

Master’s Thesis

Distributed task Mapping in Reconfigurable Networked

Embedded Systems

Bc. Jan Saro

May 7, 2015

Supervisor: Ing. Přemysl Šůcha, Ph.D.

 Czech Technical University in Prague Faculty of Electrical Engineering

Department of Control Engineering

Acknowledgement

I would like to thank to my supervisor Ing. Přemysl Šůcha, Ph.D. for his professional leading of

the thesis and helpful consultations. Further, I would also like to thank to my family, namely my

parents, Petr a Zdeňka Saro, for invaluable moral and material support during my studies.

Abstrakt

V současné době schopnost měnit a migrovat funkcionalitu na samo-adaptivních a

rekonfigurovatelných embedded zařízeních v bezdrátových senzorových sítích, se stává běžnou

vlastností. Vedle této schopnosti zařízení jsou schopna počítat/vykonávat tyto úlohy reprezentující

dané funkcionality a také komunikovat bezdrátově s ostatními zařízeními v síti. Každé samostatné

zařízení je napájeno baterií a musí průběžně sledovat poměr množství zatížení reprezentované

mapovanými úlohami na daném zařízení a kapacitou napájecího zdroje. Pokud se na jakémkoliv

zařízení poměr zátěže a napájecí zdroje sníží pod určitou úroveň, zařízení vyvolá chybový stav v

síti. Cílem této práce je navrhnout distribuovaný algoritmus, který je schopen opravit tento

chybový stav změnou mapování úloh na zařízeních v síti.

Abstract

Nowadays, the ability to change and migrate functionality on self-adaptive and reconfigurable

embedded devices in the wireless sensor networks becomes a common property. Beside that

ability, devices are able to compute/perform tasks representing functionalities and also

communicate wirelessly with other devices in the network. Each standalone device is power

supplied by a battery and has to regularly monitor a ratio between amount of load represented by

mapped tasks on the device and capacity of the power resource. When on any device this ratio

decreases under an intended level, the device invokes a failure state in the network. The aim of

that thesis is to propose the distributed algorithm, which is able to repaired that fault state by

changing the task mapping on devices in the network.

Content

1. Motivation .. 9

2. Related works ... 13

3. Problem statement .. 15

3.1. Notation of the problem statement ... 15

3.2. Illustrative example of the problem statement ... 17

4. ILP model of task mapping .. 18

5. Description of the network properties .. 20

5.1. Device characteristics .. 20

5.2. Communication in the network ... 20

5.2.1. One to All Communication... 22

5.2.2. All to All Communication .. 22

5.2.3. All to one Communication ... 23

5.3. Time synchronization .. 23

6. General description of the algorithm .. 26

6.1. Aim of the algorithm ... 26

6.2. Notations used in algorithm ... 27

6.3. State diagram of distributed algorithm .. 28

7. Description of individual states of algorithm ... 30

7.1. Operating state ... 30

7.2. Alert state ... 30

7.3. Discovery state .. 31

7.4. Remapping state ... 31

7.4.1. Description of remapping algorithm ... 32

7.4.2. Description of the function for searching the mapping .. 34

7.4.3. Find mapping device function .. 34

7.5. Negotiation solution .. 36

7.6. Solution state ... 39

7.7. Result state .. 40

7.8. Verdict state ... 41

8. Demonstration of the algorithm .. 43

8.1. Alert state .. 43

8.2. Discovery state .. 44

8.3. Remapping state .. 44

8.4. Negotiation state .. 47

8.5. Solution state ... 48

8.6. Result state .. 49

8.7. Verdict state ... 50

8.8. Operating state ... 50

9. Testing of the algorithm ... 51

9.1. Description of the testing environment ... 51

9.2. Testing of the distributed algorithm .. 51

9.3. Quality comparison of the remapping heuristic .. 56

10. Conclusion .. 58

Bibliography ... 59

Content of the attached CD .. 61

List of Figures

Figure 1: Temperature measurement in a greenhouse using reconfigurable networks 9

Figure 2: Embedded device representing a physical node in the network 10

Figure 3: Mesh of embedded devices in 3D space ... 10

Figure 4: Reparation of failure state by task remapping... 11

Figure 5: An example of the network desbribed by formulations .. 17

Figure 6: A demonstration of transmitting message from node 5 .. 21

Figure 7: Demonstration of one to all communication ... 22

Figure 8: Demonstration of all to all communication ... 23

Figure 9: Demonstration of all to one communication ... 23

Figure 10: Demonstration of the time synchronization .. 25

Figure 11: State machine of the network .. 27

Figure 12: State diagram of distributed algorithm .. 29

Figure 13: State diagram of the algorithm .. 33

Figure 14: Maximum values for node 3 in Negotiation state ... 37

Figure 15: State diagram of process of each node in Negotiation state .. 39

Figure 16: State diagram representing decision process of source node .. 42

Figure 17: Alert state .. 43

Figure 18: Discovery state with DR=1 ... 44

Figure 19: Application of remapping algorithm ... 47

Figure 20: Negotiation state ... 48

Figure 21: Solution state ... 49

Figure 22: Result state .. 49

Figure 23: Verdict state .. 50

Figure 24: Operating state .. 50

List of Tables

Table 1: Minimum repetitions before and after reparation ... 52

Table 2: Dispersions of before and after reparation ... 55

1. Motivation

9

1. Motivation

 Dynamic migration of functionality from one device to another device is an important

ability of self-adaptive reconfigurable networked embedded systems. There are two reasons why

dynamic functionality migration is considered in networked embedded systems. The first one is

adaptability of these systems, e.g. when a device is added/removed into/from the system all

functionalities are preserved. The second one is efficiency of the system expressed via an

objective function(s) aimed at, e.g. energy consumption minimization or reliability maximization.

Functionality in the systems is described via a set of tasks and functionality migration is realized

by dynamic mapping and scheduling of these tasks with respect to actual state of the system.

Mapping in this context means assignment of tasks to devices.

Figure 1: Temperature measurement in a greenhouse using reconfigurable networks

 Our application considers a network of ultra low power wireless embedded devices in

a greenhouse. Each device executes tasks specially focused on precise calculations of temperature

and the other assignments like measuring and controlling. These devices in the network have

ability to execute tasks and communicate wirelessly with its neighbours. The structure of our

embedded device contains two core processors. First one, concretely in our case was chosen

processor MSP430F2418 from company Texas Instruments, which is designated for executing

tasks mapped on the device. The second one is CC1101, with a role of a transceiver, it also made

by company Texas Instruments, it services assignments are related with wireless communication

like broadcast transmitting and receiving messages from its neighbour in the network. You can

see the physical appearance of the embedded in Figure 2.

1. Motivation

10

Figure 2: Embedded device representing a physical node in the network

 When we look closely at one of the essential property of distributed system - behind the

intention of its creation. In the area of the greenhouse it is required to calculate very precisely the

temperature in the space. It means for every device which has to measure the temperature.

However, there is formatted request for calculating temperature in space among devices. So

consequently a certain subset of devices has to calculate from received temperatures of its

neighbours an approximate value of temperature in the interspace. In Figure 3 illustrates the

network of devices with mesh structure in 3D space. Nodes are formed into two layers, where in

the upper layer there are placed green coloured nodes whereas in the lower nodes with red colour.

Black lines illustrate bidirectional communication links among devices. Finally, the yellow points

show the measured and calculated values of temperatures.

Figure 3: Mesh of embedded devices in 3D space

1. Motivation

11

In practise, there is estimated and monitored finer resolution of the space. In Figure 3 – there

weren't shown all points from readability reasons. However, there are at least estimated points in

the centre of each four or eight devices. Computing the temperature is based on using algorithm

including Kalman filtering.

 Next important feature of embedded device is the fact, that its power supply is a battery.

For a network lifetime it is necessary to coordinate an adequate amount of load, represented by

mapped tasks on the device, with respect to the current battery capacity. In this work, we express

this aspect via an objective function. The objective function has responsibility for checking, on

each device ratio between current battery capacity and the appropriate workload on the device,

consisted of all tasks bound to it. When any device in the network, i.e. using a watchdog checking

mechanism, finds out that its objective function does not meet the given conditions, then it has to

invoke an alert state. As recommended reparation, the failure node has to launch a rescheduling

algorithm, which wakes up a set of its neighbours and triggers on them distributed task migration

algorithm in order to repair a source problem node with an unfulfilled objective function.

 For getting a better view on the investigated problem, it is illustrated on an example

in Figure 4. Assuming that the network operates in the operational state and all embedded devices

execute tasks mapped on them. At once a watchdog on Node 5 detects, that it does not fulfil

the condition of the objective function. Consequently Node 5 has to start distributed reparation of

mechanism that will fulfil the requirements of the objective function. As it can be seen on the left

side in Figure 4, the result of the reparation revealed the problem. Task 6 migrated to Node 4 and

task 7 migrated to Node 6. After execution of the algorithm, the Node 5 fulfils the condition of the

objective function. Consequently, all involved devices, taken part in task migration, return to the

operational state and starts up calculation of the tasks bound to them.

3

4

87 9

65

21

1

5

2

4

3

6 7

8

9

10

11

12

13

14

3

4

87 9

65

21

1

5

2

4

3

6

7

8

9

10

11

12

13

14

Figure 4: Reparation of failure state by task remapping

 The aim of this thesis is to propose and test a distributed algorithm, which solves

the mentioned problem by migrating and remapping tasks on devices with output of load balanced

adequately to the amount of power supply from battery. Due to energy consumption, caused by

1. Motivation

12

executing tasks and transmitting messages to neighbours devices, it is required to propose such

algorithm, which uses minimal communication between devices.

2. Related works

13

2. Related works

 Firstly, we will look at a general overview of works interested on field of task mapping

problem. Afterwards, we will concentrate on partial articles with the most similar solved problem.

In these parts we will explain in detail their manner of solving problem and emphasise the

differences among them and the measures.

 The problem of task mapping is mainly addressed in parallel and grid computing

area, e.g.: [KA99]. Much less attention is paid to this problem in networked embedded systems.

According to the quality indicator of task mapping expressed by the objective function(s) there

are three possible approaches to task mapping and scheduling [GCL02]:

1. Global approach - There is only one decision maker (task mapper and scheduler) having

a single objective function.

2. Cooperative approach - There are several decision makers (e.g. devices) that cooperate in

making the decisions.

 3. Non-cooperative approach - There are several decision makers, but each decision

maker optimizes its own objective.

 Majority of existing, works dealing with on-line mapping and tasks scheduling, consider

global approach. Authors in [ASEP11] deal with task mapping and scheduling problem on

networked embedded systems. Moreover, they also involved a control synthesis into the design

process. The problem is solved off-line by a genetic algorithm. An ILP (Integer Linear

Programming) problem formulation is proposed in [YWXEA09]. This algorithm considers non-

preemptive tasks and pipelining. Moreover, in order to exploit parallelism as much as possible,

the replication of tasks is allowed.

 Even less works are dealing with distributed algorithms for tasks scheduling and

mapping. A self-organizing sensor network is described in [SP12]. The authors show a case study

illustrating Kalman filtering on a distributed network of embedded systems. A distributed

algorithm for on-line task mapping on reconfigurable networked embedded systems is described

in [KA99]. The algorithm is based on diffusion algorithm, first introduced by Cybenko [Cyb89].

The disadvantage of the algorithm [KA99] is that it could generate huge communication traffic in

the network. A diffusion algorithm is also used in [N12]. Their algorithm is applied to a

homogeneous system, i.e. system where capabilities of all devices are equal. Unlike the algorithm

in [KA99] they consider integer granularity of tasks.

 For the last non-cooperative approach, authors [GCL02] created an algorithm using the

Divisible Load Scheduling (DLS) theory, where it is observed a scheduling of divisible load in

distributed systems. The designed distributed mechanism is dedicated for the tree network of

processors. Processors provide incentives to their true capacities and executing their assigned load

at full processing capacity. However there is assumed, that processors can cheat, because they are

2. Related works

14

autonomous. Finally, in the paper it is proved that DLS-T mechanism computes the optimal

allocation in an ex post Nash equilibrium.

 We want to draw a special attention to the most similar article connected with our topic

from authors [SKHT06]. They consider FPGAs in combination with CPUs and allow migrating

tasks implemented in HW or SW from one node to the other one, where each node represents

some embedded device. They use a local iterative load balancing algorithm from [Cyb89]

performed iterations on all nodes, determining a load exchange between the adjacent nodes.

However, the designed algorithm also allows migrating of non-discrete values of loads and that

property is not applicable in our observed problem. That property is solved by the same authors in

the next their article in [SHT05]. In this paper, there is proposed a modification of this diffusion

algorithm, that leads to its discrete version, which overcomes the following problems:

1. One task cannot be split and distributed to multiple nodes

2. It cannot occur that negative loads are assigned to computational nodes.

Furthermore, the designed discrete version is able to balance load in constant number of steps.

Nevertheless, for the dedicated number of steps it is needed to introduce the Laplacian matrix of

the network. That last fact implies the disadvantage of that algorithm for our purposes. For

calculation a Laplacian matrix it is needed to use the information about adjacency matrix of the

whole network and for our algorithm there is a defined request on the using the distributive. Our

second constrain, which is not also solved in the article [SHT05] is that two tasks connected via

edge can be mapped on the same node or on two neighboring nodes.

 The contribution of this thesis is based on the following aspects. We will design a

distributed algorithm in which every device work without knowledge of the whole network

structure, that is used in [SHT05]. The algorithm works by a dynamic manner it means that reacts

on changes on the partial devices in the network. Next benefit is that the designed algorithm is

usable on all network topologies in comparison with [CG12]. An algorithm especially depends

on the minimum use of communication. It implies that algorithm saves energy on all devices

involved in the algorithm.

3. Problem statement

15

3. Problem statement

 In this chapter we want to declare mathematical model and notation of the solved

problem.

3.1. Notation of the problem statement

 This section formally introduces the problem of tasks mapping in networked embedded

systems supporting dynamic reconfiguration. The network is formed by nodes connected via

bidirectional communication links. The considered remapping problem is defined by a tuple

 , where:

 refers to a task graph having a set of particular tasks and

their data dependencies expressed by oriented edge . Moreover,

each task is associated with power energy consumption per one iteration
 .

Executing task graph in the network is repeated in iterations. Each edge is

parameterized by demanded for transmitting energy , needed when the output of

task is sent to task mapped on a different node.

 is an architecture graph reflecting reflecting the structure of the self-

organizing network. Nodes in the network are connected via

bidirectional communication links . Each node is

parameterized by its size of energy capacity (resource capacity)
 .

 The permitted mapping is a function , where means that

task can be assigned on node and 0 otherwise.

 The task mapping is an assignment of tasks to nodes , i.e.

 means that task is mapped on node . Mapping is feasible if

and only if:

1. there is node such that or there is node

 that is connected via bidirectional link with the node ,

such that task

2.

The first constraint expresses that two tasks can be mapped on the same node

or on two different nodes connected via a communication link in an architecture graph.

The second constrain says that the given task can be assigned only on a certain subset of

nodes defined by the permitted mapping. means that task is mapped on

node .

3. Problem statement

16

 The cost of the mapping, denoted as , is a function defining energy

consumption of mapping per one iteration. We consider the cost of mapping given by

 defining how expensive is to map task on the node . The cost of

mapping is defined by

Then the objective in this problem is to maximize the number of possible iterations, i.e.

repetitions of the task graph. It is denoted as repetition objective, singed as ,

which is a function defining a ratio between resource capacity and sum of all costs of tasks

mapped on the node . The function is expressed in Equation (1):

 (1)

,where the sum in the denominator defines, how expensive is mapping of all tasks mapped on

node .

 Aim of the whole problem statement is to maximize the minimum value of repetition

objective in the whole network in Equation (2).

 (2)

3. Problem statement

17

3.2. Illustrative example of the problem statement

 This section aims to illustrate formulations from the previous section. An example of the

network is in Figure 5. Rectangle boxes represent a set of nodes with resource capacities of

each node , that are connected via blue marked communication links represented by edges from

set . Secondly, the blue circles are tasks with task requirements , which have data

dependencies represented via edges with prices . Figure 5 also illustrates a task mapping e.g.

task is mapped on node , task is mapped on node , tasks and on node and finally tasks

 and on node . Finally Figure 5 also shows calculation of objective function on node

3.

1
R1=100

4
R4=100

2
R2=80

3
R3=90

2
r2=2

3
r3=2

1
r1=2

4
r4=2

5
r5=2

7
r7=2

6
r6=2

c3=3

c2=3

c1=3

Bidirectional

communication

link {4,3}

Node 1

Task 1

Data dependency
(1,2)

c3=3

r7=25

 cost(3,3)=r3+c3=2+3=5

M(2)=2

R2=80

rep3=R3/(cost(3,3)+cost(5,3))=
=90/(5+2)=12

Figure 5: An example of the network desbribed by formulations

4. ILP model of task mapping

18

4. ILP model of task mapping

 The problem of task mapping introduced in the previous chapter is NP-hard, how it was

shown in [SFHP13], a global (centralized) solution, proposed in this section, is based on integer

linear programming. It uses a binary decision variable equal to 1 if and only if task is

mapped on node and equal to 0 otherwise. We define auxiliary decision variable

equal to 1 if and only if there is edge such that and where .

The integer linear programming model is expressed:

objective function:

subject to:

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

where:

 Aim of the model is to minimize objective function

 . Objective function

 is not linear, thus we have to make a substitution

. The threshold value

 defines the upper bound for all elements of the vector
 in Equation (3) Equation

(4) expresses a constrain, in which due to minimized value of load on node has to

smaller or equal to . Equation (5) denotes that exactly one task can be mapped on

one node only. Equation (6) expresses permitted mapping for every task and node

 . If the Permitted mapping then the value must be also zero and task

can't be mapped on node . Equation (7) describes the constrain, when task has data

dependency with task has to be mapped on the same node , on which is mapped

task or on neighbors of node . The set of neighbors of the node is the set

of all nodes , which are connected with an edge . The last Equation (8)

declares a constrain by using additional decision variable . The constrain ensures, when the

4. ILP model of task mapping

19

task is mapped on node and it is has also a data dependency with a task

 that is mapped on the another node than , then it has to be value of . The

consequent of the last constrain is connected with Equation (4) in which is encountered the

expressing energy consumption for sending data from one task mapped on one node to

another node .

5. Description of the network properties

20

5. Description of the network properties

 In this chapter we aim to classify properties and capabilities of the network. Among these

properties, we can include a description of individual devices, communication and

synchronization of devices in the network and so on. We want to introduce aspects of the

network, which has to be necessary taken into account during the design of the distributed

algorithm.

5.1. Device characteristics

 Due to the fact that our system is distributed, therefore each device behaves like

standalone unit. Each device has an identification number that responds to node number from

the set . We define the set of the known and unknown attributes. Consequently every node

 knows the following list of attributes:

1. task graph

2. permitted mapping

3. task mapping

4. repetition objective

However for each node , is declared the complement of set known attributes called

unknown attributes, which has to following content:

1. architecture graph

2. mapping

3. repetition objective

The only way how node can obtain unknown attributes is to communicate with the neighbors.

5.2. Communication in the network

 Each device has ability to communicate wirelessly. It means that the node in the network

transmits messages wirelessly, which can be received by all near devices in the network i.e.

connected to the node. When the node decides to transmit some data to the network, it always

packs them into a single message and transmits it. The message is a communication unit used for

communication and distribution any information among the nodes. Therefore we have to make a

standard structure of the content of message. The standard pattern of the content of the message

states the following list of elements:

1. name

2. origin node identification

3. init time stamp

4. time duration

5. Description of the network properties

21

5. distance

6. path

7. optional attributes

These seven elements have to be contained inside every message, when it is initiated by any node

in the network. The first element defines the purpose of the message. According to this attribute

each node has ability to determine the content of the seventh element. The third element named

time stamp means the time, when the message was sent. Next, the fourth element, called time

duration is used for time synchronization of nodes. The time synchronization will be discussed in

the next subchapter. The fifth element called distance, defines the maximal count of hops up to

the message has to be sent. When the message crosses an edge from the set , it makes one hop.

The penultimate element introduces the list of all node identifications that retransmitted the

message. The path includes also an identification number of the origin node. The last element

called optional attributes, contains the message specific data, e.g. current mapping of tasks on a

different node.

3

5

4

21

6

Figure 6: A demonstration of transmitting message from node 5

 Transmission of a message from node 5 is illustrated in Figure 6. The red coloured node

5 creates the message and sends it to all its neighbours. Under the term neighbours, we mean all

nodes adjacent with node 5 in . In the other words, all black coloured nodes 1,2,3 and 4 will

receive at one time moment the message initiated by node 5. We can also notice that node 6 does

not receive the message. It is caused by the fact that node 6 is distanced more than one from

transmitting node 5. So the node 6 is not directly connected via an edge from node 5. The node 6

5. Description of the network properties

22

can receive the message, when node 2 or 3 transmits the message. In that case the message would

be received also node by 5 apart from node 6.

 In the next three subchapters we want to introduce three communication schemas. These

schemas are used in the proposed algorithm.

5.2.1. One to All Communication

 The aim of this technique of communication is to distribute a message from one node to

the subset of nodes. Firstly one node in the subset creates a message and transmits it.

Consequently all nodes in its neighbourhood will receive that message and if the message has the

nonzero count of hops then it is retransmitted further. So the source node defines the size of the

informed area of nodes by count of hops. In Figure 7 we can see that node 3 initiates and

transmits the message. Then node 2 and 3 receive a message and resend it further. Finally, node 1

and 5 receive the message. We can also observe that the size of set informed nodes has diameter

equal to 2 from the source node.

1 2 3 4 5

Figure 7: Demonstration of one to all communication

The common way of using this communication scheme is for informing about some event, which

happened in the source node.

5.2.2. All to All Communication

 Each node in this subset has to initiate and transmit the message. And also all nodes set at

the same count of hops in a message. It means that all nodes in the subset will transmit the

message to the same distance. After initiating each node only receives, stores and retransmits the

message, only if the message has the nonzero count of hops, representing a subset of nodes in the

network. Nevertheless, this communication manner is the most demanding for energy. That

scheme also describes the non- centralized way of communication.

5. Description of the network properties

23

1 2 3 4 5

Figure 8: Demonstration of all to all communication

5.2.3. All to one Communication

 The last communication technique called All-to-One, describing a way, where all nodes

from the subset of the network transmit a message to the destination node. It means that every

node in the subset initiates a message apart from destination node and transmits it. When the

destination node receives a message then stores its content and does not transmit it next to the

network. Usual purpose of this technique is an announcement from all nodes from the set to the

one destination node. We can view on this technique like on inverses communication scheme

from subchapter 6.2.1. In Figure 9, we can notice that in the subset nodes 1,2,4 and 5 transmit the

message to node 3, which is the destination node. This communication is used when a group of

nodes wants to send some result to the specific node.

1 2 3 4 5

Figure 9: Demonstration of all to one communication

5.3. Time synchronization

 The last important property in the distributed network is the time synchronization. The

time synchronization is one of the most important aspects for determinism in our distributed

system. It ensures that all nodes in the network will work within the same time interval. We will

call the time interval as a state or a stage.

 In the network in case of the device failures, the assignment is to inform and involve other

devices into solution of the problem. The failure node creates the message and stores current time

 time into message attribute init time stamp . Time length of stage or state is stored into time

duration attribute of message. Alert is stored into message attribute name. When the failure

5. Description of the network properties

24

node finishes the creation of the message, then it transmits the message to the network. If any

node in the network receives that message with name attribute Alert, it stores its time init stamp

and time duration attributes and if the message attribute counts of hop is not zero, the node

retransmits it to the network. However, an assignment of each node, which received the message

or failure, is to check timeout of state. Timeout of state occurs for every node, which does not

fulfil the condition in Equation (9).

 (9)

After elapsing timeout node transits into next state, which is defined after Alert state.

 We would like to demonstrate example of the time synchronization in Figure 12. The

network has chain topology consisted of four nodes. The horizontal axes represent time. Each

green line represents time flow of each node. In time line, time events, which are represented by

colour points can occur. Time events are described in text area showing on these points. Firstly,

node 2 initiates a message in time equal with =0, =6 that action is represented in 1.Event. In

time t=2 nodes 1 and 3 receive a message transmitted by node 2. That action are represented by 2.

and 3.event. This pair of nodes stores the value init time and time duration attributes.

Consequently, node 4 receives the message from node 3 in time t=4 and that is represented by

4.event in picture. Finally all nodes simultaneously reached timeout in t=6 that is expressed in

5.event. We can see that all nodes are synchronized and simultaneously transit in time t=6 into

next state.

25

t
0 1 2 3 4 5 6

Alert state

7 8 9 10

Next state

1 2 3 4

1.Event (t=0): Node 2
creates and transmits the

message with ti=0 and td=6

2.Event (t=2): Node 1
receives the message from
node 2 and store ti=0 and

td=6

3.Event (t=2): Node 3
receives the message from
node 2 and stores ti=0 and

td=6

4.Event (t=4): Node 4
receives the message from
node 3 and stores ti=0 and

td=6

5.Event (t=6):Nodes 1,2,3
and 4 elapsed timeout in

t=6 and all of them transit
in The same time to the

Next state

Node 2

Node 1

Node 3

Node 4

Figure 10: Demonstration of the time synchronization

6. General description of the algorithm

26

6. General description of the algorithm

 In this chapter, we intend to describe the proposed distributed algorithm. In the beginning

of this chapter, we will focus on the top level description and the basic idea of the algorithm.

Finally, we will declare syntax notation used in the algorithm description.

6.1. Aim of the algorithm

 When the node fulfils a condition in Equation (10), then it is able to work in Operating

state. It means, that every node executes all tasks, which are mapped on it. In other words, the

network works correctly, when all nodes are in the Operate state. However, when any node does

not fulfill the condition in Equation (10), then the repairing distributed algorithm has to be

launched.

 (10)

 The purpose of the Distributed algorithm is to change a task mapping that way, that all

nodes involved in the algorithm fulfill the condition in Equation (10). The node, which does not

fulfill the condition transits into Error state and initiates task remapping.

 In Figure 11, there is illustrated state diagram for all nodes in the network. The circle

shape marks the state, in which can be node. The rectangle shape contains a set of states. The

green circle denotes Operate state. If the node does not fulfill the condition in Equation (10), then

it transits into set of states named Distributed algorithm. We will focus on interpretation of

individual states of the Distributed algorithm in the next subchapter. Consequently, when the

Distributed algorithm finishes successfully then all nodes transits return to Operating state. The

return is labeled by edge in graph named Repaired. In the opposite case, when the algorithm does

not find solution, it means that some node does not fulfill a condition in Equation (10).

Subsequently, that node transits from Distributed algorithm via edge named Non-repaired to Error

state.

6. General description of the algorithm

27

Operating state

Error state

Failure state

Not repaired

Repaired

Distributed
algorithm

Figure 11: State machine of the network

6.2. Notations used in algorithm

 This subchapter declares terms used in the distributed algorithm. The list of terms

contains the following:

 Threshold condition: denotes a condition expressed in Equation (10).

 Failure state: is the situation or state in the network, when at least one node , does

not fulfill the Threshold condition

 Failure node: is the node , which does not fulfill the Threshold condition and

invokes the distributed algorithm

 Alert Range (AR): denotes a distance in count of hops. The failure node declares the

message, which has an attribute name=Alert. Alert Range is equal to the distance attribute

of that message.

 Alert Field (AF): denotes a set of nodes informed by a message with attribute

name=Alert. Nodes included in Alert Field take part in the distributed algorithm.

 Discovery Range (DR): denotes a distance in count of hops. Each node in Discovery state

declares the message with attribute name Discovery Message. The distance attribute in

message is given by a count of hops.

 Discovery Field (): represents a set of nodes distanced by the size of DR from node .

When the node is not included in AF, then it isn't included in the Discovery Field of

node .

 Minimum repetition in the Discovery Field of node): is the minimum repetition

value in Discovery Field of node and is calculated

 .

6. General description of the algorithm

28

 Improvement of the minimum repetition in the Discovery Field of

node denotes difference between before() and after

() calculating new task mapping in .

6.3. State diagram of distributed algorithm

 The state diagram of the distributed algorithm is illustrated in Figure 12. The state

diagram is represented by the blue box in Figure 11. The distributed algorithm is launched, when

any node is in the failure state. The failure state occurs, when the Threshold condition is not

fulfilled by any node . Then the node transits from Operating state to the first state of the

distributed algorithm and starts reparation. The first state of the algorithm is named Alert. When

the failure node transits into Alert state, then it initiates a message with attribute name Alert and

into the distance attribute pastes AR. When any node receives that message, then it retransmits the

message, if the distance is greater than zero. Secondly all nodes from AF transit to the Discovery

state. In Discovery state every node needs to find out the unknown attributes. Consequently every

node in AF transmits a message with attribute name Discovery and distance DR. By that way

every node in AF finds out unknown attributes from all nodes in . In Remapping state each

node in AF calculates new mapping in its and finds out value of . Afterwards

each node transits into Negotiation state. Node with a higher value will transmit

its value to the network earlier than node with a smaller value of . The aim of the

Negotiation state is winning nodes with the highest values of . The next state is named

Solution into which nodes transits from Negotiation state. In that state nodes, which won in the

Negotiation state, will transmit their newly calculated task mapping M, from which was

calculated value of . Thereafter every node in Result state sends a message to the

failure node, whether it was remapped or not in Solution state. Finally all nodes transits into

Verdict state. In Verdict state, failure node evaluates, if all nodes in AF fulfil the Threshold

condition. If any node in AF does not fulfil the Threshold condition and any node change its task

mapping less three times within the same , then failure node sends a message to all nodes in

AF that the next state will be Discovery. However when the failure node found out that, all nodes

fulfil the condition then sends a message, all nodes in AF transit into Operating state. In this case

the distributed algorithm solved the failure state of the network. In the remain case, failure node

figured out that the failure state could not be solved by distributed algorithm and transits to Error

state.

6. General description of the algorithm

29

Alert

Discovery

Remapping

Negotiation

Repeat
reparation

Repaired Unrepaired

Failure state

Solution

Result

Verdict

Figure 12: State diagram of distributed algorithm

7. Description of individual states of algorithm

30

7. Description of individual states of algorithm

 In this chapter we aim to describe all states of algorithm in detail.

7.1. Operating state

 Operating state is desired for each node in the network. In the Operating state the devices

executes tasks mapped on it. If all nodes in the network work in this state, then the whole network

works in correct way. We can see pseudo-code of Operating state:

 input: node (problem node), which fulfils Threshold condition

 process: node executes all tasks mapped on it

 output: node , which made one iteration in the network

Algorithm 1: Pseudo-code of Operating state

7.2. Alert state

 When in the network any node becomes a failure node, then it has to transit into Alert

state send message to involve other nodes to the reparation of the network. The main purpose of

that state is to inform and involve into algorithm all nodes up to distance AR from the failure

node. When any node receives a message with attribute name Alert, it stops to work in Operating

state and transits to Alert state.

 input: failure node

 process: failure node initiates a message with attribute name Alert, with distance attribute

equals to AR and sends it to the network.

 output: which sent initiated and sent the message

Algorithm 2: Pseudo-code of Alert state

 input: node, which received message with attribute name Alert

 process: if node works in Operating state then it transits into Alert state. Node stores a

message content (failure node identification, AR, distance from failure node). If the message

attribute distance has nonzero count of hops, then the node broadcasts that message into the

network.

 output: node, which sent or did not send message type Alert to the network

 Algorithm 3: Pseudo-code 2 of Alert state

 Communication manner used in this part of the algorithm is One-to-All. The failure node

represents one device, which has to send a message with attribute name Alert to all other nodes

7. Description of individual states of algorithm

31

in AF. In further states of the distributed algorithm is spoken only about nodes in AF. In other

words, nodes which were included into reparation algorithm by failure node.

7.3. Discovery state

 Aim of each node in Discovery state is to find out unknown set of attributes about each

node in . In the beginning of Discovery state, every node initiates and transmits message

with attribute name Discovery with distance attribute equals to DR. Each node stores its

known attributes into optional attributes of the message. Consequently, when any node receives

the message, then it stores its content (known attributes of node , which created the message in

) and resends it.

 input: node , which transited after elapsed timeout from Alert to Discovery state

 process: node initiates a message with attribute name Discovery with attribute distance

equal to . Into optional attributes of the message are stored its known attributes.

 output: node , which transmitted a message with attribute name Discovery

Algorithm 4: Pseudo-code of Discovery state

 input: node , which received a message with attribute name Discovery

 process: node stores a message content (known attributes of node in). If the message

attribute distance is nonzero count of hops, then the node resends it into the network. From

the path attribute in the message, node is able to find out path in from node .

 output: node , which sent or did not send message type Message to the network or waits for

receiving a message type Discovery

Algorithm 5: Pseudo-code 2 of Discovery state

 Each node in Discovery state has to find out unknown attributes by collecting messages.

It means that it must know all attributes about each node :

 path in from node to node in architecture graph

 tasks mapping

 resource capacity

7.4. Remapping state

 In the Remapping state node has to compute value of . Firstly node stores

value of tasks mapping of before launching of the remapping algorithm. Secondly

node calculates new task mapping using by remapping algorithm. From newly calculated task

7. Description of individual states of algorithm

32

mapping, node computes the value of . Finally node is able to compute

 .

 input: node , which transited from Discovery state to Remapping state

 process: node , computes value of from all nodes in . Afterwards node

by using remapping algorithm calculates new tasks mapping in and then it stores value

of . Finally it makes difference between and and

stores its value into .

 output: each node calculated the value of .

Algorithm 6: Pseudo-code of Remapping state

 In case that node managed to compute , then it found out a better tasks

mapping in . In the opposite case, when node found the value of , then it

wasn't able to find out an improving task mapping in .

7.4.1. Description of remapping algorithm

 The remapping algorithm is based on a list scheduling approach with a backtracking step.

The algorithm computes the maximal value of repetition objective for all nodes in , for which

it exists the feasible task mapping defined in Chapter 3.

 For remapping algorithm, we have to declare the initial set of variables:

 set of nodes :

 set of tasks :

 tasks mapping : task mapping of tasks before launching of remapping algorithm

 the upper bound :

 the lower bound :

 number of tasks :

 number of nodes :

 found repetition value :

 found tasks mapping : found tasks mapping in function

 result tasks mapping :

 In Figure 13, a state diagram of the remapping algorithm is illustrated. In the beginning,

the initial set of variables is calculated. Algorithm iterates between the upper bound and

the lower bound . Every time the algorithm computes an average value of and

 and stores it into variable . The value of is an input parameter of function

 . The function has an assignment to find out the feasible tasks

7. Description of individual states of algorithm

33

mapping for input number repetitions . As output of function is tasks mapping,

which stored into variable . Afterwards it is checked the condition, if the tasks mapping is

feasible or not. In case that the mapping is feasible then it is stored into variable and also

is stored value into . After that is increased the lower bound . In the opposite case,

when the returned mapping isn't feasible then it decreased the upper bound . Finally,

when the remapping algorithm finished then it calculates the value of . If the

algorithm found a better tasks mapping then it had calculate and otherwise.

Init(Repmin,Repmax,M*)

MF=findMapping(Rep)

isFeasible(MF) Yes

Rep*=Rep
M*=MF

No

Repmax-- Repmin++

Repmax>=Repmin

Rep=(Repmin+Repmax)/2

Yes

MDFK(imp)=Rep*-RepmIn

No

Figure 13: State diagram of the algorithm

7. Description of individual states of algorithm

34

7.4.2. Description of the function for searching the mapping

In the following section we will concentrate on the explanation of how function

works. Aim of the function is to find feasible task mapping for defined

size of the value. It implies that on each node has to be fulfilled the following

condition .

 Firstly, all tasks in are ordered into . Tasks are ordered in the

according to longest paths. Secondly, all node resource capacities where are divided by

input argument . Thirdly the variable is calculated. After that algorithm iterates in

while loop up to size of budget variable. In the loop a task from a is taken and then is

passed as input argument into function . That function has to find the most

appropriate node on which can be mapped the input task. The function returns

an empty node or node identification. When it is returned an empty node, then it wasn't found any

node and the task can't be mapped on any node . Then the function is

terminated and returns an empty mapping. In the opposite case when any node is found for

the input task from , then the function continues and chooses a new task from the

 . When the is empty then it was found tasks mapping for all tasks from . That

mapping is returned by function and it denotes that it was found tasks mapping for

input given value of input argument .

function findMapping(rep)

 budget=(numTasks*numTasks);

 forbiddenMapping=(numTasks,numNodes);

 taskList=orderTasks(St);

 mapping=empty;

 for i=1:size(Sn)

 Ri=Ri/rep;

 end

 while(budget>0)

 task=getTaskFromList(taskList);

 [device,forbiddenMapping]=findDevice(task);

 if(isempty(device))

 mapping=empty;

 return mapping;

 end

 mapping(task)=device;

 if(isempty(taskList))

 return mapping;

 end

 budget--;

 end

 mapping=empty;

 return mapping;

end

Algorithm 7

7.4.3. Find mapping device function

 In the function is used the function . The function has

to find for input task node . Selected node has to fulfill the constrain that the

7. Description of individual states of algorithm

35

task binding has to be feasible. The main purpose of the function is to construct six

subsets of nodes . Each subset is constructed using restrictions on set . We define four

restrictions for input task :

 (capacity): a set includes all nodes from , which fulfill the following inequality:

 P (predecessor): set includes all nodes from , which fulfill the following restriction:

 , where:

 (forbidden): a set includes all nodes from , which fulfill the following restriction:

 (enable): a set includes all nodes from , which fulfill the following restriction:

 In function are made these four sets (. After that, the condition, if

the set is empty is checked. In case that set is empty, then there does not exist any device, on

which can mapped input task . It implies also that we can't map task on any node . It also

implies that it is impossible find the feasible mapping. When the set is not empty after that is

made up six sets. Sets (S1, S2, S3, S4, S5 and S6) are generated by intersections from four

sets (. Aim of the function is to find first node , for which it exists

feasible tasks mapping defined in chapter 3. Finally, when the feasible tasks mapping is not

found, then it is returned to an empty device. Function has as input

argument set of devices. The function chooses node for which exists feasible tasks mapping

and has the minimum sum of all tasks, which are already mapped. The function can

return the new forbidden mapping table and tasks, which had to be unmapped from devices.

function findDevice(task)

price=empty;

[C,P,F,E]=createSets();

if(isempty(E))

 feasibleDevice=false;

 return feasibleDevice;

end

S1=intersection(C,P,F,E);

S2=intersection(C,P,E);

S3=intersection(C,F,E);

S4=intersection(C,E);

S5=intersection(F,E);

S6=E;

tmpPrecedors=empty;

tmpForbidden=forbiddenMapping;

7. Description of individual states of algorithm

36

tmpPrice=-Inf;

foundPredescorsTasks=empty;

foundForbidden=empty;

[device]=chooseDeviceMinPrice(S1);

if(!isempty(device))

 return device;

end

[device]=chooseDeviceMinPrice(S2);

if(!isempty(device))

 return device;

end

[device]=chooseDeviceMinPrice(S3);

if(!isempty(device))

 return [device,forbiddenMapping];

end

[device]=chooseDeviceMinPrice(S4);

if(!isempty(device))

 return [device,forbiddenMapping,tasksOut];

end

[device]=chooseDeviceMinPrice(S5);

if(!isempty(device))

 return [device,forbiddenMapping,tasksOut];

end

[device]=chooseDeviceMinPrice(S6);

if(!isempty(device))

 return [device,forbiddenMapping,tasksOut];

end

return empty;

end

Algorithm 8

 In the end of this subchapter we will show the time complexity of algorithm. Firstly, in

main loop of remapping algorithm makes count of iterations equals to .

Secondly in the function makes count of iterations equals to budget variable.

Finally, we call the function , which iterates throw six sets of devices. The maximum

size of the set of devices is equal to . So it means that maximum count of iteration

throw these six sets is . So finally, the time complexity responds the

multiplications in the loop.

 (11)

7.5. Negotiation solution

 In Negotiation state every node has a calculated value of . Aim of that state

is that each node in has to get know the biggest value of of node , which is

maximally distanced and from node . Furthermore in Negotiation state is used a

heuristic, which reduces a communication of nodes during negotiating. The main idea of heuristic

is to delay transmitting smaller value of , because in its neighborhood can be another

node with a higher value of . When node receives from node the value of

 , then node would transmit unnecessarily its value of to

network.

7. Description of individual states of algorithm

37

 For getting a better view on Negotiation state, we illustrated a possible situation in Figure

14. It can be seen that maximum values of for node 3. The biggest value is equal to

 in . The biggest value is up to from node 3. By

the way illustrated in Figure 14, each node has to find out the highest values of . We

can observe one fact from Figure 14, that node 3 does not need to transmit its value because by it

will be overwritten by the higher value of or and etc.. It implies that if

node 3 will be delay with transmitting its value and during this delay receives the

value of or , then it needn't to transmit its value , because it

received the higher one from another node.

 Every node has defined four variables in negotiation state:

 : contains the biggest value of , where

 : contains the node , with the

 : contains the biggest value of , where

 : contains the node , with the

 : flag denoting, if the node won in Negotiation state

1
MDF1(imp)=8

2
MDF2(imp)=5

3
MDF3(imp)=3

4
MDF4(imp)=7

5
MDF5(imp)=9

maxValue3(DR)=7
maxIndexNode3(DR)=3

maxValue3(2DR)=9
maxIndexNode3(2DR)=5

Figure 14: Maximum values for node 3 in Negotiation state

 We declare the Delay function. The delay function is defined by the following way:

Equation (11): Delay function of node k

After elapsing of node , the node if it wasn't overwritten from another node via

received message, then it starts to transmit. In the opposite case, when the node receives a

message from node during , then it has to make the following decision:

7. Description of individual states of algorithm

38

Equation (12): Maximum value of node k in Negotiation state in DR

Equation (13): Maximum value of node k in Negotiation state in 2DR

 If the node receives the message from node , then it makes two comparisons declared

in Equations (12) and (13). If in the received message is higher value of .

The algorithm for any node in Negotiation state is defined as follows:

 input: node with value of

 process: in the begging node calculates value of time delay . During

time node does not transmit its value of . If node receives a message

then it executes adequate operation in Figure 15. If the node during time was

overwritten by another node during a waiting phase, then it does not transmit its value of

 after elapsing time . In the opposite case node transmits its value of

 after elapsing time .

 output: node , which has set the

Algorithm 9: Pseudo-code of Negotiation state

The process in Algorithm 9, we also expressed in Figure 15 like a state diagram for a better

overview. In the beginning each node declares init variables:











7. Description of individual states of algorithm

39

 The node also calculates function in Equation (11). Afterwards node transits

into status named Wait for . In that waiting state node , can receive message from node

and then it has to evaluate distance attribute in message, which it denotes the distance from the

message was sent. If the distance is the smaller or equal to , then it calculates function in

Equation (12). In the opposite case, when the node receives the message with the strictly higher

value of distance attribute than DR, then it has to calculate Equation (13). If the value of

 or was changed then the node sets the and

resends the message next to the network. Consequently, node transits into state named Evaluate

received message. However the node can't sends its value of , because it received the

bigger value of from node . In the opposite case, when the node did not received in

state Wait for delayk any message from node , which has the higher value of than

 or , then the node has to transmit the value of in

message up to distance

Calculate
delayk(MDFk(imp))
and init variables

Wait for delayk

Transmit message with
MDFk(imp)

up to distance=2*DR

elapsed delayk

Evaluate received
message

Evaluate received
message

Received message from node l

Changed
maxValuek(DR) or

maxValuek(2DR)

Yes

No

Received message from node l

Resend message
from node l

canWin=false

Figure 15: State diagram of process of each node in Negotiation state

7.6. Solution state

 In that state each node in has set on true or false from Negotiation state.

The purpose of the Solution state is transmitting of tasks mapping of nodes, which have set the

 . That nodes have to send the message with the optional attribute task mapping

newly computed in Remapping state up to distance equals to .

7. Description of individual states of algorithm

40

 input: node with

 process: node transmits the message with attribute name Solution and with optional

attribute equal to newly calculated task mapping in Remapping state up to distance .

 output: node , which changed tasks mapping from received message or did not change the

tasks mapping

Algorithm 10: Pseudo-code of Solution state

 input: node , which received the message with attribute name Solution

 process: the node changes its tasks mapping according to task mapping in optional attribute

in the received message. If the message has nonzero count of hops in distance attribute, then

the message is resend.

 output: node , which changed its task mapping from received message

Algorithm 11: Pseudo-code 2 of Solution state

7.7. Result state

 Aim of that state is to send result state of node in to failure node. When the node

changed its tasks mapping in Solution state, then it will have to send message with attribute name

Solution and optional attribute to the failure node, in the opposite case the

node will send message with . Communication used in that state is All-to-

One.

 input: node , which was or not remapped in Solution phase

 process: node , initiates the message with the optional attribute with distance

attribute equal to . If the failure node receives the message, then it stores its content and

does not transmit it further to the network.

 output: node , which transmitted the message into the network, if the node is failure then it

received message from all nodes in

Algorithm 12: Pseudo-code of Result state

 input: failure node received the message with attribute name Result

 process: failure node stores identification of node and from optional attribute of

the received message

 output: failure node collected information from message from node in

Algorithm 13: Pseudo-code 2 of Result state

7. Description of individual states of algorithm

41

 input: node , which is not failure node received the message with attribute name Result

 process: node only resends the message to the network if the message has nonzero count

of hops

 output: node , which resent the message into the network

Algorithm 14: Pseudo-code 3 of Result state

7.8. Verdict state

 In Verdict state the failure node has to make decision process. The failure node can

decide, whether all nodes in will return to Operating state or go to Error state or the algorithm

will be repeated from Discovery state. Failure node sends a message with attribute name Verdict

to inform all nodes in about next state.

 input: failure node

 process: failure node makes a decision about the next state of all nodes in . The decision

process is illustrated in Figure 16. The failure node makes decision, then it sends message to

all nodes in .

 output: node , which transits into next state from message of type Verdict.

Algorithm 14: Pseudo-code of Verdict state

 input: node , which received the message with attribute name Verdict

 process: node stores the name of the next stat from optional attribute of received message

into that node transits after elapsing timeout of Verdict state. If the next state is Discovery

node stores reads out from optional attribute of the message size of DR. If the message has

nonzero count of hops in distance attribute, then it is resent into the network.

 output: node , which obtain name of the next state from the received message

Algorithm 15: Pseudo-code 2 of Verdict state

 The decision process is shown in a state diagram representing the decision process

in Figure 16. The node has to make a decision based on the information gained in the Result state.

Informing about the result of decision is made by sending a message with distance equals to .

One exception is when during the decision process is decided that the next state will be an Error

state.

 First of all, the failure node starts the decision process in the block labelled as Start.

Secondly is checked, if all nodes in fulfil the Threshold condition. When all nodes fulfil the

condition the failure node informs all in that they can move into Operating state. When in

exists any node which does not fulfill the Threshold condition, then the failure node has to

evaluate was remapped at least one node in . When there is exists one node that was remapped

7. Description of individual states of algorithm

42

and the algorithm was repeated in with the same size of less than three times, then all nodes

will repeat the algorithm with the same size of . However when the algorithm was repeated

with the same size of then it has to be increased. The increasing of is continued until

is higher than . Finally when the , then all nodes overcomes to Error state.

Count of remapped
devices>0

No

Yes

DR++

Threshold condition Yes Go to Operate state

No

DR>AR Yes Go to Error stateNoGo to Discovery part

Start

Was algorithm
repeated the same
discovery 3 times

No

Yes

Figure 16: State diagram representing decision process of source node

8. Demonstration of the algorithm

43

8. Demonstration of the algorithm

 In this chapter we will illustrate a workflow of the algorithm on a practical illustrated

example.

8.1. Alert state

 In Figure 17, we can notice that in the network occurred a Failure state. Node 5 does not

fulfil the Threshold condition. The repetition value of node 5 is smaller than threshold value and

node 5 is in Alert state. In that state node 5 notifies by a message all nodes up to AR=3.

Consequently nodes 2,3,4,6,7 and 8 received the message initiated by node 5. These nodes were

involved by node 5 into Alert state. In Figure 17 nodes 2,3,4,5,6,7 and 8 represents AF, because

all of them are distanced maximally 3 hops from node 5.

1
R1=60

2
R2=75

3
R3=85

4
R4=75

5
R5=40

6
R6=80

7
R7=75

8
R8=60

r1=2
1

r2=2
2 3

r3=2
4

r4=2

5
r5=2

6
r6=2

7
r7=2

8
r8=2

9
r9=2

10
r10=2

11
r11=2

12
r12=2

13
r13=2

14
r14=2

15
r15=2

16
r16=2

17
r17=2

Alert Range = 3

C3=1 C4=1

C5=1

C10=1

C12=1

C13=1

C14=1

rep3=14rep2=25rep1=15 rep4=12
rep5=R5/(r9+r10+r11+c10)
rep5=40/(2+2+2+1)
rep5=5

rep6=8 rep7=18 rep8=30

Figure 17: Alert state

8. Demonstration of the algorithm

44

8.2. Discovery state

 Each node in has to obtain unknown attributes from all nodes in its DFk.

Consequently every node in creates and starts to transmit a message into the network up to

distance . In Figure 18 it is shown in radius rectangles DFk. The color of rectangle

responds to color of the node.

1
R1=60

2
R2=75

3
R3=85

4
R4=75

5
R5=40

6
R6=80

7
R7=75

8
R8=60

r1=2
1

r2=2
2 3

r3=2
4

r4=2

5
r5=2

6
r6=2

7
r7=2

8
r8=2

9
r9=2

10
r10=2

11
r11=2

12
r12=2

13
r13=2

14
r14=2

15
r15=2

16
r16=2

17
r17=2

C3=1 C4=1

C5=1

C10=1

C12=1

C13=1

C14=1

DF3

DF4

DF5 DF6

DF7

DF8DF2

Figure 18: Discovery state with DR=1

8.3. Remapping state

 Every node has to launch the remapping algorithm for calculating a new task mapping

in its . In Figure 19 it can be seen, how each node calculates the value of

before and after launching the remapping algorithm. Afterwards each node also has

to compute the value of .

8. Demonstration of the algorithm

45

2
R2=80

3
R3=70

2
r2=2

3
r3=2

4
r4=2

5
r5=2

6
r6=2

rep2=16 rep3=23

C3=1 C5=1

2
R2=80

3
R3=70

2
r2=2

3
r3=2

4
r4=2

5
r5=2

6
r6=2

rep2=26 rep3=11

C3=1 C5=1

C4=1

 MDF2(after)=min{rep2,rep3}=min{16,23}=16 MDF2(before)=min{rep2,rep3}=min{26,11}=11

2
R2=80

3
R3=70

2
r2=2

3
r3=2

4
r4=2

6
r6=2

5
r5=2

rep2=16 rep3=14

C3=1 C5=1

4
R=70

7
r7=2

C6=1

8
r8=2

10
r10=2

rep4=14

2
R2=80

3
R3=70

2
r2=2

3
r3=2

4
r4=2

6
r6=2

5
r5=2

rep2=26 rep3=11

C3=1 C5=1

4
R=70

7
r7=2

8
r8=2

10
r10=2

rep4=11

C4=1

 MDF3(before)=min{rep2,rep3,rep4}=min{26,11,11}=11

 MDF3(after)=min{rep2,rep3,rep4}=min{26,14,14}=14

3
R3=70

4
R4=70

3
r3=2

4
r4=2

6
r6=2

5
r5=2

rep3=8 rep4=8

C4=1

C5=1

5
R5=40

7
r7=2

C6=1

9
r9=2

10
r10=2

rep5=8

8
r8=2

C9=1

C10=1

11
r11=2

12
r12=2

13
r13=2

3
R3=70

4
R4=70

3
r3=2

4
r4=2

6
r6=2

5
r5=2

rep3=11 rep4=11

C4=1

C5=1

5
R5=40

7
r7=2

9
r9=2

10
r10=2

rep5=5

8
r8=2

C10=1

11
r11=2

12
r12=2

13
r13=2

 MDF4(after)=min{rep3,rep4,rep5}=min{8,8,8}=8

 MDF4(before)=min{rep3,rep4,rep5}=min{11,11,5}=5

8. Demonstration of the algorithm

46

6
R6=99

4
R4=70

6
r6=2

5
r5=2

rep4=10 rep5=10

5
R5=40

7
r7=2

9
r9=2

10
r10=2

rep6=11

8
r8=2

11
r11=2

12
r12=2

13
r13=2

C12=1

6
R6=99

4
R4=70

6
r6=2

5
r5=2

rep4=11 rep5=5

5
R5=40

7
r7=2

9
r9=2

10
r10=2

rep6=11

8
r8=2

11
r11=2

12
r12=2

13
r13=2

C13=1

14
r14=2

15
r15=2

C14=1

C12=1

C10=1

14
r14=2

15
r15=2

C14=1

 MDF5(before)=min{rep4,rep5,rep6}=min{11,10,11}=10

 MDF5(before)=min{rep4,rep5,rep6}=min{11,5,11}=5

6
R6=99

7
R7=90

rep5=13 rep6=11

5
R5=40

9
r9=2

10
r10=2

rep7=11

8
r8=2

11
r11=2

12
r12=2

13
r13=2

C12=1

C10=1 C9=1

14
r14=2

15
r15=2

16
r16=2

C14=1

6
R6=99

7
R7=90

rep5=5 rep6=11

5
R5=40

9
r9=2

10
r10=2

rep7=22

8
r8=2

11
r11=2

12
r12=2

13
r13=2

C12=1

C10=1 14
r14=2

15
r15=2

16
r16=2

C14=1

C13=1

 MDF6(after)=min{rep5,rep6,rep7}=min{13,11,11}=11

 MDF6(before)=min{rep5,rep6,rep7}=min{5,11,22}=5

8. Demonstration of the algorithm

47

6
R6=99

7
R7=90

rep6=16 rep7=15

8
R8=60

rep8=20

11
r11=2

12
r12=2

13
r13=2

C12=1 14
r14=2

15
r15=2

16
r16=2

C14=1

C13=1

6
R6=99

7
R7=90

rep6=11 rep7=22

8
R8=60

rep8=30

11
r11=2

12
r12=2

13
r13=2

C12=1

14
r14=2

15
r15=2

16
r16=2

C14=1

C13=1

17
r17=2

17
r17=2

 MDF7(after)=min{rep6,rep7,rep8}=min{16,15,20}=15

MDF7(before)=min{rep6,rep7,rep8}=min{11,22,30}=11

7
R7=90

rep7=22

8
R8=60

rep8=30

14
r14=2

15
r15=2

16
r16=2

17
r17=2

7
R7=90

rep7=22

8
R8=60

rep8=30

14
r14=2

15
r15=2

16
r16=2

17
r17=2

 MDF8(after)=min{rep7,rep8}=min{22,30}=22 MDF8(before)=min{rep7,rep8}=min{22,30}=22

Figure 19: Application of remapping algorithm

8.4. Negotiation state

 In the begging of this phase each node has to calculate the value of .

In function is chosen the . Consequently, each node initializes its variables

for Negotiation state. In Figure 20: Negotiation state is illustrated Negotiation state. The first

transmitting node is node 6, that will transmit iteration of the network. On the other side node 8

will not transmit, because has and it will only receive and resend messages. In the

lower part of Figure 20: Negotiation state, the result of the Negotiation state is demonstrated.

Nodes 2 and 6 won the Negotiation because in and did not exist the higher value of

 .

8. Demonstration of the algorithm

48

2
MDF2(imp)=5

3
MDF3(imp)=3

4
MDF4(imp)=2

5
MDF5(imp)=3

6
MDF6(imp)=6

7
MDF7(imp)=1

8
MDF8(imp)=0

winFlag=true
maxValue2(DR)=5

maxIndexNode2(DR)=2
maxValue2(2DR)=5

maxIndexNode2(2DR)=2
delay2(5)=7-5=2

winFlag=true
maxValue3(DR)=3

maxIndexNode3(DR)=3
maxValue3(2DR)=3

maxIndexNode3(2DR)=3
delay3(3)=7-3=4

winFlag=true
maxValue4(DR)=2

maxIndexNode4(DR)=4
maxValue4(2DR)=2

maxIndexNode4(2DR)=4
delay4(2)=7-2=5

winFlag=true
maxValue5(DR)=3

maxIndexNode5(DR)=5
maxValue5(2DR)=3

maxIndexNode5(2DR)=5
delay5(3)=7-3=4

winFlag=true
maxValue6(DR)=6

maxIndexNode6(DR)=6
maxValue6(2DR)=6

maxIndexNode6(2DR)=6
delay6(6)=7-6=1

winFlag=true
maxValue7(DR)=4

maxIndexNode7(DR)=7
maxValue7(2DR)=4

maxIndexNode7(2DR)=7
delay7(1)=7-1=6

winFlag=true
maxValue8(DR)=0

maxIndexNode8(DR)=8
maxValue8(2DR)=0

maxIndexNode8(2DR)=8
delay8(0)=7-0=7

2
MDF2(imp)=5

3
MDF3(imp)=3

4
MDF4(imp)=2

5
MDF5(imp)=3

6
MDF6(imp)=6

7
MDF7(imp)=1

8
MDF8(imp)=0

winFlag=true
maxValue2(DR)=5

maxIndexNode2(DR)=2
maxValue2(2DR)=5

maxIndexNode2(2DR)=2

winFlag=false
maxValue3(DR)=5

maxIndexNode3(DR)=2
maxValue3(2DR)=5

maxIndexNode3(2DR)=2

winFlag=false
maxValue4(DR)=3

maxIndexNode4(DR)=5
maxValue4(2DR)=6

maxIndexNode4(2DR)=6

winFlag=false
maxValue5(DR)=6

maxIndexNode5(DR)=6
maxValue5(2DR)=6

maxIndexNode5(2DR)=6

winFlag=true
maxValue6(DR)=6

maxIndexNode6(DR)=6
maxValue6(2DR)=6

maxIndexNode6(2DR)=6

winFlag=false
maxValue7(DR)=6

maxIndexNode7(DR)=6
maxValue7(2DR)=6

maxIndexNode7(2DR)=6

winFlag=false
maxValue8(DR)=1

maxIndexNode8(DR)=7
maxValue8(2DR)=6

maxIndexNode8(2DR)=6

Figure 20: Negotiation state

8.5. Solution state

 In Solution state will transmit all nodes, which have set . In Figure 21

are shown transmitted nodes 2 and 6 message with the newly calculated mapping Remapping

state. Firstly, nodes 2 and 6 will transmit the message up to distance . It means that all

nodes in and will be remapped. All nodes in will accept task mapping calculated in

node 6, tasks which are remapped by node 6 are colored by purple color. Respectively node 3 will

receive task mapping calculated by node 2. All tasks remapped in are marked by jungle-

green color.

8. Demonstration of the algorithm

49

2
winFlag=true

3
winFlag=false

4
winFlag=false

5
winFlag=false

6
winFlag=true

7
winFlag=false

8
winFlag=false

1
R1=60

2
R2=75

3
R3=85

4
R4=75

5
R5=40

6
R6=80

7
R7=75

8
R8=60

r1=2
1

r2=2
2 3

r3=2

4
r4=2

5
r5=2

6
r6=2

7
r7=2

8
r8=2

9
r9=2

10
r10=2

11
r11=2

12
r12=2

13
r13=2

14
r14=2

15
r15=2

16
r16=2

17
r17=2

C3=1

C5=1

C10=1

C12=1

C14=1

C9=1

rep6=11 rep7=11 rep8=30rep5=13rep4=12rep3=28rep2=15rep1=15

1

Figure 21: Solution state

8.6. Result state

 All nodes in send a message to node failure node 5. Message contains .

When the is true it means that node was remapped in Solution state of the algorithm

and otherwise. In Figure 22 is shown transmitting in Result state. Nodes 2,3,5,6 and 7 were

remapped and sent the in message. On the other side remain nodes 4 and 8 in

 will transmit .

2 3 4 5 6 7 81

remapFlag=true remapFlag=true remapFlag=false remapFlag=true remapFlag=true remapFlag=true remapFlag=false

rep6=11 rep7=11 rep8=30rep5=13rep4=12rep3=28rep2=15

Figure 22: Result state

8. Demonstration of the algorithm

50

8.7. Verdict state

 In verdict state the failure node 5 make decision about the next state. In Figure 23 failure

node checks the Threshold condition. Node 5 finds out that all nodes fulfil the Threshold

condition and then they can return to Operating state. After that consideration Node 5 will

transmit the message that next state of all nodes will be Operating state.

2 3 4 5 6 7 81

Decision: Operate state!

rep6=11>10

rep7=11>10

rep8=30>10

rep5=13>10

rep4=12>10

rep3=28>10

rep2=15>10

TR=10

Figure 23: Verdict state

8.8. Operating state

 In Figure 24 is illustrated Operating state of the network. All nodes fulfil the Threshold

condition and they can execute tasks mapped on them. The distributed algorithm repaired the

failure state of the network and the all nodes can work desired state.

1
R1=60

2
R2=75

3
R3=85

4
R4=75

5
R5=40

6
R6=80

7
R7=75

8
R8=60

r1=2
1

r2=2
2 3

r3=2

4
r4=2

5
r5=2

6
r6=2

7
r7=2

8
r8=2

9
r9=2

10
r10=2

11
r11=2

12
r12=2

13
r13=2

14
r14=2

15
r15=2

16
r16=2

17
r17=2

C3=1

C5=1

C10=1

C12=1

C14=1

C9=1

rep6=11 rep7=11 rep8=30rep5=13rep4=12rep3=28rep2=15rep1=15

Figure 24: Operating state

9. Testing of the algorithm

51

9. Testing of the algorithm

 In this chapter we want to interpret the test results of the simulation algorithm.

9.1. Description of the testing environment

 For testing of the distributed algorithm we chose DynAA development tool created by the

TNO team, which is available on [Dynaa]. DynAA is a computer-aided analysis and design tool

for the development of large, distributed, adaptive, and networked systems. DynAA includes a

simple, yet powerful language able to describe large and complex system architectures. DynAA

model can be simulated and/or analysed to reveal system wide performance indicators, such as

amount of communication, power consumption and etc..Thanks to mentioned properties of

DynAA, our distributed system was programmed and modelled as object oriented model. Each

physical node can be represented like Device object, which is able to communicate by using link

object that substitutes a communication connection among nodes in the network. Each node also

contains a state machine, which does steps triggered by time events in the network. In addition,

DynAA works with discrete events. It means that system works in discrete time events and in

each event every node makes one step in its state machine.

9.2. Testing of the distributed algorithm

 For testing of the distributed algorithm we created 50 benchmark instances. Each instance

represents a network of nodes with mapped tasks on them. In each instance there is one failure

node, which has a low battery capacity and thereby it does not fulfil the Threshold condition. The

main observed property of the algorithm was, whether the algorithm manages to increase the

minimum repetition of failure device above the defined threshold in the Threshold condition. The

second examined attribute was dispersion of the repetition values in Alert Field. We calculate the

dispersion according to mathematical formula in Equation (14).

 (14)

 Table 1 shows tests results of simulation of the network with the minimum repetition

value before and after simulation with variable sizes of AR and DR. In Table 1 the column named

Failure represents the repetition value of the failure node. In the column titled TR(Threshold) is

Threshold value from the Threshold condition. In remaining columns there are result values of the

minimum repetition values in AF after finishing the algorithm for defined values of AR and DR.

Test Failure

TR

(Threshold)

AR=1,

DR=1

AR=2,

DR=1

AR=2,

DR=2

AR=3,

DR=1

AR=3,

DR=2

AR=3,

DR=3

1 0 0 1 1 1 1 1 1

2 14 14 16 16 16 16 20 16

9. Testing of the algorithm

52

3 15 16 15 20 20 20 20 20

4 12 16 16 16 16 16 20 20

5 15 15 15 16 16 16 16 16

6 20 20 30 30 30 30 30 30

7 12 12 16 14 14 14 14 16

8 10 10 12 12 12 12 12 12

9 10 10 12 14 14 14 16 16

10 14 14 16 16 16 16 16 16

11 9 9 14 14 20 12 20 20

12 10 10 14 14 20 14 16 16

13 11 14 16 16 16 16 16 16

14 13 17 20 20 20 20 20 20

15 16 16 20 20 20 20 20 20

16 10 11 13 16 20 16 20 20

17 6 10 16 16 16 16 16 16

18 10 10 16 16 16 14 16 16

19 10 13 20 20 25 20 25 25

20 5 8 10 10 20 10 20 10

21 8 8 20 20 20 20 20 20

22 11 11 13 14 14 14 16 14

23 11 11 15 18 20 18 20 20

24 4 10 11 12 13 11 11 14

25 12 12 13 13 16 13 16 16

26 8 12 20 14 14 14 14 25

27 11 12 16 16 16 16 16 20

28 13 20 20 20 20 20 20 20

29 7 8 12 12 14 12 16 18

30 6 8 11 16 18 16 11 11

31 13 20 20 20 20 20 20 20

32 13 20 25 25 25 25 25 25

33 16 30 25 25 25 25 25 25

34 10 10 12 12 12 12 12 12

35 11 11 20 25 25 25 25 25

36 12 18 20 20 20 20 20 20

37 12 12 16 16 16 16 16 16

38 13 20 13 13 13 13 13 16

39 16 20 20 20 20 20 20 20

40 10 20 14 20 20 20 33 33

41 20 20 25 25 25 25 25 25

42 13 20 25 25 25 25 25 25

43 13 15 16 16 16 16 16 16

44 13 20 20 20 25 20 25 25

45 6 10 15 15 20 15 20 20

46 4 10 6 11 14 10 14 14

47 5 15 20 16 20 16 20 20

48 20 20 25 25 25 25 25 25

49 10 13 20 20 20 20 20 20

50 16 20 16 16 16 16 16 16

Table 1: Minimum repetitions before and after reparation

 Graphs 1 and 2 summarize results from Table 1. The first graph shows results for

instances 1 to 25 and the second one for 26 to 50. As a positive result of test, we can see that in

9. Testing of the algorithm

53

most of the cases the minimum repetition value was increased above the TR value. In test

instances, where the algorithm was not able increase the minimum repetition value was

conditioned by two reasons. The first reason is that the value of AR is still small. The algorithm

within a small AF does not have enough information to compute task mapping, which has the

minimum repetition value higher than Threshold value. The second reason is that in the whole

network doesn't exist feasible task mapping with the repetition value higher than Threshold. It can

be seen that with the higher value of AR and DR, it is possible to reach the higher value of the

minimum repetition value.

Graph 1: Test results number (1.-25.)

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

m
in

 r
e

p
e

ti
ti

o
n

test number

Min repetition
Failure TR(Threshold) AR=1,DR=1 AR=2,DR=1

AR=2,DR=2 AR=3,DR=1 AR=3,DR=2 AR=3,DR=3

9. Testing of the algorithm

54

Graph 2: Test results number (26.-50.)

 In Table 2 are represented dispersion values before, marked as (dispB), and after (dispA)

launching of the algorithm for defined values of AR and DR. It can be seen from the result values

that the algorithm decreases dispersion of repetition values in AF and thereby it has balancing

properties. However in some test instances the algorithm increase the result dispersion of

repetitions. Increasing dispersion is caused by the prime purpose of the algorithm, which is

repairing the failure state. It means, once the algorithm increase the minimum repetition value

above threshold, then the algorithm is successfully terminated. After that termination the

algorithm returns all nodes into Operating state, regardless on decreasing of dispersions

repetitions on devices.

AR=1,DR=1 AR=2,DR=1 AR=2,DR=2 AR=3,DR=1 AR=3,DR=2 AR=3,DR=3

test dispB dispA dispB dispA dispB dispA dispB dispA dispB dispA dispB dispA

1 2,9 0,0 2,2 0,6 2,2 0,6 2,0 1,5 2,0 1,5 2,0 1,5

2 57,5 144,6 54,6 29,1 54,6 29,1 55,3 141,8 55,3 24,5 55,3 31,3

3 17,2 17,2 171,4 83,7 171,4 83,7 152,7 7,1 152,7 7,1 152,7 7,1

4 56,7 3,0 45,2 21,9 45,2 23,7 40,7 19,6 40,7 83,3 40,7 17,6

5 0,2 0,2 17,4 12,1 17,4 11,3 15,9 17,9 15,9 92,7 15,9 17,4

6 159,2 62,3 132,6 71,1 132,6 71,1 102,3 64,6 102,3 64,6 102,3 64,6

7 11,6 3,6 9,0 4,8 9,0 4,8 7,4 3,8 7,4 3,8 7,4 2,6

8 5,0 0,8 3,7 0,9 3,7 2,2 3,7 0,9 3,7 2,2 3,7 1,0

9 6,9 0,9 28,2 1,0 28,2 1,0 177,7 40,2 177,7 34,6 177,7 36,5

0

5

10

15

20

25

30

35

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

m
in

 r
e

p
e

ti
ti

o
n

test number

Min repetition
Failure TR(Threshold) AR=1,DR=1 AR=2,DR=1
AR=2,DR=2 AR=3,DR=1 AR=3,DR=2 AR=3,DR=3

9. Testing of the algorithm

55

10 8,0 3,6 12,1 16,2 12,1 10,8 28,9 13,6 28,9 6,2 28,9 28,6

11 249,8 4,8 146,8 65,9 146,8 6,2 113,7 80,6 113,7 28,3 113,7 28,3

12 71,2 63,7 211,9 200,2 211,9 89,3 202,8 175,1 202,8 86,8 202,8 86,8

13 33,6 0,0 21,8 2,6 21,8 2,6 22,3 10,2 22,3 10,2 22,3 10,2

14 24,2 5,6 53,2 28,3 53,2 5,6 43,8 25,8 43,8 144,0 43,8 144,0

15 51,4 40,6 43,0 37,6 43,0 37,6 136,6 25,8 136,6 80,9 136,6 128,7

16 18,7 1,6 322,2 41,2 322,2 4,0 303,4 45,6 303,4 110,2 303,4 103,1

17 26,2 0,0 26,2 0,0 26,2 2,6 26,2 0,0 26,2 2,6 26,2 3,8

18 38,0 4,0 28,7 3,6 28,7 3,6 24,2 4,8 24,2 3,0 24,2 15,2

19 202,3 151,7 182,2 154,5 182,2 16,0 141,7 120,3 141,7 15,0 141,7 59,4

20 252,7 177,0 174,2 812,5 174,2 21,2 174,2 87,7 174,2 65,9 174,2 50,4

21 222,8 6,2 140,1 19,3 140,1 3,9 162,1 84,8 162,1 141,6 162,1 76,3

22 66,6 1,7 72,3 12,0 72,3 53,5 117,7 46,9 117,7 35,6 117,7 46,8

23 249,6 1,6 167,6 15,2 167,6 20,1 167,6 15,2 167,6 20,1 167,6 20,1

24 36,4 2,2 163,1 19,9 163,1 13,0 151,5 22,0 151,5 1,7 151,5 0,5

25 173,6 44,9 170,7 87,6 170,7 132,9 163,7 85,6 163,7 129,4 163,7 14,1

26 152,0 16,4 129,8 31,7 129,8 27,5 129,8 31,7 129,8 27,5 129,8 5,7

27 162,0 140,0 125,0 32,2 125,0 32,2 125,0 32,2 125,0 32,2 125,0 93,1

28 171,7 150,9 86,0 65,1 86,0 102,3 74,1 59,2 74,1 66,2 74,1 41,7

29 172,2 27,8 135,0 75,7 135,0 28,8 248,3 259,4 248,3 163,2 248,3 15,7

30 41,4 7,5 177,5 30,8 177,5 4,1 163,1 29,8 163,1 94,6 163,1 94,5

31 171,7 150,9 86,0 65,1 86,0 102,3 74,1 59,2 74,1 66,2 74,1 41,7

32 215,0 83,2 161,4 56,6 161,4 56,6 152,8 87,5 152,8 87,5 152,8 87,5

33 256,9 14,2 185,0 128,2 185,0 12,0 141,6 128,2 141,6 86,7 141,6 78,8

34 0,9 28,2 0,6 171,0 0,6 138,4 0,6 301,5 0,6 111,2 0,6 111,2

35 147,1 6,1 188,4 124,2 188,4 68,7 188,4 124,2 188,4 124,2 188,4 102,9

36 197,0 103,8 133,1 69,7 133,1 84,1 119,9 63,6 119,9 83,7 119,9 83,7

37 53,8 43,4 44,3 35,7 44,3 30,2 44,3 35,7 44,3 33,8 44,3 13,9

38 75,0 75,0 43,8 43,8 43,8 43,8 62,6 62,6 62,6 62,6 62,6 54,2

39 46,2 0,0 40,1 31,7 40,1 23,5 35,4 40,6 35,4 20,7 35,4 20,7

40 0,0 9,0 0,0 200,0 0,0 200,0 0,0 200,0 0,0 46,2 0,0 46,2

41 91,0 67,4 43,4 34,7 43,4 34,7 63,9 57,4 63,9 57,4 63,9 57,4

42 171,7 14,2 128,9 42,9 128,9 42,9 112,4 68,8 112,4 52,4 112,4 52,4

43 88,9 72,3 55,6 46,2 55,6 72,3 36,0 28,5 36,0 54,2 36,0 70,8

44 137,4 42,3 98,9 82,7 98,9 31,4 81,7 73,8 81,7 54,2 81,7 45,0

45 163,4 47,3 89,5 22,9 89,5 49,0 147,5 68,8 147,5 98,6 147,5 44,7

46 24,2 156,2 37,0 70,2 37,0 0,0 35,5 34,5 35,5 5,8 35,5 7,2

47 175,5 25,8 141,7 43,5 141,7 37,8 128,4 45,0 128,4 38,0 128,4 38,0

48 150,9 14,2 91,0 10,2 91,0 67,4 89,2 57,4 89,2 74,6 89,2 74,6

49 288,9 5,6 215,8 147,8 215,8 154,1 190,3 147,1 190,3 154,2 190,3 154,2

50 40,1 40,1 83,8 83,8 83,8 83,8 83,8 83,8 83,8 83,8 83,8 83,8

Table 2: Dispersions of before and after reparation

9. Testing of the algorithm

56

9.3. Quality comparison of the remapping heuristic

 The distributed algorithm uses a heuristic for calculating a new task mapping on all nodes

in the Alert Field. To be able to evaluate quality of that heuristics, we implemented an exact

method based on Inter Linear Programming (ILP). It comes as surprise that the ILP method can't

be implemented on embedded devices in practise. We choose the ILP method only for quality

comparison. Because we know that the ILP method finds out the task mapping with the maximum

repetition value, which is the optimal solution. In Graphs 3, 4 and 5, we can see the minimum

repetition values after finishing of the algorithm.

 From results in Graphs 3, 4 and 5, we can notice that the heuristic algorithm reaches the

same results as the ILP method. In some cases the heuristics returns better results after finishing

algorithm. It is because the algorithm is distributed and devices make local decisions only.

Another reason is that any node cannot see all connections in the architecture graph and thus it

can't find the optimal task mapping.

Graph 3: Comparison of the heuristic and the ILP remapping algorithm for AR=1 and DR=1

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

m
in

 r
e

p
e

ti
ti

o
n

Test number

Graph result repetitions AR=1,DR=1

Heuristics

ILP

9. Testing of the algorithm

57

Graph 4: Comparison of the heuristic and the ILP remapping algorithm for AR=2 and DR=2

Graph 5: Comparison of the heuristic and the ILP remapping algorithm for AR=3 and DR=3

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

m
in

 r
e

p
e

ti
ti

o
n

Test number

Graph result repetitions AR=2,DR=2

Heuristics

ILP

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

m
in

 r
e

p
e

ti
ti

o
n

Test number

Graph result repetitions AR=3,DR=3

Heuristics

ILP

10. Conclusion

58

10. Conclusion

 Our prime aim was to propose and test a distributed algorithm, which repairs a failure

states in the network by changing task mapping on nodes. The main criterion for the algorithm's

design was to minimize amount of communication during its execution. Since the problem of task

mapping is NP-hard, we had to develop a heuristic algorithm. The similar problem was not

observed in the literature yet, how we pointed in related works in Chapter 3. We defined constrain

that any two tasks, which have data dependency among them, can be mapped on the same device

or on two neighbouring devices in the network. It ensures that task, which communicates with

another one via messages, makes maximally one hop distance communication in the network.

Unlike authors from [SKHT06] our approach saves a communication in the network. The authors

in [SKHT06] enable to map these two tasks on devices that can be distanced across the whole

network and the message needs multiple hops to reach the destination node. The distributed

algorithm enables to increase lifetime and reliability in the wireless sensors networks. The

heuristic used for local remapping of tasks is very efficient in comparison with an exact method

based on ILP. Our heuristics provides similar results to the ILP method. The designed algorithm

also illustrates a scheme that can be used for solving other related problems from wireless sensor

networks domains.

 However, the proposed algorithm can be still improved. The first improvement is based

on the reducing communication during repeated iterations of the algorithm. Devices from

information obtained in the first iteration, need not be involved into communication in some states

of the algorithm. For instance, when the device in the second iteration obtains the same

information in Discovery state as in the first iteration, then it need not launch the remapping

algorithm in Remapping state in the second iteration. The second improvement can be applied on

evaluating of the objective function and the final decision of the failure node. The failure node

terminates the algorithm once it found out that all devices have feasible task mapping. Although

the failure node finds out that all nodes have feasible mapping, it can decide to iterate algorithm

again and obtain even a better mapping on devices.

Bibliography

59

Bibliography

[AFMH14] Alexandra Aguiar, Sergio Johann Filho, Felipe Magalhaes and Fabiano Hessel. On

the design space exploration through the hellfire framework. Journal of Systems Architecture,

60(1):94-107, 2014.

[CG12] T.E. Carroll and D. Grosu. An incentive-based distributed mechanism for scheduling

divisible loads in tree networks. Journal of Parallel and Distributed Computing, 72(3):389-401,

2012.

[Cyb89] George Cybenko. Dynamic load balancing for distributed memory multiprocessors.

Journal of Parallel and Distributed Computing, 7(2):279-301, 1989.

[GV08] Lee Kee Goh and Bharadwaj Veeravalli. Design and performance evaluation of

combined first-fit task allocation and migration strategies in mesh multiprocessor systems.

Parallel Computing, 34(9):508-520, 2008.

[SC13] Pradip Kumar Sahu and Santanu Chattopadhyay. A survey on application mapping

strategies for network-on-chip design. Journal of Systems Architecture, 59(1):60-76, 2013.

[SHT05] Thilo Streichert, Christian Haubelt and Jürgen Teich. Online hardware/software

partitioning in networked embedded systems. In Proceedings of the 2005 Asia and South Pacific

Design Automation Conference, ASP-DAC '05, pages 982-985, New York, NY, USA,2005.

ACM.

[SKHT06] Thilo Streichert, Dirk Koch, Christian Haubelt, and Jürgen Teich. Modelling and

design of fault tolerant and self-adaptive reconfigurable networked embedded systems. EURASIP

J. Embedded Syst., 2006(1):9-9, January 2006.

[SSKJ10] Amit Kumar Singh, Thambipillai Srikanthan, Akash Kumar and Wu Jigang.

Communication-aware heuristics for run-time task mapping on noc-based {MPSoC} platforms.

Journal of Systems Architecture, 56(7):242-255, 2010. Special Issue on HW/SW Co-Design:

Systems and Networks on Chip.

[SFHP13] P. Sucha, J.Olivera de Filho, Z. Hanzalek and Z. Papp. Scheduling in Self-adaptive

Reconfigurable Networked Embedded Systems. Technical report CTU and TNO, pages 1-4,

2013.

Bibliography

60

[KA99] Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and comparison of the task graph

scheduling algorithms. Journal of Parallel and Distributed Computing, 59(3):381-422, 1999.

[YHZEA09] Ying Yi, Wei Han, Xin Zhao, A.T. Erdogan, and T. Arslan. An ILP formulation for

task mapping and scheduling on multi-core architectures. In Design, Automation Test in Europe

Conference Exhibition, 2009. DATE '09., pages 33-38, 2009.

[SP12] J. Sijs and Z. Papp. Towards self-organizing kalman filters. In Information Fusion

(FUSION), 2012 15th International Conference on, pages 1012-1019, 2012.

[N12] P. Neelakantan. Load balancing in distributed systems using diffusion technique.

International Journal of Computer Applications, 39(4):1-7, 2012.

[ASEP11] A. Aminifar, S. Samii, P. Eles, and Zebo Peng. Control-quality driven task mapping

for distributed embedded control systems. In Embedded and Real-Time Computing Systems and

Applications (RTCSA), 2011 IEEE 17th International Conference on, volume 1, pages 133-

142, 2011.

[GCL02] D. Grosu, A.T. Chronopoulos, and Ming-Ying Leung. Load balancing in distributed

systems: an approach using cooperative games. In Parallel and Distributed Processing

Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-ROM, pages 10 pp-,

2002.

[Dynaa] DynAA framework created by TNO company. URL:

https://www.tno.nl/en/focus-area/industry/networked-information/embedded-systems-

innovations-esi/dynaa-design-of-large-adaptive-networked-systems/

https://www.tno.nl/en/focus-area/industry/networked-information/embedded-systems-innovations-esi/dynaa-design-of-large-adaptive-networked-systems/
https://www.tno.nl/en/focus-area/industry/networked-information/embedded-systems-innovations-esi/dynaa-design-of-large-adaptive-networked-systems/

Content of the attached CD

61

Content of the attached CD

1. text of thesis in PDF format

2. source code of distributed algorithm implemented in DynAA development tool

