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Abstrakt
Bakalářská práce se zabývá modelováním rovinných akustických vln v plynech s pro-
měnnou teplotou. Pro šíření rovinných vln v teplotně nehomogenním prostředí byla
odvozena vlnová rovnice s proměnnými koeficienty. Pro vybrané teplotní distribuce
jsou v práci prezentována přesná analytická řešení této rovnice. Pomocí nalezených
obecných řešení byly vypočteny koeficienty transmise a reflexe. Pro případ vln koneč-
ných amplitud (nelineární vlny) šířících se tekutinou s malým teplotním gradientem
byla odvozena modifikovaná Burgersova rovnice. Tato rovnice byla řešena numericky v
kmitočtové oblasti pomocí Runge-Kuttovy metody 4. řádu v programovacím jazyce C.

Klíčová slova
Vlnová rovnice s proměnnými koeficienty; koeficienty transmise a reflexe; Burgersova
rovnice.
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Abstract
The thesis presents the modelling of acoustic plane waves in gases with variable temper-
ature. The wave equation with variable coefficients for the propagation of plane waves
in a thermally inhomogeneous medium was derived. For chosen temperature distribu-
tions the exact analytical solutions of this equation are presented in this thesis. The
coefficients of transmission and reflection were calculated using found general solutions.
For the case of finite amplitude waves (nonlinear waves), propagating in a fluid with a
low temperature gradient, the modified Burgers equation was derived. This equation
was solved numerically in the frequency domain using the fourth-order Runge-Kutta
method written in the C programming language.

Keywords
Wave equation with variable coefficients; transmission and reflection coefficients; the
Burgers equation.
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1 Introduction

The description and analysis of acoustic waves in ducts with a region containing tempera-
ture-inhomogeneous fluid represents a significant problem of scientific and practical in-
terest. This interest is induced by the need to understand how temperature fields affect
acoustic processes. This would lead to the possibility of more effective design and con-
trol systems in which interactions between acoustic and temperature fields occur. This
includes, for instance, thermo-acoustic devices and engines, combustors, automotive
mufflers, measuring methods of impedance of high-temperature systems, the investiga-
tion of thermo-acoustics and combustion instabilities among other possible applications.

This thesis presents modelling of plane acoustic waves in gases with variable tem-
perature. The whole work can be divided into two parts, the first part is devoted to
linear model equations, and the second describes nonlinear acoustic plane waves for
small temperature gradients.

The analysis consists of seven chapters. Within Chapter 2 the basic linear one-
dimensional model equations for fluids in temperature-inhomogeneous regions are de-
rived. Chapter 3 is devoted to the exact analytical solutions of linear model equations
for varoius temperature distributions. Chapter 4 deals with an application of the found
solutions for calculation of transmission and reflection coefficients. In Chapter 5 is pre-
sented a derivation of the Burgers equation for temperature-inhomogeneous fluids. The
numerical method for the Burgers equation for small temperature gradients is shown
in Chapter 6. Chapter 7 states the conclusion.
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2 Derivation of model equations

2.1 Fundamental equations of fluid mechanics

To describe acoustic waves in fluids the following system of equations is considered (see
e.g. [1], [2]) :

1. The Navier – Stokes equation (Momentum equation)
This equation describes the motion of fluid substances and the general form is

𝜌

[︂
𝜕v
𝜕𝑡

+ v · ∇v
]︂

= −∇𝑝+
(︂
𝜁 + 𝜖

3

)︂
∇ (∇ · v) + 𝜖∇2v , (2.1)

where 𝜌 is the density of the medium, v is the particle velocity of the medium, 𝑡
is time, 𝑝 is the pressure, 𝜁 is a bulk viscosity, 𝜖 is a shear viscosity.

2. Equation of continuity
This equation describes the transport of a conserved quantity, i.e. fluid.

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌v) = 0 . (2.2)

3. Energy equation

𝜌𝑇

(︂
𝜕𝜀

𝜕𝑡
+ v · ∇𝜀

)︂
= 𝜖

2

(︂
𝜕𝑣𝑖

𝜕𝑥𝑘
+ 𝜕𝑣𝑘

𝜕𝑥𝑖
− 2

3𝛿𝑖𝑘
𝜕𝑣𝑙

𝜕𝑥𝑙

)︂2
+𝜁 (∇ · v)2+∇·(𝜅∇𝑇 ) , (2.3)

where 𝜀 is entropy per unit mass, 𝑇 is absolute temperature, 𝜅 is the thermal
conduction coefficient, 𝛿𝑖𝑘 is the Kronecker delta.

4. Equation of state
𝑝 = 𝑝 (𝜌, 𝜀) . (2.4)

∙ If a perfect gas is considered then the Navier – Stokes equation (2.1) is reduced to
the form

𝜕v
𝜕𝑡

+ v · ∇v = −1
𝜌

∇𝑝 , (2.5)

which is called the Euler equation.
∙ Equation of state (2.4) for a perfect gas is (see e.g. [2])

𝑝 = 𝑅𝜌𝑇 , (2.6)

where 𝑅 is the specific gas constant, i.e. the (molar) gas constant divided by the
molar mass of the gas.
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2.2 Derivation of basic model equations for temperature-inhomogeneous region

2.2 Derivation of basic model equations for
temperature-inhomogeneous region

In order to derive model equations it is necessary to take into consideration four equa-
tions from the previous section and make some assumptions, which enable us to ne-
glect nonlinear terms. Assuming a perfect, inviscid and non-heat-conducting gas with
one-dimensional temperature distribution, Eqs. (2.2), (2.3), (2.5) and (2.6) can be
transformed in the following ways (see e.g. [2]) :

∙ Energy equation
In a perfect gas no energy is dissipated, so d𝜀/d𝑡 = 0, and hence a specific entropy
𝜀 is a constant. From this an isentropic process and an adiabatic gas law take
place.

∙ Equation of state
From Eq. (2.4) it follows

d𝑝 =
(︂
𝜕𝑝

𝜕𝜌

)︂
𝜀

d𝜌+
(︂
𝜕𝑝

𝜕𝜀

)︂
𝜌

d𝜀 . (2.7)

As the process is isentropic then state equation can be written as 𝑝 = 𝑝(𝜌) and

d𝑝 =
(︂
𝜕𝑝

𝜕𝜌

)︂
𝜀

d𝜌 . (2.8)

As an adiabatic gas law takes place then

𝑝

𝑝0
=
(︂
𝜌

𝜌0

)︂κ
, (2.9)

where 𝑝 and 𝑝0 are different specific pressures, 𝜌 and 𝜌0 are different specific den-
sities, κ is the ratio of specific heats.

By assuming the gas to be inviscid, it is permissible to express the sound speed 𝑐

𝑐2 = d𝑝
d𝜌 . (2.10)

Taking into account Eqs. (2.9) and (2.6), the equation above can be written as

𝑐2 = κ𝑝
𝜌

= κ𝑅𝑇 . (2.11)

Equation (2.10) lets us take into account the following equality

d𝑝
d𝑡 = 𝑐2 d𝜌

d𝑡 . (2.12)

The total derivative is
d(·)
d𝑡 = 𝜕(·)

𝜕𝑡
+ 𝜐

𝜕(·)
𝜕𝑥

. (2.13)

Then Eq. (2.12) can be written as

𝜕𝑝

𝜕𝑡
+ 𝜐

𝜕𝑝

𝜕𝑥
= 𝑐2

(︂
𝜕𝜌

𝜕𝑡
+ 𝜐

𝜕𝜌

𝜕𝑥

)︂
. (2.14)

3



2 Derivation of model equations

∙ Equation of continuity
One-dimensional equation of continuity is

𝜕𝜌

𝜕𝑡
+ 𝜕

𝜕𝑥
(𝜌𝑣) = 0 . (2.15)

From this equation the equality 𝑣𝜕𝜌/𝜕𝑥 = −𝜕𝜌/𝜕𝑡 − 𝜌𝜕𝑣/𝜕𝑥 can be obtained.
After substitution into Eq. (2.14) the resulting equation is

𝜕𝑝

𝜕𝑡
+ 𝑣

𝜕𝑝

𝜕𝑥
= −𝑐2𝜌

𝜕𝑣

𝜕𝑥
. (2.16)

From Eq. (2.11) the above equation can be written as

𝜕𝑝

𝜕𝑡
+ 𝑣

𝜕𝑝

𝜕𝑥
+ κ𝑝

𝜕𝑣

𝜕𝑥
= 0 . (2.17)

∙ Euler equation
By assuming one-dimensional temperature distribution, Eq. (2.5) takes the form
of the one-dimensional Euler equation

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑣

𝜕𝑣

𝜕𝑥
+ 𝜕𝑝

𝜕𝑥
= 0 . (2.18)

Each of the dependent variables can be expressed in the following way (see e.g. [3])
1. the density 𝜌(𝑥, 𝑡) = 𝜌0(𝑥) + 𝜌′(𝑥, 𝑡) is the sum of the ambient density 𝜌0 and an

acoustic density 𝜌′,
2. the velocity 𝑣 = 𝑣(𝑥, 𝑡) is the particle velocity of the medium, resp. acoustic

velocity,
3. the pressure 𝑝(𝑥, 𝑡) = 𝑝0 +𝑝′(𝑥, 𝑡) is the sum of the atmospheric pressure 𝑝0, which

is supposed to be constant (see e.g. [3]) and the acoustic pressure 𝑝′.
The assumptions can be taken into account |𝑝′|/𝑝0 ∼ |𝑣|/𝑐0 ∼ 𝜌′/𝜌 ∼ 𝜇 ≪ 1, where

𝑐0 is the linear sound speed, 𝜇 < 0 is a small dimensionless parameter. It is considered
that 𝑐0 = 𝑐0(𝑥) and temperature 𝑇0 = 𝑇0(𝑥) are dependent on the distance 𝑥, where
𝑇0 is the ambient temperature of the fluid.

The substitution of the above dependent variables into the equation of continuity
(2.17)

𝜕(𝑝0 + 𝑝′)
𝜕𝑡

+ 𝑣
𝜕(𝑝0 + 𝑝′)

𝜕𝑥
+ κ

(︀
𝑝0 + 𝑝′)︀ 𝜕𝑣

𝜕𝑥
= 0 (2.19)

and linearization of Eq. (2.19) leads us to the following linear form of the equation of
continuity

𝜕𝑝′

𝜕𝑡
+ κ𝑝0

𝜕𝑣

𝜕𝑥
= 0 . (2.20)

The same substitution into the Euler equation (2.18)

(︀
𝜌0 + 𝜌′)︀ 𝜕𝑣

𝜕𝑡
+
(︀
𝜌0 + 𝜌′)︀ 𝑣 𝜕𝑣

𝜕𝑥
+ 𝜕(𝑝0 + 𝑝′)

𝜕𝑥
= 0 (2.21)

and linearization of Eq. (2.21) leads us to the linear form of the Euler equation

𝜌0
𝜕𝑣

𝜕𝑡
+ 𝜕𝑝′

𝜕𝑥
= 0 . (2.22)

4



2.2 Derivation of basic model equations for temperature-inhomogeneous region

Differentiating of Eq. (2.20) with respect to time t and Eq. (2.22) with respect to
coordinate x and eliminating the cross-derivative term by their combination yields

𝜕2𝑝′

𝜕𝑥2 + d𝜌0
d𝑥

𝜕𝑣

𝜕𝑡
− 𝜌0

κ𝑝0

𝜕2𝑝′

𝜕𝑡2
= 0 . (2.23)

Expressing the derivative 𝜕𝑣/𝜕𝑡 from Eq. (2.22) and substituting it into Eq. (2.23)
obtains the equation

𝜕2𝑝′

𝜕𝑥2 − d𝜌0
d𝑥

1
𝜌0

𝜕𝑝′

𝜕𝑥
− 𝜌0

κ𝑝0

𝜕2𝑝′

𝜕𝑡2
= 0 . (2.24)

From the perfect gas law 𝑝0 = 𝑅𝜌0𝑇0 the total derivative of 𝑝0 with respect to 𝑥 is

0 = d𝑝0
d𝑥 = 𝑅

d𝜌0
d𝑥 𝑇0 +𝑅𝜌0

d𝑇0
d𝑥 . (2.25)

After multiplying the above equation by 1/(𝑅𝜌0𝑇0) the resulting expression is

1
𝜌0

d𝜌0
d𝑥 + 1

𝑇0

d𝑇0
d𝑥 = 0 . (2.26)

From Eq. (2.11) follows
𝑐2

0 = κ𝑝0
𝜌0

, (2.27)

and using Eq. (2.26) hence is obtained the wave equation with variable coefficients (see
e.g. [3])

𝜕2𝑝′

𝜕𝑥2 + 1
𝑇0

d𝑇0
d𝑥

𝜕𝑝′

𝜕𝑥
− 1
𝑐2

0

𝜕2𝑝′

𝜕𝑡2
= 0 . (2.28)

Assuming a time periodic source of sound, where 𝜔 is an angular frequency, it is
possible to consider

𝑝′(𝑥, 𝑡) = 𝑃 (𝑥)𝑒−j𝜔𝑡 . (2.29)

Equation (2.28) can be written now as

d2𝑃

d𝑥2 + 1
𝑇0

d𝑇0
d𝑥

d𝑃
d𝑥 + 𝜔2

𝑐2
0
𝑃 = 0 . (2.30)

Now, let us differentiate vice versa - Eq. (2.20) with respect to x and Eq. (2.22) with
respect to t, then the cross-derivative term can be eliminated. This manipulation leads
to the wave equation

𝜕2𝑣

𝜕𝑡2
− 𝑐2

0
𝜕2𝑣

𝜕𝑥2 = 0 . (2.31)

Substituting
𝑣(𝑥, 𝑡) = 𝑉 (𝑥)𝑒−j𝜔𝑡 , (2.32)

into Eq. (2.31) obtains the equation

d2𝑉

d𝑥2 + 𝜔2

𝑐2
0(𝑥)

𝑉 (𝑥) = 0 . (2.33)

This is the Helmholtz equation.

5



2 Derivation of model equations

Let us rewrite the model equations (2.28) and (2.31) in dimensionless form (see e.g.
[4])

𝜕2Π
𝜕𝜎2 + 1

Ξ(𝜎)
dΞ(𝜎)

d𝜎
𝜕Π
𝜕𝜎

− 1
𝐶2

0 (𝜎)
𝜕2Π
𝜕𝜃2 = 0 , (2.34)

𝜕2𝑊

𝜕𝜃2 − 𝐶2
0 (𝜎)𝜕

2𝑊

𝜕𝜎2 = 0 . (2.35)

Here

Π = 𝑝′

𝜌𝐴𝑐2
𝐴

= 𝑝′

κ𝑝0
, 𝜎 = 𝑥

𝐿
, 𝜃 = 𝜔𝑡 ,

𝐶2
0 (𝜎) = 𝑐2

0(𝜎)
𝜔2𝐿2 = κ𝑅𝑇0(𝜎)

𝜔2𝐿2 = Ξ(𝜎)
ℎ2 , Ξ = 𝑇0

𝑇𝐴
, 𝑊 = 𝑣

𝑐𝐴
,

(2.36)

where 𝑇𝐴 is a characteristic temperature, 𝑐𝐴 = 𝑐0(𝑇𝐴) =
√
κ𝑅𝑇𝐴, 𝜌𝐴 = 𝜌0(𝑇𝐴) =

𝑝0/(𝑅𝑇𝐴), 𝐿 is a characteristic length and ℎ = 𝜔𝐿/𝑐𝐴.
Assuming that the solutions of Eqs. (2.34) and (2.35) have a periodic time depen-

dence, i. e.
Π(𝜎, 𝜃) = Φ(𝜎)𝑒−j𝜃 (2.37)

and
𝑊 (𝜎, 𝜃) = ϒ(𝜎)𝑒−j𝜃 , (2.38)

then equations can be written as

d2Φ
d𝜎2 + 1

Ξ(𝜎)
dΞ(𝜎)

d𝜎
dΦ
d𝜎 + 1

𝐶2
0 (𝜎)

Φ(𝜎) = 0 , (2.39)

d2ϒ
d𝜎2 + ϒ(𝜎)

𝐶2
0 (𝜎)

= 0 . (2.40)
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3 Exact analytical solutions for various
temperature functions

This chapter is devoted to exact analytical solutions. These solutions can be divided
into two cases. The first case represents solving equations where the temperature dis-
tribution 𝑇0(𝑥) is unknown, so it is necessary to find both the temperature distribution
𝑇0(𝑥) and the solution of the equation. The second case deals with equations where
it is supposed the function 𝑇0(𝑥) must be known. For this reason only the equation
solution is to be found in this case. Linear and exponential temperature distributions
are assumed.

3.1 Transformation of derivatives
Suppose that a function 𝑓(𝑥) is known then can be derived the following spatial deriva-
tives

d(·)
d𝑥 = d(·)

d𝑓
d𝑓
d𝑥 , (3.1)

and

d2(·)
d𝑥2 = d

d𝑥

(︂d(·)
d𝑥

)︂
= d

d𝑥

(︂d(·)
d𝑓

d𝑓
d𝑥

)︂
=
[︂ d

d𝑥

(︂d(·)
d𝑓

)︂]︂ d𝑓
d𝑥 +

[︂ d
d𝑥

(︂d𝑓
d𝑥

)︂]︂ d(·)
d𝑓

=
[︂ d

d𝑓

(︂d(·)
d𝑥

)︂]︂ d𝑓
d𝑥 + d2𝑓

d𝑥2
d(·)
d𝑓 =

[︂ d
d𝑓

(︂d(·)
d𝑓

d𝑓
d𝑥

)︂]︂ d𝑓
d𝑥 + d2𝑓

d𝑥2
d(·)
d𝑓

=
(︂d𝑓

d𝑥

)︂2 d2(·)
d𝑓2 + d2𝑓

d𝑥2
d(·)
d𝑓 . (3.2)

Taking into account a new variable (see e.g. [5])

𝜂 =
∫︁ 𝑥

0

1
𝑐0(𝑥1) d𝑥1 , (3.3)

then
d𝜂
d𝑥 = 1

𝑐0(𝑥) , (3.4)

d2𝜂

d𝑥2 = d
d𝑥

(︂ 1
𝑐0(𝑥)

)︂
. (3.5)

Putting 𝜂(𝑥) ≡ 𝑓(𝑥) can be used the transformation relations (3.1) and (3.2) as
follows

d(·)
d𝑥 = d(·)

d𝜂
d𝜂
d𝑥 , (3.6)

d2(·)
d𝑥2 =

(︂d𝜂
d𝑥

)︂2 d2(·)
d𝜂2 + d2𝜂

d𝑥2
d(·)
d𝜂 = 1

𝑐2
0(𝑥)

d2(·)
d𝜂2 + d

d𝑥

(︂ 1
𝑐0(𝑥)

)︂ d(·)
d𝜂 . (3.7)
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3 Exact analytical solutions for various temperature functions

3.2 Analytical solutions for unknown temperature functions
It is assumed that a temperature distribution 𝑇0(𝑥) in a temperature-inhomogeneous
region of the length 𝐿 in a waveguide separates two regions of different constant tem-
peratures 𝑇𝐴 and 𝑇𝐵, see Fig. 1 (see e.g. [4]) .

Region A
𝑇𝐴

Region B
𝑇𝐵

Temperature –
inhomogeneous region

0 𝑥𝐿

Fig. 1 Temperature regions in a waveguide.

In dimensionless equations the temperature-inhomogeneous region has the length
equal to 1 and separates two temperature-homogeneous regions with constant dimen-
sionless temperatures Ξ𝐴 = 1 and Ξ𝐵 = 𝑇𝐵/𝑇𝐴.

3.2.1 First method of finding analytical solution

To solve the Helmholtz equation (2.33) the first step is to introduce a new function
𝐹 (𝑥) (see e.g. [6])

𝑉 (𝑥) =
√︁
𝑐0(𝑥)𝐹 (𝑥) . (3.8)

Its derivatives are
d(√𝑐0𝐹 )

d𝑥 = 𝐹
d√

𝑐0
d𝑥 +

√
𝑐0

d𝐹
d𝑥 , (3.9)

d2(√𝑐0𝐹 )
d𝑥2 = d𝐹

d𝑥
d√

𝑐0
d𝑥 + 𝐹

d2√
𝑐0

d𝑥2 +
d√

𝑐0
d𝑥

d𝐹
d𝑥 +

√
𝑐0

d2𝐹

d𝑥2 , (3.10)

where
d√

𝑐0
d𝑥 = 1

2√
𝑐0

d𝑐0
d𝑥 , (3.11)

d2√
𝑐0

d𝑥2 = − 1
4𝑐0

√
𝑐0

(︂d𝑐0
d𝑥

)︂2
+ 1

2√
𝑐0

d2𝑐0
d𝑥2 . (3.12)

Substituting into Eq. (2.33)

− 𝐹

4𝑐2
0

(︂d𝑐0
d𝑥

)︂2
+ 𝐹

2𝑐0

d2𝑐0
d𝑥2 + 1

2𝑐0

d𝑐0
d𝑥

d𝐹
d𝑥 + 1

2𝑐0

d𝑐0
d𝑥

d𝐹
d𝑥 + d2𝐹

d𝑥2 + 𝜔2

𝑐2
0
𝐹 = 0 . (3.13)

And rearranging leads to the equation

d2𝐹

d𝑥2 + 1
𝑐0

d𝑐0
d𝑥

d𝐹
d𝑥 − 1

4𝑐2
0

(︂d𝑐0
d𝑥

)︂2
𝐹 + 1

2𝑐0

d2𝑐0
d𝑥2 𝐹 + 𝜔2

𝑐2
0
𝐹 = 0 . (3.14)
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3.2 Analytical solutions for unknown temperature functions

Imposing the variable 𝜂 from Eq. (3.3) then it is possible to write Eq. (3.14) in the
following form

1
𝑐2

0

d2𝐹

d𝜂2 + d
d𝑥

(︂ 1
𝑐0

)︂ d𝐹
d𝜂 + 1

𝑐2
0

d𝑐0
d𝑥

d𝐹
d𝜂 − 1

4𝑐2
0

(︂d𝑐0
d𝑥

)︂2
𝐹 + 1

2𝑐0

d2𝑐0
d𝑥2 𝐹 + 𝜔2

𝑐2
0
𝐹 = 0 . (3.15)

After modification Eq. (3.15) takes the form

d2𝐹

d𝜂2 + 𝜔2𝐹 = 𝐹

[︃
1
4

(︂d𝑐0
d𝑥

)︂2
− 𝑐0

2
d2𝑐0
d𝑥2

]︃
. (3.16)

Equation (3.16) is an ordinary differential equation with varible coefficients. In order
to get an ordinary differential equation with constant coefficients, it is necessary to
equalise the expression in the square brackets using a constant 𝑟2. After this step is
obtained

d2𝐹

d𝜂2 + 𝜔2𝐹 = 𝑟2𝐹 (3.17)

and
𝑟2 = 1

4

(︂d𝑐0
d𝑥

)︂2
− 𝑐0

2
d2𝑐0
d𝑥2 . (3.18)

In solving the differential equation (3.18) its solution can be written as

𝑐0(𝑥) = 1
4

(︀
𝐴2 − 4𝑟2)︀𝑥2

𝐵
+𝐴𝑥+𝐵 , (3.19)

where 𝐴 and 𝐵 are integration constants.
After some small algebraic manipulation the relation (3.19) can be expressed in the

convenient form

𝑐0(𝑥) = 𝑐𝐴

[︃(︃
𝐴2 − 𝑟2

𝑐2
𝐴

)︃
𝑥2 + 2𝐴𝑥+ 1

]︃
. (3.20)

Now, let us remember some relations with characteristic temperature 𝑇𝐴. From
previous chapter

𝑐0(𝑇𝐴) = 𝑐𝐴 , 𝜌0(𝑇𝐴) = 𝜌𝐴 . (3.21)

From Eqs. (2.11) and (2.27) it follows that

𝑐0(𝑥) =
√︁
κ𝑅𝑇0(𝑥) . (3.22)

As Eq. (3.22) takes place then with the help of Eq. (3.20) it is possible to write a
temperature relation

𝑇0(𝑥) = 𝑐2
𝐴

κ𝑅

[︃(︃
𝐴2 − 𝑟2

𝑐2
𝐴

)︃
𝑥2 + 2𝐴𝑥+ 1

]︃2

. (3.23)

According to Eqs. (2.36) and (3.23)

𝑇0(𝑥) = 𝑇𝐴

[︃(︃
𝐴2 − 𝑟2

𝑐2
𝐴

)︃
𝑥2 + 2𝐴𝑥+ 1

]︃2

, (3.24)

where 𝑇𝐴 = 𝑐2
𝐴/(κ𝑅) .
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3 Exact analytical solutions for various temperature functions

Using expressions (2.36) temperature-inhomogeneous region 𝑇0 can be expressed in
dimensionless form (see e.g. [4])

Ξ(𝜎) = 𝑇0(𝜎)
𝑇𝐴

=
[︃(︃
𝐴2 − 𝑟2

𝑐2
𝐴

)︃
𝐿2𝜎2 + 2𝐴𝐿𝜎 + 1

]︃2

. (3.25)

Let characteristic length 𝐿 be equal to 1 m. By choosing different values of constants
𝐴, 𝑟 and velocity 𝑐𝐴 it is possible to see exemplary solutions for temperature Ξ among
many instances.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

𝜎

Ξ

𝑐𝐴 = 345 ms−1, |𝑟| = 597.558 s−1, 𝐴 = 1 m−1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

𝜎

Ξ

𝑐𝐴 = 345 ms−1, |𝑟| = 172.5 s−1, 𝐴 = − 0.008 m−1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

𝜎

Ξ

𝑐𝐴 = 345 ms−1, |𝑟| = 301.39 s−1, 𝐴 = 0.662 m−1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3

3.5

𝜎

Ξ

𝑐𝐴 = 345 ms−1, |𝑟| = 0.97 s−1, 𝐴 = 0.328 m−1

Fig. 2 Dimensionless temperature function Ξ(𝜎) for different coefficients of Eq. (3.25).

To solve Eq. (3.17) let us use the following substitution

𝜉2 = 𝜔2 − 𝑟2 , (3.26)

where 𝜔2−𝑟2 > 0, because an evanescent wave is not considered. After this substitution
Eq. (3.17) can be written as

d2𝐹

d𝜂2 + 𝜉2𝐹 = 0 . (3.27)

The above equation is a second-order linear ordinary differential equation, where the
discriminant is less than zero. Then the roots of the characteristic equation of Eq.
(3.27) are complex

𝜆1,2 = ±j𝜉 . (3.28)
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3.2 Analytical solutions for unknown temperature functions

The solution of Eq. (3.27) is then

𝐹 (𝜂) = 𝐶1 cos(𝜉𝜂) + 𝐶2 sin(𝜉𝜂) , (3.29)

where 𝐶1 and 𝐶2 are constants.
According to Eqs. (3.3) and (3.20) the variable 𝜂 can be written as

𝜂 =
∫︁ 𝑥

0

1
𝑐0(𝑥1) d𝑥1 =

∫︁ 𝑥

0

1

𝑐𝐴

[︂(︂
𝐴2 − 𝑟2

𝑐2
𝐴

)︂
𝑥2

1 + 2𝐴𝑥1 + 1
]︂ d𝑥1 . (3.30)

After integration the variable 𝜂 can be written as

𝜂 = − 1
|𝑟|

tanh-1
[︃
𝑐𝐴

|𝑟|

(︃
𝐴+

(︃
𝐴2 − 𝑟2

𝑐2
𝐴

)︃
𝑥1

)︃]︃⃒⃒⃒⃒
⃒
𝑥

0
= − 1

|𝑟|
𝜈(𝑥) , (3.31)

where

𝜈(𝑥) = tanh-1
[︃
𝑐𝐴

|𝑟|

(︃
𝐴+

(︃
𝐴2 − 𝑟2

𝑐2
𝐴

)︃
𝑥

)︃]︃
− tanh-1

(︂
𝑐𝐴

|𝑟|
𝐴

)︂
. (3.32)

The absolute value of 𝑐𝐴 was omitted, because 𝑇𝐴 is an indoor temperature when
𝑐𝐴 > 0.

Now the function 𝐹 (𝑥) can be written as

𝐹 (𝑥) = 𝐶1 cos
(︂
𝜉

|𝑟|
𝜈(𝑥)

)︂
− 𝐶2 sin

(︂
𝜉

|𝑟|
𝜈(𝑥)

)︂
. (3.33)

Taking into account Eq. (3.8), the solution of the Helmholtz equation (2.33) is

𝑉 (𝑥) =
√︁
𝑐0(𝑥)𝐹 (𝑥) =

⎯⎸⎸⎷𝑐𝐴

[︃(︃
𝐴2 − 𝑟2

𝑐2
𝐴

)︃
𝑥2 + 2𝐴𝑥+ 1

]︃

×
[︂
𝐶1 cos

(︂
𝜉

|𝑟|
𝜈(𝑥)

)︂
− 𝐶2 sin

(︂
𝜉

|𝑟|
𝜈(𝑥)

)︂]︂
. (3.34)

The dimensionless form of the velocity is (see e.g. [4])

ϒ(𝜎) = 𝑉 (𝜎)
𝑐𝐴

=

⎯⎸⎸⎷ 1
𝑐𝐴

[︃(︃
𝐴2 − 𝑟2

𝑐2
𝐴

)︃
𝐿2𝜎2 + 2𝐴𝐿𝜎 + 1

]︃

×
[︂
𝐶1 cos

(︂
𝜉

|𝑟|
𝜈(𝜎)

)︂
− 𝐶2 sin

(︂
𝜉

|𝑟|
𝜈(𝜎)

)︂]︂
, (3.35)

where

𝜈(𝜎) = tanh-1
[︃
𝑐𝐴

|𝑟|

(︃
𝐴+

(︃
𝐴2 − 𝑟2

𝑐2
𝐴

)︃
𝐿𝜎

)︃]︃
− tanh-1

(︂
𝑐𝐴

|𝑟|
𝐴

)︂
. (3.36)

3.2.2 Second method of finding an analytical solution

Now let us solve Eq. (2.30). It can be rewritten once more

d2𝑃

d𝑥2 + 1
𝑇0

d𝑇0
d𝑥

d𝑃
d𝑥 + 𝜔2

𝑐2
0
𝑃 = 0 . (3.37)
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3 Exact analytical solutions for various temperature functions

Using Eqs. (3.1)–(3.7) the above equation can be written as

1
𝑐2

0

d2𝑃

d𝜂2 + d
d𝑥

(︂ 1
𝑐0

)︂ d𝑃
d𝜂 + 1

𝑇0

d𝑇0
d𝑥

1
𝑐0

d𝑃
d𝜂 + 𝜔2

𝑐2
0
𝑃 = 0 . (3.38)

From Eq. (3.22) can be derived

d𝑇0
d𝑥 = 1

κ𝑅
d𝑐2

0
d𝑥 . (3.39)

Multiplying Eq. (3.39) by 1/𝑇0 leads to

1
𝑇0

d𝑇0
d𝑥 = 2𝑐0

𝑐2
0

d𝑐0
d𝑥 . (3.40)

So, Eq. (3.37) can be modified as follows

1
𝑐2

0

d2𝑃

d𝜂2 − 1
𝑐2

0

d𝑐0
d𝑥

d𝑃
d𝜂 + 2𝑐0

𝑐3
0

d𝑐0
d𝑥

d𝑃
d𝜂 + 𝜔2

𝑐2
0
𝑃 = 0 , (3.41)

and after rearranging and reducing it becomes

d2𝑃

d𝜂2 + d𝑐0
d𝑥

d𝑃
d𝜂 + 𝜔2𝑃 = 0 . (3.42)

In order to solve Eq. (3.42) as an ordinary differential equation with constant coeffi-
cients, it is necessary take into account that d𝑐0/d𝑥 = 𝑐𝑜𝑛𝑠𝑡. Let this constant be 𝑞1.
Thus, 𝑐0 has the form

𝑐0(𝑥) = 𝑞1𝑥+ 𝑞2 , (3.43)

where 𝑞1 and 𝑞2 are integration constants and 𝑞2 ≥ 0.
By choosing 𝑞2 = 𝑐𝐴 and denoting 𝑞1/𝑞2 = 𝑞 the form is

𝑐0(𝑥) = 𝑐𝐴(𝑞𝑥+ 1) . (3.44)

According to Eq. (3.22), function 𝑇0(𝑥) is equal to

𝑇0(𝑥) = 𝑇𝐴 (𝑞𝑥+ 1)2 , (3.45)

where

𝑇𝐴 = 𝑐2
𝐴

κ𝑅
. (3.46)

Using expressions (2.36) the dimensionless form of temperature-inhomogeneous re-
gion 𝑇0 (see e.g. [4])

Ξ(𝜎) = 𝑇0(𝜎)
𝑇𝐴

= (𝑞𝐿𝜎 + 1)2 . (3.47)

By choosing different values of constant 𝑞 and letting 𝐿 = 1 m, it is possible to see
exemplary solutions for temperature Ξ among many instances.
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3.2 Analytical solutions for unknown temperature functions
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Fig. 3 Dimensionless temperature function Ξ(𝜎) for different coefficients of Eq. (3.47).

To solve Eq. (3.42) let us substitute the expression of sound velocity (3.44). Then
Eq. (3.42) takes the form

d2𝑃

d𝜂2 + 𝑐𝐴𝑞
d𝑃
d𝜂 + 𝜔2𝑃 = 0 . (3.48)

The solution of the above equation can be found through the characteristic equation
of an appropriate equation.

𝜆2 + 𝑐𝐴𝑞𝜆+ 𝜔2 = 0 . (3.49)

The discriminant of Eq. (3.49) is

Δ = 𝑐2
𝐴𝑞

2 − 4𝜔2 . (3.50)

There are different possible solutions according to the sign of the discriminant. The
solutions are represented below in the table, where 𝐶1 and 𝐶2 are constants.

Δ > 0 Δ = 0 Δ < 0

𝜆1,2 = −𝑐𝐴𝑞±
√

Δ
2 𝜆1 = 𝜆2 = −1

2𝑐𝐴𝑞 𝜆1,2 = −𝑐𝐴𝑞±i
√

Δ
2

𝑃 (𝜂) = 𝐶1𝑒
(− 1

2 𝑐𝐴𝑞+ 1
2

√
Δ)𝜂

+𝐶2𝑒
(− 1

2 𝑐𝐴𝑞− 1
2

√
Δ)𝜂

𝑃 (𝜂) = 𝑒− 1
2 𝑐𝐴𝑞𝜂

× [𝐶1 + 𝐶2𝜂]
𝑃 (𝜂) = 𝑒− 1

2 𝑐𝐴𝑞𝜂
[︁
𝐶1 cos

(︁
1
2
√

Δ𝜂
)︁

+ 𝐶2 sin
(︁

1
2
√

Δ𝜂
)︁]︁

Tab. 1 The solution of Eq. (3.48).

According to Eqs. (3.3) and (3.44) the variable 𝜂 can be written as

𝜂 =
∫︁ 𝑥

0

1
𝑐0(𝑥1) d𝑥1 =

∫︁ 𝑥

0

1
𝑐𝐴(𝑞𝑥1 + 1) d𝑥1 . (3.51)

Notice that 𝑥1 cannot be equal to −1/𝑞.
After integration the variable 𝜂 can be written as

𝜂 = ln (𝑞𝑥1 + 1)
𝑐𝐴𝑞

⃒⃒⃒⃒𝑥
0

= 1
𝑐𝐴𝑞

ln (𝑞𝑥+ 1) . (3.52)

Now it is possible to write the solution of Eq. (2.30) according to the discriminant
of Eq. (3.49)
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3 Exact analytical solutions for various temperature functions

∙ If Δ > 0, an evanescent wave is not considered.
∙ If Δ = 0,

𝑃 (𝑥) = 1√
𝑞𝑥+ 1 [𝐶1 + 𝐶2 ln(𝑞𝑥+ 1)] , (3.53)

where 𝐶1 and 𝐶2 are integration constants. According to Eqs. (2.36) and (3.21)
the dimensionless form of the pressure is (see e.g. [4])

Φ(𝜎) = 1√
𝑞𝐿𝜎 + 1

[𝐶1 + 𝐶2 ln(𝑞𝐿𝜎 + 1)] , (3.54)

where 𝐶1 and 𝐶2 are new constants.
∙ If Δ < 0,

𝑃 (𝑥) = 1√
𝑞𝑥+ 1

[︃
𝐶1 cos

(︃√︃
1
4 − 𝜔2

𝑐2
𝐴𝑞

2 ln(𝑞𝑥+ 1)
)︃

+𝐶2 sin
(︃√︃

1
4 − 𝜔2

𝑐2
𝐴𝑞

2 ln(𝑞𝑥+ 1)
)︃]︃

, (3.55)

where 𝐶1 and 𝐶2 are integration constants. The dimensionless form of this solution
is (see e.g. [4])

Φ(𝜎) = 1√
𝑞𝐿𝜎 + 1

[︃
𝐶1 cos

(︃√︃
1
4 − 𝜔2

𝑐2
𝐴𝑞

2 ln (𝑞𝐿𝜎 + 1)
)︃

+𝐶2 sin
(︃√︃

1
4 − 𝜔2

𝑐2
𝐴𝑞

2 ln (𝑞𝐿𝜎 + 1)
)︃]︃

, (3.56)

where 𝐶1 and 𝐶2 are new constants.

3.2.3 Third method of finding an analytical solution
There is one more possible way to solve Eq. (2.28). Let us start with multiplying this
equation by 𝑐2

0
𝜕2𝑝′

𝜕𝑡2
− 𝑐2

0
𝑇0

d𝑇0
d𝑥

𝜕𝑝′

𝜕𝑥
− 𝑐2

0
𝜕2𝑝′

𝜕𝑥2 = 0 . (3.57)

With reference to the following expression

𝑐2
0
𝑇0

𝜕

𝜕𝑥

(︂
𝑇0
𝜕𝑝′

𝜕𝑥

)︂
= 𝑐2

0
𝑇0

d𝑇0
d𝑥

𝜕𝑝′

𝜕𝑥
+ 𝑐2

0
𝜕2𝑝′

𝜕𝑥2 , (3.58)

Eq. (3.57) can be written as (see e.g. [6])

𝜕2𝑝′

𝜕𝑡2
− 𝑐2

0
𝑇0

𝜕

𝜕𝑥

(︂
𝑇0
𝜕𝑝′

𝜕𝑥

)︂
= 0 . (3.59)

Now let us substitute a new function 𝐹 (𝑥, 𝑡) instead of the pressure

𝑝′(𝑥, 𝑡) = 𝐹 (𝑥, 𝑡)/
√︁
𝑇0(𝑥) . (3.60)

Equation (3.59) takes the form

𝜕2(︀𝐹/√𝑇0
)︀

𝜕𝑡2
− 𝑐2

0
𝑇0

𝜕

𝜕𝑥

(︃
𝑇0
𝜕
(︀
𝐹/

√
𝑇0
)︀

𝜕𝑥

)︃
= 0 . (3.61)
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3.3 Finding analytical solutions for known temperature distributions

Applying all simplifications, the above equation takes the form

𝜕2𝐹

𝜕𝑥2 − 1
𝑐2

0

𝜕2𝐹

𝜕𝑡2
= 1√

𝑇0

d2√
𝑇0

d𝑥2 𝐹 . (3.62)

Let us remove from Eq. (3.62) derivatives dependent on t. The function F can
be represented as 𝐹 = 𝐹 (𝑥, 𝑡) = 𝐹 (𝑥)𝑒−j𝜔𝑡 for this purpose. After substitution and
rearranging the resulting equation is

d2𝐹

d𝑥2 =
(︃

1√
𝑇0

d2√
𝑇0

d𝑥2 − 𝜔2

𝑐2
0

)︃
𝐹 . (3.63)

Concerning Eq. (3.22) and the right part in brackets of the equation above, which is
a constant 𝑑, it is possible to derive the following equation

1
𝑐0

d2𝑐0
d𝑥2 − 𝜔2

𝑐2
0

= 𝑑 . (3.64)

This is a nonlinear second-order ordinary differential equation, that can be solved
by an appropriate numerical method, but unfortunately its analytical solution is not
known and for this reason Eq. (2.28) cannot be solved analytically.

3.3 Finding analytical solutions for known temperature
distributions

Let us write Eq. (3.37) once more

d2𝑃

d𝑥2 + 1
𝑇0

d𝑇0
d𝑥

d𝑃
d𝑥 + 𝜔2

𝑐2
0
𝑃 = 0 . (3.65)

According to the transformations (3.1) and (3.7) it is possible to express the following
derivatives

d𝑃
d𝑥 = d𝑃

d𝑇0

d𝑇0
d𝑥 , (3.66)

d2𝑃

d𝑥2 =
(︂d𝑇0

d𝑥

)︂2 d2𝑃

d𝑇 2
0

+ d2𝑇0
d𝑥2

d𝑃
d𝑇0

. (3.67)

Substituting expressions (3.66) and (3.67) into Eq. (3.65), using the equality 𝑐2
0 =

κ𝑅𝑇0 and rearranging the terms leads to the equation(︂d𝑇0
d𝑥

)︂2 d2𝑃

d𝑇 2
0

+
[︃

1
𝑇0

(︂d𝑇0
d𝑥

)︂2
+ d2𝑇0

d𝑥2

]︃
d𝑃
d𝑇0

+ 𝜔2

κ𝑅
𝑃

𝑇0
= 0 . (3.68)

Keeping in mind the equality

d
d𝑥

(︂
𝑇0

d𝑇0
d𝑥

)︂
= d𝑇0

d𝑥
d𝑇0
d𝑥 + 𝑇0

d2𝑇0
d𝑥2 =

(︂d𝑇0
d𝑥

)︂2
+ 𝑇0

d2𝑇0
d𝑥2 , (3.69)

Eq. (3.68) can be written as (see e.g. [3])(︂d𝑇0
d𝑥

)︂2 d2𝑃

d𝑇 2
0

+ 1
𝑇0

d
d𝑥

(︂
𝑇0

d𝑇0
d𝑥

)︂ d𝑃
d𝑇0

+ 𝜔2

κ𝑅
𝑃

𝑇0
= 0 . (3.70)
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3 Exact analytical solutions for various temperature functions

3.3.1 Linear temperature distribution
In this section an acoustic pressure of a duct with a linear temperature distribution is
studied. The linear temperature distribution can be given by the expression (see e.g.
[3])

𝑇0(𝑥) = 𝑇𝐴(𝐴𝑥+ 1) , (3.71)
where 𝐴 is constant.

The dimensionless form of a temperature function Ξ is according to Eq. (2.36) (see
e.g. [4])

Ξ(𝜎) = 𝑇0(𝜎)
𝑇𝐴

= 𝐴𝐿𝜎 + 1 . (3.72)

Some dimensionless linear temperature distributions are made possible by choosing
different values of constant 𝐴 and letting 𝐿 = 1 m are shown in Fig. 4.
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Fig. 4 Some possible linear dimensionless temperature distributions Ξ.

As derivatives of the temperature function (3.71) are

d𝑇0
d𝑥 = 𝑇𝐴𝐴 and d

d𝑥

(︂
𝑇0

d𝑇0
d𝑥

)︂
= d

d𝑥
(︁
𝑇 2

𝐴𝐴
2𝑥+ 𝑇 2

𝐴𝐴
)︁

= 𝑇 2
𝐴𝐴

2 , (3.73)

then multiplying Eq. (3.70) by 1/𝑇 2
𝐴𝐴

2 and substituting the above derivatives into this
equation obtains the following equation (see e.g. [3])

d2𝑃

d𝑇 2
0

+ 1
𝑇0

d𝑃
d𝑇0

+ 𝜔2/
(︀
𝑇 2

𝐴𝐴
2)︀

κ𝑅
𝑃

𝑇0
= 0 . (3.74)

To simplify Eq. (3.74) a new independent variable 𝑠 is introduced

𝑠2 = 𝑎𝑇0 , (3.75)

where the constant 𝑎 is given by

𝑎 = 4𝜔2

𝑇 2
𝐴𝐴

2κ𝑅
. (3.76)

It is necessary to know the first and the second derivatives of a new variable 𝑠 with
respect to 𝑇0

2𝑠d𝑠 = 𝑎d𝑇0 ⇒ d𝑠
d𝑇0

= 𝑎

2𝑠 , (3.77)
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3.3 Finding analytical solutions for known temperature distributions

2
(︂ d𝑠

d𝑇0

)︂2
+ 2𝑠 d2𝑠

d𝑇 2
0

= 0 ⇒ d2𝑠

d𝑇 2
0

= − 𝑎2

4𝑠3 . (3.78)

According to transformation of derivatives the derivatives of Eq. (3.74) then

d𝑃
d𝑇0

= d𝑃
d𝑇0

d𝑠
d𝑇0

= 𝑎

2𝑠
d𝑃
d𝑇0

, (3.79)

d2𝑃

d𝑇 2
0

=
(︂ d𝑠

d𝑇0

)︂2 d2𝑃

d𝑠2 + d2𝑠

d𝑇 2
0

d𝑃
d𝑠 = 𝑎2

4𝑠2
d2𝑃

d𝑠2 − 𝑎2

4𝑠3
d𝑃
d𝑠 , (3.80)

and Eq. (3.74) transforms to Eq. (3.83). Some steps of transforming are included

𝑎2

4𝑠2
d2𝑃

d𝑠2 −
(︃
𝑎2

4𝑠3 − 𝑎2

2𝑠3

)︃
d𝑃
d𝑠 + 𝑎2

4𝑠2𝑃 = 0 , (3.81)

𝑎2

4𝑠2
d2𝑃

d𝑠2 + 𝑎2

4𝑠3
d𝑃
d𝑠 + 𝑎2

4𝑠2𝑃 = 0 . (3.82)

By multiplying Eq. (3.82) by 4𝑠2/𝑎2 the final equation after the transformation is

d2𝑃

d𝑠2 + 1
𝑠

d𝑃
d𝑠 + 𝑃 = 0 . (3.83)

Equation (3.83) is the zeroth order Bessel equation. The solution to the equation is
well known and given by

𝑃 (𝑠) = 𝐶1J0(𝑠) + 𝐶2Y0(𝑠) , (3.84)

where 𝐶1 and 𝐶2 are complex integration constants, J0 and Y0 are the Bessel and
Neumann functions of the order zero.

Let us express variable 𝑠

𝑠 =
√︀
𝑎𝑇0 =

√︃
4𝜔2

𝑇 2
𝐴𝐴

2κ𝑅
√︀
𝑇0 = 𝜔

𝑏

√︀
𝑇0 , (3.85)

where
𝑏 = 𝑇𝐴|𝐴|

2
√
κ𝑅 . (3.86)

Then acoustic pressure can be rewritten as

𝑃 (𝑇0) = 𝐶1J0

(︂
𝜔

𝑏

√︀
𝑇0

)︂
+ 𝐶2Y0

(︂
𝜔

𝑏

√︀
𝑇0

)︂
. (3.87)

Let us substitute temperature distribution (3.71)

𝑃 (𝑥) = 𝐶1J0

(︂
𝜔

𝑏

√︁
𝑇𝐴(𝐴𝑥+ 1)

)︂
+ 𝐶2Y0

(︂
𝜔

𝑏

√︁
𝑇𝐴(𝐴𝑥+ 1)

)︂
. (3.88)

The dimensionless form of the pressure is (see e.g. [4])

Φ(𝜎) = 𝐶1J0
(︁
𝐵

√
𝐴𝐿𝜎 + 1

)︁
+ 𝐶2Y0

(︁
𝐵

√
𝐴𝐿𝜎 + 1

)︁
, (3.89)

where 𝐶1, 𝐶2 are new constants, 𝐵 =
(︀
𝜔

√
𝑇𝐴

)︀
/𝑏.
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3 Exact analytical solutions for various temperature functions

3.3.2 Exponential temperature distribution
This section investigates the acoustic pressure of a duct with an exponential tempera-
ture distribution that is given by the expression (see e.g. [3])

𝑇0(𝑥) = 𝑇𝐴𝑒
−𝛾𝑥 , (3.90)

where 𝑇𝐴 and 𝛾 are constants.
The dimensionless form Ξ of the temperature-inhomogeneous region 𝑇0 is (see e.g.

[4])

Ξ(𝜎) = 𝑇0(𝜎)
𝑇𝐴

= 𝑒−𝛾𝐿𝜎 . (3.91)

Some dimensionless exponential temperature distributions made possible by choosing
different values of constant 𝛾 and letting 𝐿 = 1 m are shown in Fig. 5.
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Fig. 5 Some possible exponential dimensionless temperature distributions Ξ.

Let us find derivatives to substitute into Eq. (3.70)

d𝑇0
d𝑥 = −𝑇𝐴𝛾𝑒

−𝛾𝑥 and d
d𝑥

(︂
𝑇0

d𝑇0
d𝑥

)︂
= d

d𝑥
(︁
−𝑇 2

𝐴𝛾𝑒
−2𝛾𝑥

)︁
= 2𝑇 2

𝐴𝛾
2𝑒−2𝛾𝑥 .

(3.92)
Substituting into Eq. (3.70) and reducing gives the equation

(𝑇𝐴𝛾𝑒
−𝛾𝑥)2 d2𝑃

d𝑇 2
0

+ 2𝑇𝐴𝛾
2𝑒−𝛾𝑥 d𝑃

d𝑇0
+ 𝜔2

κ𝑅
𝑃

𝑇𝐴𝑒−𝛾𝑥
= 0 . (3.93)

Multiplying Eq. (3.93) by 1/𝛾2

(𝑇𝐴𝑒
−𝛾𝑥)2 d2𝑃

d𝑇 2
0

+ 2𝑇𝐴𝑒
−𝛾𝑥 d𝑃

d𝑇0
+ 𝜔2

κ𝑅𝛾2
𝑃

𝑇𝐴𝑒−𝛾𝑥
= 0 (3.94)

and using backward substitition 𝑇𝐴𝑒
−𝛾𝑥 = 𝑇0 leads to the equation (see e.g. [3])

𝑇 2
0

d2𝑃

d𝑇 2
0

+ 2𝑇0
d𝑃
d𝑇0

+ 𝜔2

κ𝑅𝛾2
𝑃

𝑇0
= 0 . (3.95)

To simplify the previous equation two new variables 𝑤 and 𝑧 are introduced

𝑤 = 𝑃
√︀
𝑇0 and 𝑧2 = 𝜛

1
𝑇0

, (3.96)
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3.3 Finding analytical solutions for known temperature distributions

where constant 𝜛 is
𝜛 = 4𝜔2

κ𝑅𝛾2 . (3.97)

1. Let us start to work with variable 𝑤 in the following three steps:
∙ expressing the derivatives to substitute into Eq. (3.95)

d𝑃
d𝑇0

= d
d𝑇0

(︃
𝑤

𝑇
1/2
0

)︃
= 1
𝑇

1/2
0

d𝑤
d𝑇0

− 1
2

𝑤

𝑇
3/2
0

. (3.98)

d2𝑃

d𝑇 2
0

= −1
2

1
𝑇

3/2
0

d𝑤
d𝑇0

+ 1
𝑇

1/2
0

d2𝑤

d𝑇 2
0

− 1
2

[︃
𝑇

3/2
0 d𝑤/d𝑇0 − 3/2𝑤𝑇 1/2

0
𝑇 3

0

]︃

= − 1
𝑇

3/2
0

d𝑤
d𝑇0

+ 1
𝑇

1/2
0

d2𝑤

d𝑇 2
0

+ 3
4

𝑤

𝑇
5/2
0

. (3.99)

∙ substitution into Eq. (3.95)

𝑇 2
0

[︃
− 1
𝑇

3/2
0

d𝑤
d𝑇0

+ 1
𝑇

1/2
0

d2𝑤

d𝑇 2
0

+ 3
4

𝑤

𝑇
5/2
0

]︃
+ 2𝑇0

[︃
1

𝑇
1/2
0

d𝑤
d𝑇0

− 1
2

𝑤

𝑇
3/2
0

]︃

+ 𝜔2

κ𝑅𝛾2
𝑤

𝑇
3/2
0

= 0 . (3.100)

∙ multiplying and rearranging terms in the previous equation gives the equation
below

𝑇
3/2
0

d2𝑤

d𝑇 2
0

+ 𝑇
1/2
0

d𝑤
d𝑇0

− 1
4

𝑤

𝑇
1/2
0

+ 𝜔2

κ𝑅𝛾2
𝑤

𝑇
3/2
0

= 0 . (3.101)

2. Now let us work with the second variable 𝑧:
∙ finding the first and the second derivatives of a new variable 𝑧 with respect

to the temperature 𝑇0

2𝑧d𝑧 = −𝜛 1
𝑇 2

0
d𝑇0 ⇒ d𝑧

d𝑇0
= −𝜛

2𝑧
1
𝑇 2

0
, (3.102)

d2𝑧

d𝑇 2
0

= −𝜛

2

(︂
− 1
𝑧2

1
𝑇 2

0

d𝑧
d𝑇0

− 2 1
𝑇 3

0

1
𝑧

)︂
= 𝜛

2

(︂
21
𝑧

1
𝑇 3

0
− 𝜛

2𝑧3
1
𝑇 4

0

)︂
= 𝜛

𝑧

1
𝑇 3

0
− 𝜛2

4𝑧3
1
𝑇 4

0

d𝑧
d𝑇0

. (3.103)

∙ according to the transformation of derivatives the derivatives of Eq. (3.101)
then

d𝑤
d𝑇0

= d𝑤
d𝑧

d𝑧
d𝑇0

= −𝜛

2𝑧
1
𝑇 2

0

d𝑤
d𝑧 , (3.104)

d2𝑤

d𝑇 2
0

=
(︂ d𝑧

d𝑇0

)︂2 d2𝑤

d𝑧2 + d2𝑧

d𝑇 2
0

d𝑤
d𝑧 = 𝜛2

4𝑧2
1
𝑇 4

0

d2𝑤

d𝑧2 +
(︃
𝜛

𝑧

1
𝑇 3

0
− 𝜛2

4𝑧3
1
𝑇 4

0

)︃
d𝑤
d𝑧 .

(3.105)
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3 Exact analytical solutions for various temperature functions

∙ substituting the above derivatives into Eq. (3.101)

𝑇
3/2
0

[︃
𝜛2

4𝑧2
1
𝑇 4

0

d2𝑤

d𝑧2 +
(︃
𝜛

𝑧

1
𝑇 3

0
− 𝜛2

4𝑧3
1
𝑇 4

0

)︃
d𝑤
d𝑧

]︃
− 𝑇

1/2
0

𝜛

2𝑧
1
𝑇 2

0

d𝑤
d𝑧 − 1

4
𝑤

𝑇
1/2
0

+ 𝜛

4
𝑤

𝑇
3/2
0

= 0 . (3.106)

∙ reducing and rearranging of terms

𝜛2

4𝑧2
1

𝑇
5/2
0

d2𝑤

d𝑧2 +
(︃
𝜛

2𝑧
1

𝑇
3/2
0

− 𝜛2

4𝑧3
1

𝑇
5/2
0

)︃
d𝑤
d𝑧 − 1

4
𝑤

𝑇
1/2
0

+ 𝜛

4
𝑤

𝑇
3/2
0

= 0 . (3.107)

∙ from Eqs. (3.96) it follows that 𝑇0 = 𝜛/𝑧2, substitution of this equality into
Eq. (3.107)

𝜛2

4𝑧2
𝑧5

𝜛5/2
d2𝑤

d𝑧2 +
(︃
𝜛

2𝑧
𝑧3

𝜛3/2 − 𝜛2

4𝑧3
𝑧5

𝜛5/2

)︃
d𝑤
d𝑧 − 1

4
𝑤𝑧

𝜛1/2 +𝜛

4
𝑤𝑧3

𝜛3/2 = 0 . (3.108)

∙ after some reductions and rearranging some terms
𝑧3

4𝜛1/2
d2𝑤

d𝑧2 + 1
4
𝑧2

𝜛1/2
d𝑤
d𝑧 − 1

4
𝑤𝑧

𝜛1/2 + 1
4
𝑤𝑧3

𝜛1/2 = 0 . (3.109)

∙ multiplying the above equation by 4𝜛1/2/𝑧3

d2𝑤

d𝑧2 + 1
𝑧

d𝑤
d𝑧 +

(︂
1 − 1

𝑧2

)︂
𝑤 = 0 . (3.110)

Equation (3.110) is the first order Bessel differential equation. The solution is given
as

𝑤(𝑧) = 𝐶1J1(𝑧) + 𝐶2Y1(𝑧) , (3.111)

where 𝐶1 and 𝐶2 are integration complex constants and J1 and Y1 are the Bessel and
Neumann functions of the first order. Let us express variable 𝑧

𝑧 =
√︂
𝜛

𝑇0
=
√︃

4𝜔2

κ𝑅𝛾2

√︃
1
𝑇0

= 𝜔𝜑
1√
𝑇0

, (3.112)

where
𝜑 = 2√︀

κ𝑅𝛾2 . (3.113)

So, the solution of Eq. (3.110) can be written in the form

𝑤(𝑇0) = 𝐶1J1

(︂
𝜔𝜑

1√
𝑇0

)︂
+ 𝐶2Y1

(︂
𝜔𝜑

1√
𝑇0

)︂
. (3.114)

According to Eqs. (3.96) the acoustic pressure then is

𝑃 (𝑇0) = 𝑤(𝑇0)√
𝑇0

= 1√
𝑇0

[︂
𝐶1J1

(︂
𝜔𝜑

1√
𝑇0

)︂
+ 𝐶2Y1

(︂
𝜔𝜑

1√
𝑇0

)︂]︂
. (3.115)

Let us substitute temperature distribution (3.90)

𝑃 (𝑥) = 1√
𝑇𝐴𝑒−𝛾𝑥

[︂
𝐶1J1

(︂
𝜔𝜑

1√
𝑇𝐴𝑒−𝛾𝑥

)︂
+ 𝐶2Y1

(︂
𝜔𝜑

1√
𝑇𝐴𝑒−𝛾𝑥

)︂]︂
. (3.116)

The dimensionless form of the pressure is (see e.g. [4])

Φ(𝜎) =
√
𝑒𝛾𝐿𝜎

[︁
𝐶1J1

(︁
𝐵

√
𝑒𝛾𝐿𝜎

)︁
+ 𝐶2Y1

(︁
𝐵

√
𝑒𝛾𝐿𝜎

)︁]︁
, (3.117)

where 𝐶1, 𝐶2 are new constants, 𝐵 = (𝜔𝜑)/
√
𝑇𝐴 .
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4 Transmission and reflection coefficients

This chapter deals with the calculation of transmission and reflection coefficients for
exact analytical solutions derived in the previous chapter.

4.1 Sound velocity

The first exact analytical solution was derived for an acoustic velocity. Consider the
reflection and transmission problem through the temperature-inhomogeneous region
for an incident plane wave sketched in Fig. 6. The wave is partly reflected and partly
transmitted (see e.g. [2]).

Region A

𝑉𝑖

𝑉𝑟

𝑇𝐴

𝑉𝐴(𝑥)

Region B

𝑉𝑡

𝑇𝐵

𝑉𝐵(𝑥)

Temperature –
inhomogeneous region

𝑉 (𝑥)

0 𝑥𝐿

Fig. 6 Reflection and transmission of a sound velocity in a waveguide (see e.g. [2]).

It is essential to know the amplitudes 𝑉𝑟 and 𝑉𝑡 of the reflected and transmitted
waves respectively and their integral constants.

In the region A can be written

𝑉𝐴 = 𝑉𝑖𝑒
j𝑘𝐴𝑥 + 𝑉𝑟𝑒

−j𝑘𝐴𝑥 , (4.1)

where the quantities 𝑉𝑖 and 𝑉𝑟 are the complex velocity amplitudes of the incident
and reflected waves, and

𝑘𝐴 = 𝜔

𝑐𝐴
. (4.2)

In the temperature-inhomogeneous region the velocity amplitude is given by Eq.
(3.34). Let us write it once more

𝑉 (𝑥) =
√︁
𝑐0(𝑥)𝐹 (𝑥) =

⎯⎸⎸⎷𝑐𝐴

[︃(︃
𝐴2 − 𝑟2

𝑐2
𝐴

)︃
𝑥2 + 2𝐴𝑥+ 1

]︃

×
[︂
𝐶1 cos

(︂
𝜉

|𝑟|
𝜈(𝑥)

)︂
− 𝐶2 sin

(︂
𝜉

|𝑟|
𝜈(𝑥)

)︂]︂
, (4.3)
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4 Transmission and reflection coefficients

where

𝜈(𝑥) = tanh-1
[︃
𝑐𝐴

|𝑟|

(︃
𝐴+

(︃
𝐴2 − 𝑟2

𝑐2
𝐴

)︃
𝑥

)︃]︃
− tanh-1

(︂
𝑐𝐴

|𝑟|
𝐴

)︂
, 𝜉2 = 𝜔2 − 𝑟2 . (4.4)

In the region B can be written

𝑉𝐵 = 𝑉𝑡𝑒
j𝑘𝐵(𝑥−𝐿) , (4.5)

where 𝑉𝑡 is the complex acoustic velocity amplitude of the transmitted wave and

𝑐𝐵 =
√︀
κ𝑅𝑇𝐵 , (4.6a) 𝑘𝐵 = 𝜔

𝑐𝐵
. (4.6b)

The acoustic velocities must be the same on the interface of temperature-homogeneous
and temperature-inhomogeneous regions. This is true for the both interfaces that have
coordinates 𝑥 = 0 and 𝑥 = 𝐿. Consequently, there are two conditions in the waveguide

1. condition
𝑉𝐴(0) = 𝑉 (0) , (4.7)

2. condition
𝑉𝐵(𝐿) = 𝑉 (𝐿) . (4.8)

But these conditions contain four unknown variables 𝑉𝑟, 𝑉𝑡, 𝐶1 and 𝐶2. So, it is
necessary to impose two more conditions.

From the equation of continuity (2.20) and Eq. (2.27) the following equation can be
written

𝜕𝑝′

𝜕𝑡
+ 𝜌0𝑐

2
0
𝜕𝑣

𝜕𝑥
= 0 . (4.9)

Substitution of the equalities (2.29) and (2.32) into Eq. (4.9)

𝑃 (𝑥) = 𝜌0𝑐
2
0

j𝜔
d𝑉
d𝑥 . (4.10)

Let us distinguish densities and velocities in temperature-homogeneous regions 𝐴 and
𝐵

𝜌0(𝑥 = 0) = 𝜌𝐴 , 𝑐0(𝑥 = 0) =
√︀
κ𝑅𝑇𝐴 = 𝑐𝐴 , (4.11)

𝜌0(𝑥 = 𝐿) = 𝜌𝐵 , 𝑐0(𝑥 = 𝐿) =
√︀
κ𝑅𝑇𝐵 = 𝑐𝐵 . (4.12)

From Eqs. (4.1), (4.5), (4.10), (4.11), (4.12) the acoustic pressures in regions A and
B are

𝑃𝐴 = 𝜌𝐴𝑐
2
𝐴

j𝜔 j𝑘𝐴

(︁
𝑉𝑖𝑒

j𝑘𝐴𝑥 − 𝑉𝑟𝑒
−j𝑘𝐴𝑥

)︁
, (4.13)

𝑃𝐵 = 𝜌𝐵𝑐
2
𝐵

j𝜔 j𝑘𝐵𝑉𝑡𝑒
j𝑘𝐵(𝑥−𝐿) . (4.14)

The pressures also must be the same on the interface of temperature-homogeneous
and temperature-inhomogeneous regions. For the interface at coordinate 𝑥 = 0 the
following steps are introduced

𝑃𝐴|𝑥=0 = 𝑃 (𝑥)|𝑥=0 , (4.15)
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4.1 Sound velocity

𝜌𝐴𝑐
2
𝐴

j𝜔 j𝑘𝐴

(︁
𝑉𝑖𝑒

j𝑘𝐴𝑥 − 𝑉𝑟𝑒
−j𝑘𝐴𝑥

)︁⃒⃒⃒⃒⃒
𝑥=0

= 𝜌𝐴𝑐
2
𝐴

j𝜔
d𝑉
d𝑥

⃒⃒⃒⃒
⃒
𝑥=0

. (4.16)

After reducing the term 𝜌𝐴𝑐
2
𝐴/j𝜔 in Eq. (4.16) the left part j𝑘𝐴

(︁
𝑉𝑖𝑒

j𝑘𝐴𝑥 − 𝑉𝑟𝑒
−j𝑘𝐴𝑥

)︁
then is the acoustic velocity derivative d𝑉𝐴/d𝑥. So,

d𝑉𝐴

d𝑥

⃒⃒⃒⃒
𝑥=0

= j𝑘𝐴 (𝑉𝑖 − 𝑉𝑟) = d𝑉
d𝑥

⃒⃒⃒⃒
𝑥=0

. (4.17)

Similarly, the acoustic velocity derivative at coordinate 𝑥 = 𝐿 is
d𝑉𝐵

d𝑥

⃒⃒⃒⃒
𝑥=𝐿

= j𝑘𝐵𝑉𝑡 = d𝑉
d𝑥

⃒⃒⃒⃒
𝑥=𝐿

. (4.18)

As a consequence, the acoustic velocity derivatives must be the same on the inter-
face of temperature-homogeneous and temperature-inhomogeneous regions. For both
interfaces at coordinates 𝑥 = 0 and 𝑥 = 𝐿 the two following boundary conditions are
defined

3. condition
d𝑉𝐴

d𝑥

⃒⃒⃒⃒
𝑥=0

= d𝑉
d𝑥

⃒⃒⃒⃒
𝑥=0

, (4.19)

4. condition
d𝑉𝐵

d𝑥

⃒⃒⃒⃒
𝑥=𝐿

= d𝑉
d𝑥

⃒⃒⃒⃒
𝑥=𝐿

. (4.20)

Substituting Eqs. (4.1), (4.3), (4.5) into the four derived boundary conditions (4.7),
(4.8), (4.19), (4.20) produces the following system of equations

𝑉𝑖 + 𝑉𝑟 = 𝐶1𝐺1 , (4.21)
𝑉𝑡 = 𝐶1𝐻1 + 𝐶2𝐻2 , (4.22)

j𝑘𝐴 (𝑉𝑖 − 𝑉𝑟) = 𝐶1𝑀1 + 𝐶2𝑀2 , (4.23)
j𝑘𝐵𝑉𝑡 = 𝐶1𝑁1 + 𝐶2𝑁2 , (4.24)

where

𝐺1 =
√
𝑐𝐴 , 𝜓(𝐿) = 𝐴+

(︃
𝐴2 − 𝑟2

𝑐2
𝐴

)︃
𝐿 , 𝜉 =

√︀
𝜔2 − 𝑟2 , (4.25)

𝜒(𝐿) =

⎯⎸⎸⎷𝑐𝐴

[︃(︃
𝐴2 − 𝑟2

𝑐2
𝐴

)︃
𝐿2 + 2𝐴𝐿+ 1

]︃
, (4.26)

𝜈(𝐿) = tanh-1
[︂
𝑐𝐴

|𝑟|
𝜓(𝐿)

]︂
− tanh-1

(︂
𝑐𝐴

|𝑟|
𝐴

)︂
, (4.27)

𝐻1 = 𝜒(𝐿) cos
(︂
𝜉

|𝑟|
𝜈(𝐿)

)︂
, 𝐻2 = −𝜒(𝐿) sin

(︂
𝜉

|𝑟|
𝜈(𝐿)

)︂
, (4.28)

𝑀1 =
√
𝑐𝐴𝐴 , 𝑀2 = 𝜉

√
𝑐𝐴

, (4.29)

𝜚(𝐿) =
𝜉𝑐𝐴

(︂
𝐴2 − 𝑟2

𝑐2
𝐴

)︂
𝜒(𝐿)

𝑐2
𝐴𝜓

2(𝐿) − 𝑟2 , 𝑘(𝐿) = 𝑐𝐴𝜓(𝐿)
𝜒(𝐿) , (4.30)

𝑁1 = 𝜚(𝐿) sin
(︂
𝜉

|𝑟|
𝜈(𝐿)

)︂
+ 𝑘(𝐿) cos

(︂
𝜉

|𝑟|
𝜈(𝐿)

)︂
, (4.31)

𝑁2 = 𝜚(𝐿) cos
(︂
𝜉

|𝑟|
𝜈(𝐿)

)︂
− 𝑘(𝐿) sin

(︂
𝜉

|𝑟|
𝜈(𝐿)

)︂
. (4.32)
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4 Transmission and reflection coefficients

Solving the system of Eqs. (4.21)–(4.24) obtains

𝐶1 = 2𝑘𝐴 (𝑘𝐵𝐻2 + j𝑁2)𝑉𝑖

𝑘𝐴𝑘𝐵𝐺1𝐻2 +𝑀1𝑁2 −𝑀2𝑁1 + j [𝑘𝐴𝐺1𝑁2 + 𝑘𝐵 (𝐻1𝑀2 −𝐻2𝑀1)] , (4.33)

𝐶2 = − 2𝑘𝐴 (𝑘𝐵𝐻1 + j𝑁1)𝑉𝑖

𝑘𝐴𝑘𝐵𝐺1𝐻2 +𝑀1𝑁2 −𝑀2𝑁1 + j [𝑘𝐴𝐺1𝑁2 + 𝑘𝐵 (𝐻1𝑀2 −𝐻2𝑀1)] , (4.34)

𝑉𝑟 = (𝑘𝐴𝑘𝐵𝐺1𝐻2 −𝑀1𝑁2 +𝑀2𝑁1 + j [𝑘𝐴𝐺1𝑁2 − 𝑘𝐵 (𝐻1𝑀2 −𝐻2𝑀1)])𝑉𝑖

𝑘𝐴𝑘𝐵𝐺1𝐻2 +𝑀1𝑁2 −𝑀2𝑁1 + j [𝑘𝐴𝐺1𝑁2 + 𝑘𝐵 (𝐻1𝑀2 −𝐻2𝑀1)] , (4.35)

𝑉𝑡 = j2𝑘𝐴 (𝐻1𝑁2 −𝐻2𝑁1)𝑉𝑖

𝑘𝐴𝑘𝐵𝐺1𝐻2 +𝑀1𝑁2 −𝑀2𝑁1 + j [𝑘𝐴𝐺1𝑁2 + 𝑘𝐵 (𝐻1𝑀2 −𝐻2𝑀1)] . (4.36)

As 𝑉𝑖 is optional, the reflection coefficient 𝑅(𝑣) and transmission coefficient 𝑇𝑟(𝑣) can
be calculated on the basis of solutions of the system equations. The coefficients (see
e.g. [2], [4]) are defined by

𝑅(𝑣) = 𝑉𝑟

𝑉𝑖
(4.37)

and

𝑇𝑟(𝑣) = 𝑉𝑡

𝑉𝑖
. (4.38)

By supposing values of air constants as κ = 7/5 and 𝑅 = 287.058 Jkg−1K−1, setting
the characteristic length 𝐿 to 1 m and choosing different values of constants 𝐴, 𝑟 and
velocity 𝑐𝐴 it is possible to see a frequency dependence of the wave reflection and
transmission coefficients of the exact analytical solutions given by Eq. (4.3). Here
attention must be paid to one serious condition

𝜉2 = 𝜔2 − 𝑟2 ≥ 0 . (4.39)

That is why the graphs start at point 𝜔 = |𝑟|.
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Fig. 7 Dependence of modulii of reflection and transmission coefficients for 𝑐𝐴 = 345 ms−1,
|𝑟| = 597.558 s−1, 𝐴 = 1 m−1 in Eq. (4.3) on angular frequency.
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4.1 Sound velocity
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Fig. 8 Dependence of modulii of reflection and transmission coefficients for 𝑐𝐴 = 345 ms−1,
|𝑟| = 172.5 s−1, 𝐴 = −0.008 m−1 in Eq. (4.3) on angular frequency.
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Fig. 9 Dependence of modulii of reflection and transmission coefficients for 𝑐𝐴 = 345 ms−1,
|𝑟| = 301.39 s−1, 𝐴 = −0.662 m−1 in Eq. (4.3) on angular frequency.
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Fig. 10 Dependence of modulii of reflection and transmission coefficients for 𝑐𝐴 = 345 ms−1,
|𝑟| = 0.97 s−1, 𝐴 = 0.328 m−1 in Eq. (4.3) on angular frequency.
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4 Transmission and reflection coefficients

4.2 Sound pressure

The following exact analytical solutions are derived for sound pressure.
Consider the reflection and transmission problem through the temperature-inhomoge-

neous region for an incident plane wave sketched in Fig. 11. The wave is partly reflected
and partly transmitted as it was for sound velocity, but now the object of interest is
sound pressure (see e.g. [2], [4]).

Region A

𝑃𝑖

𝑃𝑟

𝑇𝐴

𝑃𝐴(𝑥)

Region B

𝑃𝑡

𝑇𝐵

𝑃𝐵(𝑥)

Temperature –
inhomogeneous region

𝑃 (𝑥)

0 𝑥𝐿

Fig. 11 Reflection and transmission of a sound pressure in a waveguide (see e.g. [2], [4]).

Now, it is necessary to know the amplitudes 𝑃𝑟 and 𝑃𝑡 of reflected and transmitted
waves respectively and also their integral constants.

In the region A can be written

𝑃𝐴 = 𝑃𝑖𝑒
j𝑘𝐴𝑥 + 𝑃𝑟𝑒

−j𝑘𝐴𝑥 , (4.40)

where the quantities 𝑃𝑖 and 𝑃𝑟 are the complex velocity amplitudes of the incident
and reflected waves, and the same Eq. (4.2) is applied.

In the region B can be written

𝑃𝐵 = 𝑃𝑡𝑒
j𝑘𝐵(𝑥−𝐿) , (4.41)

where 𝑉𝑡 is the complex velocity amplitude of the transmitted wave, and Eqs. (4.6)
are true.

In the temperature-inhomogeneous region pressure amplitude is given by appropriate
equalities, derived in the previous chapter, and all of these equalities are discussed
below.

To calculate 𝑃𝑟, 𝑃𝑡, 𝐶1 and 𝐶2 it is necessary to deduce boundary conditions. These
conditions can be imposed in a similar manner to boundary conditions of sound velocity.

From the linear form of the Euler equation (2.22) it follows that

𝜕𝑣

𝜕𝑡
= − 1

𝜌0

𝜕𝑝′

𝜕𝑥
. (4.42)

After substitution of equalities (2.29) and (2.32) into Eq. (4.42)

𝜕

𝜕𝑡

(︁
𝑉 (𝑥)𝑒−j𝜔𝑡

)︁
= − 1

𝜌0

𝜕

𝜕𝑥

(︁
𝑃 (𝑥)𝑒−j𝜔𝑡

)︁
(4.43)
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4.2 Sound pressure

the amplitude of sound velocity then is

𝑉 (𝑥) = 1
j𝜌0𝜔

d𝑃
d𝑥 . (4.44)

From Eqs. (4.11), (4.12), (4.40), (4.41), (4.44) the acoustic velocities at regions A
and B are

𝑉𝐴 = j𝑘𝐴

j𝜌𝐴𝜔

(︁
𝑃𝑖𝑒

j𝑘𝐴𝑥 − 𝑃𝑟𝑒
−j𝑘𝐴𝑥

)︁
, (4.45)

𝑉𝐵 = j𝑘𝐵

j𝜌𝐵𝜔
𝑃𝑡𝑒

j𝑘𝐵(𝑥−𝐿) . (4.46)

The velocities also must be the same on the interface of temperature-homogeneous
and temperature-inhomogeneous regions. For an interface at coordinate 𝑥 = 0 the
following steps are introduced

𝑉𝐴|𝑥=0 = 𝑉 (𝑥)|𝑥=0 , (4.47)

j𝑘𝐴

j𝜌𝐴𝜔

(︁
𝑃𝑖𝑒

j𝑘𝐴𝑥 − 𝑃𝑟𝑒
−j𝑘𝐴𝑥

)︁⃒⃒⃒⃒
𝑥=0

= 1
j𝜌𝐴𝜔

d𝑃
d𝑥

⃒⃒⃒⃒
𝑥=0

. (4.48)

After reducing the term 1/j𝜌𝐴𝜔 in Eq. (4.48) the left part j𝑘𝐴

(︁
𝑃𝑖𝑒

j𝑘𝐴𝑥 − 𝑃𝑟𝑒
−j𝑘𝐴𝑥

)︁
is

then an acoustic pressure derivative d𝑃𝐴/d𝑥. So
d𝑃𝐴

d𝑥

⃒⃒⃒⃒
𝑥=0

= j𝑘𝐴 (𝑃𝑖 − 𝑃𝑟) = d𝑃
d𝑥

⃒⃒⃒⃒
𝑥=0

. (4.49)

Similarly, the acoustic pressure derivative at coordinate 𝑥 = 𝐿 is
d𝑃𝐵

d𝑥

⃒⃒⃒⃒
𝑥=𝐿

= j𝑘𝐵𝑃𝑡 = d𝑃
d𝑥

⃒⃒⃒⃒
𝑥=𝐿

. (4.50)

Finally, the four boundary conditions for the rest analytical solutions can be intro-
duced

1. condition
𝑃𝐴(0) = 𝑃 (0) , (4.51)

2. condition
𝑃𝐵(𝐿) = 𝑃 (𝐿) , (4.52)

3. condition
d𝑃𝐴

d𝑥

⃒⃒⃒⃒
𝑥=0

= d𝑃
d𝑥

⃒⃒⃒⃒
𝑥=0

, (4.53)

4. condition
d𝑃𝐵

d𝑥

⃒⃒⃒⃒
𝑥=𝐿

= d𝑃
d𝑥

⃒⃒⃒⃒
𝑥=𝐿

. (4.54)

4.2.1 Second exact analytical solution
In the temperature-inhomogeneous region the pressure amplitude is given by Eqs. (3.53)
and (3.55).

∙ Δ = 𝑐2
𝐴𝑞

2 − 4𝜔2 = 0
Let us write Eq. (3.53) once more

𝑃 (𝑥) = 1√
𝑞𝑥+ 1 [𝐶1 + 𝐶2 ln(𝑞𝑥+ 1)] . (4.55)

For this solution only one frequency can be found, that is why we are not interested
in this solution.
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4 Transmission and reflection coefficients

∙ Δ = 𝑐2
𝐴𝑞

2 − 4𝜔2 < 0
According to Eq. (4.2) the exact analytical solution (3.55) can be rewritten as

𝑃 (𝑥) = 1√
𝑞𝑥+ 1

⎡⎣𝐶1 cos

⎛⎝√︃1
4 − 𝑘2

𝐴

𝑞2 ln(𝑞𝑥+ 1)

⎞⎠
+𝐶2 sin

⎛⎝√︃1
4 − 𝑘2

𝐴

𝑞2 ln(𝑞𝑥+ 1)

⎞⎠⎤⎦ . (4.56)

According to the system of Eqs. (4.51)–(4.54), the system of equations for the
exact analytical solution (4.56) is then

𝑃𝑖 + 𝑃𝑟 = 𝐶1 , (4.57)
𝑃𝑡 = 𝐶1𝐻1 + 𝐶2𝐻2 , (4.58)

j𝑘𝐴 (𝑃𝑖 − 𝑃𝑟) = 𝐶1𝑀1 + 𝐶2𝑀2 , (4.59)
j𝑘𝐵𝑃𝑡 = 𝐶1𝑁1 + 𝐶2𝑁2 , (4.60)

where

𝜒(𝐿) =

√︃
1
4 − 𝑘2

𝐴

𝑞2 ln(𝑞𝐿+ 1) , (4.61)

𝐻1 = 1√
𝑞𝐿+ 1

cos (𝜒(𝐿)) , 𝐻2 = 1√
𝑞𝐿+ 1

sin (𝜒(𝐿)) , (4.62)

𝑀1 = −1
2𝑞 , 𝑀2 = 𝑞

√︃
1
4 − 𝑘2

𝐴

𝑞2 , (4.63)

𝑁1 = −𝑞(𝑞𝐿+ 1)− 3
2

⎡⎣1
2 cos (𝜒(𝐿)) +

√︃
1
4 − 𝑘2

𝐴

𝑞2 sin (𝜒(𝐿))

⎤⎦ , (4.64)

𝑁2 = −𝑞(𝑞𝐿+ 1)− 3
2

⎡⎣1
2 sin (𝜒(𝐿)) −

√︃
1
4 − 𝑘2

𝐴

𝑞2 cos (𝜒(𝐿))

⎤⎦ . (4.65)

The solution of the system of Eqs. (4.57)–(4.60) is

𝐶1 = 2𝑘𝐴 (𝑘𝐵𝐻2 + j𝑁2)𝑃𝑖

𝑘𝐴𝑘𝐵𝐻2 +𝑀1𝑁2 −𝑀2𝑁1 + j [𝑘𝐴𝑁2 − 𝑘𝐵 (𝐻2𝑀1 −𝐻1𝑀2)] , (4.66)

𝐶2 = − 2𝑘𝐴 (𝑘𝐵𝐻1 + j𝑁1)𝑃𝑖

𝑘𝐴𝑘𝐵𝐻2 +𝑀1𝑁2 −𝑀2𝑁1 + j [𝑘𝐴𝑁2 − 𝑘𝐵 (𝐻2𝑀1 −𝐻1𝑀2)] , (4.67)

𝑃𝑟 = (𝑘𝐴𝑘𝐵𝐻2 −𝑀1𝑁2 +𝑀2𝑁1 + j [𝑘𝐴𝑁2 + 𝑘𝐵 (𝐻2𝑀1 −𝐻1𝑀2)])𝑃𝑖

𝑘𝐴𝑘𝐵𝐻2 +𝑀1𝑁2 −𝑀2𝑁1 + j [𝑘𝐴𝑁2 − 𝑘𝐵 (𝐻2𝑀1 −𝐻1𝑀2)] , (4.68)

𝑃𝑡 = j2𝑘𝐴 (𝐻1𝑁2 −𝐻2𝑁1)𝑃𝑖

𝑘𝐴𝑘𝐵𝐻2 +𝑀1𝑁2 −𝑀2𝑁1 + j [𝑘𝐴𝑁2 − 𝑘𝐵 (𝐻2𝑀1 −𝐻1𝑀2)] . (4.69)

The calculation of reflection and transmission coefficients (𝑃𝑖 is optional) is the
same as for sound velocity (see e.g. [2], [4])

𝑅(𝑃 ) = 𝑃𝑟

𝑃𝑖
(4.70)

and
𝑇𝑟(𝑃 ) = 𝑃𝑡

𝑃𝑖
. (4.71)
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4.2 Sound pressure

By supposing values of air constants as κ = 7/5 and 𝑅 = 287.058 Jkg−1K−1, setting
the characteristic length 𝐿 to 1 m and choosing different values of constants 𝑞, 𝑇𝐴

it is possible to see a frequency dependence of the wave reflection and transmission
coefficients of the exact analytical solutions given by Eq. (4.56). Δ = 𝑐2

𝐴𝑞
2 − 4𝜔2 < 0,

𝑐𝐴 > 0 and from Eq. (4.56) it can be concluded that 𝜔 > −1/𝑞, then only 𝑞 > 0 can
be examined. Let us choose 𝑇𝐴 = 296 K and some different values of 𝑞 to see these
frequency dependencies.
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Fig. 12 Dependence of modulii of reflection and transmission coefficients for 𝑇𝐴 = 296 K and
different values of 𝑞 in Eq. (4.56) on angular frequency.

4.2.2 Exact analytical solution for a linear temperature distribution
The exact analytical solution for a linear temperature distribution from Chapter 3 is

𝑃 (𝑥) = 𝐶1J0

(︂
𝜔

𝑏

√︁
𝑇𝐴(𝐴𝑥+ 1)

)︂
+ 𝐶2Y0

(︂
𝜔

𝑏

√︁
𝑇𝐴(𝐴𝑥+ 1)

)︂
, (4.72)

where 𝑏 = 𝑇𝐴|𝐴|
√
κ𝑅/2 .

After all calculations according to the system of Eqs. (4.51)–(4.54) the following
system of equations is produced

𝑃𝑖 + 𝑃𝑟 = 𝐶1𝐺1 + 𝐶2𝐺2 , (4.73)
𝑃𝑡 = 𝐶1𝐻1 + 𝐶2𝐻2 , (4.74)

j𝑘𝐴 (𝑃𝑖 − 𝑃𝑟) = 𝐶1𝑀1 + 𝐶2𝑀2 , (4.75)
j𝑘𝐵𝑃𝑡 = 𝐶1𝑁1 + 𝐶2𝑁2 , (4.76)

where

𝐺1 = J0

(︂
𝜔

𝑏

√︀
𝑇𝐴

)︂
, 𝐺2 = Y0

(︂
𝜔

𝑏

√︀
𝑇𝐴

)︂
, (4.77)

𝐻1 = J0

(︂
𝜔

𝑏

√︁
𝑇𝐴(𝐴𝐿+ 1)

)︂
, 𝐻2 = Y0

(︂
𝜔

𝑏

√︁
𝑇𝐴(𝐴𝐿+ 1)

)︂
, (4.78)

𝑀1 = −𝜔𝐴

2𝑏
√︀
𝑇𝐴J1

(︂
𝜔

𝑏

√︀
𝑇𝐴

)︂
, 𝑀2 = −𝜔𝐴

2𝑏
√︀
𝑇𝐴Y1

(︂
𝜔

𝑏

√︀
𝑇𝐴

)︂
, (4.79)

𝑁1 = −𝜔𝐴

2𝑏

√︃
𝑇𝐴

𝐴𝐿+ 1J1

(︂
𝜔

𝑏

√︁
𝑇𝐴(𝐴𝐿+ 1)

)︂
, (4.80)

𝑁2 = −𝜔𝐴

2𝑏

√︃
𝑇𝐴

𝐴𝐿+ 1Y1

(︂
𝜔

𝑏

√︁
𝑇𝐴(𝐴𝐿+ 1)

)︂
. (4.81)
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4 Transmission and reflection coefficients

Solution of the system of Eqs. (4.73)–(4.76) is

𝐶1 =
2𝑘𝐴 (𝑘𝐵𝐻2 + j𝑁2)𝑃𝑖

𝑘𝐴𝑘𝐵 (𝐺1𝐻2 −𝐺2𝐻1) +𝑀1𝑁2 −𝑀2𝑁1 + j [𝑘𝐴 (𝐺1𝑁2 −𝐺2𝑁1) + 𝑘𝐵 (𝐻1𝑀2 −𝐻2𝑀1)] ,

(4.82)
𝐶2 = −1×

2𝑘𝐴 (𝑘𝐵𝐻1 + j𝑁1)𝑃𝑖

𝑘𝐴𝑘𝐵 (𝐺1𝐻2 −𝐺2𝐻1) +𝑀1𝑁2 −𝑀2𝑁1 + j [𝑘𝐴 (𝐺1𝑁2 −𝐺2𝑁1) + 𝑘𝐵 (𝐻1𝑀2 −𝐻2𝑀1)] ,

(4.83)
𝑃𝑟 = 𝑃𝑖×
𝑘𝐴𝑘𝐵 (𝐺1𝐻2 −𝐺2𝐻1) −𝑀1𝑁2 +𝑀2𝑁1 + j [𝑘𝐴 (𝐺1𝑁2 −𝐺2𝑁1) − 𝑘𝐵 (𝐻1𝑀2 −𝐻2𝑀1)]
𝑘𝐴𝑘𝐵 (𝐺1𝐻2 −𝐺2𝐻1) +𝑀1𝑁2 −𝑀2𝑁1 + j [𝑘𝐴 (𝐺1𝑁2 −𝐺2𝑁1) + 𝑘𝐵 (𝐻1𝑀2 −𝐻2𝑀1)] ,

(4.84)
𝑃𝑡 = 𝑃𝑖×

j2𝑘𝐴 (𝐻1𝑁2 −𝐻2𝑁1)
𝑘𝐴𝑘𝐵 (𝐺1𝐻2 −𝐺2𝐻1) +𝑀1𝑁2 −𝑀2𝑁1 + j [𝑘𝐴 (𝐺1𝑁2 −𝐺2𝑁1) + 𝑘𝐵 (𝐻1𝑀2 −𝐻2𝑀1)] .

(4.85)

The reflection and transmission coefficients can be calculated according to Eqs.
(4.70), (4.71) (see e.g. [2], [4]).

By supposing values of constants for air as κ = 7/5 and 𝑅 = 287.058 Jkg−1K−1,
setting the characteristic length 𝐿 to 1 m and choosing different values of constants 𝐴,
𝑇𝐴 it is possible to see a frequency dependence of the wave reflection and transmission
coefficients of the exact analytical solution given by Eq. (4.72). Let us choose 𝑇𝐴 = 296
K for a positive temperature gradient, 𝑇𝐴 = 752 K for a negative temperature gradient
and some different values of 𝐴 to see these frequency dependencies.
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Fig. 13 Dependence of modulii of reflection and transmission coefficients for 𝑇𝐴 = 296 K and
different values of 𝐴 (positive gradient) in Eq. (4.72) on angular frequency.
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4.2 Sound pressure
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Fig. 14 Dependence of modulii of reflection and transmission coefficients for 𝑇𝐴 = 752 K and
different values of 𝐴 (negative gradient) in Eq. (4.72) on angular frequency.

4.2.3 Exact analytical solution for an exponential temperature distribution

The exact analytical solution for an exponential temperature distribution was derived
in the previous chapter

𝑃 (𝑥) = 1√
𝑇𝐴𝑒−𝛾𝑥

[︂
𝐶1J1

(︂
𝜔𝜑

1√
𝑇𝐴𝑒−𝛾𝑥

)︂
+ 𝐶2Y1

(︂
𝜔𝜑

1√
𝑇𝐴𝑒−𝛾𝑥

)︂]︂
, (4.86)

where 𝜑 = 2/
√︀
κ𝑅𝛾2 .

According to the system of Eqs. (4.51)–(4.54), the system of equations for an exact
analytical solution (4.86) is the same as the system of Eqs. (4.73)–(4.76), therefore the
solution has the form of Eqs. (4.82)–(4.85), but notations 𝐺1, 𝐺2, 𝐻1, 𝐻2, 𝑀1, 𝑀2, 𝑁1
and 𝑁2 have different meanings

𝐺1 = 1√
𝑇𝐴

J1

(︂
𝜔𝜑

1√
𝑇𝐴

)︂
, 𝐺2 = 1√

𝑇𝐴
Y1

(︂
𝜔𝜑

1√
𝑇𝐴

)︂
, (4.87)

𝐻1 = 1√︀
𝑇𝐴𝑒−𝛾𝐿

J1

(︃
𝜔𝜑

1√︀
𝑇𝐴𝑒−𝛾𝐿

)︃
, 𝐻2 = 1√︀

𝑇𝐴𝑒−𝛾𝐿
Y1

(︃
𝜔𝜑

1√︀
𝑇𝐴𝑒−𝛾𝐿

)︃
, (4.88)

𝑀1 = 𝛾𝜔𝜑

2𝑇𝐴
J0

(︂
𝜔𝜑

1√
𝑇𝐴

)︂
, 𝑀2 = 𝛾𝜔𝜑

2𝑇𝐴
Y0

(︂
𝜔𝜑

1√
𝑇𝐴

)︂
, (4.89)

𝑁1 = 𝛾𝜔𝜑

2𝑇𝐴𝑒−𝛾𝐿
J0

(︃
𝜔𝜑

1√︀
𝑇𝐴𝑒−𝛾𝐿

)︃
, 𝑁2 = 𝛾𝜔𝜑

2𝑇𝐴𝑒−𝛾𝐿
Y0

(︃
𝜔𝜑

1√︀
𝑇𝐴𝑒−𝛾𝐿

)︃
. (4.90)

Reflection and transmission coefficients can be calculated according to Eqs. (4.70),
(4.71) (see e.g. [2], [4]).

By supposing values of air constants as κ = 7/5 and 𝑅 = 287.058 Jkg−1K−1, setting
the characteristic length 𝐿 to 1 m and choosing different values of constants 𝛾, 𝑇𝐴

it is possible to see a frequency dependence of the wave reflection and transmission
coefficients of the exact analytical solution given by Eq. (4.86). Let us choose 𝑇𝐴 = 296
K for both positive and negative temperature gradients and some different values of 𝛾
to see frequency dependencies.
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4 Transmission and reflection coefficients
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Fig. 15 Dependence of modulii of reflection and transmission coefficients for 𝑇𝐴 = 296 K and
different values of 𝛾 (positive gradient) in Eq. (4.86) on angular frequency.
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Fig. 16 Dependence of modulii of reflection and transmission coefficients for 𝑇𝐴 = 296 K and
different values of 𝛾 (negative gradient) in Eq. (4.86) on angular frequency.
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5 Derivation of the Burgers-type equation
for temperature-inhomogeneous fluids

In this section the Burgers-type equation for nonlinear acoustic waves in the temperature-
inhomogeneous fluids and its dimensionless form is derivated. The classical Burgers
equation is the most widely used model equation for studying the combined effects of
dissipation and nonlinearity on progressive plane waves (see e.g. [7]).

5.1 Westervelt equation
Let us begin with the nonlinear acoustic wave equation for progressive waves, which is
called the Westervelt equation (see e.g. [1], [8], [9])

�2𝑝′ = − 𝛼

𝜌0𝑐4
0

𝜕3𝑝′

𝜕𝑡3
− 𝛽

𝜌0𝑐4
0

𝜕2𝑝′2

𝜕𝑡2
, (5.1)

where 𝛽 is the nonlinearity coefficient, 𝛼 is the sound diffusivity and�2 is the d’Alembertion
operator for plane waves. These notations mean

𝛽 = κ + 1
2 ,

(5.2a)
�2(·) = 𝜕2(·)

𝜕𝑥2 − 1
𝑐2

0

𝜕(·)
𝜕𝑡

,

(5.2b)

𝛼 = 4
3𝜖+ 𝜁 + 𝜅

(︃
1
𝑐𝑉

− 1
𝑐𝑝

)︃
∼ 𝜇 ,

(5.2c)
where 𝑐𝑉 and 𝑐𝑝 are specific heats at constant volume and pressure respectively and
𝜇 < 1 a small dimensionless parameter.

The left hand side of Eq. (5.1) represents the canonical wave equation for acoustic
waves in homogeneous fluids. For temperature-inhomogeneous media it was derived the
wave equation (2.24) which can be expressed as

�2
𝑖 𝑝

′ = 0 , (5.3)

where �2
𝑖 (·) = 𝜕2(·)

𝜕𝑥2 − 1
𝜌0

d𝜌0
d𝑥

𝜕(·)
𝜕𝑥 − 1

𝑐2
0

𝜕2(·)
𝜕𝑡2 is the d’Alembertion operator for plane waves

in temperature-inhomogeneous media. On the basis of this operator the Westervelt
equation (5.1) can be modified for a temperature inhomogeneous media

�2
𝑖 𝑝

′ = − 𝛼

𝜌0𝑐4
0

𝜕3𝑝′

𝜕𝑡3
− 𝛽

𝜌0𝑐4
0

𝜕2𝑝′2

𝜕𝑡2
. (5.4)

The validity of this equation is restricted to regions with low temperature gradients.

5.2 Burgers-type equation
Given that the spatial variation of a plane progressive acoustic wave is small enough
in proportion to one wavelength it is possible to apply the multiple-scale method to
simplify Eq. (5.4). The retarded time 𝜏 = 𝑡− 𝑥/𝑐𝐴 is introduced.
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5 Derivation of the Burgers-type equation for temperature-inhomogeneous fluids

Let us find the solution of Eq. (5.4) in the form (see e.g. [7])

𝑝 = 𝑝(𝑥1, 𝜏) , (5.5)

where

𝑥1 = 𝜇𝑥 , (5.6a) 𝜏 = 𝑡− 𝑥

𝑐𝐴
. (5.6b)

In the retarded time frame (i.e., for an observer in a reference frame that moves
at speed 𝑐𝐴), nonlinearity and absorption separately produce only slow variations as
functions of distance. Moreover, the relative order of the variations due to each effect
is the same, i.e., it is 𝑂(𝜇). Thus, it can be anticipated that the combined effects of
nonlinearity and absorbtion will introduce variations of the same order. The coordinate
𝑥1 is referred to as the slow scale corresponding to the retarded time frame 𝜏 .

To derive a simplified progressive-wave equation that accounts for both absorption
and nonlinearity, let us first rewrite Eq. (5.4) in the new coordinate system (𝑥1, 𝜏).
Transformations of the partial derivatives are

𝜕(·)
𝜕𝑥

= 𝜇
𝜕(·)
𝜕𝑥1

− 1
𝑐𝐴

𝜕(·)
𝜕𝜏

, (5.7)

𝜕2(·)
𝜕𝑥2 = −𝜇 2

𝑐𝐴

𝜕2(·)
𝜕𝜏𝜕𝑥1

+ 1
𝑐2

𝐴

𝜕2(·)
𝜕𝜏2 , (5.8)

𝜕(·)
𝜕𝑡

= 𝜕(·)
𝜕𝜏

,
𝜕2(·)
𝜕𝑡2

= 𝜕2(·)
𝜕𝜏2 ,

𝜕3(·)
𝜕𝑡3

= 𝜕3(·)
𝜕𝜏3 , (5.9)

applying the introduced notations

𝜕2𝑝′

𝜕𝑥2 = −𝜇 2
𝑐𝐴

𝜕2𝑝′

𝜕𝜏𝜕𝑥1
+ 1
𝑐2

𝐴

𝜕2𝑝′

𝜕𝜏2 ,

d𝜌0
d𝑥 = 𝜇

d𝜌0
d𝑥1

,
𝜕𝑝′

𝜕𝑥
= 𝜇

𝜕𝑝′

𝜕𝑥1
− 1
𝑐𝐴

𝜕𝑝′

𝜕𝜏
,

𝜕2𝑝′

𝜕𝑡2
= 𝜕2𝑝′

𝜕𝜏2 ,
𝜕3𝑝′

𝜕𝑡3
= 𝜕3𝑝′

𝜕𝜏3 .

(5.10)

Substitution of derivatives (5.10) into Eq. (5.4) gives

−𝜇 2
𝑐𝐴

𝜕2𝑝′

𝜕𝜏𝜕𝑥1
+ 1
𝑐2

𝐴

𝜕2𝑝′

𝜕𝜏2 −𝜇2

𝜌0

d𝜌0
d𝑥1

𝜕𝑝′

𝜕𝑥1
+ 𝜇

𝜌0𝑐𝐴

d𝜌0
d𝑥1

𝜕𝑝′

𝜕𝜏
− 1
𝑐2

0

𝜕2𝑝′

𝜕𝜏2 = − 𝛼

𝜌0𝑐4
0

𝜕3𝑝′

𝜕𝜏3 − 2𝛽
𝜌0𝑐4

0
𝑝′𝜕

2𝑝′

𝜕𝜏2 .

(5.11)
We are interested in the second approximation of the above equation. The third term

in Eq. (5.11) is 𝑂(𝜇3) and is therefore discarded. After that and small rearranging Eq.
(5.11) can be written as

−𝜇 2
𝑐𝐴

𝜕2𝑝′

𝜕𝜏𝜕𝑥1
+
(︃

1
𝑐2

𝐴

− 1
𝑐2

0

)︃
𝜕2𝑝′

𝜕𝜏2 + 𝜇

𝜌0𝑐𝐴

d𝜌0
d𝑥1

𝜕𝑝′

𝜕𝜏
= − 𝛼

𝜌0𝑐4
0

𝜕3𝑝′

𝜕𝜏3 − 2𝛽
𝜌0𝑐4

0
𝑝′𝜕

2𝑝′

𝜕𝜏2 . (5.12)

Integration of Eq. (5.12) with respect to 𝜏 , multiplication of the resulting equation
by −𝑐𝐴/2 and having noted

−𝑐𝐴

2

(︃
1
𝑐2

𝐴

− 1
𝑐2

0

)︃
= 1

2𝑐𝐴

𝑐2
𝐴 − 𝑐2

0
𝑐2

0
= 1

2𝑐𝐴

𝑇𝐴 − 𝑇0
𝑇0

= 1 − Ξ (𝜎)
2𝑐𝐴Ξ (𝜎) (5.13)
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5.3 Dimensionless Burgers-type equation

leads to equation

𝜇
𝜕𝑝′

𝜕𝑥1
+ 1 − Ξ (𝜎)

2𝑐𝐴Ξ (𝜎)
𝜕𝑝′

𝜕𝜏
− 𝜇

2𝜌0

d𝜌0
d𝑥1

𝑝′ = 𝛼𝑐𝐴

2𝜌0𝑐4
0

𝜕2𝑝′

𝜕𝜏2 + 𝛽𝑐𝐴

𝜌0𝑐4
0
𝑝′𝜕𝑝

′

𝜕𝜏
. (5.14)

Applying Eq. (2.26) and returning to the physical coordinate 𝑥 in place of 𝑥1 the
above equation can be written as

𝜕𝑝′

𝜕𝑥
+ 1 − Ξ (𝜎)

2𝑐𝐴Ξ (𝜎)
𝜕𝑝′

𝜕𝜏
+ 1

2𝑇0

d𝑇0
d𝑥 𝑝

′ − 𝛼𝑐𝐴

2𝜌0𝑐4
0

𝜕2𝑝′

𝜕𝜏2 − 𝛽𝑐𝐴

𝜌0𝑐4
0
𝑝′𝜕𝑝

′

𝜕𝜏
= 0 , (5.15)

and this is the Burgers-type equation for a temperature-inhomogeneous fluid.

5.3 Dimensionless Burgers-type equation
Using expressions (2.36) the Burgers-type equation (5.15) can be written as

𝜕Π
𝜕𝜎

+ [1 − Ξ (𝜎)]𝜔𝐿
2𝑐𝐴Ξ (𝜎)

𝜕Π
𝜕𝜃

+ 1
2Ξ (𝜎)

dΞ (𝜎)
d𝜎 Π − 𝛼𝜔2𝐿

2Ξ (𝜎) 𝜌𝐴𝑐3
𝐴

𝜕2Π
𝜕𝜃2 − 𝛽𝜔𝐿

Ξ (𝜎) 𝑐𝐴
Π𝜕Π
𝜕𝜃

= 0 .

(5.16)
Introducing new constants

𝑄 = 𝜔𝐿

2𝑐𝐴
, 𝐺 = 𝛼𝜔2𝐿

2𝜌𝐴𝑐3
𝐴

, 𝑁 = 𝛽𝜔𝐿

𝑐𝐴
(5.17)

and remembering

𝜎 = 𝑥

𝐿
, 𝜃 = 𝜔𝜏 , (5.18)

the Burgers-type equation (5.16) can be rewritten into the form

𝜕Π
𝜕𝜎

+ 1 − Ξ(𝜎)
Ξ(𝜎) 𝑄

𝜕Π
𝜕𝜃

+ 1
2Ξ(𝜎)ΠdΞ(𝜎)

d𝜎 − 𝐺

Ξ(𝜎)
𝜕2Π
𝜕𝜃2 − 𝑁

Ξ(𝜎)Π𝜕Π
𝜕𝜃

= 0 . (5.19)

Equation (5.19) is the dimensionless Burgers-type equation for plane progressive non-
linear waves in temperature-inhomogeneous fluids.
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6 Numerical solution of the Burgers-type
equation for
temperature-inhomogeneous fluids

In this chapter, a numerical method for solving the Burgers-type equation was imple-
mented in the C programming language and the numerical solutions obtained from this
method are presented.

6.1 Description of the numerical method
Let us write the dimensionless Burgers-type equation (5.19) for plane progressive non-
linear waves in temperature-inhomogeneous fluids once more

𝜕Π
𝜕𝜎

+ 1 − Ξ(𝜎)
Ξ(𝜎) 𝑄

𝜕Π
𝜕𝜃

+ 1
2Ξ(𝜎)ΠdΞ(𝜎)

d𝜎 − 𝐺

Ξ(𝜎)
𝜕2Π
𝜕𝜃2 − 𝑁

Ξ(𝜎)Π𝜕Π
𝜕𝜃

= 0 , (6.1)

where 𝑄 = 𝜔𝐿/ (2𝑐𝐴) , 𝐺 = 𝛼𝜔2𝐿/
(︀
2𝜌𝐴𝑐

3
𝐴

)︀
, 𝑁 = 𝛽𝜔𝐿/𝑐𝐴 , 𝜎 = 𝑥/𝐿 , 𝜃 = 𝜔𝜏 .

Let us suppose acoustic pressure in the form (see e.g. [1], [10])

Π (𝜎, 𝜃) =
∞∑︁

𝑛=−∞
Φ𝑛 (𝜎) 𝑒j𝑛𝜃 , (6.2)

where
Φ−𝑛 (𝜎) = Φ*

𝑛 (𝜎) . (6.3)

Here, the asterisk sign * means complex conjugate.
Remembering dependence of functions Π (𝜎, 𝜃), Ξ (𝜎), Φ (𝜎) let us omit writing these

dependencies in the following equations to simplify expressions.
Substituting Eq. (6.2) into Eq. (6.1)

∞∑︁
𝑛=−∞

[︃
dΦ𝑛

d𝜎 + j𝑛1 − Ξ
Ξ 𝑄Φ𝑛 + 1

2ΞΦ𝑛
dΞ
d𝜎 + 𝑛2𝐺

Ξ Φ𝑛

]︃
𝑒j𝑛𝜃

= 1
2
𝑁

Ξ
𝜕

𝜕𝜃

∞∑︁
𝑖=−∞

∞∑︁
𝑚=−∞

Φ𝑖Φ𝑚𝑒
j(𝑖+𝑚)𝜃 . (6.4)

The right-hand side of Eq. (6.4) can be derivated, thus Eq. (6.4) can be rewritten

∞∑︁
𝑛=−∞

[︃
dΦ𝑛

d𝜎 + j𝑛1 − Ξ
Ξ 𝑄Φ𝑛 + 1

2ΞΦ𝑛
dΞ
d𝜎 + 𝑛2𝐺

Ξ Φ𝑛

]︃
𝑒j𝑛𝜃

=
∞∑︁

𝑛′=−∞

(︃
j𝑛

′

2
𝑁

Ξ

∞∑︁
𝑚=−∞

Φ𝑚Φ𝑛′−𝑚

)︃
𝑒j𝑛′𝜃 , (6.5)

where 𝑛′ = 𝑖+𝑚.
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6.1 Description of the numerical method

The left-hand and right-hand sides of Eq. (6.5) are equal for arbitrary dimensionless
time 𝜃 only for 𝑛′ = 𝑛 and when terms in brackets are equal, so

dΦ𝑛

d𝜎 + j𝑛1 − Ξ
Ξ 𝑄Φ𝑛 + 1

2ΞΦ𝑛
dΞ
d𝜎 + 𝑛2𝐺

Ξ Φ𝑛 = j𝑛2
𝑁

Ξ

∞∑︁
𝑚=−∞

Φ𝑚Φ𝑛−𝑚 . (6.6)

To apply convolution to the right-hand side of Eq. (6.6) it is convenient to express
the summation in the following step using the expression (6.3)

∞∑︁
𝑚=−∞

Φ𝑚Φ𝑛−𝑚 =
𝑛−1∑︁
𝑚=1

Φ𝑚Φ𝑛−𝑚 + 2
∞∑︁

𝑚=𝑛+1
Φ𝑚Φ*

𝑚−𝑛 . (6.7)

Thus, there are only terms Φ𝑛 with positive 𝑛 in summation (6.7). Thanks to this
and expression (6.7) it is possible to rewrite Eq. (6.6)

dΦ𝑛

d𝜎 = −j𝑛1 − Ξ
Ξ 𝑄Φ𝑛 − 1

2ΞΦ𝑛
dΞ
d𝜎 − 𝑛2𝐺

Ξ Φ𝑛

+ j𝑛2
𝑁

Ξ

(︃
𝑛−1∑︁
𝑚=1

Φ𝑚Φ𝑛−𝑚 + 2
∞∑︁

𝑚=𝑛+1
Φ𝑚Φ*

𝑚−𝑛

)︃
. (6.8)

By placing a limitation on the 𝑀 terms of the Fourier series, Eq. (6.8) can be
rewritten as

dΦ𝑛

d𝜎 = −j𝑛1 − Ξ
Ξ 𝑄Φ𝑛 − 1

2ΞΦ𝑛
dΞ
d𝜎 − 𝑛2𝐺

Ξ Φ𝑛

+ j𝑛2
𝑁

Ξ

(︃
𝑛−1∑︁
𝑚=1

Φ𝑚Φ𝑛−𝑚 + 2
𝑀∑︁

𝑚=𝑛+1
Φ𝑚Φ*

𝑚−𝑛

)︃
. (6.9)

Equation (6.9) is a simultaneous system of ordinary nonlinear differential equations
with 𝑀 complex independent variables Φ1, Φ2, ..., Φ𝑀 , which can be written as

Φ𝑛 = 1
2 (Φ𝑅𝑛 − jΦ𝐼𝑛) . (6.10)

The system of equations, which is represented by Eq. (6.9), can be solved numerically
by the standard fourth-order Runge-Kutta method (see e.g. [11]). Let us denote Eq.
(6.9) by function 𝑓(𝜎𝑛,Φ𝑛). To have an initial value problem just a boundary initial
condition should be added. The organization of the numerical method then can be
written as

𝑘1 = ℎ𝑓(𝜎𝑛,Φ𝑛) ,

𝑘2 = ℎ𝑓(𝜎𝑛 + ℎ

2 ,Φ𝑛 + 𝑘1
2 ) ,

𝑘3 = ℎ𝑓(𝜎𝑛 + ℎ

2 ,Φ𝑛 + 𝑘2
2 ) ,

𝑘4 = ℎ𝑓(𝜎𝑛 + ℎ,Φ𝑛 + 𝑘3 ,

Φ𝑛+1 = Φ𝑛 + 1
6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) +𝑂

(︁
ℎ5
)︁
,

(6.11)

where ℎ is a step size and 𝑂
(︀
ℎ5)︀ is an error term of the 4th order.

This Runge-Kutta method was written in C language, as a result a boundary value
problem is resolved.

To find acoustic pressure, according to Eqs. (6.2), (6.10) and the result from C code,
the following equation should be evaluated

Π(𝜎, 𝜃) =
𝑀∑︁

𝑚=1
[Φ𝑅𝑚 cos (𝑚𝜃) + Φ𝐼𝑚 sin (𝑚𝜃)] . (6.12)
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6 Numerical solution of the Burgers-type equation for temperature-inhomogeneous
fluids

6.2 Representation of an artificial attenuation filter

The sequential generation of higher harmonics leads to the transfer of acoustic en-
ergy from the first harmonic components to the components higher, where the acoustic
energy is damped more effectively, because attenuation increases with frequency. This
leads to a phenomenon which is called the nonlinear attenuation. Considering the finite
number of Fourier series terms leads to the interruption of acoustic energy flow from
the lower harmonics to higher, i.e. the disruption of nonlinear attenuation, as a result
acoustic energy starts accumulating at the highest harmonics and therefore higher har-
monics grow abnormally. Due to this fact the higher harmonics have more effect than
they really have during nonlinear interaction. For this reason even lower harmonics
start rising, that is why numerical instability occurs in the solution. In a way this
instability influence affects the solution by causing unwanted and gradually rising oscil-
lations. In order to avoid this phenomenon, it is necessary, especially while considering
a lower number of harmonics, to introduce artificial attenuation which replaces dissipa-
tion of acoustic energy that occurs at ignored higher harmonic components. Therefore,
artificial attenuation should influence higher harmonics to a greater extent than lower
ones. As an example, attenuation can be implemented so that with each integration
step calculated harmonic components can be multiplied by the following function

sin
(︀

𝑛
𝐷

)︀
𝑛
𝐷

, (6.13)

where 𝑛 is a number of particular harmonic component, 𝐷 is a selected constant.
This filter is implemented in C code.

6.3 Graphical representation of the Burgers-type equation
solution for a linear temperature distribution

Let us see possible solutions of the Burgers-type equation. A linear temperature distri-
bution is given by Eq. (3.71).

6.3.1 Positive temperature gradient

Let us set the angular frequency 𝜔 to 10000 s−1, the characteristic temperature 𝑇𝐴 to
298.15 K, the complex pressure amplitude of incident wave is -2000j Pa. The first point
of interest is a linear temperature distribution with a positive gradient. The gradient
is set by constant 𝐴. The solution is represented in Fig. 17.

The following statement can be made: as the temperature gradient is higher, pressure
amplitude is lower. The same result could be seen from the transmission coefficient
graph in Fig. 13. In Fig. 17 distortion of a wave profile can be also observed. There
is no a big difference between constant temperature 𝑇𝐴 and nonzero positive gradients
since these gradients are small.
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6.3 Graphical representation of the Burgers-type equation solution for a linear
temperature distribution

Fig. 17 The solution of the Burgers-type equation for temperature inhomogeneous fluids with
positive temperature gradient 𝐴.

6.3.2 Negative temperature gradient

The second point of interest is a linear temperature distribution with a negative gradient
𝐴. Let us leave the angular frequency 𝜔 with the same value of 10000 s−1 and the
complex pressure amplitude is -2000j Pa, the characteristic temperature 𝑇𝐴 set to 357.78
K.

Fig. 18 The solution of the Burgers-type equation for temperature inhomogeneous fluids with
negative temperature gradient 𝐴.

As the temperature gradient is lower, pressure amplitude is higher. The same result
could be seen from the transmission coefficient graph in Fig. 14. As for a positive tem-
perature gradient the difference of phases can be seen, the nonlinearity of a wave profile
can be also observed, the difference between constant temperature 𝑇𝐴 and nonzero
negative gradients are also small enough due to small gradients.
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6 Numerical solution of the Burgers-type equation for temperature-inhomogeneous
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6.3.3 Different lengths of a duct with a positive temperature gradient
The third point of interest is a linear temperature distribution with a positive gradient 𝐴
for different duct lengths. Let us leave the angular frequency 𝜔 the same value of 10000
s−1 and the complex pressure amplitude is -2000j Pa, the characteristic temperature
𝑇𝐴 is set to 298.15 K, a temperature gradient 𝐴 has a positive value of 0.5 m−1. The
size of a step length is 0.25 m.

Fig. 19 The solution of the Burgers-type equation for temperature inhomogeneous fluids with
a positive temperature gradient 𝐴 = 0.5 m−1 but different lengths of a duct.

In Fig. 19 can be observed how the wave-profile is gradually distorted.
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7 Conclusion

In this bachelor thesis I have studied descriptions of acoustic waves in fluids with spa-
tially variable temperatures, including derivation of one-dimensional model equations.

Analytical solutions of linear model equations for chosen temperature distributions
were found. For these solutions transmission and reflection coefficients were calculated.
The dependencies of these coefficients on angular frequency were shown in graphs.

In order to describe nonlinear acoustic plane waves for small temperature gradients
the Burgers-type equation was derived. The obtained Burgers-type equation was solved
numerically in the frequency domain by the fourth-order Runge-Kutta method since the
solution is unknown. A numerical code was written in the programming language C.
The numerical solutions were used for plotting nonlinear wave-profiles and discussed.

All assignment points were accomplished.
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Appendix A

Attached CD contents

Matlab calculation scripts. These scripts contain calculations of some complex
expressions and generations of graphs represented in the thesis.
Maple calculation script, which holds some calculations from the thesis.
Fourth-order Runge-Kutta numerical method written in the C programming
language.
Electronic version of the thesis in PDF.
All Figures from the thesis.
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