
bachelor’s thesis

Communication for distributed control of
slotcar vehicular platoon

Anastasia Vlasova

May 2015

Supervisor: Herman Ivo Ing.

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Control

Engineering

Abstract
This research focuses on the preparing of the inter-vehicles communication system for
the slotcar platoon model. The communication is implemented as a feed-forward signal
and improves the existing cascade feedback controller, which uses only the onboard
sensors measurements. The slotcar platoon model consists of three slotcars provided
by Carrera. Each vehicle is equipped with ARM Microcontroller and radio board with
CC2530 wireless MCU which runs full ZigBee Pro solution. This thesis also deals
with the ZigBee network processor configuration and contains the description of the
ZigBee hardware driver implementation. Being equipped by wireless communication
capabilities slotcars communicate with each other and the base station. It allows to
control vehicles wirelessly, read out data during the experiments and identify car’s
position in the platoon.

Keywords
ZigBee; CC2530; CC2530ZNP-Pro; STM32F4; SPI; radio board; slotcar; cognitive
vehicle platooning; CACC; position identification. . .

iv

Abstract
Tento dokument ze zabývá implementací bezdrátové komunikace mezi autodráhovými
autíčky. Tato komunikace je použita pro implementaci dopředného řízení, o které je
rozšířen již implementovaný zpětnovazební kaskádní regulátor vzdálenosti, používající
pouze veličiny měřené lokálními senzory na autíčku. Každé autíčko je vybaveno ARM
procesorem a komunikačním čipem CC2530, poskytující ZigBee Pro standard. Tato
práce se také zabývá samotnou konfigurací a popisem tohoto čipu. Použitím bezdrátové
komunikace jsou autíčka schopna posílat data během experimentu do počítače. To
umožnuje bezdrátové ovládání kolony, konfiguraci parametrů a určení pořadí autíček.

Klíčová slova
ZigBee; CC2530; CC2530ZNP-Pro; STM32F4; SPI; radio board; slotcar; CACC; určení
pozice. . .

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The Slotcar platooning project . 2

2 CC2530 communication processor 3
2.1 The secondary radio board implementation 3
2.2 Prototype model for the ZigBee driver development 4

CC2530 ZigBee Development Kit 4
STM32F401C-DISCO . 5

3 ZigBee standard specification 7
3.1 The ZigBee base: IEEE 802.15.4 . 8
3.2 Interaction between the ZNP and the application processor 9

3.2.1 Initializing SPI . 9
STM32F4 External interrupts . 11

3.3 CC2530-ZNP power-up procedure . 11
3.4 CC2530-ZNP startup procedure . 12

Network formation . 15
Network Discovery/Join . 16
Data Transfer . 17
The data path in NWK layer . 18

3.4.1 ZigBee addressing . 19
3.5 Summary . 19

4 Communication infrastructure 21
4.1 The ZNP driver implementation . 21
4.2 Main program layer services . 23

Register leader . 23
Send address . 23
Slot-car parameters configuration 24
Position determination . 25
Experiment . 27

5 Experiments 30
5.1 The regulation model . 30
5.2 Experiments’ results . 31

5.2.1 Distance error . 34
Technical problems . 34

5.2.2 Future work . 35

6 Conclusion 36

Appendices

A Hardware specifications 37

B ZigBee Interface parameters 39

vi

C Commands for CC2530-ZNP configuration 41
C.1 Power-up . 41

C.1.1 System state after reset (POLL) 41
C.1.2 The device startup options configuration (SREQ) 41

C.2 Start-up . 41
C.2.1 Channel (SREQ) . 41
C.2.2 Device logical role (SREQ) . 42
C.2.3 PAN ID (SREQ) . 42
C.2.4 Simple Descriptor (SREQ). Application profile and endpoint . . 42
C.2.5 Start device in the network (SREQ) 43
C.2.6 Device status (POLL) . 43

C.3 Transmit data (SREQ) . 43
C.4 Receive Data (POLL) . 44
C.5 Get device information (SREQ) . 44

D The attached CD content 45

Bibliography 46

vii

Abbreviations
Abbreviation Phrase

AP Application Processor
API Application Programming Interface
APL Application layer
CCA Clear Channel Assessment
CRC Cyclic Redundancy Code
CSMA-CA Carrier Sense Multiple Access - Collision Avoidance
EM Evaluation Model
FCS Frame Check Sequence
FFD Full-Function Device
GTS Guarantee Time Slots
HW Hardware layer
MAC Medium Access Control layer
MCU Microcontroller Unit
MHL Message Handler Layer
MPL Message Program Layer
NWK Network layer
PAN Personal Area Network
PHY Physical layer
RF IC Radio Frequency Integrated Circuit
RFD Reduced-Function Device
SPI Serial Peripheral Interface
ZC ZigBee Coordinator
ZDK ZigBee Development Kit
ZDO ZigBee Device Object
ZED ZigBee End Device
ZHA ZigBee Home Automation
ZNP ZigBee Network Processor
ZR ZigBee Router

viii

1 Introduction

The main goal of the project is to implement a communication infrastructure for platoon
control algorithms, in which vehicles share their states with the others. To do it we
need to choose a suitable communication standard and implement the solution into the
slotcar. This thesis describes the implementation process, which includes the study of
the vehicle hardware and software, the SPI initialization, detailed research on the ZigBee
communication standard and creating the ZigBee hardware driver which provides the
transmission and reception services. Different algorithms were implemented in the main
program layer as well, e.g. position determination in the platoon, address information
or parameters setting.

1.1 Motivation
The Super Smart Vehicle System(SSVS) was created to make multiple improvements
such as the following: reduce car accidents, optimize speed and handling, increase fuel
efficiency and prevent traffic jams. The SSVS was introduced by JSK (Association of
Electronic Technology for Automobile Traffic and Driving) in Japan in 1990 [1]. The
SSVS consists of 4 fields: information systems for a single vehicle, information systems
for inter-vehicles, information systems for vehicle-to-road relations, and studies on
vehicle-to-driver relations [2].

Figure 1. Autonomous Vehicle Design (Source: www.nuvation.com)

One of the main goals of this work is to extend the already existing slotcar platoon
model [3] to the "cognitive vehicles platooning", where vehicles are coupled together
by wireless communication. Previous works were focused on creating the controllers to
follow the reference distance and speed based only on sensor measurements. Using the
preceding or the leading vehicle measurements in a combined feedback and feed-forward
loop improves the response to the preceding car and minimizes the control signal value.
The motivation was not only to improve the existing platform, but try different
algorithms on it which could hardly be realized without data exchange. For example,
car’s position identification in the platoon.

1

1 Introduction

Through the course of this research project further knowledge about microcontrollers
and communication protocols (especially ZigBee) was gained.

1.2 The Slotcar platooning project
This project was started in the Department of Control Engineering by the AA4CC
group[3]. The goal of this work is to create a slotcar platoon model for testing
distributed control algorithms on it.
The main part of the system is a slotcar by Carrera. It is equipped with custom-made
electronics. The following are the most important components placed on the main
board:

∙ ARM processor by ST Microelectronics STM32F405RGT6,
∙ debug communication processor Nordic Semiconductor nRF24L01,
∙ gyro with integrated accelerometer LSM330DLC,
∙ INA213AIDCKT current-shunt monitor,
∙ QRE1113 reflective object sensor is used for speed measurements.

. A VEMT3700F silicon NPN phototransistor and a VSML3710 infrared emitter are
placed on the distance measurement board. There are two such boards in the slotcar:
for back and front distance measurements. On the separate board is located the ZigBee
CC2530 communication processor. The hardware design and implementation was done
by Ing. Jaromír Dvořák.

Figure 2. The slotcar with the secondary ZigBee radio board

The project is being developed in Eclipse CDT (C/C++ Development Tooling) [4].
In the project are used the ARM Cortex Microcontroller libraries. Jaromír Dvořák
wrote the basic program, system functions and the Bootloader program to load the
compiled code into the chosen slotcar. After the run of the project the program asks
for the ‘car address’, which is a number from 1 to 10 written on the vehicle. For loading
Nordic nRF51-Dongle is used. The slotcar bond graph modeling, identification and
linearization were done by Martin Lád [5]. He also designed and implemented two
speed measuring methods (by IRC sensor and back emf) and speed regulator. One of
the main achievements was enabling of regulation of low speeds such as 200 𝑚𝑚 · 𝑠−1.
The creation of the distance measuring sensor is described in the thesis of Jan Moravec
[6]. There are shown results of testing distance control algorithms on the car platoon.
Results of the current project were tested with the android application, which was
written by Alexander Dubeň. A more detailed description of provided experiments are
placed in the final chapter.

2

2 CC2530 communication processor

The CC2530 is an IEEE 802.15.4 compliant true System-on-Chip by Texas Instruments.
It supports the ZigBee, ZigBee PRO, and ZigBee RF4CE standards. The CC2530 offers
a high-performance microcontroller core, up to 256-KB Flash, 8-KB RAM for ZigBee
profiles and an extensive peripheral set including 2 USARTs and 21 general-purpose
GPIO pins [7]. It also has very low power consumption, excellent receiver sensitivity and
robustness to interference. In comparison with the previous generation, the CC2430,
the CC2530 supports ZigBee PRO mesh network applications.

2.1 The secondary radio board implementation

The CC2530 requires very few external components. The secondary radio board
contains:

∙ ZigBee CC2530 communication processor,
∙ ABM3B 32Mhz crystal,
∙ TLV70030DCKT linear regulator,
∙ debug connector,
∙ SPI connector,
∙ RF IC.

Figure 3. Connecting the secondary radio board to the main slotcar board

To check the board functionality we connected the 3.3V and GND pins to the power
supply. The normal current draw for the secondary radio board is 0,3 A. Some of boards
showed 0 or high (0,8 A) current draw. The cause wasn’t detected (it could be an open
or a short circuit). Functional boards were programmed via SmartRF05EB evaluation
board with CC2530ZNP-Pro.hex file. The evaluation board is equipped with a debug
connector that allows debugging and programming of an external RF microcontroller
from Texas Instruments. The pin-out of the connector is placed in the SmartRF05
Evaluation Board User’s Guide [p.[22], 8]. The secondary radio board pin-out is shown
in Figure 4. Only three manufactured boards were detected by the evaluation board.

Next, the secondary radio board was connected to the main board. Table 16 in
Appendix A shows the CC2530 and radio connector pin configuration. The 3.3V, GND
and RESET (SPI signal) pins were misplaced in the secondary radio board connector

3

2 CC2530 communication processor

RESET

CC2530Vcc GND DC DDGND

Figure 4. Secondary Radio Board Debug Connector

and were connected with the main car board with wires. The scheme of Secondary
Radio Board and Secondary Radio Connector is placed in slotcar_v1r1.pdf [9].
The radio board was implemented into three slotcars. A new version of the slotcar is
currently being developed and shall be ready at the end of the May 2015. Because of
this new model becoming available soon no further investments in the current model
have been done, not to mention time limitation.

2.2 Prototype model for the ZigBee driver development

Directly developing of the ZigBee driver on the slotcars has one disadvantage: it’s
difficult to debug. There are several reasons for this:

∙ The electronics are custom-made, there are no guarantees that it will work
correctly. Therefore, it’s hard to tell if the problem is in the code or in the
hardware.

∙ Constantly soldering and unsoldering of debug wires can have a bad effect on the
other working parts.

∙ During the configuration phase (before the device starts in the network) the
communication between ARM and CC2530 processors can be seen only on the
oscilloscope.

Hence the evaluation modules were used as a prototype model and as a study platform
for ZigBee solution and configuration. It was used as a base station during the project
development as well.

CC2530 ZigBee Development Kit

The CC2530ZDK is a compliant System-on-Chip solution based on the CC2530 system-
on-chip (SoC), and contains all hardware, software, tools, and documentation necessary
to build a ZigBee compliant product [10].

The SmartRF05EB (evaluation board) is the main board in the kit with a wide range
of user interfaces. The EB is the platform for the evaluation modules (EM) and can
be connected to the PC via USB to control the evaluation module. The CC2530EM
(evaluation module) contains the RF IC, necessary external components and matching
filters for getting the most out of the radio. The module can be plugged into the
SmartRF05EB. The EM is used as a reference design for a RF layout.
The CC2531 USB Dongle is a fully operational USB device that can be plugged into a
PC. The dongle comes preprogrammed to work as a Packet Sniffer. It can be used
together with SmartRF Packet Sniffer application [12]. This application was used
during the software development to see data exchange between slotcars.
To program the ZNP image (hex-file) with the SmartRF Flash Programmer [13] onto

4

2.2 Prototype model for the ZigBee driver development

Figure 5. CC2530 ZigBee Development Kit (Source: [11])

a CC2530EM, the EM needs to be plugged directly into one SmartRF05EB board.
The hex file used in this project is placed in TexasInstruments\Z-StackHome1.2.0\
Projects\zstack\ZAP\ZNP-HexFiles\CC2530ZNP-Pro.hex. The detailed instruction,
how to connect and program devices, is placed in "Z-Stack User’s Guide For CC2530
ZigBee-PRO Network Processor Sample Applications" [11].

STM32F401C-DISCO

The CC2530EM interfaces through an SPI to the same ARM processor as placed on
the main slotcar board. The ARM processor is placed on the STM32F401C-DISCO
board. It’s a very suitable solution for the project start. It’s possible to connect 4
evaluation boards per SPI and 2 modules are enough to create a network and test the
communication between them.

Figure 6. STM32F401C-DISCO (Source: http://www.wvshare.com/)

The development was started with a STM32F407-DISCOVERY board. Later,
DISCOVERY board was replaced with a DISCO board. The main difference: the
CPU clock speed must be reduced from 168 MHz to 84 MHz, more information in

5

2 CC2530 communication processor

Table 15. A user manual for Discovery kit for STM32F401 line [14] is available
on the STMicroelectronics website. The ST-LINK/V2 programming and debugging
tool is integrated on the STM32F401 DISCO board. The board connects to the
computer via USB cable type A to mini-B. The ST-LINK/V2 USB driver must be
installed on the computer. For upgrading or downgrading the software on a board
ST-LinkUpgrade software is used. Usually it’s placed in the STMicroelectronics\
STM32ST-LINKUtility\ST-LINKUtility folder. This project uses the Keil MDK
Version 5 software as a development environment. MDK contains all development tools
including IDE, Compiler, Flash Programmer and Debugger. The firmware version on
ST-Link must be compatible with Keil MDK version. The corresponding firmware is
placed in the Keil_v5\ARM\STLink\ST-LinkUpgrade. The STM32 firmware used in
this project has version V2.J20.

6

3 ZigBee standard specification

The vehicle communication standard should fulfil the following criteria:
∙ reliability and robustness,
∙ low cost,
∙ low power consumption,
∙ easy implementation,
∙ ubiquity and public availability,
∙ large network support,
∙ possibility to regulate data flow,
∙ mesh topology.
Slotcars were equipped with the nRF24L01 module by Nordic Semiconductor. It’s a

cheap, ultra low power 2.4 GHz ISM band wireless solution device. However, in practice
it was found to be difficult to configure: instead of the expected 20 to 30 meters, the
range under 0.5 meter was gained. The Nordic solution isn’t a well-known standard
and it led to implementation problems.
The cheap Bluetooth module with data range 723 kbit/s is a good solution for slotcar
to base station communication, but doesn’t support other topologies. It can have only
eight nodes, which isn’t sufficient for future platform development.
ZigBee is the most expensive solution and the slowest one (250 kbit/s) of the
aforementioned, but it has the biggest range (to 300 m), it supports 65000 nodes and
uses different topologies such as mesh, star and tree 7.

Figure 7. ZigBee Network Model (Source: measure.feld.cvut.cz)

ZigBee is a reliable and flexible standard. It defines a set of communication protocols
for low-data-rate short-range wireless networking [15]. ZigBee was developed by the
ZigBee Alliance. This technology is used in commercial building and home automation,
security and healthcare. Such networks have become the widely adopted wireless sensor
network standard. It offers a possibility to use it in the real time systems, although it’s
not its main purpose.

7

3 ZigBee standard specification

ZigBee is based on an IEEE 802.15.4 standard, a part of the IEEE family of standards
for physical and link layers. It offers a good coexistence among 2.4GHz RF products
(Bluetooth, Wireless USB, Wi-Fi) and low bit error rate. ZigBee has very good anti-
interference performance, however it’s important to choose the right frequency in case
of Wi-Fi operating within a very short range (2 meters). More information can be
found in the Atmel AT02845 application note [16]. To reduce channel load ZigBee
standard allows the ACK mechanism to be disabled. So there is more ‘free space’ for
transmission and it reduces waiting time before the node can send the data. It’s very
useful in case of the real time control, where timeliness may be more important than
reliability. In other words, we prefer to lose some data rather than to resend them and
cause delay in the data flow.
ZigBee offers basically four kinds of different services:

1. association and authentication (to allow valid nodes to join to the network),
2. extra encryption services [17],
3. routing protocol [18],
4. application services, e.g., binding service for linking devices that are related.

We will concentrate on the first one. Later in this chapter the base characteristics
of the IEEE 802.15.4 standard and ZigBee network processor configuration will be
described. The process of the network creation, joining and data exchange will also be
demonstrated.

3.1 The ZigBee base: IEEE 802.15.4

Figure 8. ZigBee Wireless Networking Protocol Layers (Source: [15], p.[5])

The IEEE 802.15.4 is a standard which specifies the physical layer and media access
control (MAC) for low-rate wireless personal area networks [19]. It provides compatible
interconnection for wireless data communication and is designed for low cost, low data
rate and low power devices.
The IEEE 802.15.4 operates in unlicensed radio frequency (RF) bands: the 868 MHz
band in Europe, the 915 MHz band in North America, Australia and the 2.4 GHz band
worldwide.

8

3.2 Interaction between the ZNP and the application processor

The PHY layer is responsible for activating and deactivating the radio transceiver,
transmitting and receiving data and selecting the channel frequency. When a device
wants to transmit it performs two functions: Energy Detection(ED) and Clear Channel
Assessment(CCA). It scans the medium and reports if the channel is not in use by any
other device.
802.15.4 uses two techniques to avoid data collision: CSMA-CA and GTS. The Carrier
Sense Multiple Access - Collision Avoidance is the most common: each node listens
to the medium. If another node transmits, other nodes wait for a random time. The
Guarantee Time Slots (GTS) uses a centralized node which gives slots of transmission
time to each node. For better coexistence DSSS (Direct Sequence Spread Spectrum) is
used. It extends the transmitted signal over the larger bandwidth than is needed. The
resulting signal appears as a noise signal and shows greater resistance to interference
[20].
The MAC provides the interface between the PHY and the next higher layer above the
MAC - NWK layer, generates beacons, synchronizes the device to the beacon, employs
the CSMA-CA for channel access, manages GTS channel access, provides personal area
network (PAN) association and disassociation services and support for security. 16-bit
Frame Check Sequence, based on the Cyclic Redundancy Check (CRC), is used in the
IEEE802.15.4 to detect if any of bits were received incorrectly.
Two types of physical devices are provided in the IEEE 802.15.4 wireless network:
full-function devices(FFDs) and reduced-function devices (RFDs). FFD Devices can
perform all available operations within the standard, such as coordination tasks, sending
tasks and routing mechanism. RFD Devices have limited capabilities and can talk only
with an FFD device.
The Network layer (NWK) and Application layer (APL) layers are defined by the ZigBee
standard and will be described later.

3.2 Interaction between the ZNP and the application
processor

The communication between the CC2530 ZigBee network processor and the application
processor (the main slotcar processor) is provided via SPI. The slotcar processor runs
the application code, which uses CC2530 ZigBee Network Processor (ZNP) Application
Program Interface. The CC2530 ZigBee Soc runs full Z-Stack solution (ZigBee Pro) and
provides connectivity with the IEEE 802.15.4 Radio. Figure 9 shows the interaction
process between the ARM processor and the network processor.

3.2.1 Initializing SPI

The first thing that should be done is SPI initialization. The CC2530-ZNP pin
configuration is described in CC2530ZNP Interface Specification [21]. The SPI Interface
must be configured with following parameters:

∙ SPI master,
∙ Bit order MSB first,
∙ Clock speed must be greater than 500kHz and less than 4 MHz (we set SPI

frequency to 1,35 MHz),
∙ Clock polarity 0 and clock phase 0 on CC2530.

All aforementioned parameters must be set during SPI initialization. It’s necessary to
assign pins explicitly to the SPI interface, enable all the clocks and the SPI Interface.

9

3 ZigBee standard specification

Figure 9. Interaction between the AP and the ZNP (Source: [11])

For communication are required RESET, CFG0, CFG1, MISO, MOSI, CS, SCK, SRDY
and MRDY signals:

∙ RESET is used to hard reset the module.
∙ CFG0 indicates if there is a 32kHz crystal connected to the CC2530-ZNP (in this

project the CFG0 pin is set low and the CC2530 uses the internal RC oscillator).
∙ with CFG1 the user can choose UART or SPI transport mode. To use SPI

transport mode, the CFG1 pin should be set high).
∙ MISO, MOSI, SCK and CS are the standard SPI signals. The master role has the

application processor and the slave role has the network processor. So the Chip
Select signal should be low. MOSI is the master line for sending data to the slave
and MISO is the slave line for sending data to the master.

∙ MRDY is Master ReaDY, an active low signal. It is set by the application processor
when it has the data to send.

∙ SRDY is Slave ReaDY, a bi-modal signal. It indicates if the network processor is
ready to receive or send data.

Since the program is written for the application processor, the communication process
will be described from the AP side of view. The protocol scenarios are as follows:

∙ POLL - The network processor(CC2530-ZNP) requests to start the
communication.

∙ SREQ - The application processor sends a command to the network processor and
waits for SRSP frame (synchronous response).

To indicate the right protocol scenario we need to follow MRDY and SRDY signals.
If the SRDY level is changed before the MRDY level, the network processor wants to
transmit to the application processor data (POLL command). If the AP has the data
for the network processor, then the MRDY level is changed first (SREQ command).
After both processors show that they are ready, the application processor starts to
transmit data. If it has no data to send (the data request is initialized by the network
processor - POLL command), the application processor transmits zeros. The AP waits
for the ZNP ready status (SRDY high) and starts to receive data. Each data unit has
a Command field. It helps to determine the purpose of the following payload. It can

10

3.3 CC2530-ZNP power-up procedure

be the response to the command, e.g. the application processor sends the request to
establish the network, the ZNP responds with successful or unsuccessful status. Or
it could be received data from another node. Figure 10 shows the general frame and
the command field formats. The Type field is 0 for POLL, 1 for SREQ, 2 for AREQ
and 3 for SRSP commands. The ID field maps to a particular interface message. The
Subsystem Values and Names are placed in Table 19 in Appendix B.

Bytes:
1

Bits:
2

DataCommand

Bits:
0-250

Length

Bits:
7-5

Cmd0
4-0

IDSubsystem

Cmd1
7-0

Type

(a) (b)

Figure 10. (a) General frame format (b) Command Field (Source: [21])

STM32F4 External interrupts

To process the incoming data we need to configure the SRDY pin to be an interrupt.
STM32F4 has 7 interrupt handlers for GPIO pins: handler for pins connected to line
0, ..., 4, 5-9, 10-15. For PC1(SRDY) pin EXTI1_IRQHandler is used. It’s possible
to configure if a falling or rising edge will be detected. In this project a falling edge
detection is used. To distinguish SREQ and POLL commands the MRDY pin value is
checked also. At the interrupt moment it’s low for SREQ command (the data need to
be sent) and high for POLL command (the data need to be received).

3.3 CC2530-ZNP power-up procedure

In this section the power-up process of the CC2530-ZNP is described. We followed the
recommended approach as specified in the CC2530ZNP Interface Specification [21]. All
below mentioned commands are placed in the Appendix C:

1. The application processor and CC2530 power up.
2. The application processor initializes its SPI interface and configure EXTI

Line1(SRDY) and disables interrupt.
3. The application processor sets CC2530 RESET pin low, holding CC2530 in reset.
4. The application processor sets the CC2530 CFG0 low (internal RC oscillator) and

CFG1 high (SPI transport mode).
5. The application processor sets CC2530 RESET pin high and CC2530 starts

operation.
6. The SYS_RESET_IND (Table 22) message is sent by the CC2530 network

processor to the application processor using the POLL command. This command
ensures the proper reset of the radio and brings the radio into configuration
mode. The ZNP response includes a reason value which indicates why the network
processor was reset. It can be one of the following values:

∙ power-up,
∙ external (the RESET signal was driven low for a time greater than 200 ns),
∙ watch-dog (a hardware fault or program error).

11

3 ZigBee standard specification

Because we hold CC2530 in reset by setting the RESET pin low, the ZNP will
return the external reset reason.

7. The application processor sends the ZCD_NV_STARTUP_OPTION command
(Table 23) to overwrite all the configuration parameters. It’s the SREQ
command. The parameter 0x00 prevents network state loss or erase of the existing
configuration caused by an accidental device reset. If the network parameters need
to be changed, the value of the parameter must be 0x02.
The response form is in Table 24. All response packets contain the status value.
The status value 0x00 indicates that the command was successfully executed. The
0x01 value indicates ZFailure. Other values of status parameters are described in
the 4.7 chapter in CC2530ZNP Interface Specification[21].

8. Application processor sets CC2530 RESET_N pin low, holding CC2530 in reset.
Modification of ZCD_NV_STARTUP_OPTION parameter requires a CC2530-
ZNP device reset before it can take effect, hence the second reset is required.

9. The application processor sets CC2530 RESET_N pin high and CC2530 starts
operation.

10. The CC2530 response with SYS_RESET_IND.

During the development phase it was discovered that it’s necessary to have a delay after
changing the RESET_N state (approximately 20 ms). Without a delay the network
processor behaves erratically, e.g. not responding to SREQ command or it sends a
failure response. The project uses the delay function from STM32 examples. It’s not
properly calibrated, so the delay time can differ for other MCU types.

3.4 CC2530-ZNP startup procedure

After the power-up procedure, some mandatory commands should be executed to
configure the ZigBee device:

1. Logical type. The application processor sends ZCD_NV_LOGICAL_TYPE
SREQ command (Table 27) to configure the device role to the CC2530-ZNP device.
There are three types of logical devices in a ZigBee network: coordinator (ZC),
router (ZR) and end device (ZED):

∙ A ZC is the main device, it scans the RF environment, chooses a channel and
a network identifier (PAN ID), forms the network and might bridge to other
networks. There can’t be two coordinators in the same network.

∙ The ZR device passes data from other devices and allows child nodes to
connect to it. The ZC and ZR devices have the radio always on.

∙ The ZED talks to its parent node, it can’t relay data from other devices.
These devices have a sleep mode in order to conserve power.

The value parameter can be set 0x00 for coordinator, 0x01 for router and 0x03 for
end device.

2. Channel. The application processor sends ZCD_NV_CHANLIST SREQ
command (Table 25) to configure a physical channel of the RF spectrum. There are
16 available channels. Although as was previously mentioned the IEEE 802.15.4
adopts many mechanisms for coexisting with other 2.4GHz radio products, we can
adopt additional measures. Figure 11 shows that channels 15, 20, 25 and 26 are not
overlapped with Wi-Fi channels so it’s safe to use them. For slotcar communication
we will need only one channel, so we can choose the most suitable one, viz. 15. The
Coordinator can choose multiple channels from the aforementioned by multiple

12

3.4 CC2530-ZNP startup procedure

Figure 11. Wi-Fi and ZigBee Overlapping Channels in 2.4GHz ISM Band. [16], p.[7]

calls of the channel configuration command, perform energy scan and establish
the network on it.

3. PAN ID. The application processor sends ZCD_NV_PANID SREQ command
(Table 29) to configure the address of a network within a channel. Personal Area
Network Identifier (PAN ID) was implemented for the logical separation of ZigBee
nodes located in the same physical channel or vicinity. ZigBee PAN IDs are 16-bit
numbers that range from 0x0000 to 0x3FFF. The 0xFFFF PAN ID specifies that
the application requests the ZigBee stack to obtain the identifier dynamically by
detecting other networks operating in the same frequency channel and choosing a
PAN ID that does not conflict with theirs. However we register only one channel
(15) and non-default PAN ID (0x0003) for the Coordinator and the same for
Routers to prevent the joining to the wrong ZigBee network operating on the
same channel or with the same PAN ID.

4. Simple descriptor. The highest protocol layer in the ZigBee wireless network,
the APL layer, hosts the application objects [p.[22], 15]. Application objects are
developed to control and manage protocol layers in a ZigBee device. There can
be 240 application objects in a single device (Figure 12). Each application object
has a unique endpoint address (endpoint 1 to endpoint 240). The ZigBee Device
Object (ZDO) endpoint address is zero. Its function is to be the network manager.

Application layer

Endpoint 0

ZDO

Endpoint 1

Application

object

Endpoint 2

Application

object

Endpoint 240

Application

object

Figure 12. The Application Objects on the APL layer

The endpoints are the main interface between the user application and the stack.
The user application can manage the network by making requests and handling
callbacks to this object. Hence the software should be the same for all slotcars

13

3 ZigBee standard specification

and we don’t need to separate received information for different applications, it’s
very important to configure the same endpoint to prevent the confusion in message
addressing.
Figure 13 shows the Application object structure. The obligatory part of the
Application object build up is to configure the simple descriptor parameters. The
set of stack parameters that need to be configured to specific values, along with
the above device type values, is called a stack profile [p.[3], 22]. It defines the
network type and shape and the features that are available to applications, e.g.
the types of security. All devices in a network must conform to the same stack
profile (i.e., all devices must have the stack profile parameters configured to the
same values). The ZigBee Alliance defined ZigBee and ZigBee PRO stack profiles.
ZigBee Pro is used in this project.
The ‘profile’ shown in Figure 13 is an Application profile or a stack ‘subprofile’.
It’s a set of agreements on application-specific message formats and processing
actions, a fully compliant ZigBee solution. The ZigBee standard offers the option
to use public application profiles in developing an application. For example, Z-
Stack Home is TI’s ZigBee Home Automation (ZHA) compliant protocol stack
for the CC2530 and CC2538 System-on-Chip. It already has prepared functions
for creating an application for smarter homes. The range of public application
profiles is 0x0000 to 0x7fff. Slotcar uses a manufacturer-specific profile, 16-bit
number with a range of 0xBF00 to 0xFFFF, viz. 0xBF00.

Application object
Simple Descriptor

(endpoint, profile and clusters)

Cluster List

Device Rx Frame Handler

Cluster 1

Attribute List

Command Handler

Cluster N

Attribute List

Command Handler

Figure 13. The Application Object structure (Source: [23])

Clusters registration is a part of the Application object configuration as well. A
cluster is a list of attributes and a command handler. When the data come to
the Application object, Device Rx Frame Handler function checks the incoming
message cluster ID and calls the Command Handler corresponding to the received
cluster ID. The command handler actions can be defined by the user or be given by
chosen specification and depends on received attributes. There are ZigBee Cluster
Libraries, e.g., lightning, general, measurement & sensing. Each Application
Profile supports some of them.
We use the manufacturer-specific profile (own profile), so we can’t use already
prepared ZigBee Cluster Libraries. At this point it should be noted that slotcars
communicate not only using ZigBee standard, but also Nordic, which will be
replaced with Wi-Fi in the next model. Hence the network processor should be

14

3.4 CC2530-ZNP startup procedure

responsible only for transmitting (addressing), receiving and proceeding data to
the application processor. It means that we don’t need cluster services.
All afore-mentioned parameters must be configured by calling the AF_REGISTER
SREQ command (Table 31). We set the EndPoint parameter to 0x08, AppProfId
to 0xBF00 and the number of Input and Output cluster Ids (AppInClusterList
and AppOutClusterList) to 0x00.

5. Device starts in the network. Finally, the ZDO_STARTUP_FROM_APP
SREQ command (Table 33) is sent by the application processor and starts the
device in the network. StartDelay parameter specifies the time delay before the
device starts in milliseconds. We didn’t set any delay, so the slotcars start to look
for the network immediately after the configuration. The response status value
can be 0x00 for restored network state, 0x01 for new network state or 0x02 for
leave and not started.

Network formation

After the user requested the device to start the CC2530 network processor will send
to the application processor the ZDO_STATE_CHANGE_IND responses (Table 35).
The ARM should send POLL commands, read responses and check the ZDO status.
The status shows in which state a network configuration is. Figure 14 shows how the
Coordinator forms the network.

ZDO NWK MAC PHY

Form PAN

Formation
confirmed

Perform
passive scan

Perform
active scan

Energy
scan

Beacon
request

Scan
confirmed

Scan
confirmed

Beacon
 response 1

User app
Request to form

 the network

Beacon
request

Beacon
 response 2

DEV_ZB_COORD
status

Figure 14. NWK formation (Source: [24])

The NWK layer is responsible for managing the network formation and routing. First,
the ZDO calls the network formation function. The coordinator provides the energy
scan and will choose from the channels with the lowest amount of traffic and the fewest
networks. In our case the coordinator will start operate on the channel chosen by the
user. Then the ZDO broadcasts a beacon request (a packet which contains information
about the device PAN ID). All nearby ZigBee devices will send a beacon back. The
PAN ID exchange is called the active scan. There can be only one coordinator in
the network and only the coordinator can form a network, determine a unique PAN
ID and a channel. When the network formation is finished, the ZDO returns the

15

3 ZigBee standard specification

DEV_ZB_COORD status. It means that the device has successfully started as a
Coordinator. See the ZDO status table 20.

Network Discovery/Join

Figure 15 shows the joining process of the Router to the Coordinator.

ZDO NWK MAC PHY

Discover
PAN

Join
confirmed

Perform
active scan

Associate

Beacon
request

Associate
request

Associate
confirm

Scan
confirmed

Associate
response

Discovery
confirmed

Join request

CoordinatorUser app

Request to join
the network

Beacon
response 1

Beacon
request

Beacon
response N

DEV_NWK_DISC
status

Associate
request

DEV_NWK_DISC
status

DEV_NWK_JOINING
status

Figure 15. NWK Discovery/Join (Source: [24])

ZDO requests Network(PAN) discovery, the discovery function will call the MAC’s
active scan service and it will perform the Beacon request. When other devices see
the beacon request, they will respond with an 802.15.4 beacon frame. It contains MAC
information about the responding device and a beacon payload for generic data. Within
that payload, the responding device will include ZigBee network information such as
the protocol ID and version, amount of routers and end devices allowed to join, the
device profile that is being used, and other somewhat useful information. ZDO returns
DEV_NWK_DISC status (discovering PAN’s to join).
From active scan information the router should choose the Coordinator (slotcars will
join to the coordinator operating on the registered channel and with the same PAN
ID). Two coordinators on the same channel and with the same PAN ID can’t exist.
After ZDO sends DEV_NWK_JOINING (joining a PAN) to the user application and
calls a network join request, it calls the MAC’s association service and initiates an
association request to the Coordinator. The response will pass up to the network layer
via the MAC’s association response. If the join request was successful, the device will
update it’s NWK and MAC information tables to include the new network address,
PAN ID, and also update the neighbour table to specify its parent, the network join
confirmation is proceeded to the ZDO. The user receives the DEV_ROUTER status
(device joined, authenticated and is a router). After joining, the device will broadcast
a device announcement which includes a 16-bit network address, a 64-bit IEEE address
and the network status.

The Router joining process from the Coordinator side in shown in Figure 16. When

16

3.4 CC2530-ZNP startup procedure

ZDO NWK MAC PHY

Join
confirmed

Router

Associate
request

Associate
response

Check neighbour table
and assign network
address

Figure 16. The parent side of the join process (Source: [24])

a MAC association request arrives to the potential parent, it sends an indication to the
network layer that a device is trying to join. The potential parent will then look through
its neighbour table to see if the 64-bit IEEE address of the joining device already exists.
If not, the parent allows devices to join it and adds the device to the neighbour table,
generating a new 16-bit network address for it. Then this information is sent out as a
MAC associate response. If it exists, then the parent sends the same network address,
which was generated, when requesting device was asked to join the first time.

Data Transfer

After the power-up and startup procedures, devices can start to transmit and receive
data. When the interrupt on SRDY line is received, we check the MRDY level to assure
that it’s a POLL command. The user application sends zero payload and receives from
the network processor AF_INCOMING_MSG response (Table 38). This response
contains received data. The data field can contain 0 to 99 bytes of data without any
security.
The Application processor uses AF_DATA_REQUEST SREQ command (Table 36) to
build and send a message through the AF layer. Besides the address and the destination
endpoint the user can set options such as bypass routing, request APS acknowledgement
for this packet, etc. The options field is organized as a bitmask. A value of 0x80 means
that bit 7 is set and routing will be bypassed for the packet, a value 0x10 sets bit
4 to request APS acknowledgement for the packet. Other options can be found in
CC2530-ZNP Interface Specification [21]. The Radius value specifies the number of
hops allowed delivering the message and can be configured as well. We will use this
ZigBee feature to reduce message retransmission when we will need to increase the
information transmission speed. In case of important information exchange the radius
value will be increased. For example, slotcar address information or initial parameters
sent by the user to the vehicles.

In the ZigBee Pro stack profile network with mesh topology, only the CSMA-CA
technique is used to avoid data collision. The device (router or coordinator) transmits
once the channel is clear. The data exchange is shown in Figure 17. The frame format
of the Beacon as standardized in the IEEE 802.15.4 specification includes GTS field,
but in the context of ZigBee this field is 0. It means that the Coordinator doesn’t
permit GTS requests.

17

3 ZigBee standard specification

Device 1 Device 2

Data

Acknowledgment
(if requested)

Figure 17. Non-Beacon Data Transfer

The data path in NWK layer

Two diagrams in this section explain how data is proceeded in the Network Layer. Data
to be transmitted flows down from an upper layer. Received data come up from the
lower layer or do a U-turn if they should be retransmitted. All slotcars and the base
station are in range of each other, that means that they all have each other’s address
in the neighbour table. The data flow is restricted to the highlighted area.

APS NWK

Destination address
 is broadcast

Choose the broadcast
audience and send the

data

Get the frame to its
destination in one hop

The address is in
 the neighbour table

Get the frame to
its next hop

Yes

Yes

DATA REQUEST

No

The address is in
 the routing table

No

Yes

Make a route discovery

No

Error status

Get the frame to
its next hop

Successful

Unsuccessful

Figure 18. Data Transmission on NWK Layer

When a frame is received, it’s stored and the indication is sent to the MAC layer.
The MAC layer takes the frame up, decodes the MAC header and, if it’s a MAC data
frame passes it up to the NWK layer using the Data Indication service.

18

3.5 Summary

Frame received

NWK
address

Send the frame up
to the next layer

Send it up
 to the next layer

Broadcast

Find the next hop address

Data frame

matches

Yes

Decode
the command ID

Command
frame

Decrement the frame
radius value and

retransmit if it’s necessary

Doesn’t
match

Mesh route discovery/
link maintenance/

rejoining/leaving the
network/...

No

Figure 19. Data Reception on NWK Layer

3.4.1 ZigBee addressing
Each device in a network has a unique address. The IEEE 802.15.4 uses two methods
of addressing: 16-bit short addressing and 64-bit extended addressing. It’s possible
to use either 16-bit or 64-bit addressing. The short address allows communication
within a single network. Using the short address reduces the length of the packet
and saves memory, which is required for storing an address. ZigBee 2007 Pro and
newer versions use "Stochastic Addressing", that means that addresses are randomly
chosen and assigned to joining devices by the coordinator. The coordinator address is
always 0x0000 and the broadcast address is 0xFFFF. Other special addresses could be
found in Table 17 in the Appendix B. To find out the short address device we need
the ZB_GET_DEVICE_INFO command (Table 39). It is a SREQ operation. This
command retrieves a device information. The Param variable is the identifier of the
device information. If a 0x02 parameter is used, CC2530 returns its short address.
See the full list of parameters in Table 21. The value always has 8 bytes in length
even though the actual value may be smaller in size. The remaining bytes can take
any value. ZB_GET_DEVICE_INFO command is called after the Router returned
DEV_ROUTER status.

3.5 Summary
The whole process of power-up and startup procedure of Coordinator and Router and
the entire communication between devices is shown in Figure 20. The short CC2530-
ZNP configuration instruction is placed in the Appendix C and includes all necessary
packets.

19

3 ZigBee standard specification

ARM CC2530

Coordinator Router

Reset with the RESET_N pin

SYS_RESET_IND

ZCD_NV_STARTUP_OPTION

Reset with the RESET_N pin

SYS_RESET_IND

ZCD_NV_LOGICAL_TYPE

ZCD_NV_PANID

ZCD_NV_CHANLIST

AF_REGISTER

ARMCC2530

Reset with the RESET pin

SYS_RESET_IND

SYS_RESET_IND

BEACON REQUEST

BEACON

ASSOCIATION REQUEST

ASSOCIATION RESPONSE

DEVICE ANNOUNCE

AF_DATA_REQUEST
DATA REQUEST:
 Read attribute

AF_INCOMING_DATA

AF_DATA_REQUEST
DATA REQUEST:

 Read attribute response
AF_INCOMING_DATA

ZDO_STARTUP_FROM_APP

ZDO_STATE_CHANGE_IND – 0x09

ZCD_NV_STARTUP_OPTION

Reset with the RESET pin

ZCD_NV_LOGICAL_TYPE

ZCD_NV_PANID

ZCD_NV_CHANLIST

AF_REGISTER

ZDO_STARTUP_FROM_APP

ZDO_STATE_CHANGE_IND – 0x02

ZDO_STATE_CHANGE_IND – 0x05

ZDO_STATE_CHANGE_IND – 0x07

ZB_GET_DEVICE_INFO
(Short Address)

Figure 20. Power-up, startup and communication process between Coordinator and Router

20

4 Communication infrastructure

The unified communication stack was created by Jaromír Dvořák and Martin Lád. It
is independent on the particular hardware implementation (ZigBee, Nordic, . . .). The
unified communication stack allows implementation of new communication drivers. It
also allows the creation of new services in the main program layer. Figure 21 shows the
data passing structure.

Communication
chip

HW driver
(HWL)

Message handling
layer

(MHL)

Main program layer
(MPL)

Register interface

Register address

Register known
 callback

Configuration parameters

Reception
queue

Transmission
queue

Service callback

Transmit data

Transmit
data

Received data

IRQ
data received

Communication
chip

Transmit data

Received
 data

Transmit data

IRQ

Figure 21. Data passing structure

Each layer provides services for the next layer. The main program layer (MPL)
finishes the processing of the data, does the system setup and provides callbacks for
different message types. The MPL layer can give the transmit data command direct
to the HW layer. The Message handling layer (MHL) stores data in queues and calls
service functions corresponding to the received message type. The MHL calls the HW
layer transmit function when there are data in transmission queue. The HW layer
receives and transmits data and forwards received data to the MHL layer. One of
the goals of this project is to implement the HW ZigBee driver. The first section 4.1
describes the main ZigBee HW layer functions.

4.1 The ZNP driver implementation

The HW ZNP driver implements the following functions:
∙ zigbee_conf(zigbee_settings settings) - this function includes the SPI

initialization, interrupt configuration and CC2530-ZNP power-up and start-up
procedures. The zigbee_conf is called in the main function. As an input it
requires the zigbee_settings structure with following variables:

– device logical type,
– ZigBee logical address,
– channel (15),
– PAN ID (0x0003),

21

4 Communication infrastructure

– pointer to the function that should be called when the HW layer has data
for MHL layer.

Slotcars are programmed as Routers to have the possibility to directly
communicate with each other and the base station. The CC2530 evolution model
connected to the SmartRF05EB board has a Coordinator role.
Many address types were already mentioned. Here is a quick summary:

– Logical address or slotcar number. The current platform consists of 10
slotcars. As previously mentioned, every slotcar has its number with a range
of 1 to 10. Three of cars have the CC2530 communication chip implemented:
5, 6 and 10.

– ZigBee short address. It’s the 16-bit short address assigned to every
Router (slotcar) by the Coordinator (base station). This address type was
described in the chapter 3.4.1.

– ZigBee logical address. It’s the number in range of 101 (0x65) to 110
(0x6E). 99 (0x63) is for the Coordinator and 100 (0x64) is for broadcasting.
To determine the slotcar ZigBee logical address to the car number 100 is
added (car number + 100).

In the previous chapter 3.3 were described more configurable parameters than
in the zigbee_settings structure. Every ZNP initialization and configuration
step has its own function. These functions are placed in the zigbee_conf. The
parameters such as the application endpoint or the application profile could be
changed there.

∙ zigbee_transmit_data(Packet packet) - the purpose of this function is to build
and send the data through AF layer. The Packet structure is shown in Figure 22.

Bytes:
1

Bits:
1

destination
address

payload
length

Bits:
1

message
type

Bits:
1

Cmd0
0 - 94

payload
source
address

Figure 22. Packet structure

The destination and source addresses help to distinguish the destination or the
source HW layer. The ZigBee HWL will be called for data transmission if the
destination address value will be equal or more than 99. The same for the received
data and the source address. The message type determines what function must
be called. In the main function it is possible to register known callbacks. The
zigbee_transmit_data transmits data regardless of the msg_type value.

∙ ZIGBEE_ISR() - this is the EXTI15_10_IRQHandler interrupt service routine
handler for pins connected to lines 10 to 15. It manages the data reception and
passes payload (the data field) to the zigbee_received_data function.

∙ zigbee_received_data(int* received_payload) - this function checks the first
received_payload byte, which contains the message type. If it’s registered, the
function fills the Packet structure and forwards it to the MHL layer by calling the
zigbee_callback.

22

4.2 Main program layer services

4.2 Main program layer services
After all necessary configurations, the program will enter the main event loop. Each
program cycle the following functions are performed:

∙ data transmission from the transmission queue,
∙ data processing from the reception queue,
∙ measurements updating,
∙ automaton step execution (Figure 23).

Only the first two automaton steps are executed automatically. Then the slotcar enters
the ‘waiting state’ and transition to other states can be done by sending a command
with the defined message type.

Register
Leader

Send
Address

Determine
 Position

StopExperiment

Waiting
State

Figure 23. Main cycle state automaton

Register leader

To control the car platoon wirelessly it’s necessary to know the leader vehicle. For the
next 10000 cycles (each cycle lasts approximately 1 ms) the slotcar waits for the front
distance value. The distance sensor may take several seconds to settle to its final output
value. Then it compares this value with the maximum distance (30 cm) and based on
the result determines if it’s in front or not. Despite of the result the program goes to
the next state.

Send address

At this step the slotcar announces itself by broadcasting its ZigBee short address and
ZigBee logical address. The leader slotcar broadcasts its position number also. It’s
necessary to bind the car number with its short address. Hence the address table is
implemented. When the short address is assigned, the device adds it to the address
table on the (ZigBee logical address - 100) position and then broadcasts it with the
message type 0x3C. When the packet with this message type is received, the device
adds the received logical and short addresses to the address table and rebroadcasts its
own address with the message type 0x3D. When the packet with 0x3D is received, the

23

4 Communication infrastructure

device adds received addresses to the address table without rebroadcasting its own.
Figure 24 shows the described algorithm.

Data received

Decode
 the msg_type

Data frame

Save addresses

Save addresses

Broadcast own address
packet

0x3D

0x3C

Figure 24. Addresses exchange

Table 1. Address packet
msg_type length dest_addr source_addr Payload: 0

0x3C/0x3D 0x05 0x64 MY_ADDR + 100 1 (ACK)

1 2 3 4
short_addr LSB short_ addr MSB ZigBee log_addr if leader

To ensure that the address packet will be received by all active slotcars and the base
station, acknowledgement is required. The payload[0] indicates if the ACK is on (1) or
off (0).

Slot-car parameters configuration

After the slotcar has announced itself in the network and has entered the waiting state,
the base station sends the ‘get parameter’ packet (Table 3) to determine slotcar default
parameters:

number parameter’s name range data type

1 regulation type non, speed, distance int
2 reference PWM duty cycle <0,1> float
3 reference speed [mm/s] <0,1000> int
4 reference front distance [mm] <50,300> int
5 measured speed [mm/s] <0,1000> int
6 speed reg proportional term <0, inf> double
7 speed reg integral term <0, inf> double
8 distance reg proportional term <0, inf> double
9 distance reg integral term <0, inf> double
10 distance weight <0, inf> float

Table 2. Slotcar’s parameters

24

4.2 Main program layer services

∙ reg = NON. No regulator will be used, the speed of car can be set by PWM value.
∙ reg = SPEED. Speed regulator will be used, the speed of car can be set by reference

speed value.
∙ reg = DISTANCE. Distance regulator will be used, the distances can be set by

reference distance value.
The measured speed value is read out for control. Before the experiment start it should
be 0.

Table 3. Get parameters packet
msg_type length dest_addr source_addr

0x47 0x00 ZigBee log_addr 0x63

Table 4. Get parameters packet response
msg_type length dest_addr source_addr Payload: 0

0x48 0x39 0x63 MY_ADDR + 100 1 (ACK)

1 - 4 5 - 8 9 - 12 13 - 16 17 - 20 21 - 28
reg pwm ref_speed ref_distance meas_speed reg_speed_kp

29 - 36 37 - 44 45 - 52 53 - 56
reg_speed_ki distance_kp distance_ki distance_weight

The default parameters can be changed by sending the ‘set parameter’ packet (Table
5). Each parameter has a corresponding number (Table 2). The parameter value follows
its number. The user chooses the number of parameters that he wants to set and the
destination slotcar. The parameters readout or change can be done during the ‘waiting’
and the ‘experiment’ states.

Table 5. Set parameters packet
msg_type length dest_addr source_addr Payload: 0

0x46 0x00 - 0x44 ZigBee log_addr 0x63 1 (ACK)

1 2 3 - (1 byte) ... (n bytes) ...
count param_number value param_number value ...

Position determination

Except for the leader slotcar, the rest of the platoon doesn’t know its position. By
sending the ‘determine position’ command (Figure 6) the user will obtain packets with
position information from each car (Table 7). When the leader receives this command,
it broadcasts the ‘position’ packet (Table 7) and checks if there is another car behind.
If not, it will broadcast the ’determine position finished’ packet (Table 8). Regardless

25

4 Communication infrastructure

the result the car will change its position by setting the pwm duty cycle to 0,5 value
for next 8000 program cycles (it will travel approximately 600 mm). Other vehicles
after receiving ‘determine position’ command save the initial front distance value and
start to compare it with the updated value each program cycle. The distance change
that could be reliably detected by the car is 50 mm. The vehicle, which detects the
front distance change increases the position number from the last received ‘position’
packet and repeats the same procedures as the first slotcar except one step. It sets
pwm duty cycle not for 8000 program cycles but until the front distance is less than the
reference distance chosen by the user or the default one. We need to have a reference
distance between slotcars to prepare the platoon for the experiment. The aforedescribed
algorithm is shown in Figure 25. The ‘determine position’ step isn’t obligatory. It can
be skipped if the information about car position isn’t required for the experiment.

Determine
position
(0x5A)

Broadcast
 position

Am I first Check the front distance

 ΔX > threshold

Position number ++

Position
packet
(0x5B)

Save position number

Am I last

Move distance d
Broadcast

 determine position
finished

No

No

Yes

Last received
position number

Yes

Move distance dYes

No

Figure 25. Process of position determination

Table 6. Determine position packet
msg_type length dest_addr source_addr

0x5A 0x00 0x64 0x63

Table 7. Position information
msg_type length dest_addr source_addr Payload: 0

0x5B 0x39 0x64 MY_ADDR + 100 1 (ACK)

26

4.2 Main program layer services

1
position_number

Table 8. Determine position finished
msg_type length dest_addr source_addr Payload: 0

0x5B 0x39 0x64 MY_ADDR + 100 1 (ACK)

1
position_number

Experiment

The user begins the experiment by sending the ‘start experiment’ packet (Table 9).

Table 9. Start experiment
msg_type length dest_addr source_addr Payload: 0

0x3E 0x00 0x64 0x63 time [ms]

When the leader car receives the ‘start’ packet, it activates the timer interrupt and
starts to broadcast ‘states’ packet at specifically timed intervals. This packet includes
position number, measurements and the address of the node, which must broadcast as
next. The slotcars measure and broadcasts the following values:

∙ measured speed,
∙ front distance,
∙ back distance,
∙ speed regulator output,
∙ distance regulator output.

Table 10. States packet
msg_type length dest_addr source_addr Payload: 0

0x3F 0x1E 0x64 MY_ADDR + 100 0 (no ACK)

1 2 3 - 6 7 - 14
next_ node_addr position_number speed reg_speed_Y

15 - 22 23 - 26 27 - 30
reg_distance_Y distance_front distance_back

The ‘next node’ address choice depends on how the transmission is executed: in the
position order (Figure 26) or in the car number order (Figure 27). When using the
position order the following vehicle will broadcast next. The position determination
must be done beforehand.

If using the car number order the slotcar will choose the car number below its own
in the address table and with nonzero ZigBee short address. The leader starts from

27

4 Communication infrastructure

Leader Car 10 Car 5
Coordinator

gap

Timer
interrupt

Figure 26. Data exchange in position order

the beginning of the table and can’t choose its own address. If there are no active
addresses left, the ‘next car’ field will have a Coordinator address value. The model
with interrupt is reliable. In case of the data becoming lost, the data exchange will be
restored by the leader.

Leader Car 10 Car 5
Coordinator

gap

Timer
interrupt

Figure 27. Data exchange in car number order

We use the TDMA (Time division multiple access) method to order the data flow.
The number of the vehicles remains constant during the experiment, so the information
can be transmitted in suitably fixed intervals. The ‘start experiment’ packet also
includes the time in ms, which determines the transmission interval for each car. The
Coordinator has its own transmission slot where it can send, e.g. the new reference
speed for the leader. The time slot allocation is a difficult task in the system where
beacon requests are disabled and we can’t afford to send additional packets for timers
synchronization (it will slow down measurements exchange). Hence the timer is enabled
only in the leader vehicle. The timer interrupt TIM2 has 84MHz clock. Two values
are required for configuration: prescaler and period. These parameters are 16 bit (max
value 65535). The timer prescaler specifies the prescaler value used to divide the TIM
clock. The timer period specifies the period value for reload. In other words the
𝑡𝑖𝑚𝑒𝑟_𝑐𝑙𝑜𝑐𝑘/𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟 is timer speed and 𝑝𝑒𝑟𝑖𝑜𝑑 is a distance. We need to count the
time by dividing these two values:

(𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟 + 1) · (𝑝𝑒𝑟𝑖𝑜𝑑 + 1)
84 · 106 .

In the actual computation the program adds 1 to each value in case the user will set
them on 0. We set the prescaler to 84000. The period value is 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ·
(𝑐𝑎𝑟_𝑐𝑜𝑢𝑛𝑡 + 1), where the 𝑐𝑎𝑟_𝑐𝑜𝑢𝑛𝑡 is the count of nonzero ZigBee short addresses
in the address table and 1 is added for the base station. So the transmission cycle time
in ms will be:

(𝑐𝑎𝑟_𝑐𝑜𝑢𝑛𝑡 + 1) · 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙.

The transmission cycle time value is 65535. With the time slot 20 ms, the platoon can
consist of more than 3000 vehicles.
The acknowledgements aren’t requested for the packet, it reduces the channel load. As

28

4.2 Main program layer services

mentioned before, we would rather lose some data than resend them. During tests it
was found out, that the optimal size of the time slot is 20 ms. At this transmission speed
packets go in the right order. Smaller time slot size will cause the following situation
where one car will transmit several packets one by one. Other vehicles will wait for
a clear channel, store measurements information in the ZNP transmission queue and
then transmit everything at once including the ‘old’ measurements. It’s important to
emphasize that packets will be stored in the ZNP, not in the Message handle layer
(MHL) transmission queue. The request to transmit data goes directly from the Main
program layer (MPL) to the Hardware layer (HWL). It saves processor time.
Although the whole transmission cycle time is strictly determined, the gap between
each node transmission varies between 12 and 30 ms. The archived result is that four
devices (three slotcars and the base station) can share information with each other 12
times per second.
To stop the experiment the user should send the ‘stop’ command (Table 11). The
regulator type is switched to NON and the pwm duty cycle is set to 0. Before starting
the new experiment, the user should again set necessary parameters.

Table 11. Stop
msg_type length dest_addr source_addr

0x50 0x00 0x64 0x63

Two CC2531 USB Dongle devices are used for data exchange control. On one of
them has the Packet Sniffer application installed. The other one is programmed with
CC2531ZNP-Pro firmware and plugged into the tablet with the android application
written by Alexander Dubeň. The first application is very useful to control the
joining and association process, address exchange and position determination process.
Unfortunately, Texas Instruments doesn’t provide the tool to export data from Packet
Sniffer to another program, e.g. Matlab. So the tablet took over the Coordinator role
from the CC2530 evaluation module. It can not only send required commands but it
provides additional capabilities, such as graph plotting and the data export into Matlab.
The time assigned by the android application to the received packets is precise enough
to make some conclusions about measurements exchange influence on the regulator
work. Provided experiments are described in the next chapter.

29

5 Experiments
After the program enters the ‘Experiment’ state, besides the measurements exchange,
it starts to execute the regulation function each program cycle. The output of this
function is the pwm duty cycle, which controls the motor. There are two types of
regulation in the car: speed and distance. The leader slotcar has the speed regulator.
For other cars the user can set the regulation type. This chapter describes the regulation
model and demonstrates how the data exchange influences the control signal value of
the distance regulator (its output).

5.1 The regulation model

Figure 28. The regulation model with feed-forward loop realized by wireless data exchange

The car model identification and linearization is placed in the bachelor thesis [5]. The
model is represented by transfer function (Figure 28). The input of the system is pwm
duty cycle in range of -1 to 1 and the output is measured speed. The difference between
a measured process variable and a desired setpoint is the PI speed controller input. The
speed controller implementation was done by Martin Lád [5]. The regulator’s values
are:

∙ Proportional term is 0,002,
∙ Integral term is 0,01.

The distance controller includes the speed loop. The output of the outer distance
controller determines the set point (reference speed) for the inner speed controller. The
output of the inner controller is used to adjust the control variable. This is called
cascade control [25]. It is used to improve dynamic performance. Due to the integrator
which converts speed into distance the outer loop is slower than the inner one. The PI
distance controller was designed by Jan Moravec [6]. The regulator’s values are:

∙ Proportional term is 10,
∙ Integral term is 2.

To the existing feedback control loop we added the feed-forward loop. To the speed
regulator input is added the reference slotcar’s speed sent by the leader or preceding
car. The final regulation model is shown in Figure 28.

30

5.2 Experiments’ results

5.2 Experiments’ results
The experiments are provided on the platoon, which consists of 3 slotcars. The
leader slotcar always has a speed controller and its reference speed is set to 600
mm/s. The second and third vehicles have the distance controller, unless otherwise
stated. The desired distance between cars is 150 mm. Figures below demonstrate
how the experiments were performed and their results (red lines signify the wireless
communication):

1. To test the inter-vehicle communication we enabled only speed regulation and set
the default reference speed for the second and third slotcars to 0. The speed
controller takes the predecessor’s speed as an input value. All vehicles successfully
started and were travelling at the desired speed during the whole test.

Ref_speedRef_speed

Speed controller Speed controllerSpeed controller

Ref_speed
600 mm/s

Figure 29. The model for the inter-vehicle communication testing

Figure 30. Measured speed

2. Next, we tested the cascade model with 0 feed-forward input. In Figure 32 we can
see how the speed controller handles to follow the reference speed determined by
the distance controller. The distance regulator settling time also can be determined
from this test.

Speed controller Distance controllerDistance controller

Ref_dist
150 mm

Ref_dist
150 mm

Ref_speed
600 mm/s

Figure 31. The vehicle platoon model with 0 feed-forward input

31

5 Experiments

a) Third car measurements b) Third car front distance

Figure 32. The ‘0 feed-forward input’ experiment results

3. Afterwards, we tested the regulation model shown in Figure 28. To the distance
controller output is added the leader’s speed. The results are shown in Figure 34.
This experiment verified the assumption that the control signal value generated
by the distance regulator is minimized when the leading vehicle measurements
in a combined feedback and feed-forward loops are used. Also the front distance
reached the reference value 4 times faster than in ‘0 feed-forward input’ experiment.

Ref_speed

Speed controller Distance controllerDistance controller

Ref_speed
600 mm/s

Ref_dist
150 mm

Ref_dist
150 mm

Figure 33. The vehicle platoon model with the feed-forward input determined by the leader’s
speed

a) Third car measurements b) Second and third cars front distances

Figure 34. The ‘leader-following’ experiment results

4. This experiment is very similar to the previous one. However the reference speed

32

5.2 Experiments’ results

is sent by the preceding vehicle. We can’t make a conclusion about the influence
of the information flow topology, because there are only three cars in the platoon.

Ref_speedRef_speed

Speed controller Distance controllerDistance controller

Ref_speed
600 mm/s

Ref_dist
150 mm

Ref_dist
150 mm

Figure 35. The vehicle platoon model with the feed-forward input determined by the
predecessor’s speed.

a) Third car measurements b) Second and third cars front distances

Figure 36. The ‘predecessor-following’ experiment results

5. Finally, we demonstrated the capability to change the leading vehicle reference
speed during the experiment. The platoon configurations are the same as in the
previous step.

a) Leader and second car measured speeds b) Second and third cars measured speeds

Figure 37. Reference speed change during the experiment

33

5 Experiments

5.2.1 Distance error
Figure 38 shows the main project result. It demonstrates that depending on the feed-
forward loop presence the distance controller settling time differs.

Figure 38. Third car front distance measurements

We calculated the standard deviation:

𝑠 =

√︃∑︀
𝑖(𝑥𝑖 − 𝑥)2

𝑁 − 1 ,

and the standard error for the front distance measurements:

𝜎𝑥 = 𝑠√
𝑁

.

reference mean standard standard approximate
vehicle value error deviation settling time

non 151,601 0,287 5,111 16 s
leader 148,566 0,434 5,421 4 s
predecessor 148,738 0,306 4,999 4 s

Table 12. Distance error

Obtained results are placed in Table 12. We expected that the feed-forward loop
will not only shorten the settling time, but provide smaller deviation from the desired
value. However this second assumption wasn’t confirmed.

Technical problems

The longest experiment which we managed to do lasted for 45 seconds before the
car restarted. An undesired slotcar restart happens because the car isn’t getting a

34

5.2 Experiments’ results

constant supply of electricity. So the slotcar should be removed from the track and the
communication order is disturbed. If the leader suddenly restarts, the whole experiment
must be stopped. Power for the slotcar is carried by metal strips on the track and is
pitched up by contact brushes which are placed alongside the guide flag. During the ride
they can be displaced and cause the car to disconnect from the track. Some slotcar’s
parts may have expired as well. It’s also important to remember, that we configured
the communication chip inside slotcar as Full Functional Device (Router) and during
constant data exchange its power consumption can’t be neglected. To prevent it in the
next slotcar model a supercapacitor is used for energy storage. It allows to hold the
car functional for 5 s without energy supply.

5.2.2 Future work
The results gained in this project motivate to continue working on it. The new car
model should remove energy supply problems and provide new sensors. It will allow
better data analysis. Beyond the verifications of aforementioned experiments, we would
like to test the communication model shown in Figure 39. The speed regulation cycle
is faster than the distance one. Hence it would be even more interesting to see how
communication influences the output of the speed regulator and if the communication
speed is sufficient.

Figure 39. The speed regulation model with feed-forward loop realized by wireless data
exchange

The communication analysis could have been realised in this project if there was a
time to encode the timeStamp field in the received packets. Unfortunately there is no
information about it in the CC2530-ZNP documentation [21].
The data exchange model could be modified as well, e.g. we can activate timer on all
slotcars and add the synchronization information into the ‘states’ packets. Another idea
for the communication model is based on the current one. However, the coordinator
calls the leader to broadcast and the timer is activated only in case when the data
exchange stops. The goal could be to compare communication models and find the
most efficient one. Finally, we would like to provide experiments with a larger number
of cars and different track forms.

35

6 Conclusion

In this bachelor work the concept of the inter-vehicle communication is introduced
and tested on the real slotcar platoon. This thesis consists of two parts: creating the
communication driver based on the ZigBee standard and preparing the communication
system which allows vehicles to share their measurements.
The first phase was done on the prototype model. The ZigBee standard research was
undertaken and it facilitates choosing optimal configurations, such as nonoverlapping
with Wi-Fi channel, device type enabling the direct communication with each node in
the network, etc.
The second phase of the project started with testing this driver on slotcars. Its
functionality was confirmed. Also we prepared the state automaton in the main program
cycle which determines the slotcar behaviour. It provides address exchange, position
determination, parameters configuration and read out.
To the existing regulation model was added the feed-forward loop realized by
wireless data exchange. Vehicles receive predecessor’s or leader’s speed through a
wireless communication channel. The provided experiments show the smaller distance
controller’s corrections and 4 times faster settling of the reference distance. The results
of this work proves the benefits of inter-vehicles communication. The platoon consists
only of three cars equipped with the CC2530 SoC, hence we can’t say how the topology
of information flow influences the controllers’ work. The new slotcar model currently
being development promises better hardware functionality. The information gained
through this research can be used for the future platform development.

36

Appendix A

Hardware specifications

Table 13. Connection of Kit CC2530 and Disco Kit per SPI1

Pin CC2530 Debug Pin CC2530 P1 + P10 STM32pin

MOSI P18-18 P10-11 PA7
MISO P18-12 P10-9 PA6
CLK P18-16 P10-13 PA5
CS P18-14 P10-29 PC5

MRDY P18-11 P1-7 PC0
SRDY P18-13 P1-3 PC1
CFG0 P20-18 P10-7 PC2
CFG1 P20-19 P10-1 PC3

RESET P20-14 P10-35 PC4

Table 14. Connection of Kit CC2530 and Disco Kit per SPI2

Pin CC2530 Debug Pin CC2530 P1 + P10 STM32pin

MOSI P18-18 P10-11 PB15
MISO P18-12 P10-9 PB14
CLK P18-16 P10-13 PB13
CS P18-14 P10-29 PB12

MRDY P18-11 P1-7 PE9
SRDY P18-13 P1-3 PE10
CFG0 P20-18 P10-7 PE11
CFG1 P20-19 P10-1 PE12

RESET P20-14 P10-35 PE13

37

Appendix A Hardware specifications

Table 15. the CPU clock speed parameters (system_stm32f4xx.c)

STM32F4-Discovery 168 MHz STM32F401C-DISCO 84 MHz

#define PLL_M 8 336
#define PLL_Q 7 4

Table 16. Connection of CC2530 and Secondary Radio Board Connector

CC2530-ZNP signal CC2530 Pin Secondary Radio Board Pin

MOSI PB5 P$6
MISO PB4 P$4
CLK PB3 P$12
CS PB2 P$10

MRDY PC14 P$8
SRDY PC13 P$9
CFG1 PC12 P$3

RESET PC15 P$7

38

Appendix B

ZigBee Interface parameters

Address Audience

0xFFFF All Devices
0xFFFD All Devices with Receiver on Permanently
0xFFFC Routers and Coordinators
0xFFFB Low Power Routers

Table 17. Broadcast addresses

Channel Value

NONE 0x00000000
ALL_CHANNELS 0x07FFF800
CHANNEL 11 0x00000800
CHANNEL 12 0x00001000
CHANNEL 13 0x00002000
CHANNEL 14 0x00004000
CHANNEL 15 0x00008000
CHANNEL 16 0x00010000
CHANNEL 17 0x00020000
CHANNEL 18 0x00040000
CHANNEL 19 0x00080000
CHANNEL 20 0x00100000
CHANNEL 21 0x00200000
CHANNEL 22 0x00400000
CHANNEL 23 0x00800000
CHANNEL 24 0x01000000
CHANNEL 25 0x02000000
CHANNEL 26 0x04000000

Table 18. Channel values

39

Appendix B ZigBee Interface parameters

Subsystem Value Subsystem Name

0 RPC Error interface
1 SYS interface
2 Reserved
3 Reserved
4 AF interface
5 ZDO interface
6 Simple API interface
7 UTIL interface
8-32 Reserved

Table 19. Subsystem values

Value Name Description

0x00 DEV_HOLD All Devices
0x01 DEV_INIT Initialized - not connected to anything
0x02 DEV_NWK_DISC Discovering PAN’s to join
0x03 DEV_NWK_JOINING Joining a PAN
0x04 DEV_NWK_REJOIN ReJoining a PAN, only for end devices
0x05 DEV_END_DEVICE_UNAUTH Joined but not yet authenticated by trust center
0x06 DEV_END_DEVICE Started as device after authentication
0x07 DEV_ROUTER Device joined, authenticated and is a router
0x08 DEV_COORD_STARTING Starting as Zigbee Coordinator
0x09 DEV_ZB_COORD Started as Zigbee Coordinator
0x10 DEV_NWK_ORPHAN Device has lost information about its parent

Table 20. State values for ZDO_STATE_CHANGE_IND command

Parameter Size Description

0x00 1 byte Device state - See 20
0x01 8 bytes Device IEEE address
0x02 2 bytes Device short address
0x03 2 bytes Short address of the parent device
0x04 8 bytes IEEE address of the parent device
0x05 1 byte Channel on which the ZigBee network is operating
0x06 2 bytes PAN ID of the ZigBee network
0x07 8 bytes Extended PAN Id of the ZigBee network

Table 21. Parameter values for ZB_GET_DEVICE_INFO command

40

Appendix C

Commands for CC2530-ZNP configuration

C.1 Power-up
C.1.1 System state after reset (POLL)

Table 22. RESPONSE: SYS_RESET_IND
Length = 0x06 Cmd0 = 0x41 Cmd1 = 0x80 Reason TransRev = 0x02

ProductId = 0x01 MajorRel MinorRel HwRev

C.1.2 The device startup options configuration (SREQ)

Table 23. COMMAND: ZCD_NV_STARTUP_OPTION

Length = 0x01 Cmd0 = 0x26 Cmd1 = 0x05 ConfigId = 0x03

Len = 0x01 Value = 0x02

Table 24. RESPONSE: ZCD_NV_STARTUP_OPTION

Length = 0x01 Cmd0 = 0x66 Cmd1 = 0x05 Status

C.2 Start-up
C.2.1 Channel (SREQ)

Table 25. COMMAND: ZCD_NV_CHANLIST

Length = 0x03 Cmd0 = 0x26 Cmd1 = 0x05 ConfigId = 0x84

Len = 0x04 Value: 0x00 0x00 0x08 0x00

41

Appendix C Commands for CC2530-ZNP configuration

Table 26. RESPONSE: ZCD_NV_CHANLIST

Length = 0x01 Cmd0 = 0x66 Cmd1 = 0x05 Status

C.2.2 Device logical role (SREQ)
The value parameter can be set 0x00 for COORDINATOR or 0x01 for ROUTER.

Table 27. COMMAND: ZCD_NV_LOGICAL_TYPE

Length = 0x03 Cmd0 = 0x26 Cmd1 = 0x05 ConfigId = 0x87

Len = 0x01 Value

Table 28. RESPONSE: ZCD_NV_LOGICAL_TYPE

Length = 0x01 Cmd0 = 0x66 Cmd1 = 0x05 Status

C.2.3 PAN ID (SREQ)

Table 29. COMMAND: ZCD_NV_PANID

Length = 0x03 Cmd0 = 0x26 Cmd1 = 0x05 ConfigId = 0x83

Len = 0x02 Value: 0x03 0x00

Table 30. RESPONSE: ZCD_NV_PANID

Length = 0x01 Cmd0 = 0x66 Cmd1 = 0x05 Status

C.2.4 Simple Descriptor (SREQ). Application profile and endpoint

Table 31. COMMAND: AF_REGISTER

Length = 0x17 Cmd0 = 0x24 Cmd1 = 0x00 EndPoint = 0x08

AppProfId = 0x0D AppProfId = 0xBF AppDeviceId = 0x00

42

C.3 Transmit data (SREQ)

AppDeviceId = 0x00 AppDevVer = 0x01 LatencyReq = 0x00

AppNumInClusters = 0x00 AppNumOutClusters = 0x00

Table 32. RESPONSE: AF_REGISTER

Length = 0x01 Cmd0 = 0x64 Cmd1 = 0x00 Status

C.2.5 Start device in the network (SREQ)

Table 33. COMMAND: ZDO_STARTUP_FROM_APP

Length = 0x01 Cmd0 = 0x25 Cmd1 = 0x40 StartDelay: 0x00 0x00

Table 34. RESPONSE: ZDO_STARTUP_FROM_APP

Length = 0x01 Cmd0 = 0x65 Cmd1 = 0x40 Status

C.2.6 Device status (POLL)

Table 35. RESPONSE: ZDO_STATE_CHANGE_IND

Length = 0x01 Cmd0 = 0x45 Cmd1 = 0xC0 State

The application processor should receive the ZDO_STATE_CHANGE_IND
commands(POLL) until the State gets the DEV_ROUTER (0x07) value in case of
Router or DEV_ZB_COORD (0x09) value in case of Coordinator. The list of ZDO
states is placed in the table 20.

C.3 Transmit data (SREQ)

Table 36. COMMAND: AF_DATA_REQUEST

Length = 0x0A-0x6D Cmd0 = 0x24 Cmd1 = 0x01 DstShortAddr = LSB

DstShortAddr = MSB DestEndpoint = 0x09 SrcEndpoint = 0x09

ClusterID: 0x34 0x12 TransID = 0x01 Options = 0x90 Radius = 0x04

43

Appendix C Commands for CC2530-ZNP configuration

Len Data

For no ACK data request the options field has the 0x80 value. The data field can
contains 0 to 99 bytes of data without any security.

Table 37. RESPONSE: AF_DATA_REQUEST

Length = 0x01 Cmd0 = 0x64 Cmd1 = 0x01 Status

C.4 Receive Data (POLL)

Table 38. RESPONSE: AF_INCOMING_MSG

Length = 0x11-0x74 Cmd0 = 0x44 Cmd1 = 0x81 GroupId GroupId

ClustedId = 0x34 ClusterId = 0x12 SrcAddr SrcAddr SrcEndpoint = 0x09

DestEndpoint = 0x09 WasBroadcast LinkQuality SecurityUse TimeStamp

TransSeqNumber Len Data

The data field can contains 0 to 99 bytes of data without any security.

C.5 Get device information (SREQ)
The 0x02 parameter is used, CC2530 returns it’s short address. See the full list of
parameters 21.

Table 39. COMMAND: ZB_GET_DEVICE_INFO

Length = 0x01 Cmd0 = 0x26 Cmd1 = 0x06 Param = 0x02

Table 40. RESPONSE: ZB_GET_DEVICE_INFO

Length = 0x09 Cmd0 = 0x66 Cmd1 = 0x06 Param

Value[7] = LSB ... Value[0] = MSB

The value always has 8 bytes in length even though the actual value may be smaller
in size. The remaining bytes can take any value.

44

Appendix D

The attached CD content

∙ Electronic version of the thesis in PDF,
∙ project video,
∙ project source code (Platoon_implementation/fw),
∙ description of the project part responsible for ZigBee driver and state automaton

implementation (Platoon_implementation/doxygen/html/index.html).

45

Bibliography

[1] Li Li and Fei-Yue Wang. Advanced Motion Control and Sensing for Intelligent
Vehicles. 2007.

[2] S. Tsugawa. “Super Smart Vehicle System -Its Concept and Preliminary Works”.
In: Vehicle Navigation and Information Systems Conference Proceedings. 1991.

[3] AA4CC group. Distributed control of spatially distributed systems. url: http:
//aa4cc.dce.fel.cvut.cz/content/distributed- control- spatially-
distributed-systems (visited on 30/04/2015).

[4] Eclipse. Eclipse CDT. url: http : / / www . eclipse . org / cdt/ (visited on
21/01/2015).

[5] Martin Lad. “Design and implementation of a control system for a slot car”.
Bachelor thesis. CTU Prague, 2014.

[6] Jan Moravec. “Distribuované řízení kolon vozidel na autodráze”. Bachelor thesis.
CTU Prague, 2014.

[7] Texas Instruments. CC2530. url: http://www.ti.com/product/cc2530 (visited
on 07/05/2015).

[8] SmartRF05 Evaluation Board. Texas Instruments. 2010.
[9] Jaromir Dvorak. Scheme Slotcar v1r1. 2014.

[10] Texas Instruments. CC2530 ZigBee Development Kit. url: http://www.ti.com/
tool/cc2530zdk (visited on 14/01/2015).

[11] Z-Stack User’s Guide For CC2530 ZigBee-PRO Network Processor Sample
Applications. Texas Instruments. 2010.

[12] Texas Instruments. SmartRF Protocol Packet Sniffer. url: http://www.ti.com/
tool/packet-sniffer (visited on 14/01/2015).

[13] Texas Instruments. SmartRF Flash Programmer. url: http://www.ti.com/
tool/flash-programmer (visited on 14/01/2015).

[14] UM1669 User manual Discovery kit for STM32F401 line. STMicroelectronics.
2013.

[15] Shahin Farahani. ZigBee Wireless Networks and Transceivers. 2011.
[16] Atmel Corporation. Atmel AT02845: Coexistence between ZigBee and Other

2.4GHz Products. url: http : / / www . atmel . com / Images / Atmel - 42190 -
Coexistence - between - ZigBee - and - Other - 24GHz - Products _ AP - Note _
AT02845.pdf (visited on 06/05/2015).

[17] Triple Security in ZigBee: Link, Network and Application layer Encryptions. url:
http : / / www . libelium . com / security - in - zigbee - networks/ (visited on
30/04/2015).

[18] Triple Security in ZigBee: Link, Network and Application layer Encryptions. url:
https://hal.archives-ouvertes.fr/inria-00187849/document (visited on
30/04/2015).

[19] Wikipedia. IEEE 802.15.4. url: http://en.wikipedia.org/wiki/IEEE_802.
15.4 (visited on 30/12/2014).

[20] Wikipedia. Direct-sequence spread spectrum. url: http://en.wikipedia.org/
wiki/Direct-sequence_spread_spectrum (visited on 08/05/2015).

[21] CC2530-ZNP Interface Specification. Texas Instruments. 2010-2013.

46

http://aa4cc.dce.fel.cvut.cz/content/distributed-control-spatially-distributed-systems
http://aa4cc.dce.fel.cvut.cz/content/distributed-control-spatially-distributed-systems
http://aa4cc.dce.fel.cvut.cz/content/distributed-control-spatially-distributed-systems
http://www.eclipse.org/cdt/
http://www.ti.com/product/cc2530
http://www.ti.com/tool/cc2530zdk
http://www.ti.com/tool/cc2530zdk
http://www.ti.com/tool/packet-sniffer
http://www.ti.com/tool/packet-sniffer
http://www.ti.com/tool/flash-programmer
http://www.ti.com/tool/flash-programmer
http://www.atmel.com/Images/Atmel-42190-Coexistence-between-ZigBee-and-Other-24GHz-Products_AP-Note_AT02845.pdf
http://www.atmel.com/Images/Atmel-42190-Coexistence-between-ZigBee-and-Other-24GHz-Products_AP-Note_AT02845.pdf
http://www.atmel.com/Images/Atmel-42190-Coexistence-between-ZigBee-and-Other-24GHz-Products_AP-Note_AT02845.pdf
http://www.libelium.com/security-in-zigbee-networks/
https://hal.archives-ouvertes.fr/inria-00187849/document
http://en.wikipedia.org/wiki/IEEE_802.15.4
http://en.wikipedia.org/wiki/IEEE_802.15.4
http://en.wikipedia.org/wiki/Direct-sequence_spread_spectrum
http://en.wikipedia.org/wiki/Direct-sequence_spread_spectrum

Bibliography

[22] Inc. Texas Instruments. Z-Stack Developer’s Guide. 2006-2012.
[23] Freaklabs. Zigbee Network Layer Tutorial - Part 4: Network Management 1. url:

http://www.freaklabs.org/index.php/Blog/Zigbee/A-Brief-Tutorial-
on-the-ZCL-with-Examples-from-FreakZ.html (visited on 01/05/2015).

[24] Freaklabs. Zigbee Network Layer Tutorial - Part 4: Network Management 1.
url: http : / / www . freaklabs . org / index . php / Blog / Zigbee / Zigbee -
Network - Layer - Tutorial - Part - 4 - Network - Management - 1 . html (visited
on 03/01/2015).

[25] Wikipedia. Cascade control. url: http : / / en . wikipedia . org / wiki / PID _
controller#Cascade_control (visited on 15/05/2015).

[26] Jennic. ZigBee Software Architecture. url: http : / / www . jennic . com /
elearning/zigbee/files/content_frame.htm (visited on 06/05/2015).

[27] AA4CC. Slotcar Platoon System Description. url: https://support.dce.felk.
cvut . cz / mediawiki / index . php / Slotcar _ Platoon _ System _ Description
(visited on 01/21/2015).

[28] Low Power Wireless and ZigBee Networking Workshop. ZigBee Stack. url: http:
//processors.wiki.ti.com/images/8/8a/08_-_ZigBee_Stack.pdf (visited
on 03/01/2015).

[29] Freaklabs. Zigbee Network Layer Tutorial - Part 3: Broadcasts and Neighbors.
url: http://www.freaklabs.org/index.php/Blog/Zigbee/Zigbee-Network-
Layer - Tutorial - Part - 3 - Broadcasts - and - Neighbors . html (visited on
03/01/2015).

[30] Freaklabs. Zigbee Network Layer Tutorial - Part 2: The Rx Data Path. url: http:
//www.freaklabs.org/index.php/Blog/Zigbee/Zigbee- Network- Layer-
Tutorial-Part-2-The-Rx-Data-Path.html (visited on 03/01/2015).

[31] Freaklabs. Zigbee Network Layer Tutorial - Part 1: The Tx Data Path. url: http:
//www.freaklabs.org/index.php/Blog/Zigbee/Zigbee- Network- Layer-
Tutorial-Part-1-The-Tx-Data-Path.html (visited on 03/01/2015).

47

http://www.freaklabs.org/index.php/Blog/Zigbee/A-Brief-Tutorial-on-the-ZCL-with-Examples-from-FreakZ.html
http://www.freaklabs.org/index.php/Blog/Zigbee/A-Brief-Tutorial-on-the-ZCL-with-Examples-from-FreakZ.html
http://www.freaklabs.org/index.php/Blog/Zigbee/Zigbee-Network-Layer-Tutorial-Part-4-Network-Management-1.html
http://www.freaklabs.org/index.php/Blog/Zigbee/Zigbee-Network-Layer-Tutorial-Part-4-Network-Management-1.html
http://en.wikipedia.org/wiki/PID_controller#Cascade_control
http://en.wikipedia.org/wiki/PID_controller#Cascade_control
http://www.jennic.com/elearning/zigbee/files/content_frame.htm
http://www.jennic.com/elearning/zigbee/files/content_frame.htm
https://support.dce.felk.cvut.cz/mediawiki/index.php/Slotcar_Platoon_System_Description
https://support.dce.felk.cvut.cz/mediawiki/index.php/Slotcar_Platoon_System_Description
http://processors.wiki.ti.com/images/8/8a/08_-_ZigBee_Stack.pdf
http://processors.wiki.ti.com/images/8/8a/08_-_ZigBee_Stack.pdf
http://www.freaklabs.org/index.php/Blog/Zigbee/Zigbee-Network-Layer-Tutorial-Part-3-Broadcasts-and-Neighbors.html
http://www.freaklabs.org/index.php/Blog/Zigbee/Zigbee-Network-Layer-Tutorial-Part-3-Broadcasts-and-Neighbors.html
http://www.freaklabs.org/index.php/Blog/Zigbee/Zigbee-Network-Layer-Tutorial-Part-2-The-Rx-Data-Path.html
http://www.freaklabs.org/index.php/Blog/Zigbee/Zigbee-Network-Layer-Tutorial-Part-2-The-Rx-Data-Path.html
http://www.freaklabs.org/index.php/Blog/Zigbee/Zigbee-Network-Layer-Tutorial-Part-2-The-Rx-Data-Path.html
http://www.freaklabs.org/index.php/Blog/Zigbee/Zigbee-Network-Layer-Tutorial-Part-1-The-Tx-Data-Path.html
http://www.freaklabs.org/index.php/Blog/Zigbee/Zigbee-Network-Layer-Tutorial-Part-1-The-Tx-Data-Path.html
http://www.freaklabs.org/index.php/Blog/Zigbee/Zigbee-Network-Layer-Tutorial-Part-1-The-Tx-Data-Path.html

	Introduction
	Motivation
	The Slotcar platooning project

	CC2530 communication processor
	The secondary radio board implementation
	Prototype model for the ZigBee driver development
	CC2530 ZigBee Development Kit
	STM32F401C-DISCO

	ZigBee standard specification
	The ZigBee base: IEEE 802.15.4
	Interaction between the ZNP and the application processor
	Initializing SPI
	STM32F4 External interrupts

	CC2530-ZNP power-up procedure
	CC2530-ZNP startup procedure
	Network formation
	Network Discovery/Join
	Data Transfer
	The data path in NWK layer

	ZigBee addressing

	Summary

	Communication infrastructure
	The ZNP driver implementation
	Main program layer services
	Register leader
	Send address
	Slot-car parameters configuration
	Position determination
	Experiment

	Experiments
	The regulation model
	Experiments' results
	Distance error
	Technical problems

	Future work

	Conclusion
	Hardware specifications
	ZigBee Interface parameters
	Commands for CC2530-ZNP configuration
	Power-up
	System state after reset (POLL)
	The device startup options configuration (SREQ)

	Start-up
	Channel (SREQ)
	Device logical role (SREQ)
	PAN ID (SREQ)
	Simple Descriptor (SREQ). Application profile and endpoint
	Start device in the network (SREQ)
	Device status (POLL)

	Transmit data (SREQ)
	Receive Data (POLL)
	Get device information (SREQ)

	The attached CD content
	Bibliography

