutt et al. [14] is a combination of constraint satis-
faction and sat solver with lazy clause generation where domains of possible start times
are represented as boolean formulas. Lazy clause generation is some type of learning of
the problem structure. Two possibilities of implementation of global cumulative con-
straint are discussed in Schutt et al. [15].

4

1.3 Contribution and outline

Another problems can be also considered for an exact algorithm inspiration . Based
on a disjunctive graph model Carlier and Pinson [16] formulated an algorithm for the
job shop scheduling problem. A similar idea was used by Brucker [17] in the algorithm
for solving one machine scheduling problem with temporal constraints and he extends
the algorithm with an advanced immediate selection procedure which fixes more dis-
junctions in each level of the branch and bound algorithm. A Heuristic algorithm for the
RCPSP/max called iterative resource scheduling is proposed by Hanzálek et al. [18].
The Algorithm iteratively schedules tasks in free slots and unschedules the conflicting
ones. Another interesting heuristic approach is application of squeaky wheel optimiza-
tion with a bulldozing procedure proposed by Smith and Pyle [19]. Squeaky wheel
optimization is a local search algorithm combined with a priority scheme. Foundations
of Squeaky wheel optimization are described by Joslin and Clements [20]. Bulldozing
is an e�ective technic rearranging unfeasible sequences of tasks.

1.3 Contribution and outline
The main contribution of this work are proposals and implementation of three algo-
rithms for mixed-criticality scheduling problem. The first is a heuristic algorithm. It
is based on iterative resource scheduling algorithm proposed by Hanzálek and ä�cha
[18] combined with the bulldozing procedure [19]. Other two algorithms are exact algo-
rithms finding an optimal solution. The first algorithm is based on fixing order of tasks
combined with immediate selection procedure inspired by Brucker et al. [17] . The sec-
ond one is working in time domain with conflict resolution by precedence constraints
inspired by DeRyck et al. [8].

The work is organized as follows. Section 2 is the problem statement with the integer
linear programming model. Section 3 is a proposal of the heuristic algorithm. In Section
4, there are presented two exact algorithms. Section 5 summaries computational results.
Finally, Section 6 is conclusion of the work.

5

2 Problem statement

This section defines a basic notation used in this work. We deal with the non-preemptive
mixed-criticality scheduling problem with dedicated resources of unit capacity and tasks
constrained by maximal time-lags. The objective function is the project duration min-
imization. The standard notation [6] of the problem is PSm, 1|temp, mc = L|C

max

. A
project is represented by a digraph G = (T,E) where T = {T0, T1, . . . , T

n+1} is a set of
tasks and E is a set of edges representing temporal constraints. Let R = {1, 2, ..., m}
be a set of m resources. Resources has unit capacity therefore a resource could process
only one task at a time. Let L œ N be project criticality which is equal to the max-
imal criticality over all tasks. Task is defined by a 3-tuple of parameters (‰

i

, P
i

, a
i

).
Task criticality ‰

i

œ {1, . . . , L} is maximal criticality level of task i. Processing times
P

i

œ NL
0 is a vector (p1

i

, p2
i

, ..., p‰i
i

), where c-th entry pc

i

is processing time on criticality
level c. Task 0 and n + 1 are dummy tasks px

0 = px

n+1 = 0, ’x œ {1, ..., L}. Processing
time in certain criticality level is greater or equal to processing time in the previous
level (1).

pc≠1
i

Æ pc

i

, ’i œ T, ’c œ {2, . . . , ‰
i

} (1)

Tasks in our problem has dedicated resources. It means that each task has predeter-
mined one resource for processing. Task resource a

i

œ R is a resource where task i
must be scheduled. Start time s

i

is time when task i starts running on its resource.
A schedule S = (s0, s1, ..., s

n+1) is a vector of start times and C
max

is the schedule
makespan.

Temporal constraints or generalized precedence constraints or time lags are con-
straints defining minimal distance between tasks start times given by inequality

s
i

+ l
ij

Æ s
j

, ’(i, j) œ E (2)

where l
ij

is value of an edge (i, j) œ E and defines the minimal distance between
task start times. If l

ij

Ø 0 then the time lag is called minimal. It defines the minimal
distance between start times of tasks i and j assuming that task i precedes task j. If
l
ij

< 0 it is called maximal time lag defining maximal distance between start times of
tasks j and i assuming that task j precedes task i. If task i have no temporal constraint
pointing to task j it could be interpreted as temporal constraint with value l

ij

= ≠Œ.
Maximal time-lags make problem much more di�cult.

Example of temporal constraints is illustrated in Figure 4. Task T
i

defines a relative
time window for task T

j

in which it can be processed.
Task 0 defines the project start and have to be scheduled before all other tasks, i.e.

l0,i

= 0, ’i œ T . Task n + 1 defines the project end and have to be scheduled after all
other tasks, i.e. l

i,n+1 = p‰i
i

, ’i œ T .
Let D = [d

ij

] be a matrix of the longest paths computed from G, then d
ij

is the
minimal distance between tasks start times given by inequality

s
i

+ d
ij

Æ s
j

, ’i, j œ V 2. (3)

6

Figure 4 Maximal and minimal time-lag

Let UB be an upper bound of the project duration. If we assume that s0 = 0 then
es

i

= d0,i

is an the earliest start time of task i and ls
i

= UB ≠ d
i,n+1 is the latest start

time of task i.
If task i precedes task j then the minimal distance between task start times is equal

to processing time in maximal common criticality level of both tasks. Example of
processing time in common criticality level is in Figure 5 and 6. The first example in
Figure 5 illustrates a situation where task T1 with higher criticality precedes task T2
with lower criticality whereas the second example in Figure 6 illustrates the opposite
situation.

Figure 5 Processing time in common criticality level

Figure 6 Processing time in common criticality level

Next, we formulate an integer linear programming model. The model is based on
precedences of tasks. Objective function (4) is the project duration minimization. In-
equality (5) is the temporal constraint. Precedence of tasks i and j is defined by a
binary variable x

ij

. Resource constraints are inequalities (6) and (7). The value of M

7

2 Problem statement

is some su�ciently large constant.

minimize C
max

(4)

subject to s
i

+ l
ij

< s
j

, ’(i, j) œ E (5)

s
j

+ p
min(‰i,‰j)
j

Æ s
i

+ x
ij

M, ’(i, j) œ T 2; i < j · a
i

= a
j

(6)

s
i

+ p
min(‰i,‰j)
i

Æ s
j

+ (1 ≠ x
ij

)M, ’(i, j) œ T 2; i < j · a
i

= a
j

(7)
s

i

+ p‰i
i

Æ C
max

, ’i œ T (8)

where s
i

œ È0, MÍ ’i œ T

C
max

œ È0, MÍ
x

ij

œ {0, 1} ’(i, j) œ T 2; i < j · a
i

= a
j

2.1 Scheduling Example
This section illustrates example of a scheduling instance. A graph of temporal con-
straints is illustrated in Figure 7. There are minimal and maximal temporal constraints.
In Section 2 we defined that graph G contains a set of temporal constraints leading from
start task to all other tasks and a set of temporal constraints leading from all tasks to
end dummy task in order to guarantee that start task is scheduled before all other tasks
and end task is scheduled after all other tasks. For the simplicity, we do not illustrate
all of these constraints in figures because some of these constraints are not important
and do not change a value of any longest path. The graph contains several negative
temporal constraints.

Figure 7 An input graph

There are two cycle structures. The first cycle is formed with tasks T3 and T8 and the

8

2.1 Scheduling Example

second one is formed with tasks T7 and T9. Instances containing a cycle with positive
length are infeasible (see Section 4.1.5). Both cycles in the example have negative or
zero length therefore cycles do not force infeasibility. The example contains ten tasks
which are assigned to two dedicated resources. Tasks are defined in the list below.

• T1 = (4, (1, 2, 3, 4), 1)
• T2 = (2, (2, 5), 1)
• T3 = (3, (1, 2, 3), 1)
• T4 = (1, (3), 1)
• T5 = (2, (1, 2), 1)
• T6 = (2, (3, 5), 2)
• T7 = (1, (2), 2)
• T8 = (4, (1, 2, 4, 6), 2)
• T9 = (1, (4), 2)
• T10 = (3, (1, 2, 3), 2)

An optimal solution with makespan C
max

= 14 is illustrated in Figure 8. A schedule
for the first resource is in upper part of the figure and a schedule for the second one is
in the bottom part of the figure.

Figure 8 A solution schedule

9

3 Heuristic algorithm
This chapter propose a heuristic algorithm. The algorithm is a modification of the itera-
tive resource scheduling algorithm proposed by Hanzálek and ä�cha [18] for RCPSP/max.
It is a priority based algorithm with an unscheduling step. The first section is an al-
gorithm description followed by an example of a problematic input instance with a
solution in form of bulldozing procedure [19]. A proposal of an upper bound and a
lower bound is in the end of the chapter.

3.1 Iterative resource scheduling algorithm
The main idea of the algorithm is to schedule tasks into free slots. If there are no free
slots then a part of the schedule is canceled and the task is inserted into the new free
space.

Algorithm 1 Iterative resource scheduling algorithm
1: procedure iterativeResourceScheduling(G, budgetRatio, n)
2: D Ω longestPaths(G)
3: LB Ω lowerBound(G)
4: UB Ω upperBound(G)
5: priority

i

Ω d
i,n+1, ’i œ T

6: budget Ω budgetRatio · n
7: C Ω LB
8: while LB Æ UB do

9: S Ω findSchedule(C, priority, budget, D)
10: if S is feasible then

11: S
left

Ω ShiftLeft(S)
12: UB Ω C

max

(S
left

) ≠ 1
13: S

best

Ω S
left

14: else

15: LB Ω C + 1
16: end if

17: C = ceil((LB + UB)/2)
18: end while

19: end procedure

The main procedure is illustrated in Algorithm 1. Graph G is the problem instance.
Parameter n is a number of tasks without two dummy tasks. First of all, the algorithm
computes a matrix of the longest paths D from G by Floyd-Warshall algorithm. Edges
of G are temporal constraints therefore the longest path d

ij

from task i to task j is the
minimal distance of start times in a feasible schedule enforced by temporal constraints.
Project duration upper bound UB and project duration lower bound LB initialization
is described in Section 3.5.

The algorithm is searching for a solution on a principle of an interval bisection.
Function findSchedule is finding a solution in a maximal number of steps denoted as

10

3.1 Iterative resource scheduling algorithm

budget. The number of steps budget is computed as budgetRatio · n where budgetRatio
is an average number of attempts to schedule task. Variable C is an upper bound for
findSchedule function which have to find a solution with the makespan less or equal
to C. The value of C is selected from interval ÈLB, UBÍ. A task priority is defined as
the maximal distance to task n + 1. Consequently tasks with a low value of latest start
time will have a higher priority for scheduling.

If a feasible solution is found, then the schedule is shifted left because the function
findSchedule creates schedules containing unwanted gaps i.e. gaps which are not
enforced by any temporal or resource constraint. Shifted schedule S

left

is set as a new
best schedule S

best

and a value of an upper bound is updated UB = C
max

(S
left

) ≠ 1.
Minus one is used because an upper bound must be strict therefore the algorithm will
not be interested in solutions with makespan value equal to C

max

(S
best

). If the solution
of function findSchedule is not feasible, then the lower bound is updated LB = C + 1.

The find schedule upper bound C is initialized with the value of the lower bound
C = LB for the first iteration of while loop, and as a result, the algorithm is trying
to find the best possible solution in the first algorithm iteration. In next iterations,
C is set to the mean value of the upper bound and lower bound. In the end of each
algorithm iteration, the value of the lower bound is increased or the value of the upper
bound is decreased. It assures algorithm termination because while loop terminates
when UB < LB.

Function shiftLeft computes schedule S
left

from schedule S while preserving order
of tasks. This could be done by Bellman-Ford algorithm computing the longest paths
from task 0 to other tasks in graph G which is extended by precedence constraints
representing the order of tasks in S. Then the longest path from task 0 to task i is
equal to start time of task i in the new schedule S

left

.

Algorithm 2 Iterative resource scheduling algorithm
1: procedure findSchedule(C, priority, budget, D)
2: s

i

Ω ≠Œ ’i œ {1, . . . , n}
3: scheduled Ω {}
4: while budget > 0 · |scheduled| < n + 2 do

5: i Ω argmax’jœT :j /œscheduled

(priority
j

)
6: ES

i

Ω max’jœT :jœscheduled

(s
j

+ d
ji

)
7: LS

i

Ω min’jœT :jœscheduled

(s
j

≠ d
ij

)
8: s

i

Ω findTimeSlot(i, ES
i

, LS
i

)
9: if s

i

was found then

10: scheduleActivity(i, s
i

, scheduled)
11: else

12: scheduleActivityViolently(i, s
i

, scheduled)
13: end if

14: budget Ω budget ≠ 1
15: end while

16: end procedure

Schedule is constructed in function findSchedule. There is a priority queue of un-
scheduled tasks. In each iteration task i is removed from top of the queue. The earliest
start time of task i is computed as maximum s

j

+d
ji

for each task j from a set of sched-
uled tasks as a consequence of Equation (3). The latest start time of task i is bounded
by an upper bound C i.e. LS

i

= C ≠ d
i,n+1. Function findT imeSlot is searching for

11

3 Heuristic algorithm

a resource time window for task i in interval ÈES
i

, LS
i

Í. If a time window exists, then
task i is scheduled by function scheduleActivity. If a time window is not found, then
task i is inserted violently into the schedule on position s

i

= sprev

i

+ 1 where sprev

i

is the
last start time of task i. If task i is scheduled for the first time, then it is scheduled to
the earliest start time of the task i.e. s

i

= es
i

= d0,i

.

3.2 Problematic example

The algorithm described in the previous section is working on principle of task schedul-
ing and unscheduling. There is a possibility that a group of tasks is periodically sched-
uled and unscheduled until the algorithm budget is exhausted. The algorithm is very
e�cient, however we found an input instance which was not solved successfully by the
original algorithm.

Figure 9 Graph of temporal constraints

For simplicity, example instance has L = 1 and only one resource. The problematic
instance is in Figure 9. There are four tasks with processing times P1 = (1), P2 =
(2), P3 = (3), P4 = (2) and two dummy tasks highlighted by double circle. The instance
conains two cycle structures T1, T3 and T2, T4 which are important to make algorithm
stucked. The longest path matrix D, computed from the input graph, is

D =

Q

ccccccca

0 0 0 3 2 6
≠Œ 0 ≠Œ 3 ≠Œ 6
≠Œ ≠Œ 0 ≠Œ 2 4
≠Œ ≠3 ≠Œ 0 ≠Œ 3
≠Œ ≠Œ ≠2 ≠Œ 0 2
≠Œ ≠Œ ≠Œ ≠Œ ≠Œ 0

R

dddddddb

.

Task priority is defined by the longest distance to end task therefore the priority
queue is filled in this way queue = (T0, T1, T2, T3, T4, T5) where the first element repre-
sents the top of the queue with the highest priority.

12

3.2 Problematic example

Figure 10 Schedules created by the heuristic algorithm solving the problematic input instance

Schedules created during run of the heuristic algorithm are illustrated in Figure 10.
The algorithm schedules tasks T1, T2, T3 with start times s1 = 0, s2 = 1 and s3 = 3.
With respect to temporal constraints, task T4 have to be scheduled at time 4 but the
resource is occupied by T3. Therefore, T4 have to be scheduled violently. It is scheduled
for the first time and that is the reason why it have to be scheduled in it’s earliest
start time s4 = es4 = 2. Tasks T2 and T3 are unscheduled because of the resource
conflict with newly scheduled task. The highest priority task in the queue is T2 which
have to be scheduled at time 0 according to temporal constraints. Task have to be
scheduled violently because the resource is occupied by T1 at time 0. It is scheduled
with s2 = sprev

2 + 1 = 2 and conflicting task T4 is unscheduled. Tasks T1 and T3 are

13

3 Heuristic algorithm

scheduled in free slots and T4 is remaining. Task 4 have to be scheduled violently at
time 4 and T2, T3 are unscheduled. It is the same situation that happened several steps
before and the next steps are in the same manner until the budget of the algorithm is
depleted.

The first schedules which are proving that the algorithm gets stuck are marked with
a red ú label because task start times in the second schedule are incremented by one
against start times in the first one. Set of unscheduled tasks is equal in both cases
and the second schedule previous start time vector is greater by one against the first
schedule previous start time vector. These properties are proving that both schedules
are equal with only di�erence that start times vector and previous start times vector
are incremented by one. These properties also holds for successive pairs of schedules.

This situations are repeating until a budget is depleted, then the function findSchedule
reports that a feasible solution was not found. Subsequently, function findSchedule is
called again with increased upper bound C and the same situation happens again. The
algorithm terminates with the no solution found result after several runs. A solution
to this problem is proposed in the next section.

3.3 Bulldozing
We have decided to incorporate bulldozing procedure into the the algorithm to over-
whelm the problem described in the previous section.

Bulldozing is a procedure dealing with unfeasible schedules by rearranging order of
tasks proposed by Tristan and Smith [19]. A group of tasks which are closely related by
temporal constraints is pushed to the right by bulldozing. Group of tasks is revolving
and changing order of tasks during bulldozing until a feasible order of tasks is found.

3.3.1 The find schedule procedure with bulldozing
Function findSchedule from Algorithm 2 is extended with bulldozing in Algorithm 3.
Original latest scheduling time LSorig

i

of task i is the latest time when task i could be
scheduled regardless of actual start times of other tasks i.e. LSorig

i

is not considering the
longest path distance constraints in the actual schedule and it is computed only from the
original distance to end task LSorig

i

= C ≠ d
i,n+1. Function findT imeSlot is searching

in the interval ÈES
i

, LSorig

i

Í instead of ÈES
i

, LS
i

Í like in the previous version of the
algorithm. This gives a possibility to schedule the task behind the interval defined
by temporal constraints. If start time s

i

is in the interval ÈES
i

, LS
i

Í, then the task
meets all temporal constraints and it is scheduled by the function scheduleActivity.
If start time s

i

is in the interval (LS
i

, LSorig

i

Í, then some temporal constraints are
unfulfilled and task i have to be scheduled with bulldozing which will also move tasks
with unfulfilled temporal constraints. If start time s

i

is not found or bulldozing was
not successful, then task is scheduled violently as mentioned in Section 3.1.

3.3.2 The bulldozing procedure
Function scheduleActivityWithBulldozing depicted in Algorithm 4 schedules task i in
s

i

which is resource feasible and add all conflicting tasks via temporal constraints to the
set B which represents a bulldozer. Tasks from the bulldozer set are scheduled in the
while loop. Task i is randomly selected from the bulldozer set. Values of the earliest
start time ES

i

from temporal constraints, the latest start time LS
i

from temporal
constraints and the original latest start time LSorig

i

are computed. If start time s
i

is

14

3.3 Bulldozing

Algorithm 3 Iterative resource scheduling algorithm
1: procedure findSchedule(C, priority, budget, D)
2: s

i

Ω ≠Œ ’i œ {1, . . . , n}
3: scheduled Ω {}
4: while budget > 0 · |scheduled| < n + 2 do

5: i Ω argmax’jœT :j /œscheduled

(priority
j

)
6: ES

i

Ω max’jœT :jœscheduled

(s
j

+ d
ji

)
7: LS

i

Ω min’jœT :jœscheduled

(s
j

≠ d
ij

)
8: LSorig

i

Ω C ≠ d
i,n+1

9: s
i

Ω findTimeSlot(i, ES
i

, LSorig

i

)
10: if s

i

Æ LS
i

then

11: scheduleActivity(i, s
i

, scheduled)
12: else if s

i

Æ LSorig

i

then

13: scheduleActivityWithBulldozing(i, s
i

, scheduled, D, budget)
14: end if

15: if s
i

not found · bulldozing not successful then

16: scheduleActivityViolently(i, s
i

, scheduled)
17: end if

18: budget Ω budget ≠ 1
19: end while

20: end procedure

Algorithm 4 Buldozing
1: procedure scheduleActivityWithBulldozing(task, start, scheduled, D, budget)
2: scheduleActivity(task, start, scheduled)
3: B Ω conflictingActivities(task)
4: while budget > 0 · B is not empty do

5: budget Ω budget ≠ 1
6: i Ω randomly remove task from B
7: unscheduleActivity(i)
8: ES

i

Ω max’jœT :jœscheduled

(s
j

+ d
ji

)
9: LS

i

Ω min’jœT :jœscheduled

(s
j

≠ d
ij

)
10: LSorig

i

Ω C ≠ d
i,n+1

11: s
i

Ω findTimeSlot(i, ES
i

, LSorig

i

)
12: if s

i

is not found then

13: undoBulldozing

14: return not successful
15: end if

16: scheduleActivity(i, s
i

)
17: if s

i

> LS
i

then

18: B Ω B fi conflictingActivities(i)
19: end if

20: end while

21: end procedure

15

3 Heuristic algorithm

not found on the interval ÈES
i

, LS
i

Í, then bulldozing is stopped and all task used in
bulldozing are returned back to the original positions i.e. positions where task were
scheduled before start of the bulldozing procedure. If start time is found, then task is
scheduled at s

i

and all temporal constraints conflicting tasks are added to the bulldozer
set.

Random task selection is incorporated in order to schedule tasks in di�erent order if
bulldozing schedule the same set of tasks multiple times. If the selection of tasks was
not random then bulldozing can schedule one set of tasks always in same unfeasible
order of start times until the schedule upper bound is reached.

3.4 Problematic example solution
This section shows the solution of the problematic example from Section 3.2 with the
original algorithm extended with the bulldozing procedure.

6

Figure 11 Schedules created by the heuristic algorithm with bulldozing solving the problematic
input instance

Schedules created by the heuristic algorithm with the bulldozing procedure solving
the problematic input instance are illustrated in Figure 11. Tasks T1, T2 and T3 are
scheduled with start times 0, 2, 4 in the same way like in example without bulldozing.

16

3.4 Problematic example solution

Task T4 have to be scheduled with s4 = 3 according to temporal constraints but it is
not resource feasible therefore bulldozing is started with T4.

Lets assume that makespan upper bound is 18. Bulldozing schedules T4 it the first
resource feasible time in interval ÈES4, LSorig

4 Í where ES4 = 3 and LSorig

4 = 18≠2 = 16.
It is scheduled with s4 = 6 and all task T2 which is conflicting via temporal constraints
is added to the bulldozing set. Consecutively, bulldozing selects T2 for scheduling.
It cannot be scheduled feasibly because resource is occupied at time 4 therefore it is
scheduled with s2 = 8 and task T4 conflicting via temporal constraints is removed from
schedule and added to the bulldozing set. Bulldozer selects T4 for scheduling. The task
have to be scheduled at time 10 according to temporal constraints. There is no resource
conflict and T4 is successfully scheduled.

The schedule is left shifted in the end which will move tasks T2 and T4 two units to
left. The final schedule has makespan C

max

= 10 and it is an optimal solution.

3.4.1 Implemented versions of heuristic algorithm

This section discuss some possible changes in the algorithm design and describes three
implemented versions of the heuristic algorithm.

In the first step, the main procedure of the heuristic algorithm depicted in Algorithm
1 computes the longest paths between all tasks in a graph of temporal constraints.
Consequently, the algorithm knows the minimal distances of task start times which have
to be respected in all feasible schedules. The longest paths are used in the calculation of
the earliest scheduling time ES

i

and the latest scheduling time LS
i

of task i which are
calculated considering start times of each scheduled task because the maximal distance
to each task is known.

Next, we will discuss determination of the earliest start times and the latest start
times based only on temporal constraints not considering the longest path distances
between all tasks. Considering only tasks directly connected via temporal constraints,
there is a possibility that some directly connected task j is not scheduled therefore it
is not considered in computation of the earliest start time of task i. If task j is in
some longest path leading from already scheduled task k to task i then start time of
task k will not be considered in computation of ES

i

and task i will be scheduled in
position which will make impossible to schedule task j and when task j becomes to be
scheduled, task i have to be unscheduled.

Determination of the earliest start time and the latest start considering the longest
paths to all tasks and their start times is more precise than determination based only
on temporal constraints leading only from smaller set of tasks. On the other hand, the
approach which not considers the longest paths to all tasks have advantage in faster
computation because computation of the earliest start time and the latest start times is
not enumerating all tasks but only tasks which have a direct edge to task i. We also do
not need computation of the longest paths between all tasks. We only need to know the
longest paths from dummy start task to all tasks and the longest paths from all tasks
to end dummy task. The longest paths from all tasks to end task are important for
task priority assignment and the longest paths from all tasks to end task are considered
in computation of the latest start time as depicted in Equation (9).

LS
i

= min(min
’jœT :(i,j)œE

(s
j

≠ l
ij

), UB ≠ d
i,n+1) (9)

The longest paths from start task to all tasks are considered in computation of the

17

3 Heuristic algorithm

earliest start times as depicted in Equation (10).

ES
i

= max(max
’jœT :(j,i)œE

(s
j

+ l
ji

), d0,i

) (10)

Consequently, we do not need Floyd-Warshall algorithm to compute the longest paths
between all pairs of tasks and it is replaced by Bellman-Ford algorithm. The first run
of Bellman-Ford computes the longest paths from start task to all other tasks. The
second run of Bellman-Ford computes the longest paths from all tasks to the end task
which is achieved by turning direction of temporal edges into opposite way. Moreover,
both runs of Bellman-Ford algorithm can be merged into one run where both values
are computed concurrently i.e. when Bellman-Ford select edge (i,j) for update of values
then update of the longest path from start is made as d0,j

= max(d0,j

, d0,i

+ l
ij

) and
also update of the longest path to end task is made as d

i,n+1 = max(d
i,n+1, d

j,n+1 + l
ij

)
. The replacement of calculation of the earliest start time and latest start time using
temporal constraints instead of calculation using the longest paths between all pairs of
tasks can lead into better running time especially on sparse graphs with relatively low
numbers of temporal constraints.

The second possible change in the algorithm design is depicted in Equation (11). The
latest start time is calculated simply as the upper bound minus the maximal distance
to the end task. In other words, the latest scheduling time is set to the maximal value
which can still lead into a solution with a better value of C

max

than the best found yet.
The latest scheduling time is therefore not considering actual start times of scheduled
tasks. The time window for task scheduling is greater than the time window created
in version with the latest start time considering start times of scheduled tasks. On the
other hand, after successful task scheduling into the time window there can be unfulfilled
temporal constraints therefore possible conflicting tasks have to be unscheduled.

LS
i

= UB ≠ d
i,n+1 (11)

Next, there is descriptions of three versions of the heuristic which were implemented.
Proposed versions are combinations of modifications discussed in this section.

Heuristic 1

This version combines calculation of the earliest start time and the latest start time from
temporal constraints according to Equations (10) and (9) with bulldozing procedure 3.3.
This version is supposed to be able to find a solution in large instances in a reasonable
time.

Heuristic 2

The second version of the heuristic algorithm consists of calculation of the earliest start
time from temporal constraints according to Equation (10) and the latest start time
calculated according to Equation (11). This version of heuristic is also supposed to be
a fast algorithm for solving large instances.

Heuristic 3

Floyd-Warshall, original LS
i

The third heuristic algorithm version combines calculation
of the earliest start time considering the longest paths and current start times of all
scheduled tasks as depicted in original proposal in Algorithm 2 and the calculation

18

3.5 Bounds

of the latest start time according to Equation (11). This version is supposed to be
slower than the other two vesions but with better ability to find a feasible solution in
complicated instances.

3.5 Bounds
For each set of solutions and their evaluations S there exist a lower bound and an
upper bound of S. The lower bound is a value smaller or equal to every evaluation of a
solution from S. The upper bound is a value greater or equal to every evaluation of a
solution from S. If the lower (upper) bound is equal to the minimal (maximal) element
of S, then it is called strict. For a set of solutions there could be many algorithms which
produce bound values. The ideal algorithm or rule is producing strict bound values.
Such algorithm can take unreasonable amount of time and it is with conflict with our
requirement for short running computation of bounds. Our goal is to find an algorithm
with good ratio between running time and strictness of computed bounds. The bounds
proposed in the next two sections are inspired by Brucker et al. [17].

3.5.1 Lower bound
The idea of the lower bound is that a sum of task processing times in a certain criticality
level c on a certain resource r is less or equal to resulting schedule makespan. The lower
bound can be also seen as transformation of task criticality levels to separate tasks.
Then all new tasks which are from the same criticality level and from the same original
resource are assigned to same new dedicated resource. The transformed problem is then
solved like PSm, 1|r

j

|C
max

problem where r
j

= es
j

.
Tasks are sorted according to increasing earliest start times es1 Æ es2 Æ ... Æ es

n

. A
lower bound value is computed for each resource and each criticality level separately.
Consequently, there are |R| · |L| lower bound variables initialized to zero. The first loop
is iterating over the sorted task list starting from the first list element. The earliest
start time is compared with a value of the lower bound for each criticality level of task
i. If a value of the lower bound is greater or equal to the value of the earliest start
time then the processing time value is added to the lower bound. It is corresponding
to schedule task immediately after the last task. If a value of the lower bound is less
than a value of the task earliest start time, then the lower bound is set to es

i

+ pc

i

. It is
corresponding to creating a gap in the schedule because task can not be schedule before
it’s earliest start time. The value of the final lower bound is the maximum value of all
partial lower bounds.

Algorithm 5 Lower bound
1: procedure lowerBound(tasks)
2: Sort tasks according to increasing earliest start times.
3: lbc

r

Ω 0 ’r œ R, ’c œ {1, .., L}
4: for i œ tasks do

5: for c Ω 1 to ‰
i

do

6: lbc

ai
Ω max(lbc

ai
, es

i

) + pc

i

7: end for

8: end for

9: LB Ω max’rœR,’cœ{1..L} lbc

r

10: end procedure

19

3 Heuristic algorithm

3.5.2 Upper bound
The upper bound in the Equation (12) is pessimistic but in combination with bulldozing
it can be an advantage because bulldozing may need more space to find a feasible order
than space created by the strict upper bound.

UB =
ÿ

’iœT

max(pxi
i

, max
’j,kœT

l
j,k

) (12)

20

4 Exact algorithms

This chapter proposes two exact algorithms and describes a solution using lazy clause
generation SAT solver. The first section proposes disjunctive pairs algorithm which is a
modification of the algorithm proposed by Brucker et al. [17] for single machine problem
with minimal and maximal time-lags. The algorithm is based on the branch and bound
design paradigm fixing precedences between pairs of tasks. Conflict resolution algorithm
is proposed in the second section. It is a modification of the algorithm proposed by
De Ryck and Herroelen [8] for RCPSP/max realized by the branch and bound design
paradigm fixing resource conflict by creation of precedence constraints. The solution
using lazy clause generation SAT solver [14] is described in the third section.

4.1 Disjunctive pairs algorithm
The algorithm published by Brucker et al. [17] was proposed for the non-preemtive
single machine scheduling problem with minimal and maximal time-lags. This section
describes an adaptation of the algorithm to our problem with dedicated resources and
mixed-criticality. The algorithm is based on fixing of precedences between pairs of
tasks. It is realized in so called disjunctive graph model. The disjunctive graph model
is well suited for the representation of a partial solution inside the algorithm. It is
described in the next section.

4.1.1 The Disjunctive graph model

A partial solution of the studied scheduling problem can be represented by the disjunc-
tive graph model. It is defined as 3-tuple G = (T, E, W) where

• T is a set of graph vertexes representing tasks.
• E is a set of conjunctive edges. These edges are directed determining the order

of tasks. Each edge from vertex i to vertex j has a value l
ij

defining the minimal
distance between task start times i.e. s

i

+ l
ij

Æ s
j

.
• W is a set of disjunctive edges. These edges are undirected. A disjunctive edge

also called disjunctive pair represents a pair of tasks with an undecided precedence
order. A disjunctive edge may be only between task with the same dedicated
resource. Two values w

ij

, w
ji

are tied with each disjunctive edge. If a disjunctive
edge is transformed to a conjunctive edge defining precedence T

i

> T
j

, then w
ij

is the value of the new conjunctive edge. If a disjunctive edge is transformed
to a conjunctive edge defining precedence T

j

> T
i

, then w
ji

is the value of the
new conjunctive edge. The values w

ij

, w
ji

therefore represent processing times of
tasks T

i

and T
j

in common criticality level i.e. time which must be reserved for
processing of the first task if tasks are scheduled consecutively.

Transformation of a disjunctive edge into a conjunctive edge is called fixing of a
disjunction. A set of conjunctive edges which were created by fixing of a disjunctive
edge is called selection. If all disjunctive edges are fixed, then the set of transformed
conjunctive edges is called a complete selection.

21

4 Exact algorithms

Next, we will present a scheduling example using a disjunctive graph model. The
example consists of nine tasks. Task T0 is dummy start task and task T8 is dummy end
task. Task definitions are in the list below.

• T1 = (2, (1, 2), 1)
• T2 = (2, (2, 4), 1)
• T3 = (1, (3), 1)
• T4 = (2, (2, 4), 2)
• T5 = (1, (2), 2)
• T6 = (1, (2), 2)
• T7 = (2, (1, 2), 2)

An example of a particular solution is in Figure 12. Conjunctive edges are illustrated
with a solid line arrow and disjunctive edges are illustrated with a dotted line. A
disjunctive edge is connected with values (w

ij

, w
ji

) which are illustrated with the edge.
A value of w

ij

is positioned closer to vertex i and a value of w
ji

is positioned closer to
vertex j. Disjunctive edges are only between tasks sharing the same dedicated resource.

Figure 12 Disjunctive graph

One of the possible solutions is in Figure 13. It is an optimal one. Each disjunctive
edge was fixed in one direction and transformed into a conjunctive edge. Makespan of
the solution C

max

= 7 because the longest path from start task to end task is equal to
seven units.

The schedule corresponding to the solution is illustrated in Figure 14. As we can see,
start time of task i is equal to the longest path from start dummy task to task i in the
disjunctive graph.

22

4.1 Disjunctive pairs algorithm

Figure 13 Disjunctive graph with fixed disjunctions

Figure 14 A schedule of the solution from Figure 13

4.1.2 Algorithm desription

In the first step of the algorithm in Algorithm 6, a disjunctive edge is created for each
pair of tasks sharing the same resource and not having a conjunctive edge with the
value greater then the value of processing time in common criticality level . A matrix
of the longest paths is computed from conjunctive edges. A value of the upper bound is
computed by a heuristic. If the heuristic does not find a solution, then the upper bound

23

4 Exact algorithms

is computed as defined in Equation (12). Successively, procedure disjunctiveRecursive
is called which realizes branching of the algorithm.

Algorithm 6 Disjunctive pairs algorithm
1: procedure disjunctiveMain(T, E)
2: W Ω ÿ
3: for i, j œ T : ((i, j) /œ E ‚ l

ij

< p
min(‰i,‰j)
i

) · ((j, i) /œ E ‚ l
ji

< p
min(‰i,‰j)
j

) · i <
j · a

i

= a
j

do

4: w
ij

Ω p
min(‰i,‰j)
i

5: w
ji

Ω p
min(‰i,‰j)
j

6: W Ω W fi (i, j, w
ij

, w
ji

)
7: end for

8: D Ω longestPaths(E)
9: UB Ω upperBound

10: disjunctiveRecursive(T, E, W, D)
11: end procedure

Algorithm 7 Disjunctive pairs algorithm
1: procedure disjunctiveRecursive(T, E, W)
2: if infeasibilityTest(T, E, W, D) proves infeasibility then

3: return

4: end if

5: immediateSelection(T, E, W, D)
6: if |W| = 0 then

7: solutionFound(D)
8: return

9: end if

10: LB Ω lowerBound

11: if LB > UB then

12: return

13: end if

14: (i, j, w
ij

, w
ji

) Ω selectBranchingPair(W)
15: D1 Ω addEdgeToLongestPaths(D, (i, j), w

ij

)
16: D Ω addEdgeToLongestPaths(D, (j, i), w

ji

)
17: disjunctiveRecursive(T, E fi (i, j), W \ (i, j, w

ij

, w
ji

), D1)
18: if UB < ≠d

n+1,0 then

19: D Ω addEdgeToLongestPaths(D, (n + 1, 0), ≠UB)
20: end if

21: disjunctiveRecursive(T, E fi (j, i), W \ (i, j, w
ij

, w
ji

), D)
22: end procedure

24

4.1 Disjunctive pairs algorithm

Algorithm 8 Disjunctive pairs algorithm
1: procedure solutionFound(D)
2: if d0,n+1 Æ UB then

3: bestSolution Ω D
4: UB Ω d0,n+1 ≠ 1
5: end if

6: end procedure

An input of disjunctiveRecursive procedure depicted in Algorithm 7 is a disjunctive
graph represented by triplet (T, E, W). The disjunctive graph constraints the search
space of the current search tree branch. The procedure starts with the infeasibility test
described in Section 4.1.5. If the test proves infeasibility, then the branch is pruned.

Immediate selection described in Section 4.1.4 may fix some additional disjunctive
edges which drastically reduce a size of the search tree. When immediate selection
fixes some disjunctive edge, then the created conjunctive edge is added to the longest
path matrix within the immediate selection procedure. If immediate selection leads
to a complete selection, then solutionFound procedure is called. The lower bound is
computed as described in Section 3.5.1. If a value of the lower bound is greater than
the upper bound, then the branch is pruned.

A disjunctive pair for branching (i, j) is selected by selectBranchingPair procedure.
The selected disjunctive edge is attempted to be fixed in both directions which creates
two conjunctive edges. A new conjunctive edge have to be added to the longest path
matrix. It can be achieved by inserting edge value to the matrix D i.e. d

ij

= l
ij

and
compute the longest paths by Floyd-Warshall algorithm. Nevertheless, there is a faster
solution, which benefits from the fact, that the matrix of the longest paths contained
correct values before insertion of the fixed edge. If we have the longest path d

ab

in
graph G and we add edge (c,d) then a value of the longest path d

ab

is enlarged only
if d

ac

+ l
cd

+ d
db

is greater than d
ab

. The matrix of the longest paths is recomputed
according to Equation (13).

dnew

ad

= max(d
ad

, d
ab

+ l
bc

+ d
cd

), ’a, d œ T (13)

This operation takes O(n2) time which is less than computation of the longest paths
matrix by Floyd-Warshall algorithm in O(n3) time. Next, there are two calls of
disjunctiveRecursive. One call with disjunctive edge fixed in the one direction and the
second one in the opposite direction. It corresponds to dividing the current branch of
the search tree into two new branches. One of the parameters of the two recursive calls
is matrix of the longest paths. A values of the longest paths matrix may change inside
the procedure recursion therefore a copy D1 of the longest paths matrix is created for
the first branch and fixed edge (i,j) is inserted into D1 by addEdgeToLongestPaths
procedure. The second branch uses original matrix D because there is no need to
keep matrix D for further calculations therefore fixed edge (j,i) is inserted straight into
original matrix D by addEdgeToLongestPaths procedure.

The solutionFound procedure depicted in Algorithm 8 simply saves the new solution
as the best found if a value of C

max

is better than a value of the previous one. When
a new solution is found then a value of the updated upper bound is inserted into the
matrix of the longest paths as edge (n + 1, 0) with a value ≠UB. The longest path
matrix update may be done in all levels of the search tree because each level has a
separate copy of the longest path matrix. Update necessity of the longest paths matrix
with a new upper bound depends on the number of branches already fathomed in a

25

4 Exact algorithms

search tree node. Maximally two branches leads from a search tree node. If an update
of the upper bound is made in the first branch, then the matrix of the longest paths
have to be updated with a new upper bound because it will be used in the second
branch. If the upper bound is updated in the second branch, then there is no need for
the longest path matrix update because it is not further used.

Obviously, the upper bound update of the longest paths matrices is relatively ex-
pensive operation because insertion of an edge to the matrix of the longest paths takes
O(n2) time and have be done in an each current branch node on the way back to the root
node. A depth of the search tree may be up to the number of disjunctive edges and a
graph may contains up to n(n≠1)

2 disjunctive edges maximally. Consequently, an update
of an upper bound in all nodes of the current branch may take O(n2 · n

2 (n≠1)) = O(n4).
On the other hand, in the worst case where G contains the maximum number of disjunc-
tive edges i.e. set of disjunctive edges forms a complete graph, the immediate selection
will fix a large number of disjunctive edges thus the branch depth will be considerably
smaller. Moreover, if two search tree leaves will produce an upper bound update then
the update of the longest paths matrix in nodes which are in common part of the two
branches is performed maximally once with the lowest value of the two upper bound
updates except for the last common node where an update is performed with the first
found upper bound value.

On the other hand, if we consider a situation where an upper bound update occurs
in every leaf node of the search tree, then an update of the longest path matrix in each
internal search tree node is performed exactly once. There is several time consuming
operations in each search tree node: lower bound computation, the longest path ma-
trix copy and the longest path matrix upper bound update. Running time of these
operations in each search tree node is O(n log n + n2 + n2) = O(n2).

4.1.3 Branching strategy
A disjunctive pair for branching is selected by procedure selectBranchingPair [17].
The procedure uses time windows of possible task start times when a position of second
task from disjunctive pair is fixed. More precisely, when start time of task i is fixed with
s

i

= 0, then task k have to be scheduled in the time interval Èd
ik

, ≠w
ki

Í fi Èw
ik

, ≠d
ki

Í.
A value of fk

i

defined in Equation (14) is computed as a size of the interval normalized
by a sum of processing times in common criticality level.

fk

i

= ≠d
ik

≠ d
ki

≠ w
ik

≠ w
ki

+ 2
w

ik

+ w
ki

(14)

This value is calculated for each disjunctive pair. The median of all fk

i

values is calcu-
lated and disjunctive pair (i,k) is selected for branching.

4.1.4 Immediate selection
Immediate selection [17] is a procedure which fixes some disjunctive pairs which are
proved to be feasible only in one direction according to Equation (15).

d
ij

> ≠p
min(‰i,‰j)
j

· a
i

= a
j

(15)

If the longest path from task i to task j leaves no room for processing task j before
task i and tasks are assigned to the same dedicated resource, then disjunctive pair have
to be fixed in the way that task i precedes task j i.e. a temporal constraint with value
l
ij

= p
min(‰i.‰j)
i

is inserted into G.

26

4.2 Conflict resolution algorithm

4.1.5 Infeasibility test
Two infeasibility tests are used in the algorithm. The first one [17] is based on a
detection of cycle with positive length in graph G. If the graph contains positive cycle,
then it is not possible to feasibly schedule all tasks. Let T

i

and T
j

be two arbitrary
tasks in T , then following inequalities must hold

s
i

+ d
ij

Æ s
j

(16)
s

j

+ d
ji

Æ s
i

(17)

it follows

s
i

+ d
ij

Æ s
j

Æ s
i

≠ d
ji

(18)
s

i

+ d
ij

Æ s
i

≠ d
ji

(19)
d

ij

+ d
ji

Æ 0 (20)

A graph G could not include edges which starts and ends in the same task therefore
each cycle contains at least two nodes then implication in Equation (21) must holds.

÷i œ T : d
ii

> 0 æ ÷j œ T : d
ij

+ d
ji

> 0 æ s
i

+ d
ij

> s
j

‚ s
j

+ d
ji

> s
i

(21)

Existence of positive cycle can be detected by a check of the main diagonal in the
matrix of the longest paths therefore it could be done in O(n) time.

The second feasibility test is modification of the test proposed by Brucker [17]. It is
modified for mixed-criticality tasks and dedicated resources . The test is realized as a
transformation of our problem to an easier one which can be solved in polynomial time.
The transformation is similar to the transformation used in lower bound described in
Section 3.5.1. There is created a set of |R| · |L| dedicated resources and each original
resource corresponds to a set of L new resources each for one criticality level. Each
task i is transformed into a set of new tasks with ‰

i

elements. The new tasks are
without criticalities and each new task corresponds to one criticality level of the original
task. New task processing time equals to processing time of original task i in the
corresponding criticality level. Release time of tasks transformed from task i is equal
to the earliest start time of task i and due date is equal to the latest start time of task
i. Dedicated resource of new tasks is assigned in accordance with the original resource
and the corresponding criticality level.

This transformation is applied on each task in T and let Q be a set of newly created
tasks. Set Q is then scheduled like 1|r

j

, pmtn|L
max

problem for each new dedicated
resource separately. If L

max

> 0 then the branch is proved to be infeasible.

4.2 Conflict resolution algorithm
This section propose a conflict resolution algorithm. The algorithm is a modification
of the algorithm proposed by De Ryck and Herroelen [8]. It was originally proposed
for RCPSP/max. They proposed several dominance rules which fathom portions of the
search tree but these rules are not applicable when resources in our problem have a
unit capacity because a unit capacity eliminates the cause of these dominance rules.
The algorithm schedules task start times based only on the project network and then
resolve resource conflicts by creation of additional precedence constraints.

27

4 Exact algorithms

4.2.1 Algorithm description
The algorithm starts with computation of the longest paths between all tasks using
Floyd-Warshall algorithm. Next, there is a preprocessing step. The preprocessing step
may add some temporal constraints which tighten solution space and which do not
cut o� any feasible solution. It is described in Section 4.2.2. An upper bound UB is
computed by a heuristic and if the heuristic does not find a feasible solution, then an
upper is computed as described in Section 3.5.2. Next, conflictResolutionRecursive
procedure is called.

Algorithm 9 Conflict resolution algorithm
1: procedure conflictResolution(T,E)
2: D Ω longestPaths(E)
3: preprocessing(T, E, D)
4: UB Ω upperBound(T, E, D)
5: conflictResolutionRecursive(T,E,D)
6: end procedure

Branching of the algorithm is realized in conflictResolutionRecursive procedure. A
lower bound is computed as described in Section 3.5.1. If the lower bound is greater than
the upper bound, then the branch is pruned because there is no better solution than the
best one found yet. Tasks are considered to be scheduled in their earliest start times
i.e. s

i

= es
i

= d0,i

’i œ T . Resource conflicts are checked in findResourceConflict
procedure. A resource conflict is identified by triplet (t, c, r) where t is the conflict
time, c is criticality level where the conflict was found and variable r is a resource
where the conflict was found. Time of the resource conflict t is found by checking the
schedule from left to right for each resource searching for a time when some resource
has more then one task being processed at the same time. Detailed description of
findResourceConflict is in Section 4.2.3. If resource conflict time is not found, then
the schedule is feasible and procedure solutionFound is called which saves solution and
update the upper bound if the new solution is better than the best one found yet.

Procedure conflictSet returns set C of tasks which are in conflict on some resource.
The original algorithm [8] resolves resource conflicts by so called minimal delaying
alternatives. Minimal delaying alternatives are the minimal sets of tasks which have to
be delayed to eliminate a resource conflict in time t. A Minimal Delaying Alternative
MDA is delayed by precedence constraints i.e. temporal constraints with a value equal
to processing time of source task. Source task i is chosen from set C \ MDA and
precedence constraints to each element of MDA are created i.e. E fi (i, j), ’j œ MDA
with values l

ij

= p
i

where p
i

is processing time of task i in RCPSP/max. Combination
of one source task and one minimal delaying alternative is called minimal delaying
mode. Branching is based on iteration over all minimal delaying alternatives and all
it’s delaying modes because we must try to delay all minimal delaying alternatives and
try every possible source task of this delay.

In our problem, we have resources with a unit capacity therefore if there is a conflict
found on a resource in particular time, then there can remain only one task and other
tasks must be delayed. Consequently, |MDA| = |C|≠1 and number of minimal delaying
modes is equal to size of the conflict set. Precedence constraints from task i to task
j are realized as temporal constraints with a value l

ij

= p
min(‰i,‰j)
i

. Branching is then
realized as iteration over tasks in the conflict set and iterated task is defined as a source
of precedence constraints leading to every other task from the conflict set. An example

28

4.2 Conflict resolution algorithm

Algorithm 10 Conflict resolution algorithm
1: procedure conflictResolutionRecursive(T,E,D)
2: LB Ω lowerBound(T, E, D)
3: if LB > UB then

4: return

5: end if

6: (t, c, r) Ω findResourceConflict()
7: if no resource conflict found then

8: solutionFound(D)
9: return

10: end if

11: C Ω ConflictSet(t, c, r)
12: for i œ C do

13: D
rec

Ω D
14: for j œ C \ task do

15: addEdgeToLongestPaths(D
rec

, (i, j))
16: end for

17: conflictResolutionRecursive(T, E, D
rec

)
18: end for

19: end procedure

of branching is depicted in Figure 15. Tasks T1, T2 and T3 with vectors of processing
times

• P1 = (2, 4)
• P2 = (1, 2)
• P3 = (2)

are in conflict on the same dedicated resource in criticality level 1. Conflict is also
between tasks T2 and T3 in criticality level 2 but only one conflict at a time can be
considered. The conflict is resolved by three branches. The first branch has source task
T1 and two precedence constraints are created. The first one leading to T2 with value
l12 = 4 because common criticality level of T1 and T2 is 2 units and processing time
of T1 in criticality level 2 is 4 units. The second one leading to T3 with value l13 = 2
because common criticality level of T1 and T3 is 1 and processing time of T1 in criticality
level 1 is 2 units. The other two branches with source tasks T2 and T3 are created in
the same way.

4.2.2 Preprocessing step
In this section we will show how to modify the preprocessing step of the original algo-
rithm [8] for RCPSP/max to our problem with mixed-criticality tasks and dedicated
resources with unit capacity. We must define some parameters of RCPSP/max. Let V
be a set of non-criticality tasks. Let K be a set of resources and capacity

k

be capacity
of resource k. Let r

ik

be a task i requirement on resource k. The preprocessing step in
the original algorithm [8] is defined in Equation (22) i.e. the preprocessing step creates
an additional temporal constraint if it finds two tasks i, j which cannot be processed in
the same time due to resource requirements and task j cannot be completely scheduled
before task j due to the longest path d

ij

.

÷i, j œ V, ÷k œ K : r
ik

+ r
jk

> capacity
k

· ≠p
j

< d
ij

· d
ij

< p
i

æ d
ij

= p
i

(22)

29

4 Exact algorithms

Figure 15 A Conflict resolution algorithm branching scheme

Transformation of Equation (22) to our problem is depicted in Equation (23). Next,
we will describe the transformation.

÷i, j œ T : a
i

= a
j

· ≠p
min(‰i,‰j)
j

< d
ij

· d
ij

< p
min‰i,‰j

i

æ d
ij

= p
min‰i,‰j

i

(23)

The first condition of Equation (22) holds for every two tasks assigned to the same
dedicated resource because we have a unit resource capacity and unit resource require-
ments therefore 1 + 1 > 1 and we can substitute this condition by a condition a

i

= a
j

.
The second condition of Equation (22) identifies a situation when task j cannot be
scheduled before task i because temporal constraints restrict start times in the way
that task j can not be completely processed before start time of task i. Transformed
for mixed-criticality tasks, the second condition is ≠p

min(‰i,‰j)
j

< d
ij

. The third condi-
tion in Equation (22) warants that the new precedence constraint will be beneficial i.e.
that the new precedence constraint will enlarge a value of the longest path d

ij

. The
third condition transformed for mixed-criticality tasks looks like this d

ij

< p
min‰i,‰j

i

.
These three conditions are corresponding to immediate selection described in Section
4.1.4. The immediate selection 4.1.4 is proposed for disjunctive pairs and if we re-
place disjunctive pairs with pairs of tasks i, j where d

ij

< p
min(‰i,‰j)
i

, then we are able
to realize the preprocessing step by immediate selection procedure because remaining
conditions from Equation (23) a

i

= a
j

and ≠p
min(‰i,‰j)
j

< d
ij

are already realized by
immediate selection.

4.2.3 Find resource conflict procedure
Procedure findResourceConflict is in Algorithm 11. The procedure finds time of a
resource conflict if it exists. It is based on principle of resource reservation. Tasks are
sorted according to increasing start times in the first step of the procedure. The first
loop iterates over sorted tasks. Task i is task selected by the first loop. Next, there is

30

4.3 SAT solver with lazy clause generation

a loop iterating over all criticality levels c of task i. If resource a
i

is reserved at time
s

i

in criticality level c than conflict is found. Otherwise the dedicated resource of task
i is reserved in criticality level c until task i completion time in criticality level c i.e.
it is reserved until time equal to s

i

+ pc

i

. The procedure was proposed in the way that
running time of the procedure is not dependent on a size of start time values.

Algorithm 11 Conflict resolution algorithm
1: procedure findResourceConflict

2: Sort tasks according to increasing start times.
3: reservation

cr

Ω 0 ’c œ {1, .., L}, ’r œ R
4: for i œ tasks do

5: for c Ω 1 to ‰
i

do

6: if reservation
cai > s

i

then

7: return resource conflict found at (s
i

, c, a
i

)
8: end if

9: reservation
cai Ω s

i

+ pc

i

10: end for

11: end for

12: return no resource conflict found
13: end procedure

4.3 SAT solver with lazy clause generation
In this section we will describe a basic principle of the algorithm proposed by Schutt
et al. [14] for solving RCPSP/max with SAT solver using lazy clause generation. We
will also describe G12 framework and in the end of the section, we will describe how
we used the algorithm in our problem.

4.3.1 Algorithm principle description
Possible start times of task are represented as finite domains. A finite domain is a
set of integer numbers representing possible values of some variable. In our case, val-
ues of domains are possible start times of tasks. Variables are subjects of constraints
which represents relations between variables, therefore domains are pruned by these
constraints.

A domain of integers can be transformed into Conjunctive Normal Form Boolean
Satisfiability (CNF-SAT) formula [14]. Let x be a variable with domain DOM

init

(x) =
[l . . . u]. There is created 2(u ≠ l) + 1 boolean variables. Boolean variables [[x Æ l]], [[x Æ
l + 1]], . . . , [[x Æ u ≠ 1]] and variables [[x = l]], [[x = l + 1]], . . . [[x = u]]. A boolean formula
representing domain is then created as conjunction of these literals. If formula contains
literals [[x Æ k]], [[x Æ k + 1]], . . . , [[x Æ u]] and does not contains literal [[x Æ k ≠ 1]] it
means that k is the greatest possible value in domain DOM(x) i.e. k = u

current

. If
formula contains literals ¬[[x Æ l]], ¬[[x Æ l + 1]], . . . , ¬[[x Æ k ≠ 1]] and does not contains
literal ¬[[x Æ k]] it means that k is the smallest possible value in domain DOM(x) i.e
k = l

current

. If a formula contains literal ¬[[x = k]] it means the k /œ DOM(x). There
exists assignments which are not consistent, therefore clauses ensuring consistency are
also added to the SAT representation.

Constraints are transformed into a set of propagators which reduce domains of vari-
ables. If some propagator reduces a domain of a variable then the propagator generates

31

4 Exact algorithms

a clause which explains the propagation and the clause is added to the SAT represen-
tation [10]. This process where boolean representation of constraints is generated when
it is really needed is called lazy clause generation. Another feature of this approach is
no-good learning. The no-good learning uses an implication graph where nodes rep-
resents decided literals and edges represents the cause of literal assignment. When a
conflict in assignment is found, then a clause explaining the conflict is generated from
the implication graph and the clause is added to the SAT representation.

4.3.2 G12 framework
The algorithm is implemented in G12 combinatorial optimization framework [21] [22]
created by National ICT Australia. The framework decomposes optimization process
into three separate layers. An optimization problem is specified as a set of constraints
and variables in the first layer. The second layer [23] transforms problem model to the
representation of a specific solver or combination of solvers. The third layer is realized
by a set of solvers. The language used in the first layer is called Zinc [24] or it’s subset
called MiniZinc. It is declarative language for specifying solver independent constraints.
The second layer is realized by language called Cadmium which is transforming Minizinc
problem definition into a solver specific representation. The third layer is implemented
in Mercury language. There are many solvers [27] which can be used in the third layer
for example a finite domain constraint solver, an integer linear programming solver or
a SAT solver.

4.3.3 Solution description
We specified the mixed-criticality scheduling problem in Minizinc language and used
already implemented SAT algorithm with lazy clause generation which is part of G12
framework as one of standard solvers called LazyFD solver. We also implemented
program which transforms data from generator of instances (described in Section 5.2)
to the Minizinc data format. The program also starts the execution of the solver.

32

5 Computational results
Computational results of the heuristic algorithm and exact algorithms are presented in
this chapter. Moreover, there is a description of the process of instances generation and
description of implementation.

5.1 Implementation and testing enviroment
The algorithms and generator were implemented in C# programming language. We
have decided to use Mono framework which is an open source implementation of Mi-
crosoft’s .NET framework capable of running on di�erent operating systems including
Linux or Android. We intended to use Mono framework under OS X operating system.
In the course of implementation we found out that CPLEX library for OS X does not
support C# interface therefore we migrated our solution to Windows operating system
and we used Microsoft’s .NET framework.

Testing was performed on a computer equipped with 2.13 GHz Intel Core 2 Duo
processor and 4 GB of operational memory.

5.2 Data generator
Up to our knowledge, there is no published mixed-criticality generator or a public test
set for the mixed-criticality scheduling problem therefore we decided to implement a
generator which transforms instances generated by ProGenMax generator [25] to mixed-
criticality instances.

5.2.1 ProGenMax generator
ProGenMax is generator created by Schwindt [25] capable of generating instances for
several di�erent scheduling problems including RCPSP/max. We adjust the generator
to generate instances of RCPSP/max where all resources has unit capacity and tasks
are assigned only to one resource with a unit resource requirement.

5.2.2 Mixed-criticality generator
Mixed-criticality generator transforms instances generated by ProGenMax generator
into mixed-criticality instances. Instances generated by ProGenMax generator already
have graph of temporal constraints, tasks with processing times and each task has one
dedicated resource therefore mixed criticality generator have to assign task criticalities
and processing times for each criticality level.

Project criticality L is defined as constant by user before start of generation. The
generator selects criticality ‰

i

for task i randomly from set {1, ..., L}. There were
implemented two ways of generation of processing time vector. The first approach is
called shortening generation approach. Shortening generation approach assigns original
processing time porig

i

generated by ProGenMax for RCPSP/max task i to processing
time in the maximal criticality level i.e. p‰i

i

= porig

i

. Processing times of other criticality

33

5 Computational results

budgetRatio = 1.2 budgetRatio = 2 budgetRatio = 10
Instance Copt

max

C
max

t [s] C
max

t [s] C
max

t [s]
h01t10c2 258 NF 0.01 262 0.02 262 0.09
h02t10c6 184 NF <0.01 263 <0.01 263 <0.01
h03t20c2 419 NF <0.01 534 <0.01 534 <0.01
h04t20c6 404 NF <0.01 414 <0.01 414 <0.01
h05t40c2 889 NF <0.01 1006 <0.01 1006 <0.01
h06t40c6 874 893 <0.01 893 <0.01 893 <0.01
h07t70c2 1860 NF <0.01 2287 <0.01 2287 0.02
h08t70c6 1875 NF <0.01 2046 <0.01 2046 0.10
h09t100c2 - NF <0.01 3096 <0.01 3096 0.03
h10t100c6 - NF <0.01 NF <0.01 NF 0.02
h11t200c2 - NF 0.01 5661 0.01 5522 0.01
h12t200c6 - NF 0.01 NF 0.05 5469 0.01
h13t400c2 - 12067 0.01 12067 0.01 12067 0.01
h14t400c6 - 11976 0.05 11976 0.01 11976 0.01
h15t700c2 - NF 0.05 NF 0.08 NF 0.32
h16t700c6 - 22533 0.04 22533 0.04 22533 0.03
h17t1000c2 - NF 0.11 27723 0.09 29676 0.09
h18t1000c6 - NF 0.12 NF 0.12 NF 0.13

Table 1 Computations results of heuristic 1

levels are then generated iteratively according to Equation (24) for each criticality level
c œ {‰

i

≠ 1, ..., 1}.

pc

i

= floor(pc+1
i

rand
) (24)

Number rand is randomly generated on interval È1, randMaxÍ where randMax is a
user defined constant.

The second approach is elongate generation approach which assigns original pro-
cessing time porig

i

to processing time in the lowest criticality level i.e. p1
i

= porig

i

and
processing times of higher criticality levels are generated according to Equation (25)
iteratively for each criticality level c œ {2, ..., ‰

i

}.

pc+1
i

= ceil(pc

i

· rand) (25)

Shortening generation approach creates instances which have a feasible solution more
often than instances created by elongate generation approach. For testing purposes, it
is good to know an optimal solution of instance therefore our generator has an option
to compute an optimal solution of a generated instance by CPLEX solver.

5.3 Heuristic algorithm results
This section discuss computational results of three versions of the heuristic algorithm.
We will use naming convention heuristic 1, heuristic 2 and heuristic 3 as defined in
Section 3.4.1.

Heuristics were tested on a set of eighteen instances of di�erent size. Parameters of
the instance are encoded in the instance name with pattern hxtxcx where the first x
is a number of the instance, the second x is a number of task and the third x is the
maximal criticality level therefore an instance with name h18t1000c6 has number of

34

5.3 Heuristic algorithm results

budgetRatio = 1.2 budgetRatio = 2 budgetRatio = 10
Instance Copt

max

C
max

t [s] C
max

t [s] C
max

t [s]
h01t10c2 258 NF 0.01 262 0.01 262 0.03
h02t10c6 184 NF <0.01 263 <0.01 247 <0.01
h03t20c2 419 NF <0.01 534 <0.01 501 <0.01
h04t20c6 404 NF <0.01 414 <0.01 414 <0.01
h05t40c2 889 NF <0.01 1006 <0.01 942 <0.01
h06t40c6 874 893 <0.01 893 <0.01 893 <0.01
h07t70c2 1860 NF <0.01 2239 <0.01 2126 <0.01
h08t70c6 1875 NF <0.01 2046 <0.01 2046 0.01
h09t100c2 - NF <0.01 NF <0.01 3282 0.05
h10t100c6 - NF <0.01 NF 0.01 NF 0.04
h11t200c2 - NF 0.01 5492 0.02 5492 0.09
h12t200c6 - NF 0.01 NF 0.04 611 0.01
h13t400c2 - 12067 0.01 12067 0.01 12067 0.01
h14t400c6 - 11976 0.01 11976 0.01 11976 0.01
h15t700c2 - NF 0.11 16730 0.19 16730 0.79
h16t700c6 - 22533 0.04 22533 0.04 22533 0.04
h17t1000c2 - NF 0.2 NF 0.41 29647 0.34
h18t1000c6 - NF 0.12 NF 0.12 NF 0.12

Table 2 Computational results of heuristic 2

instance equal to 18, it consists of one thousand tasks and maximal criticality level is
equal to 6. Each instance has two dedicated resources.

Computational results of heuristic 1, heuristic 2 and heuristic 3 are in Tables 1, 2
and 3 respectively. Second columns presents a value of an optimal solution computed
by CPLEX solver. Optimal solutions were computed for instances of size up to seventy
tasks. Optimal values of other instances are not not known. Each heuristic version
was tested with three di�erent values of budgetRatio. If a heuristic does not found a
solution then abbreviation NF is placed into the table cell. All three heuristics were not
able to solve most of instances with budgetRatio = 1.2. When a value of budgetRatio
was increased to 2, then heuristics found a feasible solution in most of the instances.
When a value of budgetRatio was increased to 10, then number of unsolved instances by
heuristic 1 and heuristic 2 was only slightly better than number of unsolved instances
with budgetRatio = 2 but number of unsolved instances by heuristic 3 decreases from
four unsolved instances to only one unsolved instance.

Table 4 is comparison of all three versions of the heuristic algorithm with budgetRatio =
10. The greatest number of feasible solutions was found by heuristic 3. It was unable
to solve only one instance. Heuristic 2 was unable to find solution for two instances
and heuristic 1 was unable to solve three instances. The best value of C

max

was found
by heuristic 3 in most of the cases. Heuristic 2 found the best value of C

max

in three
cases.

Running times of heuristic 1 and 2 are significantly better than running time of
heuristic 3. This di�erence is caused by computation of the longest paths between all
tasks and by calculation of the earliest start time and the latest start time based on
the longest paths to all scheduled tasks as mentioned in Section 3.4.1. Heuristic 1 and
2 are capable of solving very large instances but we did not generate larger instances
than one thousand tasks because of running time of ProGenMax generator. Generation
of one thousand task instance set lasted more than one hour. Running time of heuristic

35

5 Computational results

budgetRatio = 1.2 budgetRatio = 2 budgetRatio = 10
Instance Copt

max

C
max

t [s] C
max

t [s] C
max

t [s]
h01t10c2 258 NF 0.01 NF <0.01 262 0.01
h02t10c6 184 244 <0.01 244 <0.01 244 <0.01
h03t20c2 419 NF <0.01 450 <0.01 450 <0.01
h04t20c6 404 NF 0.01 414 <0.01 414 <0.01
h05t40c2 889 942 <0.01 942 <0.01 942 0.01
h06t40c6 874 893 <0.01 893 <0.01 874 <0.01
h07t70c2 1860 NF 0.01 2114 0.02 2114 0.05
h08t70c6 1875 NF 0.01 2017 0.02 2017 0.06
h09t100c2 - NF 0.04 NF 0.06 2819 0.16
h10t100c6 - NF 0.04 NF 0.05 2755 0.19
h11t200c2 - NF 0.27 NF 0.32 5685 0.58
h12t200c6 - NF 0.27 5532 0.31 5157 0.43
h13t400c2 - 12067 1.96 12067 2.06 12067 2.96
h14t400c6 - 11976 1.93 11976 2.03 11976 2.81
h15t700c2 - NF 9.77 17072 10.91 17072 14.93
h16t700c6 - 22533 9.91 22533 10.28 22533 13.22
h17t1000c2 - NF 27.75 26764 30.31 26764 38.62
h18t1000c6 - NF 27.74 NF 31.48 NF 37.31

Table 3 Computational results of heuristic 3

1 is less than half a second for each instance and running time of heuristic 2 is less
than one second for each instance. Heuristic 3 running time was under one minute for
each instance. It is still a fast heuristic algorithm even though the other two heuristic
algorighms are faster because instances of size about one thousand are considered to
be large and running time under one minute is good result.

5.4 Exact algorithms results

This section presents computational results of exact algorithms. Algorithms were tested
on a set consisting of seventeen instances. Parameters of instances are encoded into
instance name with pattern etxcx where the first x is number of tasks and the second x
is the maximal number of criticality levels. For example, an instance with name et50c6
contains fifty tasks and the maximal criticality level is equal to six. Number of resources
is fixed to two resources in all instances and we use two values of the maximal criticality
level. A running time limit for algorithm execution time on one instance was set to ten
minutes. If an algorithm was stopped due to time limit, then a value of running time
is replaced by a dash character.

Two implemented exact algorithms were tested together with integer linear program-
ming solver CPLEX and with SAT/FD lazy clause generation solver which was de-
scribed in Section 4.3. Computational results of exact algorithms are depicted in Table
5. Conflict resolution algorithm was better than disjunctive pairs algorithm. It was
able to solve instances with 54 tasks. Disjunctive pairs algorithm was able to solve in-
stances up to size of 46 tasks. An instance with name et50c2 was solved by Disjunctive
pairs algorithm in short time because it has no feasible solution which was revealed by
positive cycle test in the first steps of the algorithm.

An integer linear programming solver and SAT solver with lazy clause generation

36

5.4 Exact algorithms results

Heuristic 1 Heuristic 2 Heuristic 3
Instance Copt

max

C
max

t [s] C
max

t [s] C
max

t [s]
h01t10c2 258 262 0.09 262 0.03 262 0.01
h02t10c6 184 263 <0.01 247 <0.01 244 <0.01
h03t20c2 419 534 <0.01 501 <0.01 450 <0.01
h04t20c6 404 414 <0.01 414 <0.01 414 <0.01
h05t40c2 889 1006 <0.01 942 <0.01 942 0.01
h06t40c6 874 893 <0.01 893 <0.01 874 <0.01
h07t70c2 1860 2287 0.02 2126 <0.01 2114 0.05
h08t70c6 1875 2046 0.1 2046 0.01 2017 0.06
h09t100c2 - 3096 0.03 3282 0.05 2819 0.16
h10t100c6 - NF 0.02 NF 0.04 2755 0.19
h11t200c2 - 5522 0.01 5492 0.09 5685 0.58
h12t200c6 - 5469 0.01 6111 0.01 5157 0.43
h13t400c2 - 12067 0.01 12067 0.01 12067 2.96
h14t400c6 - 11976 0.01 11976 0.01 11976 2.81
h15t700c2 - NF 0.32 16730 0.79 17072 14.93
h16t700c6 - 22533 0.03 22533 0.04 22533 13.22
h17t1000c2 - 29676 0.09 29647 0.34 26764 38.62
h18t1000c6 - NF 0.13 NF 0.12 NF 37.31

Table 4 A comparison of heuristic algorithm versions

achieved better computational results than our algorithms. Conflict resolution algo-
rithm was able to solve instance et54c6 in 38 seconds whereas the integer linear pro-
gramming solver and the SAT solver were able to solve the instance under six seconds.

The instance with eighty tasks was additionally created in order to compare the
integer linear programming solver and the SAT solver. The instance show that the
SAT solver is able to achieve better results than the integer linear programming solver
on instances with more tasks. Our algorithms were outperformed by the integer linear
programming solver and the SAT solver. CPLEX solver is probably the most advanced
commercial integer linear programming solver and techniques used by this solver are
not published in the scientific community. Approach based on SAT/FD lazy clause
generation solver is state of the art in RCPSP/max. We proved that SAT solver is a
powerful approach also in the mixed-criticality scheduling problem.

37

5 Computational results

Instance Disjunctive
pairs alg. t [s]

Conflict
resolution alg.

t [s]

ILP t [s] SAT/FD t [s]

et26c2 0.15 0.11 0.37 1.62
et26c6 0.01 0.01 0.2 1.64
et30c2 0.44 0.08 0.19 1.22
et30c6 0.01 <0.01 0.3 0.98
et34c2 0.11 0.04 0.24 1.47
et34c6 0.23 0.03 0.34 0.83
et38c2 1.24 0.09 0.47 0.92
et38c6 0.13 0.09 0.42 1.71
et42c2 0.07 0.82 0.69 1.68
et42c6 0.02 0.01 0.48 1.36
et46c2 2.37 2.57 0.71 2.07
et46c6 - 22.93 1.08 2.3
et50c2 - 41.65 2.71 3.37
et50c6 0.32 0.17 2.96 1.98
et54c2 - 14.44 1.46 2.46
et54c6 - 37.48 5.88 5.26
et80c6 - - 377.89 80.44

Table 5 Computational results of exact algorithms

38

6 Conclusion
This work propose o�ine algorithms for the mixed-criticality scheduling problem with
positive and negative time lags and non-preemtive tasks with dedicated resources. Up
to our knowledge, these are the first algorithms in this area. An inspiration for our
algorithms comes from di�erent scheduling problems. We proposed one heuristic algo-
rithm which is a modification of the Iterative resource scheduling algorithm proposed
by Hanzálek and ä�cha [18] for RCPSP/max. It was implemented in three versions
di�ering in some algorithm aspects described in detail in Section 3.4.1. We showed a
problematic example of the approach used in the first heuristic version and incorporate
bulldozing procedure which was proposed by Smith [19] for Squeaky wheel optimization
of RCPSP/max. Bulldozing e�ectively solved the problem illustrated in the problem-
atic example. The first and the second heuristic versions turns out to be very quick
algorithms solving really big instances. One thousand task input instances were solved
under one second and possibly larger instances can be considered. The third version of
the heuristic algorithm is slower solving one thousand task instances under one minute
but with a greater ability to find a feasible solution in complicated instances.

We proposed two exact algorithms based on a branch and bound design paradigm.
The first one is Disjunctive pairs algorithm. It is a modification of the algorithm
proposed by Brucker et al. [17] for the single-machine scheduling problem with minimal
and maximal time lags. Conflict resolution algorithm is the second exact algorithm
which is inspired by the algorithm proposed by DeRyck et al. [8] for RCPSP/max. We
were also interested in approach using representation of scheduling problem as finite
domain and transformation of finite domain to boolean satisfiability problem which is
the state of the art approach in RCPSP/max problem [14]. Transformed problem is then
solved with SAT solver. This solution is not incorporated in contributions of our work
because we formulated the mixed-criticality scheduling problem in Minizinc modeling
language but the transformation to boolean satisfiability problem and the solver are
already implemented in optimization framework G12 [22] which we were using.

Testing instances were generated by ProGenMax generator [25] as instances of the
project scheduling problem with minimal and maximal time lags and then transformed
to mixed-criticality instances by our generator.

Computational results were compared with integer linear programming solver CPLEX.
Disjunctive pairs algorithm were able to successfully find an optimal solution on in-
stances of size above forty tasks. Conflict resolution algorithm results were better. It
was able to find an optimal solution for instances of size above fifty tasks. Our al-
gorithms were outperformed by CPLEX solver and by the SAT/FD solver. The best
results were achieved with SAT/FD solver which outperformed CPLEX solver on bigger
instances.

39

Bibliography
[1] S. Vestal. “Preemptive Scheduling of Multi-criticality Systems with Varying De-

grees of Execution Time Assurance”. In: Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International. Dec. 2007, pp. 239–243. doi: 10.1109/

RTSS.2007.47.
[2] Vincenzo Bonifaci Sanjoy Baruah. “Scheduling Real-Time Mixed-Criticality Jobs”.

In: IEEE Transactions 61 (8 Aug. 2012).
[3] O.R. Kelly, H. Aydin, and Baoxian Zhao. “On Partitioned Scheduling of Fixed-

Priority Mixed-Criticality Task Sets”. In: Trust, Security and Privacy in Comput-
ing and Communications (TrustCom), 2011 IEEE 10th International Conference
on. Nov. 2011, pp. 1051–1059. doi: 10.1109/TrustCom.2011.144.

[4] D. de Niz, K. Lakshmanan, and R. Rajkumar. “On the Scheduling of Mixed-
Criticality Real-Time Task Sets”. In: Real-Time Systems Symposium, 2009, RTSS
2009. 30th IEEE. Dec. 2009, pp. 291–300. doi: 10.1109/RTSS.2009.46.

[5] Zden�k Hanzálek, Tomáö Tunys, and P�emysl ä�cha. “Non-preemptive mixed-
criticality match-up scheduling problem”. In: ().

[6] J. Blazewicz, J.K. Lenstra, and A.H.G.Rinnooy Kan. “Scheduling subject to re-
source constraints: classification and complexity”. In: Discrete Applied Mathemat-
ics 5.1 (1983), pp. 11–24. issn: 0166-218X.

[7] M. Bartusch, R.H. Möhring, and F.J. Radermacher. “Scheduling project networks
with resource constraints and time windows”. English. In: Annals of Operations
Research 16.1 (1988), pp. 199–240. issn: 0254-5330. doi: 10.1007/BF02283745.
url: http://dx.doi.org/10.1007/BF02283745.

[8] Bert De Reyck and Willy Herroelen. “A branch-and-bound procedure for the
resource-constrained project scheduling problem with generalized precedence re-
lations”. In: European Journal of Operational Research 111 (1998), pp. 152–174.

[9] Toan Phan-Huy Ulrich Dorndorf Erwin Pesch. “A time-oriented branch-and-
bound algorithm for resource-constrained project scheduling with generalised prece-
dence constraints”. In: Management Science (Oct. 2000).

[10] Olga Ohrimenko, PeterJ. Stuckey, and Michael Codish. “Propagation via lazy
clause generation”. English. In: Constraints 14.3 (2009), pp. 357–391. issn: 1383-
7133. doi: 10.1007/s10601-008-9064-x. url: http://dx.doi.org/10.1007/

s10601-008-9064-x.
[11] Andrei Horbach. “A Boolean satisfiability to the resource-constrained project

scheduling problem”. English. In: Annals of Operations Research 181.1 (2010),
pp. 89–107. issn: 0254-5330. doi: 10.1007/s10479-010-0693-2.

[12] Niklas Eén and Niklas Sörensson. “An Extensible SAT-solver”. English. In: The-
ory and Applications of Satisfiability Testing. Ed. by Enrico Giunchiglia and Ar-
mando Tacchella. Vol. 2919. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2004, pp. 502–518. isbn: 978-3-540-20851-8. doi: 10.1007/978-3-

540-24605-3_37. url: http://dx.doi.org/10.1007/978-3-540-24605-3_37.

40

http://dx.doi.org/10.1109/RTSS.2007.47
http://dx.doi.org/10.1109/RTSS.2007.47
http://dx.doi.org/10.1109/TrustCom.2011.144
http://dx.doi.org/10.1109/RTSS.2009.46
http://dx.doi.org/10.1007/BF02283745
http://dx.doi.org/10.1007/BF02283745
http://dx.doi.org/10.1007/s10601-008-9064-x
http://dx.doi.org/10.1007/s10601-008-9064-x
http://dx.doi.org/10.1007/s10601-008-9064-x
http://dx.doi.org/10.1007/s10479-010-0693-2
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37

Bibliography

[13] João P. Marques Silva, Inês Lynce, and Sharad Malik. “Conflict-Driven Clause
Learning SAT Solvers.” In: Handbook of Satisfiability. Ed. by Armin Biere et al.
Vol. 185. Frontiers in Artificial Intelligence and Applications. IOS Press, Sept. 16,
2009, pp. 131–153. isbn: 978-1-58603-929-5. url: http://dblp.uni-trier.de/

db/series/faia/faia185.html#SilvaLM09.
[14] Peter J. Stuckey Andresas Schutt Thibaut Feydy. “Solving RCPSP/max by lazy

clause generation”. In: Journal of Scheduling 16 (2013).
[15] Andreas Schutt et al. “Why Cumulative Decomposition Is Not as Bad as It

Sounds”. English. In: Principles and Practice of Constraint Programming - CP
2009. Ed. by IanP. Gent. Vol. 5732. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2009, pp. 746–761. isbn: 978-3-642-04243-0. doi: 10.1007/

978-3-642-04244-7_58. url: http://dx.doi.org/10.1007/978-3-642-

04244-7_58.
[16] Pinson E. Carlier J. “An algorithm for solving the job-shop problem”. In: Man-

agement Science 30.2 (Feb. 1989).
[17] Peter Brucker, Thomas Hilbig, and Johann Hurink. “A branch and bound algo-

rithm for a single-machine scheduling problem with positive and negative time-
lags”. In: Discrete Applied Mathematics 94.1–3 (1999). Proceedings of the Third
International Conference on Graphs and Optimization GO-III, pp. 77–99. issn:
0166-218X. doi: http://dx.doi.org/10.1016/S0166-218X(99)00015-3. url:
http://www.sciencedirect.com/science/article/pii/S0166218X99000153.

[18] Zden�k Hanzálek and P�emysl ä�cha. “Time symmetry of project scheduling with
rime windows and take-give resources”. In: Proc. of the 4th Multidisciplinary
International Scheduling Conf.: Theory and Applications (MISTA) (Aug. 2009).

[19] Tristan B. Smith. “An e�ective algorithm for project scheduling with arbitrary
temporal constraints”. In: In: Proceedings of the 19 th National Conference on
Artificial Intelligence. (2004. 2004, pp. 544–549.

[20] David E. Joslin and David P. Clements. "Squeaky Wheel" Optimization. 1999.
[21] Mark Wallace. “G12 - Towards the Separation of Problem Modelling and Problem

Solving”. English. In: Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems. Ed. by Willem-Jan van Ho-
eve and JohnN. Hooker. Vol. 5547. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2009, pp. 8–10. isbn: 978-3-642-01928-9. doi: 10.1007/978-

3-642-01929-6_2. url: http://dx.doi.org/10.1007/978-3-642-01929-6_2.
[22] PeterJ. Stuckey et al. “The G12 Project: Mapping Solver Independent Models to

E�cient Solutions”. English. In: Logic Programming. Ed. by Maurizio Gabbrielli
and Gopal Gupta. Vol. 3668. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2005, pp. 9–13. isbn: 978-3-540-29208-1. doi: 10.1007/11562931_3.
url: http://dx.doi.org/10.1007/11562931_3.

[23] Reza Rafeh et al. “From Zinc to Design Model”. English. In: Practical Aspects
of Declarative Languages. Ed. by Michael Hanus. Vol. 4354. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2007, pp. 215–229. isbn: 978-3-
540-69608-7. doi: 10.1007/978-3-540-69611-7_14. url: http://dx.doi.org/

10.1007/978-3-540-69611-7_14.
[24] Kim Marriott et al. “The Design of the Zinc Modelling Language”. In: Constraints

13.3 (Sept. 2008), pp. 229–267. issn: 1383-7133. doi: 10.1007/s10601- 008-

9041-4. url: http://dx.doi.org/10.1007/s10601-008-9041-4.

41

http://dblp.uni-trier.de/db/series/faia/faia185.html#SilvaLM09
http://dblp.uni-trier.de/db/series/faia/faia185.html#SilvaLM09
http://dx.doi.org/10.1007/978-3-642-04244-7_58
http://dx.doi.org/10.1007/978-3-642-04244-7_58
http://dx.doi.org/10.1007/978-3-642-04244-7_58
http://dx.doi.org/10.1007/978-3-642-04244-7_58
http://dx.doi.org/http://dx.doi.org/10.1016/S0166-218X(99)00015-3
http://www.sciencedirect.com/science/article/pii/S0166218X99000153
http://dx.doi.org/10.1007/978-3-642-01929-6_2
http://dx.doi.org/10.1007/978-3-642-01929-6_2
http://dx.doi.org/10.1007/978-3-642-01929-6_2
http://dx.doi.org/10.1007/11562931_3
http://dx.doi.org/10.1007/11562931_3
http://dx.doi.org/10.1007/978-3-540-69611-7_14
http://dx.doi.org/10.1007/978-3-540-69611-7_14
http://dx.doi.org/10.1007/978-3-540-69611-7_14
http://dx.doi.org/10.1007/s10601-008-9041-4
http://dx.doi.org/10.1007/s10601-008-9041-4
http://dx.doi.org/10.1007/s10601-008-9041-4

Bibliography

[25] Christoph Schwindt and Christoph Schwindt. ProGen/max: A New Problem Gen-
erator for Di�erent Resource-Constrained Project Scheduling Problems with Min-
imal and Maximal Time Lags. Tech. rep. 1995.

[26] Andreas Fest et al. Resource-Constrained Project Scheduling With Branching
Scheme Based On Dynamic Release Dates. 1999.

[27] Ralph Becket et al. “The Many Roads Leading to Rome: Solving Zinc Models
by Various Solvers.” In: ModRef’08: 7th International Workshop on Constraint
Modelling and Reformulation. Sydney Australia, Sept. 2008.

[28] S. Baruah and S. Vestal. “Schedulability Analysis of Sporadic Tasks with Multiple
Criticality Specifications”. In: Real-Time Systems, 2008. ECRTS ’08. Euromicro
Conference on. July 2008, pp. 147–155. doi: 10.1109/ECRTS.2008.26.

42

http://dx.doi.org/10.1109/ECRTS.2008.26

	Introduction
	Motivation
	Related work
	Contribution and outline

	Problem statement
	Scheduling Example

	Heuristic algorithm
	Iterative resource scheduling algorithm
	Problematic example
	Bulldozing
	The find schedule procedure with bulldozing
	The bulldozing procedure

	Problematic example solution
	Implemented versions of heuristic algorithm
	Heuristic 1
	Heuristic 2
	Heuristic 3

	Bounds
	Lower bound
	Upper bound

	Exact algorithms
	Disjunctive pairs algorithm
	The Disjunctive graph model
	Algorithm desription
	Branching strategy
	Immediate selection
	Infeasibility test

	Conflict resolution algorithm
	Algorithm description
	Preprocessing step
	Find resource conflict procedure

	SAT solver with lazy clause generation
	Algorithm principle description
	G12 framework
	Solution description

	Computational results
	Implementation and testing enviroment
	Data generator
	ProGenMax generator
	Mixed-criticality generator

	Heuristic algorithm results
	Exact algorithms results

	Conclusion
	Bibliography

