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Abstract

Recent advances in technology have allowed scientists to conduct research in a

systematic way by incorporating additional knowledge and to gain deeper insight on

various biological processes in a domain of their study. One of the active research

works where a great demand on the knowledge integration based approaches can be

observed is the construction of phenotype molecular models or in particular biomedi-

cal disease models. Several studies have successfully applied statistical learning tech-

niques by using gene expression (GE) profiles for building phenotype classification

models. A lot of other works showed that DNA methylation (DNAm) brings new

information and can be the main factor of GE regulation. Focusing on a dataset

of patients with Myelodysplastic Syndrome (MDS) disease, we propose a prediction

model that integrates DNAm with GE data in order to discover new signatures and

improve the classification performance. Two types of integration, blind and smart

integration, were employed and their performances were compared in the work. We

show that for most of the disease associated treatment response types integration of

DNAm improves the predictive power. We demonstrate that both GE and DNAm

profiles contain specific patterns that contribute to classification of phenotype and

the model with knowledge based integration outperforms the remaining models.
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Abstrakt

Nedávný technologický rozvoj umožnil systematické využit́ı apriorńı znablosti

v biologickém výzkumu. Ćılem je hlubš́ı vhled do podstaty biologických proces̊u.

Jednou z nejčastěǰśıch oblast́ı využit́ı znalostńıch př́ıstup̊u je oblast tvorby fenoty-

pových molekulárńıch model̊u, kdy fenotyp často odpov́ıdá r̊uzným typ̊um a stupň̊um

konkrétńı nemoci. Dř́ıvěǰśı úspěšné studie byly založeny zejména na statistickém

učeńı založeném na profilech genové exprese (GE). Pozděǰśı práce ukázaly, že i DNA

metylačńı (DNAm) data přinášej́ı novou informaci a mohou být jedńım z hlavńıch

faktor̊u GE regulace. V této práci se zaměřujeme na konkrétńı data pacient̊u s

myleodysplastickým syndromem (MDS). Navrhujeme prediktivńı model, který in-

tegruje DNAm s GE daty s ćılem vylepšit prediktivńı přesnost MDS klasifikátoru,

popř́ıpadě nalézt konkrétńı prediktivńı signatury. Porovnáváme dva typy integrace

DNAm s GE daty. Prvńı je slepá, tj. neinformovaná, druhá je založená na znalostech

interakćı mezi oběma typy dat. V práci demonstrujeme, že DNAm data napomáhaj́ı

zvýšeńı přesnosti MDS klasifikace. Dále ukazujeme, že jak GE, tak i DNAm data,

generuj́ı užitečné prediktivńı vzory a znalostńı modely svou přesnost́ı překonávaj́ı

zbylé př́ıstupy.
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Chapter 1

Introduction

DNA methylation is one of the most widely studied epigenetic mechanisms in

human cells. Since it was proposed in 1975 that DNAm might be responsible for

a stable maintenance of a particular gene expression pattern through mitotic cell

division [18] a lot of research work provided evidences to support this concept and

interest continues to grow rapidly resulting on expansion of a new areas of research

[8, 27]. Now It is known fact that regulatory elements of one individual can be

adjusted to outward conditions and transferred to its descendants. DNA methylation

plays a crucial role in development, differentiation and diseases such as diabetes,

schizophrenia, aging, and multiple forms of cancer.

Over the last few years with the advances in biotechnology massive amounts of

data have been generated. Microarray and Next Generation Sequencing (NGS) tech-

nologies allow researchers to monitor and study the whole genome transcription level,

mutation, DNAm, DNA copy number change, microRNA and protein expressions in a

systematic way. This makes the integration of different types of data an indispensable

component for biomedical research.

Genetic and epigenetic studies have provided important new insights in the un-

derlying pathology of diseases such as Acute Myeloid Leukemia (AML) [16, 37, 22],

Breast cancer [34, 3], MDS [5] and many others. Some types of experiments where GE

data have been employed to identify sets of genes accomplished an accurate prediction
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rates for disease subtypes or phenotypes of interest. For instance, some subtypes of

AML like t(8;21), t(15;17), inv(16) or CEBRA can be predicted very well using GE

profiles. However, for the same AML it is much more difficult to predict subtypes

FLT3 and NPM1 in a similar manner using GE profiles [39]. This phenomenon occurs

in many other cell type classification tasks and it is an indication that GE profiles do

not always contain features that are sufficiently discriminative to distinguish experi-

mental study groups. In another kind of studies [25, 26] DNAm data alone was used

to construct prediction models and when their performance was compared to the ones

build with GE data [35] they demonstrated the results more or less the same nature.

Insights from previous research works indicate that DNAm can have complemen-

tary impact when exploited in phenotype models and, specifically, in disease out-

come/subtype classification models. Our aim in this work is to propose a method

for phenotype model construction which is based on integration of DNAm and GE

data. We suggest that identification of DNAm patterns which are either interact with

phenotype predictor genes or are key predictors themselves and their utilization in

phenotype molecular models can allow us to obtain better results than with models

built on only one type of data (GE or DNAm) or combination of two without taking

into account their interplay.

In this study to demonstrate our approach we used dataset of patients with MDS

disease of different risk levels. In the next chapter the relevant biological notions, gen-

eral pipeline for differential expression and methylation analyses as well as integrative

study of GE and DNAm are introduced. Chapter 3 covers techniques for phenotype

model construction and proposed model is described in Chapter 4. Chapter 5 illus-

trates experimental results and a comparison of a designed models.
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Chapter 2

Phenotype molecular models

In this chapter, we provide the relevant biological background, some important

data analysis procedures and the task definition. Brief definition of necessary biolog-

ical terms facilitates the understanding of goals and ideas behind the further notions

and computational methods presented in the work. However, for the detailed de-

scription it is advised to refer to the following studies [23, 20, 29, 30]. We present the

general pipeline for DNAm data analysis. Finally, chapter ends with description and

aim of the task.

2.1 Biological background

2.1.1 Gene expression and regulation

GE is the process by which the genetic code, the nucleotide sequence, of a gene is

used in the synthesis of a functional gene product. These products are often proteins,

transfer RNAs, ribosomal RNAs and other functional units. Proteins then perform

essential functions as enzymes, hormones and receptors. GE is one of the most im-
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portant processes in all known life (eukaryotes, prokaryotes and viruses). It usually

includes steps such as transcription, RNA splicing, translation and post-translational

modification of a protein. The amount of an end product, its structure and function

is determined by gene regulation that is comprised by a wide range of mechanisms

used by cells. GE can be regulated in transcription, post-transcription, translation

or mRNA degradation stages. The most extensively utilized one is transcription.

Transcription is the production of messenger RNA (mRNA) by the enzyme RNA

polymerase and the processing of the resulting mRNA molecule. Regulation of tran-

scription is either as a result of interaction of some control factor with the gene or

transcription machinery, or non-sequence changes in DNA structure after transcrip-

tion. The former kind of regulation is known as genetic or modulation and the latter

as epigenetic.

Regulation at the post-transcriptional stage is controlled by importing and ex-

porting proteins that influence the transport of RNA in and out of the nucleus.

Translation is the use of mRNA to direct protein synthesis. Regulation of GE at

translation stage is less common. Translational regulation is used by antibiotics and

toxins.

2.1.2 DNA methylation

DNAm is a widespread form of epigenetic regulation of GE. It has its roles in

heritable transcription silencing and transcription regulation.

Methylation of DNA is one of the epigenetic mechanisms that cells use to control

expression. DNAm refers to the addition of a methyl group (-CH3) covalently to the

base cytosine (C) in the dinucleotide 5’-CpG-3’ where CpG refers to the base cytosine

(C) linked by a phosphate bond to the base guanine (G) in the DNA nucleotide

sequence. Unmethylated CpGs are grouped together and form the ’CpG islands’.

Their location in humane genome is in promoter region. In this region we can observe

the transcription of a particular gene [23].
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Figure 2.1: Higher-order order chromatin structure is formed by wrapping of the

double stranded DNA around histone proteins. Methylation (Me) can affect the

formation of the chromatin structure, which in turn regulates DNA transcription and

thus activates or inactivates genes. (Source: Nature 2008; 454: 711–755)

DNAm can result transcriptional silencing of a gene. This occurs due to GE

inhibitory potential of DNAm which is accomplished by preventing the binding of

transcription factors to the promoter region. As a result genes go into so called

“off” state. When located at gene promoters, DNAm is usually a repressive mark.

However, CpG DNAm is increased in the gene bodies of actively transcribed genes in

plants and mammals.

Epigenetic change of human genome by DNAm is heritable. It is essential this

process to occur during embryonic development. Furthermore, aberrant methylation

patterns have been associated with many types of human diseases. This can happen

due to either hyper- or hypo-methylation. Hypermethylation takes place at CpG
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islands in the promoter region and is associated with gene inactivation. A lower level

of leukocyte DNAm is linked with many types of cancer. Global hypo-methylation has

also been implicated in the development and progression of cancer through different

mechanisms. Typically, there is hyper-methylation of tumor suppressor genes and

hypo-methylation of oncogenes.

2.1.3 Detection methods

There are a lot of procedures for detecting and determining the abundance of GE

and methylation sites. In practice it is easier to detect mRNA than detecting the final

gene product for the measurement of expression. Some of the popular methods for

quantifying the levels of mRNA are Northern blot, Reverse Transcription quantitative

real-time Polymerase Chain Reaction or RT-qPCR, hybridization microarrays and

RNA sequencing (RNA-Seq).

Northern blotting or Northern analysis presents several advantages over other

techniques. It is the most easiest method to determine transcript size, identify al-

ternatively spliced transcripts and multi-gene family members. It can also be used

to directly compare the relative abundance of a given message between all the sam-

ples on a blot. Despite these advantages, there are some limitations associated with

Northern analysis. The slight sample degradation can extremely affect the quality of

data and ability of expression quantification. Other disadvantages of standard North-

ern procedure are least sensitivity of the reviewed techniques and difficulty associated

with multiple probe analysis. However, there are improvements on standard Northern

blotting which increased to substantial degree its sensitivity.

Another approach for measuring mRNA abundance is RT-qPCR. In this technique

reverse transcription is followed by quantitative PCR. First a complementary DNA

(cDNA) is generated from mRNA. Then cDNA is amplified exponentially by PCR.

qPCR can produce an absolute measurement of the number of copies of original

mRNA. RT-PCR is th most sensitive method of mRNA detection available. PCR

based approaches have became widespread for quantifying individual mRNAs partly

due to a reason that individual mRNA species are expressed in small quantities that
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makes detection difficult.

One of the widely used approaches for expression quantitation is the hybridization

microarray. DNA microarrays can be used to measure the expression levels of large

numbers of genes simultaneously which enabled scientists to accomplish many genetic

tests in parallel in a one microarray experiment. DNA microarrays can be used

to measure changes in expression levels, to detect single nucleotide polymorphisms

(SNPs) or to genotype. Two technologies oligonucleotide arrays and cDNA arrays

have emerged for the construction of DNA microarays. Oligonucleotide arrays, or

also called one-color arrays, are variable efficient in hybridization than cDNA arrays.

They can synthesize multiple probes complementary to each gene of interest by using

short oligonucleotide sequences of length 30-60 each designed to represent a single

gene. cDNA arrays, or two-color arrays, are typically hybridized with cDNA prepared

from two samples to be compared (control versus treatment samples) and that are

labeled with two different fluorophores. Absolute levels of GE can be determined with

cDNA array, however, in practice or in data analysis relative differences in expression

is a more preferred choice.

RNA-seq is the approach that uses the capabilities of NGS. This approach per-

mits to produce vast quantities of sequence data that can be matched to a refer-

ence genome. Although, methods based on NGS are time-consuming, expensive and

resource-intensive, they provide more information and data of whole genome giving

rise to their utilization and exploitation for various kinds of analyses.

For the last few years the most often used in practice array based technology for

DNAm processing and profiling is Illumina BeadArray Technology. Illumina adapted

its BeadArray technology for genotyping to recognise bisulphite-converted DNA [7].

The Illumina BeadArray assays use oligonucleotides conjugated to bead types to mea-

sure specific target sequences, measuring multiple beads per bead type. The bead

types are summarized by the average signal for methylated (M) and unmethylated (U)

alleles, and are used to measure the methylation level. Two methods have been pro-

posed to do this measurement. One is called Beta-value and it is computed according

to the following formula:
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Beta =
Max(M, 0)

Max(M, 0) + Max(U, 0) + a
(2.1)

A Beta-value of 0 equates to an unmethylated site and 1 to a fully methylated

CpG site and it can be interpreted as the percentage of methylation. Here a – a small

additive constant. Genome Studio uses for this constant 100. However, it is shown in

[13, 14] that Beta-value based methods have severe heteroscedasticity in the low and

high methylation range, which imposes serious challenges in applying many statistic

models. Another method for measuring the methylation level is referred as M-value

method. M-value is the log2 ratio of methylated and unmethylated probe intensities

as depicted in (2.2).

M = log 2
M

U
(2.2)

M-value method is approximately homoscedastic in the entire methylation range.

As a result, it is more statistically valid in differential and other statistic analysis

[13, 14].

Illumina has developed three platforms for array-based assessment of DNAm:

GoldenGate, Infinium Human Methylation27 or 27k array design and the Infinium

HD 450K or 450k array design, which all use two fluorescent dye colors but differ in

the chemistries used to recognize the bisulphite-converted sequence. Now, most of

the studies focus on the Infinium arrays, as the GoldenGate array has been phased

out from production. Illumina Infinium assay utilizes a pair of probes, methylated

and unmethylated probes, to measure the intensities of methylated and unmethylated

alleles at the interrogated CpG site. As the name suggests it allows the user to map

single methylation resolution for 27,578 CpG sites across over 14,000 genes. 450k

array design measures more than 450,000 CpG positions and it is employed in most

of the recent experiments.
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2.2 DNA methylation analysis

Several different methods for quality control, preprocessing and statistical analy-

sis of microarray data were presented in a last few years. However, distinction has to

be made among them when methylation data is concerned for analysis. Initially, most

of the methods were based on the assumptions and characteristics of GE. Depend-

ing on the specific traits of assessment, nature and distribution of DNAm intensities

certain adjustments to the available techniques have been made and also separate

procedures have been evolved. In this section we try to address the differences and

challenges of applying such procedures for DNAm analysis.

2.2.1 Exploratory analysis

Exploratory data analysis is a way of visually analyzing data to summarize its

main characteristics. It is often the first step used in most of the data analysis

experiments and it can be performed in a several different ways depending on the

goal of visualization. One may want to know if there are substantial amount of

noise or measurement errors accompanied with the data, or whether some additional

information can be discovered. Here we focus our attention on the methods commonly

used for biological and particularly for microarray datasets.

After obtaining the data it is important to observe how samples or features are

distributed. This can tell us what kind of filtration, adjustment or normalization

techniques are better to be applied or are not needed at all. Usually, when we work

with microarray data, certain assumptions are taken into considerations. Some of

them can be the data source, type of experiment and the dimensionality of dataset.

We may want to know if the data comes from human beings, plants or animals, how

many people have conducted the experiment, in what way the tasks were distributed,

what type of technology is used for measurements and many other relevant infor-

mation. Being informed about these characteristics of our experiments may narrow

down several other considerations to a great extent and form more accurate statistical

hypothesis in a further stages.
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Since microarray data have a large dimensionality, we can not simply plot and

view its distribution, for instance, with scatter plots. In practice, often, dimensional-

ity reduction based techniques are used for biomedical data. First, many researchers

start the analysis with unsupervised learning technique. Clustering the the data into

groups of genes/methylation sites or classes of samples is the most frequently em-

ployed technique and, generally, here the main point is not to discover a new type of

class, which is sometimes the case, but rather with the aim of understanding the data,

such as detection of genes’ patterns, outliers, batch effects and others. In addition to

clustering, scatter plots of dimensionality scaled approaches are also popular in this

domain.

In this work, we considered hierarchical clustering and two of the dimensional-

ity scaling based plots: Principal Component Analysis (PCA) and Multidimensional

Scaling (MDSc). With hierarchical clustering, by joining the genes which have simi-

larity in their expression where similarity is defined by distance metrics we can identify

such groups of probes that are “turned on/off” in response to the same experimental

factor. Briefly, it is a recursive approach and clusters can be constructed either in a

bottom-up (agglomerative) or top-down (divisive) way. In bottom-up approach we

go by merging the similar probes and then clusters of probes. In top-way case, we

split iteratively the set of probes until only one probe is left in a set. At the end we

have a tree or dendrogram, and partitions result by cutting it in some level. Distance

between two probes of GE/DNAm can be computed with Euclidean, Manhattan dis-

tance or with Pearson correlation. Similarity among clusters of GEs are identified in

one of following ways:

• Single linkage: Two most similar expressions are concerned;

• Complete linkage: Two most distant objects are concerned;

• Average linkage: Average pair distance is computed;

• Centroid: Distance of central elements is used for similarity

In Results section we show an outcome of applying hierarchical clustering to our

DNAm data.
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Another way of visualizing the data is by using scatter plots, but, first, producing

the transformation of data from higher to lower feature space is required, since each

sample has tens of thousands features. For this purpose, scientists usually employ

PCA or MDSc plots. PCA is a way to describe samples with an artificial smaller

number of variables, called principal components, that account for most of the vari-

ance in the observed variables. The principal components serve as a predictor in a

further representation of dataset. MDSc provides a visual representation of the pat-

tern of similarities or dissimilarities among a set of objects. In a MDSc scatter plot

samples that are perceived to be similar to each other are placed near each other and

those that are perceived to be different are placed far away from each other. The

more detailed description of PCA and MDSc can be found in [32, 10]. Application of

these methods to our data and demonstration of scatter plots are provided in Results

section.

2.2.2 Quality control and preprocessing

Quality assessment and preprocessing methods for DNAm datasets are specifi-

cally designed by taking into considerations the methylation specific distribution of

the data. It is common in almost all types of quality control experiments to observe

the distribution of data keeping in mind the process we are analyzing. When we draw

a density plot of DNAm we expect more frequency of methylation status with higher

values in experimental group than in control group. However, if we try to view this

in a density graph drawn for Beta-values it might not be much observable than when

we do the same for M-values. The reason for this is explained in [13, 14]. These

studies report that for differential methylation analysis it is recommended to con-

duct experiments with M-values. Therefore it is always advisable to be aware of the

consequences of choosing the type of measurement on the outcomes to be obtained

from the studies. Since we are going to perform differential analysis of DNAm data

and density plot is the first step to visualize this phenomenon we further base our

experiments on M-values.

We cannot claim a sample has quality issue if its distribution is quite different
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from others. Red and green colors are used by Illumina to label the final extended base

following the hybridization of methylated or unmethylated probes. However there is

a difference in labeling efficiency and scanning properties of two color channels and

this might result the intensities measured in two color channels become imbalanced.

We can not ignore color imbalance, because color effects may not necessarily be linear

and most of the cases they are not. Therefore, we need to check color balance as it is

also one of the indicators of samples’ quality.

We can employ a method for sample quality assessment which is based on the

across sample distribution and CpG-site intensity. CpG-site intensity is defined as

sum of the methylated and unmethylated probe intensities. It is in proportion to

the total copies of CpG sites, because only one probe can be bound on a particular

CpG site. Also, it can be deduced that methylation levels (log ratio of methylated

and unmethylated intensities) changes should not have substantial affect on CpG-site

intensity.

It is not appropriate to directly apply normalization methods developed for GE

microarray, because many assumptions used for expression data are not valid for

methylation. One option is to use quantile normalization method. There are variants

of this method for both GE and DNAm data. When applied to methylation probes

it considers the sparsity of distribution.

2.2.3 Differential methylation analysis

The task of gene differential expression analysis has become popular mainly after

being able to get access to the large amount of data in a form of microarray. There

are different approaches that can be considered in this kind of analysis. Most of the

used and successfully applied ones are statistical tests and their modifications for GE

data. The overview of these methods for microarray experiments is provided in [11].

Although most of the classic and newly developed statistical approaches for mi-

croarray GE data can be used for DNAm profiles as well, some researchers proposed

that detecting significantly methylated regions might be more suitable than just sin-
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gle methylation sites. Searching for significantly methylated regions can have more

biological interest and can be more associated with outcome of interest. Moreover,

various authors have noted that methylation levels are strongly correlated across the

genome [15, 19] and many reported relevant discoveries have been generally associ-

ated with genomic regions rather than single CpGs. In this subsection we concentrate

our attention on identification of Differentially Methylated Sites (DMSs) and Differ-

entially Methylated Regions (DMRs). We first describe conventional parametric and

non-parametric methods which can also be used for finding Significantly Expressed

Genes (SEG) and DMSs. Then we provide recently developed and widely used meth-

ods for region based analysis.

2.2.3.1 Single site differential analysis

The common statistical issues in identifying differential expression/methylation

are test statistics, sample size, replicate structure and statistical significance. More-

over, the fact that usually microarray experiments are carried out with a number

of samples which are much more less than the number of genes under investigation,

often in the scale of thousands, adds up an extra load to the testing task.

We can employ classical parametric t-test or its modifications such Welch test.

However, in practice, the more robust methods used for microarray experiments are

usually non-parametric test statistics. They are appropriate when normality can-

not be assumed and less sensitive than parametric methods for detecting significant

changes. More importantly by using such methods we do decision not only based on

the significance levels (p-values) but also we can incorporate other statistics, like fold

change. The order of this fold change values corresponds to the order of rank these

methods utilize, therefore they are also called rank based methods.

In microarray analysis it is important to control false positive rates, as we perform

thousands of tests in parallel which is also referred as multiple testing. For multiple

testing tasks people commonly use False Discovery Rate (FDR) that is defined as

an expected proportion of Type I errors among the rejected hypotheses, including

cases where no hypothesis are significant. It is less conservative than the second error

13



measure – Family Wise Error Rate (FWER). FWER is defined as the probability

of at least one Type I error and since it is very stringent criterion for microarray

gene expression analysis most people employ FDR in their methods. Here we can

note another advantage of non-parametric testing methods that they are specifically

designed for multiple testing and the reduction of type I error (false positive) rate.

There are some popular tools or packages in Bioconductor software project, like

Significance Analysis Microarrays (SAM) [36] and limma [33], which are designed

for microarray experiments. SAM, in addition to just finding differentially expressed

genes, separates results into up- and down-regulated genes and makes useful graphs.

limma makes use of linear modeling technique and it is one of the widely used ap-

proaches in bioinformatics, because of the interpretability of the model parameters.

Moreover, usually in practice we have few replicates per sample which makes it dif-

ficult to estimate the gene-specific variances that are used in statistical testing. One

way to deal with this issue is using Empirical Bayes approach that employs a global

variance estimator computed on the basis of all genes’ variances and the resulting

test statistics is a moderated t-statistic. With limma package we can select signifi-

cant probes in a same manner, by controlling FDR and a fold-change, as with SAM

tool. We provide results obtained by applying these tools in a Results section.

2.2.3.2 Area based differential analysis

If we have a reason to believe for DNAm to have an effect on GE a region of

the genome needs to be affected, not just a single CpG. Therefore, we should look

beyond single sites. First idea is, first, to find all DMSs and then some combination

or grouping technique is applied to these found sites. One strategy is to perform

Wilcox test and identify DMSs. Next we can define DMRs by looking for regions

for each chromosome where most measured CpGs are differentially methylated. Here

definition of DMR can be based on a minimum number of sites in a region, minimum

and maximum gaps for probes to be considered in or out of a region, threshold

of methylation level difference between experimental conditions and a threshold for

significance value (p-value). This and similar to this kind of approaches have been

used in a various research works and they are published their approaches implemented
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as packages or software tools that can be used by biologists or other researchers. For

example, methyAnalysis [12] and COHCAP [41] packages in Bioconductor conduct

their analysis more or less in above described manner.

Second approach also developed specifically for epigenomic data considers the

probe spatial information and addresses the batch effect issues. The idea for this

approach is based on a topic broadly discussed in a statistical literatures referred to

as bump hunting and a group of researchers by adapting this idea created a package

in Bioconductor called bumphunter [21]. As described by the authors of the package,

bumphunter estimates regions for which a genomic profile deviates from its baseline

value. The main concept of the procedure is that we first perform regression and

obtain an estimate for the coefficient of interest. These estimates are then can be

smoothed in some clusters of locations that are close enough where the maximum gap

for closeness is specified by a user. This gives us an estimate of a genomic profile that

is 0 when uninteresting. Candidate regions are taken by thresholding the estimate

value of a region. Statistical uncertainty is attached by performing permutations to

create and then test a null distributions for the candidate regions.

2.2.3.3 DNA methylation and gene expression integrative analysis

Integration study can be viewed as a work of finding associations between two or

more types of data. This kind of analysis can be performed for various purposes such

as finding genes, exons or genomic regions which have a crucial effect on or involved

in cell differentiation, signaling pathways, cell cycle regulation, disease development

or pathogenesis and many others. Depending on the type of application and data

types to be integrated different approaches are developed in this area of analysis. In

practice, people usually make associations between gene expression and methylation,

SNP and gene expression or copy number and gene expression data sources.

Many studies have already demonstrated that making use of additional data

source and conduct experiments in a systematic way increases our insight on studying

the biological processes under interest. One of such areas where active research works

are being carried out by integrated study is medical genomics and especially in cancer
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studies. As we noted in Biological background section, hypo- and hyper-methylation

is linked with many types of cancer. This fact and other findings motivates researchers

even more to study genome scale influence of epigenetic processes. Hence, different

types of strategies have arisen. Here we only describe some of them.

In [2] authors pay attention to the fact that other than miRNA expression and

DNA methylation affecting on genes they regulate each other in both directions. Do-

ing the study on glioblastoma and ovarian cancer data, they proposed that there might

be a cyclic association among these three data types and carried out correlation based

analysis. They discretized expression and methylation level values and computed cor-

relation for methylation and miRNA and for GE and miRNA. Their study resulted on

finding hsa-miR-142 signature that high correlation with significantly expressed genes

and methylated sites. This and many other studies show that correlation is good way

of discovering new terms or processes. Comprehensive examination of breast cancer

data was done in [28] by integrated analysis of genome-wide DNA methylation and

GE data. Authors of the work established, also with correlation analysis, that methy-

lation of not only in promoter but also in different other genomic regions, like CpG

shores, first exon, first intron, can be a key for subtype-specific effects.

We found out that several questions need to be addressed in order to detect

and define significant associations between data types. Since our work is based on

methylation and GE data, here we focus on these two data types. Investigations

demonstrate that for DMSs/DMRs and GE we are analyzing on there should not

necessarily be a significant correlation, because of the methylation occurring not in a

region where transcription factors bind or due to many other levels of gene regulation

acting simultaneously in a gene. Sometimes it may be helpful also to add non-

coding RNAs for the analysis. Besides the biological explanation for not having the

correlation between the data types, there might be a statistical or technical issue on

designing our experiment. For instance, if for some methylation sites fold change

is 2 and p-value is 0.07 these sites will not be called significant, but it is still does

not mean that there is an evidence to support that the sites have not changed. In

this case it is a lack of evidence for differential methylation rather than an evidence

supporting unchanged differential methylation.
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2.3 Phenotype prediction task

The task as we called in a general form as a phenotype prediction can have

diverse characteristics depending what specifically it is going to predict or for what

type of data we are defining the task. In Medical applications physicians and patients

may want to know survival time, risk factor, symptoms, drug response or sub-type

of some disease. Knowing this information is very crucial for diagnosis and other

purposes.

Decisions of which methods and data types to choose, how organize the exper-

iments and process the data usually comes after determining the exact type of ap-

plication area. For instance, for cancer medicine, now most of the works incorporate

GE and methylation data into their study. Applications from evolutionary biology

field can be based on mutation or SNP data sources. In addition, techniques and

approaches for data processing varies for each these data types.

In this work we do not focus on some specific type of the application our model

would be used in, however, we suppose that most of the times applications would

be related to diseases where epigenetic process like methylation plays important role.

We propose a method for constructing a phenotype prediction model that utilizes

a methylation data. Data set of patients with MDS disease is used and the model

predicts the risk factor or treatment response type of the patients.

2.3.1 Challenges

No general method exist for predicting phenotypes. Most of the procedures are

proposed for some specific domain of the tasks. This is explained that we still need

a much more understanding of biological processes. As an example we can simply

take the process of gene expression regulation. Despite the fact that with advances of

technology we can observe this process at any time and condition, its dynamicity and

dependence on so many factors leaves several questions being unanswered. Neverthe-

less, after being able to read the whole genome scientists are getting more insight for

various processes.
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Now one of the big challenges researchers have after generating huge amount of

data with microarray and sequencing technologies is to extract a knowledge from the

generated data sources that later would be used for model construction. This can only

be accomplished by doing systematic study where at the same time we use several

kinds of data such as GE, DNA methylation, SNP, mutation and copy number. In

this way we may find patterns common to all data types, but are not viewed when

each data source is analyzed separately. Therefore, the integration has become a key

step for vast majority of biological studies.

One distinctive character of biomedical data is that the number of features is far

more than the number of samples. When we do integrated study of two or more

data types the number of samples might decrease further, since not always the mea-

surements for different kind of data are obtained from the same individuals. This

may cause a problem known In statistical learning as curse of dimensionality and

over-fitting.

Another also can be related with data. Since biological experiments are not always

conducted under the same conditions, several issues like batch effect, variability of

technical and biological replicates and measurement errors may arise that can reduce

the statistical power of the findings or even make them insignificant.

2.3.2 Dataset

In this work we used patients data for MDS disease. The data were provided

by our collaborative lab at the Institute of Hematology and Blood Transfusion in

Prague. MDS or often referred to as a “bone marrow failure disorder” is a group of

diverse bone marrow disorders in which the bone marrow does not produce enough

healthy blood cells. Sometimes for some patients diagnosed with MDS, this type of

bone marrow failure syndrome will progress to acute myeloid leukemia (AML).

The dataset contains scans for 27578 methylation sites and 31426 GEs obtained

from matching samples of 30 individuals for these two feature measurements. These

samples represent the patients with five different responses on treatments: Complete
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remission (CR), Partial remission (PR), Complete remission with incomplete marrow

recovery (Cri), Progressive disease (PD) and Stable disease (SD). In terms of risk

associated with these response rates, PD is the most severe and has high risk, CR,

Cri and PR can viewed as least severe with lowest risk and SD as intermediate not

meeting criteria for all of the rest. In addition to that we have control samples

from normal individuals (NR) and one sample for which there is no response type

specified. We excluded from prediction model construction experiments the sample

with Cri response type and from all analysis sample with unknown type of response.

Response type Number of samples

CR 4

PR 5

SD 8

PD 5

NR 6

Cri 1

Unknown 1

Table 2.1: Number of samples for each type of response treatment group

2.4 Goal of the work

The main goal of this work is to perform comprehensive integrated study of DNA

methylation as epigenetic event that has its effect on the regulation of gene expres-

sion, identification of global signature changes regulation of which causes important

changes for all types of MDS response treatments and, finally, prediction of pheno-

type or given a sample of individual determination of group of response treatment this

individual can be associated with. We propose a model for phenotype prediction (in

our example dataset prediction of response treatment for MDS diseases) that utilizes

knowledge obtained from integrated study in a form of significant features for model

construction.
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Chapter 3

Existing approaches

In this chapter, we would like to give some of the approaches to the problem of

phenotype prediction we have found from the current active research in this area.

Two important aspects of phenotype molecular model construction – Feature Selec-

tion (FS)/Feature Extraction (FE) and the selection of prediction algorithm were

addressed in the review of existing methods.

3.1 Feature selection/extraction

FS/FE has became a prerequisite in building a model for biomedical data. Cur-

rent microarray technology allows to measure simultaneously hundreds of thousands

levels of methylation or gene expression for one array or replicate. Working with all

of these features may cause a serious problems, two of the main being large input

dimensionality and small sample size, and other problems as noted before. That is

why, in practice some technique is applied for choosing the most relevant features

which improve the model performance in comparison to scenario when all or some

other subset data were used.

FS in contrast to extraction only selects significant probes based on some cri-

teria without altering representation and preserving the semantics of variables. In-
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terpretability is the main advantage selection methods offer. Review of the feature

selection techniques specially designed for the tasks in bioinformatics can be found

in [31]. FE methods apply the dimensionality reduction techniques and project the

data from higher to lower feature space.

One of the illustrative works that employs feature selection is [40] where authors

illustrate that model concentrated on features of integrated GE and DNAm improves

the predictive power compared to classifiers trained on GE or methylation data alone.

In this study logistic regression classifier with lasso regularizaton selects features by

enforcing sparsity. Similar kind of work and prediction performances were published in

[24] where main difference lies in the chosen classification algorithm. What generalizes

the [40] and [24] is that they both exploit embedded technique for feature selection.

Embedded methods have the advantage that they consider the interaction of variables

and include this step with classification model. In other words chosen algorithm

accomplishes both feature selection and classification tasks. There are works where we

can note filtering and wrapper selection techniques. Some representatives of filtering

techniques, like t-statistic, information gain and sum of variances, were chosen for a

comparative study [42] and their effectiveness was evaluated. Study concludes that all

selected techniques improve the classification outcomes, but some methods’ efficiency

depends on data. This fact of filtering methods’ varied efficiency is explained in [31]

as that this kind of selection techniques ignore the interaction with the classifier and

hence dependency or correlation among the variables.

In a research studies published in [4, 42] some feature extraction approaches are

applied in cancer disease prediction model. The main idea of the methods in both

works is that they first with some approach select subset of genes and then for this

subset apply space projection techniques. Semi-supervised approach proposed in [4]

is designed for predicting survival of patients based on expression profile and survival

times of previous patients. Authors identify a list of genes using the clinical data.

Genes which have a correlation greater than some threshold are selected for the next

processing. Then with the application of unsupervised technique final subset of genes

for the prediction is selected. We can consider this approach as mixed, since here both

selection by correlation and then feature space transformation are used. Method used
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in [42] basically is also of this kind of approach with slight modifications that can be

seen on selection of the first list of genes by incorporating different criteria.

3.2 Model design and selection of classification al-

gorithm

Various kinds of models were proposed by researchers for the phenotype classifi-

cation. Here we highlight some of the techniques often deployed in most of the models

and give a brief description.

In [35], for designing the DNA methylation and GE integrated model, authors

perform two stage classification scheme. In first stage, both feature selection and

training of classifier is done using logistic regression with lasso regularization in a

5-fold cross-validation. Selected features with classifier from each 5-fold training are

used in second stage to train the an additional classifier – nearest mean classifier

(NMC) that uses the posterior probabilities of GE and methylation logistic regressors

as feature space. At the end, output of NMC is evaluated on a validation set. The

model from this approach achieves good results and the one reason for this can be a

smooth integration step in a second stage of a method where no standardization is

required, because regressors of GE and methylation models are in a same scale.

One of the important aspect for the classification problem is the selection of pre-

diction algorithm. What I have observed by reviewing the recent research works is

that if feature selection/extraction step is performed efficiently and the genes with

good discriminating factor between experimental groups are selected, then even sim-

ple prediction methods like k-nearest neighbors or logistic regression can give high

performance rates. However, studies [6, 9, 1] show that one of the methods giving

constantly high classification rates in a wide variety of applications is SVM [38]. Also,

it is worth note that the performance of models with linear kernel SVM is same or

sometimes better than radial kernel SVM.
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Chapter 4

Proposed model

In this chapter we describe the general design of the two major types of models.

First type of models are built on single data types (DNAm and GE) and on blind

integration based approach. Second class includes four classes of models constructed

using knowledge based methods, hence they are called smart integration incorporated

models. We in some parts refer to the first class of models as simple and to the

second as intelligent or smart. We cover the used techniques and steps followed in a

model construction. In addition, specification of parameters for different methods is

illustrated in the chapter.

4.1 General design

Building the proposed model for this work includes the following main steps:

1. Data preprocessing

2. Identification of significant features for each data type

3. Integration of data types and detection of signatures

4. Generation of feature sets

23



5. Classification model construction

6. Evaluation

First and last two steps are identical for all types of models and these steps are

enough for us to design two of the simple models. In the next subsections we discuss

the special moments for each kinds of models.

The first step of the work is to check the quality of the GE and methylation

data by employing exploratory tools often used in bioinformatics. Then we normalize

the data with quantile normalization algorithm. For GE we applied general quantile

normalization developed for microarray GE data and specially modified version of an

algorithm for DNAm where modification considers distribution distinctive for DNAm.

In a next step, we found SEG and DMSs. For this purpose we use linear model

based moderated t-statistic. This statistic is robust and it is most frequently used

one for differential analysis.

SVM classification method with linear classifier is chosen for devising the predic-

tion model for all types of models in a fifth step. One versus the rest or one class of

samples versus all the other types scheme is used for training and testing. To assure

unbiased measurements of the performance of the classifier we followed 4-fold outer

and 3-fold inner CV schemes. Outer CV is intended for training and evaluating the

models and with inner we performed the tuning of the classifier parameters.

To observe the change of prediction performance and to determine best model

several classifier with varying number of features were constructed. Each time one

new feature is added to build a new classifier. Finally, models were evaluated, in a

last step, with average probability assigned to the correct class. We draw a graph

where we can see how increasing the number of features affect the model efficiency.

Ideally we want as less features as possible, but we also need to account overfitting

issue.
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4.1.1 Single Data types and Blind Integration based models

DNAm and GE data based approaches basically follows the above described gen-

eral steps. We can add that for simple models initially specified 100 number of top

features were preselected for model construction. Ranking of the features were done

with the same moderated t-statistic we used for differential analyses.

Step 2, Identification of significant features, for the our blind integration based

model is performed after Step 3, integration of data types. Simply speaking, we

disregarded any “relationships” between the data types and just merged them in

integration step.

Then we performed standardization of feature values, since M-values and GE

levels differs and it is necessary to have all features in a similar range of values, so

that for some features not being overstressed in a model construction. Significant

features for this merged and standardized dataset is found in a similar way as it is

done for single data types.

4.1.2 Smart Integration based models

For our intelligent models we need devise a feature set which is based on inte-

gration of two data types. There are different ways of doing this and we chose the

procedure which is provided in 2.2.3.3. The main idea is the association strength

between found DMRs and their corresponding GE levels.

For computing the correlation we need to represent DMRs for the computation, as

DMR according to our definition is the region with at least two DMSs. We called this

representation as FE, since the meaning of our features changes after transformation.

Feature Extraction: We need to define clearly what do we mean by FE. In our

work it is very simple procedure. All features (probes or methylation sites’ levels)

located in a region are averaged and described as one feature (or CpG site).

Having obtained DMRs as features we compute a correlation, perform test of
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significance for the correlation value and identify significant relationships. Then all

DMRs and their corresponding GE profiles from significant relationships are added

to the new dataset. Since usually we have less such signatures and this result to have

in the dataset very few features, we included all other found DMRs. Significance

of DMRs not being correlated with GE profiles on various biological processes was

demonstrated in many number of research studies, so it makes sense to include all

DMRs and results from our experiments show this as well.

One last thing to note is that we should not forget that DNAm provides

us with additional knowledge information and the main insight of the

questions we are studying still lies within GE data . So, we hypothesize

that when we have both additional patterns from integration study and main patterns

from GE data we possibly can have the best result among all other models considered

in this work.

Depending of the presence of either FE or FS and existence of additional SEGs

enrichment step or not existence, there are four workflows involved for designing

respective intelligent models:

• Workflof 1: Model design based on FE and addition of extra SEGs – Smart

Model with FE and extra SEGs (SmartModFeSEG)

• Workflof 2: Model construction involving FS and additional SEGs - Smart

Model with FS and extra SEGs (SmartModFsSEG)

• Workflof 3: Model built with FE and without additional SEGs - Smart Model

with FE (SmartModFe)

• Workflof 4: Model designed with FS and without extra SEGs - Smart Model

with FS (SmartModFs)
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4.2 Parameters specification

In two parts in our work where we need to specify parameters. First, when we

are looking for DMSs and DMRs and, the second, when we are training and testing

the classifier.

During the detection of DMSs and DMRs we specify threshold or cut off parame-

ters. We set 0.3 or 30 % of methylation level for the site to be considered differentially

methylated. Both expression and methylation probes were considered significant if

they met 5% significance level (p-value equal to 0.05) and 100% FDR. We did not

obtain any result with lower rates of FDR.

For SVM with linear kernel method we need to specify only one - cost parameter.

After internal CV for each training classifier we found that 0.1 value for this parameter

is optimal one.
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Chapter 5

Experiments

In this chapter we presented the methodology and results for our experiments.

All experiments were carried out in R statistical language of version 3.2 using Bio-

conductor software project of version 1.18

5.1 Methodology

5.1.1 Experimental setup for differential analysis

For finding the differentially expressed and methylated probes for each experi-

mental response groups of diseases first thing we need to do design our experiments.

As represented in Dataset section the data set of patients with MDS diseases is di-

vided into 5 groups of samples: CR, PR, SD, PD and NR. Based on these groupings

and the severity type associated with patients of each group I devised 3 experiments

for each group of response types. All four disease groups ( CR, PR, SD and PD )

were tested against NR and against all the rest types of groups. So, for instance, for

CR group CR versus NR and CR versus PR, SD, PD, NR scenarios are created. In

addition to these one more scenario is possible and it is created against a group(s)

that has closest severity rank position and there is only one such kind of case: CR,
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PR, SD versus PD. We associated findings from this experiment as belonging to all

four disease groups. Significant GE profiles were detected using the limma package

where linear model based moderated t-statistic is used as a main method. DMSs and

DMRs are found with COHCAP package. We could also use limma for identification

of DMSs, but chose COHCAP, because it facilitates the process of finding DMRs and

also we need this package for integration analysis.

5.1.2 Specification for integration study

Pearson correlation method is used to calculate a association between a DMR

and corresponding GE profile. Statistical significance for the correlation is computed

by doing 1000 times repeated permutation test. Additionally, the result of Pearson

correlation were verified with other rank based correlation calculation methods and

the same outcomes were produced.

Here we again used the COHCAP package which also allows users to conduct

integration study. It annotates each region (island) with corresponding gene, so that

we do not need to specify the information about the annotation, but only need to

provide GE data.

5.1.3 Setup for model construction

4-fold CV is used for training and evaluation the classifier. Moreover, classifier

parameter is tuned in a separate inner 3-fold CV.

Experiments for building a prediction model were carried out using the CMA

Machine Learning package in Bioconductor. This package makes CV and parameter

tuning steps easy to implement and also evaluate a model with various evaluation

criteria.
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5.2 Results

5.2.1 Data preparation

We first look to the whole methylation status data by producing hierarchical

clustering and plot the data by reducing dimensionality with PCA and MDSc meth-

ods. Then we analyze the quality of this data by viewing density plots of methylation

statuses for each group type of samples.

The cluster dendrogram was produced by complete hierarchical clustering. In

Figure 5.1, we can view that although the separation is not completely right most of

the samples of one type are in a same cluster.

Figure 5.1: Cluster dendrogram for methylation data of MDS disease dataset

The PCA and MDS plots tell us about the same amount of information. Specif-

ically in Figure 5.2 we can see that only samples in Normal (NR) group are placed

close to each other and other types of samples are somewhat mixed.

When we draw a density plot of DNAm profiles we expect more frequency of

methylation statuses with higher values in disease associated response groups than in

Normal group. This fact is noticeable in our next figures. from the plots in Figure 3,

but not as obviously as we can see in other methylation analysis works. Both Figure
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Figure 5.2: Scatter plot with dimensionality reduction by PCA and MDSc

5.3 and Figure 5.4 demonstrate the same kind of graphs, but they are produced with

different measurements of of methylation levels. The phenomenon of methylation

specific distribution and the necessity for preprocessing are more visible in graph

generated with M-values than in Figure 5.3. The reason for this difference is briefly

mentioned in 2.2.2 and more in [6,7].

Then we expect to see similar across sample difference on CpG-site intensity

distribution of methylation for different conditions. Figure 5.5 shows box plot of two

color channels and density plot for PD and Normal groups of samples.

Last graph shows clear color imbalance and a need for background color adjust-

ment and data normalization. We chose quantile normalization method specifically

designed for methylation data. We accomplished the task of color adjustment and

data normalization by using the method from Bioconductor package lumi [6].

In a Figure 5.6 and Figure 5.7, we provide results after normalization. Graph

of M-values for all four experimental groups against Normal one and also density of

CpG-site intensity for PD and Normal samples can be seen in Figure 5.6. Figure 5.7

demonstrates box plot of CpG-site intensity for PD and Normal samples shown for

two channels separately. We can see evident effect of normalization by comparing the
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Figure 5.3: Density plots of Beta - values for four types of treatment (PD, SD, PR,

CR) versus reference - normal group samples

graphs with previous ones for the cases before normalization.

Figure 5.4: Density plots of M-values for four types of treatment (PD, SD, PR, CR)

versus reference - normal group samples
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Figure 5.5: Plots for PD and Normal samples before preprocessing. Left. Box plot

of CpG-site intensity separately for two channels. Right. Density plot.

Figure 5.6: Plots after quantile normalization. Left. Density plot of M-values for four

disease groups versus Normal samples. Right. Density plot of CpG-site intensity for

PD and Normal samples

5.2.2 Findings from differential and integration study

We carried out differential analysis for both GE and DNAm data. Because meth-

ods for identifying DMSs can are almost the same, here, we provide results of differ-
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Figure 5.7: Box plot of CpG-site intensity for PD and Normal samples after quantile

normalization (shown for two channels separately).

ential analysis for DNAm data. Moreover, when we want to find DMRs this would

require special dealing with the problem which is not the same as for DMSs.

First we run t-test that assumes equality of population variances followed by a test

using Welch - modification of t-test not bound to such assumption. The histogram of

p-values for these two tests for finding DMSs in PD samples are presented in Figure

5.8.

1986 DMSs were found with simple T-test and 2435 with it’s modification – Welch

test under the significance level of 0.05 without adjusting the p-values. After adjusting

the p-values using the method proposed by Benjamini and Hochberg only one DMS

was left for T-test and 1098 for a Welch test with 50

Next by making use of SAM package in Bioconductor we conduct non-parametric

34



Figure 5.8: Histogram of p-values for the T-test with population variance equality

assumption (Left) and for Welch’s test without such assumption(Right)

statistical multiple testing. In these methods repeated permutations of the data are

used to determine DMSs. We run testing for 1000 permutations. Wilcoxon test

statistics and 20% FDR were used in the experiment. Table of significant DMSs were

computed separately for sites that have positive and negative correlation (up- and

down-expressed sites) with the condition of interest. For the two group experiment

where one group contains PD and the other all remaining types of samples 4754 DMSs

were obtained.

Methylation sites found significant in non-parametric Wilcoxon test is not much

different from those we got using parametric t-test. However, it is much more robust

and designed for multiple testing, so that we can control it by FDR and based on

an experiment select significant probes. Also in addition to the FDR we can choose

significant probes by fold change. SAM provides such functionality that results will be

returned based on both statistics. As we can see one advantage of SAM is possibility to

make decision or narrow down the list of results based on both error rates (significance

values) and fold change. In our case we only used FDR, since when we incorporated

fold change statistics no DMSs were found.

It is also useful to look at the SAM plot, shown in Figure 5.9, where methylation

of CpGs corresponding to the observed scores of above or lower band are those that

are found significant.

Further, we used limma package where using linear modeling and moderated t-
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Figure 5.9: SAM plot fitting the expected results to the observed ones. This is a

graph from two group experiment: PD type samples versus all remaining samples

statistics we identified DMSs. In Figure 5.10, significant probes for type PD samples

were presented in a volcano plot with blue color. In the figure significant probes were

obtained only by controlling FDR rate, since incorporating fold-change reveals no

DMSs.

As definition of our features in a phenotype model is based on DMRs, further

we provide results for identifying significant regions and corresponding genes that

contain these regions.

We applied first approach described in 2.2.3.1 and found 34 DMRs for PD samples.

Then we annotated them to know with what genes they overlap. In a Figure 5.11

heat map of methylation by gene CALCA is presented. This plot allows us visually

verify the result of DMRs detection by specified gene.

In Figure 5.12, we present the result of found one DMR. To get this result we

have exploited the second, bump hunting, approach described in 2.2.3.2. The in a

graph there are two DMSs found in a two group experiment: PD versus Normal.
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Figure 5.10: Volcano plot. Finding significant probes by linear modeling. Two group

experiment: PD vs Normal type of samples

We compared the results of two approaches and concluded that in terms of per-

formance there is not much difference between two strategies. In a later steps for

identifying the DMRs we chose the first approach. This is because in this way we

can perform both feature selection and feature extraction. In other words, with first

method we are able to find DMRs and at the same time know which sites in the

regions are differentially methylated and which are not. While with the second bump

hunting method, though it is also possible, it requires additional step for filtering out

significant features for using them later in our model.

Finally, after differential analysis where we found in average 4-15 DMRS for each

response group associatsed with diseases we carried out integration analysis. This

experiment is done in a way described in 4.1 for all disease related groups and

some important signatures were revealed from the analysis. Genes CRMP1 and
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Figure 5.11: Heat map of the first DMR location, corresponding gene and a sample

information are shown in this graph

VAMP5 showed downstream expression regulation for CR, PR and SD response

groups. Furthermore, same regulation is observed for the gene EDNRB in CR and

for genes ZNF154 and ZNF540 in SD groups. For the most severity type of re-

sponse group PD no signature was detected. Besides these findings, GE profiles for

genes MGC15523 and WT1 displayed significant expression in almost all exper-

iments and in all cases where some DMRs were found for some experimental group

there was also one DMR associated with these genes.

In Figure 5.13 we provide box plots showing the status of methylation for two

DMRs and then in Figure 5.14 scatter plots depicting the correlations of two DMRs

with the gene expression levels from the integration study.
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Figure 5.12: Showing one found region from PD vs NR experiment. Left: Plot of

methylation sites. Two of these sites are differentially methylated. Right: Depiction

of the difference in methylation levels

5.2.3 Model evaluation

Here present the evaluation of our model. In Tables 5.1 – 5.4 we provide the

evaluation results and the number of features used to obtain the “best model”. The

definition of the best model is optimistically biased, since we are selecting the one

which has highest average probability assigned to the true class and it might not

necessarily be the case that it is the best model. However, we believe that it is

the case and we define our way of choosing the model as such. As we hypothesized

model before, highest performance model was found as the one which is built with

both SEGs and additional pattern knowledge gained by DNAm and GE interaction

analysis and between the two feature set construction techniues the FS based one was

superior than FE dependent model. In three of the group types (PD, SD and CR)

this model beats remaining models. In Figure 5.15 we show the plots of this best

model where average probability progression assigned to correct class is in vertical

axis and in horizontal axis the number of used features are depicted.
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Figure 5.13: Box plot for two differentially expressed genes that have significant

methyation regions

Figure 5.14: Scatter plots of methylation statuses for two CpG islands and their

corresponding GE levels
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Class types
Average true class probability

BlindModFS ExpModFS MethModFS

PD 0.72 0.74 0.74

SD 0.63 0.61 0.63

PR 0.71 0.75 0.69

CR 0.82 0.79 0.82

Table 5.1: Best average true class probability performance for blindly integrated

(BlindModFS) and two single data type based models (ExpModFS, MethModFS)

Class types

Number of used features (probes) to get optimistically biased best

performance

BlindModFS ExpModFS MethModFS

PD 7 5 3

SD 13 6 3

PR 100 85 89

CR 1 18 3

Table 5.2: Number of features (probes) employed to obtain the best performance for

BlindModFS, ExpModFS and MethModFS models

Class types
Average true class probability

SmartModFe SmartModFs SmartModFeSEG SmartModFsSEG

PD 0.72 0.77 0.84 0.90

SD 0.74 0.73 0.73 0.74

PR 0.72 0.76 0.87 0.82

CR 0.75 0.79 0.83 0.84

Table 5.3: Best average true class probability performance for four smart integration

based models: SmartModFe, SmartModFs, SmartModFeSEG and SmartModFsSEG
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Class types

Number of used features (probes) to get optimistically biased best

performance

SmartModFe SmartModFs SmartModFeSEG SmartModFsSEG

PD 4 14 21 51

SD 16 21 18 33

PR 3 3 4 11

CR 16 10 15 4

Table 5.4: Number of features (probes) employed to obtain the best performance for

four smart integration based models
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Figure 5.15: Evaluation of SmartModFsSEG model. Plots are for each one of four

groups of response types. Number of features is in horizontal axis and the average

probability is in vertical axis
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Chapter 6

Conclusion

In this work we attempted to design a phenotype molecular model that can be

used in an phenotype predictive applications where the most valuable information or

knowledge can be obtained using GE and DNAm data types. Usually, exploitation

of these data can be observed in biomedical domains with the main focus directed

towards diseases, such as various kinds of cancer. After doing some research, we have

found that almost all research works with the high success rates of outcomes, make

use of two or more types of data.

Concentrating on GE and DNAm data types, we hypothesized that the phenotype

model that is based on DNAm and GE profiles can has more potential to perform

better than the models built on single data types. Furthermore, we made additional

proposals stating that the model constructed not just on a merged dataset, but on

a feature set which comprises only significant patterns found by integration study

possibly tend to give even better results. We referred to these patters as the patterns

that can complement or enrich the main signatures obtained by GE profiles.

The results of the evaluation of the models show that the models based on simple

or blind integration that is with the feature set devised by just merging the two data

sources has the varying performance and most of the time has more or less the same

predictive power (depends on phenotype class type) as the models built with GE and

DNAm data types alone. However, model designed with only primary GE patterns
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or SEGs and extra knowledge gained by integration study between GE and DNAm

profiles clearly outperforms all of the remaining design cases. Experiments show that

FS is more appropriate for classification model training/testing, while region based

integration analysis yields more valuable signatures than the technique based on single

methylation sites.

We understand that our method of model evaluation is not much robust and

optimistically biased. Nevertheless, we believe that the true model performance is

about in a same level that we reported.

We also inform that our model is implemented in a way to be compatible and

to be added as an additional feature to the the miXGENE [17] tool developed for

learning from heterogeneous gene expression data using prior knowledge.
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Appendix A

List of Software

R Programming language and software environment for sta-

tistical computing

Bioconductor Open Source and open development software project for the

analysis of genomic data obtained from molecular biology

experiments.

matplotlib Python 2D plotting library, together with IPython provides

a MATLAB-like environment for explorative programming

and data visualisation. The convergence graphs were cre-

ated using it.

teTeX A complete TeX distribution for UNIX compatible systems.
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Appendix B

Contents of the CD

The CD content is divided into the following directories:

data Dataset of patients with MDS disease and data related files

meant to be processed.

doc Additional information related to the directory structure

and notes to the actual implementation of the scripts.

latex LATEX source codes of this text.

pdf This text in the pdf format.

scripts Relevant scripts in R used for experiments.
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