
Zdeněk Bäumelt

Advanced Methods and Models

for Employee Timetabling Problems

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Department of Control Engineering

February 2015

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Control Engineering

Advanced Methods and Models for Employee
Timetabling Problems

Doctoral Thesis

Zdeněk Bäumelt

Prague, February 2015

Ph.D. Programme: Electrical Engineering and Information Technology

Branch of study: Control Engineering and Robotics

Supervisor: prof. Dr. Ing. Zdeněk Hanzálek

Supervisor specialists: Ing. Přemysl Š̊ucha, PhD.

Zdeněk Bäumelt: Advanced Methods and Models for Employee
Timetabling Problems, PhD. Thesis, Czech Technical University
in Prague, Faculty of Electrical Engineering, Department of Con-
trol Engineering c© Prague, February 2015

To my wife and family members, with love.

Declaration

This doctoral thesis is submitted in partial fulfillment of the requirements
for the degree of doctor (Ph.D.). The work submitted in this dissertation is
the result of my own investigation, except where otherwise stated. I declare
that I worked out this thesis independently and I quoted all used sources of
information in accord with Methodical instructions about ethical principles
for writing academic thesis. Moreover I declare that it has not already been
accepted for any degree and is also not being concurrently submitted for any
other degree.

Czech Technical University in Prague
Prague, February 2015 Zdeněk Bäumelt

Acknowledgments

I would like to give my great thanks to my thesis advisors prof. Dr. Ing.
Zdeněk Hanzálek and Ing. Přemysl Š̊ucha, PhD. for their excellent guidance
and continuous support throughout my PhD. studies.

A special thanks belong to my colleague Ing. Jan Dvořák who cooperated
on the first model of the algorithm for the Nurse Rerostering Problem in his
master thesis under my leadership.

I am grateful to all the colleagues from our group for created working
conditions and a friendly atmosphere I could work in.

I would like to express a gratitude to my parents, siblings, wife and our
children for their provided support, encouragement, patience and happiness
that enabled me making this thesis.

Thanks to everyone who has helped me during the PhD. studies.

I would like to gratefully acknowledge the support of NVIDIAR© Corporation
with the donation of the GPUs.

This work was supported by the ARTEMIS initiative funded by the Euro-
pean Commission and the Ministry of Education of the Czech Republic under
the project DEMANES 295372. This work was also supported by the Grant
Agency of the Czech Republic under the Project GACR P103/12/1994 and by
the Technology Agency of the Czech Republic under the Centre for Applied
Cybernetics TE01020197.

Czech Technical University in Prague
Prague, February 2015 Zdeněk Bäumelt

Abstract

This thesis is focused on the design of efficient models and algorithms for
employee timetabling problems (ETPs). From our point of view, there are two
significant gaps in the current state of the art.

The first one, also important in practice, concerns the ETP with strongly
varying workforce demand. Unlike the classical Nurse Rostering Problem
(NRP) this problem considers dozens of shift types that can cover the de-
mand more precisely than early, late and night shift type used in NRP. In
this work we call this problem the Employee Timetabling Problem with a High
Diversity of shifts (ETPHD). It comes as no surprise that the exact methods
like Integer Linear Programming are not able to find its solution in reason-
able time. Therefore, a transformation of ETPHD based on mapping of shift
types to shift kinds was proposed. The transformation allows one to design a
multistage approach (MSA). The aim of the first two stages is to find an ini-
tial ETPHD solution, where a rough position of assigned shifts is determined.
This proved to be substantial for the last stage of MSA, where the solution
is consequently improved in terms of its quality. In order to verify the MSA
performance, a cross evaluation methodology was proposed. It is based on the
comparison of the performance provided by more approaches on more combina-
torial problems. Therefore, real life ETPHD instances from an airport ground
company and also standard benchmark NRP instances were considered. The
experiments confirmed the better or equal performance of our approach in the
most of the cases.

The second gap in the literature is an absence of parallel algorithms for
ETPs. We focused on the Nurse Rerostering Problem (NRRP) that appears
when a disruption in the roster occurs, e.g., when one of the employees becomes
sick. For this purpose, the parallel algorithm solving NRRP was proposed in
order to shorten needed computational time. This algorithm was designed for a
Graphics Processing Unit (GPU) offering a massive parallelization. To the best
of our knowledge, this is the first usage of GPU for ETPs. The performance
of the GPU parallel algorithm was tested on the real life NRRP benchmark
instances and evaluated from two points of view. Firstly, the quality of the
results was compared to the known results from the state of the art. Secondly,
the speedup achieved by the parallel algorithm related to the sequential one
was verified. In average, the parallel algorithm is able to provide the results of
the same quality 15 times faster than the sequential one.

vi

Abstrakt

Tato disertačńı práce je zaměřena na návrh model̊u a algoritmů pro efektivńı
řešeńı problémů týkaj́ıćıch se rozvrhováńı v oblasti lidských zdroj̊u. Na základě
provedené analýzy aktuálńıho stavu souvisej́ıćıch praćı v této oblasti byly
identifikovány dva kombinatorické problémy, jimž v literatuře neńı věnována
dostatečná pozornost.

Prvńım z nich je problém rozvrhováńı lidských zdroj̊u, kde je velká vari-
abilita požadavk̊u na pracovńı śılu. Narozd́ıl od známéno problému rozvrhováńı
zdravotńıch sester (Nurse Rostering Problem, NRP), kde jsou pouze směny
ranńı, odpoledńı a nočńı, jsou v tomto problému uvažovány deśıtky až stovky
r̊uzných směn za účelem přesněǰśıho pokryt́ı požadavk̊u na pracovńı śılu.
Tento problém je nazván jako Employee Timetabling Problem with a High
Diversity of shifts (ETPHD). Neńı překvapivé, že exaktńı metody, jako je
např. celoč́ıselné programováńı, jsou pro řešeńı ETPHD nepoužitelné. Pro
řešeńı tohoto problému byla navržena jeho transformace založená na mapováńı
směn na typy směn. Tato transormace umožnila návrh tř́ıfázového algoritmu
(MSA). Ćılem prvńıch dvou fáźı je źıskat počátečńı řešeńı, kde jsou již dány
přibližné pozice blok̊u směn. Toto se ukázalo podstatné pro posledńı fáźı, kdy
je počátečńı řešeńı zlepšováno. Pro ověřeńı výkonnosti MSA byla navržena
kř́ıžová metodika ohodnoceńı. Základńı myšlenkou je porovnáńı výkonosti v́ıce
algoritmů na r̊uzných kombinatorických problémech. V našem př́ıpadě bylo
pro experimenty použito 30 reálných ETPHD instanćı ze společnosti z oblasti
letecké dopravy a dále také 5 standardńıch NRP instanćı z oblasti rozvrhováńı
rozvrhováńı sester. Experimenty vyhodnocené touto metodikou ověřily, že naše
výsledky jsou v drtivé většině př́ıpad̊u lepš́ı či alespoň stejně dobré.

Druhým problémem disertačńı práce z oblasti rozvrhováńı lidských zdroj̊u
je problém přerozvržeńı přǐrazených směn zdravotńıch sester (Nurse Reroster-
ing Problem, NRRP). Tento problém nastává např. při onemocněńı některé
ze sester, kdy jej́ı směny muśı být přǐrazeny sestře jiné. V práci byl navržen
paralelńı algoritmus za účelem co nejv́ıce zkrátit potřebnou dobu k řešeńı
NRRP. Paralelńı algoritmus byl nav́ıc navržen pro grafickou kartu (GPU),
která umožňuje masivńı paralelizaci. Dle našeho nejlepš́ıho vědomı́ je to prvńı
použit́ı GPU zaměřené na řešeńı NRRP. Výkonnost paralelńıho algoritmu byla
testována na NRRP instanćıch z reálného života, výsledky byly vyhodnoceny
ze dvou hledisek. Prvńım hlediskem byla kvalita, kde byly výsledky našeho
paralelńıho algoritmu porovnány s nejlepš́ımi známými výsledky z literatury.
Druhé porovnáńı bylo zaměřeno na zkráceńı doby výpočtu. Paralelńı algorit-
mus vyžaduje výrazně kratš́ı dobu výpočtu pro źıskáńı stejné kvality NRRP
řešeńı jako algoritmus sekvenčńı, a to v pr̊uměru 15 krát kratš́ı.

vii

viii

Contents

Nomenclature 1

Abbreviations 5

Goals and Objectives 7

1 Introduction 9

2 Theoretical Background 13

2.1 Basic Terminology . 13

2.2 Categorization of Timetabling 14

2.2.1 Application Areas . 14

2.2.2 Applied Approaches . 15

2.2.3 Used Architectures . 19

2.3 Employee Timetabling . 21

2.3.1 Application Areas . 21

2.3.2 Classification of ETPs 21

2.3.3 Workflow of the Employee Timetabling 21

2.4 Summary . 26

3 The ETP with a High Diversity of Shifts 29

3.1 Introduction . 29

3.1.1 Related Works . 30

3.1.2 Contribution and Outline 32

3.2 Problem Statement . 32

3.2.1 Constraints . 33

3.2.2 Problem Statement . 34

3.3 Transformation of the Problem and its Mathematical Model . . 36

3.3.1 Transformation SK . 36

3.3.2 Integer Linear Programming Model of ETPHD
(K)

. . . . 37

3.4 Solution of the First Stage by an Evolutionary Algorithm . . . 39

3.4.1 Encoding . 40

ix

x CONTENTS

3.4.2 Preprocessing . 40

3.4.3 Generation of the Initial Population (GIP) 40

3.4.4 Objective Function ZE 42

3.4.5 Selection (SEL) . 43

3.4.6 Crossover Operators (X) 43

3.4.7 Mutation Operators (MUT) 44

3.5 The Second Stage – Inverse Transformation KS 44

3.6 Experiments and Evaluation . 45

3.6.1 The ILP Model . 45

3.6.2 The Evolutionary Algorithm 46

3.6.3 Comparison of the MSA to Other Approaches 48

3.6.4 Cross Evaluation Methodology 51

3.6.5 Summary of Experiments 57

3.7 Conclusion . 59

4 The GPU based Parallel Algorithm for the NRRP 61

4.1 Introduction . 61

4.1.1 Related Works . 61

4.1.2 Contribution and Outline 65

4.2 Computing on a Graphics Processing Unit 66

4.3 The Nurse Rerostering Problem Statement 70

4.4 A Sequential Algorithm . 71

4.5 A Homogeneous Model of the Parallel Algorithm 72

4.5.1 Problem Decomposition for Parallelization 73

4.5.2 Algorithm Reorganization 73

4.5.3 Minimization of Branch Divergence 75

4.5.4 Detailed Description . 79

4.5.5 Memory Model . 86

4.6 A Heterogeneous Model of the Parallel Algorithm 88

4.7 Experiments & Evaluation . 89

4.7.1 Experimental Setup . 89

4.7.2 Tuning the Memory Model 89

4.7.3 Speedup Evaluation . 91

4.7.4 Quality Evaluation . 94

4.8 Conclusion . 97

5 Conclusion 99

5.1 Achieved Contributions . 99

5.2 Fulfillment of Stated Goals and Objectives 100

5.3 Concluding Remarks . 102

Bibliography 103

Contents xi

Appendices 115

Appendix A Skill Based Initialization Algorithm 117

Appendix B Different Modes in the Parallel Algorithm 119

Appendix C Heterogeneous Model of the Parallel Algorithm 121

Curriculum Vitae 125

List of Author’s Publications 127

xii

List of Figures

1.1 Benefits of the employee timetabling 10

2.1 The terms related to the timetabling within a context of OR . 14
2.2 The timetabling application areas 15
2.3 The overview of the approaches used in employee timetabling . 16
2.4 Used architectures . 20
2.5 The workflow of the employee timetabling 22
2.6 Three kinds of the personnel demand 24

3.1 Personnel demand models in hospitals and airports 30
3.2 Block constraints . 34
3.3 The gene representation . 41
3.4 The cross evaluation methodology 52

4.1 The NVIDIAR© GPUs architecture (Kepler’s generation) 67
4.2 The heterogeneous versus the homogeneous model 69
4.3 The comparison of RP and RPP 74
4.4 The overview of the sequential and the parallel algorithms . . . 76
4.5 The execution of 1 instance of the parallel algorithm 78
4.6 The parallel execution of m instances of the parallel algorithm 83
4.7 The memory model tunning for the homogeneous model 90

B.1 Different modes in the parallel algorithm 120

xiii

xiv

List of Tables

3.1 Numbers of constraints and variables in the ILP model 38
3.2 Heuristics for the generation of the initial population P0 42
3.3 The EA performance after the 2nd stage 47
3.4 The EA performance as a part of the multistage approach . . . 49
3.5 The overview of the compared approaches 50
3.6 ETPHD instances description 53
3.7 The cross evaluation on ETPHD – TSA in the last stage 55
3.8 The cross evaluation on ETPHD – VDSA in the last stage . . . 56
3.9 The cross evaluation on the NRP 57
3.10 The summary of the cross evaluation 58

4.1 The overview of the memory model 87
4.2 The comparison of computational times and speedups for D19 . 92
4.3 The comparison of computational times and speedups for D32 . 93
4.4 The comparison of the avg. objective function value for D19 . . 95
4.5 The comparison of the avg. objective function value for D32 . . 96

xv

xvi

Nomenclature

List of Variables and Constants

e index for employees (nurses)
d, t, τ indices for days within the planning horizon
s, k indices for shifts and shift kinds
x general index
α, β, γ, δ positive weights of the criteria in the objective function
Z,ZE objective function, objective function of the evolutionary algo-

rithm
Aev(. . .) evaluated approach expressed by a metric . . .
Aref (. . .) reference approach expressed by a metric . . .
Amax(. . .) maximal value expressed by a metric . . . given by

max{Aref (. . .),Aev(. . .)}

∆Aev

Aref

(

. . .
)

relative difference of an evaluated approach Aev related to a ref-
erence approach Aref expressed by a metric . . . in percents

S set of shifts
S(d) set of shifts required on day d ∈ D
E set of employees (nurses)
D set of days within the planning period
K set of shift kinds, i.e., early, late, night, etc.
KW ,KF set of working shift kinds, set of non-working shift kinds
Lk average shift length of shift kind k
bmin, bmax minimal block length in days, maximal block length in days
brmin minimal block rest length in days
M big M – big integer number
W vector of employees workloads
R binary matrix representing the roster, where Reds = 1 iff shift

s ∈ S is assigned to employee e ∈ E on day d ∈ D
RS matrix of requested shifts, where RSsd = 1 iff shift s ∈ S is

requested on day d ∈ D
SP matrix of the shift precedences, so that SPs1s2 = 1 iff shift s1 ∈ S

can be followed by shift s2 ∈ S on the consecutive day

1

2 Nomenclature

Q matrix defining skills, so that Qes = 1 iff shift s ∈ S can be
assigned to employee e ∈ E

R
(K)

binary matrix representing the roster, where R
(K)

edk = 1 iff the
shift of kind k ∈ K is assigned to employee e ∈ E on day d ∈ D

RS
(K)

matrix of the requested shifts, where RS
(K)

kd is the number of the
required shifts of kind k ∈ K on day d ∈ D

SP
(K)

matrix representing the feasibility of two consecutive shift kinds
precedence

Q
(K)

matrix defining skills, so that Qek = 1 iff shift kind k ∈ K can
be assigned to employee e ∈ E

p index for the gene position that represents the group of the days

R
(K)

[e,p] submatrix of R
(K)

P population in the evolutionary algorithm
#pop number of populations of an evolutionary algorithm
pSize, pSize0 size of the population, size of the initial population
offspringCount count of the offsprings bred in each population of EA
I individual of the population P

Ie,p gene corresponding to a submatrix of the roster R
(K)

[e,p]

l length of gene in days
p(I) survival probability of an individual I
pX probability of crossover
pM probability of mutation
CSE(d) count of the shifts that can be assigned to the employees on day

d ∈ D
SAE(d) binary matrix representing which shift can be assigned to which

employee on day d ∈ D
Gd bipartite graph related to day d ∈ D
V(Gd) set of vertices of Gd

E(Gd) set of edges of Gd

c, ǫ weights of the edges E(Gd)
RBC mathematical complexity of an instance computed by a tool Ros-

ter Booster (Burke and Curtois (2012))
tcpu, tmax computational time, time limit of the computational time
SU set of unassigned shifts
CI count of isolated days-on/days-off
R0 matrix representing the original roster, R0

e,d contains shift s ∈ S
assigned to employee e ∈ E on day d ∈ D

Rprev matrix representing the previous original roster (before R0)

R̃, R̃best matrix representing the modified roster, the best found modified
roster

Nomenclature 3

RS matrix of the requested shifts, RSs,d expresses how many times
is shift s ∈ S requested on day d ∈ D

minDaysOff minimal number of the days-off in each 7 consecutive days
A matrix of absences in the original roster R0

RP random permutation of the roster positions corresponding to
shifts to be assigned to all employees e ∈ E

RPP random permutation of the roster positions corresponding to
shifts to be assigned to a particular employee e ∈ E

RPP best random permutation of the roster positions that leads to the best
found solution

i index for the position in RP and RPP
pen penalization function for the shift assignments

Z(R̃), Z(R̃best) objective function, the best value of the objective function
run counter of the runs of the algorithm
maxRuns maximum number of runs of the algorithm
m number of parallel instances of the algorithm
mb number of parallel instances of the algorithm per one CUDA

block
q index of the instance of the algorithm launched in one CUDA

block
isOccupied binary matrix of the already assigned roster positions, iff

isOccupiede,d = 1, no shift can be assigned to R̃e,d

unassigned vector of roster positions that cannot be assigned to R̃ to the
original nurses given by R0

unassignedRP one roster positions (e, d) that cannot be assigned to R̃ to the
original nurses given by R0

firstRun boolean to distinguish the first run from others
firstRule boolean representing the mode of the current run of the algorithm

instance
feasible boolean representing the feasibility of the NRRP solved by one

instance of the algorithm, i.e., feasibility of R̃
terminateAlg boolean representing the flag to terminate the execution of the

entire parallel algorithm
applyLS boolean used to generate a new RPP by a local search applied

on RPP best

pLS value of the probability to swap two items in the list RPP (when
the local search is applied)

runsOfSameProb number of runs with probability pLS (when the local search is
applied)

runsNoSuccess number of runs without improvement of Z(R̃best) (when the local
search is applied)

4 Nomenclature

applyBT boolean representing the flag whether the backtrack will be ap-
plied or not

backtrack counter of backtracks made
maxBacktracks maximal number of backtracks
tseq computational time of the sequential algorithm
thom, thet computational time of the homogeneous and the heterogeneous

model of the parallel algorithm
speeduphom speedup of the homogeneous model of the parallel algorithm
speeduphet speedup of the heterogeneous model of the parallel algorithm

Abbreviations

List of Abbreviations

VLSN very large-scale neighborhood search
LNS large neighborhood search
VNS variable neighborhood search
HPC high performance computing
AMDR© AMDR© corporation
OR operations research
HW hardware
PC personal computer, personal computing
A approach
ETP employee timetabling problem, personnel scheduling problem
ETPHD employee timetabling problem with a high diversity of shifts

ETPHD
(K)

ETPHD transformed to shift kinds
TSA tabu search algorithm
MA memetic algorithm
EA evolutionary algorithm
MWMA maximal weighted matching in a bipartite graph algorithm
SIA skill based initialization algorithm
VDSA variable depth search algorithm
MSA multi stage approach
CMPAx comparison approach x
NRRP nurse rerostering problem
NRP nurse rostering problem
TSP traveling salesman problem
KP knapsack problem
PFSP permutation flowshop scheduling problem
RCPSP resource-constrained project scheduling problem
CPU central processing unit
GPU graphical processing unit
GPGPU general-purpose computation on graphics processing unit
CUDA compute unified device architecture

5

6 Abbreviations

NVIDIAR© NVIDIAR© corporation
SIMT single instruction multiple data
SM streaming multiprocessor
AISA artificial immune system algorithm
ILP integer linear programming
SAA simulated annealing algorithm
D19 dataset of the NRRP instances with 19 nurses (Pato and Moz (2013))
D32 dataset of the NRRP instances with 32 nurses (Pato and Moz (2013))

List of EA operators

GIP generation of the initial population P0

RG random generation of P0

WHG generation of P0 based on the working hours of the genes
LEG generation of P0 based on the lack of employees
LEWHG generation of P0 as a combination of WHG and LEG

X crossover operator
EBTSX employee based tournament selection crossover operator
DBOPX day based one point crossover operator
MUT mutation operator
RM random mutation operator
EBRM employee based random mutation operator

Goals and Objectives

This thesis is focused on the domain of the employee timetabling problems. Its
goals were set as follows:

1. To describe the basic terms, the classification and the categorization of
the employee timetabling within the context of the operations research.
Consequently, to identify the other goals of the thesis that reveal from
significant gaps in the domain.

2. To propose and describe an approach capable to solve large instances of
the employee timetabling problem having a high diversity of shifts (shift
types).

3. To consider new architectures that can be exploited by a parallel al-
gorithm applied in the domain of the employee timetabling in order to
accelerate the solution of the chosen problem.

4. To verify the proposed models, algorithms and approaches on the state
of the art benchmark instances and, if possible, on the real life instances.

7

8

Chapter 1

Introduction

The importance of Operations Research (OR) is rapidly growing since its ori-
gin in 1930s. Similarly, the combinatorial problems related to the employee
timetabling domain, firstly mentioned in 1970s, e.g., by (Baker (1976)), have
become increasingly relevant for companies having an irregular workload. The
best way how to expressed the impact of the employee timetabling is to focus
on its benefits, which can be divided to the employer and employee points of
view as illustrated in Figure 1.1.

Firstly, the employees benefits are presented. The original motivation to
solve employee timetabling problems (ETPs) computationally became from
their solution by hand, which has been very tiresome and time consuming
task for planners (employees designing timetables). Planners have to respect
number of scheduling requirements, constraints and requests which can rarely
be fully satisfied in manual design of timetables taking into account limited
amount of time. Therefore, the algorithmic solutions for designing timetables
are used by planners. Some manual corrections can be also made by planners
manually and it is possible to alternate repeatedly these both ways of design
as needed. Algorithms help at least to evaluate every change in the timetable
with respect to all considered constraints and their violations can be visual-
ized to planners. In summary, the direct benefit for planners consists in the
comfortable time-saving design of timetables and, therefore, planners can be
utilized efficiently for other tasks in the company. This is significantly remark-
able when regular rescheduling is required due to timetable disruptions caused
by e.g., sickness or other unpredictable reasons. Another valuable benefit is
that more preferences of employees can be satisfied, i.e., algorithmic employee
timetabling allows employees to work with respect to their free time activities
and obligations, e.g., requests for a day-off, time-off within a day or a preferred
shift for a given day etc. In general, timetables produced as was described
above are reaching certainly better quality, since they can be better balanced

9

10

in terms of the fairness among employees, i.e., the balance of the assigned
workload per employee, the number of night shifts per employee, the number

5
1
2

1
1

1
3

6
9

1
4

2
1
0

4
7

1
3

8
1
3

equip planners to design

timetables algorithmically

with manual corrections

meet employee preferences,

e.g., requests for day-off,

time-off during the day etc.

ensure and improve

timetable quality and

fairness

offer an easy access to the

timetable for all the

employees

enhance employees’ mood,

loyalty and morale

lead to work as a team

guarantee a compliance

with labour code and trade

unions

enable to analyse archived

data, to create statistical

reports etc.

help to decide – simulations

and what-if analyses

provide a way how to

process payroll data easy

increase efficiency and

productivity of human

resources

reduce costs in several ways

increase the quality of

service

Legend

Employee benefitsEmployer benefits
influenced by relationship

employer is rewarded by

customers

employees are rewarded by

employer

Figure 1.1: Benefits of the employee timetabling from the employer and em-
ployee points of view

Chapter 1 Introduction 11

of unfavorable shifts sequences per employee, the number of satisfied requests
per employee etc. Moreover, every employee has an opportunity to look to
the timetable and/or to insert his/her personal request as needed in case when
the algorithm is a part of the employee timetabling web application. All above
mentioned benefits contribute to an image of the flexible employer with friendly
timetables. Therefore, the pleasant mood among employees is spread and they
can be easier motivated by employer to work as a team. Naturally, employ-
ees can be more strongly motivated by the reward of their employer when the
company growth is caused by the employee timetabling.

Secondly, in terms of the employer, the most essential benefit is the guar-
antee a compliance with the labour code and its trade unions, since there are
many constraints related to the timetable design. Moreover, algorithms can be
also exploited as the decision support system as follows. Employer can process
statistical analyses of archived data in order to reuse experiences gained in the
past, e.g., the timetable design for the planning horizon during December in the
previous year, where the vacations were taken by the most of employees. Simi-
larly, employer can analyse some what-if scenarios, e.g., related to the employee
turnover, change in contracts of employees, covering the workload demand by
different set of shifts, simulation of new constraints that will/should be taken
into account etc. Furthermore, the payroll data can be extracted very easy
from timetables. All these employer benefits help to increase the efficiency and
productivity of the human resources utilization, since time needed to process
following tasks can be remarkably shortened – planners designing timetables,
the payroll department preparing payroll data and, finally, employees covering
the workload demand more efficiently. Logically, the total cost of the employer
can be significantly reduced. Consequently, the employer has an opportunity
to invest saved costs in order to increase the quality of the provided service,
which can be also raised by employees directly (see Figure 1.1). Consequently,
the employer will be rewarded by his customers in the near future.

As you can see, there are many reasons why to dedicate some effort in
solving employee timetabling problems algorithmically. With respect to this
fact, this thesis deals with two real life employee timetabling problems and it is
organized as follows. Firstly, the nomenclature used in this thesis is presented.
Subsequently, the stated goals and objectives are summarized. Chapter 1 pro-
vides a brief motivation why to solve the employee timetabling problems algo-
rithmically. Chapter 2 contains the necessary theoretical background related
to the employee timetabling problems in order to target goals and objectives
of this thesis. The employee timetabling problem having the large variety of
the shifts is described and solved in Chapter 3. Namely, there are dozens of
shifts in order to cover the workload demand as precisely as possible. The
following Chapter 4 is focused on the timetable rescheduling in case of unex-
pected disruptions, which should be resolved as soon as possible. Therefore,

12

our objective was to accelerate its solutions with regards to known approaches.
Moreover, the acceleration is performed by the parallel algorithm on a Graph-
ics Processing Unit, which is innovative approach for this problem. Finally,
the achieved results are evaluated and concluded in Chapter 5 with respect to
the stated goals of the thesis.

Chapter 2

Theoretical Background

This chapter contains the necessary knowledge base, where the timetabling
problematic is described within a context of operational research. A categoriza-
tion and a basic terminology of the timetabling problems are presented. Subse-
quently, the most significant gaps in the workflow of the employee timetabling
are identified.

2.1 Basic Terminology

Except the timetabling, other terms as a rostering and a scheduling are used
for the very similar combinatorial problems and these terms are very often
substituted by each other. A relationship among these terms is depicted in
Figure 2.1 and their formal descriptions were defined by (Wren (1996)) as
follows.

’Scheduling is the allocation, subject to constraints, of resources to ob-
jects being placed in space-time, in such a way as to minimize the total cost
of some set of the resources used.’ Namely, the classical production schedul-
ing problems belong under this term, e.g., a Job Shop Scheduling Problem
(Van Laarhoven et al. (1992)). Another example is Vehicle Routing Problem
(Pisinger and Ropke (2007)) where the number of vehicles resp. drivers is min-
imized in combination with minimizing the total cost of the delivery.

’Timetabling is the allocation, subject to constraints, of given resources to
objects being placed in space-time, in such a way as to satisfy as nearly as possi-
ble a set of desirable objectives.’ E.g., the academic timetabling (Rudová et al.
(2011)) and some of the personnel allocation problems (Van den Bergh et al.
(2013)) refer to this term.

’Rostering is the placing, subject to constraints, of resources into slots in
a pattern. One may seek to minimize some objective, or simply to obtain a
feasible allocation. Often the resources will rotate through a roster.’ This term

13

14 2.2 Categorization of Timetabling

Scheduling

Operations

Research

Timetabling

Rostering

Sequencing

Figure 2.1: The terms related to the timetabling within a context of OR

is the most distinguishable from the others due to the well known Nurse Ros-
tering Problem (Burke et al. (2004b)). The resources can rotate such that the
schedule is cyclic, i.e., all the resources have the same schedule that is shifted
according the given resource, see (Musliu (2006)) or (Rocha et al. (2013)).

Finally, one more term is defined by (Wren (1996)). ’Sequencing is the
construction, subject to constraints, of an order in which activities are to be
carried out or objects are to be placed in some representation of a solution.’ The
examples of sequencing are a Flow Shop Scheduling Problem (Reeves (1995)),
where the execution time of the schedule (makespan), given by a permutation
of jobs, is minimized, or the Traveling Salesman Problem (Applegate et al.
(2007)), where a sequence of the cities to be visited is required as a solution.

Nevertheless, you can notice that the terms mentioned above do not corre-
spond to the names of the problems completely, e.g., the Flow Shop Schedul-
ing Problem belongs to the sequencing problems. In general, the relationship
among the terms is not respected strictly in the literature and the personnel
scheduling and the employee timetabling are used as synonyms very often.

2.2 Categorization of Timetabling

The domain of timetabling problems belongs to the huge domain of the combi-
natorial optimization/operations research problems. However, the timetabling
problem domain is still very wide and can be further categorized from the
different point of views described in the following subsections.

2.2.1 Application Areas

The timetabling problems can be divided into several categories according to
the area, where the research is applied, as illustrates Figure 2.2.

The category of an Academic Timetabling (see surveys (Lewis (2008);
Schaerf (1999))) deals with scheduling problems occurring in an education
system. Namely, a courses timetabling, where the goal is to construct
the schedule of the lectures with respect to the students and the teachers

Chapter 2 Theoretical Background 15

Timetabling

Academic

Timetabling

Sports

Timetabling Transport

Timetabling

Employee

Timetabling

Figure 2.2: The timetabling application areas

(Rudová et al. (2011)), or an exam timetabling solving when the examinations
of the courses should be planned in order to avoid overlapping of them for the
shared students (Qu et al. (2009); Burke et al. (2001a)). Moreover, a school
timetabling resolves the timetables for students of elementary and high schools
(Cambazard et al. (2005)).

The category of a Sports Timetabling handles the problems of sport tour-
naments (Ribeiro and Urrutia (2007)) and leagues organization (Bartsch et al.
(2006)). The progress in this area during the last 30 years is mapped by a
comprehensive survey (Rasmussen and Trick (2008)) in order to set the uni-
fied terminology. The objective of these problems is e.g., the minimization of
the traveled distance or the minimization of the breaks in the schedule.

The category of a Transport Timetabling tackles problems arising in the
large transport systems such as railway companies (Cordeau et al. (1998))
or airline services (Gopalakrishnan and Johnson (2005)). These problems
are very often called as the crew scheduling, e.g., the train crew schedul-
ing (Ernst et al. (2001)) or the airline crew planning (Klabjan et al. (2001)),
since the employees have to move from one place to another, typically in a
periodical way. Naturally, the cost needed to provide the services by the crew
is minimized.

A Employee Timetabling partially overlaps with the previous category of
the Transport Timetabling, because the crew scheduling problems consider the
location of the employees together with satisfying the employees’ workload.
The Employee Timetabling is described in more detail in Section 2.3, since it
is the main application area addressed in this thesis.

2.2.2 Applied Approaches

The timetabling problems can be also organized according to the used algo-
rithms, methods and approaches, which are illustrated in Figure 2.3. In gen-
eral, there are two possibilities how to solve timetabling problems, either by an

16 2.2 Categorization of Timetabling

exact method producing an optimal solution or to obtain a solution by a sub-
optimal approach – a heuristic. If the heuristic is not proposed specifically to
the solved problem, i.e., it can be applied due to its generality to an arbitrary
combinatorial optimization problem, then it is called a metaheuristic.

The exact methods are frequently based on the mathematical modeling. An
Integer Linear Programming (ILP), already introduced by (Warner (1976)),
is very often used to formulate and solve Employee Timetabling Problems
(ETPs). E.g., the workforce scheduling problems were solved in (Seçkiner et al.
(2007); Thompson and Pullman (2007)), while a Nurse Rerostering Prob-
lem was formulated as an integer network flows model in (Moz and Pato
(2004)). Similarly, a Goal Programming can be applied on ETPs having
the multiple, usually conflicting objectives, see (Azaiez and Al Sharif (2005);
Topaloglu and Ozkarahan (2004)). The ETPs can be also handled by a
technique called a Column Generation, e.g., to create the timetables of the
employees as in (Bard and Purnomo (2005); Al-Yakoob and Sherali (2006)).
The next technique to find a solution is a well known Branch and Bound
(Srimathy (2008)), that is able to reduce the solution space, represented
by a tree, by cutting its branches that does not contain a better solution
than the found best. A Branch and Price is based on the combination of
the Branch and Bound and the Column Generation applied in each node of
the solution space. The examples are shown in (Beliën and Demeulemeester
(2008)), where the integrated problem of the nurse and the surgery schedul-
ing is described, in (Freling et al. (2004)) dealing with the crew scheduling
problem or in (Maenhout and Vanhoucke (2010a)). Finally, a Constraint Pro-
gramming, which is a form of declarative programming, is utilized in e.g.,
(Triska and Musliu (2011)) to find a rotary schedules for the employees or
(Stølevik et al. (2011)), where the constraint programming was combined to-
gether with the local search based methods to solve ETPs.

Unfortunately, the most of the employee timetabling problems are NP-

Exact Methods Suboptimal Approaches

Heuristics
Metaheuristics

Hyperheuristics

Hybrid/combined approaches

Figure 2.3: The overview of the approaches used in employee timetabling

Chapter 2 Theoretical Background 17

hard (see in (Brucker et al. (2011))), i.e., no method providing a solution in a
polynomial amount of time is known yet. Therefore, the exact methods can be
applied on the smaller instances of the problems only and are useless on the
real life instances of the problems usually. This drawback can be eliminated
by suboptimal approaches that are based on the search of the solution space,
which can not be fully scanned due to its size. Therefore, the space of the
solutions is usually reduced by applying the intelligence gained by some expert
knowledge of the solved problem. In general, in the case of the suboptimal
approaches one has to find a balance between a quality of the found solution
and the needed computational time.

The category of the metaheuristics contains the methods which were in-
spired by analogies from the real life or, at least, their usage was proven exper-
imentally. One of them is a Simulated Annealing Algorithm (SAA), based by
(Kirkpatrick et al. (1983)) and applied on ETPs e.g., in (Lučić and Teodorović
(1999)). Its name is taken from an analogy of the annealing of a crystalline
solid that is heated in order to obtain the most regular crystal configuration
by slow cooling. This process is controlled by a temperature such that, the
longer computational time, the lower temperature and the lower probability
of accepting the solution having the higher objective function value. In other
words, the algorithm is able to escape from the local optima by this mechanism
less and less often during the execution of SAA.

Another metaheuristic called a Tabu Search Algorithm (TSA) was intro-
duced by (Glover and Laguna (1989)). The key idea of TSA is to use the local
search methods (adapted specifically to the solved problem) to escape from the
local optimum. Moreover, the algorithm temporarily marks the moves applied
to avoid the cycling in the search space of the solutions. This metaheuristic
was applied on ETPs, e.g., in (Burke et al. (2004a); Bäumelt et al. (2007)).

The next group of metaheuristics is a Very Large Scale Neighborhood search
(VLSN), see a survey (Ahuja et al. (2002)). The key idea is that the search-
ing a very large neighborhood leads to finding a better quality local optima.
The drawback of these methods is their time consumption and, therefore, the
techniques to filter the solution space have to be used. The first example
of VLSN metaheuristics is a Large Neighborhood Search (LNS) introduced by
(Shaw (1998)). In this case, the neighborhood is given by heuristics in order
to (partially) destroy and repair the current solution repeatedly and, conse-
quently, to improve its quality. The second example of VLSN metaheuristics is
a Variable Neighborhood Search (VNS) proposed by (Mladenović and Hansen
(1997)). A size of the neighborhood can be adapted in order to find a local
optimum in an intensification phase and to escape from the local optimum in
a diversification phase of the algorithm.

Another suboptimal method dealing with ETPs becomes from the artificial
intelligence. There are the decision support systems based on expert knowledge

18 2.2 Categorization of Timetabling

(Beddoe et al. (2009)) gained by learning from the examples of a personnel
manager behavior, which is then applied on ETPs to solve them. However, the
success and the robustness of these methods are limited by the structure and
the spectrum of the training ETP instances.

Subsequently, there is a huge subcategory of the metaheuristics that are
biologically/nature inspired. The most known are Evolutionary Algorithm
proposed by (Rechenberg (1971)), Genetic Algorithms introduced in (Holland
(1975)), or Memetic Algorithm defined by (Moscato (1989)) that are based
on an evolution of the population of individuals, where each individual corre-
sponds to one solution. A basic idea is shared for all of them, the population
is evolving in the algorithm analogously as in the nature, i.e., there are some
operators for a recombination (crossover), a mutation and a selection of the
individuals. These algorithms are very popular for solving ETPs, e.g., see
(Landa-Silva and Le (2008); Aickelin and White (2004)), however, their typi-
cal drawback is the time consumption. This is caused by hundreds or thousands
evolved generations of the population that are needed to achieve the good solu-
tions. The second reason of longer computational times is that the population
also consists of hundreds individuals usually in order to keep the diversity of
the individuals in the population during the evolution. On the contrary, an-
other evolutionary metaheuristic, called a Scatter Search, explores the solution
space by evolving a set of reference points in order to operate a small set of
solutions only. This algorithm was described in (Glover (1977)) firstly and
applied on ETPs e.g., in (Burke et al. (2010)).

Moreover, there are more biological inspired algorithms that can be ap-
plied on ETPs. Namely, an Ant Colony Optimization in (Gutjahr and Rauner
(2007)), an Artificial Immune System in (Maenhout and Vanhoucke (2013a)),
a Particle Swarm Optimization in (Günther and Nissen (2010)), an Artifi-
cial Bee Colony Algorithm in (Buyukozkan and Sarucan (2014)), a Harmony
Search in (Hadwan et al. (2013)) and Neural Networks in (Hao et al. (2004)).

Finally, you can see two more groups of the approaches in Figure 2.3.
The main principle of the first one, hyperheuristics, is to automate, using the
artificial intelligence, the process selecting or, moreover, combining simpler
heuristics. Their main objective is to be applicable on more problems than
on a single problem. The competition addressed to hyperheuristics was hold
in 2011, see (Ochoa et al. (2012)) for more information. The second group
contains hybrid approaches which can be combined by more of the heuristics
or by an exact and suboptimal approach, e.g., (Burke et al. (2008)).

2.2.2.1 Applicability and Scalability of the Approaches

The applicability and scalability of the approaches is very interesting and im-
portant, however, these two measures are not always discussed in the ETPs

Chapter 2 Theoretical Background 19

papers. Nevertheless, the survey (Van den Bergh et al. (2013)) categorizes pa-
pers according to the applicability of the used approach to four categories as
follows: i) no tested – 3 papers ii) tested on the artificial data – 76 papers iii)
tested on the real data – 196 papers and, finally, iv) applied in practice – 46
papers. One can see that the most common method to test the new approach
is to apply it on the real life data, which is also one of the objectives of this
thesis.

Unfortunately, survey (Van den Bergh et al. (2013)) did not bring the cat-
egorization in terms of the scalability provided by the used approach. In other
words, there is no comparison of the approaches according to the size of the
ETP instance, e.g., a number of employees, a number of shift types, etc. On
the contrary, the older survey (Burke et al. (2004b)) made at least a compar-
ison of the approaches considering the number of employees involved in the
timetabling. The maximal number of employees over all approaches is up to
30, except the cyclical schedules in (Chan and Weil (2001)), where the number
of employees is up to 150. To the best of our knowledge, there is no paper deal-
ing with bigger ETP instances from the real life, i.e., having a large number of
employees (e.g., one hundred) and more than a few shift types (e.g., up to 100
shift types) that are assigned to the employees. In this case, the solution space
grows rapidly due to the complexity issues and it is more and more difficult to
find any feasible solution and, moreover, to reach a sufficient solution quality.

2.2.3 Used Architectures

Papers dealing with combinatorial problems can be also organized according to
the hardware (HW) used for solving the problem (see Figure 2.4). Regardless
to the high increase in the progress of massively parallel devices, which has
occurred during the last decade, the most common way to find a solution of
ETPs remains still applying a sequential algorithm. It is executed on a single
core of the Central Processing Unit (CPU) of a Personal Computer (PC).

Due to the growing number of CPU cores, the researchers have started to
propose parallel algorithms on multiple core CPUs in order to exploit their full
computational capability. Naturally, design of parallel algorithms is usually
much more difficult than design of a sequential one, however, the operations
research is strongly motivated to explore the larger part of the solution space,
or to obtain the solution of the same quality within the shorter computational
time. The results and the benefits of the parallel algorithms applied on the
combinatorial optimization are summarized in (Talbi (2006)). Unfortunately,
the application of parallel algorithms in combinatorial optimization is still less
common than in other science branches, e.g., in the image processing, the
simulations of chemical processes etc.

New computational architectures stated under the term High Performance

20 2.2 Categorization of Timetabling

Personal Computers High Performance

Computers

multiple core CPUs GPUs

Xeon Phisingle core CPUs
Grid

Computing

Figure 2.4: Used architectures

Computing (HPC) have started to appear in early 1990s. Due to its progress in
the recent years, it seems that their role will become more and more important,
see survey (Brodtkorb et al. (2013a)).

The most known and the oldest one is a grid computing, where the high
performance is achieved by execution of the algorithm on a set of computational
resources in order to reach a common goal. It is conditioned by the fact that
you have to own or hire a grid, i.e., one has to deal with the budget issues in the
case of owning it, or the security issues of the data in the case of hiring it. In
general, there are only a few papers in parallel/grid computing domain related
to OR, e.g., (Anstreicher et al. (2002); Mezmaz et al. (2014)). Grid computing
is rather exploited in the academic/scientific sphere to e.g., the simulations of
the problems from physics or bio-informatics.

The newest HPC HW is Xeon Phi (Intel Corporation (2012)) developed by
Intel Corporation. This device supports a parallel computing on a single chip
with multiple independent cores, in a significantly more massive way than in
standard multicore CPUs. However, the price of this device is still not afford-
able and, probably, that is the main reason, why this device is not commonly
utilized for solving the combinatorial problems yet.

Another HPC device is a Graphics Processing Unit (GPU). There are two
manufacturers on the market, NVIDIAR©, see (NVIDIA (2014)) and AMDR©, see
(AMD (2014)). This device is much financially accessible than Xeon Phi and,
moreover, there is a support in the form of the freely available programming
libraries that makes the development of the parallel algorithms on such a device
easier. The number of papers utilizing GPUs is significantly higher than in the
case of Xeon Phi, however, it is still rapidly lower than papers exploiting multi-
core CPUs, especially in the domain of the operational research.

Chapter 2 Theoretical Background 21

2.3 Employee Timetabling

Historically, the first mention about employee timetabling was in 1950s and
the first survey was published by (Baker (1976)). Over the passed decades, the
employee timetabling has became more and more important in the same way
as the entire OR. The following subsections provides a brief overview of the
combinatorial problems belonging to the employee timetabling domain.

2.3.1 Application Areas

The most known ETP is the Nurse Rostering Problem occurring in hospitals,
e.g., solved by (Burke and Curtois (2014)). Nevertheless, ETPs are as well
addressed in other application areas, e.g., call centers (Gans et al. (2003)),
protection and emergency services (Erdoğan et al. (2010)), postal services
(Bard et al. (2003)), home health care services (Eveborn et al. (2006)), mil-
itary services (Safaei et al. (2011)), transport services (de Matta and Peters
(2009)) and also in all other areas where irregular workload is spread among
the employees.

The overview of all the ETPs application areas was summarized in several
surveys (Baker (1976); Cheang et al. (2003); Ernst et al. (2004); Burke et al.
(2004b); Van den Bergh et al. (2013)).

2.3.2 Classification of ETPs

(De Causmaecker and Vanden Berghe (2010)) introduced the α|β|γ classifica-
tion similar to the classical scheduling classification (Graham et al. (1979);
Brucker (2007)), looking on the nurse rostering problems from three different
point of views.

Firstly, α stands for a personnel environment, i.e., the personnel constraints
(e.g., availability) and skills of the employees (e.g., whether the skills are time
variant or invariant, individual etc.). Secondly, β represents a work character-
istics, i.e., the coverage constraints (related to the coverage of the personnel de-
mand) and shift types (properties of the shift set). Finally, γ contains specifics
of the optimization objective, e.g., whether the optimization is multiobjective,
whether it is focused on the personnel and coverage constraints etc. More ex-
amples are published in (De Causmaecker and Vanden Berghe (2011)), where
some papers from the recent decade are classified.

2.3.3 Workflow of the Employee Timetabling

Independently on the ETP area, there is a large variety of the scheduling prob-
lems related to the workflow of the employee timetabling depicted in Figure 2.5.
It is split into five phases that are executed in four terms – the long term, the

22 2.3 Employee Timetabling

mid term, the short term and in real time. The content of the particular phases
is described in the following subsections.

︷
︸
︸

︷

Demand Modeling

current day

time

1-2 weeks
before

L
o
n
g
te
rm

︷
︸
︸

︷
M
id

te
rm

︷
︸
︸

︷
S
h
o
rt

te
rm

︷
︸
︸

︷
R
ea
l
ti
m
e

1-2 months
before

more than
2 months
before

Strategic Planning

activity
based

flexible

Personnel

Scheduling

day-off
scheduling

preference
scheduling

staff scheduling

Activity

Scheduling

Disruption Handling

shift design

shift
based

Figure 2.5: The workflow of the employee timetabling

Chapter 2 Theoretical Background 23

2.3.3.1 Strategic Planning

At the beginning of the long term, some decisions based on a forecasting as well
as a budgeting and a hiring of new employees have to be made by the human re-
sources management in the phase of a Strategic Planning. In (Komarudin et al.
(2013)) an estimation how many human resources will be approximately
needed, called as staffing, is discussed. Moreover, the benefits of the integrated
methodology on staffing and staff scheduling over the traditional iterative
staffing and scheduling approach are assessed in (Maenhout and Vanhoucke
(2013b)).

Another example of the Strategic Planning objectives is to decide, whether
the length of the planning horizon will be constant (usually in the Nurse Ros-
tering Problem) or variable (can be more effective in ETPs with the flexible
demand – see Section 2.3.3.2). If the length of the planning horizon is constant,
an option to make it rolling can be considered, see (Stolletz and Zamorano
(2014)). In case of the variable planning horizon, settings of its length is a
very sensitive decision having a significant impact on the following phases of
the workflow. On one hand, a longer planning horizon makes the processes
performed in all the following phases more time consuming (e.g., finding a
feasible employee timetable). On the other hand, a longer planning horizon
provides more options to resolve the problems such as balancing the worked
hours among the employees within the timetable.

2.3.3.2 Demand Modeling

A following Personnel Demand Modeling phase from the long term is used to
express the total workload needed for the given planning horizon. Basically,
there are three kinds of the personnel demand modeling that are illustrated in
Figure 2.6.

First one, a shift based demand, is expressed by the number of employ-
ees needed for each shift type in the given planning horizon. This model is
usually used in ETPs where the demand can be easily determined accord-
ing to the requested services measures. E.g., in the Nurse Rostering Problem
(Azaiez and Al Sharif (2005); Burke et al. (2001b)), the number of nurses is
related to the capacity of the hospital, since the nurses have to be able provide
the sufficient healthcare with respect to the maximal number of the patients.

Second one, an activity based demand, is modeled by a list of activities that
have to be completed within a given time window requiring a given skill. In
this case, activities are usually grouped into sequences that can be assigned to
one employee, see (Elahipanah (2012); Smet et al. (2014)). This type of the
demand modeling is, e.g., used in a transport timetabling problems such as
a crew scheduling (Maenhout and Vanhoucke (2010c)) or scheduling in postal

24 2.3 Employee Timetabling

services (Bard and Wan (2006)).

The last one is a flexible demand that is modeled by forecasting techniques
applied on the statistical data from the previous planning horizons. This is
common in the transport timetabling, e.g., in airport companies, where the
transport is varying during the different seasons and days in the week and,
moreover, it is also dependent on bank holidays etc., see (Bäumelt et al. (2014);
Örmeci et al. (2014); Green et al. (2007)).

In the case of the activity based and flexible demand, a Shift Design (some-
times called as shift scheduling as well) is processed in order to transform the
personnel demand somehow into a set of shifts. This problem is called as a
Shift Design Problem, solved e.g., in (Musliu et al. (2004)), where the set of

re
q
u
ir
ed

em
p
lo
y
ee
s

time3am 6am 9am 12am 3pm 6pm 9pm 12pm12pm

re
q
u
ie
re
d
a
ct
iv
it
ie
s

time3am 6am 9am 3pm 6pm 9pm12pm

a) Shift based

re
q
u
ir
ed

sh
if
ts

time3am 6am 9am 3pm 6pm 9pm12pm

12am 12pm

12am 12pm

night

early

early

early

late

late

night

b) Activity based

c) Flexible

3am
− 6am

12pm
− 3am

6am
− 9am

9am
− 12am

12am
− 3pm

3pm
− 6pm

6pm
− 9pm

9pm
− 12pm

Figure 2.6: Three kinds of the personnel demand

Chapter 2 Theoretical Background 25

shift types was found by the Tabu Search Algorithm. A related problem is a
Minimal Shift Design Problem (Gaspero et al. (2007)), which considers as the
objective to find the minimal number of shifts. When the personnel demand
is modeled directly by the shifts, the Shift Design phase is skipped, since the
set of shifts is already given.

2.3.3.3 Personnel Scheduling

The objective of a Personnel Scheduling phase, belonging to the mid term,
is to assign the total workload typically expressed by the set of shifts to the
employees. This phase can be further split into three parts.

The first one is a preference scheduling, where the main goal is to sat-
isfy the requests of employees as much as possible, e.g., (Hanne et al. (2009);
Bard and Purnomo (2005)). Employees have more types of requests, e.g., to
take holiday, to go to the doctors, to have a free every second Thursday from
3pm to 8pm due to their free time activities etc. Some of the requests can
be already incorporated into the timetable in this part, e.g., to assign the re-
quested day-off to the timetable. On the contrary, some of the preferences
are better to consider right in the last part of the personnel scheduling – the
process of creating the timetable, e.g., one specific employee does not want to
be on shifts together with another specific employee. Typically, the preference
scheduling is handled manually, i.e., one has to decide whether the preference
of the employee can be met or not with respect to its priority and, mainly, to
the capacity of the human resources for the given planning horizon. Conse-
quently, the requests are expressed as a part of the input data for the following
two parts.

The second part is called a days-off scheduling and its objective is to sched-
ule the working and non working days in the given planning horizon, see
(Alfares (1998, 2001)). This part reduces the state space needed to explore
to find an initial feasible solution.

The last part, a staff scheduling, is used in order to set the working times
of the employees during the working days. The goal of this part is to find a
feasible solution of the solved ETP, and, moreover, to reach the best value of
the objective function with respect to the considered constraints. The majority
of the ETP problems is related to this part and, therefore, they are discussed in
many surveys (Ernst et al. (2004); Burke et al. (2004b); Cheang et al. (2003)).

2.3.3.4 Activity Scheduling

An Activity Scheduling phase follows the Personnel Scheduling phase in or-
der to specify the particular activities within the assigned shifts, e.g., in
(Quimper and Rousseau (2010); Lequy et al. (2012a,b)). Naturally, this phase

26 2.4 Summary

is optional, i.e., it is processed in those application areas where it makes a sense,
see (Elahipanah (2012)). On the contrary, this phase is typically skipped in
the ETPs such the Nurse Rostering Problem, since the activities done during
the shift are created in a strongly operational way and cannot be planned one
week before the planning horizon starts.

Moreover, a tour scheduling described thoroughly in survey (Alfares (2004))
appears in the employee timetabling papers. The tour scheduling is not illus-
trated in Figure 2.5 in order to keep it clear, however, this term integrates the
phases of the demand modeling and personnel scheduling. Namely, the activ-
ity based personnel demand followed by the shift design is combined with the
day-off scheduling in order to construct the tours. The main reason to call it
the tour is that the activities ordered in the tour can have different locations.
Consequently, the employees move among the locations in order to satisfy the
sequences of the activities. This problem is addressed e.g., in (Isken (2004);
Stolletz (2010); Brunner and Stolletz (2014)).

2.3.3.5 Disruption Handling

The last phase in the workflow called a Disruption Handling starts after pub-
lishing the final timetable. Subsequently, the published timetable has to be
naturally modified with respect to the unexpected circumstances, e.g., when an
employee get sick. However, the timetable cannot be completely rebuilt, since
the employees have already planned some private activities during their days-off
and before or after their assigned shifts. This problem is called a Nurse Reros-
tering Problem (NRRP) and it appears very often in the healthcare. However,
compare to the Personnel Scheduling phase, there are only few papers dealing
with NRRP, e.g., (Moz and Pato (2007); Maenhout and Vanhoucke (2010b,
2013a)). Due to this reason, there is no support to solve it by computers very
often and it is usually solved in a manual way. However, this phase is executed
operationally and should be finished as soon as possible in order to shorten
these stressful situations.

2.4 Summary

The aim of this chapter was to identify significant gaps in the literature. Based
on that, we decided to focus on some opened issues from the workflow of the
employee timetabling (see Figure 2.5).

In the case of the Personnel Scheduling, we describe how to deal with the
large ETP instances from the real life having the large variety of the shift
types given by the flexible demand (called as ETPHD) in Chapter 3. The
aim of the ETPHD research was to consider the dozens of shifts during the

Chapter 2 Theoretical Background 27

timetable design in order to minimize the overstaffing and, consequently, to
reduce personnel costs.

In the case of the Disruption Handling, we decided to exploit the GPU
on NRRP (see Chapter 4) for two reasons. Firstly, Section 2.2 confirms that
exploiting this hardware device to solve combinatorial problems is still not com-
mon, however, the published results from other scientific fields, e.g., physics,
bio-informatics or image processing, are very promising. Secondly, our main
motivation was to minimize computational time consumed by solving NRRP,
since this problem belongs to the operational phase of the employee timetabling
workflow requiring fast reactions.

28

Chapter 3

Employee Timetabling
Problem with a High
Diversity of Shifts

3.1 Introduction

This chapter deals with a scheduling problem at the airport belonging to the
domain of employee timetabling problems (ETPs), also called employee roster-
ing problems or personnel scheduling problems. The main difference between
this problem and the most known problem from this domain, the Nurse Roster-
ing Problem (NRP) (Burke et al. (2004b)), lies in the number of different shifts
needed to satisfy a personnel demand, i.e., the number of employees needed at
the specific time interval of the day. An illustrated example for both prob-
lems is shown in Figure 3.1, where the upper one is typical for the NRP and
the lower one corresponds with the ETP typical for airports. The personnel
demand, given by the statistical data from the previous planning horizons, is
represented by the gray area. One is able to satisfy the personnel demand
expressed by the number of required shifts to be assigned to the employees on
the certain day. This ensures a shift coverage model (see (Burke et al. (2006)))
depicted by a bold black line that corresponds to the coverage by {early, late,
night} shifts in Figure 3.1 for both problems.

On the other hand, the personnel demand of the ETP from the transport
services, e.g., at airports, is usually more dynamic (see the bottom chart in
Figure 3.1). This is caused by the traffic peaks that are even different on various
days during the week. The personnel demand is, very often, expressed in time
intervals of the day in order to cover it as precise as possible. This time interval
coverage model (see (Burke et al. (2006))) is depicted by white bars bordered
by a black line. There are two ways how to deal with the coverage given by

29

30 3.1 Introduction

Airports

Hospitals

shift coverage

time interval

coverage

personnel

demand

12
18
24
30
36
42
48
54
60

2

3

4

5

re
q
u
ir
ed

em
p
lo
y
ee
s/
n
u
rs
es

time3am 6am 9am 12pm 3pm 6pm 9pm12am 0am

time3am 6am 9am 12pm 3pm 6pm 9pm 0am12am

Figure 3.1: Different personnel demand models for employee timetabling prob-
lems in hospitals and airports

time intervals. Either the time intervals can be considered as independent
tasks, or these tasks can be joined together and modeled as shifts, for more
details see Section 3.1.1. In our case, we have an already given set of shifts
(created on the base of the time interval coverage model) which allows one to
cover the personnel demand very accurately (see bottom of Figure 3.1). This
set not only consists of shifts with different start and finish times, but also
contains split shifts and on-call shifts. The split shift facilitates covering the
traffic peaks during the day, while the on-call shift is used as an alternative for
employees’ sick leaves and other unanticipated causes.

The objective of this chapter is to solve the employee timetabling problem
with a fixed and enlarged set of shifts. We denote this problem as the Employee
Timetabling Problem with a High Diversity of shifts (ETPHD). The ETPHD
is not only specific by a large variety of shifts, but also by its set of constraints.
The constraints that make this problem more complex are the so called block
constraints. These constraints (described in detail in Section 3.2.1) are a gen-
eralization of the restrictions limiting the number of consecutive working days.

3.1.1 Related Works

The problem addressed in this chapter belongs to the employee timetabling
area. Summaries of the approaches for solving problems from the em-
ployee timetabling/rostering domain are published in (Burke et al. (2004b);
Ernst et al. (2004)). The most studied part of ETPs belongs to the health
care branch (Hung (1995); Cheang et al. (2003)). In terms of the NRP classifi-
cation proposed in (De Causmaecker and Vanden Berghe (2010)), our ETPHD
can be categorized by ASBI|TVNO|PLGM.

The following two paragraphs are focused on the methods used to
handle the common NRPs, where the shift coverage model is used.
These problems can be solved optimally by an Integer Linear Program-

Chapter 3 The ETP with a High Diversity of Shifts 31

ming (ILP) (Azaiez and Al Sharif (2005)). However, this method provides the
solution in a reasonable amount of time in the case of small instances only,
i.e., a very limited set of shifts, a tiny set of employees and a simple set of
constraints. Unfortunately, these assumptions are not usually kept for real
data instances. Therefore, the ILP is used more often for simplified nurse
rostering subproblems (Klinz et al. (2006)). This problem can also be mod-
eled as a Constraints Satisfaction Problem, solved by constraint programming
techniques (Cheng et al. (1997)). A hybrid approach from the domain of the
declarative programming was presented in (Wong and Chun (2003)) on a sim-
plified NRP where the authors proposed an automatically implied constraint
generation. By this hybrid technique, the ratio of the solved NRPs can be
increased.

The optimal approaches are usually unable to obtain the final solution in
a reasonable amount of time when more difficult NRPs are considered. In this
case, heuristic approaches are applied or the solved NRP is separated into its
subproblems. These subproblems can be solved by different approaches (opti-
mal or heuristic) to attain suboptimal solutions of the problem. One of the most
applied metaheuristic approaches for NRPs is a Tabu Search Algorithm (TSA).
A two stage approach to this problem is described in (Burke et al. (1999))
where, in the first step, a feasible solution with respect to hard constraints
is found and, in the second step, a TSA based optimization is used. Similar
stage separation is described in (Vanden Berghe (2002)) where the comparison
of two approaches (TSA and Memetic Algorithm (MA)) for the optimization
stage was presented. In a general way, TSA is faster than MA, but its compu-
tation time depends considerably on the previous initialization stage.

The papers relevant specifically to our ETPHD (not only to NRP) are de-
scribed in this paragraph. There are two models from the coverage constraints
point of view discussed beneath Figure 3.1. The first one is the shift coverage
model used typically in most of the NRPs. The second one is the time interval
coverage model considering a time scale smaller than days, e.g., hours, min-
utes. This model occurs in ETPs having the highly dynamic services from the
time point of view, e.g., call centers (see a complex survey (Gans et al. (2003);
Helber and Henken (2007))). In this case a tour/sub daily scheduling prob-
lem (Cezik et al. (2001); ASAP (2013)) or a break scheduling problem (Aykin
(1996)) is handled. A tour is designed like a group of consecutive tasks (e.g.,
different types of the work, breaks). The arbitrary tasks in the tour can be
moved or swapped. Nevertheless, in the case of our ETPHD the shifts are
assigned to the roster in an atomic way, i.e., the shift cannot be separated into
its tasks. Also, the time interval coverage model is considered in a (minimal)
shift design problem (Gaspero et al. (2007); Musliu et al. (2004)). The objec-
tive is to determine how to design a set of shifts in order to cover the personnel
demand (see the motivation Figure 3.1) as precise as possible. However, this

32 3.2 Problem Statement

problem is not a part of our ETPHD described in this chapter (the output of
the shift design problem is used as the input of the ETPHD).

The comparison of different coverage models (shift coverage and time inter-
val coverage) is presented in (Burke et al. (2006)) and confirms that the time
coverage model is more efficient from the overcoverage point of view than the
shift coverage model. The time coverage model is transformed to the shift cov-
erage model so that the personnel demand is fulfilled by different combinations
of shifts, i.e., the shift design problem is solved. The main dissimilarity to
our work lies in the number of shifts, which is up to 10 shifts in (Burke et al.
(2006)), while our ETPHD takes into account the strictly given set of shifts
enlarged to dozens or hundreds of shifts.

3.1.2 Contribution and Outline

In this chapter, we introduced a multistage approach for handling ETPHD.
The basic idea lies in a transformation of the ‘enlarged’ set of shifts to a simpler
one. The transformed timetable is initialized by an evolutionary algorithm
(the first stage) and the problem instance is transformed back by an algorithm
based on matching in the bipartite graph (the second stage). The objective
of these stages is to determine the rough position of the blocks of shifts. The
final roster is obtained during the optimization based on the TSA (the third
stage). This stage uses our adaptation of the TSA suggested in (Vanden Berghe
(2002)). The contributions of the chapter are: a) a transformation, based on
a mapping of the shifts into the group of shifts, allowing one to solve the
ETPHD described in Section 3.3 and Section 3.5, b) an ILP model of the
ETPHD presented in Section 3.3, c) an algorithm for the first stage based on
an evolutionary algorithm (EA) shown in Section 3.4 and d) a proposed cross
evaluation methodology used to verify the contribution of the particular stages
used in the different approaches applied on the different personnel scheduling
problems (described in Section 3.6.4).

The chapter is organized as follows: Section 3.2 outlines the motivation
problem at the airport. Section 3.3 explains the problem transformation to the
problem with a reduced set of shifts and shows its ILP model. The transformed
problem is solved in Section 3.4 by an EA. The inverse transformation is
described in Section 3.5. The experiments and performance evaluation are
summarized in Section 3.6 and the last section concludes the work.

3.2 Problem Statement

The problem solved in this chapter is inspired by a real ETPHD from the
transport services. This problem is interesting through its ‘enlarged’ set of
shifts where the shifts differ, not only, in the starting and finishing times.

Chapter 3 The ETP with a High Diversity of Shifts 33

There are also different split shifts to cover peaks during the day. Another
interesting feature of this problem is that all mandatory constraints of the
ETPHD, given by the labor code and the collective agreement, makes the
problem over-constrained. Due to the problem complexity, a notation glossary
is included in the beginning of the thesis.

The goal of the ETPHD is the same as in NRP, to assign the requested shifts
from the set of shifts to the employees with respect to the given constraints
that are discussed below in detail. From the complexity point of view, ETPHD
is NP-hard, since NRP is NP-hard (Osogami and Imai (2000)) and ETPHD is
an extension of NRP.

3.2.1 Constraints

From the employer point of view, the constraints considered in ETPHD are
divided into two groups. The first group is stated as hard constraints that
have to be satisfied. On the other hand, soft constraints can be violated, but
their non-fulfillment is penalized in the objective function. From the algorithm
point of view, this categorization is not very useful since different algorithm
stages are focused on different constraints and have different objectives. The
hard constraints considered in this problem are:

(c1) An employee cannot be assigned to more than one shift per day.

(c2) Shifts requiring a certain skill (grade) have to be covered by employees
with this skill.

(c3) Over coverage of shifts is not allowed.

(c4) Under coverage of shifts is not allowed.

(c5) The minimal time gap of free time between two shifts must be kept.

(c6) Personnel requests must be considered – like fixed shift assignment, day-
off requests, partial day-off requests (e.g., an employee is able to work to
5pm).

(c7) The maximum number of consecutive days-on and maximum working
hours in one block have to be kept.

(c8) The minimal block rest between the blocks has to be fulfilled.

(c9) Valid blocks of shifts must be respected, e.g., no more than one split shift
is allowed in the block.

The constraint (c5) defines a preferred time gap between two shifts equal to 12
hours. This preferred time gap can be shortened down to 10 hours (minimal
time gap) subject to a condition that the following preferred time gap will be

34 3.2 Problem Statement

Su Mo Tu We Th Fr Sa

time gap ≥ 44h

Su MoTu We Th Fr Sa

valid block of 4 shifts having time gaps

between shifts < 50h and a sum of working hours ≤ 48h

shift

< 44h < 44h

next

block

time gap ≥ 50h< 50h < 50h < 50h

valid block of 3 shifts having time gaps

between shifts < 44h and a sum of working hours ≤ 36h

next

block

minimal block rest = 44h

for blocks of 3 shifts

minimal block rest = 50h

for blocks of 4 shifts

days

days

Figure 3.2: Block constraints

prolonged by the time equal to the previous shortage. The hard constraint
(c6) keeps the shifts fixed in the roster, e.g., a planned business trip or holiday
assignments must be respected.

The hard constraints (c7)–(c9) dealing with the so called block of shifts
make this ETPHD problem more difficult. The block of shifts is defined as
a sequence of consecutive shifts where all time gaps between every two shifts
in the block do not exceed the defined minimal block rest covered by (c8), e.g.,
44 hours (see Figure 3.2). In addition, this number depends on the number of
shifts in the block. The hard constraint (c7) defines that the count of working
shifts in each block is less than or equal to the maximal shift count. Likewise,
the number of working hours in the block is bounded, e.g., 36 hours for the
block of 3 shifts. Furthermore, the block constraint (c9) limits the number of
certain shifts in the block.

These block constraints make the situation more complex since the position
of the blocks is crucial for the quality of the resulting schedule. Therefore, in
our opinion, it rules out the majority of the single stage approaches since the
rough position of the block should be determined in the first stage respecting
the fixed shifts in the roster (e.g., planned holidays, planned business trips,
etc.). According to our experiments, it has a positive influence on the quality
of resulting schedule.

The soft constraints considered in ETPHD are:

(c10) Overtime hours should be balanced according to the employee’s workload.

(c11) The number of isolated days-on and isolated days-off should be mini-
mized.

(c12) The number of blocks having the length smaller than the given number
should be minimized.

3.2.2 Problem Statement

This section describes the problem representation in a rigorous way due to
several reasons. Firstly, this problem is expressed by an ILP model in the

Chapter 3 The ETP with a High Diversity of Shifts 35

following section. Furthermore, a transformation used in order to simplify the
solved problem is a part of this model. Finally, the problem complexity can be
computed with respect to the precise description in Section 3.3.2.

Let E be a set of employees, D represents a set of days from the whole
planning period and S denotes the set of shifts. Consequently, the roster is
represented by R, a binary matrix such that ∀e ∈ E, ∀d ∈ D, ∀s ∈ S

Reds =

{

1, shift s is assigned to employee e on day d
0, otherwise

(3.1)

When the roster contains a fixed shift s, defined due to (c6), the corresponding
Reds = 1 is a constant and another shift cannot be assigned to employee e on
day d. Furthermore, the fact that shift s can only be assigned to employee e
having a certain skill is given by matrix Q so that

Qes =

{

1, shift s can be assigned to employee e
0, otherwise

(3.2)

The coverage constraints (c3) and (c4) from Section 3.2.1 are expressed by
a binary matrix RS where RSsd = 1 iff shift s ∈ S is required on day d ∈ D.
Subsequently, in relationship to constraint (c5), we can define a binary matrix
of shift precedences SP so that

SPs1s2 =

{

1, shift s1 can be followed by shift s2 on the subsequent day
0, otherwise

(3.3)

where s1, s2 ∈ S.

The shifts of the set S can be joined into groups given by a mapping
M : S 7−→ K where K = {F ,H, E ,L,N , S,O} is a set of shift kinds. The
set of shift kinds consists of {free F , required free or holiday H, early shifts E ,
late shifts L, night shifts N , split shifts S and on-call shifts O}. Let KW and
KF be subsets of K defined as follows

KW = {E ,L,N ,S,O}
KF = {F ,H}.

(3.4)

i.e., KW is the subset of working shift kinds, KF represents free shift kinds.
Furthermore, for each k ∈ K, let Lk be an average shift length of kind k
so that Lk = avgs∈S |M(s)=k |s| where |s| is the length of shift s ∈ S. Finally,
workloads of all employees E are defined by a non-negative vector W according
to the length of the planning period. In order to simplify orientation in the
chapter, the used nomenclature is summarized in the beginning of the thesis.

36 3.3 Transformation of the Problem and its Mathematical Model

3.3 Transformation of the Problem and its Mathe-
matical Model

The goal of the first stage of the algorithm is to determine the rough position
of the blocks, i.e., a placement of the shift kinds with respect to the hard and
soft constraints. The rough blocks of shift kinds can be modeled as blocks
of days-on separated by days-off. In addition, the output of the first stage
determines which kind of shift k ∈ K should be assigned to the given employee
on the given day in the block. Two approaches of the first stage are described
in Section 3.3 and 3.4. This section presents a mathematical model based on
a transformation used in the first stage.

3.3.1 Transformation SK

Let SK be the transformation resulting from the mappingM : S 7−→ K. The
SK transforms ETPHD to ETPHD

(K)
, specifically roster R to R

(K)
where

R
(K)

edk = 1 iff shift kind k is assigned to employee e on day d. In the same way,

RS becomes RS
(K)

where RS
(K)

kd is the number of required shifts of kind k for

day d. Finally, SP becomes SP
(K)

such that SP
(K)

k1k2
expresses, whether the

shifts of kind k1 can be followed by the shifts of kind k2. The transformation
is defined by equations (3.5)–(3.8).

∀e ∈ E, ∀d ∈ D, ∀k ∈ K :

R
(K)

edk =

{

1, ∃s ∈ S | Reds = 1 ∧M(s) = k

0, otherwise
(3.5)

∀k ∈ K, ∀d ∈ D :
RS

(K)

kd =
∑

s∈S |M(s)=k

RSsd (3.6)

∀e ∈ E, ∀k ∈ K :

Q
(K)

ek =

{

0, ∃s ∈ S | Qes = 0 ∧M(s) = k

1, otherwise
(3.7)

∀k1, k2 ∈ K :

SP
(K)

k1k2 =

{

0, ∃s1, s2 ∈ S | SPs1s2 = 0 ∧M(s1) = k1 ∧M(s2) = k2

1, otherwise

(3.8)

Chapter 3 The ETP with a High Diversity of Shifts 37

3.3.2 Integer Linear Programming Model of ETPHD
(K)

Design of blocks in the roster can be formulated by an ILP model, where
a multicriteria objective function Z is defined by a linear combination of the
constraints (c3), (c4) and (c10) fulfillment, where α, β > 0 are weights of the
criteria. These criteria are evaluated by the piecewise linear functions (e.g.,
absolute value function) penRS and penW. The penRS function reflects the
over and under coverage of the assigned shift kinds, while the penW function
corresponds to the coverage of the employees’ workloads. These functions are
represented in the ILP model by a set of auxiliary variables that are not incor-
porated into equations (3.9)–(3.16) in order to make the model more readable.

minZ = min







α ·
∑

k∈KW

∑

d∈D

penRS

(

RS
(K)

kd −
∑

e∈E

R
(K)

edk

)

+

β ·
∑

e∈E

penW

(

We −
∑

d∈D

∑

k∈K

Lk ·R
(K)

edk

)} (3.9)

subject to

∀e ∈ E, ∀d ∈ D : ∑

k∈K

R
(K)

edk = 1 (3.10)

∀e ∈ E, ∀d = 〈1, |D| − 1〉, ∀k1, k2 ∈ K :

R
(K)

edk1 +R
(K)

e,d+1,k2 − SP
(K)

k1k2 ≤ 1 (3.11)

∀e ∈ E, ∀d ∈ D|Q
(K)

ek = 0:
R

(K)

edk = 0 (3.12)

∀e ∈ E, ∀t = 〈1, |D| − bmax〉 :

t+bmax
∑

d=t

∑

k∈KW

R
(K)

edk ≤ bmax (3.13)

∀e ∈ E, ∀d = 〈2, bmin〉, ∀d = 〈1, |D| − t〉 :
∑

k∈KW

(

R
(K)

edk −R
(K)

e,d+1,k +R
(K)

e,d+t,k

)

≥ 0 (3.14)

38 3.3 Transformation of the Problem and its Mathematical Model

∀e ∈ E, ∀d = 〈2, brmin〉, ∀d = 〈1, |D| − t〉 :
∑

k∈KW

(

R
(K)

edk −R
(K)

e,d+t−1,k +R
(K)

e,d+t,k

)

≤ 1 (3.15)

∀e ∈ E, ∀τ = 〈bmin, bmax〉, ∀t = 〈1, |D| − τ〉 :
t+τ
∑

d=t

R
(K)

ed(k=S) ≤ 1 +M ·
t+τ
∑

d=t

∑

k∈KF

R
(K)

edk (3.16)

The constraints of the ILP model are stated by equations (3.10)–(3.16).
The first constraint equation (3.10) corresponds to the constraint (c1), i.e.,
one shift kind is assigned per day. Similarly, equation (3.11) matches the

constraint (c5) represented by SP
(K)

k1k2
and equation (3.12) stands for the skills

of employees (c2). The constraints (c7), (c12), (c8) are given by (3.13), (3.14),
(3.15). A maximal block length bmax of the working shift kinds is constrained
by (3.13), while the following equation (3.14) considers the minimal length of
the blocks bmin. The last inequality from the block constraints (3.15) defines
the minimal block rest length brmin between the block of shifts. Since the ILP
model of the first stage is formulated on shift kinds, constraints (3.13)–(3.15)
limit the number of consecutive shift kinds only instead of the sum of hours
as is defined by block constraints. But it is sufficient since the objective of
the first stage is just to determine the rough position of blocks. The values for
(bmax, bmin, brmin) used in the solved ETPHD

(K)
are fixed and given by (5, 3, 2).

In the last stage of our approach these constraints (c7), (c8) are reflected in the
complete form. The last equation (3.16) stands for (c9) to avoid more shifts
of the same kind in one block, e.g., it is not feasible to have more than one

Table 3.1: Number of constraints and binary and continuous variables in the
ILP model

type number

binary variables |E| · |D| · |K|
continuous variables |E|+ |D| · |K|
constraints (3.10) |E| · |D|
constraints (3.11) |E| · (|D| − 1) · |K|2

constraints (3.13) |E| · (|D| − bmax)
constraints (3.14) |E| · (|D| − 2 + . . .+ |D| − bmin)
constraints (3.15) |E| · (|D| − 2 + . . .+ |D| − brmin)
constraints (3.16) |E| · (|D| − bmin + . . .+ |D| − bmax)

Chapter 3 The ETP with a High Diversity of Shifts 39

split shift, i.e., k = S, in one block. The term M ·
∑t+τ

d=t

∑

k∈KF
R

(K)

edk on the
right side of (3.16) eliminates the equation in effect, when t consecutive days
contain a free shift kind k ∈ KF , i.e., it is not a block of the consecutive shifts.
M is a big integer number.

The size of the ILP model stated by (3.5)–(3.16) is summarized in Table 3.1.
This table considers the worst case, when no variable is relaxed, e.g., by skills
expressed in (3.12). For an instance with |E| = 100 employees, the planning
horizon |D| = 30 days and shift kinds |K| = 7 the total number of binary
variables equals 21000 while the number of continuous variables is 310. When
we consider bmax = 5, bmin = 3 and brmin = 2, the ILP model contains 166500
constraints.

3.4 Solution of the First Stage by an Evolutionary
Algorithm

A solution of ETPHD
(K)

is the output of the algorithm’s first stage. Due to
enormous size of the ILP model (see Table 3.1) we need a faster way to find
an initial schedule. Therefore, the solution of the first stage is found heuristi-
cally, namely by an evolutionary algorithm (EA), outlined in Algorithm 1, and
discussed in this section.

Algorithm 1: An evolutionary algorithm pseudo-code

Input : ETPHD instance

Output: Roster R
(K)

0 ETPHD
(K)

← Preprocessing(ETPHD)

1 P0 ← GeneratePopulation(ETPHD
(K)

, pSize0)
2 foreach I ∈ P0 do Evaluate(I)
3 P ← P0; q ← 0
4 while q < #pop do

5 P ← Select(P, pSize) // select the pSize I ∈ P
6 PN ← ∅ // clear population PN

7 while |PN | < offspringCount do // breed offspringCount offsprings

8 [I1, I2]← ChooseParents(P)
9 IN ← Crossover(I1, I2)

10 IN ← Mutate(IN) with probability pM
11 PN ← PN ∪ IN // add offspring IN

12 foreach I ∈ PN do Evaluate(I) // evaluate PN

13 P ← P ∪ PN // merge populations

14 q ← q + 1

15 R
(K)

← I ∈ P with the lowest value of ZE

16 return R
(K)

40 3.4 Solution of the First Stage by an Evolutionary Algorithm

3.4.1 Encoding

A direct value encoding is used to represent the rosters R
(K)

as individuals
I. The shift kinds assigned to the fixed number of consecutive days con-
stitute a gene. The number of days representing one gene is called a gene
length denoted as l. The genes are indexed by two indices (see Figure 3.3).
The first one is the index of employee e and the second one is the index of
the gene position p such that p = {⌊dl ⌋ | ∀d ∈ D}. Thereafter, a subma-

trix of R
(K)

given by R
(K)

[e,p] = R
(K)

edk | (p − 1) · l < d ≤ p · l corresponds
to a gene Ie,p. Each gene Ie,p is encoded to an integer value given by
∑(p+1)·l−1

d=p·l

(

|K|d−p·l ·
∑|K|−1

k=0

(

k ·R
(K)

edk

))

. Naturally, the count of genes is re-

duced by (3.8), e.g., a sequence of shift kinds [N , E ,F ,F] is excluded.

3.4.2 Preprocessing

The Preprocessing function contains the described transformation SK (Sec-
tion 3.3.1). Moreover, this function initializes static parts in order to accelerate
the evaluation of the rosters. More specifically, all permutations with a repeti-
tion of shift kinds k ∈ K of length l are generated and evaluated with respect
to the considered hard constraints (c1), (c5), (c6) (infeasible permutations are
excluded). Similarly, the precedences of genes are assessed with respect to the
block constraints (c7)–(c9), (c12) presented in (3.11)–(3.16), i.e., the infeasible
gene precedences are forbidden. On the other hand, the feasible gene prece-
dences are penalized according to their shift kinds on the boundary of the genes
(see Section 3.4.4).

3.4.3 Generation of the Initial Population (GIP)

The initial population P0 is accomplished by the GeneratePopulation func-
tion, i.e., pSize0 individuals are created. Generally, the individual I ∈ P,
constituted by R

(K)

[e,p], represents one roster R
(K)

. For each individual I ∈ P0,
the roster is created step by step for each employee separately. Employee e
is given so that the employees are sorted by the descending order of the shift
kinds that cannot be moved to another employee, i.e., the number of the fixed
shift kinds, e.g., holiday.

Furthermore, four different heuristics RG, WHG, LEG and LEWHG were pro-
posed to construct the individuals. Firstly, the order in which the positions
are initialized is given by the order of gene positions (see the second column
in Table 3.2). Secondly, the order in which genes are assigned is given by the
order of feasible genes (see the third column in Table 3.2).

The order of the gene positions in the heuristics RG and WHG reflects the
count of the feasible genes to the given position. In other words, genes having

C
h
ap

ter
3

T
h
e
E
T
P

w
ith

a
H
igh

D
iversity

of
S
h
ifts

41

p = ⌊d/l⌋

R(K):

︷︸︸︷

I:

l = 4

R
(K)

[e,p]
R

(K)

[e,p+1]

︷︸︸︷ ︷︸︸︷

R
(K)

[e,p−1]

1764

Ie,p =

(p+1)·l−1
∑

d=p·l

(

|K|d−p·l ·

|K|−1
∑

k=0

(
k ·R

(K)
edk

)
)

= 7
0 · 0 + 7

1 · 0 + 7
2 · 1 + 7

3 · 5

d

k

E E L F

e

e

contains shift kinds E E L F

encoding

decoding

Figure 3.3: The gene representation

42 3.4 Solution of the First Stage by an Evolutionary Algorithm

Table 3.2: Different heuristics for the generation of the initial population P0

type of GIP order of gene positions order of feasible genes

RG count of feasible genes asc. random
WHG count of feasible genes asc. count of working hours desc.
LEG lack of employees desc. random

LEWHG lack of employees desc. count of working hours desc.

more fixed shifts are assigned first. For the heuristics LEG and LEWHG the gene
positions with the maximal lack of employees are preferred. The goal of this
strategy is to cover the requested shift kinds RS

(K)
as precisely as possible.

The order of feasible genes remain to be determined for each gene position
p ∈ {0, . . . , ⌊|D| /l⌋}. Feasible values for the given gene are restricted to the
ones respecting precedences, i.e., the forbidden combinations of the consecutive
genes are ignored. Either the order can be generated in a random way (heuris-
tics RG and LEG) or the feasible genes with the higher number of working hours
are preferred (heuristics WHG and LEWHG). This strategy is used in order to
improve the employees’ workload fulfillment.

3.4.4 Objective Function Z
E

The multicriteria objective function ZE(3.17) is used in the Evaluate method
in Algorithm 1. The following constraints are taken into account as penalties
in ZE .

The first two elements correspond to the objective function (3.9), i.e., penal-
ties of the under and over coverage of the required shift kinds (constraints (c3)
and (c4)) and penalties of the unbalanced workload of the employees (c10).
The next two terms follow from the roster encoding. The third element of
ZEpenalizes the quality of R

(K)

[e,p] w.r.t block constraints (c7)–(c9), (c12) ex-

pressed in (3.13)–(3.16).

The last element is focused on the gene precedences penalties. It is neces-
sary to take the borders of the genes after the recombination into account, i.e.,
the kind precedences SP

(K)
and the block constraints (c7)–(c9), (c12) related

to the neighborhood genes have to be checked and penalized.

Chapter 3 The ETP with a High Diversity of Shifts 43

minZE = min







α ·
∑

k∈KW

∑

d∈D

penRS

(

RS
(K)

kd −
∑

e∈E

R
(K)

edk

)

+

β ·
∑

e∈E

penW

(

We −
∑

d∈D

∑

k∈K

Lk ·R
(K)

edk

)

+

γ ·
∑

e∈E

∑

p∈GS

penGene
(

R
(K)

[e,p]

)

+

δ ·
∑

e∈E

∑

p∈〈1,|GS|−2〉

penPrec
(

R
(K)

[e,p], R
(K)

[e,p+1], R
(K)

[e,p+2]

)







(3.17)

3.4.5 Selection (SEL)

The rank based wheel selection similar to (James et al. (2007)) is used in the
Select function to reduce the number of individuals of P to pSize. Firstly,
the individuals are ordered by their quality measured by ZE . The sorted
individuals are labeled by a rank function as follows: The best individual gets
the rank |P| (equal to the total count of individuals in the population before
the selection is applied), the second one is marked with the rank |P| − 1, the
third one with |P| − 2, . . . , and the last rank is equal to 1. Finally, the ranks
are transformed to the survival probabilities pI of particular individuals by
equation

p(I) =
2 · rank(I)

|P| · (|P|+ 1)
, ∀I ∈ P. (3.18)

These values of survival probabilities are normalized between 0 and 1. Fi-
nally, the elitism set keeps the best I ∈ P alive.

3.4.6 Crossover Operators (X)

All crossover operators X are applied in the breeding process of the offspring
individual IN with a probability pX = 0.85. There are more possibilities, how
to perform the Crossover function in ETPHD

(K)
. However, we decided to

apply the employee based tournament selection crossover (EBTSX) presented
in (Maenhout and Vanhoucke (2008)). The basic idea is as follows: For given
parent individuals I1, I2 the better roster of employee e with respect to ZE is
chosen. The choice of a better roster of each employee e is executed with the
certain probability which was experimentally set to 0.6 for the best perfor-
mance. An advantage of EBTSX is that there is no need to apply any repair

44 3.5 The Second Stage – Inverse Transformation KS

operators for this type of the crossover, because the whole rosters of the employ-
ees are copied to the offspring, i.e., all constraints related to precedences (kind
precedence, gene precedence) are preserved. The influence of the crossover to
the constraints evaluated for each day across all employees, e.g., shift kinds
coverage, is incorporated to the objective function ZE .

On the contrary, for the crossover based on the combination of the ros-
ters of the particular employees, it is better to apply the day based one point
crossover (DBOPX) (Maenhout and Vanhoucke (2008)) instead of the uniform
one. Generally, the objective function ZE increases rapidly for each point of
such crossover due to precedence constraints violations. Moreover, if some of
the hard constraints are violated after the DBOPX execution, e.g., the number
of assigned shift kinds in two consecutive genes is greater than bmax, then the
repair mechanism has to be applied to these violations at the point of the
crossover. It is realized by a repeatedly applied mutation in order to fix all
the violated precedences of the genes in the employee’s roster. This repair
mechanism is applied to each employee where the gene precedence is violated.
However, DBOPX is noticeably more time consuming in comparison to the rest
of the evolutionary algorithm and for that reason it is not used in the presented
experiments.

3.4.7 Mutation Operators (MUT)

All mutation operators MUT are applied to the offspring IN with a probability
pM after the application of the crossover. The best performance of the algo-
rithm is reached by pM = 0.4 since there is no other possibility to change the
particular employees’ rosters inside.

Two different mutation operators were tested. The first one is a random
driven mutation RM. Firstly, the number of employees for the mutation is se-
lected randomly from the interval of 〈⌊0.25 · |E|⌋; ⌈0.75 · |E|⌉〉. Then, for each
employee chosen in a random way from all the employees determined for the
mutation, the count of genes to be mutated has to be determined. Subse-
quently, for each specific gene picked in a random way the randomly selected
feasible gene is assigned.

The second type of mutation operator, the employee based random mutation
EBRM is identical to the RM until the employee is randomly chosen. Thereafter,
the roster of the selected employee is cleared and the RG (see Section 3.4.3) is
applied to obtain the new employee’s roster.

3.5 The Second Stage – Inverse Transformation KS

The objective of the first stage is to determine the rough position of the blocks
and to assign a shift kind k ∈ K to each position of the block. The second

Chapter 3 The ETP with a High Diversity of Shifts 45

stage transforms the roster back, i.e., the shift kinds K are substituted by the
required shifts. This inverse transformation is based on the maximal weighted
matching algorithm (MWMA) in a bipartite graph Gd where d ∈ D is the
index of the day.

For the given day d ∈ D, let Gd be a bipartite graph with bipartition
V(Gd) = S(d) ∪ E, where E is a set of employees and S(d) is a set of shifts
required for day d, so that S(d) = {s ∈ S | RSsd = 1}. Furthermore, let
c : E(Gd) → R be the weights on the edges. There is an edge (e, s) ∈ E(Gd)
with c

(

(e, s)
)

= 1 iff the shift kind assigned in the first stage is equal to the

shift kind of s and shift s doesn’t violate shift precedences (3.3), i.e.,
(

R
(K)

edk =
1 | M(s) = k ∧ k ∈ KW

)

∧
(

SPsprev ,s = 1 | sprev ∈ S(d− 1)∧Re,d−1,sprev = 1
)

where sprev is a shift assigned to e ∈ E on the previous day.

Moreover, there are also edges (e, s) ∈ E(Gd) with a lower weight c
(

(e, s)
)

=

ǫ(s, sprev) < 1 iff
(

∃k ∈ KW | R
(K)

edk = 1
)

∧
(

SPsprev ,s = 1 | sprev ∈ S(d − 1) ∧
Re,d−1,sprev = 1

)

. These edges represent an assignment which is still possible
but it is not preferred, i.e., M(s) is not the kind assigned to this position in
the block. Thereafter, the weight ǫ(s, sprev) reflects how shift s fits into the
block when sprev is placed on the day before.

The algorithm of the inverse transformation consecutively, for d = 1 to
d = |D|, generates graphs Gd and finds the maximal weighted matching. When
this matching contains (e, s), shift s ∈ S(d) is assigned to employee e ∈ E on
day d, i.e., Reds = 1.

The result of the second stage (roster R) is further optimized in the third
stage which can be based on common techniques, e.g., a Tabu Search algorithm
(Vanden Berghe (2002)) or other heuristic approaches.

3.6 Experiments and Evaluation

This section is organized as follows: Firstly, the experiments with ILP are sum-
marized in Section 3.6.1. Subsequently, the performance of EA is evaluated
in Section 3.6.2. The description of the approaches (Vanden Berghe (2002);
Burke et al. (2007)) used for comparison to MSA is in Section 3.6.3. All ap-
proaches are evaluated by a crossover evaluation methodology in Section 3.6.4.
Finally, Section 3.6.5 summarizes and discusses the obtained results. All ap-
proaches were implemented in C# and all experiments were executed on a PC
with Intel Core 2 at 2.4 GHz, 2GB RAM.

3.6.1 The ILP Model

Even though the original problem ETPHD was transformed to ETPHD
(K)

and
several modifications of the ILP model were tuned to solve ETPHD

(K)
, the size

46 3.6 Experiments and Evaluation

of the transformed model is still huge (discussed in Section 3.3.2). Therefore,
the feasible solution of the first stage can be found in a reasonable amount of
time for up to |E| ≤ 3 using the non-commercial ILP solver GLPK and up to
|E| ≤ 5 using CPLEX. Since the number of employees |E| of our instances is
about one hundred the first stage cannot be directly solved by an ILP.

3.6.2 The Evolutionary Algorithm

This section is focused on the appraisal of the proposed evolutionary algorithm.
The stop condition of EA is the number of populations in the case of all of
the following experiments. We tuned some parameters during the experiments
and fixed them for the final tests. One of them is the length of the gene l.
The best results were reached with a gene length l = 4. This value correlates
to the constants of the block constraints bmax, bmin and brmin. We fixed the
population size pSize equal to 50 as the best compromise between the solution
quality and the algorithm performance. Similarly, the initial population size
pSize0 was set to 2 ·pSize. In the case of the crossover operator X, we decided
to apply the crossover operator EBTSX in order to keep EA as fast as possible
without the need of any repair operator. The crossover operator DBOPX is
significantly worse from the computation time point of view and slightly better
according to the obtained quality. Therefore, the DBOPX crossover operator was
not used.

3.6.2.1 Performance of the Evolutionary Algorithm

This section is focused on the first and the second stage of our multistage
approach (described in Section 3.4 and 3.5). The results are presented in Ta-
ble 3.3, each line was executed repeatedly 50 times. The real-data instances
were tested with different parameters of EA: the number of populations #pop,
type of creation of the initial population GIP and the mutation operator MUT.
These parameters were varied to look for the best performance of EA. Further-
more, it is necessary to pick the appropriate metric to evaluate the solution:
the value of the objective function for the initial population ZE

0 , the final value
of the objective function ZE , the number of the unassigned shifts for the whole
planning horizon |SU | and the average computational time tcpu, as well. The
most relevant metric out of all of these is the objective function ZE in combi-
nation with |SU | (the hard constraints (c3) and (c4) are taken into account as
soft constraints to minimize the overcoverage and undercoverage of shifts).

In Table 3.3, you can notice that for #pop = 103 the best results (in bold)
are acquired by the combination of LEWHG and EBRM. For the instances with
#pop = 104 and #pop = 105 this combination is outperformed by LEG and
RM. Furthermore, we can observe from the results that the mutation operator

C
h
ap

ter
3

T
h
e
E
T
P

w
ith

a
H
igh

D
iversity

of
S
h
ifts

47

Table 3.3: The evolutionary algorithm performance after the 2nd stage (each line executed 50 times)

EA parameters ZE
0 ZE |SU | tcpu [s]

#pop GIP MUT avg min max avg min max avg avg

103

RG RM 8485 667 994 841 48 78 61.7 8.3
RG EBRM 7801 543 742 643 19 39 29.1 12.4
WHG RM 16171 723 1104 861 39 71 59.6 7.9
WHG EBRM 16352 567 822 663 19 46 29.2 12.6
LEG RM 16598 692 1014 841 25 58 40.1 8.1
LEG EBRM 15923 544 749 648 9 50 27.2 12.2
LEWHG RM 20018 920 1232 1049 37 59 49.7 8.3
LEWHG EBRM 19400 514 765 637 14 32 24.7 12.2

104

RG RM 8533 111 249 181 13 32 22.1 81.2
RG EBRM 8831 273 416 347 8 26 16.1 122.5
WHG RM 16708 135 278 193 14 31 22.3 82.2
WHG EBRM 15248 245 456 337 4 28 15.1 126.6
LEG RM 16509 62 188 117 6 22 12.1 82.3
LEG EBRM 16787 276 446 345 6 23 14.0 123.3
LEWHG RM 19872 61 194 140 9 23 14.7 80.2
LEWHG EBRM 19514 233 450 331 3 19 12.7 121.9

105

WHG RM 15820 18 67 43 5 15 10.1 795.0
WHG EBRM 16645 178 254 212 4 16 9.8 1221.8
LEG RM 16174 24 55 40 6 13 8.7 791.6
LEG EBRM 18068 179 290 227 5 16 9.5 1218.9
LEWHG RM 20230 27 73 49 5 13 9.5 789.2
LEWHG EBRM 19952 174 248 214 6 16 9.4 1208.2

48 3.6 Experiments and Evaluation

EBRM is about 50 % more time consuming than RM independently to the other
parameters. The last remark to this set of tests is that the relation between
the #pop and tcpu is approximately linear.

3.6.2.2 Performance of the Evolutionary Algorithm inside the Mul-

tistage Approach

This section evaluates EA as a part of the MSA consisting of 3 stages. The
last stage is TSA that considers the same constraints (see Section 3.2) with the
same weights in the objective function in all experiments. Furthermore, the
TSA (Vanden Berghe (2002)) was extended by one special mechanism. The
unplaced shifts can be assigned by TSA under a condition that the value of Z
does not increase. Naturally, the unassigned shifts can occur in the solutions
after the initialization stages. Therefore, the hard constraints (c3) and (c4) are
modeled in TSA as soft constraints with a higher weight.

The experiments were performed on real data instances of periods with
28 and 35 days. The MSA was executed 30 times (see Table 3.4) on each
problem instance in order to achieve the average values for the comparison.
The quality of the solutions are reflected by the number of unassigned shifts
|SU | and the value of the objective function Z after the final stage TSA. You
can notice that the best performance of MSA is achieved by the combinations
{WHG, EBRM @ #pop = 104} and {LEG, RM @ #pop = 105} for both lengths
of periods. Remarkably, the best performance of the EA does not imply the
best performance of the MSA with this type of the EA (compare results of
Table 3.3 and Table 3.4).

3.6.3 Comparison of the MSA to Other Approaches

This section describes all approaches applied on the ETPHD and the NRP (the
overview in Table 3.5). These approaches can be separated into two groups.

The first group consists of MSA, CMPA1 and CMPA2. Each approach
of this group contains TSA in the last stage. The MSA (described in Sec-
tion 3.6.2.2) contains the EA with the following parameters: pSize = 50,
pSize0 = 100, #pop = 104, GIP=WHG, X=EBTSX and MUT=EBRM. The ex-
ecution was bounded by a time limit tmax = 600 s. Therefore, according to
the results mentioned in Table 3.4, the time remaining for the TSA in the last
stage of MSA is approximately 200 s. The spent time is used in the last stage
of TSA to improve the quality of the solution as much as possible in the case of
the approaches consuming no time (CMPA1) or less time (CMPA2) than MSA
in the first two stages. The CMPA1 (explained in this section) is similar to our
MSA, the only difference is that the first two stages are skipped. The shifts are
assigned one by one by the mechanism of the TSA described in Section 3.6.2.2.

C
h
ap

ter
3

T
h
e
E
T
P

w
ith

a
H
igh

D
iversity

of
S
h
ifts

49

Table 3.4: The EA performance as a part of the multistage approach (each line evaluated 30 times)

inst. EA parameters Z |SU | tcpu [s]

|D| #pop GIP MUT min max avg min max avg avg

28

104

WHG RM 287 356 313 3 13 6.8 273.6
WHG EBRM 284 349 307 0 5 2.8 336.2
LEG RM 305 351 322 0 7 5.4 297.6
LEG EBRM 298 359 324 0 8 5.1 328.1
LEWHG RM 303 367 329 2 9 5.4 315.7
LEWHG EBRM 301 356 325 3 11 5.9 310.0

105

WHG RM 256 332 291 0 8 5.9 771.9
WHG EBRM 264 327 294 2 5 4.1 1136.1
LEG RM 213 308 258 0 2 1.3 675.1
LEG EBRM 253 319 281 1 4 2.4 1084.1
LEWHG RM 294 338 279 0 5 2.9 760.2
LEWHG EBRM 273 349 287 1 6 4.9 974.3

35

104

WHG RM 334 381 357 6 14 10.1 382.2
WHG EBRM 332 385 355 1 9 5.8 406.6
LEG RM 338 399 361 3 12 6.9 385.3
LEG EBRM 325 389 364 2 9 6.3 423.3
LEWHG RM 348 394 364 5 12 7.1 380.2
LEWHG EBRM 335 409 357 3 14 7.3 421.9

105

WHG RM 302 355 318 4 10 7.2 1095.0
WHG EBRM 307 353 322 0 6 4.5 1421.8
LEG RM 265 322 295 0 3 2.1 964.6
LEG EBRM 299 342 315 0 5 3.2 1458.9
LEWHG RM 297 346 312 3 7 4.8 989.2
LEWHG EBRM 303 351 325 2 7 4.9 1408.2

50
3.6

E
x
p
erim

en
ts

an
d
E
valu

ation

Table 3.5: The overview of the compared approaches

approach stages problems

name 1st stage 2nd stage 3rd stage ETPHD NRP

MSA EA MWMA TSA ✓ ✓

CMPA1 – – TSA ✓ ✓

CMPA2 SIA (Burke et al. (2006)) – TSA ✓ –

CMPA3 EA MWMA VDSA (Burke et al. (2007)) ✓ ✓

CMPA4 – – VDSA (Burke et al. (2007)) ✓ ✓

CMPA5 EA MWMA TSA + VDSA (Burke et al. (2007)) – ✓

Chapter 3 The ETP with a High Diversity of Shifts 51

The second comparison approach CMPA2 (explained in this section too) con-
tains the TSA preceded by the initialization algorithm from (Vanden Berghe
(2002)) (pages 139–160). This heuristic is built on the assignment of the shifts
to the employees that are separated into groups by their skills. Therefore,
this heuristic denoted as SIA – a skill based initialization algorithm. The goal
of SIA is to find any solution of the ETPHD with respect to the constraints
(c1), (c2), (c5) and (c6). The SIA is described in full detail in Appendix A.

The second group (CMPA3, CMPA4 and CMPA5) employs in the last stage
a Variable Depth Search Algorithm VDSA (Burke et al. (2007)) that is a part of
the tool Roster Booster (Burke and Curtois (2012)) (Roster Booster ver. 3.2.6
including VDSA ver. 3.6.). The CMPA3 is the same as MSA except the last
stage, where TSA is replaced by VDSA. The first two stages of CMPA3 are
skipped in CMPA4. Finally, the last approach CMPA5 contains TSA and
VDSA that are executed in a sequential manner, i.e., the time determined to
the third stage is spread between TSA and VDSA. How these approaches are
applied and compared is discussed in Section 3.6.4.

3.6.4 Cross Evaluation Methodology

According to the complexity and the originality of the ETPHD, it is not easy to
compare MSA to other approaches. Therefore, we propose a cross evaluation
methodology. This methodology is inspired by the method used in (Burke et al.
(2006)). The authors compare two different approaches applied on the same
problem, but represented by two different models (more about (Burke et al.
(2006)) in Section 3.1.1), e.g., four combinations of approaches and models
were compared by a metric relevant to the used model. However, the aim of
our methodology is more general, to verify the contribution of the particular
stages in the used approaches (namely EA) applied at least on two problems
(in our case the ETPHD and the NRP (ASAP (2013))).

The cross evaluation methodology used in this chapter is schematically
depicted in Figure 3.4. The approaches are represented by labels at the top of
this figure. Each approach consists of the stages affected by the line starting
from its label and is applied to the problems that the lines are routed to.
Finally, the obtained results are compared. Namely, the approaches colored
by bold red (MSA, CMPA1, CMPA3 and CMPA4) participate on the cross
evaluation. In addition, the CMPA2 is applied to the ETPHD and the CMPA5

is employed on the NRP.

The metrics for the ETPHD are Z and |SU | as in Section 3.6.2. Further-
more, the third metric CI stands for the number of the isolated days-on and
days-off, i.e., the violations of the constraint (c11). The metrics Z and |SU |
are only taken into account in NRP, since the third metric CI depends on the
constraints of the given NRP instance. In order to compare the results by one

52
3.6

E
x
p
erim

en
ts

an
d
E
valu

ation

TSA VDSA

ETPHD NRP

∆MSA
CMPA2

∆MSA
CMPA1

∆CMPA3

CMPA4
∆MSA

CMPA1
∆CMPA5

CMPA4
∆CMPA3

CMPA4

cross evaluation

approaches
al
go
ri
th
m
s
in

st
ag
es

(s
ee

T
ab

.
3.
5)

problems

evaluation

MSACMPA1 CMPA4CMPA3CMPA5CMPA2

SIA1st stage

2nd stage

3rd stage TSA VDSA&

EA

MWMA

Figure 3.4: The cross evaluation methodology used to verify the contribution of EA

Chapter 3 The ETP with a High Diversity of Shifts 53

of these metrics, a relative difference is defined as follows. Let Aref be the
reference approach used to evaluate the approach Aev by the metric Z, i.e.,
the approach Aref is evaluated by Aref (Z) and the approach Aev by Aev(Z).
Then, the relative difference ∆Aev

Aref

(

Z
)

is given by

∆Aev

Aref

(

Z
)

=

{

(

Aref (Z)−Aev(Z)
)

/Amax(Z) · 100, Amax(Z) 6= 0

0, otherwise

(3.19)

where Amax(Z) = max{Aref (Z),Aev(Z)}. Consequently, ∆Aev

Aref

(

Z
)

∈

〈−100, 100〉 [%]. The relative differences ∆Aev

Aref

(

|SU |
)

and ∆Aev

Aref

(

CI
)

are de-

fined similarly as ∆Aev

Aref

(

Z
)

.

3.6.4.1 Comparison of the Approaches Evaluated on the ETPHD

Problem

This section demonstrates the performance of the approaches applied on the
ETPHD (see Table 3.5). All approaches were tested on the set of the instances
presented in Table 3.6, where the basic sizes of each instance are mentioned
– the number of days |D|, the number of employees |E|, the number of shifts
|S| and the ratio of the fixed shifts FR. This ratio is defined as the number of
days containing fixed shifts to the number of days in the roster (i.e., the num-
ber of employees times the length of the planning horizon). The last column

Table 3.6: ETPHD instances description

inst. |D| |E| |S| RBC

p01 94 28 118 107846

p02 95 35 79 108299

p03 89 28 102 107439

p04 90 35 124 109247

p05 92 28 96 107677

p06 93 35 124 109556

p07 91 28 102 107609

p08 92 35 79 108020

p09 90 28 102 107524

p10 87 28 102 107270

p11 94 35 79 108206

p12 88 35 124 109042

p13 96 35 79 108393

p14 89 35 124 109145

p15 92 35 124 109453

inst. |D| |E| |S| RBC

p16 91 28 96 107593

p17 88 28 96 107343

p18 93 35 124 109556

p19 95 28 118 107933

p20 92 28 102 107693

p21 96 28 118 108020

p21 97 35 79 108486

p22 89 28 96 107427

p23 97 28 118 108107

p24 93 28 96 107760

p25 92 35 124 109453

p26 93 35 79 108113

p27 91 35 124 109350

p29 90 28 96 107510

p30 88 28 102 107355

54 3.6 Experiments and Evaluation

RBC stands for the complexity of the instance computed by the tool Roster
Booster (Burke and Curtois (2012)).

In general, MSA outperformed CMPA1 and CMPA2 on all instances on
the level of Z in Table 3.7. On the other hand, CMPA2 is ‘a little bit more
successful’ from the |SU | point of view. It is necessary to say that the testing
instances were chosen in order to be on the edge of the solvability, i.e., it is very
hard to minimize |SU |, CI and Z as much as possible simultaneously. However,
all achieved values of |SU | are relatively low, if we consider that the number
of all of the shifts that have to be assigned is

∑

s

∑

dRSsd, i.e., approximately
1300 (1600) shifts within the period with |D| = 28 (35) days. Furthermore,
the solutions where |SU | > 0 are still very valuable for personnel schedulers in
transport services, since they are able to assign this small amount of the shifts
in a manual way to the employees who usually have business trips that are
more or less floating. The CMPA2 was defeated by MSA on the level of CI ,
where MSA acquired approximately 40 % better results.

Remarkably, almost all metrics presented in Table 3.8 are better for
CMPA3, where our EA with MWMA is used. Nevertheless, you can notice
a rapid increase of Z in Table 3.8 in comparison to Z in Table 3.7. This
is caused by the problem of modeling the ETPHD instances in the Roster
Booster. All instances were modeled as precisely as possible, but the Roster
Booster does not guarantee the satisfaction of the hard constraints, which are
modeled by soft constraints with higher weights. Therefore, the results of the
MSA, CMPA1 and CMPA2 are not directly comparable to CMPA3, CMPA4

and CMPA5. Nevertheless, the cross evaluation does not directly compare the
approaches in this way, its goal lies in the evaluation of the contribution of the
particular stages.

3.6.4.2 Comparison of the Approaches Evaluated on the NRP

Problem

This section evaluates the relevant approaches (see Table 3.5) on the set of
benchmark instances of NRP (ASAP (2013)). Namely, the smaller (Millar,
Gpost) and the bigger instances (SINTEF, Valouxis, WHPP) were chosen, as
you can notice in Table 3.9. The metric Z was used to evaluate these instances.
The metric |SU | is not mentioned in Table 3.9 since all shifts were always
assigned, i.e., |SU | = 0 for each instance executed by all relevant approaches.
The value of Z∗ represents the objective function of the best known solution so
far without any time limit. Our time limit tmax was set to 15 s. The parameters
of EA were changed with respect to tmax, e.g., #pop was decreased.

In this case, MSA totally outperformed CMPA1. Nevertheless, a different
situation occurs in the case of CMPA3 and CMPA4. The negative relative
difference ∆CMPA3

CMPA4
appears for the Gpost and Valouxis instances. This is caused

C
h
ap

ter
3

T
h
e
E
T
P

w
ith

a
H
igh

D
iversity

of
S
h
ifts

55

Table 3.7: The cross evaluation on ETPHD – TSA in the last stage
(average values, each line evaluated 30 times, time limit 600 s)

in
st
a
n
ce

M
S
A
(

Z
)

M
S
A
(

|S
U
|)

M
S
A
(

C
I
)

C
M
P
A

1

(

Z
)

C
M
P
A

1

(

|S
U
|)

C
M
P
A

1

(

C
I
)

C
M
P
A

2

(

Z
)

C
M
P
A

2

(

|S
U
|)

C
M
P
A

2

(

C
I
)

∆
M
S
A

C
M
P
A

1

(

Z
)

[%
]

∆
M
S
A

C
M
P
A

1

(

|S
U
|)

[%
]

∆
M
S
A

C
M
P
A

1

(

C
I
)

[%
]

∆
M
S
A

C
M
P
A

2

(

Z
)

[%
]

∆
M
S
A

C
M
P
A

2

(

|S
U
|)

[%
]

∆
M
S
A

C
M
P
A

2

(

C
I
)

[%
]

p01 613.4 6.2 38.9 721.7 50 44 699.9 5 72 15.0 87.7 11.5 12.4 -18.8 45.9
p02 634.1 7.0 49.6 772.9 58 57 934.1 9 95 18.0 87.9 13.0 32.1 21.9 47.8
p03 305.5 1.6 41.2 381.8 23 46 398.5 0 45 20.0 93.2 10.4 23.3 -100.0 8.4
p04 974.3 14.5 40.4 1035.9 49 54 1255.3 5 126 5.9 70.4 25.2 22.4 -65.5 67.9
p05 555.4 2.8 42.6 635.4 41 59 677.8 1 84 12.6 93.3 27.9 18.1 -63.8 49.3
p06 1013.2 2.1 50.4 1165.2 44 86 1122.9 0 75 13.0 95.3 41.4 9.8 -100.0 32.8
p07 355.5 0.0 35.2 433.0 18 32 454.1 0 66 17.9 100.0 -9.1 21.7 0.0 46.6
p08 617.9 19.9 55.4 685.6 76 64 1060.5 25 104 9.9 73.8 13.4 41.7 20.2 46.7
p09 324.4 0.4 35.9 395.1 17 34 460.9 0 56 17.9 97.4 -5.2 29.6 -100.0 36.0
p10 274.0 2.2 38.0 345.9 37 34 443.3 0 56 20.8 93.9 -10.5 38.2 -100.0 32.1
p11 644.8 10.3 72.8 696.4 55 69 902.8 11 98 7.4 81.2 -5.2 28.6 6.1 25.8
p12 926.5 26.0 50.2 1014.4 73 62 1179.8 29 192 8.7 64.4 19.0 21.5 10.4 73.8
p13 657.1 1.6 59.8 767.1 45 71 942.3 5 91 14.3 96.5 15.8 30.3 68.4 34.3
p14 976.7 21.0 48.2 1021.7 64 49 1136.3 13 102 4.4 67.2 1.6 14.0 -38.1 52.7
p15 1007.3 1.7 58.6 1093.0 42 71 1107.7 0 78 7.8 95.9 17.4 9.1 -100.0 24.9
p16 729.8 15.3 44.6 781.0 51 42 896.8 5 104 6.6 70.0 -5.7 18.6 -67.3 57.2
p17 560.2 24.7 59.7 612.3 73 67 734.6 18 106 8.5 66.2 11.0 23.7 -27.1 43.7
p18 1013.0 2.5 55.4 1164.7 44 86 1123.0 0 75 13.0 94.4 35.6 9.8 -100.0 26.2
p19 572.9 5.7 42.2 712.9 39 51 723.2 5 54 19.6 85.3 17.3 20.8 -12.6 21.9
p20 380.5 0.0 35.4 469.7 18 32 510.6 0 69 19.0 100.0 -9.5 25.5 0.0 48.7
p21 624.1 4.4 30.0 726.0 34 36 736.8 5 59 14.0 87.2 16.7 15.3 12.8 49.2
p22 697.8 1.9 59.2 790.9 38 75 984.8 5 98 11.8 94.9 21.1 29.1 61.3 39.6
p23 520.0 19.7 51.0 563.8 53 57 747.9 10 113 7.8 62.8 10.5 30.5 -49.3 54.9
p24 669.7 4.2 35.9 761.2 33 45 737.7 5 67 12.0 87.4 20.1 9.2 16.8 46.3
p25 578.0 2.8 54.7 624.6 29 47 669.6 0 85 7.5 90.5 -14.1 13.7 -100.0 35.6
p26 989.6 4.4 47.1 1093.1 42 71 1107.2 0 78 9.5 89.4 33.7 10.6 -100.0 39.6
p27 647.9 14.7 62.0 694.8 59 83 1027.9 16 101 6.8 75.1 25.2 37.0 8.0 38.6
p28 1002.9 6.6 61.6 1068.3 51 65 1125.5 1 87 6.1 87.1 5.3 10.9 -84.8 29.2
p29 521.0 10.2 44.9 585.0 49 57 663.1 4 91 10.9 79.2 21.2 21.4 -60.7 50.7
p30 314.8 4.2 39.9 395.6 42 45 421.4 0 49 20.4 89.9 11.4 25.3 -100.0 18.6

56
3.6

E
x
p
erim

en
ts

an
d
E
valu

ation

Table 3.8: The cross evaluation on ETPHD – VDSA in the last stage
(average values, each line evaluated 30 times, time limit 600 s)

in
st
a
n
ce

C
M
P
A

3

(

Z
)

C
M
P
A

3

(

|S
U
|)

C
M
P
A

3

(

C
I
)

C
M
P
A

4

(

Z
)

C
M
P
A

4

(

|S
U
|)

C
M
P
A

4

(

C
I
)

∆
C
M
P
A

3
C
M
P
A

4

(

Z
)

[%
]

∆
C
M
P
A

3
C
M
P
A

4

(

|S
U
|)

[%
]

∆
C
M
P
A

3
C
M
P
A

4

(

C
I
)

[%
]

p01 2487.3 4.9 118.8 2621.6 3.9 142.0 5.1 -20.0 16.3
p02 3398.9 33.5 121.4 3538.4 34.0 158.5 3.9 1.5 23.4
p03 2440.9 6.4 82.5 2723.0 10.8 96.5 10.4 40.7 14.5
p04 3980.4 14.7 138.4 4142.9 14.3 115.0 3.9 -2.5 -16.9
p05 2486.9 6.3 122.5 2683.1 5.4 130.3 7.3 -13.7 6.0
p06 3930.1 9.6 144.2 4247.9 11.0 182.4 7.5 12.9 20.9
p07 2471.2 5.9 109.4 2553.7 5.4 125.1 3.2 -7.7 12.6
p08 3476.1 31.0 89.0 3555.1 32.0 117.4 2.2 3.3 24.2
p09 2408.4 5.2 120.1 2666.3 12.0 134.7 9.7 56.7 10.8
p10 2403.9 8.3 93.6 2932.8 13.3 90.6 18.0 37.6 -3.2
p11 3622.4 32.6 130.3 3729.8 40.8 127.1 2.9 20.1 -2.5
p12 4281.5 15.3 79.9 4845.1 20.7 128.8 11.6 26.0 38.0
p13 3486.1 30.3 134.3 3490.1 34.3 135.8 0.1 11.7 1.1
p14 4018.2 12.2 103.4 4237.1 13.0 109.5 5.2 6.2 5.6
p15 3964.8 8.8 192.2 4045.8 8.6 164.9 2.0 -1.9 -14.2
p16 3004.6 9.2 113.2 3102.6 9.5 110.3 3.2 3.3 -2.6
p17 2998.8 6.4 80.7 3035.0 19.3 98.2 1.2 66.8 17.8
p18 4191.0 7.4 136.9 4203.1 11.4 182.9 0.3 35.1 25.2
p19 2397.4 5.2 81.7 2453.0 4.4 87.4 2.3 -15.7 6.6
p20 2454.1 5.9 149.6 2723.7 6.1 131.4 9.9 2.8 -12.2
p21 2551.1 2.3 146.4 2507.1 2.3 160.9 -1.7 -1.0 9.0
p22 3398.4 30.1 136.7 3445.6 31.3 164.6 1.4 3.8 17.0
p23 2868.5 7.3 83.9 3212.6 9.8 81.3 10.7 25.2 -3.1
p24 2320.7 3.1 131.1 2579.8 3.4 163.3 10.0 8.8 19.7
p25 3029.5 4.6 95.5 3154.3 4.1 116.3 4.0 -11.0 17.9
p26 3780.0 3.4 151.5 4101.9 8.0 165.3 7.8 57.8 8.3
p27 3803.3 33.6 113.5 3969.7 39.0 124.5 4.2 13.9 8.8
p28 3906.7 15.6 128.0 4080.7 13.1 141.0 4.3 -16.1 9.2
p29 2692.8 6.4 95.5 2870.5 12.9 116.6 6.2 50.4 18.1
p30 2290.5 7.4 110.5 2612.8 7.5 111.7 12.3 1.4 1.1

Chapter 3 The ETP with a High Diversity of Shifts 57

by the fact, that EA is not able to not satisfy all constraints of these instances,
but consumes an important part of tmax. Thus, less time is available for the
VDSA and the roster is not improved very much. In the case of Gpost, the
constraint limiting consecutive weekends is not considered by EA. The Valouxis
instance was hard to solve for EA with respect to satisfying the 2- and 3-length
stretches of the night shifts. On the contrary, a comparable quality was reached
on the Millar and WHPP instances and CMPA3 exceeded on the SINTEF
instance. For the complex evaluation, the CMPA5 was compared to CMPA4,
because the constraints of the problematic instances Gpost and Valouxis can
be modeled much better in the TSA than in EA itself. You can notice that
CMPA5 reached the best results overall.

Table 3.9: The cross evaluation on the NRP
(average values, each line evaluated 30 times, time limit 15 s)

instance RBC Z∗ M
S
A
(

Z
)

C
M
P
A

1

(

Z
)

C
M
P
A

3

(

Z
)

C
M
P
A

4

(

Z
)

C
M
P
A

5

(

Z
)

∆
M
S
A

C
M
P
A

1

(

Z
)

[%
]

∆
C
M
P
A

3
C
M
P
A

4

(

Z
)

[%
]

∆
C
M
P
A

5
C
M
P
A

4

(

Z
)

[%
]

SINTEF 10392 0 8.2 1560 3.5 13.0 0.0 99.5 73.1 100.0
Gpost 10107 5 6660.6 13430 269.3 96.5 14.6 50.4 -64.2 84.9
Millar 1053 0 0.0 100 0.0 0.0 0.0 100.0 0.0 0.0

Valouxis 10270 20 739.7 4800 259.7 160.0 79.1 84.6 -38.4 50.6
WHPP 10253 5 4021.3 10023 2021.1 2014.0 1016.7 59.9 -0.4 49.5

3.6.5 Summary of Experiments

This section summarizes all results of both tackled problems, ETPHD and
NRP. Average values and standard deviations of the ∆ results from Sec-
tion 3.6.4 are summed up in Table 3.10. The cross evaluation is reflected in six
columns containing ∆MSA

CMPA1
and ∆CMPA3

CMPA4
. The positive differences are empha-

sized by bold. Two negative values appear and the reasons of their occurrence
are mentioned in Section 3.6.4.1 and Section 3.6.4.2. In summary, the cross
evaluation confirms that the application of our EA leads significantly to better
or equal results in 9 out of 10 cases. Additionally, the performance of our mul-
tistage approach MSA was shown by ∆MSA

CMPA2
and ∆CMPA5

CMPA4
(MSA is included

in CMPA5). In this case, the MSA was successful in 3 out of 4 cases.

58
3.6

E
x
p
erim

en
ts

an
d
E
valu

ation

Table 3.10: The summary of the cross evaluation and the comparison to other approaches

cross evaluation comparison to other approaches

problem ∆
M
S
A

C
M
P
A

1

(

Z
)

[%
]

∆
M
S
A

C
M
P
A

1

(

|S
U
|)
[%

]

∆
M
S
A

C
M
P
A

1

(

C
I
)

[%
]

∆
C
M
P
A

3
C
M
P
A

4

(

Z
)

[%
]

∆
C
M
P
A

3
C
M
P
A

4

(

|S
U
|)
[%

]

∆
C
M
P
A

3
C
M
P
A

4

(

C
I
)

[%
]

∆
M
S
A

C
M
P
A

2

(

Z
)

[%
]

∆
M
S
A

C
M
P
A

2

(

|S
U
|)
[%

]

∆
M
S
A

C
M
P
A

2

(

C
I
)

[%
]

∆
C
M
P
A

5
C
M
P
A

4

(

Z
)

[%
]

ETPHD
avg. 12.2 85.1 12.3 5.7 19.0 9.6 21.8 -41.7 40.8 –

st.dev. 5.0 11.6 14.3 4.4 21.7 12.5 9.2 54.7 14.3 –

NRP
avg. 78.9 0.0 – -7.5 0.0 – – – – 71.2

st.dev. 22.8 0.0 – 51.9 0.0 – – – – 38.6

Chapter 3 The ETP with a High Diversity of Shifts 59

3.7 Conclusion

In this chapter, we introduced a three stage heuristic algorithm for the em-
ployee timetabling domain. The solved problem, motivated by a real employee
rostering problem at the airport, is characteristic by the personnel demand typ-
ically having two peaks per a day. In order to satisfy the coverage requirements
and to minimize the personnel expenses it is necessary to cover the require-
ments by the ‘enlarged’ set of shifts. In our case, the set of shifts is fixed and it
contains more than one hundred shifts. This fact together with the complex set
of the roster constraints, given by the collective agreement, makes the employee
rostering very difficult. Therefore, the problem solution was decomposed into
three stages, where the first one determines a rough position of the shift kinds
in the roster (i.e., early shifts, late shifts, etc.), the second stage assigns shifts
into the roster and the last stage fine-tunes the final roster.

According to the complexity and the originality of ETPHD, it is not easy
to compare MSA to other approaches. Therefore, a cross evaluation method-
ology was proposed. Moreover, one is able to verify the contribution of the
particular stages, namely EA. The experiments reflecting this methodol-
ogy confirmed that approaches using EA provide better or equal solutions
in 12 out of 14 cases (summarized in Table 3.10). These experiments were
performed on ETPHD and NRP problems of the Roster Booster complexity
(Burke and Curtois (2012)) from 1050 to 1010000 for the complex and fair eval-
uation.

60

Chapter 4

GPU based Parallel
Algorithm for the Nurse
Rerostering Problem

4.1 Introduction

This chapter is focused on an NP-hard combinatorial problem that occurs in
healthcare (Clark et al. (2012)). The shifts have to be assigned to the nurses
in a given planning horizon to create a roster. However, the roster usually has
to be changed during the planning horizon, e.g., when one of the nurses gets
sick. Then the original roster has to be modified in order to ensure sufficient
healthcare service. Typically, the roster is not completely rebuilt, since the
nurses affected by the arising changes have to cancel or reschedule their al-
ready planned free time activities, which is very unpopular. Moreover, it may
also significantly increase the personnel costs, since the overtime hours of em-
ployees have to be rewarded. Therefore, the criterion of this problem typically
involves a number of changes in comparison to the original roster. Minimiza-
tion of this objective with respect to all considered constraints may lead to long
computational times that are unacceptable in these stressful rescheduling pro-
cesses. The problem is known as the Nurse Rerostering Problem (NRRP) and
the aim of this chapter is to propose a parallel solution solving the NRRP which
is faster and provides the same quality as conventional sequential approaches.

4.1.1 Related Works

The existing works related to this topic can be split into two categories. The
first one, summarized in the first subsection, contains the literature related
to the NRRP. The second one (see Section 4.1.1.2) refers to the operation

61

62 4.1 Introduction

research (OR) domain in the context of the Graphic Processing Unit (GPU)
computing.

4.1.1.1 The NRRP Literature Overview

The rerostering problem belongs to the human resources/personnel scheduling
domain, which has been summarized in several surveys (Clark et al. (2012);
Ernst et al. (2004); Burke et al. (2004b); Van den Bergh et al. (2013)). Al-
though NRRP occurs in hospitals very often, the number of papers addressing
this problem is minor in comparison to the Nurse Rostering Problem (NRP),
e.g., the survey (Clark et al. (2012)) from the year 2012 presents 8 papers
dealing with NRRP only. Most of these papers were published by Moz and
Pato (see (Moz and Pato (2003, 2004, 2007); Pato and Moz (2008))). The first
two (Moz and Pato (2003)), (Moz and Pato (2004)) are based on the multi-
commodity network flows models that are formulated as an Integer Linear
Programming (ILP) problem. Naturally, this approach has the disadvantage
common to exact methods, i.e., the time needed to obtain a solution grows
considerably for larger instances. In order to eliminate this drawback Moz
and Pato introduced a heuristic (Moz and Pato (2007)) minimizing the num-
ber of changes in the original roster. This heuristic is based on a construction
of the roster by the iterative assignments of the shifts in a given order. In
order to improve the quality of the solutions, this constructive heuristic was
encapsulated by a genetic algorithm that was applied to shuffle the order of
the shifts to be assigned. This extension improved 10 % of the solutions in
terms of the quality, however it is outweighed by the significant increase of the
computational time. This paper was followed by (Pato and Moz (2008)) where
a bi-objective rerostering problem was solved by the Pareto genetic heuristic.
In addition to the number of changes, the deviation from the number of shifts
originally assigned to a given nurse is considered as the second objective. The
quality of the solutions was investigated mainly in (Pato and Moz (2008)). In
comparison to (Moz and Pato (2007)), the computational times were longer
and unfortunately, only 31 out of 68 NRRP instances were tested.

Kitada et al. propose in (Kitada et al. (2011)) methods to find an op-
timal schedule of the NRRP with a minimum number of changes. These
methods are based on a recursive search algorithm to generate feasible so-
lutions of the NRRP, however, they are proposed and evaluated on the in-
stances with a single-day absence only. This drawback is partially eliminated
in (Kitada and Morizawa (2013)) which describes a method for solving the
NRRP with an absence of nurses for several consecutive days. Firstly, the
consecutive days of absences are separated into a set of single-day absences,
which generates a set of single-day NRRPs. Secondly, these single-day NRRPs
are resolved one by one using the method described in (Kitada et al. (2011)).

Chapter 4 The GPU based Parallel Algorithm for the NRRP 63

Nevertheless, this decomposition does not take into account all absent days at
once and in general, this may lead to a suboptimal solution of the problem.

The previous works were addressed to NRRP within one department of the
nurses, i.e., hiring nurses from other departments is not possible. On the con-
trary, the different absence scenarios were considered in (Lilleby et al. (2012))
to show how successfully one deals with NRRP using more departments. How-
ever, the main contribution of (Lilleby et al. (2012)) is the stochastic model in
order to improve nurse utilization, decrease the personnel cost and, at last, but
not least, build the robust competence of the nurses to make them substitutable
across departments.

Other papers tackling NRRP were published by Maenhout and Vanhoucke.
The latest one (Maenhout and Vanhoucke (2013a)) describes an evolutionary
algorithm inspired by the theory of immunology called an Artificial Immune
System Algorithm (AISA, see (De Castro and Timmis (2002))). AISA pro-
vides results having approximately the same quality as an Evolutionary Al-
gorithm (EA) from their previous paper (Maenhout and Vanhoucke (2010b))
(overall, AISA outperforms EA by 0.04 %). However, the experiments in
(Maenhout and Vanhoucke (2013a)) verified that some NRRP instances are
better to be solved by AISA instead of EA from (Maenhout and Vanhoucke
(2010b)) and vice versa. The previous paper (Maenhout and Vanhoucke
(2010b)) combines EA with local search methods using network flows. The
solution of the NRRP is represented by the best individual, which is organized
in the nurse-day view (Cheang et al. (2003)). The local search methods are ap-
plied after the recombination operators (a crossover and a mutation) to improve
the quality of the individuals. The different strategies of the algorithm were
tested on 1000 generated NRRP instances. The average computational times
were from 13 to 268 seconds per the NRRP instance according to the strategy
used. The results achieved by EA in (Maenhout and Vanhoucke (2010b)) out-
performed the results of Maenhout’s and Vanhoucke’s implementation of the
algorithm presented by (Moz and Pato (2007)). Both algorithms were applied
on the dataset from their paper (Maenhout and Vanhoucke (2010b)). However,
from our point of view, the problems in (Maenhout and Vanhoucke (2010b))
and (Moz and Pato (2007)) cannot be compared to each other in a straightfor-
ward manner since there are obvious dissimilarities in the problem statement
(see Sec. 2 in (Moz and Pato (2007)) and Sec. 3 in (Maenhout and Vanhoucke
(2010b))), e.g., the different definitions of the disruption in the original roster.
A disruption in (Moz and Pato (2007)) is defined such that a nurse cannot be
assigned to any shift on the same day, except a day-off. On the contrary, the dis-
ruption in (Maenhout and Vanhoucke (2010b)) is defined such that a nurse can
be assigned to any shift except the absented one on the same day, e.g., a nurse
is absent for the early shift, however he/she can be assigned to the late or the
night shift on the same day. Moreover, the different hard constraints and objec-

64 4.1 Introduction

tives are considered in these two papers (e.g., the objective in (Moz and Pato
(2007)) is the minimal number of changes only, versus three objectives in
(Maenhout and Vanhoucke (2010b)) – the minimal number of changes, the
effort to meet the preferences of the nurses and the balance of the workload
among the nurses). Furthermore, the results of (Maenhout and Vanhoucke
(2010b)) are presented in a condensed form only and, therefore, one cannot
compare the results of the particular instances and their execution times.

4.1.1.2 The GPU Computing Literature Overview

In the last decade, there has been a growing interest to utilize GPUs for non-
graphic applications, which is confirmed by the surveys (Owens et al. (2007);
Brodtkorb et al. (2013a,b); Schulz et al. (2013)). A few operations research
problems have already been solved on GPU. The most important metric of
the GPU algorithm performance is its speedup defined as a ratio of the compu-
tational time needed for the sequential and parallel version of the algorithm.

The authors of (Janiak et al. (2008)) solved two combinatorial problems
using the Tabu Search Algorithm (TSA). Firstly, TSA was applied on the
Traveling Salesman Problem (TSP), however, only the solutions of the in-
stances having more than 50 cities ensure a speedup. Smaller instances are
better solved on a CPU, since there is a large overhead of data preparation for
a GPU. Unfortunately, the maximal speedup, achieved on the instances with
100 cities, was only 12 %. Secondly, the Permutation Flowshop Scheduling
Problem (PFSP) was handled by the TSA, where solutions were found on a
GPU approximately 4 times faster than on a CPU.

The same problem solved again by the TSA is presented in
(Czapinski and Barnes (2011)). In this case, the GPU significantly outper-
forms the CPU (speedup up to 89 times). However, the solutions found were
not evaluated in terms of their quality. The same authors also applied the GPU
based TSA on the Quadratic Assignment Problem in (Czapinski (2013)), where
each instance of the TSA has slightly different parameters to ensure the diver-
sity of the solutions. The overhead caused by the communication between the
CPU and the GPU is eliminated strongly, since the entire algorithm is launched
on the GPU and this leads to a speedup of up to 70 times. In comparison to
(Czapinski and Barnes (2011)), the quality performance was evaluated with
respect to the best known solutions and the parallel algorithm in (Czapinski
(2013)) was capable of providing very good quality solutions (often optimal or
the best known).

Another paper dealing with the OR problem on the GPU (see (Boyer et al.
(2012))) describes the dynamic programming applied on the Knapsack Problem
(KP). The achieved speedup for the KP instances considering from 40 to 100
thousand objects was about 26, while the smaller instances reveal a speedup of

Chapter 4 The GPU based Parallel Algorithm for the NRRP 65

about 20. The Resource Constrained Project Scheduling Problem (RCPSP) is
solved on a GPU in (Bukata and Š̊ucha (2013)). The experiments show that
the GPU outperforms the CPU version in both performances – the speedup
and the quality of solutions. That is possible thanks to an effective schedule
evaluation and a GPU-optimized TSA. In addition, the required data transfers
are reduced to a minimum since the entire algorithm runs on a GPU. The
quality of the solutions is comparable with existing algorithms solving the
RCPSP.

In general, all papers mentioned above except (Bukata and Š̊ucha (2013))
have one common feature. The combinatorial problems solved on the GPU have
either plain data representation or a very simple evaluation of the criterion.
However, NRRP does not fulfill these assumptions. Moreover, the results of
these works are evaluated by the self-comparison very often. To prove the
applicability of GPU computing for OR, more work needs to be done, i.e., the
achieved results from the related works have to be considered.

4.1.2 Contribution and Outline

To the best of our knowledge there is no paper focused on a NRRP solved on
a GPU, moreover, there is no paper dealing with a parallel approach applied
on an NRRP at all. In order to design the first parallel algorithm solving an
NRRP, which preserves the quality of the solution of the sequential approach
and reduces the computational time needed to obtain this solution, the cur-
rent papers mentioned above were taken into account. As it will be shown, the
algorithm from (Moz and Pato (2007)) is highly appropriate to be an inspira-
tion for the design of a new parallel algorithm. Furthermore, the benchmark
instances from this paper were published in (Pato and Moz (2013)), so we are
able to compare the quality of the sequential and the parallel version in a fair
way.

In general, a design of a parallel algorithm for an NRRP is a non-trivial
task due to the GPU’s features. Moreover, the design of our algorithm had
to be adjusted to different sizes of the NRRP instances and to be robust with
respect to the number of disruptions in the original roster. Therefore, we show
a unique problem decomposition allowing an efficient parallelization. Our work
also contains a comparison of two models of the parallel algorithm – when the
entire algorithm runs on a GPU (a homogeneous model) and when the algo-
rithm is partially solved on a CPU and partially on a GPU (a heterogeneous
model). Overall, the homogeneous model provides the speedup 12.7 (17.7)
for the NRRP datasets with 19 (32) nurses in comparison to the same algo-
rithm performed sequentially. This is significantly higher than the speedup of
the heterogeneous model – 2.3 (2.4) for the same datasets. Our results were
compared to the best known solutions of the benchmark instances presented

66 4.2 Computing on a Graphics Processing Unit

in the related works and our parallel algorithms provide the same quality of
the solutions to most of the benchmark instances within a significantly shorter
computational time.

The chapter is organized as follows: The principles of the GPU computing
are outlined in Section 4.2. The NRRP is formally defined in Section 4.3.
The sequential algorithm is presented in Section 4.4 while the design of the
homogeneous and heterogeneous model of the parallel algorithms are discussed
in Section 4.5 and 4.6. Subsequently, the performance of both models is verified
with respect to the related works in Section 4.7 on the NRRP benchmark
datasets with 19 and 32 nurses. The work is concluded in Section 4.8 and
the nomenclature used in this chapter is summarized in the beginning of this
thesis.

4.2 Computing on a Graphics Processing Unit

Computing on a GPU has become more and more powerful due to the
fast evolving hardware devices over the last decade (see (Brodtkorb et al.
(2013a))). However, compared to the CPU, the GPU has several specific
features highlighted in this section. Compute Unified Device Architecture
(CUDA) is a parallel computing platform and programming model created
by NVIDIAR© corporation supported by their GPUs (see a detailed description
in (NVIDIA Corporation (2013))). CUDA is based on a Single Instruction
Multiple Threads (SIMT) parallelization, which means that the threads are
initiated on a GPU to process different data by the same code called a kernel.
The threads are grouped into CUDA blocks. Furthermore, these blocks are
organized into a grid of the CUDA blocks executing the same kernel. From
the hardware point of view (see Figure 4.1), the blocks of threads are launched
on streaming multiprocessors (SM). More CUDA blocks can be executed on
one SM simultaneously if the capacity of the resources, e.g., the memory size,
is sufficient. The kernels are executed on each SM in batches of 32 threads
called warps. The order of the executed warps from all CUDA blocks in the
grid cannot be affected by a programmer and it is fully handled by a built-in
device scheduler.

The design of the GPU algorithms has to also respect that the warps within
a CUDA block can be executed asynchronously, although the warps can be syn-
chronized by an instruction syncthreads() at the place of this instruction.
This mechanism is called a barrier synchronization. Nevertheless, the exces-
sive usage of syncthreads() leads to a decrease in the performance. It is
necessary to take into account together with the SIMT thread mapping, which
has also a major relationship to the rest of the limitations of the GPU archi-
tecture, e.g., a branch divergence of the code. It occurs when threads in a warp

C
h
ap

ter
4

T
h
e
G
P
U

b
ased

P
arallel

A
lgorith

m
for

th
e
N
R
R
P

67

Streaming multiprocessor ...

Streaming multiprocessor 3

Streaming multiprocessor 2

Processor 1 Processor 2 Processor ...

registers

North Bridge

CPU
host

memory

Streaming multiprocessor 1

Device

Host

global memory

Device memory

registers registers

local memory constant memory texture memory

shared memory L1 cache
read-only

data cache

L2 cache

In
st
ru
ct
io
n
U
n
it

Figure 4.1: The NVIDIAR© GPUs architecture (Kepler’s generation)

68 4.2 Computing on a Graphics Processing Unit

hit an instruction which cannot be executed in parallel by all the threads, e.g.,
an if-else statement. At this moment these two branches are processed in
a sequential way, firstly, the threads for the if branch in parallel and then
the remaining threads for the else branch in parallel. On that account, the
general aim is to minimize the branch divergence as much as possible in order
to eliminate the decrease of the speedup.

The GPU algorithm can be designed using two different models, namely
a heterogeneous or a homogeneous model (see comparison in Figure 4.2). In
the homogeneous computing model all computations are performed on a device
(GPU), while the heterogeneous model has the main logic of the algorithm on
a host (CPU) and only computationally-intensive parts are accelerated by the
GPU, which is executed repeatedly very often (illustrated by the reverse arrow
in Figure 4.2). Usually, the heterogeneous model is used when the entire algo-
rithm can not be executed in parallel. The performance of the heterogeneous
model is affected by the communication between the host and the device and
for that reason, this overhead should be minimized.

During a GPU algorithm design, the memory model of the algorithm has to
be proposed in an efficient way, since one can store the data to different types
of the memory on the GPU. The first one is a global memory which is used
for the communication between the host and the device. Its advantages are
accessibility for read/write operations by all threads and its size, e.g., 1 GB
in case of the NVIDIAR© GTX 650 Ti. On the other hand, the access to
this memory can be outweighed by its huge latency. Basically, there are two
ways how to shorten the huge latencies. The first one is a technique called a
coalescing, which is based on the multiple access of the threads within a CUDA
block to read from/write to the global memory, when the multiple requests
are joined into a single one. This technique can be used for the specifically
organized data only (the consecutive addresses of the memory). The second
mechanism to accelerate the memory access is using an L1, L2 cache (illustrated
in Figure 4.1). Moreover, the huge latencies can be partially hidden by a
computation of another CUDA block, while the first block is waiting for the
data. Other types of device memory are a constant memory and a texture
memory. These memories are optimized to maintain data in a specific format,
i.e., constants and 2D arrays (such as images), which are shared and accessible
by all of the threads. Both are read-only memories, where the latencies can be
shortened in the case, when the data is cached. A shared memory is very fast
and it is used to exchange the shared data among all threads within one CUDA
block. Nevertheless, the size of this memory is very limited, e.g., 16-48 kB per
SM on the NVIDIAR© GTX 650 Ti. Registers are used to store elementary
local variables needed by each thread in a CUDA block. However, the size of
registers is strongly limited. Therefore, the thread specific data structures that
cannot fit into registers are stored in a local memory. The local memory has

C
h
ap

ter
4

T
h
e
G
P
U

b
ased

P
arallel

A
lgorith

m
for

th
e
N
R
R
P

69

CPU

GPU

//receive the

//final result

//copy data from the

//host to the device

//execute the entire

//algorithm on the

//device

GPU

//execute the algorithm

//on the host

//copy data from the host to

//the device, where a part of

//the algorithm is executed,

//the result is copied back

//to the host

//execute the algorithm on

//the host again to receive

//the final result

a) heterogeneous model b) homogeneous model

CPU

CPU

CPU

Figure 4.2: An execution of the heterogeneous and the homogeneous model of the algorithm on the GPU

70 4.3 The Nurse Rerostering Problem Statement

similar properties as the global memory except the thread scope. All memory
limitations are critical for the design of a GPU parallel algorithm, since the
distribution of the data to the particular memory types has an essential impact
on its performance.

4.3 The Nurse Rerostering Problem Statement

The Nurse Rerostering Problem considered in this chapter containing all used
symbols) is the same as in (Moz and Pato (2007)) and it is defined as follows:
Let E be a set of the scheduled human resources, i.e., the nurses of one de-
partment/unit in a hospital. The set of employees is fixed, i.e., one is not able
to hire another nurse from a different department in order to solve NRRP.
Each employee e ∈ E has to met some requirements for the days off. Let
minDaysOff be a vector of the length |E| corresponding to the minimal num-
ber of days off in every 7 consecutive days of the roster for each nurse e ∈ E.
The planning horizon is given by a set of days D. The healthcare provided by
the nurses is organized into several shifts. A set of shifts S consists of these
types of shifts: early, late and night marked as E ,L,N and, naturally, a day
off, denoted as F (considered as a virtual shift). All shifts except F takes 8
hours. These shifts are assigned to an original roster R0 of a size |E| · |D|,
which is created for the planning horizon. Each element of R0

e,d = s denotes
that nurse e ∈ E has shift s ∈ S on day d ∈ D. However, in NRRP this
roster is disrupted by unexpected circumstances. These disruptions are for-
mally defined by a set of absences A, where absence a ∈ A is given by a couple
(e, d), where e ∈ E and d ∈ D. The absence means that nurse e is not able
to serve any of the shifts except the day off on day d. Various restrictions are
taken into account in the case of NRP, e.g., the restrictions given by a labor
code, a collective agreement, the contracts and the preferences of the nurses.
However, not all of these constraints are considered in NRRP since the main,
and the most important, goal of NRRP is to keep the original roster as much
as possible. Therefore, the modified roster R̃ must fulfill the following set of
hard constraints only:

(c1) A nurse cannot be assigned to more than one shift per day.

(c2) Nurses must have the minimal number of days off in every 7 consecutive
days of the roster according to their average workload (35 or 42 hours
per week). At least 2 days off for nurses with the average workload of 35
hours per week and 1 day off for nurses with the average workload of 42
hours per week have to be met.

(c3) Nurses must have a minimal rest of at least 16 hours between two con-
secutive shifts, i.e., the sequences of consecutive shifts LE ,NE ,NL are
forbidden.

Chapter 4 The GPU based Parallel Algorithm for the NRRP 71

(c4) The set of absences A has to be respected.

(c5) The roster R̃ cannot be modified before the first (earliest) absence over
all nurses.

(c6) The minimal number of requested shifts defined by matrix RS has to be
provided.

In order to satisfy constraints such as (c2) or (c3) at the start of the planning
horizon, the roster of the previous planning horizon Rprev has to be known.
Furthermore, the required number of shifts assigned on a given day to the
nurses has to be given in order to guarantee sufficient healthcare coverage. For
this purpose, let RS be a matrix of requested shifts so that RSs,d is equal to the
minimal number of shifts s assigned on day d in the modified roster. Finally,
the objective function Z corresponds to the number of changes of the modified
roster R̃ in comparison to the original roster R0.

4.4 A Sequential Algorithm

This section describes the sequential approach which forms the basis of the
parallel algorithm described in the next section. The sequential algorithm is a
list based constructive heuristic. Let RP be a list of roster positions indexed
by a position i. Each roster position RPi contains a unique pair (e, d) where
nurse e ∈ E and day d ∈ D and it refers to shift s such that R0

e,d = s.
The basic idea of Algorithm 2 is the following: At the beginning of the

algorithm, the modified roster R̃ is initialized by function initAll such that
it contains only the shifts from R0 before the earliest absence over all nurses
(see constraint (c5)). The value of position i is also set by this function due to
the same constraint. The indices of all the roster positions from the original
roster R0 are randomly ordered to the list of the original roster positions so
that RP = (RPi)i∈〈0,|E|·|D|−1〉. Subsequently, the shifts are assigned back to

R̃ one by one according to the hierarchical rules Rule1 – Rule 4 specified in
Step 2 in the order given by RP , i.e., for all i in ascending manner. Solution
R̃ is found when all the shifts given by RP are assigned. Processing of one
RP (line 4-15 in Algorithm 2) is called a run and the number of the performed
runs is stored in an auxiliary variable run. Each run considers a different RP
list and for that reason, each one can obtain a different modified roster. The
best modified roster over all runs is stored in R̃best. The stopping condition is
the number of performed runs which is given by constant maxRuns.

When Rule 1 – Rule 4 cannot be applied to assign shift s from RPi, the
doBacktrack function is called. This backtrack is based on taking out of
some shifts from R̃ and swapping of the roster positions in RP . Thereby the

72 4.5 A Homogeneous Model of the Parallel Algorithm

algorithm increases the probability that a feasible solution will be found in this
run.

4.5 A Homogeneous Model of the Parallel Algo-
rithm

Unfortunately, the algorithm explained in the previous section does not provide
enough parallelism to be directly implemented on a GPU. An even worse issue
is the branch divergence in Step 2. For example, if there are two shifts to be
assigned in parallel and one is assigned immediately after applying Rule 1 and
the second one has to try all four rules then the execution of the algorithm

Algorithm 2: A constructive heuristic for NRRP
Input : NRRP instance given by {R0, RS,A,maxRuns}

Output: Best found modified roster R̃best

1 R̃best ← null; run← 0;

2 while run < maxRuns do

Step 1:

3 RP ← randomInit(R0); // initialize an order of the roster positions

4 [R̃, i]← initAll(R0, A); // initialize modified roster and the position counter

5 while i < |E| · |D| do // assign shifts given by RP iteratively

Step 2:

6 assign shift s given by RPi to the modified roster R̃ satisfying (c1) - (c6) according to

hierarchical rules:

7 • Rule 1: assign s to a nurse who was scheduled on this shift in R0;

if assigned then goto Step 3;

8 • Rule 2: assign s to a nurse who was not scheduled on this shift in R0, but to whom

the assignment satisfies (c3) wrt. R0 from both sides (R0
e,d−1 and R0

e,d+1);

if assigned then goto Step 3;

9 • Rule 3: assign s to a nurse who was not scheduled on this shift in R0, but to whom

the assignment satisfies (c3) wrt. R0 from one side (R0
e,d−1 or R0

e,d+1);

if assigned then goto Step 3;

10 • Rule 4: assign s to an arbitrary nurse (without a constraint violation in R̃);

if assigned then goto Step 3;

11 [RP , R̃, i]← doBacktrack(RP , R̃, i); // backtrack when s has not been assigned

12 if i < 0 then break else goto Step 2; // no feasible R̃ for given RP found

Step 3:

13 i← i+ 1;

Step 4:

14 if Z(R̃) < Z(R̃best) then R̃best ← R̃; // choose better roster from R̃ and R̃best

15 run← run+ 1;

16 return R̃best; // return R̃best having the minimal number of changes in comparison to R0

Chapter 4 The GPU based Parallel Algorithm for the NRRP 73

can not continue until both shifts are not assigned. Due to the SIMT (Single
Instruction Multiple Threads) thread mapping and long latency of the global
memory, such a naive parallelization can not provide the expected speedup of
the parallel algorithm. This section explains how to deal with these crucial
issues and shows the design of the homogeneous parallel algorithm which is
the main contribution of this chapter.

4.5.1 Problem Decomposition for Parallelization

A simple basic rule for the design of an efficient GPU algorithm is to exploit
as many threads as possible. In our case, the smallest independent data ele-
ment to be processed by a single thread is the modified roster of one nurse.
The key idea of this problem decomposition lies in the unique mapping of an
individual thread to each nurse (described in this section) and an efficient pro-
cessing of hierarchical Rule 1 – Rule 4 from Step 2 in Algorithm 2 (described
in Section 4.5.2 and 4.5.3).

First of all, the list of roster positions RP from the sequential algorithm has
to be replaced in the parallel algorithm by several partial lists stored in RPP
(see Figure 4.3). The RPP is an array of |E| partial lists of roster positions
RPPe = (RPPe,i)i∈〈0,|D|−1〉. Each element of the partial list RPPe,i = d refers

to element R0
e,d in the original roster. These elements in RPPe are organized

in the same order as in the RP . Practically, RPP splits the original RP into
lists dedicated to each particular nurse e ∈ E as is illustrated in Figure 4.3.

However, |E| threads cannot fully utilize the GPU still, or at least, to hide
the memory access latency. For that reason, we need to find another way
how to exploit the computational power of the GPU more effectively. Since a
single run of the main while loop in Algorithm 2 is independent of the other
runs, all the runs can be executed concurrently, each of them with its own
RPP . Then we refer to one instance of Algorithm 2 as an instance of the
algorithm and m is the number of instances of the algorithm executed at the
same time. It means that m · |E| threads are used to solve one NRRP instance.
Consequently, mb denotes the number of instances of the algorithm per one
CUDA block (mb ≤ m). Then each CUDA block contains mb · |E| threads.
The values of m and mb are chosen with respect to the size of the NRRP
instance and the number of SMs on the used GPU.

4.5.2 Algorithm Reorganization

Thanks to the decomposition described above we have enough threads to be
executed. Unfortunately, the decomposition itself does not guarantee full uti-
lization of the GPU due to the branch divergence, which is mostly appreciable
in Step 2 of Algorithm 2. Rule 1 decides, whether shift s given by RPi can be

74
4.5

A
H
om

ogen
eou

s
M
o
d
el

of
th
e
P
arallel

A
lgorith

m

1

22,30,0 0,3 2,11,22,21,0 2,0

E

0 1 3

0 3

2

1

2

30RP

d
e

E

L

N

FN

0,1 0,2

i

F

F

0 1RPP3

RPP2

RPP1

RPP0

F

N

E L

L LE

3,0 3,2 3,33,1

R0

A = {(1, 1), (2, 2)}
e

i

N
2

a) NRRP data b) sequential algorithm c) parallel algorithm

3

disrupted roster positions (absences)

1,3

Legend

1,1

(nurse e, day d)

(day d)

Figure 4.3: The comparison of RP and RPP for the sequential and the parallel algorithm on example

Chapter 4 The GPU based Parallel Algorithm for the NRRP 75

assigned to the original employee e on day d. On the other hand, the remaining
rules (Rule 2 – Rule 4 in Algorithm 2) search for an employee satisfying the
given rule. It means that s can be assigned directly or, in the worst case, the
algorithm has to evaluate the assignment of shift s to |E| nurses for Rule 2
– Rule 4. From the computational time point of view, there is a significant
imbalance between the execution of Rule 1 and Rule 2 – Rule 4, which is not
appropriate for parallel algorithms on the GPU. As a consequence, Algorithm 2
had to be reorganized due to the high branch divergence. A schematic reorga-
nization of the original sequential algorithm (Algorithm 2) and the algorithms
proposed in this chapter are depicted in Figure 4.4.

The original sequential algorithm (Figure 4.4a) was reorganized to the mod-
ified one (Figure 4.4b) and, consequently, to the heterogeneous (Figure 4.4d)
and the homogeneous model (Figure 4.4c) of the parallel algorithm as follows.
Step 1 used for the initialization of the list of roster positions is marked as
Part Init. Subsequently, Step 2 was split into two parts. The first one called
Part A reads the shifts to be assigned. Secondly, Part B represents the eval-
uation of these shift assignments with respect to the hierarchical rules from
Step 2. The branch divergence in Step 2 is eliminated in Part B by a smart
switching of the hierarchical rules explained in Section 4.5.3. Consequently,
these shifts are assigned to the nurses in Part C, which comprises Step 3 and
Step 4 of Algorithm 2. The backtrack is realized in this part also. According
to this algorithm reorganization, one run of the modified sequential algorithm
consists of Part Init and {Part A, B, C} in a while loop.

4.5.3 Minimization of Branch Divergence

The parallel algorithm in Figure 4.4c) in comparison to the modified sequential
one in Figure 4.4b) has an extra Part Alloc, where the needed memory space
is allocated at the beginning of the algorithm. Subsequently, Part Init in the
parallel algorithm is similar to the sequential one, while instead of initializing
a single RP we initialize m · |E| partial lists of the roster positions RPPe.
In order to minimize the branch divergence, the parallel algorithm considers
two modes. Let firstRule be a boolean variable defining in which mode the
algorithm is, i.e., how the threads of the given run process the shifts to be
assigned. If Part B is in the firstRule mode, hierarchical Rule 1 is used,
otherwise the algorithm evaluates Rule 2 – Rule 4 simultaneously. Both modes
are illustrated in Figure 4.5 (solving the NRRP instance from the example in
Figure 4.3). The figure shows one run of one instance of the parallel algorithm.
The header of the figure (the row labeled by i = 0 in the upper left corner)
contains the initial state of the NRRP instance given by Part Init (the shifts
that are before the first (earliest) absence are fixed with respect to constraint
(c5)). Each row of the figure illustrates a single execution of the sequence

76
4.5

A
H
om

ogen
eou

s
M
o
d
el

of
th
e
P
arallel

A
lgorith

m

maxRuns

m · |E|Part B

|E| · |D|

⌈maxRuns/m⌉ · |D|

Part Alloc

Part Init

Part A

Part C

Part Alloc

Part B

m · |E|

m · |E|

m · |E|

maxRuns

Step 1

|E| · |D|

b) modified sequential
algorithm

d) heterogeneous model
of the parallel algorithm

c) homogeneous model of
the parallel algorithm

a) original sequential
algorithm

R̃best

Step 2

Step 3

Step 4

Part Init

Part A

Part B

Part C

Part Init

Part A

Part C

//determine the order
//of the roster positions
//to be assigned

//evaluate the shifts
//to be assigned

//assign the shifts
//to the roster

//read the shifts
//to be assigned

//allocate resources
//on the device

//output: modified roster

Legend

//CPU function

//GPU kernel

Part . . .

⌈maxRuns/m⌉ · |D|

m · |E|

Part . . .NRRP
instance

NRRP
instance

NRRP
instance

NRRP
instance

1 instance of the
algorithm executed at

the same time

m instances of the
algorithm executed at

the same time

1 instance of the
algorithm executed at

the same time

m instances of the
algorithm executed at

the same time

//solved by the algorithm

R̃best R̃best R̃best

Figure 4.4: The overview of the sequential and the parallel algorithms

Chapter 4 The GPU based Parallel Algorithm for the NRRP 77

{Part A, B, C}. The left side of each row shows which roster positions are
processed in the current sequence of {Part A, B, C}, while the current state
of modified roster R̃ after finishing Part C is presented on the right.

The one instance of the algorithm starts on position i = 1 in the firstRule
mode in Figure 4.6. Firstly, for each thread Part A takes the appropriate
RPPe,i and determines shift s to be assigned. Secondly, each thread in Part

B evaluates the shift assignment of shift s to employee e on day d. Each
assignment is evaluated according to the penalization function

pen =



























0, iff Rule 1 succeeded (occurs in the firstRule mode)

1, iff Rule 2 succeeded (occurs in the ¬firstRule mode)

2, iff Rule 3 succeeded (occurs in the ¬firstRule mode)

3, iff Rule 4 succeeded (occurs in the ¬firstRule mode)

∞, otherwise (occurs in both modes)
(4.1)

Since the firstRule mode is active, possible evaluations are pen = 0 or
pen = ∞. Thirdly, the last Part C in the firstRule mode assigns the shifts
having pen = 0 and the others are marked as unassigned (i.e., shift E on roster
position R2,2). If all the shifts are assigned to the original employees and the
firstRule mode is active, the instance of the algorithm remains in this mode
and position i is incremented. If at least one of the shifts is not assigned
(see pen = ∞ of thread 2 in the row with i = 1 and the firstRule mode),
the instance of the algorithm continues in the ¬firstRule mode executing the
same sequence {Part A, B, C} (see the row with the ¬firstRule mode and
position i = 1 in Figure 4.5). Part A in the ¬firstRule mode loads shift s
which has not been previously assigned to all the nurses. Part B evaluates
the assignment of shift s to all the nurses concurrently using Eq. (4.1). Finally,
shift s is assigned in Part C to the employee having the minimal penalty (in
our example shift E is assigned to nurse 1). Subsequently (see the row with
position i = 2 in Figure 4.5), either the instance of the algorithm continues in
the ¬firstRulemode if there is another unassigned shift on the current position
i or in our case, it is switched back to the firstRule mode and position i is
increased by one. In summary, the branch divergence was reduced very strongly
by this efficient model, since the code executed in both modes is practically
the same, independently on position i and the current run.

78
4.5

A
H
om

ogen
eou

s
M
o
d
el

of
th
e
P
arallel

A
lgorith

m

1

2

1

2

L

N

F

E

F

F

F

F

e
x
e
c
u
ti
o
n
o
f
o
n
e
in
st
a
n
c
e
o
f
th

e
p
a
ra
ll
e
l
a
lg
o
ri
th

m

m
o
d
e

P
a
r
t

thread 0

e

L

N

F

E

0 1 3

0 3

2

1

2

3

1

0

0 1RPP3

RPP2

RPP1

RPP0

e

2 3

N −→ R̃0,2

E
e

E

FN

F

FN

E L

L L N

E −→ R̃1,3 E −→ R̃2,2 L −→ R̃3,1
A

pen = 0B

RPP3

RPP2

RPP1

RPP0

e

✓C ✕✓ ✓

d
e

L

N

F

E

N

L

E

d
e

E

L

N

FN

F

F

F

N

E L

L LE N

RPP3

RPP2

RPP1

RPP0

e

E

d
e

E

L

N

FN

F

F

F

N

E L

L LE N

E −→ R̃1,2
A

pen = ∞B pen = 1 pen = 2

C ✓

d
e

E −→ R̃0,2 E −→ R̃2,2 E −→ R̃3,2

? ? ?

?? ? ?

RPP3

RPP2

RPP1

RPP0

e d
e

N −→ R̃1,1
A

B pen = ∞

C ✕✓

E −→ R̃0,1 L −→ R̃2,3

??
d

pen = 0

f
ir
s
tR

u
le

{R
u
le

1
}

f
ir
s
tR

u
le

{R
u
le

1
}

¬f
ir
s
tR

u
le

{R
u
le

2
,
3
,
4
}

e

thread 1 thread 2 thread 3

pen = 0 pen = 0

0 1 3

0 3

2

1

2

30

0 1 2 3

?

pen = ∞
E

✕ ✓

pen = ∞

✕

F

FL

N

F

E

N

L

EE

0 1 3

0 3

2

1

2

30

0 1 2 3

0 1 3

0

2

3

2

1

2

30

0 1 2 3

E

E

L

N

FN

F

F

F

N

E L

L LE N

?
L −→ R̃3,2

?

pen = 0 pen = 0

✓ ✓

F

FL

N

F

E

N

L

EE

L

L

E

2

1

d

i = 0

i = 1

i = 1

i = 2

i

i

i

i

Shifts given by roster positions:

which are disrupted (absences)

to be assigned in the ¬firstRule mode

currently being assigned
Legend

R0

R0

R0

R0

d
R̃

R̃

R̃

R̃

Figure 4.5: Example of the execution of 1 instance of the parallel algorithm in two modes given by the firstRule flag

Chapter 4 The GPU based Parallel Algorithm for the NRRP 79

4.5.4 Detailed Description of the Homogeneous Model of the
Parallel Algorithm

This section describes, in detail, the design of the homogeneous model of the
parallel algorithm that is illustrated by Algorithm 3 in one thread executed

in one instance of the parallel algorithm point of view. Part Alloc

(line 1–5 in Algorithm 3) determines the number of instances of the algorithm
m and allocates the memory space needed by function allocateGPUResources

with respect to the size of the NRRP instance and the number of available
streaming multiprocessors on the GPU. At the beginning of the algorithm, the
necessary variables are initialized. Firstly, the variables that are common to all
the instances of the algorithm (see line 2) and, secondly, the specific variables
for one instance of the algorithm (line 3). The thread mapping is determined
by the function mapThreads, since it is the same during the entire execution
of the instance of the algorithm.

Algorithm 3: The homogeneous model of the parallel algorithm – 1 thread
of 1 instance of the algorithm

Input : NRRP instance {R0, RS,A,maxRuns}
Output: Best found modified roster R̃best

Part Alloc:
// determine the number of parallel instances of the algorithm

1 m← allocateGPUResources(|E|, |D|,maxRuns);
// initialize variables common to all instances of the algorithm

2 R̃best ← null; run← 0; applyLS ← false; terminateAlg ← false;
// initialize variables for this instance of the algorithm

3 firstRun← true; applyBT ← false; backtrack ← 0;
// set the employee index for the current thread

4 e← mapThreads(|E|);
5 syncthreads();

// perform m parallel instances of the algorithm, each exploits |E| threads
6 while true do

Part Init:
7 if firstRun ‖ i = |D| ‖ ¬feasible then

8 if run < maxRuns then

// initialize data for the new run

9 firstRun← false; feasible← true; i← 0; firstRule← true;

10 [R̃, isOccupied, unassigned, i]← initAll(e, R0, A);

11 if ¬applyBT then RPP ← generatePartialRosterPositions(e, R0, applyLS) else

applyBT ← false;
12 else

13 terminateAlg ← true; // stop condition, part # 1

14 syncthreads();

// perform the sequence of Parts A, B and C (see Algorithm 4)

15 performSequenceOfPartsABC();

16 return R̃best;

80 4.5 A Homogeneous Model of the Parallel Algorithm

Algorithm 4: Part A, B, C of Algorithm 3
Input : By reference – NRRP instance data from Algorithm 3, line 15
Output: By reference – NRRP instance data to Algorithm 3, line 15

Part A:
1 if terminateAlg then exit Algorithm 3; // stop condition, part # 2
2 if firstRule then // read the shift

3 d← RPPe,i; s← R0
e,d

;
4 else

5 d← d ∈ unassignedRP ; s← R0
unassignedRP

;

6 syncthreads();

Part B:

7 pen← evaluateShiftAssignment(e, d, s, R̃, R0, Rprev, RS, isOccupied,minDaysOff);
8 syncthreads();

Part C:
9 if firstRule then

10 if pen = 0 then // either assign the shift or mark it as unasssigned by Rule 1
11 Re,d ← s; isOccupiede,d ← true;
12 else
13 unassignede ← RPPe,i;

14 else
15 if e = 0 then // either assign the shift or set this run as infeasible
16 emin ← argmine∈E(pen);
17 if penemin

<∞ then
18 Remin,d ← s; isOccupiedemin,d ← true; unassignedemin

← null;
19 else
20 [applyBT ,RPPe]← doModifiedBacktrack(RPPe, i); feasible← false;

21 syncthreads();

22 if e = 0 && feasible then // set mode of this run wrt. unassigned shifts
23 unassignedRP ← pickUnassignedRosterPosition(unassigned);
24 if unassignedRP = null then
25 firstRule← true; i← i+ 1;
26 else
27 firstRule← false;

28 syncthreads();

29 if i = |D| && feasible then // evaluate the finished feasible run

30 Ze(R̃)← computeObjectiveFunction(e, R̃, R0);

31 syncthreads();

32 if e = 0 then
33 if i = |D| ‖ ¬feasible then
34 if feasible then // critical section: keep the best found solution

35 [Z(R̃best), R̃best, RPP best]← chooseBetter(
∑

∀e∈E

Ze(R̃), Z(R̃best));
36 else

37 applyLS ← updateLocalSearchParameters(); // update for the next run

38 run← run+ 1; // critical section: increment the counter of runs

39 syncthreads();

Chapter 4 The GPU based Parallel Algorithm for the NRRP 81

Part Init (line 7–14) initializes the next run and checks the stop condi-
tion (described in Section 4.5.4.3). Initialization of a new run is performed by
function initAll. Firstly, this function clears modified roster R̃. Secondly,
this function resets all the elements of a binary matrix isOccupied to false.
This matrix has the same dimensions as R̃ and keeps information whether the
roster position is already occupied by any shift or is not in order to ensure one
assignment of one shift to one roster position (constraint (c1)). Thirdly, this
function also clears the vector unassigned, which is used to store all the roster
positions of the unassigned shifts from the firstRule mode. Fourthly, position
i is determined with respect to absences A and constraint (c5), i.e., position i is
set to the first element of RPP that can be assigned to the different roster po-
sition in R̃ in comparison to R0. Function generatePartialRosterPositions

creates partial lists RPP in two ways, either by the local search methods (see
Section 4.5.4.2) or in a standard manner. In this case, the roster positions
from RPP are permutated randomly. Each RPPe is generated by a different
thread e, i.e., RPP is generated in parallel. Consequently, the roster positions
that can not be modified with respect to absences A and constraint (c5) are
shifted left as much as possible in each partial list, since these roster positions
have to contain the day-off. Subsequently, the sequence of {Part A, B, C} is
executed by function performSequenceOfPartsABC (line 15 in Algorithm 3),
whose body is described by Algorithm 4.

Part A (see line 1–6 in Algorithm 4) reads shift s to be assigned for each
thread. Either shift s is given by RPPe,i (in the firstRule mode) or it is given
by unassignedRP (in the ¬firstRule mode), which is one chosen element from
vector unassigned.

Part B (see line 7–8 in Algorithm 4), represented by function
evaluateShiftAssignment, returns the penalization defined by Eq. (4.1) with
respect to the input data. Namely, the shift assignment given by employee e,
shift s and day d, the current modified roster R̃, original roster R0 and Rprev

and matrix isOccupied.

Part C (line 9–15 in Algorithm 4) tries to assign shift s to the modified
roster R̃ and prepares all variables for the next sequence {Part A, B, C}.
One can notice, that the behavior of Part C is dependent on the mode given
by flag firstRule (see line 9–21 in Algorithm 4). On one hand, in the firstRule
mode, the value of pen can be either equal to 0 or to ∞. If pen = 0, shift s
is assigned to R̃ to the original roster position. In the case of pen = ∞, shift
s can not be assigned to the original roster position and, therefore, this roster
position is stored to unassigned to process it in the ¬firstRule mode later.
On the other hand, the ¬firstRule mode assigns shift s to the employee having
the minimal penalization over all employees and removes this roster position
from unassigned. If more employees have the same minimal penalty, a random
one is chosen. When the minimal penalty is ∞, shift s can not be assigned to

82 4.5 A Homogeneous Model of the Parallel Algorithm

any employee and the current run of the instance of the algorithm is marked
as infeasible.

The following instructions of Part C (line 22–15 in Algorithm 4) are exe-
cuted in order to update position i, flag firstRule and counter run. If there
is any unassigned roster position in unassigned, this roster position is chosen
by function pickUnassignedRosterPosition, stored into unassignedRP and
the mode is switched to ¬firstRule. If all roster positions are assigned, the
instance of the algorithm continues in the firstRule mode and position i is
incremented. The relation among the modes, particular parts of the parallel
algorithm and the unassigned shifts are illustrated in Appendix B.

When the incremented position i exceeds the length of RPPe (equal to the
number of days |D|) and the current run is feasible (see line 29 in Algorithm 4),
then a new solution was found. In this case the objective function Ze(R̃) related
to employee e is enumerated by function computeObjectiveFunction. Subse-
quently, the current objective function value given by

∑

∀e∈E Ze(R̃) is compared

to Z(R̃best) and the better one is preserved by function chooseBetter. Finally,
run is incremented in order to start execution of the new run.

One can notice, that some sections of the code for one instance of Algo-
rithm 4 are executed only if e = 0, e.g., line 32–38. These sections are executed
by a single thread, since it does not make sense to execute them in parallel.
Nevertheless, you can observe the symbol of a lock in the same section of the
code (namely, line 35 and line 38). This symbol presents the critical sections
of the code, where the access of the multiple instances of the algorithm have to
be controlled via locks (see more in Section 4.5.5.1). Finally, it is also impor-
tant to stress that the execution of the threads within one CUDA block have
to be synchronized in order to preserve the data consistency. This is called a
barrier synchronization realized by instruction syncthreads() (e.g., line 21
in Algorithm 4).

Algorithm 3 and Algorithm 4 together with the description above explains
how one instance of the algorithm works. To illustrate the relationship between
the runs and multiple instances of the algorithm, Figure 4.6 shows an example
considering an NRRP instance with |E| = 4 and |D| = 4. Each row corresponds
to one of m instances of the algorithm. The numbers in the circles in each row
represent different values of position i. One can notice that the run in the
first instance of the algorithm is resolved within 5 iterations of the sequence
{Part A, B, C} and then, the next run is started (gray circle). The second
row illustrates an instance of the algorithm that executes the run terminated
at position i = 1 returning no solution. The last row shows an instance of
the algorithm that repeats position i = 1 three times. Firstly, the firstRule
mode produces two unassigned roster positions that are stored into unassigned.
Then these shifts are assigned by two consequent sequences of {Part A, B, C}

C
h
ap

ter
4

T
h
e
G
P
U

b
ased

P
arallel

A
lgorith

m
for

th
e
N
R
R
P

83

m
p
a
ra
ll
e
l
in
st
a
n
c
e
s
o
f
A
lg
o
ri
th

m
3

︷
︸
︸

︷

︷
︸
︸

︷
︷
︸
︸
︷

︷
︸
︸
︷

mb

mb

mb

mb parallel instances
of Alg. 2 in one block more

blocks

0 1 2 2 3 320

start new run on position i = 0

firstRule

position i

firstRule firstRule firstRule firstRule¬firstRule

Part Init

︸ ︷︷ ︸

Part A, B, C feasible roster found

0 1 1 1 2 0 13

2 unassigned shifts by Rule 1 on position i = 1
︷ ︸︸ ︷

firstRulefirstRulefirstRulefirstRule ¬firstRule ¬firstRule

0 1 1 0 1 11

¬firstRule

¬feasible

firstRulefirstRule ¬firstRule ¬firstRule ¬firstRule

unfeasible run terminated
︸ ︷︷ ︸

one run

0

Figure 4.6: The parallel execution of m instances of the parallel algorithm for the NRRP instance with |E| = 4, |D| = 4

84 4.5 A Homogeneous Model of the Parallel Algorithm

in the ¬firstRule mode. In general, the parallel execution of the instances
of the parallel algorithm can be executed asynchronously, i.e., the different
positions i can be explored by the different instances of the parallel algorithm
in one moment.

4.5.4.1 Backtrack

There are two mechanisms how to improve the quality of the solutions. The
first one is the short-term mechanism discussed in this subsection – the back-
track. This mechanism improves the convergence of the algorithm to feasible
solutions. The second one is the long-term mechanism – the local search, intro-
duced in Section 4.5.4.2. Its aim is to improve the quality of the best solution
found.

With respect to the GPU limitations, we were not able to apply the
backtrack originally used in Algorithm 2, since it is memory consuming
and it increases the branch divergence of the parallel algorithm. There-
fore, we propose the modified backtrack algorithm (see Algorithm 5, function
doModifiedBacktrack). It is called from the main Algorithm 3 (see line 20)
whenever it is not possible to assign shift s in the ¬firstRule mode. The in-
put parameters of function doModifiedBacktrack are position i and the list
of roster positions RPPe, which is an output parameter as well. The output
value of this function is also a flag applyBT representing whether the backtrack
can be applied or not. The backtrack itself is based on the idea of swapping
the roster positions in RPP such that the unassigned roster position RPPe,i

is swapped with the previous one RPPe,i−1 and such a modified RPPe is re-
turned. The backtrack is performed till the position i > 0 and the counter
of backtrack steps backtrack does not exceed the maximal number of back-
track steps maxBacktracks. The resulting applyBT is taken into account in
Algorithm 3 on line 11. When the backtrack is applied (applyBT = true),
the generation of RPP by the function generatePartialRosterPositions is

Algorithm 5: Function doModifiedBacktrack
Input : List of roster positions RPPe, position i
Output: Flag applyBT , whether the backtrack will be applied or not, updated list of roster

positions RPPe

1 if i > 0 && backtrack < maxBacktracks then

2 applyBT ← true;
3 backtrack ← backtrack + 1;
4 swapRosterPositions(RPPe,i−1, RPPe,i);

5 else

6 applyBT ← false;
7 backtrack ← 0;

8 return [applyBT ,RPPe];

Chapter 4 The GPU based Parallel Algorithm for the NRRP 85

skipped since RPP is already given by the previous run that updates RPPe

in the function doModifiedBacktrack.

4.5.4.2 Local Search

The original sequential algorithm Algorithm 2 may be extended by an auxiliary
genetic algorithm in order to permutate the list of roster positions RPP best.
However, a direct implementation of this extension would increase the branch
divergence significantly and, therefore, we propose our local search, which elim-
inates these drawbacks. The key idea of the local search is to explore the state
space near the local optima R̃best represented by RPP best.

The local search is controlled by a flag applyLS set by function
updateLocalSearchParameters (line 37). At the beginning of the algorithm
the local search is switched off (applyLS ← false). When a new feasible
solution is stored, counter runsNoSuccess, representing the number of runs
without improvement of Z(R̃best), is reset to zero. If the feasible solution is not
found, or it is found and Z(R̃) ≥ Z(R̃best), the counter runsNoSuccess is in-
cremented. In case that its value exceeds a given threshold and R̃best 6= null,
the local search is switched on (applyLS ← true). The local search gener-
ates the RPP in the function generatePartialRosterPositions (line 11)
as a modification of RPP best in the following parallel way. Firstly, RPP best

e

is copied to RPPe. Subsequently, each position i of RPPe is considered to
be swapped with another random position i′ ∈ D. The swap of the elements
RPPe,i and RPPe,i′ is carried out with probability pLS (common to all the in-
stances of the algorithm) such that each thread is responsible to make the swap
in its RPPe. Probability pLS is set to its initial value at the start of the local
search by the function updateLocalSearchParameters. When the local search
is applied and a better solution than R̃best has not been found, the same func-
tion decreases gradually (after the given number of runs – runsOfSameProb)
probability pLS to its half. When pLS is below the threshold that is close to
zero, the local search is stopped (applyLS ← false) and the RPP of the next
run is generated in the usual manner (see Section 4.5.4, Part Init).

4.5.4.3 Stop Condition

The runs are executed in parallel by m instances of the algorithm till the total
number of runs is smaller than maxRuns. The stop condition implemented by
a terminateAlg flag is split into two parts, as you can notice in Algorithm 3,
line 13 and line 1. When it would be only executed by line 6 or by line 13, a
deadlock happens, since one of the instances of the algorithm passes the stop
condition and leaves the while loop. However, the rest of the instances of the
algorithm will be caught by the barrier synchronization in line 14, waiting on

86 4.5 A Homogeneous Model of the Parallel Algorithm

the instance of the algorithm that has been already terminated.

4.5.5 Memory Model

There are more types of memory on the GPU device (described in detail in
Section 4.2) and one has to decide which part of the data will be stored in
which memory, since the final speedup is closely dependent on this decision as
is illustrated in the experimental part of this chapter (Section 4.7.2). A naive
idea is that the maximum speedup could be obtained by the distribution of
all the data to the registers, the shared memory or the data covered by the
cache, which have significantly shorter latencies than the global memory in
general. However, we have two different algorithm workspaces, the global one
to keep the global data belonging to the algorithm itself (e.g., Zbest) and a
local workspace to store the specific data for each instance of the algorithm
(e.g., position i). Nevertheless, the distribution of the data in the memory is
not so straightforward (see Table 4.1), since it depends on the size of an NRRP
instance, naturally, on the parameters of the used GPU and the frequency of
the data access. In our case, a part of the specific data has to be stored in the
global memory because of its size (pen, unassigned). On the contrary, some
local copies of the global data (e.g., R0, A,Rprev) can be put into the shared
memory to accelerate the execution of the algorithm.

Also, the coalescing and the caching of the data has to be taken into account
in order to shorten the memory latencies. Unfortunately, the behavior of the
threads within one CUDA block is not deterministic (the number of the threads
executed in the firstRule and ¬firstRule mode is not known) and for that
reason, the coalescing cannot be applied except for copying data from the global
memory to the shared memory by the allocateGPUResources function. The
only way to accelerate the access to the global memory is to use the cache and,
therefore, our aim is to minimize the amount of data in the global memory as
much as possible.

The memory model is summarized in Table 4.1, which is organized as fol-
lows: Each row contains one variable name, its data type, its memory type,
its size in Bytes (B) and a short variable description. There are five data
types, uint for unsigned 32 bit integers, bool[] for binary arrays, bool for
booleans represented on the GPU as uint, float for a single precision floating
point representation and so called roster arrays labeled as roster[]. Each
item of roster[] corresponds to one shift. Each shift can be represented
by its uint index consuming 4B. Nevertheless, the number of shifts |S| is
bounded in the NRRP instance and the shifts can be binary encoded such that
F 7→ 00, E 7→ 01,L 7→ 10 and N 7→ 11. Consequently, one is able to compress
the roster arrays c times, where c← ⌊32/⌈log2 |S|⌉⌋. In our case c = 16, since
16 consecutive shifts can be compressed to 4B. If you focus on Table 4.1, to

C
h
ap

ter
4

T
h
e
G
P
U

b
ased

P
arallel

A
lgorith

m
for

th
e
N
R
R
P

87

Table 4.1: The overview of the memory model for the homogeneous model of the parallel algorithm

Memory Variable Type Size [Bytes] Purpose

constant
|E|max uint 4 max{|E| of all NRRP instances launched in one batch on the GPU}
m uint 4 total number of the instances of the algorithm
mb uint 4 number of the instances of the algorithm per one CUDA block

global

pen uint 4 ·m · |E| penalization used to evaluate a shift assignment
unassigned uint 4 ·m · |E| vector of roster positions that have not been assigned by Rule 1
Z(R̃best) uint 4 best value of the objective function
R̃best roster[] 4 · |E| · |D|/c best modified roster found
RPP best uint 4 · |E| · |D| list of the roster positions which corresponds to R̃best

lockbest bool 4 lock protecting Zbest

run uint 4 counter of runs, which have been started
maxRuns uint 4 maximal number of runs
firstRun bool 4 ·m flag to initialize the first run of each instance of the algorithm
terminateAlg uint 4 flag to terminate the execution of the algorithm
RS uint 4 · |S| · |D| matrix expressing the number of requested shifts per day
applyLS bool 4 flag to apply the local search around the solution based on RPP best

runsNoSuccess uint 4 number of the runs without improvement of Zbest

pLS float 4 value of the probability to swap two items in the RPP list
runsOfSameProb uint 4 number of the runs with probability pLS

shared

applyBT bool 4 ·mb flag whether the backtrack will be applied or not
backtrack uint 4 ·mb counter of made backtracks
maxBacktracks uint 4 maximal number of backtracks
Z uint 4 ·mb objective function
feasible bool 4 ·mb feasibility flag
firstRule bool 4 ·mb flag determining whether shifts are assigned according to Rule 1 or other rules
RPP uint 4 ·mb · |E|max · |D| lists of partial roster positions
i uint 4 ·mb position in RPP
s uint 4 ·mb · |E|max shift to be assigned (shift from R0 at the roster position given by RPPe,i)
unassignedRP uint 4 ·mb one unassigned roster position (e, d) by Rule 1
R̃ roster[] 4 ·mb · |E|max · |D|/c modified roster
isOccupied bool[] mb · |E|max · |D|/8 binary array determining which cell is occupied in the roster
R0 roster[] 4 · |E|max · |D|/c original roster
Rprev roster[] 4 · |E|max/c end of the previous original roster
A bool[] |E|max · |D|/8 binary array of absences
minDaysOff uint 4 · |E|max minimal number of the days-off in each (random) 7 consecutive days

maxRuns uint 4 maximal number of the runs
local |E| uint 4 number of the employees in the NRRP instance
and |D| uint 4 number of the days in the NRRP instance

registers e uint 4 index of the employee inside 1 instance of the algorithm
q uint 4 index of the instance of the algorithm launched in 1 CUDA block

88 4.6 A Heterogeneous Model of the Parallel Algorithm

the region of the shared memory, specifically to the size of the variables, you
can simply distinguish what is shared over all instances of the algorithm in the
CUDA block and what is specific for each one. In the second case, the size is a
multiplied by mb (the number of the instances of the algorithm per one CUDA
block).

4.5.5.1 Critical Sections

In the case of the parallel design, one has to consider the parallel access to
the shared data which should be accessed exclusively only by 1 thread in order
to modify the global data maintained over all instances of the algorithm, e.g.,
R̃best. The instructions which need a mechanism for protecting the access to
the shared resource via locks are marked in Algorithm 3 by the symbol .
The first one is the instruction for updating the best NRRP solution (line 35).
The second one is the instruction for incrementing the total runs counter run
(line 38), where the access is controlled via atomic operations provided by the
CUDA framework itself.

4.6 A Heterogeneous Model of the Parallel Algo-
rithm

This section describes the design of the heterogeneous model of the parallel
algorithm as an alternative to the homogeneous one. In the case of the hetero-
geneous model, one has to decide which part of the algorithm will be executed
in a parallel way on the GPU and which will stay on the CPU. In our case,
Part B was moved to GPU, since it consumes 76 % of the total computing
time. Therefore, the upper bound of the speedup is 100/(100 − 76) ∼ 4.17
times, if zero computational time of the GPU execution is assumed. In order
to compare the heterogeneous model of the parallel algorithm to the homoge-
neous one (see Algorithm 3), the complete heterogeneous pseudo-code is stated
in Appendix C.

The biggest bottleneck of this model from the speedup point of view is
the communication between the host and the device. The basic idea how to
minimize the communication in our algorithm is to perform it in a batch way.
The rosters prepared for the evaluation by Part A are accumulated on the
host as long as the maximal size of data is not reached. Afterwards, the data is
copied from the CPU memory space to the GPU memory space and the kernel
of Part B is launched. When the parallel evaluation is finished, the resulting
pen for all shift assignments are copied back to the host and Part C assigns
the shifts to R̃.

Chapter 4 The GPU based Parallel Algorithm for the NRRP 89

4.7 Experiments & Evaluation

4.7.1 Experimental Setup

The experiments were performed on a PC with the AMD Phenom II X4 945,
GHz, 8 GB of RAM and on the GPU device NVIDIAR© GTX 650 Ti. Nev-
ertheless, this is just a common GPU for playing games equipped by 768
cores and 1 GB of global memory (a full specification of this GPU is in
(NVIDIA Corporation (2014))). The algorithm was developed in the CUDA
framework version 5.5 in the Microsoft Visual Studio 2010.

The performance of our approach was verified from the speedup and the
quality point of view on two datasets (Pato and Moz (2013)). Dataset D19 con-
tains 32 instances with 19 nurses, while dataset D32 consists of 36 instances
with 32 nurses. These datasets are consistent with the NRRP problem state-
ment described in Section 4.3. The number of absences in the particular NRRP
instances differs from 1 up to 59. Moreover, the NRRP instances are organized
into groups indicated by Roman numerals in their names. The Roman numeral
corresponds to the number of weeks from the end of the planning horizon which
can be modified, e.g., instance II.5 19 has the absences in the third and the
fourth week, i.e., the two weeks can be modified with respect to constraint (c5);
instance III.2 32 has the absences in the second, the third and the fourth week,
etc. In addition, dataset D32 contains one extra group of instances V.1 32 –
V.4 32 that have the larger set of absences.

To eliminate the randomness of the algorithms given by the
generatePartialRosterPositions function, all of the following experiments
were evaluated over 50 samples. One sample is performed by the execu-
tion of all algorithms that have the following parameters: maxRuns =
100 · 103,maxBacktracks = 5 · 103. The parameters relevant for the paral-
lel algorithms were set experimentally to m = 1200,mb = 2.

4.7.2 Tuning the Memory Model

To determine the most efficient version of the parallel algorithm from the
speedup point of view that was used for the final experiments, the memory
model was tuned. The speedup is defined as the ratio of the time consumed
by the modified sequential algorithm (Figure 4.4b) to the time consumed by
the parallel algorithm, either for the homogeneous model (Figure 4.4c) or
for the heterogeneous model (Figure 4.4d), i.e., speeduphom = tseq/thom and
speeduphet = tseq/thet.

The experiments depicted in Figure 4.7 show the relationship between the
changes of the memory model and the gained speedup. The speedup of each
memory model was compared relatively to the final memory model (described
in Section 4.5.5, which is illustrated in figures by black). This memory model

90
4.7

E
x
p
erim

en
ts

&
E
valu

ation

90 91 92 93 94 95 96 97 98 99 10088 898786

relative speedup related to the final black model [%]

datasets

d
a
ta
se
t
D
3
2

d
a
ta
se
t
D
1
9

with 3 locks

no lockLS

R0

R

isOccupied

A

Rprev

︸
︷
︷

︸

moved

from

the global

memory to

the shared

memory

horizontal

falling

crossed

circled

rising

vertical

final black

Legend

name of pattern properties of mem. models

90 91 92 93 94 95 96 97 98 99 10088 898786

Figure 4.7: The memory model tunning for the homogeneous model

Chapter 4 The GPU based Parallel Algorithm for the NRRP 91

was the best one for the homogeneous and the heterogeneous model for both
datasets. Seven different memory models presented in Figure 4.7 were com-
pared such that the results are averaged over the NRRP instances belonging
to the particular dataset. Each memory model was made from the previous
one (illustrated by arrows between patterns in the legend), e.g., the falling one
was based on the horizontal one, etc. Our first memory model (depicted by
horizontal pattern) considered three locks. The first one controls the access to
the best solution (line 35 in Algorithm 3), the second one protects the incre-
mentation of run (line 38), while the third one, called as lockLS (line 37), was
used to correctly update the local search parameters, e.g., runsNoSuccess.
However, this line of the code in the algorithm is not marked by the symbol
in Algorithm 3, since lockLS was omitted in all the memory models except

the horizontal one. This is still acceptable, since in the worst case the local
search will be not switched on and off after an exact number of runs, but ap-
proximately after a given number of runs due to the concurrent access of the
instances of the parallel algorithm. One can notice that this change leads to a
very significant increase of the speedup in the falling memory model (approxi-
mately by 5 % without any influence to the quality of the solutions). The next
5 % was gained by moving the variables from the global memory to the shared
memory. Namely, R0 in the cross model, R̃ in the rising model, isOccupied in
the circle model, A in the vertical model and at last, Rprev in the final black
model.

This final memory model described in Section 4.5.5 is used in Section 4.7.3
and Sec.4.7.4.

4.7.3 Speedup Evaluation

These experiments were performed in order to prove the expected speedup
of the parallel algorithms. The results are summarized in Table 4.2 (dataset
D19) and Table 4.3 (dataset D32), where the rows correspond to the partic-
ular NRRP instances evaluated by 50 samples. For each NRRP instance, the
computational times tseq, thom and thet provided by the modified sequential
CPU algorithm (Figure 4.4b), the homogeneous parallel GPU algorithm (Fig-
ure 4.4c) and the heterogeneous parallel GPU algorithm (Figure 4.4d) were
compared, since all of them are based on the same code presented by Algo-
rithm 3. Consequently, the derived speedups speeduphom and speeduphet are
presented on the right in the tables.

One can notice some relationships among the particular results. Firstly,
for the computational times, it holds that tseq > thet > thom and, therefore,
speeduphom > speeduphet, as we expected. Namely, dataset D19 was acceler-
ated on average by speeduphom = 12.71 and speeduphet = 2.36, while dataset
D32 achieves speeduphom = 17.70 and speeduphet = 2.26. Secondly, one can

92
4.7

E
x
p
erim

en
ts

&
E
valu

ation

Table 4.2: The comparison of computational times and speedups – dataset D19, 50 samples per instance

dataset D19 Figure 4.4b Figure 4.4c Figure 4.4d speedups

NRRP sequential homogeneous heterogeneous speeduphom speeduphet
instance CPU tseq [s] GPU thom [s] GPU thet [s] tseq/thom [−] tseq/thet [−]

I.1 19 3.42 0.44 3.34 7.75 1.02
I.2 19 7.37 0.75 8.17 9.78 0.90
I.3 19 6.11 0.71 3.71 8.62 1.65
I.4 19 7.04 0.61 6.62 11.48 1.06
I.5 19 5.81 0.68 3.22 8.57 1.80
I.6 19 6.26 0.63 3.26 10.01 1.92
I.7 19 6.71 0.70 3.30 9.54 2.03
I.8 19 7.12 0.62 4.99 11.46 1.43
II.1 19 7.84 0.61 6.00 12.81 1.31
II.2 19 9.50 0.67 5.96 14.09 1.59
II.3 19 7.00 0.57 3.64 12.18 1.92
II.4 19 9.02 0.71 3.73 12.77 2.42
II.5 19 7.40 0.65 3.63 11.33 2.04
II.6 19 10.26 0.93 4.09 11.05 2.51
II.7 19 7.98 0.79 3.48 10.10 2.30
II.8 19 7.61 0.53 3.39 14.25 2.25
III.1 19 9.37 0.66 3.63 14.22 2.58
III.2 19 8.13 0.66 3.10 12.36 2.62
III.3 19 8.68 0.61 3.39 14.16 2.56
III.4 19 12.62 0.77 4.53 16.29 2.79
III.5 19 13.43 0.96 4.51 14.01 2.98
III.6 19 11.55 1.20 3.98 9.64 2.90
III.7 19 10.20 0.76 3.83 13.42 2.66
III.8 19 11.84 0.78 4.02 15.23 2.95
IV.1 19 10.76 0.61 3.40 17.51 3.16
IV.2 19 10.76 0.64 3.35 16.70 3.21
IV.3 19 11.51 0.83 3.60 13.83 3.20
IV.4 19 11.92 0.83 4.09 14.39 2.92
IV.5 19 15.75 1.05 4.80 15.07 3.28
IV.6 19 11.42 0.84 4.07 13.59 2.81
IV.7 19 15.22 1.09 4.52 13.91 3.37
IV.8 19 15.55 0.93 4.56 16.75 3.41

avg. of D19 9.54 0.75 4.19 12.71 2.36
st.dev. of D19 2.96 0.17 1.11 2.54 0.72

C
h
ap

ter
4

T
h
e
G
P
U

b
ased

P
arallel

A
lgorith

m
for

th
e
N
R
R
P

93

Table 4.3: The comparison of computational times and speedups – dataset D32, 50 samples per instance

dataset D32 Figure 4.4b Figure 4.4c Figure 4.4d speedups

NRRP sequential homogeneous heterogeneous speeduphom speeduphet
instance CPU tseq [s] GPU thom [s] GPU thet [s] tseq/thom [−] tseq/thet [−]

I.1 32 13.88 1.11 13.11 12.54 1.06
I.2 32 14.77 1.12 13.52 13.16 1.09
I.3 32 18.79 1.35 14.24 13.88 1.32
I.4 32 16.51 1.03 12.89 16.00 1.28
I.5 32 19.51 1.46 13.92 13.37 1.40
I.6 32 15.94 1.40 9.97 11.36 1.60
I.7 32 15.52 1.30 11.64 11.92 1.33
I.8 32 15.81 1.32 11.78 11.95 1.34
II.1 32 18.95 1.11 12.29 17.07 1.54
II.2 32 19.58 1.11 12.12 17.58 1.62
II.3 32 21.85 1.26 12.65 17.38 1.73
II.4 32 28.12 1.57 14.20 17.92 1.98
II.5 32 28.41 1.91 13.23 14.87 2.15
II.6 32 25.45 1.92 9.41 13.25 2.70
II.7 32 23.26 1.42 12.66 16.43 1.84
II.8 32 24.89 1.41 12.84 17.62 1.94
III.1 32 27.66 1.45 12.95 19.08 2.13
III.2 32 27.73 1.42 12.49 19.55 2.22
III.3 32 30.74 1.60 13.20 19.20 2.33
III.4 32 31.74 1.53 13.55 20.80 2.34
III.5 32 36.33 2.15 14.63 16.88 2.48
III.6 32 37.35 2.31 10.42 16.19 3.58
III.7 32 37.72 2.08 14.72 18.17 2.56
III.8 32 36.67 2.30 12.98 15.93 2.83
IV.1 32 32.97 1.42 12.76 23.23 2.58
IV.2 32 33.71 1.51 13.21 22.31 2.55
IV.3 32 34.18 1.48 13.00 23.03 2.63
IV.4 32 39.96 1.91 13.41 20.97 2.98
IV.5 32 39.15 1.93 14.48 20.26 2.70
IV.6 32 30.16 1.28 12.35 23.55 2.44
IV.7 32 39.17 1.87 14.38 20.98 2.72
IV.8 32 48.74 2.55 16.89 19.12 2.88
V.1 32 30.14 1.30 10.05 23.23 3.00
V.2 32 30.15 1.47 8.45 20.55 3.57
V.3 32 32.93 1.65 9.04 19.92 3.64
V.4 32 46.24 2.57 14.95 17.98 3.09

avg. of D32 28.46 1.60 12.73 17.70 2.26
st.dev. of D32 9.09 0.41 1.75 3.46 0.71

94 4.7 Experiments & Evaluation

observe that speeduphet is approximately the same for both datasets. This is
caused by the main bottleneck of the heterogeneous model, in other words,
the communication between the host and the device. However, speeduphom of
dataset D32 is on average higher than speeduphom of dataset D19, since the
bigger NRRP instance we have for our algorithm, the higher the speedup can
be expected in comparison to the sequential algorithm. The last observation
is that there is a correlation between the NRRP instances and the achieved
speedup for both datasets. One can see that the speedup is growing with
the number of weeks that are modified (see the description of the datasets in
Section 4.7.1).

4.7.4 Quality Evaluation

This section is focused on evaluating the quality of the solutions produced by
our algorithms, specifically the parallel one. For this purpose, the values of
the objective function were compared in Table 4.4 (dataset D19) and Table 4.5
(dataset D32). Each row in the tables contains the results for one NRRP
instance arranged from left to right as follows – the optimal value of Z given
by ILP (Moz and Pato (2007)), the results of the best sequential algorithm
from (Moz and Pato (2007)) (labeled as HHPMX) and our results. Namely,
the results of the original sequential algorithm implemented by ourselves in
order to eliminate the influence of the used hardware (see Figure 4.4a), the
modified sequential algorithm (see Figure 4.4b) and the homogeneous and the
heterogeneous model of the parallel algorithm (corresponds to Figure 4.4c and
Figure 4.4d). The results are given by a pair of values – the value of the
objective function Z and the computational time needed to achieve this quality.
These results are summarized in the footer of the tables such that # feasible (#
optimal) stands for the total number of feasible (optimal) solutions of instances
over the entire dataset.

In order to make a fair comparison from the CPUs point of view, each
sequential algorithm had more computational time than the parallel one.
Namely, tseq was determined for each NRRP instance such that tseq =
thom · speeduphom = thet · speeduphet. The experiments proved that the al-
gorithm reorganization made in the modified sequential algorithm (see Fig-
ure 4.4b) has no influence on the quality of the results in comparison to the
performance of the original sequential algorithm (see Figure 4.4a). Further-
more, the values of the objective function Z are almost the same for all our
algorithms (Figure 4.4a – Figure 4.4d) evaluated on both datasets. There are
some small differences caused by the randomness of the algorithm, which were
eliminated by the evaluation over 50 samples.

You can observe the huge difference in the computational times among the
sequential algorithms (HHPMX from (Moz and Pato (2007)) and Figure 4.4a,

C
h
ap

ter
4

T
h
e
G
P
U

b
ased

P
arallel

A
lgorith

m
for

th
e
N
R
R
P

95

Table 4.4: The comparison of the objective function values – dataset D19, 50 samples per instance

dataset D19 (Moz and Pato (2007)) Figure 4.4a Figure 4.4b Figure 4.4c Figure 4.4d

CPU CPU CPU CPU GPU GPU
NRRP ILP HHPMX sequential sequential homogeneous heterogeneous

instance Z[−] Z[−] t[s] Z[−] tseq [s] Z[−] tseq [s] Z[−] thom[s] Z[−] thet[s]

I.1 19 3 3 163.50 3 3.56 3 3.42 3 0.44 3 3.34
I.2 19 2 2 186.66 2 7.80 2 7.37 2 0.75 2 8.17
I.3 19 9 9 279.98 9 6.60 9 6.11 9 0.71 9 3.71
I.4 19 2 2 355.70 2 7.20 2 7.04 2 0.61 2 6.62
I.5 19 20 20 453.79 20 6.01 20 5.81 20 0.68 20 3.22
I.6 19 8 9 380.75 8 6.60 8 6.26 8 0.63 8 3.26
I.7 19 20 21 717.40 21 7.32 23 6.71 22 0.70 ∞ 3.30
I.8 19 2 2 354.50 2 7.07 2 7.12 2 0.62 2 4.99
II.1 19 1 1 420.24 1 8.40 1 7.84 1 0.61 1 6.00
II.2 19 0 0 384.42 0 9.60 0 9.50 0 0.67 0 5.96
II.3 19 5 5 485.90 5 7.20 5 7.00 5 0.57 5 3.64
II.4 19 12 12 644.55 12 9.00 12 9.02 12 0.71 12 3.73
II.5 19 6 6 437.51 6 7.80 6 7.40 6 0.65 6 3.63
II.6 19 17 17 624.03 17 10.80 17 10.26 17 0.93 17 4.09
II.7 19 ∞ ∞ 2199.36 ∞ 8.61 ∞ 7.98 ∞ 0.79 ∞ 3.48
II.8 19 5 5 608.02 5 7.59 5 7.61 5 0.53 5 3.39
III.1 19 7 7 729.30 7 9.60 7 9.37 7 0.66 7 3.63
III.2 19 12 12 1002.30 13 8.40 12 8.13 12 0.66 13 3.10
III.3 19 13 13 1138.48 14 9.00 14 8.68 14 0.61 14 3.39
III.4 19 7 7 917.48 7 12.59 7 12.62 7 0.77 7 4.53
III.5 19 27 28 1570.93 33 13.82 30 13.43 29 0.96 34 4.51
III.6 19 27 28 1729.36 27 12.04 29 11.55 29 1.20 35 3.98
III.7 19 19 19 912.13 20 10.76 19 10.20 19 0.76 19 3.83
III.8 19 11 11 891.56 11 11.99 11 11.84 11 0.78 11 4.02
IV.1 19 9 9 1044.69 9 11.39 9 10.76 9 0.61 9 3.40
IV.2 19 12 12 1140.94 12 10.80 12 10.76 12 0.64 12 3.35
IV.3 19 10 10 1197.91 10 12.00 10 11.51 10 0.83 10 3.60
IV.4 19 34 37 2528.40 38 12.06 39 11.92 37 0.83 ∞ 4.09
IV.5 19 18 18 1485.12 19 16.14 19 15.75 20 1.05 23 4.80
IV.6 19 23 25 2509.28 27 11.42 25 11.42 25 0.84 30 4.07
IV.7 19 9 9 1271.72 9 15.57 9 15.22 9 1.09 9 4.52
IV.8 19 10 10 1307.64 10 15.60 10 15.55 10 0.93 10 4.56

feasible 31 31 - 31 - 31 - 31 - 29 -
optimal 31 25 - 23 - 24 - 24 - 21 -

96
4.7

E
x
p
erim

en
ts

&
E
valu

ation
Table 4.5: The comparison of the objective function values – dataset D32, 50 samples per instance

dataset D32 (Moz and Pato (2007)) Figure 4.4a Figure 4.4b Figure 4.4c Figure 4.4d

CPU CPU CPU CPU GPU GPU
NRRP ILP HHPMX sequential sequential homogeneous heterogeneous

instance Z[−] Z[−] t[s] Z[−] tseq [s] Z[−] tseq [s] Z[−] thom[s] Z[−] thet[s]

I.1 32 5 5 210.74 5 14.23 5 13.88 5 1.11 5 13.11
I.2 32 5 5 241.89 5 15.60 5 14.77 5 1.12 5 13.52
I.3 32 8 8 372.27 8 19.20 8 18.79 8 1.35 8 14.24
I.4 32 3 3 499.36 3 16.80 3 16.51 3 1.03 3 12.89
I.5 32 10 10 376 10 19.80 10 19.51 10 1.46 10 13.92
I.6 32 15 15 348.78 16 16.20 15 15.94 15 1.40 15 9.97
I.7 32 9 9 261.49 9 15.60 9 15.52 9 1.30 9 11.64
I.8 32 10 10 264.32 10 16.20 10 15.81 10 1.32 10 11.78
II.1 32 5 5 626.37 5 19.20 5 18.95 5 1.11 5 12.29
II.2 32 5 5 633.84 5 19.80 5 19.58 5 1.11 5 12.12
II.3 32 7 7 707.69 7 22.20 7 21.85 7 1.26 7 12.65
II.4 32 13 13 921.69 13 28.20 13 28.12 13 1.57 13 14.20
II.5 32 20 20 900.99 20 28.80 20 28.41 20 1.91 20 13.23
II.6 32 24 24 725.85 24 25.80 24 25.45 24 1.92 24 9.41
II.7 32 10 10 782.62 10 23.39 10 23.26 10 1.42 10 12.66
II.8 32 11 11 923.21 11 25.20 11 24.89 11 1.41 11 12.84
III.1 32 13 13 1122.19 13 27.60 13 27.66 13 1.45 13 12.95
III.2 32 13 13 1183.45 13 28.20 13 27.73 13 1.42 13 12.49
III.3 32 15 15 1250.79 15 31.20 15 30.74 15 1.60 15 13.20
III.4 32 14 14 1390.03 14 31.80 14 31.74 14 1.53 14 13.55
III.5 32 25 25 1177.45 25 36.00 25 36.33 25 2.15 25 14.63
III.6 32 44 44 1499.19 45 37.81 45 37.35 47 2.31 53 10.42
III.7 32 25 25 1601.16 25 37.79 25 37.72 25 2.08 25 14.72
III.8 32 30 30 1169.97 30 36.60 30 36.67 30 2.30 31 12.98
IV.1 32 14 14 1613.55 14 33.00 14 32.97 14 1.42 14 12.76
IV.2 32 15 15 1701.5 15 34.20 15 33.71 15 1.51 15 13.21
IV.3 32 14 14 1785.02 14 34.20 14 34.18 14 1.48 14 13.00
IV.4 32 20 20 2049.01 20 40.80 20 39.96 20 1.91 20 13.41
IV.5 32 21 21 1726.8 21 39.00 21 39.15 21 1.93 21 14.48
IV.6 32 11 11 1620.95 11 30.60 11 30.16 11 1.28 11 12.35
IV.7 32 20 20 1786.5 20 39.60 20 39.17 20 1.87 20 14.38
IV.8 32 30 30 1928.47 30 48.60 30 48.74 30 2.55 30 16.89
V.1 32 14 14 2071.26 14 30.00 14 30.14 14 1.30 14 10.05
V.2 32 27 27 2278.8 27 31.20 27 30.15 27 1.47 27 8.45
V.3 32 28 28 2281.24 28 33.00 28 32.93 28 1.65 28 9.04
V.4 32 117 128 7397.17 133 47.57 ∞ 46.24 127 2.57 ∞ 14.95

feasible 36 36 - 36 - 35 - 36 - 35 -
optimal 36 35 - 33 - 33 - 34 - 32 -

Chapter 4 The GPU based Parallel Algorithm for the NRRP 97

Figure 4.4b), which achieved practically the same results in terms of the quality.
The sequential algorithm HHPMX from (Moz and Pato (2007)) had only 20 runs,
however, it was extended by a genetic algorithm, where each individual of a
population can correspond to one of our instances of the algorithm. Moreover,
the population consisting of 400 individuals was evolved over 2000 generations
and this is the main reason of the higher computational time consumed by
HHPMX.

Finally, it flows from the comparison of the sequential and the parallel
algorithms that their quality is on average the same and is achieved within dif-
ferent computational times according to the speedup presented in the previous
subsection.

4.8 Conclusion

This work provides, up to our knowledge, the first parallel approach solving
the Nurse Rerostering Problem (NRRP). The basic ideas, principles and limi-
tations used to design the parallel algorithm on GPU for NRRP are explained.
Furthermore, we describe two models (the homogeneous and the heterogeneous
one) of the parallel algorithm and the differences in their design. Our algo-
rithms were evaluated from the speedup and the quality point of view on the
NRRP benchmark instances (Pato and Moz (2013)). The experiments show
that we are able to achieve the same quality of the results within significantly
shorter computational time in comparison to the same sequential algorithm.
Namely in the case of the homogeneous model of the parallel algorithm, the
NRRP instances with 19 nurses were accelerated almost 13 times in average,
while the instances having 32 nurses were solved almost 18 times faster.

Looking to the future, one can expect the rapid progress in the GPUs
performance compared to the performance of the common CPUs limited by
their architecture. The authors of (Brodtkorb et al. (2013b)) concluded their
survey focused on GPU computing in OR that it is clear that GPUs will play
an important role in all of computational science in the nearest future and
it is important to consider how to utilize these new kinds of architectures.
Nevertheless, it is still not common to apply GPUs on the OR problems, which
was a main motivation for us to publish this work.

98

Chapter 5

Conclusion

This chapter is summarizing the achieved contributions of the thesis.

5.1 Achieved Contributions

Firstly, the state of the art related to employee timetabling was presented.
Consequently, objectives of the thesis were set to significant gaps revealed
from the literature. Namely, two combinatorial problems were addressed in
the thesis. The first one is so called Employee Timetabling Problem with a
High Diversity of shifts (ETPHD), while the second one is focused on the Nurse
Rerostering Problem (NRRP).

The first contribution related to ETPHD is that this problem is rigorously
described by the ILP model. However, the problem complexity does not allow
us to apply exact methods to solve it and, therefore, we designed a multistage
approach (MSA) able to solve large instances of this problem. Its success is
mainly given by a proposed problem transformation, which is based on the
mapping of the shifts into the groups of shifts. Consequently, the rough posi-
tions of assigned shifts are determined by the first stage, while the second stage
is represented by the inverse transformation based on network flows. These first
two stages provide the initial solution of the problem. Finally, a Tabu Search
algorithm is performed in the last stage to improve the quality of the solution.

In order to evaluate MSA by comparing to other approaches, we proposed a
cross evaluation methodology (see Section 3.6.4). It is based on cross applying
all the considered approaches on different ETPs and comparing their results.
Namely, ETPHD was presented by 30 real life instances from an airport com-
pany and, furthermore, 5 standard benchmark instances (ASAP (2013)) of
the Nurse Rostering Problem (NRP) were evaluated. The cross evaluation
methodology was used, since there were no benchmark instances of ETPHD
and it confirmed that the approaches providing the initial solution based on

99

100 5.2 Fulfillment of Stated Goals and Objectives

the transformation perform better or equal solutions in 12 out of 14 cases (see
Table 3.10). One case corresponded to a comparison of the results of two dif-
ferent approaches applied on all the instances of one combinatorial problem
within the given time limit repeated 30 times to eliminate the randomness of
the approaches.

In the case of NRRP, a parallel algorithm that helps to accelerate NRRP so-
lution was designed. Furthermore, it exploits not so common hardware device
used for the solution of combinatorial problems - a Graphics Processing Unit
(GPU). To the best of our knowledge, this is the first parallel algorithm for
NRRP and the first parallel algorithm for ETPs performed on GPU. The thesis
brings the detailed description of all the issues to be solved in order to achieve
the final speedup of the parallel algorithm in comparison to the sequential ver-
sion of the algorithm executed on Central Processing Unit (CPU). Moreover,
two models of the parallel algorithm were compared, the homogeneous and
the heterogeneous one. The homogeneous one is completely executed on GPU,
while the heterogeneous one is executed on GPU (the computationally inten-
sive parts of the algorithm) and on CPU as well (the rest of the algorithm).
The experiments were elaborated on 68 real life standard benchmark NRRP
instances (Pato and Moz (2013)) tested 50 times per instance. These experi-
ments verified that the quality of the results provided by the parallel algorithm
is comparable to the sequential ones and to the best known ones. In terms of
the speedup, the heterogeneous model of the parallel algorithm was in average
2.3 times faster in comparison to the sequential one. However, the speedup of
the homogeneous model of the parallel algorithm was more significant, since
the results of the same quality were provided in 15 times shorter computational
time in average.

In general, the results of the research made are summarized by the list of
publications at the end of the thesis. To the most outstanding publications be-
long impacted journal papers. Namely, (Bäumelt et al. (2014)) was accepted
in the Computers & Operations Research, where the proposed approach deal-
ing with ETPs from Chapter 3 is described. Furthermore, the publication
(Bäumelt et al. (2015)) related to the proposed parallel algorithm from Chap-
ter 4 is in major revision to be submitted to European Journal of Operational
Research.

5.2 Fulfillment of Stated Goals and Objectives

The fulfillment of the stated goals and the objectives is revised below.

1. The goal was satisfied in Chapter 2. The basic terms, the classification
and the categorization of the employee timetabling within the context
of the operations research was described. Consequently, other goals of

Chapter 5 Conclusion 101

the thesis were targeted to the significant gaps of the domain that reveal
from the presented state of the art review.

2. This goal was achieved in Chapter 3. Namely, the multistage approach
based on a transformation of ETPHD was proposed, where the problem
solution was decomposed into three stages. The first one works with the
transformed problem in order to determine a rough position of shifts.
The second one contains an inverse transformation that assigns shifts to
employees. The last stage improves the quality of the final timetable. The
experimental part showed that approaches based on our transformation,
e.g., MSA, outperformed other approaches in the most of the cases (see
details in goal 4 below).

3. This goal was met by Chapter 4. Namely, the parallel algorithm for the
Graphics Processing Unit solving the Nurse Rerostering Problem was de-
signed. The issues solved in order to gain the speedup of the algorithms
are described and their influence on the quality of the solutions and the
speedup is discussed. Moreover, two different models of the parallel algo-
rithm, i.e., the homogeneous and the heterogeneous one, were compared
and their advantages and drawbacks were explained. The significant
speedup to the sequential version of the algorithm was attained by the
homogeneous model, the computational times were 15 times shorter in
average.

4. This goal was filled by the experimental parts of the both handled
problems (see Section 3.6 for ETPHD and Section 4.7 for NRRP).

To evaluate approaches applied on ETPHD, the cross evaluation
methodology (Section 3.6.4) was introduced. It was used to verify the
contribution of the implemented multistage approach MSA based on
a transformation of ETPHD. The experiments were tested on 30 real
life ETPHD benchmark instances (see Table 3.6) and on 5 standard
NRP benchmark instances (ASAP (2013)) as well. The experiments
demonstrated that the approaches having this transformation included
were better or equal to other approaches in 12 out of 14 cases in terms
of the quality of the solutions. One case responses to a comparison of
the results of two different approaches applied on all the instances of one
combinatorial problem within the given time limit repeated 30 times to
eliminate the randomness of the approaches. Finally, MSA is being used
to solve ETPHDs in an airport company.

To evaluate the parallel algorithm dealing with NRRP, the standard

102 5.3 Concluding Remarks

NRRP benchmark set (Pato and Moz (2013)) containing the real life in-
stances from the hospital was used. This set consists of two datasets
having 19 and 32 nurses. In order to make a fair comparison, we decided
to verify (except the gained speedup) the quality of the solutions pro-
vided by the parallel algorithm also. In general, the comparison of the
homogeneous (see Section 4.5) and the heterogeneous model (Section 4.6)
demonstrates the GPUs power. Their speedups related to the sequential
version of the algorithm were in average 15 times (homogeneous) and 2.3
times (heterogeneous) to obtain the NRRP solution with no influence to
its quality.

5.3 Concluding Remarks

Conclusions that flow from the thesis and can be further investigated in order
to continue contributing to the employee timetabling domain and, generally,
to the Operations Research, are pointed out at this place. Firstly, a way how
to deal with Employee Timetabling Problems with a High Diversity of shifts
more efficiently was showed and we believe that new methods based on ours will
appear for this problem in the future. Secondly, the cross evaluation methodol-
ogy was introduced. It is suitable to evaluate the performance of the designed
algorithm fairly, because the results provided by more algorithms applied on
more combinatorial problems are compared. The methodology was used, since
there were no benchmark instances of ETPHD and, therefore, no results of
any other algorithm to be compared to. The methodology can be used by the
domain community for other cases having the same characters. Finally, the
chapter focused on the design of the parallel algorithm on GPU for the Nurse
Rerostering Problem demonstrates that the usage of such a new architectures
is very promising and opens wide range of opportunities to accelerate the so-
lution of combinatorial problems by its parallelization. Since the companies
producing GPUs concern to the research and the development related to the
parallelization very intensively, the rapid progress of GPU performance can be
expected in the future, which is very promising for further research.

Bibliography

Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen, A.P., 2002. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics 123, 75–102.

Aickelin, U., White, P., 2004. Building better nurse scheduling algorithms. Annals of
Operations Research 128, 159–177.

Al-Yakoob, S.M., Sherali, H.D., 2006. A column generation approach for an employee
scheduling problem with multiple shifts and work locations. Journal of the Opera-
tional Research Society 59, 34–43.

Alfares, H.K., 1998. An efficient two-phase algorithm for cyclic days-off scheduling.
Computers & Operations Research 25, 913–923.

Alfares, H.K., 2001. Efficient optimization of cyclic labor days-off scheduling. OR-
Spektrum 23, 283–294.

Alfares, H.K., 2004. Survey, categorization, and comparison of recent tour scheduling
literature. Annals of Operations Research 127, 145–175.

AMD, 2014. AMD Accelerated Parallel Processing OpenCL Program-
ming Guide. http://developer.amd.com/wordpress/media/2013/07/

AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.

7.pdf. Accessed: 2014-10-01.

Anstreicher, K.M., Brixius, N.W., Goux, J., Linderoth, J., 2002. Solving large
quadratic assignment problems on computational grids. Mathematical Program-
ming 91, 563–588.

Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J., 2007. The Traveling Salesman
Problem: A Computational Study (Princeton Series in Applied Mathematics).

ASAP, 2013. Automated Scheduling, Optimisation and Planning research group. Staff
Rostering Benchmark Data Sets. http://www.cs.nott.ac.uk/~tec/NRP/. Ac-
cessed: 2014-10-01.

Aykin, T., 1996. Optimal shift scheduling with multiple break windows. Management
Science 42, 591–602.

Azaiez, M.N., Al Sharif, S.S., 2005. A 0-1 goal programming model for nurse schedul-
ing. Computer & Operations Research 32, 491–507.

103

http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://www.cs.nott.ac.uk/~tec/NRP/

104 Bibliography

Baker, K.R., 1976. Workforce allocation in cyclical scheduling problems: A survey.

Bard, J.F., Binici, C., De Silva, A.H., 2003. Staff scheduling at the united states postal
service. Computers & Operations Research 30, 745–771.

Bard, J.F., Purnomo, H.W., 2005. Preference scheduling for nurses using column
generation. European Journal of Operational Research 164, 510–534.

Bard, J.F., Wan, L., 2006. The task assignment problem for unrestricted movement
between workstation groups. Journal of Scheduling 9, 315–341.

Bartsch, T., Drexl, A., Kröger, S., 2006. Scheduling the professional soccer leagues of
austria and germany. Computers & Operations Research 33, 1907 – 1937. Special
Issue: Operations Research in Sport Special Issue: Operations Research in Sport.

Bäumelt, Z., Dvořák, J., Š̊ucha, P., Hanzálek, Z., 2015. A Novel Approach for the
Nurse Rerostering Problem based on a Parallel Algorithm. European Journal of
Operational Research In major revision.

Bäumelt, Z., Š̊ucha, P., Hanzálek, Z., 2007. Nurse Scheduling Web Application, in:
26th Workshop of the UK Planning and Scheduling Special Interest Group, Charles
University, Prague, Czech Republic. pp. 120–123.

Bäumelt, Z., Š̊ucha, P., Hanzálek, Z., 2014. A multistage approach for an employee
timetabling problem with a high diversity of shifts as a solution for a strongly
varying workforce demand. Computers & Operations Research 49, 117–129.

Beddoe, G., Petrovic, S., Li, J., 2009. A hybrid metaheuristic case-based reasoning
system fornurserostering. Journal of Scheduling 12, 99–119.

Beliën, J., Demeulemeester, E., 2008. A branch-and-price approach for integrating
nurse and surgery scheduling. European Journal of Operational Research 189, 652
– 668.

Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck, L.,
2013. Personnel scheduling: A literature review. European Journal of Operational
Research 226, 367–385.

Boyer, V., Baz, D.E., Elkihel, M., 2012. Solving knapsack problems on GPU. Com-
puters & Operations Research 39, 42–47. Special Issue on Knapsack Problems and
Applications.

Brodtkorb, A.R., Hagen, T.R., Saetra, M.L., 2013a. Graphics processing unit (GPU)
programming strategies and trends in GPU computing. Journal of Parallel and
Distributed Computing 73, 4–13.

Brodtkorb, A.R., Hagen, T.R., Schulz, C., Hasle, G., 2013b. GPU computing in
discrete optimization. part i: Introduction to the GPU. EURO Journal on Trans-
portation and Logistics 2, 129–157.

Brucker, P., 2007. Scheduling Algorithms. Springer-Verlag New York, Inc.. 5rd edition.

Bibliography 105

Brucker, P., Qu, R., Burke, E.K., 2011. Personnel scheduling: Models and complexity.
European Journal of Operational Research 210, 467–473.

Brunner, J.O., Stolletz, R., 2014. Stabilized branch and price with dynamic parameter
updating for discontinuous tour scheduling. Computers & Operations Research 44,
137–145.

Bukata, L., Š̊ucha, P., 2013. A GPU Algorithm Design for Resource Constrained
Project Scheduling Problem, in: Parallel, Distributed and Network-Based Process-
ing (PDP), 2013 21st Euromicro International Conference on, pp. 367–374.

Burke, E., Bykov, Y., Petrovic, S., 2001a. A multicriteria approach to examination
timetabling, in: Burke, E., Erben, W. (Eds.), Practice and Theory of Automated
Timetabling III. Springer Berlin Heidelberg. volume 2079 of Lecture Notes in Com-
puter Science, pp. 118–131.

Burke, E., Kendall, G., Soubeiga, E., 2004a. A tabu-search hyperheuristic for
timetabling and rostering. Journal of Heuristics 9, 451–470.

Burke, E.K., Cowling, P., De Causmaecker, P., Vanden Berghe, G., 2001b. A memetic
approach to the nurse rostering problem. Applied Intelligence 15, 199–214.

Burke, E.K., Curtois, T., 2012. Staff roster solutions – roster booster.

Burke, E.K., Curtois, T., 2014. New approaches to nurse rostering benchmark in-
stances. European Journal of Operational Research 237, 71–81.

Burke, E.K., Curtois, T., Post, G., Qu, R., Veltman, B., 2008. A hybrid heuristic or-
dering and variable neighbourhood search for the nurse rostering problem. European
Journal of Operational Research 188, 330–341.

Burke, E.K., Curtois, T., Qu, R., Vanden Berghe, G., 2007. A time pre-defined variable
depth search for nurse rostering.

Burke, E.K., Curtois, T., Qu, R., Vanden Berghe, G., 2010. A scatter search method-
ology for the nurse rostering problem. Journal of the Operational Research Society
61, 1667–1679.

Burke, E.K., De Causmaecker, P., Petrovic, S., Vanden Berghe, G., 2006. Metaheuris-
tics for handling time interval coverage constraints in nurse scheduling. Applied
Artificial Intelligence 20, 743–766.

Burke, E.K., De Causmaecker, P., Vanden Berghe, G., 1999. A hybrid tabu search
algorithm for the nurse rostering problem, in: Selected papers from the Second Asia-
Pacific Conference on Simulated Evolution and Learning on Simulated Evolution
and Learning, pp. 187–194.

Burke, E.K., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H., 2004b.
The state of the art of nurse rostering. Journal of Scheduling 7, 441–499.

106 Bibliography

Buyukozkan, K., Sarucan, A., 2014. Applicability of artificial bee colony algorithm
for nurse scheduling problems. International Journal of Computational Intelligence
Systems 7, 121–136.

Cambazard, H., Demazeau, F., Jussien, N., David, P., 2005. Interactively solving
school timetabling problems using extensions of constraint programming, in: Burke,
E., Trick, M. (Eds.), Practice and Theory of Automated Timetabling V. Springer
Berlin Heidelberg. volume 3616 of Lecture Notes in Computer Science, pp. 190–207.

Castiñeiras, I., Sáenz-Pérez, F., 2013. Applying CP(F D), CLP(F D) and CFLP(F
D) to a Real-life Employee Timetabling Problem. Procedia Computer Sci-
ence 18, 531–540. URL http://www.sciencedirect.com/science/article/pii/

S1877050913003608, Accessed: 2015-01-10.

Cezik, T., Günlük, O., Luss, H., 2001. An integer programming model for the weekly
tour scheduling problem.

Chan, P., Weil, G., 2001. Cyclical staff scheduling using constraint logic programming,
in: Burke, E., Erben, W. (Eds.), Practice and Theory of Automated Timetabling
III. Springer Berlin Heidelberg. volume 2079 of Lecture Notes in Computer Science,
pp. 159–175.

Cheang, B., Li, H., Lim, A., Rodrigues, B., 2003. Nurse rostering problems – a
bibliographic survey. European Journal of Operational Research 151, 447–460.

Cheng, B.M.W., Lee, J.H.M., Wu, J.C.K., 1997. A nurse rostering system us-
ing constraint programming and redundant modeling. Information Technology in
Biomedicine, IEEE Transactions on 1, 44–54.

Clark, A.R., Moule, P., Topping, A., Serpell, M., 2012. Rescheduling nursing shifts:
scoping the challenge and examining the potential of mathematical model based
tools. Journal of Nursing Management .

Cordeau, J.F., Toth, P., Vigo, D., 1998. A survey of optimization models for train
routing and scheduling. Transportation Science 32, 380–404.

Czapinski, M., 2013. An effective parallel multistart tabu search for quadratic assign-
ment problem on CUDA platform. Journal of Parallel and Distributed Computing
73, 1461–1468.

Czapinski, M., Barnes, S., 2011. Tabu search with two approaches to parallel flowshop
evaluation on CUDA platform. Journal of Parallel and Distributed Computing 71,
802–811. Special Issue on Cloud Computing.

De Castro, L.N., Timmis, J., 2002. Artificial immune systems: A novel paradigm to
pattern recognition, in: Artificial Neural Networks in Pattern Recognition, Springer
Verlag, University of Paisley, UK. pp. 67–84.

De Causmaecker, P., Vanden Berghe, G., 2010. Towards a reference model for
timetabling and rostering. Annals of Operations Research Online, 1–10.

http://www.sciencedirect.com/science/article/pii/S1877050913003608
http://www.sciencedirect.com/science/article/pii/S1877050913003608

Bibliography 107

De Causmaecker, P., Vanden Berghe, G., 2011. A categorisation of nurse rostering
problems. Journal of Scheduling 14, 3–16.

Elahipanah, M., 2012. Task Scheduling and Activity Assignment to Work Shifts with
Schedule Flexibility and Employee Preference Satisfaction. Ph.D. thesis. École Poly-
technique de Montréal.

Erdoğan, G., Erkut, E., Ingolfsson, A., Laporte, G., 2010. Scheduling ambulance crews
for maximum coverage. Journal of the Operational Research Society 61, 543–550.

Ernst, A.T., Jiang, H., Krishnamoorthy, M., Nott, H., Sier, D., 2001. An Integrated
Optimization Model for Train Crew Management. Annals of Operations Research
108, 211–224.

Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D., 2004. Staff scheduling and
rostering: A review of applications, methods and models. European Journal of
Operational Research 153, 3–27.

Eveborn, P., Flisberg, P., Rönnqvist, M., 2006. Laps Care – an operational system
for staff planning of home care. European Journal of Operational Research 171,
962–976.

Freling, R., Lentink, R., Wagelmans, A., 2004. A decision support system for crew
planning in passenger transportation using a flexible branch-and-price algorithm.
Annals of Operations Research 127, 203–222.

Gans, N., Koole, G., Mandelbaum, A., 2003. Telephone call centers: Tutorial, review,
and research prospects. Manufacturing & Service Operations Management 5, 79–
141.

Gaspero, L.D., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A., Slany, W., 2007.
The minimum shift design problem. Annals OR 155, 79–105.

Glover, F., 1977. Heuristics for integer programming using surrogate constraints.
Decision Sciences , 156–166.

Glover, F., Laguna, M., 1989. Tabu search – part i. ORSA Journal on Computing ,
190–206.

Gopalakrishnan, B., Johnson, E., 2005. Airline crew scheduling: State-of-the-art.
Annals of Operations Research 140, 305–337.

Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., 1979. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of
Discrete Mathematics 5, 287–326.

Green, L.V., Kolesar, P.J., Whitt, W., 2007. Coping with time-varying demand when
setting staffing requirements for a service system. Production and Operations Man-
agement 16, 13–39.

108 Bibliography

Günther, M., Nissen, V., 2010. Particle swarm optimization and an agent-based al-
gorithm for a problem of staff scheduling, in: Applications of Evolutionary Com-
putation. Springer Berlin Heidelberg. volume 6025 of Lecture Notes in Computer
Science, pp. 451–461.

Gutjahr, W.J., Rauner, M.S., 2007. An {ACO} algorithm for a dynamic regional
nurse-scheduling problem in austria. Computers & Operations Research 34, 642–
666. Logistics of Health Care Management Part Special Issue: Logistics of Health
Care Management.

Hadwan, M., Ayob, M., Sabar, N.R., Qu, R., 2013. A harmony search algorithm for
nurse rostering problems. Information Sciences 233, 126–140.

Hanne, T., Dornberger, R., Frey, L., 2009. Multiobjective and preference-based deci-
sion support for rail crew rostering, in: IEEE Congress on Evolutionary Computa-
tion, IEEE. pp. 990–996.

Hao, G., Lai, K., Tan, M., 2004. A neural network application in personnel scheduling.
Annals of Operations Research 128, 65–90.

Helber, S., Henken, K., 2007. Profit-oriented shift scheduling of inbound contact
centers with skills-based routing, impatient customers, and retrials. Diskussionspa-
piere der Wirtschaftswissenschaftlichen Fakultät der Leibniz Universität Hannover
dp-379. Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press. Second edition, 1992.

Hung, R., 1995. Hospital nurse scheduling. Journal of Nursing Administration 25,
21–23.

Intel Corporation, 2012. Intel Xeon Phi. http://www.intel.com/content/www/us/

en/processors/xeon/xeon-phi-detail.html. Accessed: 2014-10-01.

Isken, M.W., 2004. An implicit tour scheduling model with applications in healthcare.
Annals of Operations Research 128, 91–109.

James, T.L., Brown, E.C., Keeling, K.B., 2007. A hybrid grouping genetic algorithm
for the cell formation problem. Computers & Operations Research 34, 2059–2079.

Janiak, A., Janiak, W., Lichtenstein, M., 2008. Tabu search on GPU. Journal of
Universal Computer Science 14, 2416–2427.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated anneal-
ing. SCIENCE 220, 671–680.

Kitada, M., Morizawa, K., 2013. A heuristic method for nurse rerostering problem with
a sudden absence for several consecutive days. International Journal of Emerging
Technology and Advanced Engineering 3, 353–361.

http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html

Bibliography 109

Kitada, M., Morizawa, K., Nagasawa, H., 2011. A heuristic method for nurse reros-
tering problem with a sudden absence of nurses, in: Proceedings of the 11th Asia
Pacific Industrial Engineering & Management Systems, pp. 1219–1227.

Klabjan, D., Johnson, E.L., Nemhauser, G.L., Gelman, E., Ramaswamy, S., 2001.
Solving Large Airline Crew Scheduling Problems: Random Pairing Generation and
Strong Branching. Computational Optimization and Applications 20, 73–91.

Klinz, B., Pferschy, U., Schauer, J., 2006. Ilp models for a nurse scheduling problem,
in: OR, pp. 319–324.

Komarudin, Guerry, M.A., De Feyter, T., Vanden Berghe, G., 2013. The roster quality
staffing problem a methodology for improving the roster quality by modifying the
personnel structure. European Journal of Operational Research 230, 551–562.

Kumara, B.T.G.S., Perera, A.A.I., 2011. Automated System For Nurse Scheduling
Using Graph Coloring. Indian Journal of Computer Science and Engineering 2,
476–485. URL http://www.ijcse.com/docs/IJCSE11-02-03-089.pdf, Accessed:
2015-01-10.

Ladier, A.L., Alpan, G., Penz, B., 2011. Optimisation séquentielle des emplois du
temps dans une plateforme logistique, in: 12th Annual Congress of the French Na-
tional Society of Operations Research and Decision Science, Saint-Éttiene, France.
p. 627. URL http://uma.ensta-paristech.fr/work/labo_work/files/diam/

docro/roadef_2011/VERSION-ELECTRONIQUE/roadef2011_submission_449.pdf,
Accessed: 2015-01-10.

Landa-Silva, D., Le, K.N., 2008. A simple evolutionary algorithm with self-adaptation
for multi-objective nurse scheduling, in: Cotta, C., Sevaux, M., Srensen, K. (Eds.),
Adaptive and Multilevel Metaheuristics. Springer Berlin Heidelberg. volume 136 of
Studies in Computational Intelligence, pp. 133–155.

Lequy, Q., Bouchard, M., Desaulniers, G., Soumis, F., Tachefine, B., 2012a. Assigning
multiple activities to work shifts. Journal of Scheduling 15, 239–251.

Lequy, Q., Desaulniers, G., Solomon, M.M., 2012b. A two-stage heuristic for multi-
activity and task assignment to work shifts. Computers and Industrial Engineering
63, 831–841.

Lewis, R., 2008. A survey of metaheuristic-based techniques for university timetabling
problems. OR Spectrum 30, 167–190.

Lilleby, H.E.S., Schittekat, P., Nordlander, T.E., Hvattum, L.M., Andersson, H.,
2012. Competence building with the use of nurse re-rostering, in: Luangpaiboon,
P., Moz, M., Dedoussis, V. (Eds.), 4th International Conference on Applied Opera-
tional Research, Proceedings, Tadbir Operational Research Group Ltd.. pp. 70–77.

Lučić, P., Teodorović, D., 1999. Simulated annealing for the multi-objective aircrew
rostering problem. Transportation Research Part A: Policy and Practice 33, 19 –
45.

http://www.ijcse.com/docs/IJCSE11-02-03-089.pdf
http://uma.ensta-paristech.fr/work/labo_work/files/diam/docro/roadef_2011/VERSION-ELECTRONIQUE/roadef2011_submission_449.pdf
http://uma.ensta-paristech.fr/work/labo_work/files/diam/docro/roadef_2011/VERSION-ELECTRONIQUE/roadef2011_submission_449.pdf

110 Bibliography

Maenhout, B., Vanhoucke, M., 2008. Comparison and hybridization of crossover op-
erators for the nurse scheduling problem. Annals OR 159, 333–353.

Maenhout, B., Vanhoucke, M., 2010a. Branching strategies in a branch-and-price
approach foramultiple objective nurse scheduling problem. Journal of Scheduling
13, 77–93.

Maenhout, B., Vanhoucke, M., 2010b. An evolutionary approach for the nurse reros-
tering problem. Computers & Operations Research In Press, Corrected Proof.

Maenhout, B., Vanhoucke, M., 2010c. A hybrid scatter search heuristic for personalized
crew rostering in the airline industry. European Journal of Operational Research
206, 155–167.

Maenhout, B., Vanhoucke, M., 2013a. An artificial immune system based approach for
solving the nurse re-rostering problem, in: Middendorf, M., Blum, C. (Eds.), Evo-
lutionary Computation in Combinatorial Optimization. Springer Berlin Heidelberg.
volume 7832 of Lecture Notes in Computer Science, pp. 97–108.

Maenhout, B., Vanhoucke, M., 2013b. An integrated nurse staffing and scheduling
analysis for longer-term nursing staff allocation problems. Omega 41, 485–499.

de Matta, R., Peters, E., 2009. Developing work schedules for an inter-city transit
system with multiple driver types and fleet types. European Journal of Operational
Research 192, 852–865.

Mezmaz, M., Mehdi, M., Bouvry, P., Melab, N., Talbi, E.G., Tuyttens, D., 2014.
Solving the three dimensional quadratic assignment problem on a computational
grid. Cluster Computing 17, 205–217.

Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Computer Opera-
tions Research 24, 1097–1100.

Moscato, P., 1989. On Evolution, Search, Optimization, Genetic Algorithms and
Martial Arts: Towards Memetic Algorithms. Technical Report C3P 826. California
Institute of Technology.

Moz, M., Pato, M.V., 2003. An integer multicommodity flow model applied to the
rerostering of nurse schedules. Annals OR 119, 285–301.

Moz, M., Pato, M.V., 2004. Solving the problem of rerostering nurse schedules with
hard constraints: New multicommodity flow models. Annals OR 128, 179–197.

Moz, M., Pato, M.V., 2007. A genetic algorithm approach to a nurse rerostering
problem. Computers & OR 34, 667–691.

Musliu, N., 2006. Heuristic methods for automatic rotating workforce scheduling.
International Journal of Computational Intelligence Research 2, 309–326.

Musliu, N., Schaerf, A., Slany, W., 2004. Local search for shift design. European
Journal of Operational Research 153, 51–64.

Bibliography 111

NVIDIA, 2014. NVIDIA Kepler’s Generation. http://www.nvidia.com/object/

nvidia-kepler.html. Accessed: 2014-10-01.

NVIDIA Corporation, 2013. NVIDIA CUDA C Programming Guide. http://docs.
nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf. Accessed: 2014-10-01.

NVIDIA Corporation, 2014. GeForce GTX 650 Ti. http://www.geforce.com/

hardware/desktop-gpus/geforce-gtx-650ti/specifications. Accessed: 2014-
10-01.

Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J., Walker, J., Gendreau, M.,
Kendall, G., McCollum, B., Parkes, A., Petrovic, S., Burke, E., 2012. Hyflex: A
benchmark framework for cross-domain heuristic search, in: Hao, J.K., Middendorf,
M. (Eds.), European Conference on Evolutionary Computation in Combinatorial
Optimisation(EvoCOP 2012), Springer. pp. 136–147.

Örmeci, E.L., Salman, F.S., Yücel, E., 2014. Staff rostering in call centers providing
employee transportation. Omega 43, 41–53.

Osogami, T., Imai, H., 2000. Classification of Various Neighborhood Operations for
the Nurse Scheduling Problem. Technical Report. IBM Tokyo Research Laboratory
242-8502 Kanagawa Japan.

Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., Pur-
cell, T.J., 2007. A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26, 80–113.

Pato, M.V., Moz, M., 2008. Solving a bi-objective nurse rerostering problem by using
a utopic pareto genetic heuristic. Journal of Heuristics 14, 359–374.

Pato, M.V., Moz, M., 2013. The dataset of the nurse rerostering problem instances.

Pisinger, D., Ropke, S., 2007. A general heuristic for vehicle routing problems. Com-
puters & Operations Research 34, 2403 – 2435.

Qu, R., Burke, E., McCollum, B., Merlot, L., Lee, S., 2009. A survey of search
methodologies and automated system development for examination timetabling.
Journal of Scheduling 12, 55–89.

Quimper, C.G., Rousseau, L.M., 2010. A large neighbourhood search approach tothe
multi-activity shift scheduling problem. Journal of Heuristics 16, 373–392.

Rasmussen, R.V., Trick, M.A., 2008. Round robin scheduling - a survey. European
Journal of Operational Research 188, 617–636.

Rechenberg, I., 1971. Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Ph.D. thesis. Technical University of Berlin,
Department of Process Engineering.

Reeves, C.R., 1995. A genetic algorithm for flowshop sequencing. Computers &
Operations Research 22, 5–13.

http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-650ti/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-650ti/specifications

112 Bibliography

Reyes, F.d.J.P., 2011. Uso de algoritmos evolutivos para resolver el problema
de asignación de horarios escolares en la Facultad de Psicoloǵıa de la Uni-
versidad Veracruzana. Master’s thesis. Artificial Intelligence, Universidad Ver-
acruzana. Xalapa, Mexico. URL http://www.lania.mx/~emezura/util/files/

tesis_FerminFinal.pdf, Accessed: 2015-01-10.

Ribeiro, C.C., Urrutia, S., 2007. Heuristics for the mirrored traveling tournament
problem. European Journal of Operational Research 179, 775 – 787.

Rocha, M., Oliveira, J.F., Carravilla, M.A., 2013. Cyclic staff scheduling: optimization
models for some real-life problems. Journal of Scheduling 16, 231–242.

Rudová, H., Müller, T., Murray, K.S., 2011. Complex university course timetabling.
Journal of Scheduling 14, 187–207.

Safaei, N., Banjevic, D., Jardine, A.K., 2011. Workforce-constrained maintenance
scheduling for military aircraft fleet: a case study. Annals of Operations Research
186, 295–316.

Schaerf, A., 1999. A survey of automated timetabling. Artificial Intelligence Review
13, 87–127.

Schulz, C., Hasle, G., Brodtkorb, A.R., Hagen, T.R., 2013. GPU computing in dis-
crete optimization. part ii: Survey focused on routing problems. EURO Journal on
Transportation and Logistics 2, 159–186.

Seçkiner, S.U., Gökçen, H., Kurt, M., 2007. An integer programming model for hier-
archical workforce scheduling problem. European Journal of Operational Research
183, 694 – 699.

Shaw, P., 1998. Using constraint programming and local search methods to solve
vehicle routing problems, in: Maher, M., Puget, J.F. (Eds.), Principles and Practice
of Constraint Programming CP98. Springer Berlin Heidelberg. volume 1520 of
Lecture Notes in Computer Science, pp. 417–431.

Smet, P., Wauters, T., Mihaylov, M., Vanden Berghe, G., 2014. The shift minimisation
personnel task scheduling problem: A new hybrid approach and computational
insights. Omega 46, 64–73.

Srimathy, M., 2008. Scheduling part-time personnel with availability restrictions and
preferences to maximize employee satisfaction. Mathematical and Computer Mod-
elling 48, 1806 – 1813.

Stølevik, M., Nordlander, T.E., Riise, A., Frøyseth, H., 2011. A hybrid approach
for solving real-world nurse rostering problems, in: Lee, J. (Ed.), Principles and
Practice of Constraint Programming CP 2011. Springer Berlin Heidelberg. volume
6876 of Lecture Notes in Computer Science, pp. 85–99.

Stolletz, R., 2010. Operational workforce planning for check-in counters at airports.
Transportation Research Part E: Logistics and Transportation Review 46, 414–425.

http://www.lania.mx/~emezura/util/files/tesis_FerminFinal.pdf
http://www.lania.mx/~emezura/util/files/tesis_FerminFinal.pdf

Bibliography 113

Stolletz, R., Zamorano, E., 2014. A rolling planning horizon heuristic for scheduling
agents with different qualifications. Transportation Research Part E: Logistics and
Transportation Review 68, 39–52.

Sukstrienwong, A., 2012. Genetic Algorithm for Forming Student Groups Based
on Heterogeneous Grouping, in: Recent Advances in Information Science:
Proceedings of the 3rd European Conference of Computer Science, pp. 92–
97. URL http://www.wseas.us/e-library/conferences/2012/Paris/ECCS/

ECCS-14.pdf, Accessed: 2015-01-10.

Talbi, E.G., 2006. Parallel Combinatorial Optimization. Wiley-Interscience.

Tein, L.H., Ramli, R., 2010. Recent Advancements of Nurse Scheduling Models and a
Potential Path, in: Proceedings of 6th IMT-GT Conference on Mathematics, Statis-
tics and its Applications, pp. 395–409. URL http://research.utar.edu.my/CMS/

ICMSA2010/ICMSA2010_Proceedings/files/statistics/ST-Lim.pdf, Accessed:
2015-01-10.

Thompson, G.M., Pullman, M.E., 2007. Scheduling workforce relief breaks in advance
versus in real-time. European Journal of Operational Research 181, 139 – 155.

Topaloglu, S., Ozkarahan, I., 2004. An implicit goal programming model for the
tour scheduling problem considering the employee work preferences. Annals of
Operations Research 128, 135–158.

Triska, M., Musliu, N., 2011. A constraint programming application for rotating
workforce scheduling, in: Mehrotra, K.G., Mohan, C., Oh, J.C., Varshney, P.K., Ali,
M. (Eds.), Developing Concepts in Applied Intelligence. Springer Berlin Heidelberg.
volume 363 of Studies in Computational Intelligence, pp. 83–88.

Van Laarhoven, P.J.M., Aarts, E.H.L., Lenstra, J.K., 1992. Job shop scheduling by
simulated annealing. Operations Research 40, 113–125.

Vanden Berghe, G., 2002. An Advanced Model and Novel Meta-heuristic Solution
Methods to Personnel Scheduling in Healthcare. Ph.D. thesis. University of Gent.

Warner, D.M., 1976. Scheduling nursing personnel according to nursing preference: A
mathematical programming approach. Operations Research 24, 842–856.

Wong, G.Y.C., Chun, H.W., 2003. Nurse rostering using constraint programming
and meta-level reasoning, in: Proceedings of the 16th international conference on
Developments in applied artificial intelligence, Springer Springer Verlag Inc. pp.
712–721.

Wren, A., 1996. Scheduling, timetabling and rostering A special relationship?, in:
Burke, E., Ross, P. (Eds.), Practice and Theory of Automated Timetabling. Springer
Berlin Heidelberg. volume 1153 of Lecture Notes in Computer Science, pp. 46–75.

http://www.wseas.us/e-library/conferences/2012/Paris/ECCS/ECCS-14.pdf
http://www.wseas.us/e-library/conferences/2012/Paris/ECCS/ECCS-14.pdf
http://research.utar.edu.my/CMS/ICMSA2010/ICMSA2010_Proceedings/files/statistics/ST-Lim.pdf
http://research.utar.edu.my/CMS/ICMSA2010/ICMSA2010_Proceedings/files/statistics/ST-Lim.pdf

114

Appendices

115

Appendix A

Skill Based Initialization
Algorithm

The skill based initialization algorithm (based on (Vanden Berghe (2002))
(pages 139–160)) is outlined in Algorithm 6. Its objective is to assign the
shifts to the employees that are separated into groups by their skills and ob-
tain the initial roster. Let S(d) be a list of requested shifts that has to be
assigned on each day d and the list is sorted in a descending order according to
the ‘difficulty’ of the shift assignment to the roster, e.g., a night shift is assigned
before an early shift to the roster. Furthermore, let CSE(d) be a list of the
counts of the shifts that can be assigned to employee e for each day d. This list
is based on the skills of the employees (c2), personnel requests of the employees
(c6) and block constraints (c7)–(c9), (c12) with respect to the shifts assigned on
the previous days. Finally, let SAE(d) be a binary matrix expressing whether
shift s can be assigned to employee e. Similarly, this matrix is a reflection of
the same constraints as in CSE(d). Moreover, the shift precedences stated by
constraint (c5) are considered with these constraints together.

For each day d, each requested shift s ∈ S(d) is assigned to one of the
employees e ∈ E |CSE(d)e > 0 who is able to serve shift s on day d, i.e.,
SAE(d)es is true. When such an employee e is found, it is necessary to
update CSE(d). Therefore, CSE(d)e is reset since employee e cannot be used
for assignment of another shift on day d. The value of the CSE(d) of all other
employees must be decremented, because they were able to serve shift s on day
d, but this shift has just been assigned. After each shift assignment, the list
CSE(d) is ordered by the count of shifts in an ascending order.

117

118 Appendix A Skill Based Initialization Algorithm

Algorithm 6: Skill based initialization algorithm (SIA) pseudo-code
Input : ETPHD instance

Output: Any feasible roster R respecting constraints (c1), (c2), (c5), (c6)

1 foreach day d ∈ D do

2 create and sort S(d); // ‘difficult’ shifts first

3 create CSE(d); // list with counts of assignable shifts to the employees on day d

4 create SAE(d); // binary matrix employees × shifts of assignable shift on day d

5 foreach shift s ∈ S(d) do

6 sort CSE(d); // employees with small count of assignable shifts first

7 foreach employee e in list CSE(d) |CSE(d)e > 0 do

8 if SAE(d)es == false then continue;

9 Reds ← 1;Reds′ ← 0, ∀s′ ∈ {S \ s}; // assign shift s to employee e on day d

10 CSE(d)e ← 0; // reset CSE(d) of employee e

11 ∀e′ ∈ {E \ e} : CSE(d)e′ ← CSE(d)e′ − 1; // decrement CSE(d) for the rest

12 break;

13 return R

Appendix B

Different Modes in the
Parallel Algorithm

Figure B.1 illustrates the relation among the modes, particular parts of the
parallel algorithm and the unassigned shifts. This automata represents the
behavior of the both models – homogeneous and heterogeneous one.

119

120
A
p
p
en
d
ix

B
D
iff
eren

t
M
o
d
es

in
th
e
P
arallel

A
lgorith

m

Part Alloc

start instance

of algorithm

end of

algorithm

start next run

goto next

position

stay at this

position

¬firstRule

//at least one
//unassigned shift
//at this position

¬firstRule

//at least one
//unassigned shift
//at this position

firstRule

//all assigned
//at this
//position

ru
n ≥

max
Ru

ns
¬feasible

ru
n <

max
Ru

ns

i = |D|

Part Init, A Part A, B, C

i = |D|∧
feasible

Part A, B, C

firstRule

//all assigned
//at this
//position

¬firstRule mode

firstRule mode
firstRun

Figure B.1: The automata representing the relation among modes and parts of the algorithm’s instance

Appendix C

Heterogeneous Model of the
Parallel Algorithm

This appendix contains the pseudo-code of the heterogeneous model of the
parallel algorithm explained in Chapter 4 that is represented by Algorithm 7
and Algorithm 8.

121

122 Appendix C Heterogeneous Model of the Parallel Algorithm

Algorithm 7: The heterogeneous model of the parallel algorithm – 1 thread
of 1 instance of the algorithm

Input : NRRP instance {R0, RS,A,maxRuns}
Output: Best found modified roster R̃best

Part Alloc:
// determine the number of parallel instances of the algorithm

1 m← allocateGPUResources(|E|, |D|,maxRuns);
// initialize variables common to all instances of the algorithm

2 R̃best ← null; run← 0; applyLS ← false;
// initialize variables for this instance of the algorithm

3 firstRun← true; applyBT ← false; backtrack ← 0;
// set the employee index for the current thread

4 e← mapThreads(|E|);
5 syncthreads();

// perform m parallel instances of the algorithm, each exploits |E| threads
6 while run < maxRuns do // stop condition

Part Init:
7 foreach instance of m parallel instances do

8 if firstRun ‖ i = |D| ‖ ¬feasible then

// initialize data for the new run

9 firstRun← false; feasible← true; i← 0; firstRule← true;
10 foreach e ∈ E do

11 [R̃, isOccupied, unassigned, i]← initAll(e, R0, A);

12 if ¬applyBT then RPP ← generatePartialRosterPositions(e, R0, applyLS)
else applyBT ← false;

Part A:

13 foreach instance of m parallel instances do

14 foreach e ∈ E do

15 if firstRule then // read shift

16 d← RPPe,i; s← R0
e,d

;
17 else

18 d← d ∈ unassignedRP ; s← R0
unassignedRP

;

Part B:

19 cudaMemcpy(’cudaMemcpyHostToDevice’);

20 pen← evaluateShiftAssignment(e, i, s, R̃, R0, Rprev , RS, isOccupied,minDaysOff);
21 cudaMemcpy(’cudaMemcpyDeviceToHost’);

// perform Part C (see Algorithm 8)

22 performPartC();

23 return R̃best;

Appendix C Heterogeneous Model of the Parallel Algorithm 123

Algorithm 8: Part C of Algorithm 7
Input : By reference – NRRP instance data from Algorithm 7, line 22
Output: By reference – NRRP instance data to Algorithm 7, line 22

Part C:
1 foreach instance of m parallel instances do
2 if firstRule then
3 foreach e ∈ E do
4 if pen = 0 then // either assign shift or mark it as unassigned by Rule 1
5 Re,d ← s; isOccupiede,d ← true;
6 else
7 unassignede ← RPPe,i;

8 else
9 emin ← argmine∈E(pen); // either assign shift or set this run as unfeasible

10 if penemin
<∞ then

11 Remin,d ← s; isOccupiedemin,d ← true; unassignedemin
← null;

12 else
13 applyBT ← doModifiedBacktrack(); feasible← false; // set the flag for

backtrack

14 if feasible then
15 unassignedRP ← pickUnassignedRosterPosition(unassigned); // set mode of this

run wrt unassigned shifts
16 if unassignedRP = null then
17 firstRule← true; i← i+ 1;
18 else
19 firstRule← false;

20 if i = |D| && feasible then // compute objective function for feasible finished run

21 Z(R̃)←
∑

∀e∈E

computeObjectiveFunction(e, R̃, R0);

22 if i = |D| ‖ ¬feasible then
23 if feasible then

24 [Z(R̃best), R̃best, RPP best]← chooseBetterZ(R̃), Z(R̃best) // store best solution
25 else if ¬applyBT then
26 applyLS ← updateLocalSearchParameters; // or update local search related

data for the next run

27 run← run+ 1;

124

Curriculum Vitae

Zdeněk Bäumelt was born in Dv̊ur Králové nad Labem, Czech Republic, in
1982. He received his master of science degree in cybernetics and control en-
gineering in Faculty of Electrical Engineering in Czech Technical University
in Prague (CTU) in 2007, when he had defended his master thesis focused
on the Nurse Rostering Problem. Subsequently, he was employed in CTU
on the ARTIST project in order to extend the knowledge background of the
algorithms design in the employee timetabling domain. Since 2008, he has
started his Ph.D. studies on Advanced Methods and Models for Employee
Timetabling Problems in the same university. During his studies, he partic-
ipated on the projects Decision Making and Control for Manufacturing III,
Centre for Applied Cybernetics, Demanes and Centre for Applied Cybernetics
III. He is interested in combinatorial optimization, specifically to scheduling
and timetabling.

His teaching activities in CTU involved courses of Logic Control, Computer
Systems Structures and, mainly, Combinatorial Optimization, where he also
was the co-author of the lectures. He has also supervised several students’
projects and diploma theses.

Research results of Zdeněk Bäumelt were presented in several international
conferences, e.g., in the top two of the employee timetabling domain – MISTA
(Multi-disciplinary International Scheduling conference: Theory & Applica-
tions) and PATAT (international conference of the Practice And Theory of
Automated Timetabling). Moreover, his results were published in the inter-
national reviewed journal Computers & Operations Research and are under
review in European Journal of Operational Research. Finally, Zdeněk Bäumelt
participated on the employee timetabling project with an airport ground com-
pany, where the impact of his research was proven.

Czech Technical University in Prague
Prague, February 2015 Zdeněk Bäumelt

125

126

List of Author’s Publications

All of the author’s publications are directly related to the topic of the thesis.

They are separated into five groups as follows.

Publications in Journals with Impact Factor

Zdeněk Bäumelt, Přemysl Š̊ucha, and Zdeněk Hanzálek. A Multistage Ap-
proach for an Employee Timetabling Problem with a High Diversity of
Shifts as a Solution for a Strongly Varying Workforce Demand. Com-
puters & Operations Research, 49, pages 117–129, 2014. ISSN 0305-0548.
doi: 10.1016/j.cor.2014.03.019. URL http://www.sciencedirect.com/

science/article/pii/S0305054814000744. Accessed: 2015-01-10. Co-

authorship 50 %.

Zdeněk Bäumelt, Jan Dvořák, Přemysl Š̊ucha, and Zdeněk Hanzálek. A Novel
Approach for the Nurse Rerostering Problem based on a Parallel Algorithm.
European Journal of Operational Research, 2015. In major revision. Co-

authorship 40 %.

Publications in Reviewed Journals

Zdeněk Bäumelt, Přemysl Š̊ucha, and Zdeněk Hanzálek. A Multistage Ap-
proach for an Employee Timetabling Problem with a High Diversity of
Shifts as a Solution for a Strongly Varying Workforce Demand. Com-
puters & Operations Research, 49, pages 117–129, 2014. ISSN 0305-0548.
doi: 10.1016/j.cor.2014.03.019. URL http://www.sciencedirect.com/

science/article/pii/S0305054814000744. Accessed: 2015-01-10. Co-

authorship 50 %.

Zdeněk Bäumelt, Jan Dvořák, Přemysl Š̊ucha, and Zdeněk Hanzálek. A Novel
Approach for the Nurse Rerostering Problem based on a Parallel Algorithm.
European Journal of Operational Research, 2015. In major revision. Co-

authorship 40 %.

127

http://www.sciencedirect.com/science/article/pii/S0305054814000744
http://www.sciencedirect.com/science/article/pii/S0305054814000744
http://www.sciencedirect.com/science/article/pii/S0305054814000744
http://www.sciencedirect.com/science/article/pii/S0305054814000744

128 List of Author’s Publications

Patents

There are no patents related to the thesis.

Publications indexed in Web of Science

Zdeněk Bäumelt, Přemysl Š̊ucha, and Zdeněk Hanzálek. A Multistage Ap-
proach for an Employee Timetabling Problem with a High Diversity of
Shifts as a Solution for a Strongly Varying Workforce Demand. Com-
puters & Operations Research, 49, pages 117–129, 2014. ISSN 0305-0548.
doi: 10.1016/j.cor.2014.03.019. URL http://www.sciencedirect.com/

science/article/pii/S0305054814000744. Accessed: 2015-01-10. Co-

authorship 50 %.

Other Publications

International Conference Papers

Zdeněk Bäumelt, Přemysl Š̊ucha, and Zdeněk Hanzálek. Nurse Scheduling
Web Application. In 26th Workshop of the UK Planning and Scheduling
Special Interest Group, pages 120–123. Charles University, Prague, Czech
Republic, 2007. URL http://ktiml.mff.cuni.cz/~bartak/PLANSIG2007/

papers/paper07.pdf. Accessed: 2015-01-10. Co-authorship 34 %, cited

by (Tein and Ramli (2010); Kumara and Perera (2011)).

Zdeněk Bäumelt, Přemysl Š̊ucha, and Zdeněk Hanzálek. Personnel Schedul-
ing Problem with a High Diversity of Shifts. In 23rd European Conference
on Operational Research – Book of Abstracts, page 235. Bonn, Germany,
The Association of European Operational Research Societies, Brussels, Bel-
gium, 2009. URL https://www.yumpu.com/en/document/view/10243388/

technical-sessions-monday-0800-0920-euro-is-the/235. Accessed:
2015-01-10. Co-authorship 34 %.

Zdeněk Bäumelt, Libor Waszniowski, Přemysl Š̊ucha, and Zdeněk Hanzálek.
Integrated Vehicle Routing and Rostering in Home Health Care Ser-
vices. In 36th International Conference of the EURO Working Group
on Operational Research Applied to Health Services, focused on Op-
erations Research for Patient-Centered Health Care Delivery, pages
267–275. University of Genova, Genova, Italy, 2010. ISBN 978-88-
568-2595-4. URL https://support.dce.felk.cvut.cz/pub/hanzalek/

publications/Hanzalek10_169603.pdf. Accessed: 2015-01-10. Co-

authorship 25 %.

http://www.sciencedirect.com/science/article/pii/S0305054814000744
http://www.sciencedirect.com/science/article/pii/S0305054814000744
http://ktiml.mff.cuni.cz/~bartak/PLANSIG2007/papers/paper07.pdf
http://ktiml.mff.cuni.cz/~bartak/PLANSIG2007/papers/paper07.pdf
https://www.yumpu.com/en/document/view/10243388/technical-sessions-monday-0800-0920-euro-is-the/235
https://www.yumpu.com/en/document/view/10243388/technical-sessions-monday-0800-0920-euro-is-the/235
https://support.dce.felk.cvut.cz/pub/hanzalek/publications/Hanzalek10_169603.pdf
https://support.dce.felk.cvut.cz/pub/hanzalek/publications/Hanzalek10_169603.pdf

List of Author’s Publications 129

Zdeněk Bäumelt, Přemysl Š̊ucha, and Zdeněk Hanzálek. An Evolution-
ary Algorithm in a Multistage Approach for an Employee Rostering
Problem with a High Diversity of Shifts. In 8th International Con-
ference on the Practice and Theory of Automated Timetabling, pages
97–112. Queen’s University of Belfast, Belfast, Northern Ireland, 2010.
ISBN 08-538-9973-3. URL https://support.dce.felk.cvut.cz/pub/

hanzalek/publications/Hanzalek10_169605.pdf. Accessed: 2015-01-10.
Co-authorship 40 %, cited by (Ladier et al. (2011); Reyes (2011)), cited
by (Castiñeiras and Sáenz-Pérez (2013)) – indexed in Web of Science.

Zdeněk Bäumelt, Přemysl Š̊ucha, and Zdeněk Hanzálek. A Genetic Algorithm
for a Nurse Rerostering Problem. In 10th Workshop on Models and Al-
gorithms for Planning and Scheduling Problems, pages 70–72. Institute for
Theoretical Computer Science, Charles University, Prague, Czech Republic,
2011. Co-authorship 50 %, cited by (Sukstrienwong (2012)).

Zdeněk Bäumelt, Přemysl Š̊ucha, and Zdeněk Hanzálek. A Parallel Approach
for a Nurse Rerostering Problem on the GPU. In 5th Multidisciplinary Inter-
national Conference on Scheduling: Theory and Applications, pages 576–578.
Phoenix, Arizona, USA, University of Nottingham, Nottingham, Czech Re-
public, 2011. URL http://expertise.hogent.be/files/9242367/MISTA_

proceedings.pdf. Accessed: 2015-01-10. Co-authorship 50 %.

Zdeněk Bäumelt, Jan Dvořák, Přemysl Š̊ucha, and Zdeněk Hanzálek. An Accel-
eration of the Algorithm for the Nurse Rerostering Problem on a Graphics
Processing Unit. In 5th International Conference on Applied Operational
Research: Lecture Notes in Management Science, pages 101–110. Techni-
cal University of Lisbon, Lisbon, Portugal, Tadbir Operational Research
Group, Vancouver, Canada, 2013. URL http://orlabanalytics.ca/lnms/

archive/v5/lnmsv5p101.pdf. Accessed: 2015-01-10. Co-authorship

40 %.

Remaining Publications

Zdeněk Bäumelt. The Air Navigators Rostering Problem. In 14th Interna-
tional Student Conference on Electrical Engineering, pages 1–4. Faculty of
Electrical Engineering, Czech Technical University in Prague, Prague, Czech
Republic, 2009. Co-authorship 100 %, awarded.

Zdeněk Bäumelt. Preliminary Doctoral Thesis: Personnel Scheduling Prob-
lem with a High Diversity of Shifts. Faculty of Electrical Engineering,
Czech Technical University in Prague, Prague, Czech Republic, 2010. Co-

authorship 100 %.

https://support.dce.felk.cvut.cz/pub/hanzalek/publications/Hanzalek10_169605.pdf
https://support.dce.felk.cvut.cz/pub/hanzalek/publications/Hanzalek10_169605.pdf
http://expertise.hogent.be/files/9242367/MISTA_proceedings.pdf
http://expertise.hogent.be/files/9242367/MISTA_proceedings.pdf
http://orlabanalytics.ca/lnms/archive/v5/lnmsv5p101.pdf
http://orlabanalytics.ca/lnms/archive/v5/lnmsv5p101.pdf

130 List of Author’s Publications

Zdeněk Bäumelt. A Multistage Approach for an Employee Timetabling Prob-
lem with a High Diversity of Shifts as a Solution for a Strongly Varying
Workforce Demand. In Embedded Systems Colloquium. Centre for Applied
Cybernetics, Department of Control Engineering, Faculty of Electrical En-
gineering, Czech Technical University in Prague, Prague, Czech Republic,
2011. Co-authorship 100 %.

Zdeněk Bäumelt, Přemysl Š̊ucha, and Zdeněk Hanzálek. Personnel Schedul-
ing System, 2013. Authorized software, see more on URL http://

support.dce.felk.cvut.cz/pub/hanzalek/RAL/. Accessed: 2015-01-10.
Co-authorship 45 %.

Czech Technical University in Prague
Prague, February 2015 Zdeněk Bäumelt

http://support.dce.felk.cvut.cz/pub/hanzalek/RAL/
http://support.dce.felk.cvut.cz/pub/hanzalek/RAL/

This thesis is focused on the domain of the employee

timetabling problems. Its goals were set as follows:

1. To describe the basic terms, the classification and the

categorization of the employee timetabling within the context

of the operations research. Consequently, to identify the other

goals of the thesis that reveal from significant gaps in the

domain.

2. To propose and describe an approach capable to solve large

instances of the employee timetabling problem having a high

diversity of shifts (shift types).

3. To consider new architectures that can be exploited by a

parallel algorithm applied in the domain of the employee

timetabling in order to accelerate the solution of the chosen

problem.

4. To verify the proposed models, algorithms and approaches on

the state of the art benchmark instances and, if possible, on the

real life instances.

	Title
	Declaration
	Acknowledgments
	Abstract
	Abstrakt
	Nomenclature
	Abbreviations
	Goals and Objectives
	Introduction
	Theoretical Background
	Basic Terminology
	Categorization of Timetabling
	Application Areas
	Applied Approaches
	Used Architectures

	Employee Timetabling
	Application Areas
	Classification of ETPs
	Workflow of the Employee Timetabling

	Summary

	The ETP with a High Diversity of Shifts
	Introduction
	Related Works
	Contribution and Outline

	Problem Statement
	Constraints
	Problem Statement

	Transformation of the Problem and its Mathematical Model
	Transformation SK
	Integer Linear Programming Model of ETPHD(K)

	Solution of the First Stage by an Evolutionary Algorithm
	Encoding
	Preprocessing
	Generation of the Initial Population (GIP)
	Objective Function ZE
	Selection (SEL)
	Crossover Operators (X)
	Mutation Operators (MUT)

	The Second Stage – Inverse Transformation KS
	Experiments and Evaluation
	The ILP Model
	The Evolutionary Algorithm
	Comparison of the MSA to Other Approaches
	Cross Evaluation Methodology
	Summary of Experiments

	Conclusion

	The GPU based Parallel Algorithm for the NRRP
	Introduction
	Related Works
	Contribution and Outline

	Computing on a Graphics Processing Unit
	The Nurse Rerostering Problem Statement
	A Sequential Algorithm
	A Homogeneous Model of the Parallel Algorithm
	Problem Decomposition for Parallelization
	Algorithm Reorganization
	Minimization of Branch Divergence
	Detailed Description
	Memory Model

	A Heterogeneous Model of the Parallel Algorithm
	Experiments & Evaluation
	Experimental Setup
	Tuning the Memory Model
	Speedup Evaluation
	Quality Evaluation

	Conclusion

	Conclusion
	Achieved Contributions
	Fulfillment of Stated Goals and Objectives
	Concluding Remarks

	Bibliography
	Appendices
	Appendix Skill Based Initialization Algorithm
	Appendix Different Modes in the Parallel Algorithm
	Appendix Heterogeneous Model of the Parallel Algorithm
	Curriculum Vitae
	List of Author's Publications

