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Abstrakt 

V současné době schopnost měnit a migrovat funkcionalitu na samo-adaptivních a 

rekonfigurovatelných embedded zařízeních v bezdrátových senzorových sítích, se stává běžnou 

vlastností. Vedle této schopnosti zařízení jsou schopna počítat/vykonávat tyto úlohy reprezentující 

dané funkcionality a také komunikovat bezdrátově s ostatními zařízeními v síti. Každé samostatné 

zařízení je napájeno baterií a musí průběžně sledovat poměr množství zatížení reprezentované 

mapovanými úlohami na daném zařízení a kapacitou napájecího zdroje. Pokud se na jakémkoliv 

zařízení poměr zátěže a napájecí zdroje sníží pod určitou úroveň, zařízení vyvolá chybový stav v 

síti. Cílem této práce je navrhnout distribuovaný algoritmus, který je schopen opravit tento 

chybový stav změnou mapování úloh na zařízeních v síti. 

 

Abstract 

Nowadays, the ability to change and migrate functionality on self-adaptive and reconfigurable 

embedded devices in the wireless sensor networks becomes a common property. Beside that 

ability, devices are able to compute/perform tasks representing functionalities and also 

communicate wirelessly with other devices in the network. Each standalone device is power 

supplied by a battery and has to regularly monitor a ratio between amount of load represented by 

mapped tasks on the device and capacity of the power resource. When on any device this ratio 

decreases under an intended level, the device invokes a failure state in the network. The aim of 

that thesis is to propose the distributed algorithm, which is able to repaired that fault state by 

changing the task mapping on devices in the network. 
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1. Motivation 

 Dynamic migration of functionality from one device to another device is an important 

ability of self-adaptive reconfigurable networked embedded systems. There are two reasons why 

dynamic functionality migration is considered in networked embedded systems. The first one is 

adaptability of these systems, e.g. when a device is added/removed into/from the system all 

functionalities are preserved. The second one is efficiency of the system expressed via an 

objective function(s) aimed at, e.g. energy consumption minimization or reliability maximization. 

Functionality in the systems is described via a set of tasks and functionality migration is realized 

by dynamic mapping and scheduling of these tasks with respect to actual state of the system.  

Mapping in this context means assignment of tasks to devices.  

 

Figure 1: Temperature measurement in a greenhouse using reconfigurable networks 

 Our application considers a network of ultra low power wireless embedded devices in 

a greenhouse. Each device executes tasks specially focused on precise calculations of temperature 

and the other assignments like measuring and controlling. These devices in the network have 

ability to execute tasks and communicate wirelessly with its neighbours. The structure of our 

embedded device contains two core processors. First one, concretely in our case was chosen 

processor MSP430F2418 from company Texas Instruments, which is designated for executing 

tasks mapped on the device. The second one is CC1101, with a role of a transceiver, it also made 

by company Texas Instruments, it services assignments are related with wireless communication 

like broadcast transmitting and receiving messages from its neighbour in the network.  You can 

see the physical appearance of the embedded in Figure 2. 
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Figure 2: Embedded device representing a physical node in the network 

 When we look closely at one of the essential property of distributed system - behind the 

intention of its creation. In the area of the greenhouse it is required to calculate very precisely the 

temperature in the space. It means for every device which has to measure the temperature. 

However, there is formatted request for calculating temperature in space among devices. So 

consequently a certain subset of devices has to calculate from received temperatures of its 

neighbours an approximate value of temperature in the interspace. In Figure 3 illustrates the 

network of devices with mesh structure in 3D space. Nodes are formed into two layers, where in 

the upper layer there are placed green coloured nodes whereas in the lower nodes with red colour. 

Black lines illustrate bidirectional communication links among devices. Finally, the yellow points 

show the measured and calculated values of temperatures.  

 

Figure 3: Mesh of embedded devices in 3D space 
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In practise, there is estimated and monitored finer resolution of the space. In Figure 3 – there 

weren't shown all points from readability reasons. However, there are at least estimated points in 

the centre of each four or eight devices. Computing the temperature is based on using algorithm 

including Kalman filtering.  

 Next important feature of embedded device is the fact, that its power supply is a battery. 

For a network lifetime it is necessary to coordinate an adequate amount of load, represented by 

mapped tasks on the device, with respect to the current battery capacity. In this work, we express 

this aspect via an objective function. The objective function has responsibility for checking, on 

each device ratio between current battery capacity and the appropriate workload on the device, 

consisted of all tasks bound to it. When any device in the network, i.e. using a watchdog checking 

mechanism, finds out that its objective function does not meet the given conditions, then it has to 

invoke an alert state. As recommended reparation, the failure node has to launch a rescheduling 

algorithm, which wakes up a set of its neighbours and triggers on them distributed task migration 

algorithm in order to repair a source problem node with an unfulfilled objective function. 

 For getting a better view on the investigated problem, it is illustrated on an example 

in Figure 4. Assuming that the network operates in the operational state and all embedded devices 

execute tasks mapped on them. At once a watchdog on Node 5 detects, that it does not fulfil 

the condition of the objective function. Consequently Node 5 has to start distributed reparation of 

mechanism that will fulfil the requirements of the objective function. As it can be seen on the left 

side in Figure 4, the result of the reparation revealed the problem. Task 6 migrated to Node 4 and 

task 7 migrated to Node 6. After execution of the algorithm, the Node 5 fulfils the condition of the 

objective function. Consequently, all involved devices, taken part in task migration, return to the 

operational state and starts up calculation of the tasks bound to them. 
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Figure 4: Reparation of failure state by task remapping  

 The aim of this thesis is to propose and test a distributed algorithm, which solves 

the mentioned problem by migrating and remapping tasks on devices with output of load balanced 

adequately to the amount of power supply from battery. Due to energy consumption, caused by 
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executing tasks and transmitting messages to neighbours devices, it is required to propose such 

algorithm, which uses minimal communication between devices.  
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2. Related works 

 Firstly, we will look at a general overview of works interested on field of task mapping 

problem. Afterwards, we will concentrate on partial articles with the most similar solved problem. 

In these parts we will explain in detail their manner of solving problem and emphasise the 

differences among them and the measures.  

 The problem of task mapping is mainly addressed in parallel and grid computing 

area, e.g.: [KA99]. Much less attention is paid to this problem in networked embedded systems. 

According to the quality indicator of task mapping expressed by the objective function(s) there 

are three possible approaches to task mapping and scheduling [GCL02]: 

1. Global approach - There is only one decision maker (task mapper and scheduler) having 

a single objective function. 

2. Cooperative approach - There are several decision makers (e.g. devices) that cooperate in 

making the decisions. 

 3. Non-cooperative approach - There are several decision makers, but each decision 

maker optimizes its own objective. 

 Majority of existing, works dealing with on-line mapping and tasks scheduling, consider 

global approach. Authors in [ASEP11] deal with task mapping and scheduling problem on 

networked embedded systems. Moreover, they also involved a control synthesis into the design 

process. The problem is solved off-line by a genetic algorithm. An ILP (Integer Linear 

Programming) problem formulation is proposed in [YWXEA09]. This algorithm considers non-

preemptive tasks and pipelining. Moreover, in order to exploit parallelism as much as possible, 

the replication of tasks is allowed. 

 Even less works are dealing with distributed algorithms for tasks scheduling and 

mapping. A self-organizing sensor network is described in [SP12]. The authors show a case study 

illustrating Kalman filtering on a distributed network of embedded systems. A distributed 

algorithm for on-line task mapping on reconfigurable networked embedded systems is described 

in [KA99]. The algorithm is based on diffusion algorithm, first introduced by Cybenko [Cyb89]. 

The disadvantage of the algorithm [KA99] is that it could generate huge communication traffic in 

the network. A diffusion algorithm is also used in [N12]. Their algorithm is applied to a 

homogeneous system, i.e. system where capabilities of all devices are equal. Unlike the algorithm 

in [KA99] they consider integer granularity of tasks. 

 For the last non-cooperative approach, authors [GCL02] created an algorithm using the 

Divisible Load Scheduling (DLS) theory, where it is observed a scheduling of divisible load in 

distributed systems. The designed distributed mechanism is dedicated for the tree network of 

processors. Processors provide incentives to their true capacities and executing their assigned load 

at full processing capacity. However there is assumed, that processors can cheat, because they are 
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autonomous. Finally, in the paper it is proved that DLS-T mechanism computes the optimal 

allocation in an ex post Nash equilibrium.  

 We want to draw a special attention to the most similar article connected with our topic 

from authors [SKHT06]. They consider FPGAs in combination with CPUs and allow migrating 

tasks implemented in HW or SW from one node to the other one, where each node represents 

some embedded device. They use a local iterative load balancing algorithm from [Cyb89] 

performed iterations on all nodes, determining a load exchange between the adjacent nodes. 

However, the designed algorithm also allows migrating of non-discrete values of loads and that 

property is not applicable in our observed problem. That property is solved by the same authors in 

the next their article in [SHT05]. In this paper, there is proposed a modification of this diffusion 

algorithm, that leads to its discrete version, which overcomes the following problems: 

1. One task cannot be split and distributed to multiple nodes  

2. It cannot occur that negative loads are assigned to computational nodes. 

Furthermore, the designed discrete version is able to balance load in constant number of steps. 

Nevertheless, for the dedicated number of steps it is needed to introduce the Laplacian matrix of 

the network. That last fact implies the disadvantage of that algorithm for our purposes. For 

calculation a Laplacian matrix it is needed to use the information about adjacency matrix of the 

whole network and for our algorithm there is a defined request on the using the distributive.  Our 

second constrain, which is not also solved in the article [SHT05] is that two tasks connected via 

edge can be mapped on the same node or on two neighboring nodes.  

 The contribution of this thesis is based on the following aspects. We will design a 

distributed algorithm in which every device work without knowledge of the whole network 

structure, that is used in [SHT05]. The algorithm works by a dynamic manner it means that reacts 

on changes on the partial devices in the network. Next benefit is that the designed algorithm is 

usable on all network topologies in comparison with  [CG12]. An algorithm especially depends 

on the minimum use of communication. It implies that algorithm saves energy  on all devices 

involved in the algorithm.  
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3. Problem statement 

 In this chapter we want to declare mathematical model and notation of the solved 

problem. 

3.1.  Notation of the problem statement 

 This section formally introduces the problem of tasks mapping in networked embedded 

systems supporting dynamic reconfiguration. The network is formed by nodes connected via 

bidirectional communication links. The considered remapping problem is defined by a tuple 

                , where: 

           refers to a task graph having a set of particular tasks               and 

their data dependencies expressed by oriented edge                   . Moreover, 

each task      is associated with power energy consumption per one iteration      
 . 

Executing task graph in the network is repeated in iterations. Each edge          is 

parameterized by demanded for transmitting energy      , needed when the output of 

task   is sent to task   mapped on a different node. 

           is an architecture graph reflecting reflecting the structure of the self-

organizing network. Nodes               in the network are connected via 

bidirectional communication links                   . Each node       is 

parameterized by its size of energy capacity (resource capacity)     
 .  

 The permitted mapping is a function              , where          means that 

task   can be assigned on node   and 0 otherwise. 

 The task mapping         is an assignment of tasks      to nodes     , i.e. 

       means that task      is mapped on node     . Mapping    is feasible if 

and only if: 

1.           there is node      such that             or there is node 

     that is connected via bidirectional link           with the node     , 

such that task               

2.                      

The first constraint expresses that two tasks can be mapped on the same node      

or on two different nodes connected via a communication link in an architecture graph. 

The second constrain says that the given task can be assigned only on a certain subset of 

nodes defined by the permitted mapping.        means that task      is mapped on 

node     .  
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 The cost of the mapping, denoted as          , is a function defining energy 

consumption of mapping per one iteration. We consider the cost of mapping given by 

          defining how expensive is to map task     on the node     . The cost of 

mapping is defined by 

           
         

      
  

                                                     

Then the objective in this problem is to maximize the number of possible iterations, i.e. 

repetitions of the task graph. It is denoted as repetition objective, singed as          , 

which is a function defining a ratio between resource capacity    and sum of all costs of tasks 

mapped on the node     . The function is expressed in Equation (1): 

                               (1) 

,where the sum in the denominator defines, how expensive is mapping of all tasks mapped on 

node     . 

 Aim of the whole problem statement is to maximize the minimum value of repetition 

objective in the whole network in Equation (2).   

                     (2) 
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3.2.  Illustrative example of the problem statement 

 This section aims to illustrate formulations from the previous section. An example of the 

network is in Figure 5. Rectangle boxes represent a set of nodes    with resource capacities    of 

each node  , that are connected via blue marked communication links represented by edges from 

set   . Secondly, the blue circles are tasks    with task requirements    , which have data 

dependencies represented via edges    with prices   . Figure 5 also illustrates a task mapping e.g. 

task   is mapped on node  , task   is mapped on node  , tasks   and   on node   and finally tasks 

    and   on node  . Finally Figure 5 also shows calculation of      objective function on node 

3.  

1
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 cost(3,3)=r3+c3=2+3=5
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rep3=R3/(cost(3,3)+cost(5,3))=
=90/(5+2)=12

 

Figure 5: An example of the network desbribed by formulations 
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4. ILP model of task mapping 

 The problem of task mapping introduced in the previous chapter is NP-hard, how it was 

shown in [SFHP13], a global (centralized) solution, proposed in this section, is based on integer 

linear programming. It uses a binary decision variable      equal to 1 if and only if task      is 

mapped on node      and equal to 0 otherwise. We define auxiliary decision variable      

equal to 1 if and only if there is edge          such that        and        where      . 

The integer linear programming model is expressed: 

objective function:                   

subject to: 

                       (3) 

                                           (4) 

                           (5) 

                                  (6) 

                                                 (7) 

                                           (8) 

where:                                        

 Aim of the model is to minimize objective function  
 

   
     

      
 . Objective function 

  is not linear, thus we have to make a substitution    
          
            

  
. The threshold value 

  defines the upper bound for all elements of the vector         
  in Equation (3)  Equation 

(4) expresses a constrain, in which due to minimized value of        load on node   has to 

smaller or equal to     . Equation (5) denotes that exactly one task      can be mapped on 

one node      only. Equation (6) expresses permitted mapping for every task     and node 

    . If the Permitted mapping          then the value       must be also zero and task   

can't be mapped on node  . Equation (7) describes the constrain, when task      has data 

dependency with task      has to be mapped on the same node     , on which is mapped 

task      or on neighbors of node     . The set of neighbors of the node      is the set 

of all nodes        , which are connected with an edge         . The last Equation (8) 

declares a constrain by using additional decision variable     . The constrain ensures, when the 
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task     is mapped on node      and it is has also a data dependency          with a task 

     that is mapped on the another node than     , then it has to be value of       . The 

consequent of the last constrain is connected with Equation (4) in which is encountered the       

expressing energy consumption for sending data from one task mapped on one node      to 

another node     .  
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5. Description of the network properties 

 In this chapter we aim to classify properties and capabilities of the network. Among these 

properties, we can include a description of individual devices, communication and 

synchronization of devices in the network and so on. We want to introduce aspects of the 

network, which has to be necessary taken into account during the design of the distributed 

algorithm. 

5.1. Device characteristics 

 Due to the fact that our system is distributed, therefore each device behaves like 

standalone unit. Each device has an identification number that responds to node number   from 

the set   . We define the set of the known and unknown attributes. Consequently every node 

     knows the following list of attributes: 

1. task graph    

2. permitted mapping   

3. task mapping             

4. repetition objective      

However for each node     , is declared the complement of set known attributes called 

unknown attributes, which has to following content:  

1. architecture graph    

2. mapping             

3. repetition objective               

The only way how node   can obtain unknown attributes is to communicate with the neighbors. 

5.2. Communication in the network 

 Each device has ability to communicate wirelessly. It means that the node in the network 

transmits messages wirelessly, which can be received by all near devices in the network i.e. 

connected to the node. When the node decides to transmit some data to the network, it always 

packs them into a single message and transmits it. The message is a communication unit used for 

communication and distribution any information among the nodes. Therefore we have to make a 

standard structure of the content of message. The standard pattern of the content of the message 

states the following list of elements: 

1. name 

2. origin node identification 

3. init time stamp 

4. time duration 
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5. distance 

6. path 

7. optional attributes 

These seven elements have to be contained inside every message, when it is initiated by any node 

in the network. The first element defines the purpose of the message. According to this attribute 

each node has ability to determine the content of the seventh element. The third element named 

time stamp means the time, when the message was sent. Next, the fourth element, called time 

duration is used for time synchronization of nodes. The time synchronization will be discussed in 

the next subchapter. The fifth element called distance, defines the maximal count of hops up to 

the message has to be sent. When the message crosses an edge from the set   , it makes one hop. 

The penultimate element introduces the list of all node identifications that retransmitted the 

message. The path includes also an identification number of the origin node. The last element 

called optional attributes, contains the message specific data, e.g. current mapping of tasks on a 

different node. 

 

3
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21
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Figure 6: A demonstration of transmitting message from node 5 

 Transmission of a message from node 5 is illustrated  in Figure 6. The red coloured node 

5 creates the message and sends it to all its neighbours. Under the term neighbours, we mean all 

nodes adjacent with node 5 in   . In the other words, all black coloured nodes 1,2,3 and 4 will 

receive at one time moment the message initiated by node 5. We can also notice that node 6 does 

not receive the message. It is caused by the fact that node 6 is distanced more than one from 

transmitting node 5. So the node 6 is not directly connected via an edge from node 5. The node 6 



5. Description of the network properties 
 

22 
 

can receive the message, when node 2 or 3 transmits the message. In that case the message would 

be received also node by 5 apart from node 6.  

 In the next three subchapters we want to introduce three communication schemas. These 

schemas are used in the proposed algorithm.  

5.2.1. One to All Communication 

 The aim of this technique of communication is to distribute a message from one node to 

the subset of nodes. Firstly one node in the subset creates a message and transmits it. 

Consequently all nodes in its neighbourhood will receive that message and if the message has the 

nonzero count of hops then it is retransmitted further. So the source node defines the size of the 

informed area of nodes by count of hops. In Figure 7 we can see that node 3 initiates and 

transmits the message. Then node 2 and 3 receive a message and resend it further. Finally, node 1 

and 5 receive the message. We can also observe that the size of set informed nodes has diameter 

equal to 2 from the source node. 

1 2 3 4 5

 

Figure 7: Demonstration of one to all communication 

The common way of using this communication scheme is for informing about some event, which 

happened in the source node. 

5.2.2. All to All Communication 

 Each node in this subset has to initiate and transmit the message. And also all nodes set at 

the same count of hops in a message. It means that all nodes in the subset will transmit the 

message to the same distance. After initiating each node only receives, stores and retransmits the 

message, only if the message has the nonzero count of hops, representing a subset of nodes in the 

network. Nevertheless, this communication manner is the most demanding for energy. That 

scheme also describes the non- centralized way of communication. 
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1 2 3 4 5

 

Figure 8: Demonstration of all to all communication 

5.2.3. All to one Communication 

 The last communication technique called All-to-One, describing a way, where all nodes 

from the subset of the network transmit a message to the destination node. It means that every 

node in the subset initiates a message apart from destination node and transmits it. When the 

destination node receives a message then stores its content and does not transmit it next to the 

network. Usual purpose of this technique is an announcement from all nodes from the set to the 

one destination node. We can view on this technique like on inverses communication scheme 

from subchapter 6.2.1. In Figure 9, we can notice that in the subset nodes 1,2,4 and 5 transmit the 

message to node 3, which is the destination node. This communication is used when a group of 

nodes wants to send some result to the specific node. 

1 2 3 4 5

 

Figure 9: Demonstration of all to one communication 

5.3. Time synchronization 

 The last important property in the distributed network is the time synchronization. The 

time synchronization is one of the most important aspects for determinism in our distributed 

system. It ensures that all nodes in the network will work within the same time interval. We will 

call the time interval as a state or a stage.  

 In the network in case of the device failures, the assignment is to inform and involve other 

devices into solution of the problem. The failure node creates the message and stores current time 

  time into message attribute init time stamp   . Time length of stage or state is stored into time 

duration    attribute of message. Alert is stored into message attribute name. When the failure 
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node finishes the creation of the message, then it transmits the message to the network. If any 

node in the network receives that message with name attribute Alert, it stores its time init stamp 

and time duration attributes and if the message attribute counts of hop is not zero, the node 

retransmits it to the network. However, an assignment of each node, which received the message 

or failure, is to check timeout of state. Timeout of state occurs for every node, which does not 

fulfil the condition in Equation (9). 

         (9) 

After elapsing timeout node transits into next state, which is defined after Alert state.  

 We would like to demonstrate example of the time synchronization in Figure 12. The 

network has chain topology consisted of four nodes. The horizontal axes represent time. Each 

green line represents time flow of each node. In time line, time events, which are represented by 

colour points can occur. Time events are described in text area showing on these points. Firstly, 

node 2 initiates a message in time equal with   =0,   =6 that action is represented in 1.Event. In 

time t=2 nodes 1 and 3 receive a message transmitted by node 2. That action are represented by 2. 

and 3.event. This pair of nodes stores the value init time and time duration attributes. 

Consequently, node 4 receives the message from node 3 in time t=4 and that is represented by 

4.event in picture. Finally all nodes simultaneously reached timeout in t=6 that is expressed in 

5.event. We can see that all nodes are synchronized and simultaneously transit in time t=6 into 

next state. 
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t
0 1 2 3 4 5 6

Alert state

7 8 9 10

Next state

1 2 3 4

1.Event (t=0): Node 2 
creates and transmits the 

message with ti=0 and td=6

2.Event (t=2): Node 1 
receives the message from 
node 2 and store ti=0 and 

td=6

3.Event (t=2): Node 3 
receives the message from 
node 2 and stores ti=0 and 

td=6

4.Event (t=4): Node 4 
receives the message from 
node 3 and stores ti=0 and 

td=6

5.Event (t=6):Nodes 1,2,3 
and 4 elapsed timeout in 

t=6 and all of them transit 
in The same time to the 

Next state

Node 2

Node 1

Node 3

Node 4

 

Figure 10: Demonstration of the time synchronization 
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6. General description of the algorithm 

 In this chapter, we intend to describe the proposed distributed algorithm. In the beginning 

of this chapter, we will focus on the top level description and the basic idea of the algorithm. 

Finally, we will declare syntax notation used in the algorithm description. 

6.1. Aim of the algorithm 

 When the node   fulfils a condition in Equation (10), then it is able to work in Operating 

state. It means, that every node executes all tasks, which are mapped on it. In other words, the 

network works correctly, when all nodes are in the Operate state. However, when any node   does 

not fulfill the condition in Equation (10), then the repairing distributed algorithm has to be 

launched.  

                     (10) 

 The purpose of the Distributed algorithm is to change a task mapping that way, that all 

nodes involved in the algorithm fulfill the condition in Equation (10). The node, which does not 

fulfill the condition transits into Error state and initiates task remapping. 

 In Figure 11, there is illustrated state diagram for all nodes in the network. The circle 

shape marks the state, in which can be node. The rectangle shape contains a set of states. The 

green circle denotes Operate state. If the node does not fulfill the condition in Equation (10), then 

it transits into set of states named Distributed algorithm. We will focus on interpretation of 

individual states of the Distributed algorithm in the next subchapter. Consequently, when the 

Distributed algorithm finishes successfully then all nodes transits return to Operating state. The 

return is labeled by edge in graph named Repaired. In the opposite case, when the algorithm does 

not find solution, it means that some node does not fulfill a condition in Equation (10). 

Subsequently, that node transits from Distributed algorithm via edge named Non-repaired to Error 

state. 
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Operating state

Error state

Failure state

Not repaired

Repaired

Distributed 
algorithm

 

Figure 11: State machine of the network 

6.2. Notations used in algorithm 

 This subchapter declares terms used in the distributed algorithm. The list of terms 

contains the following: 

 Threshold condition: denotes a condition expressed in Equation (10). 

 Failure state: is the situation or state in the network, when at least one node     , does 

not fulfill the Threshold condition 

 Failure node: is the node     , which does not fulfill the Threshold condition and 

invokes the distributed algorithm 

 Alert Range (AR): denotes a distance in count of hops. The failure node declares the 

message, which has an attribute name=Alert. Alert Range is equal to the distance attribute 

of that message. 

 Alert Field (AF): denotes a set of nodes informed by a message with attribute 

name=Alert. Nodes included in Alert Field take part in the distributed algorithm. 

 Discovery Range (DR): denotes a distance in count of hops. Each node in Discovery state 

declares the message with attribute name Discovery Message. The distance attribute in 

message is given by a count of hops. 

 Discovery Field (   ): represents a set of nodes distanced by the size of DR from node  . 

When the node is not included in AF, then it isn't included in the Discovery Field of 

node  . 

 Minimum repetition in the Discovery Field of node        ): is the minimum repetition 

value in  Discovery Field of node   and is calculated         
      

      . 
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 Improvement of the minimum repetition in the Discovery Field of 

node           denotes difference between      before(            ) and after 

(           ) calculating new task mapping   in    . 

           
                            

                                                   
  

6.3. State diagram of distributed algorithm 

 The state diagram of the distributed algorithm is illustrated in Figure 12. The state 

diagram is represented by the blue box in Figure 11. The distributed algorithm is launched, when 

any node   is in the failure state. The failure state occurs, when the Threshold condition is not 

fulfilled by any node  . Then the node   transits from Operating state to the first state of the 

distributed algorithm and starts reparation. The first state of the algorithm is named Alert. When 

the failure node transits into Alert state, then it initiates a message with attribute name Alert and 

into the distance attribute pastes AR. When any node receives that message, then it retransmits the 

message, if the distance is greater than zero. Secondly all nodes from AF transit to the Discovery 

state. In Discovery state every node needs to find out the unknown attributes. Consequently every 

node in AF transmits a message with attribute name Discovery and distance DR. By that way 

every node   in AF finds out unknown attributes from all nodes in    . In Remapping state each 

node   in AF calculates new mapping in its     and finds out value of          . Afterwards 

each node   transits into Negotiation state. Node   with a higher value           will transmit 

its value to the network earlier than node    with a smaller value of          . The aim of the 

Negotiation state is winning nodes with the highest values of    . The next state is named 

Solution into which nodes transits from Negotiation state. In that state nodes, which won in the 

Negotiation state, will transmit their newly calculated task mapping M, from which was 

calculated value of            . Thereafter every node   in Result state sends a message to the 

failure node, whether it was remapped or not in Solution state. Finally all nodes transits into 

Verdict state. In Verdict state, failure node evaluates, if all nodes in AF fulfil the Threshold 

condition. If any node in AF does not fulfil the Threshold condition and any node change its task 

mapping less three times within the same   , then failure node sends a message to all nodes in 

AF that the next state will be Discovery. However when the failure node found out that, all nodes 

fulfil the condition then sends a message, all nodes in AF transit into Operating state. In this case 

the distributed algorithm solved the failure state of the network. In the remain case, failure node 

figured out that the failure state could not be solved by distributed algorithm and transits to Error 

state. 
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Alert

Discovery

Remapping

Negotiation

Repeat
reparation

Repaired Unrepaired

Failure state

Solution

Result

Verdict

 

Figure 12: State diagram of distributed algorithm 
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7. Description of individual states of algorithm 

 In this chapter we aim to describe all states of algorithm in detail.  

7.1. Operating state 

 Operating state is desired for each node in the network. In the Operating state the devices 

executes tasks mapped on it. If all nodes in the network work in this state, then the whole network 

works in correct way. We can see pseudo-code of Operating state: 

 input: node   (problem node), which fulfils Threshold condition 

 process: node   executes all tasks mapped on it 

 output: node  , which made one iteration in the network 

Algorithm 1: Pseudo-code of Operating state 

7.2.  Alert state 

 When in the network any node   becomes a failure node, then it has to transit into Alert 

state send message to involve other nodes to the reparation of the network. The main purpose of 

that state is to inform and involve into algorithm all nodes up to distance AR from the failure 

node. When any node receives a message with attribute name Alert, it stops to work in Operating 

state and transits to Alert state. 

 input: failure node 

 process: failure node initiates a message with attribute name Alert, with distance attribute 

equals to AR and sends it to the network.  

 output: which sent initiated and sent the message 

Algorithm 2: Pseudo-code of Alert state 

 input: node, which received message with attribute name Alert 

 process: if node works in Operating state then it transits into Alert state. Node stores a 

message content (failure node identification, AR, distance from failure node). If the message 

attribute distance has nonzero count of hops, then the node broadcasts that message into the 

network. 

 output: node, which sent or did not send message type Alert to the network 

 Algorithm 3: Pseudo-code 2 of Alert state 

 Communication manner used in this part of the algorithm is One-to-All. The failure node 

represents one device, which has to send a message with attribute name Alert to all other nodes 
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in AF. In further states of the distributed algorithm is spoken only about nodes in AF. In other 

words, nodes which were included into reparation algorithm by failure node. 

7.3. Discovery state  

 Aim of each node   in Discovery state is to find out unknown set of attributes about each 

node in    . In the beginning of Discovery state, every node   initiates and transmits message 

with attribute name Discovery with distance attribute equals to DR. Each node   stores its 

known attributes into optional attributes of the message. Consequently, when any node receives 

the message, then it stores its content (known attributes of node  , which created the message in 

   ) and resends it.  

 input: node  , which transited after elapsed timeout from Alert to Discovery state 

 process: node   initiates a message with attribute name Discovery with attribute distance 

equal to   . Into optional attributes of the message are stored its known attributes.  

 output: node  , which transmitted a message with attribute name Discovery 

Algorithm 4: Pseudo-code of Discovery state 

 input: node  , which received a message with attribute name Discovery 

 process: node stores a message content (known attributes of node   in    ). If the message 

attribute distance is nonzero count of hops, then the node resends it into the network. From 

the path attribute in the message, node   is able to find out path in    from node  . 

 output: node  , which sent or did not send message type Message to the network or waits for 

receiving a message type Discovery 

Algorithm 5: Pseudo-code 2 of Discovery state 

 Each node   in Discovery state has to find out unknown attributes by collecting messages. 

It means that it must know all attributes about each node      : 

 path in from node   to node   in architecture graph     

 tasks mapping    

 resource capacity    

7.4.  Remapping state 

 In the Remapping state node   has to compute value of          . Firstly node stores 

value of tasks mapping of              before launching of the remapping algorithm. Secondly 

node   calculates new task mapping using by remapping algorithm. From newly calculated task 
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mapping,  node   computes the value of            . Finally node   is able to compute 

         . 

 input: node  , which transited from Discovery state to Remapping state 

 process: node  , computes value of              from all nodes in    . Afterwards node   

by using remapping algorithm calculates new tasks mapping in     and then it stores value 

of            . Finally it makes difference between             and              and 

stores its value into          . 

 output: each node   calculated the value of          . 

Algorithm 6: Pseudo-code of Remapping state 

 In case that node   managed to compute            , then it found out a better tasks 

mapping in    . In the opposite case, when node   found the value of            , then it 

wasn't able to find out an improving task mapping in    .  

7.4.1. Description of remapping algorithm 

 The remapping algorithm is based on a list scheduling approach with a backtracking step. 

The algorithm computes the maximal value of repetition objective for all nodes in    , for which 

it exists the feasible task mapping   defined in Chapter 3. 

 For remapping algorithm, we have to declare the initial set of variables: 

 set of  nodes    :                            

 set of tasks   :                          

 tasks mapping : task mapping of tasks    before launching of remapping algorithm  

 the upper bound        :        
           

           
 

 the lower bound        :                      

 number of tasks          :               

 number of nodes          :               

 found repetition value     :             

 found tasks mapping   :    found tasks mapping in function             

 result tasks mapping   :      

 In Figure 13, a state diagram of the remapping algorithm is illustrated. In the beginning, 

the initial set of variables is calculated. Algorithm iterates between the upper bound        and 

the lower bound       . Every time the algorithm computes an average value of        and 

       and stores it into variable    . The value of     is an input parameter of function 

                . The function             has an assignment to find out the feasible tasks 



7. Description of individual states of algorithm 
 

33 
 

mapping for input number repetitions    . As output of function             is tasks mapping, 

which stored into variable   . Afterwards it is checked the condition, if the tasks mapping    is 

feasible or not. In case that the mapping    is feasible then it is stored into variable    and also 

is stored     value into     . After that is increased the lower bound       . In the opposite case, 

when the returned mapping    isn't feasible then it decreased the upper bound       . Finally, 

when the remapping algorithm finished then it calculates the value of          .  If the 

algorithm found a better tasks mapping then it had calculate             and otherwise. 

Init(Repmin,Repmax,M*)

MF=findMapping(Rep)

isFeasible(MF) Yes

Rep*=Rep 
M*=MF

No

Repmax-- Repmin++

Repmax>=Repmin

Rep=(Repmin+Repmax)/2

Yes

MDFK(imp)=Rep*-RepmIn

No

 

Figure 13: State diagram of the algorithm 
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7.4.2. Description of the function for searching the mapping  

In the following section we will concentrate on the explanation of how function             

works. Aim of the                  function is to find feasible task mapping   for defined 

size of the     value. It implies that on each node      has to be fulfilled the following 

condition         .   

 Firstly, all tasks in    are ordered into         . Tasks are ordered in the          

according to longest paths. Secondly, all node resource capacities    where      are divided by 

input argument    .  Thirdly the        variable is calculated. After that algorithm iterates in 

while loop up to size of budget variable. In the loop a task from           a is taken and then is 

passed as input argument into function           . That function has to find the most 

appropriate node      on which can be mapped the input task. The            function returns 

an empty node or node identification. When it is returned an empty node, then it wasn't found any 

node      and the task can't be mapped on any node     . Then the             function is 

terminated and returns an empty mapping. In the opposite case when any node      is found for 

the input task from         , then the function continues and chooses a new task from the 

        . When the          is empty then it was found tasks mapping for all tasks from   . That 

mapping is returned by function             and it denotes that it was found tasks mapping for 

input given value of input argument    . 

function findMapping(rep) 

    budget=(numTasks*numTasks); 

    forbiddenMapping=(numTasks,numNodes); 

    taskList=orderTasks(St); 

    mapping=empty; 

    for i=1:size(Sn) 

        Ri=Ri/rep; 

    end 

    while(budget>0) 

        task=getTaskFromList(taskList); 

        [device,forbiddenMapping]=findDevice(task); 

        if(isempty(device)) 

            mapping=empty;  

            return mapping; 

        end 

        mapping(task)=device; 

        if(isempty(taskList)) 

            return mapping; 

        end 

        budget--; 

    end 

    mapping=empty; 

    return mapping; 

end 

Algorithm 7 

7.4.3. Find mapping device function  

 In the function             is used the function                 . The function has 

to find for input task      node     . Selected node      has to fulfill the constrain that the 
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task binding has to be feasible. The main purpose of the function            is to construct six 

subsets of nodes     . Each subset is constructed using restrictions on set   . We define four 

restrictions for input task  : 

  (capacity): a set   includes all nodes from   , which fulfill the following inequality:  

                                       

             

   

 P (predecessor): set   includes all nodes from   , which fulfill the following restriction:         

                                                     , where: 

              

                    
             

  (forbidden): a set   includes all nodes from   , which fulfill the following restriction: 

                    

  (enable): a set   includes all nodes from   , which fulfill the following restriction: 

                             

 In function              are made these four sets (        . After that, the condition, if 

the set   is empty is checked. In case that set   is empty, then there does not exist any device, on 

which can mapped input task  . It implies also that we can't map task   on any node     . It also 

implies that it is impossible find the feasible mapping. When the set   is not empty after that is 

made up six sets. Sets (S1, S2, S3, S4, S5 and S6) are generated by intersections from four 

sets (        . Aim of the function            is to find first node     , for which it exists 

feasible tasks mapping defined in chapter 3. Finally, when the feasible tasks mapping is not 

found, then it is returned to an empty device. Function                      has as input 

argument set of devices. The function chooses node    for which exists feasible tasks mapping 

and has the minimum sum of           all tasks, which are already mapped. The function can 

return the new forbidden mapping table and tasks, which had to be unmapped from devices. 

function findDevice(task) 

price=empty; 

[C,P,F,E]=createSets(); 

if(isempty(E)) 

    feasibleDevice=false; 

    return feasibleDevice; 

end 

S1=intersection(C,P,F,E);  

S2=intersection(C,P,E); 

S3=intersection(C,F,E); 

S4=intersection(C,E);  

S5=intersection(F,E);  

S6=E; 

tmpPrecedors=empty; 

tmpForbidden=forbiddenMapping; 
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tmpPrice=-Inf; 

foundPredescorsTasks=empty; 

foundForbidden=empty; 

[device]=chooseDeviceMinPrice(S1); 

if(!isempty(device)) 

    return device; 

end 

[device]=chooseDeviceMinPrice(S2); 

if(!isempty(device)) 

    return device; 

end 

[device]=chooseDeviceMinPrice(S3); 

if(!isempty(device)) 

    return [device,forbiddenMapping]; 

end 

[device]=chooseDeviceMinPrice(S4); 

if(!isempty(device)) 

    return [device,forbiddenMapping,tasksOut]; 

end 

[device]=chooseDeviceMinPrice(S5); 

if(!isempty(device)) 

    return [device,forbiddenMapping,tasksOut]; 

end 

[device]=chooseDeviceMinPrice(S6); 

if(!isempty(device)) 

    return [device,forbiddenMapping,tasksOut]; 

end 

return empty; 

end 

Algorithm 8 

 In the end of this subchapter we will show the time complexity of algorithm. Firstly, in 

main loop of remapping algorithm makes count of iterations equals to                  . 

Secondly in the function             makes count of iterations equals to budget variable. 

Finally, we call the function           , which iterates throw six sets of devices. The maximum 

size of the set of devices is equal to         . So it means that maximum count of iteration 

throw these six sets is              . So finally, the time complexity responds the 

multiplications in the loop.  

                                              (11) 

7.5. Negotiation solution 

 In Negotiation state every node    has a calculated value of          . Aim of that state 

is that each node   in    has to get know the biggest value of           of node  , which is 

maximally distanced    and      from node  . Furthermore in Negotiation state is used a 

heuristic, which reduces a communication of nodes during negotiating. The main idea of heuristic 

is to delay transmitting smaller value of           , because in its neighborhood can be another 

node   with a higher value of          . When node   receives from node   the value of 

                   , then node   would transmit unnecessarily its value of           to 

network. 
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 For getting a better view on Negotiation state, we illustrated a possible situation in Figure 

14. It can be seen that maximum values of          for node 3. The biggest value is equal to 

            in    . The biggest value is             up to        from node 3. By 

the way illustrated in Figure 14, each node   has to find out the highest values of          . We 

can observe one fact from Figure 14, that node 3 does not need to transmit its value because by it 

will be overwritten by the higher value of           or           and etc.. It implies that if 

node 3 will be delay with transmitting its value           and during this delay receives the 

value of            or          , then it needn't to transmit its value          , because it 

received the higher one from another node. 

 Every node   has defined four variables in negotiation state: 

              : contains the biggest value of           , where       

                   : contains the node  , with the               

               : contains the biggest value of           , where            

                   : contains the node  , with the                

        : flag denoting, if the node won in Negotiation state  

1
MDF1(imp)=8

2
MDF2(imp)=5

3
MDF3(imp)=3

4
MDF4(imp)=7

5
MDF5(imp)=9

maxValue3(DR)=7
maxIndexNode3(DR)=3

maxValue3(2DR)=9
maxIndexNode3(2DR)=5  

Figure 14: Maximum values for node 3 in Negotiation state 

 We declare the Delay function. The delay function is defined by the following way: 

                   

             

                                                  

                     

   

             

Equation (11): Delay function of node k 

After elapsing         of node  , the node if it wasn't overwritten from another node   via 

received message, then it starts to transmit. In the opposite case, when the node   receives a 

message from node   during       , then it has to make the following decision: 
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Equation (12): Maximum value of node k in Negotiation state in DR 

                

                   

                     
 

   
             

 

   
 
  

                     
           

             
 

   
             

 

   
 
  

Equation (13): Maximum value of node k in Negotiation state in 2DR 

 If the node   receives the message from node  , then it makes two comparisons declared 

in Equations (12) and (13). If in the received message is higher value of          . 

The algorithm for any node in Negotiation state is defined as follows: 

 input: node   with value of            

 process: in the begging node   calculates value of time delay                  . During 

time        node   does not transmit its value of          . If node receives a message 

then it executes adequate operation in Figure 15. If the node   during time        was 

overwritten by another node   during a waiting phase, then it does not transmit its value of 

          after elapsing time       . In the opposite case node transmits its value of 

          after elapsing time       . 

 output: node  , which has set the         

Algorithm 9: Pseudo-code of Negotiation state   

The process in Algorithm 9, we also expressed in Figure 15 like a state diagram for a better 

overview. In the beginning each node   declares init variables: 

                         
 

   
 

                     

                          
 

   
 

                      

              
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 The node   also calculates        function in Equation (11). Afterwards node transits 

into status named Wait for       . In that waiting state node  , can receive message from node   

and then it has to evaluate distance attribute in message, which it denotes the distance from the 

message was sent. If the distance is the smaller or equal to   , then it calculates function in 

Equation (12). In the opposite case, when the node receives the message with the strictly higher 

value of distance attribute than DR, then it has to calculate Equation (13). If the value of 

              or                was changed then the node sets the               and 

resends the message next to the network.  Consequently, node transits into state named Evaluate 

received message. However the node   can't sends its value of          , because it received the 

bigger value of            from node  . In the opposite case, when the node   did not received in 

state Wait for delayk any message from node  , which has the higher value of           than 

              or               , then the node   has to transmit the value of           in 

message up to distance      

Calculate 
delayk(MDFk(imp))
and init variables 

Wait for delayk

Transmit message with
MDFk(imp)

up to distance=2*DR

elapsed delayk

Evaluate received 
message

Evaluate received 
message

Received message from node l

Changed 
maxValuek(DR) or

maxValuek(2DR)

Yes

No

Received message from node l

Resend message 
from node l

canWin=false

 

Figure 15: State diagram of process of each node in Negotiation state  

7.6. Solution state 

 In that state each node    in    has set         on true or false from Negotiation state. 

The purpose of the Solution state is transmitting of tasks mapping of nodes, which have set the 

            . That nodes have to send the message with the optional attribute task mapping 

newly computed in Remapping state up to distance equals to   .  
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 input: node   with              

 process: node   transmits the message with attribute name Solution and with optional 

attribute equal to newly calculated task mapping in Remapping state up to distance   .  

 output: node  , which changed tasks mapping from received message or did not change the 

tasks mapping 

Algorithm 10: Pseudo-code of Solution state   

 input: node  , which received the message with attribute name Solution 

 process: the node changes its tasks mapping according to task mapping in optional attribute 

in the received message. If the message has nonzero count of hops in distance attribute, then 

the message is resend. 

 output: node  , which changed its task mapping from received message 

Algorithm 11: Pseudo-code 2 of Solution state   

7.7. Result state 

 Aim of that state is to send result state of node    in    to failure node.  When the node 

changed its tasks mapping in Solution state, then it will have to send message with attribute name 

Solution and optional attribute                 to the failure node, in the opposite case the 

node will send message with                . Communication used in that state is All-to-

One.  

 input: node  , which was or not remapped in Solution phase 

 process: node  , initiates the message with the optional attribute           with distance 

attribute equal to   . If the failure node receives the message, then it stores its content and 

does not transmit it further to the network. 

 output: node  , which transmitted the message into the network, if the node is failure then it 

received message from all nodes in     

Algorithm 12: Pseudo-code of Result state  

 input: failure node received the message with attribute name Result 

 process: failure node stores identification of node and           from optional attribute of 

the received message 

 output: failure node collected information from message from node in     

Algorithm 13: Pseudo-code 2 of Result state   
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 input: node  , which is not failure node received the message with attribute name Result 

 process: node   only resends the message to the network if the message has nonzero count 

of hops 

 output: node  , which resent the message into the network 

Algorithm 14: Pseudo-code 3 of Result state   

7.8. Verdict state 

 In Verdict state the failure node has to make decision process. The failure node can 

decide, whether all nodes in    will return to Operating state or go to Error state or the algorithm 

will be repeated from Discovery state. Failure node sends a message with attribute name Verdict 

to inform all nodes in    about next state.  

 input: failure node  

 process: failure node makes a decision about the next state of all nodes in   . The decision 

process is illustrated in Figure 16. The failure node makes decision, then it sends message to 

all nodes in   .  

 output: node  , which transits into next state from message of type Verdict. 

Algorithm 14: Pseudo-code of Verdict state   

 input: node  , which received the message with attribute name Verdict 

 process: node stores the name of the next stat from optional attribute of received message 

into that node transits after elapsing timeout of Verdict state. If the next state is Discovery 

node stores reads out from optional attribute of the message size of DR. If the message has 

nonzero count of hops in distance attribute, then it is resent into the network. 

 output: node  , which obtain name of the next state from the received message 

Algorithm 15: Pseudo-code 2 of Verdict state   

 The decision process is shown in a state diagram representing the decision process 

in Figure 16. The node has to make a decision based on the information gained in the Result state. 

Informing about the result of decision is made by sending a message with distance equals to   . 

One exception is when during the decision process is decided that the next state will be an Error 

state.  

 First of all, the failure node starts the decision process in the block labelled as Start. 

Secondly is checked, if all nodes in    fulfil the Threshold condition. When all nodes fulfil the 

condition the failure node informs all in    that they can move into Operating state. When in    

exists any node which does not fulfill the Threshold condition, then the failure node has to 

evaluate was remapped at least one node in   . When there is exists one node that was remapped 
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and the algorithm was repeated in with the same size of    less than three times, then all nodes 

will repeat the algorithm with the same size of   . However when the algorithm was repeated 

with the same size of     then it has to be    increased. The increasing of    is continued until 

is higher than   . Finally when the      , then all nodes overcomes to Error state.  

Count of remapped 
devices>0

No

Yes

DR++

Threshold condition Yes Go to Operate state

No

DR>AR Yes Go to Error stateNoGo to Discovery part

Start

Was algorithm 
repeated the same 
discovery 3 times
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Figure 16: State diagram representing decision process of source node 
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8. Demonstration of the algorithm 

 In this chapter we will illustrate a workflow of the algorithm on a practical illustrated 

example. 

8.1. Alert state 

 In Figure 17, we can notice that in the network occurred a Failure state. Node 5 does not 

fulfil the Threshold condition. The repetition value of node 5 is smaller than threshold value and 

node 5 is in Alert state. In that state node 5 notifies by a message all nodes up to AR=3. 

Consequently nodes 2,3,4,6,7 and 8 received the message initiated by node 5. These nodes were 

involved by node 5 into Alert state. In Figure 17 nodes 2,3,4,5,6,7 and 8 represents AF, because 

all of them are distanced maximally 3 hops from node 5.  
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Figure 17: Alert state 
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8.2. Discovery state 

 Each node   in    has to obtain unknown attributes from all nodes in its DFk. 

Consequently every node   in    creates and starts to transmit a message into the network up to 

distance     . In Figure 18 it is shown in radius rectangles DFk. The color of rectangle 

responds to color of the node.  
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Figure 18: Discovery state with DR=1 

8.3. Remapping state 

 Every node   has to launch the remapping algorithm for calculating a new task mapping 

in its    . In Figure 19 it can be seen, how each node   calculates the value of              

before and after             launching the remapping algorithm. Afterwards each node   also has 

to compute the value of          . 
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Figure 19: Application of remapping algorithm  

8.4. Negotiation state 

 In the begging of this phase each node has to calculate the value of                  . 

In function        is chosen the           . Consequently, each node initializes its variables 

for Negotiation state. In Figure 20: Negotiation state is illustrated Negotiation state. The first 

transmitting node is node 6, that will transmit iteration of the network. On the other side node 8 

will not transmit, because has             and it will only receive and resend messages. In the 

lower part of Figure 20: Negotiation state, the result of the Negotiation state is demonstrated. 

Nodes 2 and 6 won the Negotiation because in     and     did not exist the higher value of 

         . 
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Figure 20: Negotiation state 

8.5. Solution state 

 In Solution state will transmit all nodes, which have set             . In Figure 21 

are shown transmitted nodes 2 and 6 message with the newly calculated mapping Remapping 

state. Firstly, nodes 2 and 6 will transmit the message up to distance     . It means that all 

nodes in     and     will be remapped. All nodes in     will accept task mapping calculated in 

node 6, tasks which are remapped by node 6 are colored by purple color. Respectively node 3 will 

receive task mapping calculated by node 2. All tasks remapped in     are marked by jungle-

green color. 
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Figure 21: Solution state 

 

8.6. Result state 

 All nodes in    send a message to node failure node 5. Message contains          .  

When the           is true it means that node was remapped in Solution state of the algorithm 

and otherwise. In Figure 22 is shown transmitting in Result state. Nodes 2,3,5,6 and 7 were 

remapped and sent the                in message. On the other side remain nodes 4 and 8 in 

   will transmit                . 
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Figure 22: Result state 
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8.7. Verdict state 

 In verdict state the failure node 5 make decision about the next state. In Figure 23 failure 

node checks the Threshold condition. Node 5 finds out that all nodes fulfil the Threshold 

condition and then they can return to Operating state. After that consideration Node 5 will 

transmit the message that next state of all nodes will be Operating state. 
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Figure 23: Verdict state 

8.8. Operating state 

 In Figure 24 is illustrated Operating state of the network. All nodes fulfil the Threshold 

condition and they can execute tasks mapped on them. The distributed algorithm repaired the 

failure state of the network and the all nodes can work desired state. 
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Figure 24: Operating state 
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9. Testing of the algorithm 

 In this chapter we want to interpret the test results of the simulation algorithm. 

9.1. Description of the testing environment 

 For testing of the distributed algorithm we chose DynAA development tool created by the 

TNO team, which is available on [Dynaa]. DynAA is a computer-aided analysis and design tool 

for the development of large, distributed, adaptive, and networked systems. DynAA includes a 

simple, yet powerful language able to describe large and complex system architectures. DynAA 

model can be simulated and/or analysed to reveal system wide performance indicators, such as 

amount of communication, power consumption and etc..Thanks to mentioned properties of 

DynAA, our distributed system was programmed and modelled as object oriented model. Each 

physical node can be represented like Device object, which is able to communicate by using link 

object that substitutes a communication connection among nodes in the network. Each node also 

contains a state machine, which does steps triggered by time events in the network. In addition, 

DynAA works with discrete events. It means that system works in discrete time events and in 

each event every node makes one step in its state machine.  

9.2. Testing of the distributed algorithm 

 For testing of the distributed algorithm we created 50 benchmark instances. Each instance 

represents a network of nodes with mapped tasks on them. In each instance there is one failure 

node, which has a low battery capacity and thereby it does not fulfil  the Threshold condition. The 

main observed property of the algorithm was, whether the algorithm manages to increase the 

minimum repetition of failure device above the defined threshold in the Threshold condition. The 

second examined attribute was dispersion of the repetition values in Alert Field. We calculate the 

dispersion according to mathematical formula in Equation (14). 

            
          

    
 
 

       (14) 

 Table 1 shows tests results of simulation of the network with the minimum repetition 

value before and after simulation with variable sizes of AR and DR. In Table 1 the column named 

Failure represents the repetition value of the failure node. In the column titled TR(Threshold) is 

Threshold value from the Threshold condition. In remaining columns there are result values of the 

minimum repetition values in AF after finishing the algorithm for defined values of AR and DR. 

Test Failure 

TR 

(Threshold) 

AR=1, 

DR=1 

AR=2, 

DR=1 

AR=2, 

DR=2 

AR=3, 

DR=1 

AR=3, 

DR=2 

AR=3, 

DR=3 

1 0 0 1 1 1 1 1 1 

2 14 14 16 16 16 16 20 16 
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3 15 16 15 20 20 20 20 20 

4 12 16 16 16 16 16 20 20 

5 15 15 15 16 16 16 16 16 

6 20 20 30 30 30 30 30 30 

7 12 12 16 14 14 14 14 16 

8 10 10 12 12 12 12 12 12 

9 10 10 12 14 14 14 16 16 

10 14 14 16 16 16 16 16 16 

11 9 9 14 14 20 12 20 20 

12 10 10 14 14 20 14 16 16 

13 11 14 16 16 16 16 16 16 

14 13 17 20 20 20 20 20 20 

15 16 16 20 20 20 20 20 20 

16 10 11 13 16 20 16 20 20 

17 6 10 16 16 16 16 16 16 

18 10 10 16 16 16 14 16 16 

19 10 13 20 20 25 20 25 25 

20 5 8 10 10 20 10 20 10 

21 8 8 20 20 20 20 20 20 

22 11 11 13 14 14 14 16 14 

23 11 11 15 18 20 18 20 20 

24 4 10 11 12 13 11 11 14 

25 12 12 13 13 16 13 16 16 

26 8 12 20 14 14 14 14 25 

27 11 12 16 16 16 16 16 20 

28 13 20 20 20 20 20 20 20 

29 7 8 12 12 14 12 16 18 

30 6 8 11 16 18 16 11 11 

31 13 20 20 20 20 20 20 20 

32 13 20 25 25 25 25 25 25 

33 16 30 25 25 25 25 25 25 

34 10 10 12 12 12 12 12 12 

35 11 11 20 25 25 25 25 25 

36 12 18 20 20 20 20 20 20 

37 12 12 16 16 16 16 16 16 

38 13 20 13 13 13 13 13 16 

39 16 20 20 20 20 20 20 20 

40 10 20 14 20 20 20 33 33 

41 20 20 25 25 25 25 25 25 

42 13 20 25 25 25 25 25 25 

43 13 15 16 16 16 16 16 16 

44 13 20 20 20 25 20 25 25 

45 6 10 15 15 20 15 20 20 

46 4 10 6 11 14 10 14 14 

47 5 15 20 16 20 16 20 20 

48 20 20 25 25 25 25 25 25 

49 10 13 20 20 20 20 20 20 

50 16 20 16 16 16 16 16 16 

Table 1: Minimum repetitions before and after reparation 

 Graphs 1 and 2 summarize results from Table 1. The first graph shows results for 

instances 1 to 25 and the second one for 26 to 50. As a positive result of test, we can see that in 



9. Testing of the algorithm 
 

53 
 

most of the cases the minimum repetition value was increased above the TR value. In test 

instances, where the algorithm was not able increase the minimum repetition value was 

conditioned by two reasons. The first reason is that the value of AR is still small. The algorithm 

within a small AF does not have enough information to compute task mapping, which has the 

minimum repetition value higher than Threshold value. The second reason is that in the whole 

network doesn't exist feasible task mapping with the repetition value higher than Threshold. It can 

be seen that with the higher value of AR and DR, it is  possible to reach the higher value of the 

minimum repetition value. 

 

Graph 1: Test results number (1.-25.) 
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Graph 2: Test results number (26.-50.) 

 In Table 2 are represented dispersion values before, marked as (dispB), and after (dispA) 

launching of the algorithm for defined values of AR and DR. It can be seen from the result values 

that the algorithm decreases dispersion of repetition values in AF and thereby it has balancing 

properties. However in some test instances the algorithm increase the result dispersion of 

repetitions. Increasing dispersion is caused by the prime purpose of the algorithm, which is 

repairing the failure state. It means, once the algorithm increase the minimum repetition value 

above threshold, then the algorithm is successfully terminated. After that termination the 

algorithm returns all nodes into Operating state, regardless on decreasing of dispersions 

repetitions on devices. 
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6 159,2 62,3 132,6 71,1 132,6 71,1 102,3 64,6 102,3 64,6 102,3 64,6 
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10 8,0 3,6 12,1 16,2 12,1 10,8 28,9 13,6 28,9 6,2 28,9 28,6 

11 249,8 4,8 146,8 65,9 146,8 6,2 113,7 80,6 113,7 28,3 113,7 28,3 

12 71,2 63,7 211,9 200,2 211,9 89,3 202,8 175,1 202,8 86,8 202,8 86,8 

13 33,6 0,0 21,8 2,6 21,8 2,6 22,3 10,2 22,3 10,2 22,3 10,2 

14 24,2 5,6 53,2 28,3 53,2 5,6 43,8 25,8 43,8 144,0 43,8 144,0 

15 51,4 40,6 43,0 37,6 43,0 37,6 136,6 25,8 136,6 80,9 136,6 128,7 

16 18,7 1,6 322,2 41,2 322,2 4,0 303,4 45,6 303,4 110,2 303,4 103,1 

17 26,2 0,0 26,2 0,0 26,2 2,6 26,2 0,0 26,2 2,6 26,2 3,8 

18 38,0 4,0 28,7 3,6 28,7 3,6 24,2 4,8 24,2 3,0 24,2 15,2 

19 202,3 151,7 182,2 154,5 182,2 16,0 141,7 120,3 141,7 15,0 141,7 59,4 

20 252,7 177,0 174,2 812,5 174,2 21,2 174,2 87,7 174,2 65,9 174,2 50,4 

21 222,8 6,2 140,1 19,3 140,1 3,9 162,1 84,8 162,1 141,6 162,1 76,3 

22 66,6 1,7 72,3 12,0 72,3 53,5 117,7 46,9 117,7 35,6 117,7 46,8 

23 249,6 1,6 167,6 15,2 167,6 20,1 167,6 15,2 167,6 20,1 167,6 20,1 

24 36,4 2,2 163,1 19,9 163,1 13,0 151,5 22,0 151,5 1,7 151,5 0,5 

25 173,6 44,9 170,7 87,6 170,7 132,9 163,7 85,6 163,7 129,4 163,7 14,1 

26 152,0 16,4 129,8 31,7 129,8 27,5 129,8 31,7 129,8 27,5 129,8 5,7 

27 162,0 140,0 125,0 32,2 125,0 32,2 125,0 32,2 125,0 32,2 125,0 93,1 

28 171,7 150,9 86,0 65,1 86,0 102,3 74,1 59,2 74,1 66,2 74,1 41,7 

29 172,2 27,8 135,0 75,7 135,0 28,8 248,3 259,4 248,3 163,2 248,3 15,7 

30 41,4 7,5 177,5 30,8 177,5 4,1 163,1 29,8 163,1 94,6 163,1 94,5 

31 171,7 150,9 86,0 65,1 86,0 102,3 74,1 59,2 74,1 66,2 74,1 41,7 

32 215,0 83,2 161,4 56,6 161,4 56,6 152,8 87,5 152,8 87,5 152,8 87,5 

33 256,9 14,2 185,0 128,2 185,0 12,0 141,6 128,2 141,6 86,7 141,6 78,8 

34 0,9 28,2 0,6 171,0 0,6 138,4 0,6 301,5 0,6 111,2 0,6 111,2 

35 147,1 6,1 188,4 124,2 188,4 68,7 188,4 124,2 188,4 124,2 188,4 102,9 

36 197,0 103,8 133,1 69,7 133,1 84,1 119,9 63,6 119,9 83,7 119,9 83,7 

37 53,8 43,4 44,3 35,7 44,3 30,2 44,3 35,7 44,3 33,8 44,3 13,9 

38 75,0 75,0 43,8 43,8 43,8 43,8 62,6 62,6 62,6 62,6 62,6 54,2 

39 46,2 0,0 40,1 31,7 40,1 23,5 35,4 40,6 35,4 20,7 35,4 20,7 

40 0,0 9,0 0,0 200,0 0,0 200,0 0,0 200,0 0,0 46,2 0,0 46,2 

41 91,0 67,4 43,4 34,7 43,4 34,7 63,9 57,4 63,9 57,4 63,9 57,4 

42 171,7 14,2 128,9 42,9 128,9 42,9 112,4 68,8 112,4 52,4 112,4 52,4 

43 88,9 72,3 55,6 46,2 55,6 72,3 36,0 28,5 36,0 54,2 36,0 70,8 

44 137,4 42,3 98,9 82,7 98,9 31,4 81,7 73,8 81,7 54,2 81,7 45,0 

45 163,4 47,3 89,5 22,9 89,5 49,0 147,5 68,8 147,5 98,6 147,5 44,7 

46 24,2 156,2 37,0 70,2 37,0 0,0 35,5 34,5 35,5 5,8 35,5 7,2 

47 175,5 25,8 141,7 43,5 141,7 37,8 128,4 45,0 128,4 38,0 128,4 38,0 

48 150,9 14,2 91,0 10,2 91,0 67,4 89,2 57,4 89,2 74,6 89,2 74,6 

49 288,9 5,6 215,8 147,8 215,8 154,1 190,3 147,1 190,3 154,2 190,3 154,2 

50 40,1 40,1 83,8 83,8 83,8 83,8 83,8 83,8 83,8 83,8 83,8 83,8 

Table 2: Dispersions of before and after reparation 
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9.3. Quality comparison of the remapping heuristic 

 The distributed algorithm uses a heuristic for calculating a new task mapping on all nodes 

in the Alert Field. To be able to evaluate quality of that heuristics, we implemented an exact 

method based on Inter Linear Programming (ILP). It comes as surprise that the ILP method can't 

be implemented on embedded devices in practise. We choose the ILP method only for quality 

comparison. Because we know that the ILP method finds out the task mapping with the maximum 

repetition value, which is the optimal solution. In Graphs 3, 4 and 5, we can see the minimum 

repetition values after finishing of the algorithm.  

 From results in Graphs 3, 4 and 5, we can notice that the heuristic algorithm reaches the 

same results as the ILP method. In some cases the heuristics returns better results after finishing 

algorithm. It is because the algorithm is distributed and devices make local decisions only. 

Another reason is that any node cannot see all connections in the architecture graph and thus it 

can't find the optimal task mapping. 

 

Graph 3: Comparison of the heuristic and the ILP remapping algorithm for AR=1 and DR=1 
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Graph 4: Comparison of the heuristic and the ILP remapping algorithm for AR=2 and DR=2 

 

 

Graph 5: Comparison of the heuristic and the ILP remapping algorithm for AR=3 and DR=3 
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10. Conclusion 

 Our prime aim was to propose and test a distributed algorithm, which repairs a failure 

states in the network by changing task mapping on nodes. The main criterion for the algorithm's 

design was to minimize amount of communication during its execution. Since the problem of task 

mapping is NP-hard, we had to develop a heuristic algorithm. The similar problem was not 

observed in the literature yet, how we pointed in related works in Chapter 3. We defined constrain 

that any two tasks, which have data dependency among them, can be mapped on the same device 

or on two neighbouring devices in the network. It ensures that task, which communicates with 

another one via messages, makes maximally one hop distance communication in the network. 

Unlike authors from [SKHT06] our approach saves a communication in the network. The authors 

in [SKHT06] enable to map these two tasks on devices that can be distanced across the whole 

network and the message needs multiple hops to reach the destination node.  The distributed 

algorithm enables to increase lifetime and reliability in the wireless sensors networks. The 

heuristic used for local remapping of tasks is very efficient in comparison with an exact method 

based on ILP. Our heuristics provides similar results to the ILP method. The designed algorithm 

also illustrates a scheme that can be used for solving other related problems from wireless sensor 

networks domains. 

 However, the proposed algorithm can be still improved. The first improvement is based 

on the reducing communication during repeated iterations of the algorithm. Devices from 

information obtained in the first iteration, need not be involved into communication in some states 

of the algorithm. For instance, when the device in the second iteration obtains the same 

information in Discovery state as in the first iteration, then it need not launch the remapping 

algorithm in Remapping state in the second iteration. The second improvement can be applied on 

evaluating of the objective function and the final decision of the failure node. The failure node 

terminates the algorithm once it found out that all devices have feasible task mapping. Although 

the failure node finds out that all nodes have feasible mapping, it can decide to iterate algorithm 

again and obtain even a better mapping on devices. 
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