
Czech

Technical

University

in Prague

Faculty of Electrical Engineering

Department of Computer Science

Bachelor’s thesis

Board Game Engine

Vojtěch Kaiser

May 2015

Thesis supervisor: Sporka Adam Ing., Ph.D.

Declaration

I hereby declare that I have completed this thesis independently and that I
have used only the sources (literature, software, etc.) listed in the enclosed
bibliography.

Prague 22 May 2015

i

Thanks

I would like to express my gratitude to my supervisor Adam Sporka for
his useful advices, comments and remarks. I am also grateful to all partic-
ipants that sacrificed their precious time for testing of my creation. Fur-
thermore, I would like to thank my parents for all the support, emotional
and financial, they provided me with. At last, I would like to express my
sincere gratitude to my dear Dominique for keeping me sane, encouraging
and showing all the support possible, and in the end helping me with cor-
rection of my atrocious grammar in this thesis. (note: some places did not
go through her hands so you can experience true horror).

ii

Abstrakt

Tato práce se zabývá tvorbou herńıho engine specificky určeného pro
implementaci deskových her. Výsledek práce je funkčńı framework, ve
kterém lze implementovat hry reprezentovatelné jednoduchým stavovým
automatem. Pro demonstraci možnost́ı vytvořeného engine jsou v něm
vytvořeny dvě deskové hry pro v́ıce hráč̊u. V závěru jsou pro ověřeńı
použitelnosti systému otestovány procesy spojené s tvorbou takových her s
programátory podobných schopnost́ı jako má předpokládaná ćılová skupina.

Abstract

The aim of this thesis is to analyze the creation of game engine specifically
designated for implementation of board games. The result of this work is
a functional framework in which is possible to implement games that can
be represented by simple state machine. The engine is used for two board
games as a demonstation of its capabilities. Processes related to making
of games in the created engine are tested with programmers of similar
expertise to target group for verification of its usability.

iii

Contents

1 Introduction 1

1 Motivation 1

2 Used technologies 1

3 Design outline 2

4 Testing 2
4.1 Creators . 3
4.2 Players . 3

5 Goals 3

2 Background 4

6 Classification 4

7 Physical environment comparison 4
7.1 Board game mechanics . 6
7.2 General game engine types 8
7.3 Existing solutions . 9

8 General requirements 10
8.1 GUI . 10
8.2 Game components . 11
8.3 Resources . 11
8.4 Network . 12
8.5 Game rules . 12

9 Discussion 12

3 Design 13

10 General architecture 13

11 Event driven applications 13
11.1 Advantages . 13
11.2 Disadvantages . 14
11.3 Application . 15
11.4 Modularity . 16

iv

12 Architecture layout 16
12.1 Scene design . 18
12.2 Logic design . 20
12.3 Data processing . 20
12.4 Network synchronization 21
12.5 Security . 21

13 Discussion 22

4 Implementation 23

14 Scene 23
14.1 Graph . 23
14.2 Selection . 24
14.3 Styles . 25
14.4 Style properties . 26
14.5 Scene states . 26
14.6 Locks . 27

15 Events 28

16 Logic 28
16.1 Rule Handler . 28
16.2 State space . 29
16.3 Rulesets . 29
16.4 Action vs Rule . 29
16.5 Evaluation element definition 29

17 Registry 31
17.1 Registry keychain . 31
17.2 Value storage . 31
17.3 Map . 31
17.4 List . 31
17.5 Example . 32
17.6 Merging . 32

18 Rendering 33
18.1 2D graphics acceleration 33
18.2 Updates . 34
18.3 Application window . 34

19 Loading 34
19.1 XML . 35
19.2 Styles . 36

v

20 Network 36
20.1 Server . 36
20.2 Client . 37
20.3 Issues . 37

21 Tic-Tac-Toe 38
21.1 Rules . 38
21.2 State machine . 38
21.3 Scene . 39
21.4 Registry . 40
21.5 Walkthrough . 41

22 Cards against humanity 43
22.1 Rules . 43
22.2 State machine . 43
22.3 Scene . 45
22.4 Registry . 45
22.5 Walkthrough . 45

23 Discussion 54

5 Usability tests 55

24 Testing in general 55

25 Testing with programmers 55
25.1 Method . 55
25.2 Screening . 56

25.2.1 Participant 1 . 57
25.2.2 Participant 2 . 57
25.2.3 Participant 3 . 57

25.3 Tasks . 58
25.4 Post test questionnaire . 61
25.5 Found problems . 63
25.6 Problems analysis . 64
25.7 Conclusion . 64

26 Testing with players 65
26.1 Method . 65
26.2 Results . 65
26.3 Found problems . 66
26.4 Conclusion . 67

6 Conclusion 68

vi

27 Further development 69

7 70

Appendices 70

A Getting started 70
A.1 Installation . 70

B Scene graph 71
B.1 File specification . 71
B.2 Available nodes . 72

B.2.1 SceneNode . 72
B.2.2 PaintableNode . 72
B.2.3 StyleableNode . 72
B.2.4 GroupNode . 73

B.3 Available components . 73
B.3.1 Container . 73
B.3.2 Panel . 73
B.3.3 Text . 74
B.3.4 Layout . 74

B.4 Adding new components and nodes 74

C Events 76
C.1 Available events . 76

C.1.1 Event . 76
C.1.2 Window event . 76
C.1.3 Mouse event . 77
C.1.4 Message event . 77
C.1.5 Keyboard event . 77
C.1.6 Interaction event 78

D Scene styles 78
D.1 File specification . 78

D.1.1 Comments . 78
D.1.2 Selectors . 79
D.1.3 Styles . 80
D.1.4 Includes . 80

D.2 Available properties . 80
D.2.1 Layer . 81
D.2.2 Visible . 81
D.2.3 Style ID . 82
D.2.4 Style class . 82
D.2.5 Interaction states 82

vii

D.2.6 Dimensions . 83
D.2.7 Margin . 83
D.2.8 Padding . 84
D.2.9 Pivot . 84
D.2.10 Position . 84
D.2.11 Min-max dimensions 85
D.2.12 Aspect ratio . 85
D.2.13 Background color 86
D.2.14 Background image 86
D.2.15 Background repeat 86
D.2.16 Background image alpha 87
D.2.17 Border size . 87
D.2.18 Border color . 88
D.2.19 Border radius . 88
D.2.20 Border position . 88
D.2.21 Border mode . 89
D.2.22 Border image . 89
D.2.23 Cursor . 89
D.2.24 Solid . 90
D.2.25 Mask . 90
D.2.26 Font color . 90
D.2.27 Font name . 91
D.2.28 Font size . 91
D.2.29 Font style . 91
D.2.30 Text align . 92
D.2.31 Line wrap . 92
D.2.32 Line stretch . 92
D.2.33 Text content . 93
D.2.34 Layout type . 93
D.2.35 Layout spacing . 93

D.3 Adding new properties . 94

E Logic 95
E.1 State space file specification 95
E.2 Available rules . 96

E.2.1 Check message . 96
E.2.2 Compare numbers 96
E.2.3 Keyboard button released 97
E.2.4 Keyboard character typed 97
E.2.5 Load user IP address 97
E.2.6 Load event contents 97
E.2.7 Load string length 99
E.2.8 Mouse button released over component 99
E.2.9 String equals . 99

viii

E.2.10 String regex match 100
E.3 Available actions . 100

E.3.1 Apply stylesheet 100
E.3.2 Change state in state space 100
E.3.3 Change state of node 101
E.3.4 Change text of component 101
E.3.5 Clear node . 102
E.3.6 Dictionary translation 102
E.3.7 Dump registry . 102
E.3.8 Dump states . 102
E.3.9 Insert scene . 103
E.3.10 Load registry . 103
E.3.11 Log message . 103
E.3.12 Modify counter . 103
E.3.13 Network controller command 104
E.3.14 Send message . 104
E.3.15 Shutdown application 105
E.3.16 Store data . 105

E.4 Grouping . 105
E.5 Adding new elements . 106

F Optimization 107
F.1 Scene . 107
F.2 Logic . 108
F.3 Network . 108

G Contents of DVD 110

ix

List of Figures

1 General architecture layout 17
2 GUI input processing . 18
3 General scene layout . 19
4 Manipulating parent without influence on children 19
5 General logic layout . 20
6 General logic layout . 21
7 Inheritance schema of implemented nodes and components 24
8 State machine for TTT . 39
9 TTT — New game . 41
10 TTT — First move . 42
11 TTT — End of the game 42
12 State machine for CAH 44
13 CAH — Connection screen 46
14 CAH — Connection status 47
15 CAH — Player picking name 47
16 CAH — Host waiting for players to connect 48
17 CAH — Client being ready for game to start 48
18 CAH — Host being ready for game to start 49
19 CAH — Player picking an answer card 50
20 CAH — Player picked an answer card 50
21 CAH — Czar waiting . 51
22 CAH — Czar picked winner 51
23 CAH — Player observed what czar picked 52
24 CAH — Player has gambling enabled 52
25 CAH — Player gambled extra card 53
26 CAH — Increased number of cards for czar 53

x

Part 1

Introduction

This thesis focuses on creation of 2D game engine purposed for prototyping and
implementation of board games of varying complexity. First is reader introduced to
problematic of board games in digital environment, then follows general engine design
outline which is in implementation part demonstrated and at last tested with program-
mers and players.

1 Motivation

Board games have always had a place in casual gaming on computers but so far only
as time filler on office computers as a form of distraction (solitaire as example for all).
They experienced a rise in recent years, together with many attempts, successful and
unsuccessful, to transform classic or brand new board games into PC games.

Common practice when implementing a PC game is to use a multi-purpose engine
designed by professionals. However, these engines are usually overly complicated for as
simple a thing as board game, and platform dependent, as they strive to squeeze every
bit of performance out of computer they are running on. Certain groups of indie 1

board games creators might find complexity of those engines and their creation process
quite intimidating, especially for those without programming background.

My motivation here is to provide an easy to use and understand engine that will
require little to no programming knowledge on its user, which will remove all platform
dependent issues and be fast enough to handle basic 2D games.

2 Used technologies

Programming language I decided to use is java because it is easy to understand. Also,
it is a high level OOP language that is restrictive just enough to prevent the most
tedious errors one might encounter in other low level languages. Java is renown for
its not-so-impressive speed but I came to conclusion that with advantage of Just In
Time 2 compiler (JIT) and accelerated image processing it will be fast enough for the
task lying ahead.

1Term indie is used with relation to independent content creators or teams or companies that are
not owned by a publisher.

2Just-in-time compiler for java is compiler that turns java byte code into machine native code.
This compilation is done every time program is run and data specific optimizations may be done over
compiled code depending on JIT being used.

1/111

4 TESTING

For loading general data, the XML definition seemed as the best and fastest way,
since parsing of XML in java is well supported and XML structures are widely known.
For parsing itself is in java the Java Architecture for XML Binding (JAXB) that allows
generating of classes corresponding to your XML structure. All XML trees are loaded
and constructed using these classes.

For the styling of scene I decided to define my own variation of Cascading Style
Sheets (CSS), which has several identical properties, a few with similar definition but
different effect and a certain number of fully new properties. Precise differences will be
elaborated in the appendix part. I decided to create my own implementation because of
lack of constrictions laid on present features. This way, I can, or any user of the engine
for that matter, define new properties and effectively change behaviour of existing ones
in order to be make them generally more useful.

3 Design outline

Given the turn-based nature of most board games and the fact they can be represented
by a simple state machine, we can turn to architecture which is not as focused on per-
formance. We can sacrifice a certain portion of performance in exchange for structures
that are easy to maintain, change and read. That is the reason for this engine revolving
around user-defined state machine controlled by an event driven core.

Scene displayed to a user is defined as HTML page, and behaves likewise. More-
over, it has the possibility of defining new visual states (enabled, disabled, . . .) and
managing the way events propagate through. Any propagation in this scene is done
with synchronous calls, but once the information (event) leaves the scene, it is left to
asynchronous execution by event handler.

Logic is contained solely in state machine, where each state contains rulesets consist-
ing of actions and rules, which can fail and terminate the execution. All data used by
these actions and rules are acquired from registry collection that can be pre-filled at
startup, from variable space belonging to particular ruleset or as constants directly in
rule definitions.

Network management is designed to be as simple as possible, or at least from user
point of view. Connection is initiated by filling ports and hostname, and when that
is successful, events marked for network are simply sent either to server or to clients,
depending on type of currently running platform.

4 Testing

One of the main features of this engine should be its usability. For verification of
usability, we need to perform proper testing with real life users.

2/111

5 GOALS

4.1 Creators

Since this game engine is intended for users of varying programming abilities, it needs
to be properly tested for clarity of documentation and all related processes. The proof
would be for such a user to create simple a game within limited amount of time. This
testing should provide enough feedback to modify the engine to improve its usability,
or at least soften the learning curve.

4.2 Players

Although the testing with players itself is not the focus of this work, the actual usability
of possible resulting game needs to be tested as well. If the created game does not meet
criteria set by players for pleasant game experience, and it is not possible to solve found
problems using current state of the engine, more drastic changes have to be made.

5 Goals

This engine should be capable of displaying defined interactive scene through which
should player be able to affect inner state machine and registry, possibly with syn-
chronization over network with other players. This aim should be achievable by writing
and applying XML and stylesheet definitions at runtime with possibility of dynamically
loading classes implementing predefined interfaces.

3/111

Part 2

Background

As the goal of this game engine is to implement board games, an outline of general
classification of board games will be presented, together with an example of other
engines focused on this problem. That will provide us with the insight of what to
include and what to avoid during implementation of the engine.

6 Classification

In this section I shall list all the relevant aspects of the problem and highlight the
ones that this work will be focused on. Although not all possible classified games will
be in resulting state ready to be implemented, they should still be possible to add later
on — engine should not put significant restrictions on future feature updates.

As for board game genre, even though there might be a difference between functional
requirements of fantasy and scifi board game, I will not take them into account as a
relevant classifier for this design.

7 Physical environment comparison

Bringing board games to digital environment is carrying some advantages and draw-
backs. When are board games played in physical environment, there is strong social
interaction aspect to it, and that is possibly one of the main reasons board games are
being played at all. If we will try to digitalize them, we need to maintain as much of
that interaction as possible. Without it, we are in the end just implementing another
computer game and that was and will be done many times over and probably better
by large teams that are specializing it the area.

Basic instrument to keeping social experience in the game is message system in the
game. That is of course not enough and hides all spontaneous reactions of players that
differentiate face-to-face play sessions. As enhancement, we can implement conference
call system on top of regular chat, that will make players feel more connected to each
other. Of course, we could decide to go even further and transfer video, but there
is beginning to show the limitation of available equipment that every player has. It
will not be possible to comfortably put faces of five other player on one screen while
having enough space for game components, not to mention poor quality of cheaper web
cameras that will average player probably possesses.

4/111

7 PHYSICAL ENVIRONMENT COMPARISON

Great advantage on the other hand is that communication between players may be
private, which gives to specific genre of games whole new dimension. For instance in
board game Game of Thrones 3 are players encouraged to secretly cooperate against
other players. This has in physical environment very limited effect because everyone
can see which players are talking to each other, and even if their opponents do not hear
what is the topic, it is a sign of some mischief.

Another advantage board games in digital environment may posses is learning curve
softening. Big portion of board games have complicated rules to stay interesting for
experienced players. This can be quite intimidating, especially when mentioned rules
have more that 20 pages of text. Players are then discouraged from sessions because
between start of the session and actual gameplay may lay an hour of explanation of
rules, which at least one of the players has to study beforehand. This is not only
common for new players, but for those that already played the game some time ago.
That not only means they have to go through that painstakingly boring process again,
but now they know about it, which discourages them even more. Board games in
digital environment can completely remove this issue by simply telling player what to
do, highlighting possible options and not letting player to do anything else. This is of
course subject to good UI design and large amount of testing.

Certain board games are designed to be not only complicated, but as well lengthy.
These two go usually hand in hand, since player having all the complex options at once
will take a lot of time to play his turn, and when are these options made available
gradually, instead of turn length is the gradual progress stretching the session. For
instance improvement of played character is unlocking new abilities for player. This
process is gradual and player has enough of time to get to know gained ability before
next improvement. This will make each turn faster, but every level of played character
is bounded by a time spend achieving it. Implementing board games online will not
directly solve the duration of the game, but unlike session state in physical environment,
one in digital can be easily saved and finished at different time.

Complicated board games are often big boxes 4 full of cards, tokens, playing fields
and other items that take not only some time to setup, but they require a lot of space on
table as well. This issue was so significant it caused creation of whole new line of tables
specifically designed for board games. Of course both of these problems disappear with
introduction of digital tabletops.

Overall, we can say that bringing board games to digital environment has a lot of
advantages, and only issue we need to tackle is correct integration of social interactions
to have success and improve the quality of time spent playing board games. Naturally,
it is not possible to entirely replace board games in physical environment, as they will

3www.fantasyflightgames.com/en/products/a-game-of-thrones-the-board-game-second-edition/
4Game Tide of Iron is a box of five kilograms containing over 800 game items.

5/111

www.fantasyflightgames.com/en/products/a-game-of-thrones-the-board-game-second-edition/

7 PHYSICAL ENVIRONMENT COMPARISON

always have their place in entertainment, but there is a lot of space for improvement
and change.

7.1 Board game mechanics

Following general mechanics 5 are used in different board games and their examples
will be of help while describing particular functionalities needed for implementation of
such games. Instances of disadvantages of these mechanics in physical environment are
described along with them to highlight advantages of PC implementation.

Acting Player performs certain audiovisual action for other players. This kind of
mechanic is often used in party games. Only drawing is fit for PC implementation,
since any other input method relies too heavily on input devices.

Action Programming Player secretly plans out his whole turn and then the actions
of all players are executed at once. Complex strategic games using this mechanic
are often lengthy and players are discouraged from playing them, since it is a big
time investment. However, in the case of PC implementation, game can be saved
and finished later on. Also playing game items in secret often means playing them
face-down, which means player has to remember all played items before finishing
turn.

Action Points Player uses pool for his action and his turn ends once such pool is
exhausted. For correct control over available actions, players are often either
required to remember their progress in the play or to manage a number of tokens.
PC implementation may be done in a way that player is visually guided through
the play (highlighting available options and remaining actions).

Area Influence Player is rewarded for control over certain areas. These rules are
usually evaluated at enter point in game states without direct control of user, so
this counting being automated makes gameplay much faster. It is quite common
that players forget to account for everything while counting their points and that
has often negative effect on game experience.

Area Movement Movement can be done over adjacent areas of varying size or shape.
When characters or units have longer range of movement, considering all possible
moves and strategizing over them makes every play unnecessarily long, whereas
highlighting possible destinations makes it a matter of seconds.

Auction/Bidding Players bid in-game currency on game elements to gain profit from
such elements in case of win. Secrecy around bidding process slows the game
down and it is possible for a player to unintentionally reveal the bid before is
bidding over.

5As source for list of these mechanics was used list available at www.boardgamegeek.com/browse/
boardgamemechanic.

6/111

www.boardgamegeek.com/browse/boardgamemechanic
www.boardgamegeek.com/browse/boardgamemechanic

7 PHYSICAL ENVIRONMENT COMPARISON

Card Drafting Player picks card from limited subset into his own pool for later use.
Games including drafting of cards have often issues with space on the table,
especially when there must be at all times 20 piles of cards with text on them in
the reach of every player. This problem can be solved by revealing these cards
only when player decides to interact with them and in matter that will not clog
the whole screen.

Deck Building Player starts with predetermined set of cards which he expands over
the course of the game. Games with deck building suffer from constant need to
draw cards and shuffle the deck, which takes its toll not only on card, but on
patience of players as well, especially when it is common to have player shuffling
the deck in middle of the turn.

Dice Rolling State of game is decided by dice roll as the source of randomness. Games
with larger dice pool have sometimes issue with amount of certain type of dice
and necessity of re-rolling while remembering previous results.

Grid Movement Pawns are moved on grid in predefined directions (square, hexag-
onal, . . .). With strategy games where more units are included, player must
remember which units player already used and/or which may be used. In PC
implementation can be active units highlighted along with their available actions.

Modular Board Game board changes over course of game by adding or removing
tiles. Modifications of board have negative effect on layout of game components
on the table, since it is not always clear where the next tile might appear and
it may require shifting everything every once in a while. Digital environment
tabletop can be defined to be virtually infinite.

Player Elimination Player can be eliminated from the game and stay as observer
only. These games are unpopular for when a player is eliminated, he/she has
nothing to do for the rest of the game but passively watch others.

Point to Point Movement Unlike with grid or area movement, adjacent are only
the points connected by line. Players need to keep track where which path leads
and they might forget to consider some options, but virtual graph representation
does not care where the pieces are actually positioned.

Role Playing Player’s character improves over time or according to specified actions.
Improving players character often includes piling or shifting tokens on the game
board and that is prone to errors by pushing the table or the board and misaligning
the tokens leaving players clueless about what was the actual setting.

Set Collection Player gains special bonus for collecting certain set of items. Collect-
ing these sets is usually part of the middle to late game which can leave player
unaccustomed to gained abilities and forgetting to use them. When gained ability
is highlighted, player is less prone to forget about it.

7/111

7 PHYSICAL ENVIRONMENT COMPARISON

Trading Players can exchange items between each other. For players to exchange
items between each other, they first need to have a notion about other players’
possessions, which often includes running around the table and slowing the game
down.

Variable Phase Order Certain actions may be prohibited in given turn. This may
cause some confusion for players counting on options that are currently unavail-
able, but this state of the game can be on PC properly highlighted so no player
will go surprised.

Variable Player Powers Each player starts with different setup or conditions. New
game is hard to follow even when all players do the same things over the course
of round, and it gets more difficult once each player has different set of abilities.

7.2 General game engine types

Game engines could be classified by their complexity into three levels [6]:
Low level These engines are either made with one particular game in mind or ex-
tremely general only to help with creation of system for the particular game. They
basically consist of set of libraries, for example physics, rendering or scene graph to
remove the process of the reinventing of the identical wheel over and over again. Their
advantage is that they do not change very often and are very well optimized at what
they do. As low level might hint, they are usually written in native code and offer little
to no adjustments past the point of changing predefined settings. In these engines are
programmers often interacting directly with used system APIs 6. Examples of these
libraries are OpenGL 7, PhysX 8, DirectX 9 and many others.

Middle level These engines could be described as frameworks for certain type of
games, consisting of all necessary parts well chained together. Programmers usually
start a new layer of the actual game and do not change the core until final optimizations.
Such is the compromise between freedom and comfort for game makers. One of these
engines is jMonkeyEngine (jME) 10, which offers NetBeans IDE 11 based editor with
set of tools for virtual scenes creation and manipulation.

High level Engines built as high level usually consist of one or more scripting lan-
guages. Scripts for such engine may not even be handwritten, and can be completely
created in point-and-click GUI. Such simplicity speeds up production process, requires

6Application Programming Interface for access to contents of libraries.
7www.opengl.org
8www.geforce.com/hardware/technology/physx
9www.en.wikipedia.org/wiki/DirectX

10www.jmonkeyengine.org
11www.netbeans.org

8/111

www.opengl.org
www.geforce.com/hardware/technology/physx
www.en.wikipedia.org/wiki/DirectX
www.jmonkeyengine.org
www.netbeans.org

7 PHYSICAL ENVIRONMENT COMPARISON

less experienced developers and for certain genres it is not even all that much constrain-
ing. To the family of these engines belongs Unity3D 12 or Unreal Engine 4 13.

7.3 Existing solutions

In this section a few existing board game engines 14 will be listed and I shall discuss
their approach. While comparing these solutions, different attributes need to be taken
into account. For one, there is availability of rule enforcing by the implementation.
When there is basically no rule enforcement by the system, players are required to
know them themselves and have to keep track of everything. On the other hand, when
are rules completely watched by the system, in-house-rules 15 common while playing
physical board games are impossible to be added.

Another parameter is difficulty of use of the system. For instance, there are engines
offering great freedom in creative process, but their complexity makes them viable
option only for experienced programmers. This is of course not necessarily bad thing
as it depends on intentions of authors of mentioned engines.

Thoth Engine 16

Thoth Engine is a typical representative of Game Engines focused only on one type
of games (card deck building). Engine only loads predefined placement for used cards
from configuration file and provides few operations over cards (flip, shuffle, rotate, . . .).

Battlegrounds Gaming Engine 17

This game engine works basically as point-and-click virtual table top on which you
can place objects of your choice and set some simple behavior. The main issue with
this engine is that players cannot be forced to follow the rules. Board is controlled
by drag-and-drop over existing objects or you can call some simple action over them,
for example flip or shuffle. Such engine is suitable maybe for board games prototype
testing but creating a game ready to be played out of the box is merely impossible.

Vassal Board game Engine 18

Vassal uses various wizards, dialog setting windows and configuration files so no coding
is required but user can, in case of some properties, load custom classes and assign
them to created objects. Similarly as with Battlegrounds Game Engine, the player

12www.unity3d.com
13Showcase of development tools for Unreal Engine 4 www.youtube.com/watch?v=MOvfn1p92_8
14As reference list served collection provided on www.battlegroundsgames.com/links.html
15In-house-rule is a modification of original game rules to certain extent for either freshening up

the game that has been played too many times, or simply fixing design flaws in game. These rules are
often wide known, shared by community and in some cases even added to re-editions of game itself.

16http://digilander.libero.it/zak965/thoth/
17www.battlegroundsgames.com
18www.vassalengine.org

9/111

www.unity3d.com
www.youtube.com/watch?v=MOvfn1p92_8
www.battlegroundsgames.com/links.html
http://digilander.libero.it/zak965/thoth/
www.battlegroundsgames.com
www.vassalengine.org

8 GENERAL REQUIREMENTS

cannot be forced to respect and follow the rules, although his options can be restricted
in more precise manner by adding certain traits to specific objects, e.g. a card deck
can be shuffled but there will not be the possibility of shuffling anything that is in the
selection (as in case of Battlegrounds Game Engine).

ZunTzu 19

ZunTzu is very similar project to Vassal. It as well does not enforce game rules on
players and behaves very much as virtual table intended for online play sessions. In
comparison to Vassal is this engine much easier to set up and contains integrated voice
conference system, so no third party software is necessary.

FlexibleRules 20

FlexibleRules engine uses for making games set of editors (graphics, logic, code, map-
pings, etc.) to configure behavior of created entities and how they react to each other.
That means rules of the game can be specified and players are forced to follow them.
All rules in this engine are defined using set of tables and user is basically required to
create whole structure on paper and then rewrite it in the engine. Engine contains its
own scripting language for more specific definition of actions, but I found that language
unnecessarily chaotic.

8 General requirements

In this section I shall list requirements that I consider as essential for ”finished” engine,
i.e. one that is ready to be deployed for usage by public.

8.1 GUI

Aspects of user interface provided by engine to creator are to be straight out used or
inherited to more complex components defined by user.
Basic input components Implementation of elementary input elements, e.g. button

or text area used to interact with active state space.

Manipulation components Implementation of components for manipulating scene,
such as sliders or zoom controllers intended for fitting more elements on the oth-
erwise limited tabletop.

Basic output components Implementation of components for displaying data in text
format or images.

19www.zuntzu.com
20flexiblerules.fulviofrapolli.net

10/111

www.zuntzu.com
flexiblerules.fulviofrapolli.net

8 GENERAL REQUIREMENTS

Input event dispatch Creating a system for user input dispatching, such as catching
keyboard events or mouse actions. These need to be delivered not only to state
space but as well to components in scene since they might want to interact with
inputs immediately.

Components for painting System of components allowing to interpret user input as
brush strokes for acting game mechanics.

Styles Implement component layout styles for easy definition of scene where creator
can separate visual definition from logical structure.

Animations Implementation of various animation for movement, appearance or spe-
cial effects, e.g. components on visibility change animating themselves in or out
of the window. These effects should be dependent on direct call with delta time
every frame and completely separated from game logic.

Special effects Implementation of effects that can be applied on components or even
applied with animation, e.g. focused button with applied glow effect with varying
intensity.

8.2 Game components

Strictly boardgames related components to make easier implementing mechanics listed
in Section 7.1.
Dice Set of dice components and generators of randomness.

Countdown Countdown components such as timers or hourglasses.

Chat window Chat window component that behaves in write-commit manner with
appropriate rule presets.

Boards Set of playing board components that can be defined from XML file and have
possibilities of path finding.

8.3 Resources

Aspects of gathering and storing resources for final game. Work with data should be
as simple as possible and provide sufficient amount of error detection mechanisms.
XML parsing Unifying XML loading into objects using precise definition.

Dynamic lazy loading Loading required assets first for faster ready to play times
and being able to fetch any data based on runtime changes of game.

Dynamic register Register allowing storing various types in tree-like structure that
supports lists and maps defined on the fly and/or at startup.

11/111

9 DISCUSSION

Scene building Scene should be built from XML file definition that possesses the
same abilities as scene with attached CSS file.

8.4 Network

For it is engine for playing games online, one of the main aspects should be cooperation
of different clients over network.
Initializing connection Tool for initializing connection with other players via client-

server-client model.

Synchronizing content Simple way to synchronize content with defined players and
keeping consistent state of the game on all ends.

8.5 Game rules

For tabletop engine is not important to force playing by the rules, and it is one of
biggest advantages for experimental development on these engines, but for standalone
game it should be vital to keep player on the tracks using restrictions and hints.
Allowed operations Implementation of system of dynamic rules that can be modified

without recompilation of code, for example using XML structured files.

Effects definitions Each action enabled by rules has some effect and that effect should
be modifiable to certain extent without recompilation.

9 Discussion

In this part were board games classified from point of view of mechanics that may be
used during their creation and what impact these mechanics have on implementation of
such games on computers. Along with those were classified game engines in general and
their properties in relation to board games. This was then expanded to cover existing
solutions that aimed to achieve similar goal as this thesis.

Lastly was done general overview of requirements on created engine which should
serve as guide while constructing feature list in future development cycles.

12/111

Part 3

Design

This part briefly discusses the design of architecture of this system. Elaboration of
the specific implementation is described in the next part.

10 General architecture

Architecture of this engine is mostly event driven application, with dynamic code
loading and behaviour programming from XML definitions.

It is generally focused on flexibility when modifications of game logic are concerned.
However, it is for the price of use simplicity but that is intended to be solved in the
future by GUI builder. Such builder should basically remove process of user writing
XML files, and instead generate them from interactions in the editor.

Not only is the engine event driven, it is not intended for real time games as well.
That will save operation cost with keeping game state consistent at all times on all
ends, since every player may operate only limited amount of data and update them
after state transition, which is very well controlled.

11 Event driven applications

Event driven applications are those where main communication channel is certain kind
of event queue which distributes received events amongst designated listeners. This kind
of approach is usually used for applications that revolve around user interaction with
the whole system idle until event from outer source is received.

11.1 Advantages

Advantages of event driven applications.
Decoupling Event driven applications may be also callback driven, which means that
the event has piece of code attached to it, and the code is executed during evaluation
of the event, or at some point afterwards. This brings certain amount of flexibility to
the system, since unit evaluating the event does not have to have any knowledge about
evaluated event, and thus it is decoupled from source of the event.

Extendability Extendability of application that is event driven comes simple be-
cause once every major component in the system has instance of event handler and is

13/111

11 EVENT DRIVEN APPLICATIONS

subscribed to event processing. That allows newly added component to reach any other
through events without interfering with application core. We can take this even further
and move some components on different machines in separate code and nothing will
change.

Replay It is not of importance what way event took to reach handler, space or time-
wise. This way, we can have easily stored batch of events in a file and send them
in the system as if they were produced by actually working component. That makes
unit testing of event driven application easier for user input can be recorded in form of
events and then replayed on testing machine after every change of build to verify that
application still works.

11.2 Disadvantages

Disadvantages of event driven applications.

Debugging Event driven applications are more complicated to debug at times, be-
cause flow of the code being executed is interrupted in the event queue and it is hard
to follow using classic debugging mechanics. This is even more complicated with intro-
duction of anonymous callback execution where it is difficult to predict what will code
exactly do.

Efficiency Distribution of events alternates between simple and efficient, and it is
not easy to achieve both. For instance if we have only one handler and every listener
receives every event, it will be simple to use but a lot of unnecessary checks will be
done. We can work around that issue by having components subscribe to only those
events, that they can possibly care about. However, that introduces complexity to the
code and increases coupling because then the types of events in the handler have to be
recognised.

Generated data Amount of data and objects in general created in event driven
application can reach significant amounts that may slow the whole system down. If some
system event occurs often enough, it may clog system with unnecessary supporting data
while simple direct call on target instance would cost insignificant amount of resources.

Naming Messages within the system need to be described in one way or the other.
This description is then used to recognize purpose of processed event in target compo-
nent. Names describing events need to be for each purpose unique, which cannot be
forced without centralized collection. We have then either option to increase coupling
of application or rely on user of the system to chose new names that will not collide
with so far defined name space.

14/111

11 EVENT DRIVEN APPLICATIONS

11.3 Application

For engine I decided to design are not all of the properties of event driven systems
relevant. I will briefly mention here which ones are relevant and why.

Decoupling Using callback driven structures enables possibility to decouple for in-
stance graphics scene from used technology and allow changing it without interfering
with games already created. This proves very useful in case of 3D game engines where
there is plethora of available technologies and advances in their development would
make switching plausible option. That does not pay as much for 2D games and even
though 2D graphics accelerated on graphics card would be probably faster, it is not
necessary, at least so far. (engine performs relatively well and there is a lot of space for
optimization)

Extendability There is present a single event handler in the architecture that will
touch every event being sent. It is essential for this handler to not care about received
evens beyond filtering, which is defined externally and with emphasis on generality,
which means events can be added reasonably freely.

Replay Replay-ability is viable option, since all events are strictly kept externalizable
so they can be easily saved, and thanks to their timestamps, it is easy to reproduce
everything that happened in the game at exact time it happened.

Debugging In this engine debugging is somewhat complicated because there is a lot
of user defined behaviour. Also, it is not simple to keep track of the execution. Because
of that, there is a custom logger which receives a report about nearly every unusual
state so the user has as many clues for resolving issue as possible.

Efficiency Efficiency is not problematic in this engine, since the amount of generated
events is quite small and those that are generated are already processed by event filter
that is automatically applied on game logic.

Generated data Amount of data generated per second is not unbearable, but pooling
of objects is definitely an option for later optimizations.

15/111

12 ARCHITECTURE LAYOUT

11.4 Modularity

Even though design of this engine is not as robust as is could be, modularity should
be one of properties it has got, or at least to some extent. Modularity in definition by
Eberly [2] follows five criteria:

1. Decomposability. Design allows decomposition of problem into subproblems whose
solution may be pursued separately.

2. Composability. Design allows combination of modules into new system.

3. Understandability. Modules can be understood separately or together with other
modules.

4. Continuity. Small specification change requires change of one or few modules.
Changes do not affect general architecture of the system.

5. Protection. Abnormal conditions that occur in a module stay in that module.

These criteria then lead to principles that should be followed to ensure modularity.

1. Modules must correspond to syntactic units in the used language.

2. Every module should communicate with as few other modules as possible to reduce
coupling.

3. When two modules communicate, they should exchange as little information as
possible.

4. If two modules communicate, it should be obvious from their definition.

5. All information about the module should be private unless specifically declared
public.

Not all these guidelines are followed during design of this engine, but they should be
general goal for all future modifications and all components of the system should get
eventually refactored into fully modular state. This is a long-term goal which is not
worth fulfilling on changes and modules that may not last or are undergoing heavy
changes.

12 Architecture layout

In this section, the whole architecture layout is described, without extra detail on
specific blocks.

As you can see in Graph 1, whole architecture could split into four separate blocks
- persistent, core, dynamic and event handler. Visible connections in the graph do not
necessarily mean there are not other connections between different blocks, as they are
more of a strongest connection, or intended logic connection.

16/111

12 ARCHITECTURE LAYOUT

Figure 1: General architecture layout

Core Core block is to a certain extent the main class of the game that will initialize
everything and then die. But that is almost everything that is required of it at the
moment. There is need for this module to hand references to every other module based
on their connections and start all separate threads.

Core may differ based on type of application, but for the most part, it will be the
same process and thus there is no need for defining it as object with specific properties,
because there would be simply no one to handle it anyways.

Persistent There are blocks in this section that are once created by core and then
act as libraries or factory classes for dynamic parts of the engine. Generally everything
that has connection to core may have in some way access to these, if they are not by
themselves static already.

Blocks in persistent sections may have inner state but the difference between registry
block and resource holder block is that inner state of the resource holder is not heavily
accentuated by anyone. If we completely replace it for different holder, for example one
using soft reference cache instead of hard reference one, it will go unnoticed.

17/111

12 ARCHITECTURE LAYOUT

Dynamic Dynamic modules have inner state that is, to a certain degree, of impor-
tance. This not only means other modules knowing about them will expect them to
maintain specific state, properties, but as well that they may live their own life and
need to be accessed in synchronized manner.

There should be certain separation between modules in this section but only from
the point of view what user is supposed to be modifying. It is agreeable to have
everything decoupled, but not if it means generating huge amounts of unnecessary calls
over structures that will most likely never change, and if so, it will not be done by user
of the engine.

Event handler Even though the event handler would nicely fit into dynamic section,
I decided to keep it separated. The one important reason for it is that event handler
should be completely decoupled from rest of the engine so it can be freely used by any
added module as communication middle man without any ties to rest of the engine.

Job of event handler in itself is very simple. Accept event by synchronous call,
enqueue event and hand it to all registered listeners with regards to its timestamp. You
can see in Diagram 2 how interaction from user is passed to event handler.

Figure 2: GUI input processing

12.1 Scene design

Scene is a module containing acyclic oriented graph of components and nodes that are
tightly wired into the engine. As you can see in Graph 3 basic scene layout is quite
simple. Scene is possibly tied to a window that generates user interaction events for it.
Then it contains a root node that is able to process and translate actions from outside
depending on implementation of scene nodes. This root then contains certain hierarchy

18/111

12 ARCHITECTURE LAYOUT

of group nodes that are extended by components to different degree of complexity to
fit their specific purpose.

Figure 3: General scene layout

It is important to note that not only leave nodes may contain rendered graphics. This
may cause issues, as Eberly [4] describes, with manipulation of scene nodes. We cannot
by default manipulate parents graphics without influencing children. There is possibility
to avoid that by using grouping nodes that do not have graphics for manipulation of
children with parent and in case parents graphics should be manipulated independently,
it may be done so by accessing parents graphics representation node as it is shown in
Figure 4.

Figure 4: Manipulating parent without influence on children

This construct needs to be applied by user but it is possible to have it in the system.
That is not important issue since such manipulation is not exactly common use case.

19/111

12 ARCHITECTURE LAYOUT

12.2 Logic design

Logic of the engine is contained in separate branch starting with module RuleHandler.
In Graph 5 is shown the order of containment of specific logic elements. As top level
element, there is a state space that could be related to definition of state machine states
without its connections. Each state is then composed of rulesets that further contain
specific logic, rules or actions, grouped in different ways to control the flow of logic
evaluation.

Figure 5: General logic layout

12.3 Data processing

Data loading from is done from generalized cached resource handler that has access to
all builders and manages requests directly from path to object without the hassle with
age of file and its modifications.

Data in the engine are of three different types in general. First, there are XML
definitions that have their counterparts within the system strictly defined by XSD 21.
Second, there are styles structured similarly to CSS with specialized parser. Third is
the imagery used for rendering process. All these types need to have their own defined
access because of different used builder, loader or parser, which may make extension of
loading process unnecessary complicated. That is done very rarely, though.

Since imagery is accelerated in rendering process, it is crucial to apply correct memory
management on it. As Eberly [3] highlighted, it is important to keep used imagery in
AGP memory that has better connection with VRAM and thus significantly increases

21XSD is language for XML file structure description. Further description can be found in wikipedia
article www.en.wikipedia.org/wiki/XML_Schema_(W3C)

20/111

www.en.wikipedia.org/wiki/XML_Schema_(W3C)

12 ARCHITECTURE LAYOUT

performance. This is better achieved by centralized caching unit that forces imagery to
be accelerated.

12.4 Network synchronization

Diagram 6 shows the connection between server and client which is supposed to demon-
strate that server is using for specific connections same implementation as client. That
means the communication is always client-client, just server is here to accept multiple
connections and create new client instance for each.

Figure 6: General logic layout

Since nobody has instance of created server and clients, except for event handler
which does not know about them by design, communication with them must be done
via events. Therefore server and clients have to check every received event for command
that changes their behaviour.

12.5 Security

As Bartle stressed [1], client should NEVER be trusted with any game critical computa-
tion, and it should NEVER be given information that player on client is not capable of
knowing. This is mainly because of possibility of any program being reverse engineered
and modified for advantage of specific group of players. This applies especially to java
programs, since compiled java code is for convenience of JIT in understandable form
— no optimizations that we can see in C++ for example. Compiled source for JVM 22

can be simply decompiled back into human readable code that is nearly identical to
what author wrote. In case of game logic and rules is this even worse, since they are
not even compiled and anyone can edit them at will.

22Java Virtual Machine

21/111

13 DISCUSSION

It should be as complicated as possible to crack the game, and for that there are some
important tools. For JVM byte code is designed ProGuard 23, which will amongst other
things obfuscate 24 given compiled java code, so it is much harder to reverse engineer.
In case of game logic, there should be created binary wrapper for all the logic, registry
and data in state of a simple encryption. This way will any cracker has to first reverse
engineer the code and then crack logic definitions.

Since this scenario is bound to happen eventually, if the game gets successful enough,
it is necessary to keep clients from data they are not supposed to have. This needs to be
handled by game designers and basically cannot be prevented from engine by default.

13 Discussion

General architecture design was described and all decisions were to certain degree
justified. This design overview should be perceived as guide to look at final imple-
mentation form correct perspective. Programmer oblivious to intentions behind some
design choices could easily break the whole architecture and severely complicate future
development.

The goal of this design is to guide programmer to right places when modifying the
engine so time spent reading code is reduced to the minimum. Specific implementation
parts are described in depth in Part 4.

23www.proguard.sourceforge.net
24Obfuscation in programming generally means modification of code in way that does not influence

execution but reduces its readability by humans to make reverse engineering more expensive process.

22/111

www.proguard.sourceforge.net

Part 4

Implementation

This part is about specific implementation of the engine and brief description of how
some of the parts are used. More detailed reference manual is located in appendix.

14 Scene

Scene is the main part of the visual representation of the game. It contains various
components in hierarchic structure that have generally abilities to render themselves,
react to user inputs and allow game logic to modify it. These responsibilities are split
amongst abstract graph nodes in line of inheritance of usable components. Whole scene
structure could be split in abstract node part, component part, root node that is not
available to user and scene object itself.

Scene object as such contains final RootNode and in that node are inserted further
scene elements. Each Scene object, if it is to be displayed, should be bound to some
ApplicationWindow on which it will reside and to some Renderer responsible for regular
draw calls. Since scene is accessed from different threads simultaneously, it needs to
have lock system 14.6 for prevention of concurrent modification errors.

One of the main features of scene is listening to events from event handler and passing
them synchronously into scene graph with response queue attached. This queue serves
for limiting amount of places that can generate events. This way all response events
coming from scene must go through scene object and may be controlled there if needed
be.

14.1 Graph

As you can see in Diagram 7, scene is composed out of instances of SceneNode classes,
but actually available scene components for user are those extending GroupNode. All
the nodes in he hierarchy prior to that are simply for separation of responsibilities and
better code readability.

Abstract section Abstract section of the graph is composed of four nodes — SceneN-
ode being predecessor for everything in the scene, PaintableNode maintaining properties
and requirements related to rendering, StyleableNode for modifications of nodes using
styles and GroupNode for building trees out of scene nodes. Even though is it not
intended, user can extend any of those and build some functionality around it. That
node should still be able to be placed in some group node, however, it will lack all the

23/111

14 SCENE

Figure 7: Inheritance schema of implemented nodes and components

basic properties of mentioned abstract nodes. More in detail in appendix Section B.2.

Component section Component section of the graph contains also four elements —
Container for basic positioning, Panel for simple styling of background imagery, Text
for displaying of texts and Layout for cooperative positioning of multiple components
on the same level. This, contrary to abstract nodes, is list that should be extensively
expanded during later development of the engine depending on requirements. These
components can be defined by user in the XML scene graph, unlike nodes from abstract
section. Each component has more detailed description in appendix Section B.3.

Root node Root node is special instance of group node having extra capabilities
when managing changes in the graph. For example, when new node is added to styled
scene, it needs to get all applied styles that were set to the scene. Root node has all of
those styles stored, so added node initiates recursive call from its parent all the way up
to root recording nodes on the way and then having all scene styles matched on that
path. User defining multiple nodes of this kind would break the scene and it would not
be entirely visible, since such state is unexpected, and thus errors caused by it are not
adjusted to lead to its resolution.

14.2 Selection

24/111

14 SCENE

Selection of nodes in scene is heavily inspired by CSS, but it still has some minor
differences in use, and lacks the general amount of features CSS selectors offer. When
element in HTML scene is operated by javascript to change its appearance based on
user defined state, it is usually done by adding or removing of class that carries the style
difference. In case of this engine, the class is defined statically and cannot be changed
at runtime, but states that an element can enter are modifiable at construction time
and those can be entered from logic of the game.

Process of applying styles based on defined selectors follows very simple rules. Selector
is built out of selection chain and then it is iteratively applied on nodes in the scene while
checking last unfulfilled member. For more details about specific available members see
selectors appendix Section D.1.2.

When a selector member is checked on scene SytleableNode, it can result in two states.
First, member passes the check as valid, which means we are on the right track, selector
is progressed to next member if there is one, or applied if validated member was the last
one. Second, member does not pass the check and selector is not progressed. In both
cases is selector passed to child nodes for further evaluation in non-progressed state.
Pass in both cases is because of starting point of selector may not be root of the scene
but any element.

Important thing to note is that selection chain is defining only elements that have to
appear on the way through scene. Using selector #root Panel will that way match on
all panels inside of the scene. There is no direct child selection option at the moment
and thus class specifications have to be used for these occasions.

For selection attribute style ID is added requirement that each ID has to be unique
across whole scene for optimization purposes. There is fixed style ID #root attached
to scene RootNode and thus cannot be used inside of the scene for any other node.

14.3 Styles

Scene styles are very similar to CSS in all ways imaginable. These styles can be defined
directly in XML scene definition as attributes of elements in the scene, but mainly, they
should be defined separately in stylesheet definition using scene selectors. This is the
same kind of separation of presentation, behaviour and structure that was propagated
back in the day for CSS and HTML. The main idea stays the same, but some properties
are still better mixed up - same as in CSS and HTML.

Style in scene Mixing presentation in scene definition is still possibility despite the
fact it is not the best practice, simply because of definition of small scene fragments
that would generate unnecessary stylesheet files just for one or two attributes.

25/111

14 SCENE

Behaviour in style Style definitions can have, like in CSS, defined behaviour states
like hover or visited. I took it a bit further and allowed user to define any additional
state which can be changed either in implementation of component or inside logic of
the game. There are of course defined default states that can be styled out of the box
without the need of additional specification.

Every component may have set any amount of properties and it does not really matter
whether is that component using them or not. Every component will look upon only
those properties that are predefined in it, and everything else is ignored. By design,
no property should be mandatory. For more information about specific properties see
available properties in appendix Section D.2.

14.4 Style properties

Properties are internally stored inside of map of general objects and are transformed
on first use into correct class. They may be as well stored in correct class right away,
but it is not done automatically. There are some predefined access types:

Integer Double Boolean Type access will look for appropriate instance in the map,
but if it is not found, will try to take string instance and parse it to target type.
When parsing is done, property is replaced in style and next time will be retrieved
right away.

String Strings are basic type and everything automatically loaded will be in the be-
ginning stored as a string.

Color Color access similarly to previous types is first retrieved as instance, and in
case of fail, one of the following representations is attempted to be parsed. Color
in classic hexadecimal definition #RRGGBB, expanded version #AARRGGBB
where AA is hexadecimal value for alpha channel, or word name of color from pre-
defined testing palette white—black—red—green—blue—yellow. Alpha channel is
inverted so when it is by default not set, visibility is on maximum.

Relative integer When a property has units attached to it, it can be retrieved as
propertyInPixels which will relate stored property according to its units to given
value.

14.5 Scene states

Nodes in scene can be in different states at different occasions, but they are functionally
divided into two possible spaces. These spaces are Logic and Interaction. They are
managed the same way, but they are defined differently and system reacts to them
differently as well.

26/111

14 SCENE

Logic states Logic states are defined by inner logic of the scene and work based on
inner implementation of the specific node or component. They still may be set from
outside using game logic, or even require it, but they have generally special treatment
and purpose outside of specific game. As an example of those are hover, click, disabled
and invisible. In case of click and hover, the difference is set by the manner component
is entering and leaving those states. On the other hand, disabled and invisible are
always set from user logic, but they influence the scene beyond just changing applied
styles.

Interaction states Interaction states are all user defined states that are entered and
exited from game logic. They are defined from the scene, so styleable components
treat them purely as a map of state names with styles attached and without any other
behaviour. Entering such state in logic of game will just add its style to currently
displayed one.

Priorities There are priorities in place to keep behaviour of these states consistent
and predictable. For one, all logic states are prioritized over interaction states. That
means possible overlaps are overwritten by values in states in logic space during the
process of recalculating applied style. The other priority is within state definition,
where states are evaluated in order they were defined. Keep in mind that order of
definition of logic states is determined by hierarchy constructor calls, where super is
called before body of constructor, so states defined in inheriting classes will always have
higher priority.

14.6 Locks

As mentioned before, scene being accessed by different threads at the same time.
Namely, render thread while putting current state of scene on the screen and event
handler while distributing interaction events through the game. Number of threads
to be synchronized is mostly reduced thanks to event handler use, since application
window events and network events are dropped there and evaluated asynchronously.

Every time some action is done over scene, it should be locked in try block using
appropriate methods over scene, and unlocked in finally block to ensure consistency of
the lock. Unlike with classical lock, scene can be locked by the same thread multiple
times without blocking itself because of owner of the lock being checked. Some core
methods that pose danger in concurrent access are already protected by lock, but user
modifying code of the engine should be aware that it might be necessary to add them.

As for performance, early profiling does not show any slowdown over scene locking,
and if that problem arises, it is still possible to modify lock system to read-write locks.
This system would allow user to lock scene for read and thus not block renderer. First
thread locking scene for write would block new read locks, wait for current ones to
finish and then proceed with its job. This would save insignificant amount of wait time,
as most of the current locks is distribution of events that do nothing to scene or do

27/111

16 LOGIC

selections.

15 Events

Event processing in this engine is done using single threaded event handler which
receives events from various event generators that contain its reference. I chose this
approach to avoid as much of synchronization problems as possible, and when this one
thread would get blocked by expensive operation, there is always possibility to create
separate thread and report result using another event. This approach is demonstrated
in network event, where connection that does not happen immediately blocks event
processing in the scene, so new thread reporting result using message event is created.

For more information on specific events and their implementation, please, see Sec-
tion C.1.

16 Logic

In this section is discussed how game logic implementation processes defined state
space.

16.1 Rule Handler

Logic of the game is processed based solely on events in the game. That means no
logic is executed when there are no inputs from user. It is possible to add time event
generator that will keep game at least a bit in sync with real time, but that makes
sense only in order of seconds. Any faster processing would be just inaccurate and
it would flood system with mostly dropped events. In case you would think about
implementing something faster, consider different engine altogether, since that sounds
more like real-time application.

Rule handler holds resources that might be needed for actions and rules contained
within the state space. Those are accessed by instance every evaluation element holds.
Besides all resources, it also holds used state space with game logic and has registered
all states from it. Upon load of state space are all of those states stored in local map
and those within init definition are entered.

When rule handler receives an event, it is passed to each active ruleset within each
active state. This execution may be interrupted by state exiting itself during its process-
ing. That is common behaviour and it will result in runtime exception being thrown,
caught and resolved into skip of remaining rulesets from that state. In case state is being
entered, its setup is postponed until all rulesets from executed state are processed.

28/111

16 LOGIC

16.2 State space

Whole state space consists of states that are not connected to each other in any way.
One might expect some kind of transition edges, but that is not the case. State space in
this engine is designed in way so game can be in any number of states at once. Entering
and exiting of registered state is solely controlled by logic in active states as a response
to some event.

State space is consisting out of three parts. First, setup rulesets that are evaluated on
state entry. Second, active rulesets that are evaluated on received event while state is
active. And at last teardown rulesets that are evaluated when state is being exited. Any
of these collections may be empty. It is important to have correct setup and teardown
of states. First reason would be debugging, as when you reload scene in middle of the
game, you need each active state to setup back into consistent shape. Second, and
probably more important reason, for better configuration readability. It will be easier
to read when you on entering to state setup everything necessary and when leaving
clean up after yourself.

16.3 Rulesets

As mentioned before, each state is made out of rulesets. Ruleset is collection of rules
and actions that are stored in tree structure in root group element. This element is set
to and operation, as we expect user to want execute contained element in order, all of
them and in case first fails terminate.

Each ruleset contains its own variables map which could be compared to local vari-
ables of a scope in java. This variable pool is cleared every time before execution of
ruleset and its contents are shared amongst all rules and actions within. That allows
them to pass values one to another.

16.4 Action vs Rule

There is almost no difference in implementation of action and rule. The main distinc-
tion of these two interfaces is name of the called method, which has also no practical
implication. Reason there are two interfaces for the same thing is to remind user of
the engine that rulesets should be constructed as condition-consequence pairs or groups
and not a wild mix of actions and rules. Basically, user should create ruleset, insert
some rules at the beginning, some actions at the end and possibly wrap all this into
group. Of course more complicated operations cannot fulfill this pattern, but the idea
should remain.

16.5 Evaluation element definition

To preserve generality, all evaluation elements are set up using set of param objects and
it is up to specific dynamically loaded element to pick what it wants from loaded set.

29/111

16 LOGIC

Defined action might look like:

<action class="StoreData">

<param name="location" access="reg" value="game.data[%].%"/>

<param name="location:wildcard" access="var" value="id"/>

<param name="location:wildcard" access="reg" value="setting.usedMap"/>

<param name="data" access="const" value="iteration%"/>

<param name="data:wildcard" access="var" value="counter"/>

</action>

Name In this example, you can see definition of action that will be loading class
StoreDataAction. This action takes two parameters, location and data. These names
appear in param name attribute and serve for specification to what inner input should
be acquired data assigned.

Access As you can see, every param has its own access defined. It should be one
of three recognized access types, reg for registry, var for variables of ruleset scope and
const for values directly specified. These access types decide how is value interpreted.
In case of registry access is value interpreted as address to item in registry. For variable
access will be value used as key in variable map. Lastly for constant is value attribute
interpreted as final value, but it can also tell the element to load some predefined object.
For example LoadEventRule used constant definition as signal to use input event.

Value As mentioned before, value depends mostly on setting of access type. If it
contains percent character, wildcard is expected for that parameter, or more wildcards
for every percent character.

Wildcard Wildcard definition is param with name of input or output it belongs to
and with suffix :wildcard. This will make this param to evaluate as first and replace
with its result first occurrence of percent character in target param value attribute.
This way can be constructed not only dynamic paths to registry, but variable strings
for text inputs. If we take example above and assume following: registry contains
setting.usedMap with value foo, variable space contains variable id with value 5 and
variable counter with value 7 ; defined action will store string iteration7 on address
game.data[5].foo in registry.

More on implemented rules and actions align with their exact specification in ap-
pendix Section E.2 and Section E.3

30/111

17 REGISTRY

17 Registry

Registry module is for storage of application data across all game states. It could be
related to global static variables in java, but in this case it is more like global game
state storage and not an abomination that should be frowned upon.

17.1 Registry keychain

Registry keychains are here for accessing specific parts of registers using object-like tree
hierarchy. Every registry item is stored in its parent either in list or in map for different
ways of access it.

When addressing items in registry, every level is separated by dot, with exception of
list address that is right after map key, where dot is not necessary. Last defined element
will be the destination or source of the value.

17.2 Value storage

Every RegistryItem may have a value of undefined type assigned to it and that value is
accessed by calling for keychain of its wrapping Item. It is important to call read only
on values that have been previously set, otherwise most elements will fail on undefined
data.

17.3 Map

In registry item may be assigned a map String:RegistryItem. Accessing elements of that
map is done by separating key on way to specific depth. For example parent.child is
accessing element that is stored in root map under key parent and from map of that
element child that is stored under keychild.

17.4 List

Registry item may have a list of registry items inside addressed by standard indexing
like with arrays. For example element.child.[5].bottom will access key element, then item
with key child from which item on fifth position in list and at last element with key
bottom. It is valid for one level of list to leave out the dot, but not for more than that
one level. Example: valid element[14].child, invalid element[14][16].child. Corrected
invalid case would be element[14].[16].child or element.[14].[16].child

List indexing List being indexed as array has couple of extra options that can be
used for item selection.

First First flag that serves for indexing of first item of list and works basically like
indexing with element.[0]. Use of first follows example element.[f]. Its purpose

31/111

17 REGISTRY

is just to increase readability of definition. This marker must be first thing in
indexing brackets!

Last Last flag works analogically to first flag. Use of last follows example element.[l].
Its purpose is to remove the necessity to load size of the list into variable space,
decrement it and then use wildcard to paste position into address. This marker
must be first thing in indexing brackets!

Add Add flag denotes in case of structure manipulation that item should be added
and not replaced. Usage of add follows example element.[-a] where dash stands
for position definition by number, first or last flag ([4a][fa][la]).

Replace Replace flag stands for element replacement. Usage is similar to add with
difference that it is required for replaced element to actually exist. Example is
element.[-r] where dash stands for number, first or last flag.

17.5 Example

Correctly defined XML file with registry definition could look like this:

<root>

<map key="settings">

<map key="resolutions" value="16:9">

<list value="720p"/>

<list index="1" value="1080p"/>

</map>

</map>

<map key="round" value="0"/>

</root>

Every registry record has to start with root element. This is for unification and clarity
that is necessary when merging registry together. As you can see, there are used map
and list tags. The main idea is, as much as confusing it might seem, that registry
item name is where that item belongs, and not what it is. That way defining ¡list¿
element means it should be put in parents list. For list, when index is not defined, it is
automatically assumed item should be added at the end of the list.

17.6 Merging

Merging of two registry A.merge(B) records is done by systematic comparison of con-
tained items, adding of items that are in B but not in A and overwriting elements
that are in both. when overlapping items are found, it is not just replacement of items
themselves, but only value is replaced and comparison is moved on children, where is
done the very same process.

32/111

18 RENDERING

18 Rendering

Renderer starts rendering once it has defined component it is drawing on and scene that
should be drawn onto it. Along with those values it needs to have updated dimensions,
which are kept in consistent state with component by listening to WindowGEvents and
loading new dimensions out of them.

Rendering is done in separate thread because its read only operation and can possibly
work with scene along with other threads that are responsible for different parts of the
engine. Renderer is configured to strive to follow strictly 60 fps, which is more than
enough for mostly static game. The accuracy of precisely 16.6Hz is achieved by using
sleep for break times larger than 1 millisecond where sleeping period is reduced by 500
nanoseconds. This will result into processor waking renderer up somewhere around
target time and the rest for precise timing can be busy waited 25.

18.1 2D graphics acceleration

2D graphics does not have to be demanding at all, but only when it is computed on
graphics card or done in some low level language with good optimizations. Unfortu-
nately in case of this engine, it is neither.

For classic rendering process is used awt 26 BufferedImage but that is not enough for
rendering complicated scene 60 times a second in full HD resolution. First, buffered
image is held in RAM which is way too slow for quick operations and constant flow
of textures and imagery. Second, CPU is unsuitable for filling large surfaces of image
just out of principle 27. This number grows with every panel that has background color
or image and it can get beyond capabilities of low budget CPU to handle this amount
of changes in 16 milliseconds. For that very reason at least basic operations, such as
blit 28 routine.

Volatile Image VolatileImage 29 is awt image representation that may be depending
on the platform loaded in VRAM 30, which performs for graphics operations significantly
better. This image needs to be created specifically for component it will reside on and
more importantly, it needs to have verification of lost content in place. This image,
unlike BufferedImage, may at any point of rendering lose its contents and rendering

25Busy wait usually refers to looped execution that has no other purpose than stalling the processor.
No work is being than but system resources are being consumed.

26Abstract Window Toolkit from java is heavy weight API for rendering GUI and 2D graphics.
27If we take full HD resolution 1920x1080, we have to visit 2,073,600 pixels per layer. This basically

means we have on single thread execution running on 3.5GHz CPU about 28 tics for each pixel per
frame for all layers

28Term originating from BITmap BLock Transfer standing for copying of rectangular areas between
bitmaps.

29https://docs.oracle.com/javase/8/docs/api/java/awt/image/VolatileImage.html
30VRAM stands for general video RAM without specification of further technology.

33/111

https://docs.oracle.com/javase/8/docs/api/java/awt/image/VolatileImage.html

19 LOADING

process needs to start again. For that reason is whole frame rendered in volatile image
outside of component and when its contents are verified, it is rendered on component
using classical draw image call that has guaranteed success.

Accelerated graphics Once on VRAM, blit operations can be hardware accelerated
using OpenGL support in java. This does not require any special treatment except for
use of Graphics2D class for rendering instead of usual Graphics class. The only thing
needed for enabling accelerated graphics is to set system property sun.java2d.opengl
to true. There are some graphics cards that will not pass through hardware check for
accelerated graphics and to solve that there is a bit of a ugly hack, where whole HW
check is disabled by setting environment property J2D D3D NO HWCHECK to false.

18.2 Updates

In any real-time game engine would be present update call for keeping all components
of the game in same point in time. In this update is usually used delta time from last
update, so all processes can take that into account. In this engine, there is this call as
well, but its purpose is solely for animations within scene. This update is called before
each render call to progress all animations in their proper place. This call should not
be used for anything related to logic of the game!

18.3 Application window

Renderer is tied with an ApplicationWindow instance, which is general wrapper for
JFrame representing window and some canvas component you can paint on. It also
contains correction style to compensate window decoration on screen. This style basi-
cally makes drawing surface smaller for renderer so game logic does not have to take
care of that.

To this canvas component of the application window is registered mouse event gen-
erator that takes awt events and translates them into events of the game. On context
frame are registered window and keyboard generators for translating of resize and key
press events. This translation of events may be used when porting the game on dif-
ferent platforms, for example with touch screens available, since received tap can be
translated as mouse click without even touching game logic and maintaining the same
functionality.

19 Loading

Loading is done through resource holder that is maintaining all loaded results in hard
reference cache 31. Every loaded file type has its own access methods that deal with all
the hassle around and user can just call load with path attached. This customization of

31Hard reference cache will always contain stored values, compared to soft cache that may delete
some content that is least likely to be used.

34/111

19 LOADING

calls makes extension of holder more complicated, but dealing with builders and parsers
every time file is loaded is unnecessary.

19.1 XML

Loaded XML files are parsed using JAXB bindings. These work based on XSD schema
that defines expected structure of XML file. This definition is used to generate java
class hierarchy in which are all the data from loaded XML inserted. Instantiated struc-
tures filled with data are then processed by appropriate builders and stored in game
structures.

There are four ways how to approach conversion between java XML classes and
system.

First, there is a designated builder that knows everything about both parts of the con-
version and will instantiate and transfer all data from one side to another. This makes
loading centralized and decoupled from system itself, but it is much more complicated
to extend behaviour on either end.

Second, where designated builder knows what classes to instantiate, but all the setup
is done inside of new instance using given counterpart. This approach makes builder
much simpler, but the complexity is just shifted further in the system. Adding new
properties or objects is easy, since user just adds instantiation in builder and handling
of conversion is responsibility of created instance which knows very well what to do.
In that case, we have centralized everything about functionality in system class and
builder is more or less oblivious to it.

Third would be leaving even the instantialization on system classes, where builder
only creates, or gets root of the structure and hands the definition to it. This root then
know what to instantiate and how. Any child will do the same and so on. This makes
builder pretty much decoupled from whole structure and can be generalized using some
interface to the point whole application has only one builder for everything. In this
approach, there is a lot of knowledge expected of user and extension of the system is
completely in his hands.

Fourth could be described as simple handing XML structures into the system as they
are and anyone who likes takes data from it. This makes the XML structure deeply
rooted into the system and makes any change complicated, since removal or change of
property can cause errors all over the system.

In this engine are used three listed approaches. Namely first for loading of registry
structures where user expansions are simply not intended at all. Second approach for
scene construction, since user should be able to fairly easily add components. First and
fourth for logic loading, where logic itself does not change at all, and parameters for

35/111

20 NETWORK

actions are handed as they are, since those will not change either and structure carrying
same information would look pretty much the same anyways.

19.2 Styles

Styles are loaded using in house parser, since not all features do match with CSS,
and expanding some existing parser would prove more difficult than creating new one.
Definition of this style is further described in appendix Section D.

In this example is shown general structure of styles definition file:

#root * Panel:hover, #menu{

background-color: black;

}

//include from different file

#include "./data/include.sts";

/* This definition is commented completely

.class Text{

font-size: 80%;

}

*/

20 Network

Network controller is as simple as possible. There are two entities that user can
instantiate and they will then work separately without any further interaction with
their instances from system.

Every platform that is connected to someone will have set client ID that is unique
between all clients connected to same server, which can be used for game logic decision
making. Once this ID is received in event handler, it is attached to all passing events
as source, but only in case these events do not already have an ID.

20.1 Server

When server is created, an attempt to start socket on one of the preferred ports is
made, and if it is successful, server will sit on the socket waiting to get started. After
its thread is started, server subscribes itself to event handler calls. Before entering the
main server loop is sent a message with client ID set to zero.

In main loop is server listening on created socket for incoming connections and for
each that occurs is done initialization procedure. This procedure consist of creating
new client thread that will directly communicate with its connected counterpart, then

36/111

20 NETWORK

number for that connection is generated and sent to that client so it knows its ID. At
last is sent a message containing information about new client being connected, so all
currently connected clients may act on it.

20.2 Client

Client class may be used not only inside server, but as well separately for initiating of
connections to servers. These are done similarly on preferred ports, but hostname is
required as well. This hostname must be resolvable into java Inet4Address 32. When is
client connecting to server, all preferred ports are tested with one second timeout until
one of them passes or everything fails.

When connection is established, client has to be started, which involves subscription
to event handler — same as with server start. Communication data streams have to be
created, since they are necessary for event transfer over network.

Once inside its main loop is client blocked on read of object from input stream, and
once an object is received, it is converted into event and passed into event handler
for rest of the engine. Network flag of all accepted events is turned off so it is not
sent again when that event appears in client again from event handler on this side of
communication.

When event handler is sending an event through client, it must be first marked as
network event. In case this platform did not yet receive its ID, client will busy wait
for it to be set, since sending events without correct platform ID would cause opposing
clients event handler to consider sent events as its own. This busy wait blocking should
be very short because client ID is one of the first things that appear in communication.

20.3 Issues

There are three main issues with current implementation of network communication.
Fist one would be that disconnected clients are not watched, so when a client dies, server
has no way to find out about it and let everyone else know. This would be deliberately
game breaking, because when everyone is waiting for disconnected player to make a
move, but that player is not only no longer there, but cannot even reconnect. This
never happened during testing, but it is issue that needs to be addressed and resolved,
since it may happen on unstable connections.

Other issue is with sending events over the network. When events are distributed,
they are always sent to everyone on the other side. For server is such behaviour relatively
fine, but client needs to have every message redirected by server for it to reach everyone.
It would be convenient for client to have option to pick target of event being distributed.

32http://download.java.net/jdk7/archive/b123/docs/api/java/net/Inet4Address.html

37/111

http://download.java.net/jdk7/archive/b123/docs/api/java/net/Inet4Address.html

21 TIC-TAC-TOE

Last issue is that there is no guarantee that events will arrive in destination in order
they were sent. This can prove quite problematic, because if server sends message for
transition to different state on client and then data to be processed in that state, it can
happen that they will arrive before client enters new state and will be dropped. This is
currently in implemented games solved by two sided communication where server sends
command for transition and waits with sending of data for response from new state.

21 Tic-Tac-Toe

As first example game I chose hot seat Tic-Tac-Toe (further referred as TTT), since
it is one of the most basic games imaginable and thus can be used as tutorial game for
new users of the engine.

21.1 Rules

Rule of the game are fairly simple. Players are taking turns on putting their mark on
unused fields in three by three array, and first player that has three of his marks next
to each other vertically, horizontally or diagonally wins. In case all fields are marked
and no player is a winner, game results in a draw.

21.2 State machine

Logic of the game could presented in many ways depending on how much information we
want to represent. Example how state machine for TTT could look like is in Diagram 8.
As you can see, there are total four states, persistent, red player, blue player and results.
We could go a bit further and split results state into three separate states red won, blue
won and draw, but that would be waste of space and it would make the diagram harder
to read. The point here is, that these states can not only be split in diagram, but as well
in the game logic. We can define state results that will behave depending on winner
marked in registry, or we can have different state for each possible winning condition
that will have static behaviour.

Merging states is exactly what I did while implementing the game. In actual game,
there are only two states. First, main state that does loading and exit button behaviour,
and second, game, that does everything else. That may sound like it is doing a lot,
but it actually contains only two rulesets. Setup ruleset that initializes visibility in
game scene and cleans registry records, and active ruleset that reacts to mouse click
on tile, will mark tile as one belonging to current player, swap players, check winning
conditions and possibly displays winner.

In this case has game state ”only” about 100 lines of definitions which may sound
like a lot for such simple thing, but keep in mind how many things user does not have to
take care of. For beginner would be probably better to split the game in as many states
as possible, but in the end, it has its benefits to concentrate it back into minimum of

38/111

21 TIC-TAC-TOE

Figure 8: State machine for TTT

states, once everything is up and running.

21.3 Scene

For this game are in scene needed four main components. First is exit button, that will
allow us to turn off the game in full-screen mode. Second is some sort of marker telling
to players who is now playing. Third would be grid three by three for game tiles and
finally text message saying who won the game.

Exit button Since Text component inherits from Panel, it receives mouse click events.
This way we can just define Text component in scene, position it, attach style ID to
it and button is set up. It is not very intuitive to call Text component as button, but
after all, everything that extends Panel can be button, so why restrict ourselves.

Current player Marker determining current player can be simply a panel with extra
interaction states attached, which we can then style for red and blue player. In that
case, when in logic is changed state of that Panel to one or the other player, its color
changes as well.

39/111

21 TIC-TAC-TOE

Grid Grid is not at the moment implemented in the engine, but we have some option
how to help ourselves while creating one. In implementation of grid this small was
simpler option just to create vertical layout containing three horizontal layouts where
cells have dimensions 30% of parent. These cells have defined same interaction states
as current player marker, they will be just set only once in the logic.

Winner Label announcing winner is just another positioned Text component by de-
fault visible — it will appear after game ends. Text of this component does not matter
since it will be filled from logic.

Resulting scene can be visible in Figure 9.

21.4 Registry

Because of state aggregation, we will use registry a bit more than in case of expanded
state space. We need to remember current player and tiles with owner values they
contain at the moment. Tiles are at runtime stored in linearized 2D array under key
game.tiles so it can be passed in appropriate rule for evaluation of winning conditions.

<map key="game">

<map key="tiles"/>

<map key="player">

<map key="current"/>

<map key="red" value="blue"/>

<map key="blue" value="red"/>

</map>

<map key="mainScene" value="./data/tictac/scene.xml"/>

<map key="mainStyle" value="./data/tictac/style.sts"/>

<map key="mainState" value="./data/tictac/states.xml"/>

</map>

Switching of players is with use of helper values done using single action:

<action class="StoreData">

<param name="data" access="reg" value="game.player.%"/>

<param name="data:wildcard" access="reg" value="game.player.current"/>

<param name="location" access="reg" value="game.player.current"/>

</action>

Value for current player is string containing his color name because in that way can be
winner announced by pasting player ID in predefined message.

40/111

21 TIC-TAC-TOE

21.5 Walkthrough

When game is started and scene33 loaded, we can immediately see red player is currently
playing, as shown in Figure 9. Moving cursors over tiles highlights them as available
for first move.

Figure 9: TTT — New game

In Figure 10 is visible scene after clicking on a tile. Clicked tile turns red as current
players state was set to it, and it is also disabled, so it cannot be played again. Current
player marker changed it color indicating now that it is blue turn.

Now after several turns, as shown in Figure 11, red player won and it is written in
message below the board. All tiles are also disabled so they stay in current state and
game is basically frozen leaving only option — the exit button. But because state space
has debug state enabled, we can hit F5 to restart the game. That means whole scene
is cleared and setup stage of all active states is called again. Because state setup is
constructed correctly, it puts game in consistent state and it can be played again.

33Background image used for this game is from page http://www.iwallhd.com/wallpaper/

1600x1000/wallpapers-texture-wood-simple-hd-free-in-for.html under GNU GPL

41/111

http://www.iwallhd.com/wallpaper/1600x1000/wallpapers-texture-wood-simple-hd-free-in-for.html
http://www.iwallhd.com/wallpaper/1600x1000/wallpapers-texture-wood-simple-hd-free-in-for.html

21 TIC-TAC-TOE

Figure 10: TTT — First move

Figure 11: TTT — End of the game

42/111

22 CARDS AGAINST HUMANITY

22 Cards against humanity

For second example is chosen simple open license game called Cards Against Human-
ity 34 (further referred as CAH). This game is based on matching sentences containing
blank spots with funniest fillings. Point is to reveal dirty-mind-ness of players. I picked
this game because of lack of licensed imagery and simplicity of rules that allows a lot
of space for modifications.

22.1 Rules

This game in general can be basically for any mount of players larger than two, but
because of time demands added per player is set maximum of players to five. During
a round can have these players one of two roles, either czar or regular player (further
referred only as player). Game round consists of two main stages, player picking answer
from their hand and czar picking the funniest answer from what players played. Owner
of picked card gets all points in the play, always at least one, and at the end of the
game, player with most points wins.

Stage 1 New question card is drawn out of the deck of all unused questions and
presented to all players. This card is visible for everyone for rest of the round. This
question card may contain either question, or fill in the blank sentence.

Stage 2 All players draw answer cards up to 10 and pick the answer that is the
funniest in their opinion. They remember their own card so they can score points for it
if it is picked by czar. These cards are put in one pile. In case a player has more cards
he believes might win, he can spend one point, if he has any, and play one extra card
to boost chances to be picked. Winning player gets all gambled points.

Stage 3 Czar takes pile of played answers, shuffles it, presents this set of cards to
all other players and picks the funniest answer there is. Picked player gets all points
currently in play and czar role is shifted to next player.

Original rules can be found on attached disc.

22.2 State machine

Logic of CAH game implementation is mostly done according to state machine in
Diagram 12. Similarly to TTT, CAH has persistent state for exit from the game and
set of dynamic states that shift along the course of play. These dynamic states can be
divided in two sections, initialization and gameplay.
Initialization In initialization phase is just established connection to a host, player

34www.cardsagainsthumanity.com

43/111

www.cardsagainsthumanity.com

22 CARDS AGAINST HUMANITY

Figure 12: State machine for CAH

picks name that is unique amongst other players and then is everyone just waiting for
host to start the game. Host can start the game only if there are no players currently
picking name and if minimum number of players joined the game. By hitting the start
button will host initiate construction of remaining support structures, such as hands
and decks. At last are clients notified that they should shift to next phase.

Gameplay Once all clients enter gameplay phase, they are cycling states for stage
one, two and three. Along with client is there on server counterpart dealing with
network messages related to that stage. This repeats for certain number of rounds,
where round is one change of czar. This number can be defined in registry and could
be subjected to time preferences of playing group.

See documented implementation for further details.

44/111

22 CARDS AGAINST HUMANITY

22.3 Scene

Scene of CAH uses similar constructions as TTT, but some are worth mentioning. As
first construct notice extensive use of visibility changes in the scene. It is a way to avoid
expensive operations of inserting new nodes in scene and making game more responsive.
That is possible because nodes do not interact with each other unless they are in Layout
component, so they can be overlapping each other in the graph. The other is display
of cards on limited amount of space. Every card has its own layer it is drawn on. This
layer is ascending from left to right, and when a card is hovered, its layer changes to
value above all others.

22.4 Registry

Amount of data stored in registry here is significantly higher compared to TTT, but
that is to be expected. Worth mentioning is concept of language definition and card
decks.

Language definition In registry is key lang that contains under other keys specific
texts used inside of the game. These are loaded into appropriate text components on
state entry. Purpose of this definition is to have language dependent content separate
where it can be easily replaced. Paths to different translation registry records may be
defined in registry main registry record and then used to dynamically merge and replace
all the texts inside of the application using without changing game logic.

Card decks With CardDeckAction was added possibility to create list of indexes
that point into different array in registry and that way operate deck of cards without
even touching original definition. Created deck can have the indexes simply removed
to prevent cards from being reused and shuffled to ensure their random order.

22.5 Walkthrough

On game start will player see connection Screen 13 with option to join existing game,
host new game or exit the game altogether. Exit option is available for course of
whole play. As the prompt says, if player wants to join existing, he should write host
IP address to input below. Since there is only thing player can write into, focus is
automatic. In this input field are allowed only numbers and dots, and contained text
cannot be longer than 15 characters, which is longest IPv4 address possible. On each
change is input evaluated whether it is valid IP address and if so, JOIN button is
enabled. Second option on the screen is enabled only if game succeeded in finding some
network interface that is up and connected to some network. If it is that case, found IP
address is displayed so less experienced players can share it through other means with
their playmates.

45/111

22 CARDS AGAINST HUMANITY

Figure 13: CAH — Connection screen

Once player chooses one of the connection options, new Screen 14 appears with text
Connecting. . . indicating network controller is attempting to start connection or server
on currently set preferred ports. In case of incorrect host may this screen stay on
for several seconds as timeout for connection attempt is one second. In case of failed
connection is player redirected back to connection screen with error message reporting
something bad happened. On the other hand, if is connection successful, player is sent
to Screen 15 for picking of name.

Name picking screen is here for simple management of names. Since names have to
be out of principle unique within one play, they need to be first verified on server. On
this screen can player type name consisting of letters and numbers. When name is non-
empty, CONFIRM button is enabled, and once pressed a validation message is sent to
server that will verify sent name and allow player to proceed to player list Screen 17.
If is name taken, error is displayed instead and player stays on the same screen.

When host of the game is waiting in players list Screen 16, he has extra overview on
top what regular client sees. There is extra START button which is enabled 18 when
no player is picking name and when number of connected players is larger than two.
Until player picks the name, there is nothing to display, so instead there is Picking gray
text that serves as a notifier for host that he is waiting for something in particular and
that game is not broken.

46/111

22 CARDS AGAINST HUMANITY

Figure 14: CAH — Connection status

Figure 15: CAH — Player picking name

47/111

22 CARDS AGAINST HUMANITY

Figure 16: CAH — Host waiting for players to connect

Figure 17: CAH — Client being ready for game to start

48/111

22 CARDS AGAINST HUMANITY

Figure 18: CAH — Host being ready for game to start

Once game starts, czar is directed to his waiting Screen 21 and all other players to
Screen 19 for picking an answer card. On entry to picking state is sent card request
message from every empty slot in players hand and server returns new card from its
local deck. Returned value is ID to card collections that are in everyones registry. For
the time player did not select anything is displayed a hint that a card should be picked.
Once it is picked 20, new hint advises player to confirm that choice by hitting ready
button. After hitting ready is player waiting for others to play and when they do so,
transition to czar observer Screen 23 is made.

When all players finish their picking, all picked cards are shuffled and presented to
everyone. Only czar can in this stage select cards 22, but selection that was made is
visible 23 for every player so everyone sees WHAT exactly was the funniest thing. When
czar hits ready after picking a card, scores for players are recalculated, distributed and
game is progressed by picking new czar and question card.

When player has some points, option to hit button GAMBLE instead of READY is
available 24. This will result in card being played without ending players turn, so one
more card can be picked. Score is subtracted immediately so player can see the impact
of the action when it is done 25. This has of course impact on overall number of cards
when czar is picking. That means in czar picking screen can be with maximum amount
of players and everyone gambling eight cards.

49/111

22 CARDS AGAINST HUMANITY

Figure 19: CAH — Player picking an answer card

Figure 20: CAH — Player picked an answer card

50/111

22 CARDS AGAINST HUMANITY

Figure 21: CAH — Czar waiting

Figure 22: CAH — Czar picked winner

51/111

22 CARDS AGAINST HUMANITY

Figure 23: CAH — Player observed what czar picked

Figure 24: CAH — Player has gambling enabled

52/111

22 CARDS AGAINST HUMANITY

Figure 25: CAH — Player gambled extra card

Figure 26: CAH — Increased number of cards for czar

53/111

23 DISCUSSION

When round counter reaches its maximum, instead of transition to next round screen
with score and without cards is displayed.

23 Discussion

This part serves as extensive guide through implemented engine. Most implementation
properties of basic building blocks mentioned in Part 3 were described to a degree
allowing reader to fully understand architecture and use of the engine. This part is
then complemented by contents of relevant sections from appendix.

Part of implementation process during creation of this engine was building of working
example games. For this reason were briefly introduced two examples of games imple-
mented using this engine with complete walkthrough of screens that appear in those
games.

54/111

Part 5

Usability tests

In this part testing of created system and game implemented in it is discussed.

24 Testing in general

Testing of the system and created games is vital for spotting of major flaws in design.
This procedure should be done several times during development process of the system.
Different iterations of testing have different content based on what we already have and
how in depth we want to test at that point. Early stages of development are covered
with experts which evaluate whether design fulfills basic recommendations. In later
stages of testing it is necessary to involve real users of the system since experts work
around assumptions, and those may significantly differ from reality. Testing with users
should resemble the way final application will be actually used as much as possible.

25 Testing with programmers

The system needs to be tested with programmer to find out whether all processes in
it are intuitive. In this section, there is described a test with programmers where they
were asked to create Tic-Tac-Toe game.

25.1 Method

As a testing method, I chose a method somewhat similar to laboratory testing of UI
designs. These are done with real life users of the system. They should point to
problems that are either utterly hidden to creators of tested environment, or assumed
problems that need to be verified before major, and often expensive, changes are made.

This testing method usually requires at least two people that are familiar with the
tested environment, moderator and logger. While moderator is with participant and
directs progress through tasks, logger observing the test makes notes about everything
what is happening. When logger does not know the tested environment, he is not able
to spot potential problems and must log everything. In this case can be logger replaced
by recording of the whole session and evaluated later. In case moderator is not familiar
with tested system, he is not able to help participant in case of severe blocks and testing
cannot proceed without help from outside. Since I am the only person developing the
system, there are just two options available. First, using recording device and evaluate
the session after it ends, or second, do logging while moderating. Since the nature of

55/111

25 TESTING WITH PROGRAMMERS

this test is an early stage one, I did not consider the precise logging necessary, so all
results from testing process are notes from moderator.

While testing UI design, test participants are presented with a set of tasks they are
to achieve and there is usually one or two ways how to reach these tasks. Testers then
observe participant trying to achieve set task and note where were problems and what
might have caused them. Participant can get stuck somewhere along the way, and that
points us to critical issues with the design.

Since processes being tested are much longer and complicated by themselves, at least
in comparison to UI design testing, each task has allocated more time and it is expected
that participant will consult documentation of system. That way not only system itself
is tested, but its documentation as well.

For the duration of the test participant is asked to follow think aloud protocol, which
basically means participant should vocalize all though processes related to current task.
This helps moderator or logger to spot more problems than by silent observation. Par-
ticipants tend to forget about this, so it is moderators responsibility to remind them
when it happens.

At the beginning is every participant presented with simple Hello World template of
application that is supposed to ease the beginning. This template should not disrupt
the test results, since such template is intended to be available along with the engine,
so using it follows intended use case.

25.2 Screening

During screening process is decided for what kind of user is the tested system intended.
There may be multiple different types of users and all should to be selected with respect
to their proportional representation in target demography.

Java First evaluated characteristic of participant is experience with Java program-
ming language and participants general knowledge of it. This requirement roots in
necessity of creating of custom Actions and Rules for complicated operations and user
completely oblivious to java programming would have difficulties while using the engine
that would not be directly related to engine itself.

Web technologies Second observed characteristic is participants knowledge of web
development technologies, CSS and HTML. It should not be necessary for user of the
engine to have experience with these, but since parts of it are strongly inspired by them,
user being to some extent should be performing better at all graphics related tasks.

56/111

25 TESTING WITH PROGRAMMERS

General programming The last characteristic is general programming level of par-
ticipant. In this case, it does not depend on the language, but it is really important to
have some basic analytical thinking and understanding how programs work. This re-
quirement is related to logic programming, where user is constructing basically sequence
of functional calls with conditional execution, and understanding that is necessary for
any user of the system. This engine is not intended for non-programmers.

In the final group of participants was a representation of all observed types. Total
number of participants was only three even though recommended number is four to six.
This is because the number of discovered problems with each next participants follows
logarithmic curve and this engine is basically still in early stages of development, so we
care only about the most critical issues.

25.2.1 Participant 1

This participant represents user with average experiences from general programming.
From web development has more experience than others and is able to do all parts of
creative process. This participant is in further text referred as P1.

Java three years of use of java in school, several android projects

Web several websites

Programming participant has experience with java, php, C++ and C#

25.2.2 Participant 2

Participant number two is experienced programmer that worked a lot in java but has
no background for web development. As basic requirements fulfills knowledge of XML
file structure. This participant is in further text referred as P2.

Java five years of professional java programming

Web no experiences with web technologies and closest to HTML is with XML config-
urations

Programming participant has experience with java, matlab and C++

25.2.3 Participant 3

This participant represents user with reduced programming skills, medium web devel-
opment experiences and not completely oblivious to java but very close to it. This
participant is in further text referred as P3.

Java little experience, is familiar with he language but did not use it too extensively

57/111

25 TESTING WITH PROGRAMMERS

Web maintenance of several websites, no experience from creative process

Programming participant has low programming experience, more of system admin-
istration, is familiar with bash, C++, python and java.

25.3 Tasks

All tasks represent together creative process of making simple game. Tasks made by
participants are split in following section.

Environment setup First, a working template needs to be set up. This part is here
because all participants are testing the system on their own computers, as real life use
environment would look like, and setting up working template may not be all that
obvious as it might seem. In this phase, user is allowed to use the Internet for solving
of platform specific issues and moderator is allowed to cooperate after fair number of
tries.

Analysis Second, participant needs to do analysis of the problem in terms of what
are the requirements, what are basic building blocks of the program, etc. This part is
not evaluated and is directed by the moderator. It serves for setting the participant
on the right track as quickly as possible. In practice, this part of game development
would be done outside of the engine anyways, so it is better to speed up the testing
process. It is important for the moderator not to influence the participant during this
phase with, for example, advices about design that would make easier development in
tested engine. Most of this moderation should be done by asking using open questions
instead of giving advices.

Scene setup Third, scene needs to be created and tested before logic can be applied
to it. It is in separate phase, because once all scene components are in place, there is not
too many changes once logic part is entered and mixing these two would only support
confusion of participant while trying to figure out what is the problem. Moderator is in
this phase not allowed to give any advice until participant gives his fair try to fulfilling
the task alone.

Logic construction The fourth phase is for participant to start adding behaviour
to created scene using designed state machine from second phase. Moderation in this
phase should be very similar to the one in scene setup.

Cleanup The last phase serves as final touches and optimization of game that is
already working but could work better with minor adjustments. This phase is not
determined by specific tasks, but it tests participants satisfaction with created game
and what is the thought process of improvements.

58/111

25 TESTING WITH PROGRAMMERS

All tasks are described in following list with additional commentary that was not in
list presented to participants.

Environment setup

1. Install program NetBeans 8.0.2 with Java Development Kit (JDK) 8u?. This part
would not be normally required, since the system is not dependent on NetBeans,
but XSD definition builds are already defined in NetBeans project and it would
have to be defined by hand in any different IDE. I assume that the fact user
has some different favorite IDE implies knowledge about it sufficient to set up
everything anew.

2. Install Java Runtime Environment (JRE) 8u?. This step is required for running
created game outside of NetBeans IDE. The game can be developed in the engine
without IDE altogether, but application must be run in console so so creator can
see possible log messages.

3. View all template files in data folder. This step is intended for participant to get
familiar with structure of basic game so he know where to look when these parts
are mentioned.

4. Run the game with unchanged Hello World template files. In this step, participant
will verify that everything is working correctly.

5. Go through all debug options in debug state and make sure you understand them
properly.

Analysis

6. Construct on paper state diagram of hot seat Tic-Tac-Toe game. In this step is
participant forced to realize what should inner working of the state machine look
like, but as well what components will have to be used.

Scene setup

7. Insert in the background of the scene Panel component with background image
that will always cover whole scene but will maintain aspect ratio of the image.
In this operation, participant should look up aspect-ratio, min-width, min-height
properties along with obvious background-image and positioning properties.

8. Split the scene horizontally in ratio 10/90 using two containers. These compo-
nents should not be placed in background Panel. This task is supposed to remind
participant that components may overlap in the scene without influencing each
other.

9. Place Text component in upper Container, set its width to 20% of its parent and
center it horizontally. In this task should user learn how to do relative positioning
to parent.

59/111

25 TESTING WITH PROGRAMMERS

10. Assign class ”button” to this Text component and style it in the way that it has
some default background color, then different color on mouse hover and mouse
click. Participant should demonstrate how intuitive it is to define styles for inter-
action states of components.

11. Place new Panel in lower Container that will be centered, have maximum di-
mensions on 70% and will stay square. This task is here to ensure participant
understood how property aspect-ratio works.

12. Construct in new Panel a grid three by three of Panels positioned using Layout
components. Each tile Panel is 30% square with defined background color. Par-
ticipant should be able to tackle layouts within each other and be able to write
more complicated selectors than direct IDs.

13. Create two custom states red and blue, assign them to each tile panel and style
them to match color of their name. Here is demonstrated the creation of custom
interaction state. At the end of the step should be participant asked whether
result of his actions is correct and explain the answer. That is because interaction
states are set from within the logic and at this moment is participants work not
visible.

Logic construction

14. When player clicks on tile from created grid, change its interaction state to red
or blue. With change of this interaction state put the Panel into its logic state
disabled. In this task should participant define first rule and two actions. Node
change does not require any selections or wildcards, so here should be presented
how intuitive it is to defined parameters for simple actions and rules.

15. Assign text ”EXIT ” to earlier created Text component. This text should be
assigned from registry record at state setup phase. This should demonstrate how
comfortable are users of engine with setting content on state entry instead of
direct access in scene.

16. Make new active ruleset that will on mouse click on EXIT button shut down the
application.

17. Change tile coloring ruleset so every time tile is clicked, it is colored opposite
to previous color, starting with red. Use registry value for storing current state.
This task is for introduction of use of registry for storage of current state.

18. In a loop initialize one dimensional array of nine elements in registry. Use this
array to store tile that has been clicked on and what color it has been colored to.
This task should hint the participant how rules will be evaluated.

19. Create custom Rule that takes registry address to one dimensional array and
returns winner or fails evaluation. Purpose of this task is to verify that new
evaluation element creation guide is clear and intuitive.

60/111

25 TESTING WITH PROGRAMMERS

20. Use created rule on array of tile values and print winner in log using Logger action.
This should show the participant that created rule works and also present means
of debugging logic definitions.

Cleanup

21. Modify any part of the game to your satisfaction. This may include adding new
components, rules and styles. Do not forget to comment on everything you want
to do and why. Moderator should inform you in case that is not possible in the
engine. Consider applying something from optimization Section F in appendix.

Time length Each participant has for all tasks allocated four hours of time split into
two segments divided by break. This is unusually long testing time, but it is necessary
since complicated creative process is being tested. Splitting the session it two separate
days might affect results since participant would have time to think about the game
creation and would return biased.

25.4 Post test questionnaire

After the testing session was every participant asked following set of questions. These
questions are for open feedback from participant, because they often do not vocalize all
their thoughts during the test and post-test helps to get that extra information out of
them. 35

1. How did you like the engine?

P1 In the end I did like it.

P2 It still needs some work, but can I see potential in it.

P3 I liked the simplification of GUI creation compared to java, in which it is a
nightmare.

2. Did use of the engine feel intuitive?

P1 Yes, it did, but only until the point where rules came into game.

P2 No, it did not. The scene creation is more like making of web page which is
very different from my field of work. It took me a moment to get used to the
way all definitions work. On the other hand, it was not deliberately counter-
intuitive, and once I was able to switch into functional programming mode
for game logic, understanding of the process was not as big of a problem.
Also layout component was not exactly clearly described.

P3 Yes, but documentation could be better structured. Looking for pieces of
information required reading of blocks of text.

3. What did you miss the most?

35Answers of participants were translated for use in this thesis.

61/111

25 TESTING WITH PROGRAMMERS

P1 I could use some larger set of tutorials. Documentation is good, but working
examples would make it much easier to digest.

P2 Example codes.

P3 Some example application that has demonstrated all capabilities of the en-
gine.

4. What was most difficult for you?

P1 To understand how logic in state space is defined.

P2 Construction of game grid out of layout components. It was bearable for 3x3
grid, but I cannot imagine doing something like this for chess. Indexing in
that grid was a nightmare.

P3 Getting the custom rule to work. It kept breaking on different places and in
the end I was forced to go and look how is implemented different rule for
comparison.

5. Would you use this engine to make some game?

P1 When will the engine get more time in development, yes.

P2 Probably not, I am not too interested in board games creation.

P3 I might give it a try, but the engine still has long way to go before it is
prepared for common use.

6. If you were to implement this game in your favorite language, framework, engine,
how would you compare the difficulty?

P1 This engine would be definitely easier option.

P2 Definition of scene would be easier in some OOP language, like java, but game
logic itself with connection to scene would be much simple in this engine.

P3 This engine would be much simpler, because it saves me from all the hassle
with GUI definitions.

7. Anything you would like to mention about the engine?

P1 Editor with for construction of definitions and scene would be helpful.

P2 In some areas is the engine easy to use, but for the cost of more difficulties in
other areas. Once something is simple in java, it could stay simple in engine
that is built on java.

P3 I can imagine logic getting very long and chaotic for more complicated games.
The way definitions are made should be simplified.

62/111

25 TESTING WITH PROGRAMMERS

25.5 Found problems

In this section is list of selected problems with number of task they appeared in and
participants that encountered that problem. Only the major usability problems are
listed here since the minor ones were either fixed right after the session or are not
worth being taken care of since they may disappear or change during later development
of the engine.
3 All participants have problem understanding how registry records work. The fact

name of the item defines where is value stored and not what object it creates
seems confusing.

4 Issue for P3 with running the project despite all correct settings (class 52 error).
Problem disappears after change of JDK platform name.

7 P1 confuses pivot setting option for gravity option in android GUI specification and
expects centering to work without specifying left and top offsets.

7 P2 expects pivot: center; to behave like pivot: center center;.

8 P3 forgets to add top positioning for lower container. Complains about missing
feature displaying borders of components on hotkey.

8 P2 placed both containers in background panel so they peek out of the screen when
window does not have square shape.

9 P2 used for width definition property min-width combined with max-width instead
of width.

10 P2 and P3 are having difficulties finding how interaction state styling works.

12 All participants missed the information that components inside of Layout must have
defined dimensions in way so they fit inside their parent.

12 P1 complains that layout-type cannot be set from styles definition.

12 P3 is having problems with relative dimensions in inner layouts (what is row and
what is col).

13 P2 complains that new interaction states cannot be registered from styles.

14 P2 is trying to use selectors instead of node instance.

14 Participants are having problems understanding how output parameters work.

14 P3 is having problems understanding how rulesets work.

17 P1 and P2 are immediately trying to use numbers for players instead of strings.

63/111

25 TESTING WITH PROGRAMMERS

18 All participants are having problems with figuring out how to convert style IDs to
array indexes. DictionaryTranslation is not clear enough name.

19 P3 is having problems with exceptions in custom code. (related to java skill)

25.6 Problems analysis

First of all, most of issues with understanding how things in the engine work can be
solved with a set of tutorials for all features that are available. That may prove time
consuming and makes no sense until is engine ready for release. Because of these reasons
seems like a good idea to postpone examples creation for later stages of development.
Because of testing, it is just obvious that large amount of example codes is absolutely
vital for engine to have at least a little chance to success.

While positioning components, invisible lines and borders could be indeed displayed
for debugging purposes. That could be achieved simply by adding styled component
on top of everything that is visible only when a key is pressed. This component would
consist of several debugging informations and on click on component would custom
debug action transfer information from selected component to debugging component.
This solution is very simple and could be achieved without modifications of core of the
engine.

Complaints about larger grids being initialized in complicated way are in place, be-
cause that procedure is indeed a bit complicated, but it can be done dynamically at
runtime using InsertScene action. It was not in example tasks because of increase of
complexity. This can be solved either by a macro grid component or better integration
of dynamic contents of the scene.

It proved to be a hard requirement on users of the engine to have at least basic
knowledge of web development. This can only be solved by adding short course about
CSS and HTML to the beginning of documentation for the engine and explain related
parts using examples.

Extracting array indexes from style IDs is serious problem that needs to be addressed
in some way. Currently used DictionaryTranslation does not scale very well and it is
not practical when things are being changed a lot.

Structure of documentation in general needs some improvements, since it is quite
hard for user who does not know what is he exactly looking for to look around.

25.7 Conclusion

Testing with programmers revealed some problematic areas of the engine that need to
be addressed, but since all participants finished their tasks within designated time span,
I can only conclude the engine is not an utterly hopeless case.

64/111

26 TESTING WITH PLAYERS

Firstly, all found implementation problems should be addressed before further de-
velopment. Issue with example codes, as mentioned, should be dealt with much later.
It is important to keep creating games around features being added for verifying they
are actually suitable for intended purposes. This approach would not only result in
significant amount of example games, but also verification of usability.

26 Testing with players

Test of crated game is not directly related to the engine, but it is good to verify
that game created in it is sufficient and all found problems can be solved using engines
features.

26.1 Method

Testing method with players does not have to be as detailed or extensive as with
programmers, because result of this testing is addressing how example game was im-
plemented, which is not focus of this work. What I expect to get from this test is a
list of features players were missing so I can verify whether it is possible to add them
and at what cost. Fact that a button was hard to find or that its hover color was
not as bright might be important if created game was to be shipped, but from engine
developers point of view, it is a useless piece of information.

For these reasons will test proceed as simple play session of CAH over network, and
after session finishes, each player will fill a short questionnaire.

There is no screening done for this test, because there is no specific profile of board
games player and to cover whole demography of all possible players would have to be
the test repeated quite extensively.

26.2 Results

This questionnaire was filled by four participants after session of CAH. Game was in
state presented in walkthrough 22.5 described in implementation part.

1. Did you know Cards Against Humanity before?

P1 I knew it but did not have the chance to play it before.

P2 No.

P3 No, you were the one to show me the light.

P4 No.

2. Did you enjoy played session? If not, why?

P1 Yes. Partially because I won.

P2 Yes, it was hilarious.

65/111

26 TESTING WITH PLAYERS

P3 I enjoyed it, it was hilarious at times.

P4 Yes, I did enjoy it.

3. What were you missing in the game?

P1 I missed some notification sounds when game progresses to next phase. Re-
play option would be nice.

P2 Winner of the round is not highlighted in any way.

P3 Sound and light notification when the game moved on.

P4 Sound on game progress would be nice. I would like to take screen shot of
funny answers without having to clip print screen in MS paint.

4. Was always clear what are you supposed to do?

P1 I got a bit confused when I was czar for the first time, but then it was alright.

P2 No, ready and gamble buttons should be in the middle, not so secluded and
I always got mildly confused when I entered czar role not having any cards.

P3 I was a bit perplexed the first time I was the czar, it could have been a little
more clear. Otherwise, the rest went smoothly.

P4 I did not get how to gamble at first and had to ask.

5. How would you describe pace of the game?

P1 Pretty good.

P2 Waiting for other players was sometimes too long. After czar picked winning
card, it was not visible for long enough to notice the result and who won.

P3 Calm and peaceful. Sometimes a bit too slow, depending on how much the
other people wanted to be funny or how long their cards were.

P4 Pace was quite adequate.

6. Will you play the game again with someone else?

P1 Might be.

P2 Maybe, but it is difficult to gather all players.

P3 Yes, I will. It is darkly and guiltily funny.

P4 If I will get the chance, I would like to.

26.3 Found problems

Testing with players revealed few usability problems. Some can be solved by modifica-
tion of game, but others will need modification of core.

66/111

26 TESTING WITH PLAYERS

Complaints about pace being slow can be solved by adding seconds timer that will
force players to play their cards faster. This modification would speed up all rounds so
whole game would be shorter. With this modification would be good idea to increase
number of rounds one game lasts — currently set 20 corresponds to approximately 30
minutes of play. This timer could be added directly into the core, because it is feature
that can be required in other games as well, but it is not necessary. There are two
approaches that could be added, both utilizing custom action with separate threads.
First, action creating thread that generates message events in regular intervals. This
option is a bit heavy and would be complicated to control. The other option is to
have action create thread that will sleep for specified time, send one message event and
then die. Timer with this action would then work based on next activation reacting to
previous one with optional condition for stopping the timer. This one is a bit worse,
since it is not as precise. From time message event is sent until it is received and new
timer is started elapses some delay which can be variable and it would be difficult to
account for it. Of course action could attach previous timestamp to the event so timer
can actually account for that, but that might be unnecessary for something as simple.

Adding the notification sounds could prove to be a bit complicated, because the
engine does not have support for sounds in current state, and adding sound controller
would require creation of sound controller module and its integration in core.

Confusion around being czar for the first time would be easily solved by placing
”don’t panic” message on the board that is where cards were before.

Highlighting the winner could be done by using interaction state styling and timer
mentioned above. This timer would hold highlighted winner and card for a period of
time and then proceed to the next round, instead of instantaneous progress.

Gamble button not being clear is problem of difference between disabled and enabled
buttons. New enabled button style could make it green so it will draw attention of
player immediately when it is available.

26.4 Conclusion

Results of the testing did point out some usability problems, but none of them were
critical for the game being playable or enjoyable. If game was supposed to be shipped,
most of problems could be resolved without modifications of core.

67/111

Part 6

Conclusion

The aim of this thesis has been to simplify board games development process. Upon
successful fulfilling of this pursuit, people with limited programming skills ought to
be able to create a board game in digital environment. It was not intended to create
complete engine as much as to create a sufficient framework in which features based on
needs of its users can be added. Creating a complete set of tools requires years of work
and testing which does not correspond with extent of bachelor thesis.

In the background part the current state of engines available for board games im-
plementation was discussed. These existing engines were found to a different degree
insufficient for easy board games creation. Possible requirements were then listed for
reference as for what finished engine should contain. These are of course only a brief
summary and might change over time and with amount of games being implemented
in it.

The Design part contained description of event driven architecture and reasons for
choosing it for implementation of engine in this thesis. Also, the essence of specific
building blocks of engine architecture was described. This outline does not completely
cover the matter, and certain blocks might radically change in further development.

Implementation of the engine is described in detail not only as overview for the reader
of this thesis but also as a reference guide for any user of the engine. Furthermore, two
implemented example games were discussed as a demonstration of previously illustrated
system. One game, Tic-Tac-Toe serves as example of Hello World game for quick
overview of capabilities of the engine, and second, more complicated game Cards Against
Humanity, is supposed to demonstrate that sophisticated games are possible to be made
with the engine.

The final part contains details on the testing of the engine with programmers. The
testing proved that the engine is usable for creation of a simple game within hours after
introduction to it. The second test was done over created game and showed that it
meets criteria set by players for a pleasant board game experience.

The created engine is not complete but it already resembles the goal I set to achieve.
I believe it is possible to fulfill it in every respect with more development. This does
not only mean the engine is only usable for creating of board games. It can also be
adapted for any kind of application that will benefit from event driven core and simple
scene construction.

68/111

27 FURTHER DEVELOPMENT

27 Further development

This engine is not a complete product that should be used by creators on daily basis
but, as testing proved, it is on the right track. In future development, the set of actions
should be expanded, new components and generally features made available to users
but that would not be the main goal. Results from testing show that consulting of
documentation is not fast nor comfortable for creators. That is the reason for the
need of an interface that will allow the user to manipulate all existing definitions using
graphical elements instead of writing them by hand. This would enable integration of
documentation directly in the engine by showing available options whenever possible.

69/111

Part 7

Appendices

A Getting started

This section describes how to setup working environment, how to orientate in it and
brief description of files contained within template application.

A.1 Installation

This engine was developed and tested under JDK 8 and JRE 8. Please make sure you
have installed these versions of java virtual machines. They are included on attached
DVD or on official web of oracle 36.

Although it is not required, I would advise you to use Netbeans IDE in version 8.0.2
or higher for including of project. Settings of JAXB builds are already in place there
and you will avoid any other problems with project definition. Of course it should be
possible just to copy source files to new project in different IDE.

In the code, as a user, you may be interested in three main areas. Testing package
that contains main class, Debugger for printing out events in the system and Logger
that is processing all errors that may occur. Next two places are packages Action and
Rule in Core.Evaluation package. These contain basic and custom action and rule
classes.

Created template application definitions are located in folder data/template and con-
sists of registry.xml, states.xml, scene.xml, style.sts and folder with main.xml, debug.xml
and game.xml.

Registry This file contains registry definition that starts with root element. Consider
all current predefined values as mandatory and nothing bad should happen.

36www.oracle.com

70/111

www.oracle.com

B SCENE GRAPH

States States file contains includes or direct definition of states in the application.
There is also init element for identification of entry states. These are activated once
state machine is loaded and their setup rulesets are evaluated.

Scene This file contains definition of scene similar to HTML. Scene files can always
contain only one root element and any element in the scene is not allowed to use style
ID #root.

Style File with styles resembles CSS definition and is connected to defined scene.
Whenever are styles applied, they are applied to whole scene!

Main In this state defined initial loading process of the application. Put here all
persistent rulesets that do not have ties to any game part in particular.

Debug This state contains debugging rulesets and should be disabled when applica-
tion is being deployed.

Game This is initial game state which serves as entry playground for first applications.
Do not hesitate to add more states once game gets more complicated.

After running the project, new window should appear in middle of the screen with
text HELLO WORLD in middle. Console output should then show whether accelerated
graphics support is enabled and if game state was successfully set up. When everything
loads, message about platform start is logged as well.

B Scene graph

Scene graph in this engine is composed out of subclasses of SceneNode described later
on, which are laid down in tree graph using grouping elements extending GroupNode.
New nodes and components are added more statically from fixed definitions, and ini-
tialization of each element is rigid as well. That is mainly because of use case of creating
new components is much less common compared to use case of using them. This way
is the ease of creating new ones sacrificed for for simplicity and clarity of definition of
scene using XML.

B.1 File specification

File with scene lays only few requirements on user, while most of them are common
with XML file format.

Every scene file that is to be loaded in must have a single component at root level
because of JAXB unmarshaller being limited in that way. Root element can be any
component available.

71/111

B SCENE GRAPH

In actual scene file may be defined only components and not scene nodes. Scene
nodes are in XSD definition made abstract to prevent creation of unprepared nodes
to be directly in the scene. One of the reasons for this is implementation property
of GroupNode — not keeping dimensions and position in the scene. This way using
directly GroupNode would disrupt whole scene layout without any apparent reason.

Tags for components that may contain other elements do not have to be defined as a
pair when they do not contain any other elements.

B.2 Available nodes

Graph nodes are elements from which the scene of the engine is composed of, but
graph nodes themselves are abstract and not to be used directly. For user are purposed
components, which are discussed later.

B.2.1 SceneNode

SceneNode is base class of all nodes in the scene. Its main purpose is to carry scene
reference to all nodes in the scene so they can interact with it. Parent reference is
carried as well for changes that might influence parents behaviour. Lastly is attached
current logical state of the node, which is defined by each extending class.

Every scene node can have defined a layer property on which that very node resides
in relation to its peers. This information is used to resolve rendering order and order in
which are resolved inputs over components. However, by default is this value on zero.

B.2.2 PaintableNode

Paintable node, as name suggests, is a node that may have some content to be painted
in the scene. With that comes definition of position and dimensions on the screen,
in two versions - parent version, which are values pushed by parent as available, and
absolute version, which is calculated by node itself. These two are for unmodified node
identical, but may differ later on.

With paintable node comes first defined logic state — invisible — which does actually
nothing in this node since its rendering methods are not implemented either, but it can
be called upon and tested. State name is invisible because of all logic states being by
default in not-set state, so visibility is controlled by setting the state up.

B.2.3 StyleableNode

This node is intended for work around visual styles of other styleable nodes. This
node still does not render anything for its only function is keeping and managing style
definition itself while not caring about the content.

StyleableNode is expanding scene graph state space by new set of interaction states
which are for purely cosmetic changes and should not in later implementation affect

72/111

B SCENE GRAPH

working of nodes in any way, shape or form. This expansion does influence logic states
which gain in this node ability to have styles attached to them the same way styles are
attached to interaction states, so for example disabled logic state may have attached
style properties making button gray.

Similarly to CSS, styleable nodes have their own style ID and style class which serves
for selecting of nodes within scene using selectors similar to CSS (yes, this part is
heavily inspired by CSS).

B.2.4 GroupNode

Group node is node purposed completely for managing of grouping of other nodes and
passing all calls to children correctly. It uses layer information from paintable node to
process render and event propagation in correct order.

B.3 Available components

This section shortly describes currently implemented components that can be used
within the scene. For further details, please, consult documentation of specific proper-
ties.

B.3.1 Container

Container is base positioning component in the scene supporting similar properties as
HTML div element with that difference it will not render anything. Container itself
does not care about any of its children and does not affect them in any way. It is
intended for frame positioning only. It can be used as placeholder in Layout, since it
is not rendered, or for logical grouping of other components, because as long as no
properties are set to it, it behaves as parent, with respect to parents padding of course.

Besides positioning, container serves for size management as well. For that there
are properties for dimensions settings, minimal dimensions and especially important
aspect ratio setting for preventing imagery from deforming without having to define its
dimensions by hand.

It is derived directly from GroupNode adding these properties: width D.2.6, height D.2.6,
margin D.2.7, margin-(left|right|bottom|top) D.2.7, padding D.2.8, padding-(left|right|
bottom|top) D.2.8, pivot D.2.9, (bottom|top|left|right) D.2.10, (min|max)-(width|height) D.2.11,
aspect-ratio D.2.12.

B.3.2 Panel

Panel is base display component that extends properties of Container to background
patterns, border images and lines along with cutoff for displayed content. This compo-
nent is not only visible to user, but as well has capabilities to work with mouse events

73/111

B SCENE GRAPH

happening over it, and that in two modes, either masked, which will accept all mouse
events that are over pixels not completely transparent, or non-masked, that accepts all
events over area defined by Container bounds.

With ability to recognize user input from mouse, this component has two predefined
logic states, hover and click, that are activated when their respective action occurs over
the component. This makes the system seem more responsive, because state change
does not have to go through game logic to verify change. These states are very similar
to interaction states in CSS.

Panel is directly derived from Container adding these properties: background-color D.2.13,
background-image D.2.14, background-repeat D.2.15, border-size D.2.17, border-color D.2.18,
border-radius D.2.19, border-position D.2.20, border-image D.2.22, border-image-(bottom|top)-
(left|right) D.2.22, border-mode D.2.21, cursor D.2.23, background-image-alpha D.2.16,
solid D.2.24, mask D.2.25.

B.3.3 Text

Text is component for displaying styled text on top of a Panel from which is text com-
ponent derived. Along with all inherited properties, Text component has also capability
to adjust its size based on its content instead of completely filling the parent. Text sup-
ports line wrapping to specified or received width, but that does not influence preferred
dimensions call.

It is derived from Panel to remove necessity of wrapping the text in different Panel
and for keeping mouse event generation on related text. Following properties are
added: font-color D.2.26, font-name D.2.27, font-size D.2.28, font-style D.2.29, text-
align D.2.30, line-stretch D.2.32, line-wrap D.2.31.

B.3.4 Layout

Layout is basic positioning component for spreading children over given area, vertically
or horizontally, with respect to their alignment. Main purpose of layout is to be able to
spread child components evenly, which is especially complicated when we do not know
how many of them will be there.

Layout is derived from Container, since it is purely for positioning of components.
Following properties are added: layout-type D.2.34, spacing D.2.35.

B.4 Adding new components and nodes

When user wants to add new component, there is certain procedure that should be
followed for full integration of added component to the scene, but since daily addition
of components is not exactly common intended use of the engine, it is not all that much
of a problem.

74/111

B SCENE GRAPH

Create new class As a starting point would be creating new class in package
GUI.Component and having the class extend one of the existing components or nodes
depending on intended use. In case new component should be included in passing of
events, it should extend the GEventReceiverNode interface and for delta time render
updates (animated components for instance) ActiveNode interface.

Pick style extension Next needs to be picked what new properties will be added
to that component, either defined from XML or from stylesheet definition. These
properties should be properly formalized and their names added to set of constants
in GUI.Style.StyleConstants.

Expanding JAXB definition In XSD binding for scene (src/scene.xsd) add new
component by inserting structure

<xs:element name="newName" type="XNewName" substitutionGroup="node"/>

<xs:complexType name="XNewName">

<xs:complexContent>

<xs:extension base="XSuperClassComponent">

<xs:attribute name="prop" type="xs:string" use="optional"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

where newName is name that will be used in XML definition for constructing that com-
ponent, XNewName will be name of inner class representing data from XML definition
and XSuperClassComponent name of inner class this new component is based on (XText,
XContainer, ...). After finishing this modification, rebuild the structure from modified
XSD file.

Adding component to builder Component needs to be added to scene builder so
it knows how to instantiate it. In file Loading.SceneBuilder add in method build line
corresponding to just created class. Keep in mind that this addition MUST appear
before superclass of created component.

Overwrite construct When scene builder instantiates new component, method con-
struct is called on it for initializing all properties that may be defined from XML defi-
nition. Because of those overwrite in your component this method and load data from
XML definition into appropriate fields. In case of style properties, you might want to
set them as string properties into base style of superclass and have them evaluated with
everything else when styles are applied.

Apply style extension When styles should be applied, method applyStyle is called
on styleable nodes. Put any processing of style setting in extension of this method.

75/111

C EVENTS

This procedure should ensure you have correctly added new component, but in any
case, please view first current implementation to see working examples.

C Events

In this section is described general event and all currently implemented events in the
engine.

All event classes use prefix G in front of event word to be easily distinguishable from
awt events and other kinds residing in java.

C.1 Available events

All available events are derived from abstract class GEvent and must be therefore
externalizable for network purposes. They also share the same ID generator which
means that even if two events are not of the same class, their ID is guaranteed to be
different, however, that does not count for event received over network.

Listed names next to events in following sections do not contain under name actual
name of property, but just keyword related to it! Look in implementation of specific
event when operating with them in java code. Keep in mind that only properties related
to recognized types are correct!

C.1.1 Event

Name GEvent (abstract)

Property integer client that is distinguishing to what client event belongs to

Property boolean network that is on true whenever should be event distributed over
network (default false)

Property long timestamp saying when was event created in milliseconds

Property ling id containing value from generator assigned to GEvent class

Description This is abstract class used as mandatory predecessor for all events in the
engine. It purely serves for encapsulation of mentioned properties.

C.1.2 Window event

Name WindowGEvent

Property integer type from set of tuples visibility:0, resize:1, movement:2 and focus:3.

Property boolean shown on true if window entered visible state

76/111

C EVENTS

Property boolean focused on true if window gained focus

Property point location of the window on the screen

Property dimension dimensions of window

Description This event is for reporting of platform window related events. They may
have some use in the game, but generally is window event for renderer only.

C.1.3 Mouse event

Name MouseGEvent

Property integer type of event from set of tuples moved:0, scrolled:1, pressed:2, re-
leased:3, dragged:4, clicked:5, entered:6 and exited:7.

Property point position on the window

Property double scrolled distance

Property integer button code LMB:1, wheel:2 and RMB:3.

Description This event serves for translating of mouse event over current application
window.

C.1.4 Message event

Name MessageGEvent

Property string name of the event that is user defined

Property object content being carried with the message (may be null)

Description This event is for general purpose messages being sent across the engine
or between clients over network. When this event is attempted to be marked as
network, check is made on content being Serializable. In case this check does not
pass, mark is not done and error is logged. This event may carry more than one
objects (see Action E.3.14 and Rule E.2.1 for details).

C.1.5 Keyboard event

Name KeyboardGEvent

Property integer type of the event from set of tuples pressed:0, released:1 and typed:2.

Property integer code of key being pressed or released

77/111

D SCENE STYLES

Property character char being typed

Property integer location of key being pressed or released on keyboard, such as numpad
or standard

Description This event is for reporting of user interaction with keyboard.

C.1.6 Interaction event

Name InteractionGEvent

Property GEvent event source of the interaction

Property GEventReceiverNode node source being interacted upon

Description This event is there for components to be able to report their interaction
with events that arrived in scene. Time of this event being returned is time of
source event.

D Scene styles

This section covers information about style definition in general and should work as
factual reference guide.

D.1 File specification

For purposes of defining styles for scene elements is present new file format .sts which
serves for stylesheet definitions. These are in structure very similar to CSS, but recog-
nized properties are purely users responsibility as well as their inner implementation.

Each .sts file may contain unknown amount of rulesets (styles) that are introduced by
element chains (selectors) that define which elements should be influenced by that very
style. Separate selectors may overlap in terms of elements being selected by them. That
means that one element can gain properties settings from different rulesets. Conflicts
are resolved by rule — last assigned value is valid value.

D.1.1 Comments

As opposed to CSS, in .sts file may be placed two types of comments (single line,
multi-line), so it is much easier to document style definitions.
Single-line Single-line comments are started with // and will guarantee that every-
thing untill the end of line will be ignored. Forward slash characters may be used inside
string chain definition freely without being backslashed.

78/111

D SCENE STYLES

Multi-line Multi-line comments are enclosed in /* */ tuple and everything within
them is ignored. Both forward slash and asterisk can be used freely inside string chain
definition without the need of being backslashed to not be considered a comment.

D.1.2 Selectors

Each row that is not part of style rule set or comment or include command has to
be selector chain. Each selector chain is composed from selector members of different
interpretations based on their prefixes and suffixes.

Only allowed characters for members names are basic ASCII letters and numbers,
while no name can start with a number. This restriction comes from open possibilities of
expansion of capabilities of styling and selections. This way can be ensured backwards
compatibility along with expanding basic selector construction by designating specific
characters to new functionalities. Following members are recognized:

Class members Class members are always introduced by dot and followed by at least
one ASCII letter. Class members are to be used as general collections of properties
for elements of similar purpose — elements of the same class may appear in the
same scene graph multiple times.

Identifier members Identifier members are always introduced by hash tag followed
by at least one ASCII letter. Identifier members are intended to be unique across
scene graph, and thus be used as starting point for some local selection chains.

Name members Name members are not introduced by any special character and
represent class name of java object that is representing target element. That
being said, all naming rules on name members are identical with java class naming
specification.

All member All member is composed of single asterisk character and will be treated
as equal-to-everything. Intended to use as end selectors of selection chain or as
mandatory layer in between of two members.

Selector may have defined at last member the state to which the style belongs by
separating member name and state name with colon. That will ensure style belonging
to the selector will be applied only when are concerned elements in specified state.

After each selection chain there MUST be pair of enclosing braces that may contain
specific rules, but if empty style is encountered, user is warned about it. Between
two selection members there MUST be at least one whitespace. Between braces and
surrounding parts may be any amount of whitespaces so it is possible to have braces
on the same line with selector but as well on the next one, if that is your coding style.

79/111

D SCENE STYLES

There may be multiple selectors for single style divided by comma. Such notation is
then treated as if there was same style several times with different selectors. This is
supposed to prevent copy pasting of styles across the stylesheet, but keep in mind that
last defined wins, so it may be still necessary for overwriting some changes.

D.1.3 Styles

In enclosing braces of selector may be defined any amount of property tuples that are
composed of key and value. Keys are predefined words containing only lowercase letters
and hyphens for word division. Each style definition MUST end with semicolon. Values
can be one of following types:
Number Number type can define either signed integer value or signed double value.

This type is recognized by minus or number or dot being first character of value
part. Number may optionally end with units definition: pixels as px that defines
absolute on screen pixel value or percents relative to some other value depending
on implementation of that very element.

String String type can define any string of characters, but they must be enclosed
within pair of quotes. Use of additional quotes is possible, but each occurrence
must be escaped by backslashes.

Keyword Keyword type is unenclosed string that may contain only lower case letters,
dashes for separating words and spaces for cases when you want more keywords
for one property. This keyword content will be stored trimmed 37 and splitting
the string is job of component using it.

D.1.4 Includes

Include command is recognized when line starts with sequence #include. Then should
follow path enclosed in pair of quotation marks. Path may be relative to project root
or absolute, using forward slashes only. Include line must end with semicolon. Includes
are systematically evaluated in loop with comments removal. Firstly are parsed out all
comments and their content, then are resolved includes by pasting contents of files they
are pointing to instead of include lines and then are checked comments again. Failed
includes are reported and will not break the parsing of stylesheet.

D.2 Available properties

In this section are listed all available properties with their use, effect and components
they are defined in. In case this list is not sufficient, please do explore actual imple-
mentation, which is heavily documented by itself.

37Trim is function that removes whitespaces before first non-whitespace character and after last.

80/111

D SCENE STYLES

In this list are similar properties aggregated by use of regular expression notation
so actual names from example padding-(left|right) would be padding-left, padding-right.
These properties are not defined separately because of their analogical use, so please
take that into account while reading through them.

No property is mandatory for any currently implemented component and it should
never be in any of the expansions. Any property should be additionally removable by
using it with its name and value none.

D.2.1 Layer

Owner SceneNode B.2.1

Name layer

Values integer

Default 0

Description This property serves for sorting of elements in the scene in different than
insert order. When element has higher layer value than its peers, it will receive
mouse events as first and will be rendered last. This setting does not translate
outside of elements peers in single group. When all elements have their layer
identical, they will be processed in their insert order. In case some of them have
different layers, order of those with same one is not guaranteed since used sorting
algorithm is not stable.

D.2.2 Visible

Owner PaintableNode B.2.2

Name visible

Values boolean

Default true

Description This property is for changing of visibility of related node. When node is
not visible, it will not only be left out of rendering phase call, but it will also not
receive mouse events that are happening over its surface. Visibility is not possible
to be changed from stylesheet definition because it would cause constant blinking
on every action happening over it, which is probably not required behaviour in
any imaginable scenario.

81/111

D SCENE STYLES

D.2.3 Style ID

Owner StyleableNode B.2.3

Name id

Values string according to regex (A-Za-z)+(A-Za-z0-9)*

Default not set

Description This property is present for selecting nodes in the scene using defined
ID keys. It is not possible to change style ID from style definition. It is strictly
initialized inside XML file with scene. This ID must be unique across the scene
at all times.

D.2.4 Style class

Owner StyleableNode B.2.3

Name class

Values strings according to regex (A-Za-z)+(A-Za-z0-9)* separated by single space

Default not set

Description This property is similarly to style ID intended for scene graph selections,
but with the difference that one node can have multiple defined classes and there
can be multiple nodes with the same class. This is a tool for grouping of ap-
pearance and behaviour of nodes by their common abilities. Keep in mind that
multiple classes are defined NOT by multiple definition of class attribute, but by
putting more keywords separated by space inside single attribute definition. This
property cannot be set from style definition.

D.2.5 Interaction states

Owner StyleableNode B.2.3

Name states

Values strings according to regex (A-Za-z)+(A-Za-z0-9)* separated by single space

Default not set

82/111

D SCENE STYLES

Description This property serves for registering of recognized interaction states so
they can be addressed in selectors. These states have no affect on logic of the
game and are purely for visual changes. Styles that are stored under these states
are applied in order they are defined inside of this property with the exception of
states predefined in constructor of component or node. Generally logic states have
higher priority during the application and will overwrite settings from interaction
states. Keep in mind that multiple states are defined NOT by multiple definition
of states attribute, but by putting more keywords separated by space inside single
attribute definition. This property cannot be set from style definition.

D.2.6 Dimensions

Owner Container B.3.1

Name (width|height)

Values real numbers with possible suffix px (implicit) or % (relative)

Default 100% for both

Description These properties serve for dimensions definition of component in scene.
In case of dimensions in pixels is dimension on respective axis applied if not
said otherwise in further implementation (outside of container) and dimension in
percents is related to value given by parent as available space. In default setting
will component fill all given space.

D.2.7 Margin

Owner Container B.3.1

Name margin(-(left|right|bottom|top))?

Values real numbers with possible suffix px (implicit) or % (relative)

Default 0 for all names

Description This property is similarly to CSS designated for spacing around the com-
ponent. Space created around component by margin is not filled by content of
that component, or partially in case of border setting center or outside. Contrary
to CSS margin behaviour, margins of touching components on same level do not
overlap but are added together, but only when they are inside of a layout com-
ponent (components do not influence each other by themselves). Margin setting
without side specification will change margin setting for all sides at once and then
will be overwritten by possible specific definition. In case of margin setting in
percents, resulting value for each side is always related to parents dimension in
respective axis.

83/111

D SCENE STYLES

D.2.8 Padding

Owner Container B.3.1

Name padding(-(left|right|bottom|top))?

Values real numbers with possible suffix px (implicit) or % (relative)

Default 0 for all names

Description This property is similar to margin, but with the difference that padding
serves for offset of contained components. Padding setting without side specifica-
tion will change padding setting for all sides at once and then will be overwritten
by possible specific definition. In case of padding setting in percents, resulting
value for each side is always related to parents dimension in respective axis.

D.2.9 Pivot

Owner Container B.3.1

Name pivot

Values two strings defining pivot on x and y axis using keywords (left|center|right)
and (top|center|bottom) respectively.

Default left top

Description This property serves for shifting to what point on the component is the
position related. When we define that position is certain distance from the right
side, we might want as well to shift pivot to the right so the right side of the
component is defined distance from right side of parent. Centering component in
middle of parent is then done by setting pivot: center center; and left and top
positions on 50%.

D.2.10 Position

Owner Container B.3.1

Name (left|rigt|bottom|top)

Values real numbers with possible suffix px (implicit) or % (relative)

Default not set

84/111

D SCENE STYLES

Description This property is for positioning of element relatively to parents bound-
aries. Setting of position directly will override effect of margin, which is used
when fixed positioning is not set. Relative positioning is calculated from parents
dimensions on respective axis and is always related to pivot, not to boundary of
the component, so left: 100%; will produce same result as right: 0%;.

D.2.11 Min-max dimensions

Owner Container B.3.1

Name (min|max)-(width|height)

Values real numbers with possible suffix px (implicit) or % (relative)

Default not set

Description This property serves for defining edge case dimensions of components in
the scene. This calculation is done after all other dimension influencing calcu-
lations, except aspect ratio, which may violate requested dimensions. Relative
values are calculated out of parent dimensions on respective axis.

D.2.12 Aspect ratio

Owner Container B.3.1

Name aspect-ratio

Values real numbers preferably around 1 or auto

Default not set

Description This property is intended for keeping certain components in fixed aspect
ratio, for example when there is imagery on components background and not
keeping aspect ratio in line would deform the image. Aspect ratio is during its
application battling minimum and maximum dimensions, but if component is not
able to be sized to fulfill min-max requirements, they will be loosened for sakes of
aspect ratio. Aspect ratio is one of the properties that may be set automatically
when the assigned value is auto. This means extending component can overwrite
call for aspect ratio generation and return different value than 1. In case of panel,
returned ratio is ratio of set background image, if there is one set.

85/111

D SCENE STYLES

D.2.13 Background color

Owner Panel B.3.2

Name background-color

Values color in classic hexadecimal definition #RRGGBB, expanded version #AAR-
RGGBB where AA is hexadecimal value for alpha channel, or word name of color
from predefined testing palette white|black|red|green|blue|yellow. Alpha channel is
inverted so when it is by default not set, visibility is on maximum.

Default not set

Description This property is for coloring of the background of the component. Surface
being colored is surface defined by final position and dimensions, but not surface
covered by margin. Background color is rendered first of all background properties
so it is covered by other imagery.

D.2.14 Background image

Owner Panel B.3.2

Name background-image

Values string path to image on the computer

Default not set

Description This property for spreading imagery from external file over component
in manner defined by repeat property. This imagery is rendered over color as
second and is covered by border line and border image. Path to the image may
be relative to execution environment or absolute.

D.2.15 Background repeat

Owner Panel B.3.2

Name background-repeat

Values string containing two keywords (repeat|stretch|fixed) for x any y axis of image

Default stretch stretch

86/111

D SCENE STYLES

Description This property is specifying how background image should be used in
three modes for each axis. First, repeat mode will repeat image across respective
axis in its original size. Second, stretch mode will stretch image to the dimension
of component on respective axis. Third, fixed mode will let the image sit on the
component in its original size in upper left corner. Keep in mind that the smaller
image is being repeated over big area, the longer it takes to render it because of
large amount of separate calls.

D.2.16 Background image alpha

Owner Panel B.3.2

Name background-image-alpha

Values real numbers in range ¡0,1¿ where 1 is fully visible.

Default 1

Description This property serves for reducing transparency of background image of
a component without having to change image itself. Keep in mind that alpha is
not inverted in this property, as opposed to other coloring definitions.

D.2.17 Border size

Owner Panel B.3.2

Name border-size

Values real numbers with possible suffix px (implicit) or % (relative to maximum
dimension)

Default 0

Description This property is for defining the size of border rendered around s̈olids̈urface
of component. Border size affects not only rendered single color border, but it
also affects how is border image rendered. In border image is size of the border
set in a way so all border images fit in the bounds, but adjusting it manually may
result in border image cutoff.

87/111

D SCENE STYLES

D.2.18 Border color

Owner Panel B.3.2

Name border-color

Values color in classic hexadecimal definition #RRGGBB, expanded version #AAR-
RGGBB where AA is hexadecimal value for alpha channel, or word name of color
from predefined testing palette white|black|red|green|blue|yellow. Alpha channel is
inverted so when it is by default not set, visibility is on maximum.

Default not set

Description This property defines what color is used while rendering border line.

D.2.19 Border radius

Owner Panel B.3.2

Name border-radius

Values real numbers with possible suffix px (implicit) or % (relative to maximum
dimension)

Default 0

Description This property defines circular radius around the edges of component.
This radius is rendered on top of imagery which is for its sakes cut off so back-
ground imagery or color doesn’t peek from behind of the component. Setting this
radius to 50% on square component will create a circle.

D.2.20 Border position

Owner Panel B.3.2

Name border-position

Values one of keywords (inside|center|outside)

Default center

Description This property serves to purpose of placing border in specific relation to
edge of solid part of the component.

88/111

D SCENE STYLES

D.2.21 Border mode

Owner Panel B.3.2

Name border-mode

Values one of keywords (dotted|dashed|dotdashed|solid)

Default solid

Description This property specifies how is line of border stroked. Spacing in stroke
patterns are derived from current border size.

D.2.22 Border image

Owner Panel B.3.2

Name border-image(-(top|bottom|left|right))? or border-image-(top|bottom)-(left|right)

Values string path to an image on the disk

Default not set

Description These properties are here for defining more complicated borders com-
posed out of border images. There are three types of this definition. Firstly,
common border image that is set to all sections, then there are sides with one
specifier, and at last corners with two specifiers. Corner images are just placed
in their position, when side images are repeated along their axis. Images are ad-
justing border size to fit this image border in cutoff area of background cache, so
make sure you do not have border color defined when using border images.

D.2.23 Cursor

Owner Panel B.3.2

Name cursor

Values string path leading to file with image representing cursor

Default not set

Description Purpose of this property is to allow user to define specific cursors over
components, especially with relation to states. Hover on component can display
active cursor and click can animate cursor grab.

89/111

D SCENE STYLES

D.2.24 Solid

Owner Panel B.3.2

Name solid

Values boolean

Default true

Description This property causes related component to let through mouse events
depending on its setting. When on true, no mouse events that are caught by this
component are then silenced and will not land on anything else. That comes handy
when covering normal interface with temporary menu, since with this option it is
not necessary to disable underlying interface, it will not get mouse events at all.

D.2.25 Mask

Owner Panel B.3.2

Name mask

Values boolean

Default true

Description This property serves for masking out mouse events by contents of back-
ground image. It may have more complicated shape with transparent segments
and mouse events will be caught only over non-transparent pixels. This does not
apply to pixels generated by text! These are for this functionality ignored.

D.2.26 Font color

Owner Text B.3.3

Name font-color

Values color in classic hexadecimal definition #RRGGBB, expanded version #AAR-
RGGBB where AA is hexadecimal value for alpha channel, or word name of color
from predefined testing palette white|black|red|green|blue|yellow. Alpha channel is
inverted so when it is by default not set, visibility is on maximum.

Default black

90/111

D SCENE STYLES

Description This property serves for setting up color of text related text component
is rendered in.

D.2.27 Font name

Owner Text B.3.3

Name font-name

Values name of font to be used

Default fixed font definition to SERIF

Description This property defines what font should be used for related text compo-
nent. Defined font must be on the computer, it is not possible to define custom
fonts from path at the moment, but used fonts may be included with application
which will make them available for use.

D.2.28 Font size

Owner Text B.3.3

Name font-size

Values real numbers with possible suffix px (implicit) or % (relative to height of
parent)

Default 14

Description This property if for setting the font size. Unfortunately it is not possible
to have relative font size to size of related component since size of that component
is partially decided by content and actual font size.

D.2.29 Font style

Owner Text B.3.3

Name font-style

Values string containing keywords (bold|italic) separated by spaces

Default not set (plain)

Description This property is for adding options bold and italic to font style. Underline
and crossed are not supported.

91/111

D SCENE STYLES

D.2.30 Text align

Owner Text B.3.3

Name text-align

Values string containing tuple of keywords (left|center|right) (top|center|bottom) sep-
arated by spaces

Default center center

Description This property is for aligning actual text inside of its component. Ver-
tically is alignment done over whole text block, horizontally is aligned each line
separately.

D.2.31 Line wrap

Owner Text B.3.3

Name line-wrap

Values boolean

Default false

Description This property is defining whether text should wrap automatically in case
it does not fit inside of predetermined width of the component. This option should
not be combined with line stretch, since that does not calculate with wrapped
lines.

D.2.32 Line stretch

Owner Text B.3.3

Name line-stretch

Values boolean

Default false

Description This property defines whether size of the component should be adjusted
to the requirements of contained text. This option will count the rows, measure
their width and will come up with preferred dimension for the component. Then
will system make an attempt to fulfill that preference while keeping all other
restrictions on place. I that will not work out, text will overflow he component.

92/111

D SCENE STYLES

D.2.33 Text content

Owner Text B.3.3

Name content

Values string

Default empty

Description This property is for specifying contents of text component from XML
file. This property cannot be set from style definition.

D.2.34 Layout type

Owner Layout B.3.4

Name layout-type

Values string keyword (horizontal|vertical)

Default horizontal

Description This property serves for definition of layout orientation, either vertical
or horizontal. This property cannot be defined within style and is to be changed
from XML file.

D.2.35 Layout spacing

Owner Layout B.3.4

Name spacing

Values string keyword (gap|border|combine)

Default none (not set)

Description This property is for setting spacing between child components inside
of layout component. Components are first evaluated by their align and outer
dimensions, and then is remaining space split by the defined value. For border is
the space split evenly before first component and after last component. In case
of gap is remaining space split in spaces (gaps) between components while border
components are leaning towards sides. Lastly, combine will just split remaining
space between both — spaces between components and around borders. This
splitting is happening only along axis defined as orientation of layout! For spacing
to work properly, all components must have defined sizes by themselves.

93/111

D SCENE STYLES

D.3 Adding new properties

Process of adding new property is similar to process of adding new component with
some steps left out.
Expanding JAXB definition First we need to expand JAXB definition in sr-
c/scene.xsd file by adding attribute

<xs:element name="name" type="XClass" substitutionGroup="node"/>

<xs:complexType name="XClass">

<xs:complexContent>

<xs:extension base="XSuperClass">

<xs:attribute name="prop" type="xs:string" use="optional"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

inside of the related definition. Then we have to regenerate classes defined in this xsd
and we are all set there.

Specifying constant Now we should to pick and store constant name in style con-
stants GUI.Style.StyleConstants file. This constant should be prefixed by STYLE to
be easily recognizable within the code.

Expanding construct Next we need to expand construct by loading added property
in related component into base style or elsewhere by the use, so it can be assigned from
XML structure.

Apply style As the last thing, we might need to expand apply style method in
related component to load newly created property from style definition and process it
in intended way.

This process is much simpler than adding new component and there is more then
enough working examples to get inspired by.

94/111

E LOGIC

E Logic

Used state machine for logic is stored in XML file containing specific states and their
content. This file can be defined only once and separate state spaces cannot be merged
at this moment. Further in this section is described how to define logic for internal use.

E.1 State space file specification

XML file containing state space could be summarized by simple example:

<statespace>

<state name="stateName">

<setup>

<group operation="and">

<rule class="RuleName">

<param name="a" access="var" value="varName"/>

</rule>

<action class="ActionName">

<param name="b" access="reg" value="reg.path[1]"/>

</action>

</group>

</setup>

<active>

...

</active>

<teardown>

...

</teardown>

<include path="./..." mode="setup\vertactive\vertteardown"/>

</state>

<include path="./..."/>

<init>

<statename name="stateName"/>

</init>

</statespace>

As example shows, state space consists of states and definition which states are entry
ones. Then each state may contain three types of element collections that differ in time
they are called. Setup is called on entry in the state, active is called on processing of
subscribed event and teardown is called on exit from state.

Available includes are present to keep the definition logically separated and simple.

95/111

E LOGIC

Keep in mind that during repeated parsing process are includes not checked and will
be used from cache, even though they might have changed!

E.2 Available rules

In this section are described currently implemented rules. Rule class does not differ
from Action class all that much, but they are separated for readability.

Outputs of rules do not have to be specified in XML, if they are not, their value will
appear on their name in variable space. If inputs are not marked as mandatory, they
do not have to be specified. All classes representing rules must have Rule as a suffix in
name. This suffix is implicit and not used in this section.

E.2.1 Check message

Name CheckMessage

In integer sourceIn client ID that is checked

In string regex used to validate message name

Out integer sourceOut client ID that was found in the event

Out object messageContent that was received

Description This rule will take given event and in case it is instance of it will attempt
to match currently set regex on its name and store content of the message in
variable space under messageContent key. In case there is no regex set, all mes-
sages will pass. Client ID attached to received message may be checked as well if
sourceIn parameter is set. This rule has special behaviour tied with SendMessage
action. Content inside this rule can be suffixed with any number of strings to
attach multiple objects to the message. Common practice should be either using
array indexes messageContent[0] or map keys messageContent[data]. These ad-
ditional keys must be defined as outputs to be stored on defined place, it is done
automatically only for unsuffixed key.

E.2.2 Compare numbers

Name CompareNumbers

In mandatory double num1 first compared

In mandatory double num2 second compared

In mandatory string keyword operation from pool (l|b|leq|beq|eq|neq) which represent
lesser, bigger, lesser or equal, bigger or equal, equal, not equal respectively.

96/111

E LOGIC

Description This rule serves as compare filter for two numbers.

E.2.3 Keyboard button released

Name KeyboardReleased

In integer keyCode representing code of checked key

Description Will verify whether given event is KeyboardGEvent, then whether its
type is released and at last whether its keyCode is same as the one acquired using
settings of this rule.

E.2.4 Keyboard character typed

Name KeyboardTyped

In integer keyCode representing code of checked key

In string regex used to validate received character (example use would be [A-Za-z0-9])

Out string keyChar that was actually received

Description Will recognize keyboard typed event, store pressed key in output. If
regex and/or key code are set, check on match is done.

E.2.5 Load user IP address

Name LoadAddress

Out string myIP that will contain loaded IP address in case of successful load

Description This rule will make an attempt to load IP address of currently running
machine from any interface and address space. Addresses from public space have
higher priority.

E.2.6 Load event contents

Name LoadEvent

In string prefix placed in front of defined variables

In mandatory object source that defines access to loaded event. If it is on const, trigger
event is loaded

97/111

E LOGIC

Out integer id of general event

Out long timestamp of general event

Out string class containing class name of the event

Out integer clientId that was attached to event as source

Out boolean isNetworkEvent value on true when event has network flag on

Out object sourceEvent of interaction event

Out object sourceNode of interaction event

Out integer keyType type of keyboard event

Out integer keyCode of key pressed of keyboard event

Out string keyChar of key typed of keyboard event

Out integer keyLocation of where was the key interacted with (numpad, main, ...)

Out integer mouseType of mouse event

Out point mousePosition where mouse event happened

Out integer mouseScroll amount

Out integer mouseButton code

Out integer windowType type of window event

Out boolean windowShown true if is window shown

Out boolean windowFocused true if is window focused

Out dimension windowDimensions that is set now

Out point windowPosition where window resides on screen

Out string messageName of message event

Out object messageContent content map of message event

Description This rule will load contents of any event into variable space with possible
prefix to avoid collisions with other variables. Keep in mind that this rule does
not care about the event type, so you have to check it yourself by looking at class
before accessing any of the outputs. Try to restrain from using this rule as much
as possible, because in its generality, it is very slow.

98/111

E LOGIC

E.2.7 Load string length

Name LoadStringLenght

In mandatory string source path to the source being measured

Out integer length measured value

Description This rule will try to load string from given source and then measure its
length returning it in output length.

E.2.8 Mouse button released over component

Name MouseReleased

In string class that will be looked for in styleable components

In string id that will be looked for in styleable components

In integer buttonCode checked

Out object nodeOut that reported interaction event

Out string classOut collection of style classes of component reporting mouse click
separated by space

Out integer idOut actual style id of component reporting mouse click

Description This rule evaluates interaction events over components and checks given
information in them.

E.2.9 String equals

Name StringEquals

In mandatory string str1 first compared

In mandatory string str2 second compared

Description This rule will compare input strings and pass when they are equal. This
rule can be replaced by StringRegexMatch rule, but it is left here for readability.

99/111

E LOGIC

E.2.10 String regex match

Name StringMatchRegex

In mandatory string target string to be checked

In mandatory string regex to be used for match

Description This rule is for checking target string by defined regex. In case of regex
match pass will pass this rule as well.

E.3 Available actions

In this section are described currently implemented actions. Action class does not
differ from Rule class all that much, but they are separated for readability.

Outputs of actions do not have to be specified in XML, if they are not, their value
will appear on their name in variable space. If inputs are not marked as mandatory,
they do not have to be specified. All classes representing actions must have Action as
a suffix in name. This suffix is implicit and not used in this section.

E.3.1 Apply stylesheet

Name ApplyStylesheet

In string path to loaded and applied stylesheet

Description This action serves for dynamic loading of stylesheets into current scene.
There is no selector for applying of styles since they are always applied to all
elements in the scene starting from root.

E.3.2 Change state in state space

Name ChangeLogicState

In string name specifying state being operated

In mandatory string operation with keyword operation name from (enter|exit|add)

In string path to state being possibly loaded

100/111

E LOGIC

Description This action will operate with state in state space according to specified
operation. For enter will be state of given name entered, which means its setup
rulesets will be called and it will start receiving events. In case of exit will be
state exited, teardown rulesets are called and

E.3.3 Change state of node

Name ChangeNodeState

In string selector used for node lookup

In object node for direct node modification

In mandatory string name of the state being operated

In mandatory string operation from keywords (set|unset|register)

Description This action serves for managing of generally states of nodes in the scene.
Set or unset state operation do not distinguish between logical and interaction
states and will operate in both spaces at once. This means that if names in logic
and interaction spaces overlap, their modification will be simultaneous. From
input parameters is mandatory to have filled either node or selector.

E.3.4 Change text of component

Name ChangeTextComponent

In mandatory string selector leading to modified components

In string operation from keywords (replace|append|backspace) (default replace)

In string text being operated (default empty string)

In boolean report true if message vent about this change should be generated (default
false)

Description This action if for modification of text components in scene. Operation ap-
pend and backspace are simply for quick modifications and for reducing of amount
of performed operations in logic. Correct way to perform those would be to des-
ignate separate action operating strings in variable space or registry.

101/111

E LOGIC

E.3.5 Clear node

Name ClearNode

In mandatory string target selector of node to be cleared

Description This action will clear all children from target node(s) and in case of target
being RootNode, its derived styles will be removed as well.

E.3.6 Dictionary translation

Name DictionaryTranslation

In mandatory string input being translated

In mandatory string patterns being recognized separated by space

In mandatory string translations input is translated into separated by space

Out string output after translation

Description This action serves for translating between two sets of strings. These sets
have to have equal length. Purpose of this action is to translate node style ids or
keywords from user input into array indexes or map keys.

E.3.7 Dump registry

Name DumpRegistry

Description This action is purely for debugging purposes. It will print out currently
used registry records in log message stream.

E.3.8 Dump states

Name DumpStates

Description This action is purely for debugging purposes. It will print currently active
states in state logic of rule handler processing this action.

102/111

E LOGIC

E.3.9 Insert scene

Name InsertScene

In mandatory string path to loaded scene file

In mandatory string selector to node that should have contents of scene file inserted

Description This action will load scene from given file and store it inside of node
defined by selector. This scene is loaded as one instance so it can be inserted only
into one node. Keep that in mind while constructing selector, as it must match
only for one node! When more nodes are matched, first one is used and warning
is reported.

E.3.10 Load registry

Name LoadRegistry

In mandatory string path to file containing loaded registry

Description This action serves for loading of registry hierarchy definition and merging
it into currently used registry. Be aware that all existing records in current registry
are overwritten by records in loaded in case of overlaps. These overlaps are checked
in depth, so only leave items and values are changed.

E.3.11 Log message

Name Logger

In mandatory string message to be logged

Description This action is purely for debugging purposes. It will log given message
in currently used logger as message record.

E.3.12 Modify counter

Name ModifyCounter

In string operation to be performed as keyword form (inc|dec|set|mod)

In mandatory param target containing the counter

In double value to be used by operation (default 1)

103/111

E LOGIC

Description This action is for performing simplest operations over numbers. Oper-
ation inc will do increment of current counter by value, dec is analogical to inc
just for decrement. Operation set will replace counter value by set one and lastly
mod computes modulo by value.

E.3.13 Network controller command

Name Network

In mandatory string operation to be performed as a keyword from
(startClient|startHost|stopAccepting)

In string ports containing ports to be used by network controller as preferred separated
by one space

In string hostname to be used for client connection

Description This action serves for initiating of simple network connection. Ports
do not need to be specified, network controller already has a set of preferred
ports. When connection is established, initiator of connection receives internal
message saying CONNECTION SUCCESS. CONNECTION FAILURE is mes-
sage received after failed connection attempt for any reason. Initiator of con-
nection will receive additional message CLIENT ID with platform id this client
has. All clients receive message NEW CLIENT to make them aware of new
peer. Stopping server from accepting new connections is done by sending message
STOP ACCEPTING in related event handler. Once connection is established, all
message events marked as network are sent to all peers. Warning: TCP protocol
will ensure all events eventually arrive to their destination, but their order may
be different!

E.3.14 Send message

Name SendMessage

In boolean network true in case the message should be propagated to peers (default
false)

In mandatory string name that will identify message

In object content being sent with message

Description This action serves for sending messages inside of the application and to
peers using network setting. When attached content is being sent over network,
it has to be serializable object, or otherwise the message will not acquire network
flag. Content sent is map of elements which is constructed by using content as a
prefix and any additional string is suffix to locate specific content in the message.

104/111

E LOGIC

E.3.15 Shutdown application

Name Shutdown

Description This action will terminate whole application. Make sure you have finished
all the work before calling it.

E.3.16 Store data

Name StoreData

In mandatory param location to have the data stored

In mandatory object data to be stored

Description This action will store given data on given location.

E.4 Grouping

Elements in game logic inside of their ruleset may be grouped by using pair tag group.
This group will behave as if all contained actions were one element along with reporting
success. Groups have one important property, and that is grouping operation, which
allows you to set group in different mode of processing.

and Under and operation will group attempt to process all contained elements and will
terminate on first failure reporting failure. Success is reported only if all elements
were processed successfully.

or With or operation are contained elements processed until one is successful and tat
result returns success. If none were successful, failure is returned. This operation
has readability shortcut ifthenelse, which isn’t much of a shortcut, but it is more
transparent what is related group supposed to do.

not Operation not is for negating result of first contained element. All remaining
elements are dropped as not expected.

any This operation, any serves for processing where we do not care about the result
all that much. All logs stay in place, but all elements will get attempt to get
processed and event if they fail, group will report success.

105/111

E LOGIC

Along with grouping operations, group gains one more important feature, which is
fro loop. This loop is specified using fixed parameters:

In real number loopFrom what value will be loop iterating (default 0)

In mandatory real number loopTo what value will be loop iterating (inclusive!)

In real number loopStep that is added at the end of each iteration (default 1)

Out real number loopIndex containing current value

Loop index can be of course, as all output parameters, redirected to different location
so nested loops are an option. Do not forget that complicated operations should be
implemented as custom actions or rules and these loops should be used only for simple
element iterating.

E.5 Adding new elements

Process of adding new rules and actions if much simpler compared to addition of new
components or properties simply because it is intended to be common way to solve
problems during game creation. Whenever you feel like some process you are doing
frequently or process that can be generalized and used often at different places, do
consider creating element in java for it.

Creating class In appropriate package (Core.Evaluation.(Action|Rule).Custom) cre-
ate new class of name of your choosing, but it must have suffix (Action|Rule) depending
on package. This class must extend class EvaluationElement and implement interface,
again, depending on package (Action|Rule).

Overriding construct Now you should decide what input and output parameters
will be used, which ones will be mandatory and how they should be interpreted. All
that is decided in construct method that is called when is element instantiated passing
parameters from XML. Here before calling super set all output parameters so they can
be automatically filled with results without user having to specify them, and after super
defined mandatory parameters along with interpretation of constants.

Defining event subscriptions In implementation of getRequiredEventSubscriptions
should be definition of what event types interest you in body method of the element.
Keep in mind that the more events you will subscribe to, the more demanding will
evaluation be.

Implementing core method Last you should implement element core methods eval-
uate or execute depending on the interface.

106/111

F OPTIMIZATION

Be aware that this method should have all exceptions caught and logged, for if it is
not, the exception is stopped way too late, which can mess up a lot of things and will
be difficult to resolve.

F Optimization

In this section are described ways to improve performance of the engine by simply
playing along with it while creating the game.

F.1 Scene

Although graphics of this engine is in current state strictly 2D, it still can be demanding
for the computer, since it is not done on graphics card but on CPU with use of java
graphics acceleration.

Amount of graphics calls There is limited amount of separate calls for every ma-
chine to handle, no matter how difficult these are and wasting system resources on
calls that can be easily aggregated is simply not a good idea. That pays especially for
background patterns, where the smaller background image is and the bigger compo-
nent surface is, the longer recalculation of that surface takes. just making the pattern
file larger (disk space and memory are not as big of a deal these days), will reduce
calculation time significantly.

Precomputing If you have imagery with certain effect that does not change during
runtime or with resolution of game window, precalculate it. Of course for that is during
development of the game, when a lot of changes is made, simpler to define all the effects
in styles, but when going through final optimizations, card with fixed dimensions and
border with rounded edges will be better stored that way and loaded as one image.

Load time calculations Adding of children in scene nodes at runtime is generally
slow, especially after styles have been already applied, since all previously applied styles
have to be checked on match on every added child. That can be prevented by having
whole scene loaded in one piece, all styles applied afterwards and use visibility control
to change what is visible on the screen. Change of visibility does not invalidate cache
states unlike all other state changes so it is not recalculated on appearing, and thus it
is almost instantaneous.

Amount of scene events Events propagating through scene are clogging the event
handler processing unit, and that counts especially for mouse move events. There are
hundreds of those generated every second and are put to evaluation even though they
are sure to be discarded everywhere. To avoid that, make sure you put all components
in the scene that do not serve any active purpose (buttons, cards, . . .) in disabled state
with property solid on true. This will ensure that hover over component is not only

107/111

F OPTIMIZATION

blocked before reaching underlying components, but component being interacted with
will not take any response report actions.

Style selector complexity The longer and more complex selectors are, to more
expensive it is to do selections with them. Because of that is used fact that all style IDs
should be unique across the scene and all styled nodes are keyed under their style IDs.
So when selector containing style ID arrives, it is immediately shifted to its position
and to related node. That being set, you should make shorter selectors staring with
style IDs.

F.2 Logic

Logic of games made in this engine does not necessarily need to be real time, just
because they are out of principle turn based, but they should still be responsive and
excessive amounts of logic rules will bring the responsiveness down.

Amount of rulesets When you are creating game logic, you will probably tend to
separate things that are not directly related out of tidiness. That is all nice during
development, but once optimizing, what can be merged into one ruleset should be
merged. When same check is done with every event that appears on logic handler
multiple times as it is used for similar actions, it is slowing everything down in general.
That is because entry checks need to be called every time, even if they obviously cannot
pass, and this multiplied with amount of active rulesets.

Amount of active states Every state contains some amount of rulesets and those
may be active in different instances of the state evaluation. This is unnecessary work,
since all rulesets that cannot be obviously passed anymore should be left behind in
state dedicated just to them. It is much better to split some states and make more
transitions to keep just a small amount of rulesets active. This not only reduces load
on logic evaluation, but it also makes debugging easier.

Subscribed events Every rule and action have some event subscription to events
they care about. If you subscribe your custom rules and actions to all events, they will
be evaluated A LOT, and that may cause general slowdown of the system. Not only
make subscriptions to events you really need, but as well avoid using elements that
already do subscribe to everything, for example LoadEventRule.

F.3 Network

Even though this engine does not work with real time interaction between players, it is
still good idea to save as much as possible on network transfers, so the game can run
fine even on mobile connection.

108/111

F OPTIMIZATION

Server data on server Even though you might be tempted to do it, just don’t. Do
not send data that are not exactly necessary for client to have, and especially not in
bulks. For example when you create a deck of cards available to every player to draw
from on server, do not distribute it, and just let players ask for single card, what more,
just for ID of a card that is out of the box on everyones computer already.

Small packets Do not send excessive amounts of data over to clients, even though
it may be comfortable, since a lot of objects in the engine are already externalizable.
If the data can be part of the game or recreated by client, let the client do so. For
instance mentioned deck of cards is created with specific random seed. If server just
generates seeds for players and distributes those, amount of data necessary for building
those decks is reduced significantly.

109/111

G CONTENTS OF DVD

G Contents of DVD

In this section are listed contents of attached DVD with brief description.

Example games/Cards Against Humanity

This folder contains executable for example game Cards Against Humanity and all
necessary files for game to be runnable. Note that this game needs JRE 8 or higher to
be able to run and that firewall exception may have to be added before running it.

Example games/Tic Tac Toe

This folder contains executable for example game Tic Tac Toe and all necessary files
for game to be runnable. Note that this game needs JRE 8 or higher to be able to run.

Installation/jdk-8u45-windows-x64.exe

Is installation file for Java Development Kit engine was tested on.

Installation/jre-8u45-windows-x64.exe

Is installation file for Java Runntime Environment all games created in engine are
verified on.

Installation/netbeans-8.0.2-windows.exe

Is installation file for NetBeans IDE in which was created project for the game engine.
Use this IDE if you do not want to deal with JAXB definitions setup.

Project

This folder contains complete project for NetBeans IDE [?] along with all source files
for the engine. Project also includes basic template application.

Thesis.pdf

This file contains thesis you are reading right now in PDF format.

110/111

REFERENCES

References

[1] Bartle, Richard A., Designing Virtual Worlds, Berkely: New Riders, 2004. p.108.
Print.

[2] Eberly, David H., 3D Game Engine Design: A Practical Approach to Real-Time
Computer Graphics, 2nd ed., San Francisco: Morgan Kaufmann Publishers, 2007.
pp.785-787. Print.

[3] Eberly, David H., 3D Game Engine Design: A Practical Approach to Real-Time
Computer Graphics, 2nd ed., San Francisco: Morgan Kaufmann Publishers, 2007.
p.183. Print.

[4] Eberly, David H., 3D Game Engine Design: A Practical Approach to Real-Time
Computer Graphics, 2nd ed., San Francisco: Morgan Kaufmann Publishers, 2007.
pp.223-228. Print.

[5] Frapolli, Fulvio, FlexibleRules: A Player Oriented Board Game Development
Framework, PhD. thesis. University of Fribourg, 2010. Print.

[6] Ward, Jeff, What is a Game Engine?, 29.4.2008. Last accessed May 2015. www.
gamecareerguide.com/features/529/?page=2

111/111

www.gamecareerguide.com/features/529/?page=2
www.gamecareerguide.com/features/529/?page=2

	1 Introduction
	Motivation
	Used technologies
	Design outline
	Testing
	Creators
	Players

	Goals

	2 Background
	Classification
	Physical environment comparison
	Board game mechanics
	General game engine types
	Existing solutions

	General requirements
	GUI
	Game components
	Resources
	Network
	Game rules

	Discussion

	3 Design
	General architecture
	Event driven applications
	Advantages
	Disadvantages
	Application
	Modularity

	Architecture layout
	Scene design
	Logic design
	Data processing
	Network synchronization
	Security

	Discussion

	4 Implementation
	Scene
	Graph
	Selection
	Styles
	Style properties
	Scene states
	Locks

	Events
	Logic
	Rule Handler
	State space
	Rulesets
	Action vs Rule
	Evaluation element definition

	Registry
	Registry keychain
	Value storage
	Map
	List
	Example
	Merging

	Rendering
	2D graphics acceleration
	Updates
	Application window

	Loading
	XML
	Styles

	Network
	Server
	Client
	Issues

	Tic-Tac-Toe
	Rules
	State machine
	Scene
	Registry
	Walkthrough

	Cards against humanity
	Rules
	State machine
	Scene
	Registry
	Walkthrough

	Discussion

	5 Usability tests
	Testing in general
	Testing with programmers
	Method
	Screening
	Participant 1
	Participant 2
	Participant 3

	Tasks
	Post test questionnaire
	Found problems
	Problems analysis
	Conclusion

	Testing with players
	Method
	Results
	Found problems
	Conclusion

	6 Conclusion
	Further development

	7
	Appendices
	Getting started
	Installation

	Scene graph
	File specification
	Available nodes
	SceneNode
	PaintableNode
	StyleableNode
	GroupNode

	Available components
	Container
	Panel
	Text
	Layout

	Adding new components and nodes

	Events
	Available events
	Event
	Window event
	Mouse event
	Message event
	Keyboard event
	Interaction event

	Scene styles
	File specification
	Comments
	Selectors
	Styles
	Includes

	Available properties
	Layer
	Visible
	Style ID
	Style class
	Interaction states
	Dimensions
	Margin
	Padding
	Pivot
	Position
	Min-max dimensions
	Aspect ratio
	Background color
	Background image
	Background repeat
	Background image alpha
	Border size
	Border color
	Border radius
	Border position
	Border mode
	Border image
	Cursor
	Solid
	Mask
	Font color
	Font name
	Font size
	Font style
	Text align
	Line wrap
	Line stretch
	Text content
	Layout type
	Layout spacing

	Adding new properties

	Logic
	State space file specification
	Available rules
	Check message
	Compare numbers
	Keyboard button released
	Keyboard character typed
	Load user IP address
	Load event contents
	Load string length
	Mouse button released over component
	String equals
	String regex match

	Available actions
	Apply stylesheet
	Change state in state space
	Change state of node
	Change text of component
	Clear node
	Dictionary translation
	Dump registry
	Dump states
	Insert scene
	Load registry
	Log message
	Modify counter
	Network controller command
	Send message
	Shutdown application
	Store data

	Grouping
	Adding new elements

	Optimization
	Scene
	Logic
	Network

	Contents of DVD

