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Abstrakt

Bakalarska prace se zabyva modelovanim rovinnych akustickych vin v plynech s pro-
ménnou teplotou. Pro Sifeni rovinnych vln v teplotné nehomogennim prostfedi byla
odvozena vlnova rovnice s proménnymi koeficienty. Pro vybrané teplotni distribuce
jsou v préaci prezentovina presnd analytickd feseni této rovnice. Pomoci nalezenych
obecnych reseni byly vypocteny koeficienty transmise a reflexe. Pro pripad vin konec-
nych amplitud (nelinedrni vlny) sificich se tekutinou s malym teplotnim gradientem
byla odvozena modifikovand Burgersova rovnice. Tato rovnice byla resena numericky v
kmitoc¢tové oblasti pomoci Runge-Kuttovy metody 4. fadu v programovacim jazyce C.

Klicova slova

VInova rovnice s proménnymi koeficienty; koeficienty transmise a reflexe; Burgersova
rovnice.
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Abstract

The thesis presents the modelling of acoustic plane waves in gases with variable temper-
ature. The wave equation with variable coefficients for the propagation of plane waves
in a thermally inhomogeneous medium was derived. For chosen temperature distribu-
tions the exact analytical solutions of this equation are presented in this thesis. The
coefficients of transmission and reflection were calculated using found general solutions.
For the case of finite amplitude waves (nonlinear waves), propagating in a fluid with a
low temperature gradient, the modified Burgers equation was derived. This equation
was solved numerically in the frequency domain using the fourth-order Runge-Kutta
method written in the C programming language.

Keywords

Wave equation with variable coefficients; transmission and reflection coefficients; the
Burgers equation.
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Latin capital letters

A
Cy, Cy
L
P
R
Ta, T

1o
\%4
w

constant in Egs. (3.19), (3.24) and (3.71)

integration constants in Eqs. (3.34), (3.53), (3.55), (3.88) and (3.116)
characteristic length

acoustic pressure amplitude

specific gas constant

characteristic temperatures of temperature-homogeneous regions A, B
resp.

absolute temperature in temperature-inhomogenious region

acoustic velocity amplitude

dimensionless acoustic velocity

Latin lowercase letters

b
€o
CA

CB

constant in Eq. (3.88)

linear sound speed in temperature-inhomogenious region

= /xRT4, sound speed in temperature-homogeneous region A with
absolute temperature T4

= xR1Tp, sound speed in temperature-homogeneous region B with
absolute temperature Ty

= w/ca, wave number at z =0

= w/cp, wave number at x = L

pressure

atmospheric pressure

acoustic pressure

constant in Eq. (3.44)

constant in Eq. (3.17)

time

acoustic velocity (the particle velocity of the medium)

distance

Greek capital letters

Sl = R U

= % ¢* — 4w?, discriminant of Eq. (3.49)

= Ty/T4, dimensionless absolute temperature
=p'/ (pac?), dimensionless acoustic pressure
dimensionless acoustic velocity amplitude
dimensionless acoustic pressure amplitude

Greek lowercase letters

"2 ®» R

xii

sound diffusivity
coefficient in Eq. (5.2a)
constant in Eq. (3.90)
a shear viscosity
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PA, PB

Q

€ o 9

a bulk viscosity

variable, given by Eq. (3.3)

dimensionless time

thermal conduction coefficient

ratio of specific heats

small dimensionless parameter

variable, given by Eq. (3.32)

= Vw? — r2, coefficient in Eq. (3.27)

density of the medium

density of the medium before sound propagation
densities of the medium in regions A, B resp.
= /L, dimensionless length

=t — x/ca, retarded time

= 2/ (3%Ry?), coefficient in Eq. (3.112)
angular frequency
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1 Introduction

The description and analysis of acoustic waves in ducts with a region containing tempera-
ture-inhomogeneous fluid represents a significant problem of scientific and practical in-
terest. This interest is induced by the need to understand how temperature fields affect
acoustic processes. This would lead to the possibility of more effective design and con-
trol systems in which interactions between acoustic and temperature fields occur. This
includes, for instance, thermo-acoustic devices and engines, combustors, automotive
mufflers, measuring methods of impedance of high-temperature systems, the investiga-
tion of thermo-acoustics and combustion instabilities among other possible applications.

This thesis presents modelling of plane acoustic waves in gases with variable tem-
perature. The whole work can be divided into two parts, the first part is devoted to
linear model equations, and the second describes nonlinear acoustic plane waves for
small temperature gradients.

The analysis consists of seven chapters. Within Chapter 2 the basic linear one-
dimensional model equations for fluids in temperature-inhomogeneous regions are de-
rived. Chapter 3 is devoted to the exact analytical solutions of linear model equations
for varoius temperature distributions. Chapter 4 deals with an application of the found
solutions for calculation of transmission and reflection coefficients. In Chapter 5 is pre-
sented a derivation of the Burgers equation for temperature-inhomogeneous fluids. The
numerical method for the Burgers equation for small temperature gradients is shown
in Chapter 6. Chapter 7 states the conclusion.



2 Derivation of model equations

2.1 Fundamental equations of fluid mechanics

To describe acoustic waves in fluids the following system of equations is considered (see
eg. 1], [2]) :
1. The Navier — Stokes equation (Momentum equation)
This equation describes the motion of fluid substances and the general form is

p[g;—i-v-VV]:—Vp+<C+§>V(V-V)+6V2V, (2.1)

where p is the density of the medium, v is the particle velocity of the medium, ¢
is time, p is the pressure, ( is a bulk viscosity, € is a shear viscosity.

2. Equation of continuity
This equation describes the transport of a conserved quantity, i.e. fluid.

op B
E—I-V-(pv)—o. (2.2)

3. Energy equation

Oe e (Ov; Ovp 2 le)Q 5
o) T2 ~ 3%k gy, ‘ : (2.
T (875 v V‘E) 2 (axk + 5y, T 30y, ) TV M HVA(VT)  (23)

where € is entropy per unit mass, 7' is absolute temperature, x is the thermal
conduction coefficient, d;; is the Kronecker delta.

4. Equation of state

p=p(p;e) - (2.4)
e If a perfect gas is considered then the Navier — Stokes equation (2.1) is reduced to
the form
ov 1
g .Vv=--V 2.5
G v VY=, (25

which is called the Euler equation.
e Equation of state (2.4) for a perfect gas is (see e.g. [2])

p=RpT, (2.6)

where R is the specific gas constant, i.e. the (molar) gas constant divided by the
molar mass of the gas.



2.2 Derivation of basic model equations for temperature-inhomogeneous region

2.2 Derivation of basic model equations for
temperature-inhomogeneous region

In order to derive model equations it is necessary to take into consideration four equa-
tions from the previous section and make some assumptions, which enable us to ne-
glect nonlinear terms. Assuming a perfect, inviscid and non-heat-conducting gas with
one-dimensional temperature distribution, Egs. (2.2), (2.3), (2.5) and (2.6) can be
transformed in the following ways (see e.g. [2]) :

e Energy equation
In a perfect gas no energy is dissipated, so de/dt = 0, and hence a specific entropy
€ is a constant. From this an isentropic process and an adiabatic gas law take
place.

e Equation of state
From Eq. (2.4) it follows

Op Gp)
= (= e . 2.
dp <ap)€d,0—|-<a6 pde (2.7)

As the process is isentropic then state equation can be written as p = p(p) and

dp = <g];>sdp . (2.8)

As an adiabatic gas law takes place then

4
L_(2)", (2.9)
Po Po
where p and pg are different specific pressures, p and pg are different specific den-
sities, s is the ratio of specific heats.

By assuming the gas to be inviscid, it is permissible to express the sound speed ¢

2 _dp

_—— 2.10
= (2.10)

Taking into account Egs. (2.9) and (2.6), the equation above can be written as

=2 — . RT. (2.11)

p

Equation (2.10) lets us take into account the following equality

dp 2dp
P _ 200 2.12
a - Car (2.12)

The total derivative is

d¢) _o¢) 90)

Then Eq. (2.12) can be written as

9p 810_2(8/’ 8”)
at—i—vax—c 8t+U8x . (2.14)



2 Derivation of model equations

e Equation of continuity
One-dimensional equation of continuity is

dp 0

— 4+ — =0. 2.1

P L) =0 (215)
From this equation the equality vdp/0x = —0p/dt — pdv/Ozx can be obtained.
After substitution into Eq. (2.14) the resulting equation is

@4-218—:—02 @

ot oz P o (2.16)

From Eq. (2.11) the above equation can be written as

Op Op ov
- — — =0. 2.17
ot " Vor TP 2.17)
e Euler equation
By assuming one-dimensional temperature distribution, Eq. (2.5) takes the form
of the one-dimensional Euler equation

ov ov  Op
pa—i-pv%—i-% =0. (2.18)

Each of the dependent variables can be expressed in the following way (see e.g. [3])

1. the density p(x,t) = po(z) + p/(z,t) is the sum of the ambient density pp and an
acoustic density p/,

2. the velocity v = wv(z,t) is the particle velocity of the medium, resp. acoustic
velocity,

3. the pressure p(z,t) = po+p'(x,t) is the sum of the atmospheric pressure pg, which
is supposed to be constant (see e.g. [3]) and the acoustic pressure p'.

The assumptions can be taken into account |p/|/pg ~ |v|/co ~ p'/p ~ p < 1, where
co is the linear sound speed, p < 0 is a small dimensionless parameter. It is considered
that ¢y = co(x) and temperature Ty = Tp(x) are dependent on the distance x, where
Tp is the ambient temperature of the fluid.

The substitution of the above dependent variables into the equation of continuity
(2.17)

o +p) | Opo+p) dv

/7:
5 TV g t#p+r) 5o =0 (2.19)

and linearization of Eq. (2.19) leads us to the following linear form of the equation of
continuity

op ov
—_— —=0. 2.2
5 T P05, =0 (2.20)

The same substitution into the Euler equation (2.18)

/@ / @ a(p0+p/)_
(po+p)at+(po+p)vax+7ax =0 (2.21)

and linearization of Eq. (2.21) leads us to the linear form of the Euler equation

ov  op

pogy + o =0 (2.22)



2.2 Derivation of basic model equations for temperature-inhomogeneous region

Differentiating of Eq. (2.20) with respect to time ¢ and Eq. (2.22) with respect to
coordinate x and eliminating the cross-derivative term by their combination yields

o' dpodv  py %P

0x2  dx Ot  spy Ot2

=0. (2.23)

Expressing the derivative dv/0t from Eq. (2.22) and substituting it into Eq. (2.23)
obtains the equation

o' dpo 1 9p  po O

0x2  dx pg Ox  xpg Ot2

(2.24)

From the perfect gas law pg = RpgTp the total derivative of py with respect to z is
_dpo dpo dTp

0=—=R—1Ty+ Rpo— . 2.25
dx dz ° +fpo dx ( )
After multiplying the above equation by 1/(RpgTp) the resulting expression is

1d 1 d1T;

— 5P — S0y, (2.26)

po de Ty dzx
From Eq. (2.11) follows

2= (2.27)
Po

and using Eq. (2.26) hence is obtained the wave equation with variable coefficients (see

e.g. [3])
0% 1dT,0p 1 0%
0xz? Ty dx Oz 3 Ot?
Assuming a time periodic source of sound, where w is an angular frequency, it is
possible to consider

=0. (2.28)

p'(z,t) = P(z)e 4t (2.29)
Equation (2.28) can be written now as

&P 1dT,dP  w?
—4+————+4+—=P=0. 2.30
dz?  Tp dz dz 3 (2.30)
Now, let us differentiate vice versa - Eq. (2.20) with respect to z and Eq. (2.22) with
respect to ¢, then the cross-derivative term can be eliminated. This manipulation leads

to the wave equation
v 0%

Substituting ,
v(x,t) = V(x)e (2.32)
into Eq. (2.31) obtains the equation
d*v w?
— + 5—V(z)=0. 2.33
da? + () () (2.33)

This is the Helmholtz equation.



2 Derivation of model equations

Let us rewrite the model equations (2.28) and (2.31) in dimensionless form (see e.g.

[4])
011 1 d=(o) o1l 1 9*

= Z =0 2.34
902 © E(oc) do 9o  C3(c) 062 ’ (2:34)
*W *W
Here
/ /

II = p2:p , sz, 0 =uwt,

PACH  #Po L (2.36)
5 _ .
2,y _ (o) _ xRIy(0) _ E(o) =_To _ v
Golo) =T~z — 2 o7 e

where T4 is a characteristic temperature, cq4 = co(T4) = V#RTa, pa = po(Ta) =
po/(RT4), L is a characteristic length and h = wL/cy4.

Assuming that the solutions of Egs. (2.34) and (2.35) have a periodic time depen-
dence, i. e.

I1(0,0) = ®(0)e ™’ (2.37)

and
W(o,60) = Y(o)e ", (2.38)

then equations can be written as

d*e 1 d=(o)d® 1
o7t =0) do do + 703(0)61)(0) =0, (2.39)

ST | T(o)

0r T By 0. (2.40)




3 Exact analytical solutions for various

temperature functions

This chapter is devoted to exact analytical solutions. These solutions can be divided
into two cases. The first case represents solving equations where the temperature dis-
tribution Tp(z) is unknown, so it is necessary to find both the temperature distribution
To(x) and the solution of the equation. The second case deals with equations where
it is supposed the function Tp(z) must be known. For this reason only the equation
solution is to be found in this case. Linear and exponential temperature distributions

are assumed.

3.1 Transformation of derivatives

Suppose that a function f(z) is known then can be derived the following spatial deriva-

tives @ ) &ﬂ
dx df dz’
and
-4 ()= () - (- 2 ()%
[ () 250 () - 25
USRI
de/) df? = da? df

Taking into account a new variable (see e.g. [5])

xT

— [ da,
o colw)
then
dy 1
dz  co(x)’

£
dz?  dx \co(z)/

Putting n(z)

follows
a0 _d)dy
dz dn dz’
() <d"7>2d2(-) Ppd() 1 () d
dz2 ~ \dz/) dn2 " d2? dnp d(z) dn?  dz

= f(x) can be used the transformation relations (3.1) and (3.

(Coziﬁ)) (2(77) '

(3.1)

(3.2)

2) as



3 Exact analytical solutions for various temperature functions

3.2 Analytical solutions for unknown temperature functions

It is assumed that a temperature distribution Tp(z) in a temperature-inhomogeneous
region of the length L in a waveguide separates two regions of different constant tem-

peratures T4 and T'g, see Fig. 1 (see e.g. [4]) .

Region A Temperature — Region B
Tx inhomogeneous region Tg

Fig. 1 Temperature regions in a waveguide.

In dimensionless equations the temperature-inhomogeneous region has the length
equal to 1 and separates two temperature-homogeneous regions with constant dimen-

sionless temperatures 24 = 1 and Zg = T /T4.

3.2.1 First method of finding analytical solution

To solve the Helmholtz equation (2.33) the first step is to introduce a new function

F(z) (see e.g. [6])

= y/co(z)F(z)

d(yaF) _ df
d; \Fi

Its derivatives are

d? F) dFd d? d\/co dF d2F
Sl _drdve , pdve  dyadr, odh

dz?2  dz dz da? dz dzx
where
dy/co 1 de
dz — 2/co dz’
d*y/ep 1 (deo 1 d%
dz2 —  4coy/oo () 2,/co da?

Substituting into Eq. (2.33)

F (dc0>2 F d%cp 1 degdF 1 degdF d°F w2

_470(2) dz 20 dz2 ' 2co dz dx | 2¢p dx dz | da2 c?

And rearranging leads to the equation

’F 1 F 1 2 1 d2
d dCod (d00> P dCOF+ F—O.

dz? " o da do 43 \ dz 2co dz?

t ot o+ o5 + 5 F=0.

(3.8)

(3.11)

(3.12)

(3.13)

(3.14)



3.2 Analytical solutions for unknown temperature functions

Imposing the variable n from Eq. (3.3) then it is possible to write Eq. (3.14) in the
following form

1 d?F d(l)dF 1 deo dF 1<dco>2F 1 d?¢ w2

S22 & Sttt 2 Sy Y p—0. (315
g dn? + dz \c¢o/) dnp G dz dp 4 \ dx 2co da? + c (3.15)

After modification Eq. (3.15) takes the form

d2F 2 1 dCO 2 (&) d200
—_— F=F|-— ) ——= . 1
dn? tw [4 <d$> 2 dz? (3.16)

Equation (3.16) is an ordinary differential equation with varible coefficients. In order
to get an ordinary differential equation with constant coefficients, it is necessary to
equalise the expression in the square brackets using a constant r2. After this step is

obtained
d’F

20 _ 2
and ) )
1 /de co d”c
2 0 0d"co
— - (=) 2= 3.18
" 4 (dx ) 2 da? (3.18)
In solving the differential equation (3.18) its solution can be written as
1 (A% — 4r?) 2?
co(x) = 4(;Mr:+Ax+B, (3.19)

where A and B are integration constants.
After some small algebraic manipulation the relation (3.19) can be expressed in the
convenient form

2
co(x) = cy KAQ — 7;) 22+ 2Ax +1 (3.20)

Ca

Now, let us remember some relations with characteristic temperature T4. From
previous chapter

C()(TA) =CA, pO(TA) = PA - (3.21)

From Egs. (2.11) and (2.27) it follows that

co(z) = \/#RTp(x) . (3.22)

As Eq. (3.22) takes place then with the help of Eq. (3.20) it is possible to write a
temperature relation

i 2 TP o ’
= A - 1 .
To(z) " [(A 62A>a: +2Az + (3.23)
According to Egs. (2.36) and (3.23)
r? ?
To(x) =Ta [(Az - 2) 2?24+ 1] (3.24)
€a

where Ty = ¢4 /(%R) .



3 Exact analytical solutions for various temperature functions

Using expressions (2.36) temperature-inhomogeneous region Tj can be expressed in
dimensionless form (see e.g. [4])

2 2
=(0) = TOT(Z) - [(A2 - ;4) L%6% +2ALo + 1] . (3.25)

Let characteristic length L be equal to 1 m. By choosing different values of constants
A, r and velocity c4 it is possible to see exemplary solutions for temperature = among
many instances.

ca=345ms™!, |r| =597.558 s}, A=1m™! ca=345ms™ !, |r| =1725s71, A= - 0.008 m™*

(1]

04F ,
0.5+ 1
0.2t 1
0 : : : : : : : : : 0 : : : : : : : : :
0 ol 02 03 04 05 06 07 08 09 1 0 0l 02 03 04 05 06 07 08 09 1
o o
ca =345 ms™!, |r| = 301.39 57!, A = 0.662 m™! ca=345ms™!, |r|=0.97s7!, A=0.328 m™!
45 ‘ ‘ 3.5 \ \

(1]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1
a a

Fig. 2 Dimensionless temperature function =(o) for different coefficients of Eq. (3.25).

To solve Eq. (3.17) let us use the following substitution

2 =w?—r?, (3.26)
where w? —72 > 0, because an evanescent wave is not considered. After this substitution
Eq. (3.17) can be written as

i +E2F =0 (3.27)
a? =0. .

The above equation is a second-order linear ordinary differential equation, where the
discriminant is less than zero. Then the roots of the characteristic equation of Eq.
(3.27) are complex

A2 = £j€ . (3.28)

10



3.2 Analytical solutions for unknown temperature functions

The solution of Eq. (3.27) is then
F(n) = C1cos(én) + Caysin(én) , (3.29)

where C'7 and (5 are constants.
According to Egs. (3.3) and (3.20) the variable ) can be written as

r 1 z 1
0 colz1) 0 cA [(AQ—TQ> x%+2A:c1+1]

V)
€A

After integration the variable n can be written as

7]:—itanh'1 “Alay AQ—ﬁ x
] " 2)"),

v(z) = tanh™ [CA (A + <A2 = rj) a:)] — tanh! (CAA> . (3.32)
7] ) 7]

The absolute value of ¢4 was omitted, because T4 is an indoor temperature when
ca > 0.
Now the function F'(z) can be written as

T

where

F(z) = Cj cos (Ey(x)> — Cysin (gy(m)> . (3.33)

7] 7]
Taking into account Eq. (3.8), the solution of the Helmholtz equation (2.33) is

V(z) =1/co(z)F(z) = \JCA [<A2 - T;) x? 4+ 2Ax + 1]

CA

X [Cl cos <|€T‘1/(:c)> — Cysin ( ¢

7]

y(x)ﬂ C(3.30)

The dimensionless form of the velocity is (see e.g. [4])

Y(o) = Vio) = J x [(AZ - g) L?02 +2ALo +1

X [Cl cos (,il/(d)) — (O3 sin <‘§’I/(O')>:| , (3.35)

where
2
v(0) = tanh’! [CA (A + <A2 - 7;) Laﬂ — tanh! (CAA> . (3.36)

| €A |

3.2.2 Second method of finding an analytical solution

Now let us solve Eq. (2.30). It can be rewritten once more
&P 1dT,dP  w?
i 0 Y P=0. (3.37)

&2 Thdeds &

11



3 Exact analytical solutions for various temperature functions

Using Eqgs. (3.1)—(3.7) the above equation can be written as

1d2P d /1\dP 1dTy1dP w2
~ab5 a Sy SRR Y py. 3.38
2 0P +dx( ) + + (3.38)

co/) dn Ty dx co dn c%

From Eq. (3.22) can be derived

dT, 1 dcd
— = 3.39
dx »R dx ( )
Multiplying Eq. (3.39) by 1/, leads to
1.dTp QCO@ (3.40)

Tode ~ @ dr
So, Eq. (3.37) can be modified as follows

1d2P 1deydP  2¢pdegdP  w?
o A AT T pP=0 3.41
ddn? & dz dp + c3 dz dn + c ’ (3:41)

and after rearranging and reducing it becomes

d’P  depdP
— —— P=0. 3.42
dn? + dz dn T (3.42)

In order to solve Eq. (3.42) as an ordinary differential equation with constant coeffi-
cients, it is necessary take into account that dcy/dz = const. Let this constant be g¢;.
Thus, ¢y has the form

co(r) =qz+q2, (3.43)

where ¢; and ¢o are integration constants and gz > 0.
By choosing g2 = ¢4 and denoting ¢1/¢q2 = ¢ the form is

co(z) =calgr+1). (3.44)

According to Eq. (3.22), function Tp(x) is equal to

To(w) = Ta (g2 +1)° | (3.45)
where
Ty = i (3.46)
A= xR’ ’

Using expressions (2.36) the dimensionless form of temperature-inhomogeneous re-
gion Tp (see e.g. [4])

= (qLo + 1) . (3.47)

By choosing different values of constant ¢ and letting L = 1 m, it is possible to see
exemplary solutions for temperature = among many instances.

12



3.2 Analytical solutions for unknown temperature functions

¢g=—05m™!

0.8 F

1l 1m

0.6 |-

0.4

0.2+

I I I I I I I I I I I I I I I I I I
U[] 01 02 03 04 05 06 07 08 09 1 00 01 02 03 04 05 06 07 08 09 1

g g

Fig. 3 Dimensionless temperature function =(o) for different coefficients of Eq. (3.47).

To solve Eq. (3.42) let us substitute the expression of sound velocity (3.44). Then
Eq. (3.42) takes the form
d’p P,
—_— —_— P=0. 3.48
2 + caq dn + w ( )
The solution of the above equation can be found through the characteristic equation
of an appropriate equation.

Mg +w?=0. (3.49)
The discriminant of Eq. (3.49) is
A =cAq® — 4. (3.50)

There are different possible solutions according to the sign of the discriminant. The
solutions are represented below in the table, where Cy and Cy are constants.

A>0 A=0 A<O0

_ —ch:t\/Z
Al = —25—=

1 —cagEivA
Al = Ay = —5caq A = —A4=

)

P(y) = Cpel—3caat3VA)n P(n) = e—3caan | P(n) = e~ zeAM {C’l cos (%\/Zn)
_|_026(_%ch—%\/£)77 X [Cl + CQ’I?] + Cysin (%\/Zn)}

Tab. 1 The solution of Eq. (3.48).

According to Egs. (3.3) and (3.44) the variable  can be written as
z 1 z 1
= ——dz :/ ———dx; . 3.51

T o) T T Jo ealgm 1) (3.51)
Notice that z; cannot be equal to —1/q.
After integration the variable 1 can be written as
In (gz; +1)

cAq

xT

1
= —In(qgzr+1) . 3.52
= ol (352)

Now it is possible to write the solution of Eq. (2.30) according to the discriminant
of Eq. (3.49)

13



3 Exact analytical solutions for various temperature functions

e If A > 0, an evanescent wave is not considered.

o I[f A =0,
1

PO = Javt

[C1 + Cyln(qz +1)]

(3.53)

where C and Cy are integration constants. According to Eqgs. (2.36) and (3.21)

the dimensionless form of the pressure is (see e.g. [4])

1
d = — In(qL 1
() = g (1 + CalnlaLo +1)]

where C7 and Cy are new constants.
o If A <O,

1 w?
C cos ( 1 q%‘?ln(qx + 1)>

2

1
+Cs sin ( = — (;—2 In(qz + 1)

4 chq

(3.54)

(3.55)

where C] and (Y are integration constants. The dimensionless form of this solution

is (see e.g. [4])

1 1 w?
®(0) = ——= |C} cos - — 5= In(qL 1
(0) ToTi 1005( 12 n (qLo + )>

1 2
+C5 sin ( -
4 chq

where C7 and Cy are new constants.

3.2.3 Third method of finding an analytical solution

5 In(qlo + 1))

(3.56)

There is one more possible way to solve Eq. (2.28). Let us start with multiplying this

equation by c3
o Gy Loty

ot2 Ty dz Ox Dozz ~

With reference to the following expression

2 o ( op’ ) cddTyop' 0%
e

Ty dz Ox +608:c2 ’
Eq. (3.57) can be written as (see e.g. [6])

o’ 30 (T 8p’> _o.

a2 Tyox \""ox

Now let us substitute a new function F'(z,t) instead of the pressure

p'(x,t) = F(z,t)/\/To(x) .

Equation (3.59) takes the form

PENT) o (L dFENT) _,
o2 Tooz \"° Oz o
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3.3 Finding analytical solutions for known temperature distributions

Applying all simplifications, the above equation takes the form

0’F 1 0%°F 1 d%V/T,
-5 = OF . (3.62)
ox?  ¢§ Ot2 /T, dz?

Let us remove from Eq. (3.62) derivatives dependent on t. The function F can
be represented as F = F(x,t) = F(z)e %! for this purpose. After substitution and
rearranging the resulting equation is

d2F 1 VT, w?) -
i ( F. (3.63)

\/To dx? g

Concerning Eq. (3.22) and the right part in brackets of the equation above, which is
a constant d, it is possible to derive the following equation

1 d%cp  w?
2

_— = =d. 3.64
co dz? ¢ (3.64)

This is a nonlinear second-order ordinary differential equation, that can be solved
by an appropriate numerical method, but unfortunately its analytical solution is not
known and for this reason Eq. (2.28) cannot be solved analytically.

3.3 Finding analytical solutions for known temperature
distributions

Let us write Eq. (3.37) once more

da’p 1 dTp dP w?

—_— —P=0. 3.65
dz? Ty dz dz = A (3.65)

According to the transformations (3.1) and (3.7) it is possible to express the following
derivatives

dP  dP dTy
= =4 3.66
dex dTp dz (3.66)

d2p dTy\? d’P  d%*Ty dP
_ < 0) co gyt (3.67)

da? de ) dTg dx? dTy

Substituting expressions (3.66) and (3.67) into Eq. (3.65), using the equality ¢ =
»RTy and rearranging the terms leads to the equation

To\ 2 d2P 1 /dTy\? 27| dP 2 p
(40)" l(do> do]d Py, (3.68)

a) az V|, \ar ) T |am T RTy

Keeping in mind the equality

d dTy dTp ATy 42Ty (dT0>2 42Ty
— (=) === — === To— 3.69
dx ( 0"z ) dz dz +1o da? dx +lo dz? ’ (3.69)
Eq. (3.68) can be written as (see e.g. [3])
dTp\* d*P 1 d [, dIp\ dP  w? P
S0y Sy - S ()P 3.70
(dx) dT02+T0dx(0dx>dTo+%RTo (3:70)
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3 Exact analytical solutions for various temperature functions

3.3.1 Linear temperature distribution

In this section an acoustic pressure of a duct with a linear temperature distribution is
studied. The linear temperature distribution can be given by the expression (see e.g.
31)

To(z) =Ta(Az + 1), (3.71)

where A is constant.
The dimensionless form of a temperature function Z is according to Eq. (2.36) (see
e.g. [4])
2(0) = 209 _ o1 (3.72)
Ta
Some dimensionless linear temperature distributions are made possible by choosing
different values of constant A and letting L = 1 m are shown in Fig. 4.

A=1m! A=—-05m"!
1.2 ‘ ‘ ;

20 ‘ ‘ ‘ ‘ ‘ ‘ ‘ T

2
1.8
16
1.4

m 2

1

0.8 — 04k
0.6 8
0.4 7 0.2 g
0.2 B

0 I I I I I I I I I ( I I I I I I I I I
0 01 02 03 04 05 06 07 08 09 1 JO 01 02 03 04 05 06 07 08 09 1

[ g

Fig. 4 Some possible linear dimensionless temperature distributions =.

As derivatives of the temperature function (3.71) are

— =TyA — (To— ) = — (T4{A T3A) =T5A .
dr A and dz ( 0 dz ) 1z ( AATT+1y ) A R (3 73)

then multiplying Eq. (3.70) by 1/T75 A% and substituting the above derivatives into this
equation obtains the following equation (see e.g. [3])
d’P 1 dP N w?/ (T2A%) P

aor, 1df —0. 74
a12 " Tp dTy O (3.74)

To simplify Eq. (3.74) a new independent variable s is introduced

2

s =aTp, (3.75)
where the constant a is given by
4?
== 3.76
“ T3A%xR (3.76)

It is necessary to know the first and the second derivatives of a new variable s with

respect to Ty

ds a
2sds = adTO = dij_‘o == 275 y (377)
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3.3 Finding analytical solutions for known temperature distributions

ds d?s d?s a?
(dT()) + dT2 dTO2 453 ( )

According to transformation of derivatives the derivatives of Eq. (3.74) then

dP_dP ds a dP

AT, ~ Al A, ~ 2saTy ¢ (37
LRIN L N X s 550
d1¢  \dT,/) ds? = dT¢ ds 4s?2ds?  4s3ds ' '
and Eq. (3.74) transforms to Eq. (3.83). Some steps of transforming are included
a® d°P a? a?\ dP  ad?
S (N e - 3.81
452 ds? 18 23 ) ds s ’ (3:81)

2 12 2 2
a® d*P a* dP a
—_——t——+ —P=0. 3.82
452 ds?2 483 ds + 452 ( )

By multiplying Eq. (3.82) by 4s?/a? the final equation after the transformation is
— +-——+P=0. (3.83)

Equation (3.83) is the zeroth order Bessel equation. The solution to the equation is
well known and given by

P(S) = ClJO(S) + CQY()(S) , (3.84)

where C7 and (5 are complex integration constants, Jg and Y, are the Bessel and

Neumann functions of the order zero.
Let us express variable s

s = /aTp = VT = \ﬁ (3.85)

T2 A2x%R A2

where

- TA2|A’\/%R . (3.86)

Then acoustic pressure can be rewritten as

P(Ty) = C1Jo (“gf ) +02Y0< \/ﬁ) . (3.87)

b

Let us substitute temperature distribution (3.71)
Plz) = C1Jy (b Ta(Az + 1)) + CyYo (b Ta(Az + 1)) . (3.88)

The dimensionless form of the pressure is (see e.g. [4])
B(0) = C1Jo (B\/ALU T 1) 1+ O, (B\/ALU T 1) : (3.89)

where C1, Cy are new constants, B = (wv/T4) /b.
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3 Exact analytical solutions for various temperature functions

3.3.2 Exponential temperature distribution

This section investigates the acoustic pressure of a duct with an exponential tempera-
ture distribution that is given by the expression (see e.g. [3])

To(z) = Tae ", (3.90)

where T4 and ~ are constants.
The dimensionless form = of the temperature-inhomogeneous region Tj is (see e.g.
[4])
(0) = M — ¢ Lo
Ta
Some dimensionless exponential temperature distributions made possible by choosing
different values of constant v and letting L = 1 m are shown in Fig. 5.

[1]

(3.91)

y=-In3m! y=—In0.5m™!

1.2

(1]

0.5+ 4 0.2

I I I I I I I I I I I I I I I I I I
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
a a

Fig. 5 Some possible exponential dimensionless temperature distributions =.

Let us find derivatives to substitute into Eq. (3.70)

dTy . d dTp d 2 2va\ _ op2.2 2
a = —TA’)/S and dx (TO dr > = @ (—TA"}/E ) = 2TA’7 (& .
(3.92)
Substituting into Eq. (3.70) and reducing gives the equation
a’p P w? P
T —yz\2 I a~2e 7 - =0. .
(Taye™) az T Gt R T 0 (3.93)
Multiplying Eq. (3.93) by 1/+2
,d*P LdP W P
Tpe " 2T — =10 3.94
(Tae™™)? dT2 +2hae dTo + #Ry2 Tphe % (3.94)

and using backward substitition T4e™7* = Tj leads to the equation (see e.g. [3])

da2p dP w2 P
2
T a + 2T0d %sz T =0. (3.95)

To simplify the previous equation two new variables w and z are introduced

w = PTy and 2 =w— (3.96)

18



3.3 Finding analytical solutions for known temperature distributions

where constant w is

4002
=——. 3.97
1. Let us start to work with variable w in the following three steps:
e expressing the derivatives to substitute into Eq. (3.95)
dpP d 1 d 1
a_ vy -z v (3.98)
dTy, dT, T()1/2 T01/2 dT, 2 Tg’/2

CP_ 11 dw 1 w1 T3 dw /AT, — 3/2uwT,
darg — 2p32dTy - pl2dIy o 2 18

1 dw 1 d*w 3 w
= — — + + - . (3.99)
Tg’/ 2dTy Tol/ 2 dTO2 4 Tg/ 2

e substitution into Eq. (3.95)

72| 1 dﬂ+ 1 d2w+§w
Ol ATy ATy AR

1 dw 1 w

+2I) | —— — = —

|~T01/2 dTp, 2 T03/2‘|
2

w w

————==0. 3.100
TR 7 ( )
e multiplying and rearranging terms in the previous equation gives the equation

below

3/2d%w 1pdw 1 w w2 w

T - - =0. 3.101
0 dTO2 0 dTO 4T01/2 + %R72 T03/2 ( )

2. Now let us work with the second variable z:

e finding the first and the second derivatives of a new variable z with respect
to the temperature Ty

1 dz w 1
2ds = —w—dly = o= 3.102
FE T TRl AT, ~ 2212 (3102)

d*z w(lldz 211)_w<211 wl)
d1¢ 2\ 2T2dT, "Tyz) 2 \"zT§  2237T¢
w 1 w? 1 dz
o 3.103
z Ty 423 T dTy ( )
e according to the transformation of derivatives the derivatives of Eq. (3.101)

then

dw dw dz w 1 dw
— == = 3.104
dT, dz dTp 2:T¢ dz ( )

dPw B (dz )2 Pw  d?*z dw @? 1 d*w (wl w? 1\ dw

g \an) @ e T e T\ G T 4
(3.105)
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3 Exact analytical solutions for various temperature functions

e substituting the above derivatives into Eq. (3.101)
Tg/Q[zﬁ 1 d%w (w 1 = 1>dw] pw ldw 1 w

0 - - -

422TEd22 T\ 2 T3 423T¢ ) dz O 2:T§d: 4q)S
wow
+——%=0. (3.106)
4 Tg)/2

e reducing and rearranging of terms
w? 1 d*w <w1 w21>dw 1 w w w
—— St |l =5 | T —-—5+—+——=5=0. (3.107)
422 Té’/2 dz? 2z Tg’/2 423 Tg’/2 dz 4 T01/2 4 Tg/2

e from Eqgs. (3.96) it follows that Ty = /22, substitution of this equality into

Eq. (3.107)
@ 2 $o (w2 w2 Vdw Lws wwd
422 5/2 dz2 2 w32 42352 ) dz 4wl/? 4 w32 T
e after some reductions and rearranging some terms
22 w1 22 dw 1 wz 1 wz?
PP EN R P e P P i Py (3.109)
e multiplying the above equation by 4!/ /23
d?w  1dw 1
— + —— 1-—= =0. 3.110
d22+zdz+< 22)11) ( )

Equation (3.110) is the first order Bessel differential equation. The solution is given
as
w(z) = C1Ji(2) + CoY1(2) (3.111)

where C7 and (5 are integration complex constants and J; and Y; are the Bessel and

Neumann functions of the first order. Let us express variable z
w | 4w? 1 1
- | = = wr—— 3.112
: TO %R’y2 To Wd)\/Tg ’ ( )
2

¢ = (3.113)

V/xRy?

So, the solution of Eq. (3.110) can be written in the form

where

1 1
Tp) = C1J — Y — | . 3.114
ut) = i (w07 ) + 0¥ (w0 7 ) A1
According to Egs. (3.96) the acoustic pressure then is
T =m0 (e ) o (oo ).
P(1y) = =—|C1J — CoY — | . 3.115
S VG o R VG A N (3119)
Let us substitute temperature distribution (3.90)
1 1 1
Pz) = ——— |C1J — +CY( )} 3.116
)= e (O (49 e + O (o s 10
The dimensionless form of the pressure is (see e.g. [4])
(o) = Verle [CoJy (BVerEe) 4+ oYy (BVerlo) | (3.117)

where C1, Cy are new constants, B = (w¢)/v/ T4 .
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4 Transmission and reflection coefficients

This chapter deals with the calculation of transmission and reflection coefficients for
exact analytical solutions derived in the previous chapter.

4.1 Sound velocity

The first exact analytical solution was derived for an acoustic velocity. Consider the
reflection and transmission problem through the temperature-inhomogeneous region
for an incident plane wave sketched in Fig. 6. The wave is partly reflected and partly
transmitted (see e.g. [2]).

TA V(a;) TB
Vi
Vi
Va(e) v V()
Temperature —
Region A inhomogeneous region Region B
0 L x

Fig. 6 Reflection and transmission of a sound velocity in a waveguide (see e.g. [2]).

It is essential to know the amplitudes V, and V; of the reflected and transmitted
waves respectively and their integral constants.
In the region A can be written

Vi = Vielka® Ly eikas (4.1)

where the quantities V; and V,. are the complex velocity amplitudes of the incident

and reflected waves, and
w

kqa=—. 4.2

A= (4.2)

In the temperature-inhomogeneous region the velocity amplitude is given by Eq.
(3.34). Let us write it once more

2

V(z) = 1/co(z)F(z) = JCA [(AQ - 7;) 22+ 24z +1

Ca

(' cos (gz/(x)) — Cysin (,Zv(x)ﬂ , (4.3)

7]

X
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4 Transmission and reflection coeflicients

where

v(x) = tank” m (A n <A2 - g) xﬂ S (4) @ =wtor (@)

In the region B can be written
Vg = Vieksle—L) (4.5)

where V; is the complex acoustic velocity amplitude of the transmitted wave and

cg = /»RTp (4.62) kp=—. (4.6b)

The acoustic velocities must be the same on the interface of temperature-homogeneous
and temperature-inhomogeneous regions. This is true for the both interfaces that have
coordinates x = 0 and = = L. Consequently, there are two conditions in the waveguide

1. condition
Va(0) =V(0), (4.7)

2. condition
Ve(L)=V(L) . (4.8)

But these conditions contain four unknown variables V,., V;, C7 and Cs. So, it is
necessary to impose two more conditions.

From the equation of continuity (2.20) and Eq. (2.27) the following equation can be
written

op’ 5 OV
—— — =0. 4.9
ot + PoCyH or ( )
Substitution of the equalities (2.29) and (2.32) into Eq. (4.9)
2
pocg dV
Plx)=—"——. 4.1
(@)= 22T (410

Let us distinguish densities and velocities in temperature-homogeneous regions A and
B

po(z=0)=pa, co(x=0)=VxRTy =cyu, (4.11)
polzr =L)=pp, co(r =L)=+/»RTp =cp . (4.12)

From Egs. (4.1), (4.5), (4.10), (4.11), (4.12) the acoustic pressures in regions A and
B are

2
Py = %jlm (Viehas — Vemikar) (4.13)

2
PBCR

Pp = jkgVelfBE=L) (4.14)

The pressures also must be the same on the interface of temperature-homogeneous
and temperature-inhomogeneous regions. For the interface at coordinate x = 0 the
following steps are introduced

PA|:E:0 = P($)|x:0 ’ (415)
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4.1 Sound velocity

_ pach av

2
PAA gy (Viethaw — v,emikar) (4.16)

Jw

jw dz 0

=0
After reducing the term pac%/jw in Eq. (4.16) the left part jka (Viejk” - Vre_jk”)
then is the acoustic velocity derivative dV/dz. So,

dVa dv

—_ =jka(V; =V, . 4.1
| =ik iV = | (417)
Similarly, the acoustic velocity derivative at coordinate x = L is
dV; dv
B = jkgV; = ) (4.18)
dz =L dx =L

As a consequence, the acoustic velocity derivatives must be the same on the inter-
face of temperature-homogeneous and temperature-inhomogeneous regions. For both
interfaces at coordinates x = 0 and « = L the two following boundary conditions are
defined

3. condition

dVa dVv

= 4.19
dx =0 dx =0 ’ ( )
4. condition qv qv
B
—_— = — . 4.2
dz =L dz =L ( 0)

Substituting Eqgs. (4.1), (4.3), (4.5) into the four derived boundary conditions (4.7),
(4.8), (4.19), (4.20) produces the following system of equations

Vit Ve, =CiGr, (4.21)
Vi=Ci1H1 + CyHs , (4.22)
jka (Vi = V) = C1 My + Co My (4.23)
JkBVy = CiNy + CoNy (4.24)
where
G1=+/ca, w(L):A—i—(AQ—Tj)L, E= Vw2 —r?, (4.25)
CA
J KA? ) L2+ 2AL + 11 (4.26)
1 — tan ca
— tanh" [ (L } fanh! <|T|A> , (4.27)
) cos (‘f’ ) Hy = —y(L)sin (‘f’u(L)) , (4.28)
_ _ ¢
=\caA, M= N (4.29)
ea | A — 022 x(L) c
o(L) = ( TG )A> . k(L) = ;‘(‘é’g) , (4.30)
= sin iV CcoS i1/
Ni = o(D) Qﬂ<m)+mm (o) (4.31)
= cos éV — sin éy
N = o(E) cos (Ev()) = k(L) sin (L) ) (4.32)
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4 Transmission and reflection coeflicients

Solving the system of Eqgs. (4.21)—(4.24) obtains

2k 4 (kBHQ +jNg) Vi

Cr = kakpG1Hs + MiNo — MsNy + [kAG1N2 + kg (HlMg — HQMl)] ’ (4.33)

Cy— — 2k a (kBHl —l—le)V; (4 34)
kakpGi1Hs + Mi{Ny — MsNy +j [kAGlNQ + kp (HlMQ — HQMl)] ’ ’

Vo (kakpG1Hy — M1 No + MyNy +j[kaG1No — kp (H1 Moy — HyMy)]) V; (4.35)
" kakpGi1Hs + MiNy — MoNy + j[kaG1 N2 + kp (Hi1 My — HoMy)] 7

v, j2ka (H1No — HoN1) V; (4.36)

- kakpG1Hs + MiNo — MsNy + [kAG1N2 + kp (HlMg — HQMl)] ’

As V; is optional, the reflection coefficient R(*) and transmission coefficient 7r(®) can
be calculated on the basis of solutions of the system equations. The coefficients (see
e.g. [2], [4]) are defined by

RW) = % (4.37)
and
Tr®) = % : (4.38)

By supposing values of air constants as » = 7/5 and R = 287.058 Jkg 1K', setting
the characteristic length L to 1 m and choosing different values of constants A, r and
velocity ca it is possible to see a frequency dependence of the wave reflection and
transmission coefficients of the exact analytical solutions given by Eq. (4.3). Here
attention must be paid to one serious condition

E=w—r>0. (4.39)

That is why the graphs start at point w = |r|.

Reflection coefficient Transmission coefficient
0.35 1r

0.99
0.98

0.97 |-

[T ()

0.96

0.95 |-

1 1 1 ) 94 1 1 1 ' 1 )
3,000 4,000 5,000 6,000 7,000 09 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

w (rad/s) w (rad/s)

1 |
0 1,000 2,000

Fig. 7 Dependence of modulii of reflection and transmission coefficients for ¢4 = 345 ms™1,

|| = 597.558 s71, A =1 m™! in Eq. (4.3) on angular frequency.
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4.1 Sound velocity

Reflection coefficient Transmission coefficient

0.16 0.86 -
014} 086 -
012} 0.86 -
01l 0.85 -
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= g
0.06 0.85 -
0.04 | 0.85 -
0.02 | 0.85 -
0 : \ s ; ; s ‘ 0.84 : : : : s \ ‘
0 1,000 2000 3,000 4,000 5000 6,000 7,000 0 1,000 2,000 3000 4,000 5000 6,000 7,000
w (rad/s) w (rad/s)

Fig. 8 Dependence of modulii of reflection and transmission coefficients for c4 = 345 ms™!,

|r| = 1725571, A = —0.008 m~! in Eq. (4.3) on angular frequency.

Reflection coefficient Transmission coefficient
0.35 1.46 -
0.3F Ll
0.25 F
142}
T o2t =
= T l4r
/051 =]
1.38}
0.1F
0.05 | 1.36 |-
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Fig. 9 Dependence of modulii of reflection and transmission coefficients for ¢4 = 345 ms™!,

7| =301.39 s71, A= —0.662 m~! in Eq. (4.3) on angular frequency.
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Fig. 10 Dependence of modulii of reflection and transmission coefficients for ¢4 = 345 ms™!,

[r] =0.97 s71, A =0.328 m~! in Eq. (4.3) on angular frequency.
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4 Transmission and reflection coeflicients

4.2 Sound pressure

The following exact analytical solutions are derived for sound pressure.

Consider the reflection and transmission problem through the temperature-inhomoge-
neous region for an incident plane wave sketched in Fig. 11. The wave is partly reflected
and partly transmitted as it was for sound velocity, but now the object of interest is
sound pressure (see e.g. [2], [4]).

Ty P(x) Tp
P
P
Pa(z) P, Pp(x)
Temperature —
Region A inhomogeneous region Region B
0 L T

Fig. 11 Reflection and transmission of a sound pressure in a waveguide (see e.g. [2], [4]).

Now, it is necessary to know the amplitudes P, and P, of reflected and transmitted
waves respectively and also their integral constants.
In the region A can be written

Py = Pe*a® 4 peikar (4.40)

where the quantities P; and P, are the complex velocity amplitudes of the incident
and reflected waves, and the same Eq. (4.2) is applied.
In the region B can be written

Pg = Pefse=l) (4.41)

where V; is the complex velocity amplitude of the transmitted wave, and Eqgs. (4.6)
are true.

In the temperature-inhomogeneous region pressure amplitude is given by appropriate
equalities, derived in the previous chapter, and all of these equalities are discussed
below.

To calculate P,, P, C; and C5 it is necessary to deduce boundary conditions. These
conditions can be imposed in a similar manner to boundary conditions of sound velocity.

From the linear form of the Euler equation (2.22) it follows that

Ov 1 0p
e 4.42
ot po Ox ( )
After substitution of equalities (2.29) and (2.32) into Eq. (4.42)
0 ~ 19 ~
_ —jwt\ _ —jwt
o (V(@)e ) = e (Px)e ") (4.43)
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4.2 Sound pressure

the amplitude of sound velocity then is

1 dpP
Vi) = ——. 4.44
@)= —5 (4.44)
From Eqs. (4.11), (4.12), (4.40), (4.41), (4.44) the acoustic velocities at regions A
and B are

Vy = J_% AAw ( Pelkar _ pre—J’wa) , (4.45)
" .
Vg = ijBBw P,elksz=L) (4.46)

The velocities also must be the same on the interface of temperature-homogeneous
and temperature-inhomogeneous regions. For an interface at coordinate x = 0 the
following steps are introduced

Valy—o = V(®)|p—0 » (4.47)

1 dP

Jka _ ar
=0 JPAW dz

jpaw
After reducing the term 1/jpaw in Eq. (4.48) the left part jka (Pz-ejk” - PTe*jkAx) is
then an acoustic pressure derivative dP4/dz. So

ik —ik
(PieJ AT _ Pe™d A“)

(4.48)

=0

dPy dP
—_— =jka(P—PFP) = — . 4.49
dz =0 ] A( ‘ T) dz =0 ( )
Similarly, the acoustic pressure derivative at coordinate x = L is
dPp dP
—_— =jkpP, = — . 4.50
Az |, JEBI dz |, ( )

Finally, the four boundary conditions for the rest analytical solutions can be intro-
duced
1. condition

PA(0) = P(0) , (4.51)
2. condition
Pp(L) = P(L), (4.52)
3. condition iP 4P
A
p— = — 4.53
dx =0 dac =0 ’ ( )
4. condition AP AP
B
—— = — . 4.54
dl’ z=1I de z=1I ( g )

4.2.1 Second exact analytical solution

In the temperature-inhomogeneous region the pressure amplitude is given by Egs. (3.53)
and (3.55).

e A=c%¢® —4w?=0
Let us write Eq. (3.53) once more

P(z) = [C1 + Coln(qz 4+ 1)] . (4.55)

1
Vagr +1
For this solution only one frequency can be found, that is why we are not interested
in this solution.
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4 Transmission and reflection coeflicients

° A:ciq2—4w2<0

According to Eq. (4.2) the exact analytical solution (3.55) can be rewritten as

1 1 K
P(z) = VRS C cos ( 172 In(gx + 1))

, 1 Kk
+C5 sin 1T In(qz + 1)

(4.56)

According to the system of Eqs. (4.51)—(4.54), the system of equations for the

exact analytical solution (4.56) is then

P+ P, =Cy, (457)
P, =C1Hi + CsHo (458)
jka (P; — Pr) = C1 My + CoMy (4.59)
jkpP; = C1N71 + CyNsy (4.60)
where
1 k3
x(L) = Yo q—an(qL +1), (4.61)
Hy = ———cos(x(L)) , Hs = ———sin (x(L)) (4.62)
= cos , ) .
S/ s 2= JaLyionWX
1 1 K
- _ - M, = - _MA 4.
Ml 2(.1, 2 q 4 q2 ) ( 63)
_s |1 1 k:?A .
N = —qlgL+1)72 | Feos(x(L)) +4/ 7 — 2o (x(L)| (4.64)
_3 1 1 Kk ]
Nz = —q(qL+1)72 | 5sin(x(L)) =/ 7 = 2 (x(L)) (4.65)
The solution of the system of Eqgs. (4.57)—(4.60) is
o) = 2ka (kpHg + jN2) P; (4.66)
kakpHz + MyNy — MaNy + j[kaNo — kp (Ha My — Hi M3)] ' '
02:_ 2k 4 (k‘BHl —i—_]Nl)Pz (4 67)
k‘AkBHQ—I—MlNQ—MgNl —|—j[k‘AN2—k'B (HQMl—HlMQ)] ’ ’
p— (kAkBHQ — M Ny + MyN; —|-_] [kANQ + kg (Hng — HlMg)]) P, (4 68)
" kakpHy + MyNy — MaNy + j[kaNo — kp (HaoMy — Hi M) '
2 H{Ny — HyN;) P;
P, 12ka (HiN2 — HoNy) (4.69)

= kakpHz + M{No — MoNy + j [kaNo — kg (HoMy — HyMs)]

The calculation of reflection and transmission coefficients (P; is optional) is the

same as for sound velocity (see e.g. [2], [4])

P,
RWP) =~ (4.70)

and P
TrP) = Ft- . (4.71)
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4.2 Sound pressure

By supposing values of air constants as » = 7/5 and R = 287.058 Jkg 'K~!, setting
the characteristic length L to 1 m and choosing different values of constants ¢, T'a
it is possible to see a frequency dependence of the wave reflection and transmission
coefficients of the exact analytical solutions given by Eq. (4.56). A = cti — 4w? <0,
ca > 0 and from Eq. (4.56) it can be concluded that w > —1/¢, then only ¢ > 0 can
be examined. Let us choose Ty = 296 K and some different values of g to see these
frequency dependencies.

Reflection coefficient Transmission coefficient
1 0.7
—_—g=1m"! —_—g=1m!
— -1 . -1
0.9} 7=2 mo 0.6 7=2 "
——g=3m =——g=3m
0.8 F 0.5
T o7 T 04
06 £ 03
0.5 0.2
04 0.1
03 . . . . . . . . . ) 0 . . . )
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
w (rad/s) w (rad/s)

Fig. 12 Dependence of modulii of reflection and transmission coefficients for T4 = 296 K and
different values of ¢ in Eq. (4.56) on angular frequency.

4.2.2 Exact analytical solution for a linear temperature distribution

The exact analytical solution for a linear temperature distribution from Chapter 3 is

P(z) = C1Jy (‘Z Ta(Az+ 1)) +CyYo (Z’ Ta(Az+ 1)) , (4.72)

where b = T4|A|V=R/2 .
After all calculations according to the system of Eqs. (4.51)—(4.54) the following
system of equations is produced

P, + P. = C1G1 + C2Ga (4.73)

P, = CiH, + CoH, | (4.74)

jka (P — P) = C1My + CoMo (4.75)
jkpP = C1N1 + C2 N2, (4.76)

where

Gr=3($VT) . Ga=Yo (V7). (4.77)
Hi =g <°g Tu(AL + 1)) . Hy=Y, (‘; Ta(AL + 1)) , (4.78)

wA w wA w
Ml = —Tb\/ TAJl <b \V TA) 5 M2 - _Tb V TAYl <b\/ﬁ) 9 (479)
B wA T4 w\/i
M=\ ar 1™ (b TalAL+ 1)) ’ (450
e [ Ta (e por
M=\ Ay (b TaAL + D) ' (481)
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4 Transmission and reflection coeflicients

Solution of the system of Eqs. (4.73)—(4.76) is

C, =
2ka (kpH2 + jN2) P;

kakp (GiHo — GoHy) + MiNy — MoNy +jlka (GiN2 — GoNi) + kp (Hi1 My — Hzfzfl)] )’
4.82

CQ =—1x
2ka (kpHy +jNy1) P;
kakp (G1Hy — GoHy) + MiNy — MyNy +j[ka (GiN2 — GoNy) + kp (H My — HyMy)| '
(4.83)

_Pr = PZ'X
kakp (GiHy — GoHy) — MyNy + MyNy + jlka (GiN2 — GoNy) — kp (Hy Mo — HyMy))

kakp (G1Hy — GoHy) + MiNy — MyNy +j[ka (GiN2 — GoNy) + kp (H My — HyMy)| '
(4.84)

Pt = PZ‘X
j2ka (H1 Ny — HoNy)

kakp (GlHQ — G2H1> + M1Ny — MyNy +j [kA (G1N2 — GQNl) + kg (H1M2 — HQMl)] ’
(4.85)

The reflection and transmission coefficients can be calculated according to Egs.
(4.70), (4.71) (see e.g. [2], [4]).

By supposing values of constants for air as s = 7/5 and R = 287.058 Jkg 1K1,
setting the characteristic length L to 1 m and choosing different values of constants A,
T, it is possible to see a frequency dependence of the wave reflection and transmission
coefficients of the exact analytical solution given by Eq. (4.72). Let us choose Ty = 296
K for a positive temperature gradient, T4 = 752 K for a negative temperature gradient
and some different values of A to see these frequency dependencies.

Reflection coefficient Transmission coefficient
0.25 - 0.94 -
— A = 456/Ty m~!
A=238/Ty m™! 0.92 ="
02k — A =110/Ty m™!
. 091 — A = 456/T4 m™~*
A =238/Ty m™!
0.88 |- — A =110/T4 m™*
—~0.15 D
< ~—0.86
B, z
E EO.&M

0.1F

0.05 |-

/\ A~ 0.78/

1 1 1 1 ' 1 )
00 1,000 2,000 3,000 4,000 5,000 6,000 7,000 0'760 1,000 2,000 3,000 4,000 5,000 6,000 7,000

w (rad/s) w (rad/s)

Fig. 13 Dependence of modulii of reflection and transmission coefficients for T4 = 296 K and
different values of A (positive gradient) in Eq. (4.72) on angular frequency.
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4.2 Sound pressure

Reflection coefficient Transmission coefficient
0.25 1.3
—_—A=-218/Ty m!

A= —346/T4 m™" 1.25 /
= A = —456/T4y m~*

02

—_—A=-218/Ty m!
A= —346/T4 m~!
= A = —456/T4 m~!
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IR®)| (-
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(

Fig. 14 Dependence of modulii of reflection and transmission coefficients for T4 = 752 K and
different values of A (negative gradient) in Eq. (4.72) on angular frequency.

4.2.3 Exact analytical solution for an exponential temperature distribution

The exact analytical solution for an exponential temperature distribution was derived
in the previous chapter

P gries o0 st s )]

where ¢ = 2/\/»xR~? .

According to the system of Eqs. (4.51)—(4.54), the system of equations for an exact
analytical solution (4.86) is the same as the system of Eqs. (4.73)—(4.76), therefore the
solution has the form of Eqs. (4.82)—(4.85), but notations G1, Go, Hy, Ho, My, M2, Ny
and Ny have different meanings

1 1 1 1
G = —J — Gy = —Y — 4.87
1 \/E 1 <w¢m) ) 2 \/E 1 (w¢m) ) ( )
1 1 1 1
H=———J (wp——u | . Hy= ——— v, [wp——oo| , (488
1 TAe_'YL 1 <W¢ TAe_'YL) 2 \/W 1 (OJ¢ \/W) ( )

_wé L 1wP L
M1 = AJ(] (wqﬁ\/ﬁ) s M2 2T YO (wgém) s (4.89)
Ywe

—Y .
2T ye 7L O< ¢\/TA6 7L>

Ywo

1
2T e 7L 0< gb,/TA6 7L> ’

Ny = Ny = (4.90)

Reflection and transmission coefficients can be calculated according to Eqs. (4.70),
(4.71) (see e.g. [2], [4])-

By supposing values of air constants as » = 7/5 and R = 287.058 Jkg 'K~!, setting
the characteristic length L to 1 m and choosing different values of constants v, Tx
it is possible to see a frequency dependence of the wave reflection and transmission
coefficients of the exact analytical solution given by Eq. (4.86). Let us choose Ty = 296
K for both positive and negative temperature gradients and some different values of ~y
to see frequency dependencies.
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4 Transmission and reflection coeflicients

Reflection coefficient
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Fig. 15 Dependence of modulii of reflection and transmission coefficients for T4 = 296 K and
different values of v (positive gradient) in Eq. (4.86) on angular frequency.
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Fig. 16 Dependence of modulii of reflection and transmission coefficients for T4 = 296 K and
different values of v (negative gradient) in Eq. (4.86) on angular frequency.
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5 Derivation of the Burgers-type equation
for temperature-inhomogeneous fluids

In this section the Burgers-type equation for nonlinear acoustic waves in the temperature-
inhomogeneous fluids and its dimensionless form is derivated. The classical Burgers
equation is the most widely used model equation for studying the combined effects of
dissipation and nonlinearity on progressive plane waves (see e.g. [7]).

5.1 Westervelt equation

Let us begin with the nonlinear acoustic wave equation for progressive waves, which is
called the Westervelt equation (see e.g. [1], [8], [9])

a 33p’ B 32;0/2
pocg O3 poch Ot?

0%y = (5.1)

where 3 is the nonlinearity coefficient, « is the sound diffusivity and [J? is the d’Alembertion
operator for plane waves. These notations mean

el e PO 100 oy
B_ 2 ) D()_alg_%ﬁ? a_3€+C+K<CV Cp) K
(5.2a) (5.2b) (5.2¢)

where cy and ¢, are specific heats at constant volume and pressure respectively and
@ < 1 a small dimensionless parameter.

The left hand side of Eq. (5.1) represents the canonical wave equation for acoustic
waves in homogeneous fluids. For temperature-inhomogeneous media it was derived the
wave equation (2.24) which can be expressed as

O =0, (5.3)

2 . 2.
where (02(+) = %x@ - p%%% - c% a@t(2) is the d’Alembertion operator for plane waves
0

in temperature-inhomogeneous media. On the basis of this operator the Westervelt
equation (5.1) can be modified for a temperature inhomogeneous media
o 83p/ 3 82p/2

— - . 0.4
pocg O3 poch Ot? (54)

D?p/ =
The validity of this equation is restricted to regions with low temperature gradients.

5.2 Burgers-type equation

Given that the spatial variation of a plane progressive acoustic wave is small enough
in proportion to one wavelength it is possible to apply the multiple-scale method to
simplify Eq. (5.4). The retarded time 7 =t — x/cy4 is introduced.
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5 Derivation of the Burgers-type equation for temperature-inhomogeneous fluids

Let us find the solution of Eq. (5.4) in the form (see e.g. [7])

p=p(r1,7), (5.5)

where

x
r1 = pux, (5.6a) T=1——. (5.6b)

CA

In the retarded time frame (i.e., for an observer in a reference frame that moves
at speed cy4), nonlinearity and absorption separately produce only slow variations as
functions of distance. Moreover, the relative order of the variations due to each effect
is the same, i.e., it is O(p). Thus, it can be anticipated that the combined effects of
nonlinearity and absorbtion will introduce variations of the same order. The coordinate
x1 is referred to as the slow scale corresponding to the retarded time frame 7.

To derive a simplified progressive-wave equation that accounts for both absorption
and nonlinearity, let us first rewrite Eq. (5.4) in the new coordinate system (z1, 7).
Transformations of the partial derivatives are

o¢) _ o() _19()

Or " 0x1 ¢y OT (5:7)
°0) _ 2 B0, 120 -
Ox2 ca 010z & 012 '
o) _o() () _2°0) () _ () (5.9
ot or ’ ot? or?’ ot3 ors )
applying the introduced notations
oy 2 o 1o
or? ca OTOx 0124 or?’
dpo _ dpo 0P _ oY) 19y (5.10)
dz Mdml ’ Oz M@ml cq O’
82 p/ 82 p/ 83 p/ 83 p/
o2~ o2’ ots — ors
Substitution of derivatives (5.10) into Eq. (5.4) gives
2O P R u dwdy 1 a 9 2 o
'ucA Or0x1 4 012 poda1 Oz poca dzy OT 3 OT2 N pocy OT? pocép or?’
(5.11)

We are interested in the second approximation of the above equation. The third term
in Eq. (5.11) is O(p®) and is therefore discarded. After that and small rearranging Eq.
(5.11) can be written as

ca 07021

2 2
Ca4

= — — . (5.12
0?2 pocadxy OT pocy O3 pgcgp oT2 (5.12)

2 0% ( 1 1) 0% podpodp'  a By 28 ,0%
Integration of Eq. (5.12) with respect to 7, multiplication of the resulting equation
by —ca/2 and having noted

= (1212)‘1034_63_1&_%—1_5(“) (513)
C C =
A 0

2 24 & 24 Ty 2caZ(0)
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5.3 Dimensionless Burgers-type equation

leads to equation

opf 1-Z(o)0p p dpo aca 0% Bea ,0p
y LmE@W pdp,  aca O LS (5.14)
Ox1  2c4Z2(0) O 2poda 2pocy OT pocy. OT

Applying Eq. (2.26) and returning to the physical coordinate = in place of z; the
above equation can be written as

op 1—-Z=(o)0p 1 dTq acq 0% Bea ,0p
9pr #l_’_iiop’_ . ]; 410'71):07 (5.15)
0r  2caE(o) O 2T dx 2pocy OT pocy OT

and this is the Burgers-type equation for a temperature-inhomogeneous fluid.

5.3 Dimensionless Burgers-type equation

Using expressions (2.36) the Burgers-type equation (5.15) can be written as

8j+[1—5(a)]wL8£ 1 dE(a)H_ aw’L I BwL Haj_o
do 2c4=(0c) 00 2=(0) do 22 (0) pac’, 002 E(o)ca 00
(5.16)
Introducing new constants
2
_ vk _0‘“”;, N = vl (5.17)
2cq 2pacy CA
and remembering
o:%, 0 =wr, (5.18)

the Burgers-type equation (5.16) can be rewritten into the form

oIl n 1-E(0) 0l 1 d=(o)

G oIl N ol
0o =(0) Q%+2E(U)H do

TE0) o E(o) g (5.19)

Equation (5.19) is the dimensionless Burgers-type equation for plane progressive non-
linear waves in temperature-inhomogeneous fluids.
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6 Numerical solution of the Burgers-type
equation for
temperature-inhomogeneous fluids

In this chapter, a numerical method for solving the Burgers-type equation was imple-
mented in the C programming language and the numerical solutions obtained from this
method are presented.

6.1 Description of the numerical method

Let us write the dimensionless Burgers-type equation (5.19) for plane progressive non-
linear waves in temperature-inhomogeneous fluids once more

ol 1—Z=(o) 1 _d=Z(o) G 0’1 N _ol
— + — Qi — 11 — = — = i
do =(0) 2E8(0) do E(o) 0602  Z(o) 06

=0, (6.1)

where Q = wL/ (2¢c4) , G = aw?L/ (2pac¥) , N = fwL/ca , 0 =x/L , 0 = wr .
Let us suppose acoustic pressure in the form (see e.g. [1], [10])

o

I1(0,0) = Z ®, (o), (6.2)

n=—oo

where
_, (o) = ) (o) - (6.3)

Here, the asterisk sign * means complex conjugate.

Remembering dependence of functions II (o, ), = (o), ® (o) let us omit writing these
dependencies in the following equations to simplify expressions.

Substituting Eq. (6.2) into Eq. (6.1)

= |do, 1- 1 dE 2@

n;@[d 1==0a, + oz F @]
1N SRS "
5?% S 2®, T (6.4)

1=—00 M=—00

The right-hand side of Eq. (6.4) can be derivated, thus Eq. (6.4) can be rewritten

2= “do
n=—00

> [d(l) 1-= 1 _d=  n?G ]ejne

_ i <J Z ®,, P,/ m) ™'l (6.5)

n’:—oo m=—0oo

where n' =i + m.

36



6.1 Description of the numerical method

The left-hand and right-hand sides of Eq. (6.5) are equal for arbitrary dimensionless
time 6 only for ' = n and when terms in brackets are equal SO

de, . 1-Z 1 dE n’G
e L JD DL (T NER L)

m=—0oQ
To apply convolution to the right-hand side of Eq. (6.6) it is convenient to express
the summation in the following step using the expression (6.3)

Z<I><I>nm—Z<I> <I>nm+22<1><1> : (6.7)

m=—00 m=n+1

Thus, there are only terms ®,, with positive n in summation (6.7). Thanks to this
and expression (6.7) it is possible to rewrite Eq. (6.6)

do,, 1-E 1 d=E n2G
= —in——Q®, — —P —f—<1>
P P
+J<Zq> Dy + 2 Z ®,,0;, ) (6.8)
m=n-+1

By placing a limitation on the M terms of the Fourier series, Eq. (6.8) can be
rewritten as
do,, 1-Z2 1 _d= n®G

:—.7 (b —7®7_
do Jn—== Q% = oz Pn s

J(Z‘I) Dy + 2 Z ®,, 0", > (6.9)

m=n-+1

Dy,

[1]

Equation (6.9) is a simultaneous system of ordinary nonlinear differential equations
with M complex independent variables ®, ®, ..., 57, which can be written as

1
By = 5 (PR, —jPL,) . (6.10)

The system of equations, which is represented by Eq. (6.9), can be solved numerically
by the standard fourth-order Runge-Kutta method (see e.g. [11]). Let us denote Eq.
(6.9) by function f(oy,,®,). To have an initial value problem just a boundary initial
condition should be added. The organization of the numerical method then can be

written as
k1= hf(Um (I)n) 5

h k
k2—hf(0n+ (I)n+ 21)

h k
ks = hf(on + 5, Bn + 22) (6.11)

k4:hf(0'n+h (I) +/€3,

g1 = Dy + = (ki + 2y + 2k + ka) + O (h°)

5 (
where h is a step size and O (h®) is an error term of the 4th order.

This Runge-Kutta method was written in C language, as a result a boundary value
problem is resolved.

To find acoustic pressure, according to Egs. (6.2), (6.10) and the result from C code,
the following equation should be evaluated

Z [®R,, cos (mB) + @I, sin (m0)] . (6.12)
m=1
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6 Numerical solution of the Burgers-type equation for temperature-inhomogeneous
fluids

6.2 Representation of an artificial attenuation filter

The sequential generation of higher harmonics leads to the transfer of acoustic en-
ergy from the first harmonic components to the components higher, where the acoustic
energy is damped more effectively, because attenuation increases with frequency. This
leads to a phenomenon which is called the nonlinear attenuation. Considering the finite
number of Fourier series terms leads to the interruption of acoustic energy flow from
the lower harmonics to higher, i.e. the disruption of nonlinear attenuation, as a result
acoustic energy starts accumulating at the highest harmonics and therefore higher har-
monics grow abnormally. Due to this fact the higher harmonics have more effect than
they really have during nonlinear interaction. For this reason even lower harmonics
start rising, that is why numerical instability occurs in the solution. In a way this
instability influence affects the solution by causing unwanted and gradually rising oscil-
lations. In order to avoid this phenomenon, it is necessary, especially while considering
a lower number of harmonics, to introduce artificial attenuation which replaces dissipa-
tion of acoustic energy that occurs at ignored higher harmonic components. Therefore,
artificial attenuation should influence higher harmonics to a greater extent than lower
ones. As an example, attenuation can be implemented so that with each integration
step calculated harmonic components can be multiplied by the following function

sin (3)

n
D

; (6.13)

where n is a number of particular harmonic component, D is a selected constant.

This filter is implemented in C code.

6.3 Graphical representation of the Burgers-type equation
solution for a linear temperature distribution

Let us see possible solutions of the Burgers-type equation. A linear temperature distri-
bution is given by Eq. (3.71).

6.3.1 Positive temperature gradient

Let us set the angular frequency w to 10000 s~!, the characteristic temperature T4 to
298.15 K, the complex pressure amplitude of incident wave is -2000j Pa. The first point
of interest is a linear temperature distribution with a positive gradient. The gradient
is set by constant A. The solution is represented in Fig. 17.

The following statement can be made: as the temperature gradient is higher, pressure
amplitude is lower. The same result could be seen from the transmission coefficient
graph in Fig. 13. In Fig. 17 distortion of a wave profile can be also observed. There
is no a big difference between constant temperature 74 and nonzero positive gradients
since these gradients are small.
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6.3 Graphical representation of the Burgers-type equation solution for a linear
temperature distribution

w = 10000 s, Ty = 298.15 K
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Fig. 17 The solution of the Burgers-type equation for temperature inhomogeneous fluids with
positive temperature gradient A.

6.3.2 Negative temperature gradient
The second point of interest is a linear temperature distribution with a negative gradient

A. Let us leave the angular frequency w with the same value of 10000 s~! and the
complex pressure amplitude is -2000j Pa, the characteristic temperature T4 set to 357.78

w=10000s"1 Ty=357.78 K
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Fig. 18 The solution of the Burgers-type equation for temperature inhomogeneous fluids with
negative temperature gradient A.

As the temperature gradient is lower, pressure amplitude is higher. The same result
could be seen from the transmission coefficient graph in Fig. 14. As for a positive tem-
perature gradient the difference of phases can be seen, the nonlinearity of a wave profile
can be also observed, the difference between constant temperature T4 and nonzero
negative gradients are also small enough due to small gradients.
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6 Numerical solution of the Burgers-type equation for temperature-inhomogeneous
fluids

6.3.3 Different lengths of a duct with a positive temperature gradient

The third point of interest is a linear temperature distribution with a positive gradient A
for different duct lengths. Let us leave the angular frequency w the same value of 10000
s~! and the complex pressure amplitude is -2000j Pa, the characteristic temperature
Ty is set to 298.15 K, a temperature gradient A has a positive value of 0.5 m™!. The
size of a step length is 0.25 m.

A=0.50m" Y w=10000s"1,T4=298.15 K

'2000 T T T T | T T T T | T T T T | T T T T | T T T T | T T T T | T T T |
0 1000 2000 3000 4000 5000 6000 7000
0(-)
Fig. 19 The solution of the Burgers-type equation for temperature inhomogeneous fluids with

a positive temperature gradient A = 0.5 m~! but different lengths of a duct.

In Fig. 19 can be observed how the wave-profile is gradually distorted.
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7 Conclusion

In this bachelor thesis I have studied descriptions of acoustic waves in fluids with spa-
tially variable temperatures, including derivation of one-dimensional model equations.
Analytical solutions of linear model equations for chosen temperature distributions
were found. For these solutions transmission and reflection coefficients were calculated.
The dependencies of these coefficients on angular frequency were shown in graphs.

In order to describe nonlinear acoustic plane waves for small temperature gradients
the Burgers-type equation was derived. The obtained Burgers-type equation was solved
numerically in the frequency domain by the fourth-order Runge-Kutta method since the
solution is unknown. A numerical code was written in the programming language C.
The numerical solutions were used for plotting nonlinear wave-profiles and discussed.

All assignment points were accomplished.
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Appendix A
Attached CD contents

Matlab calculation scripts. These scripts contain calculations of some complex
expressions and generations of graphs represented in the thesis.

Maple calculation script, which holds some calculations from the thesis.
Fourth-order Runge-Kutta numerical method written in the C programming
language.

Electronic version of the thesis in PDF.

All Figures from the thesis.
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