
1

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science

Model Transformation Approach to

Automated Model Driven Development

Nguyen Viet Cuong

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor

Ph.D. Programme: Electrical Engineering and Information Technology

Branch of study: Information Science and Computer Engineering

Supervisor : doc. Ing. Karel Richta, CSc.

Co-supervisor : doc. Ing. Vojtěch Merunka, Ph.D.

Prague, February 2015

3

Thesis Supervisor:

DOC. ING. KAREL RICHTA, CSC.

Department of Computer Science

Faculty of Electrical Engineering

Czech Technical University in Prague

Karlovo nám. 13, 121 35 Praha 2

Czech Republic.

Thesis Co-Supervisor:

DOC. ING. VOJTĚCH MERUNKA, PH.D.

Faculty of Economics and Management

Czech University of Life Sciences Prague

Kamýcká 129, 16521 Praha 6

Czech Republic.

5

Acknowledgments

I would like to express my gratitude toward my supervisors, doc. Ing. Karel Richta, CSc.

and doc. Ing. Vojtěch Merunka, Ph.D., without whose assistance and support this thesis

would not have been possible.

I would also like to thank my parents for their love, encouragements and faith in me,

thank you Mom and Dad for giving me the chance to pursue my study in another country. I

appreciate the help from my close ones and tireless support from my brother for taking care

of my parents for such a long time when I am away from my hometown.

I would like to thank my wife for giving me the strength to complete the work every time

I think about giving up. Many thanks also go to all my friends and colleagues that helped me

throughout this project.

7

Abstract

One of the contemporary challenges of software evolution is to adapt a software system

to the changing of requirements and demands from users and environments. An ultimate

goal is to encapsulate these requirements into a high-level abstraction, giving the ability

to achieve large-scale adaptation of the underlying software implementation. Model-Driven

Engineering (MDE) is one of the enabling techniques that supports this objective. In MDE,

the effective creation of models and their transformation are core activities to enable the

conversion of source models to target models in order to change model structures or translate

models to other software artifacts. The main goal is to provide automation and enable

the automated development of a system from its corresponding models. There are several

approaches on this matter from high level. However, there is still absence of clear methodology

and results on how to apply MDE for a specific domain with specific requirements such

as the web domain. This research brings contribution toward the solution to automated

model development by providing an overview of existing approaches and introducing a novel

approach in the emerging field of web applications and services.

To cope with current trend in the growing of complexity of web services as program-

matic backbones of modern distributed and cloud architecture, we present an approach using

domain specific language for modeling of web services as the solution to the challenge in

scalability of web service modeling and development. We analyze the current state of the

problem domain and implement a domain specific language called Simple Web Service Mod-

eling to support automated model-driven development of such web services. This approach

is the solution to the problem in web service development of software-as-service systems that

require the support for tenant-specific architecture.

In the domain of web application quality assurance, we build a modeling language for

model driven testing of web application that focuses on automation and regression testing.

Our techniques are based on building abstractions of web pages and modeling state-machine-

based test behavior using Web Testing Modeling Language - a domain specific language

that we developed for web page modeling. This methodology and techniques aim at helping

software developers as well as testers to become more productive and reduce the time-to-

market, while maintaining high standards of web application. The proposing techniques is

the answer to the lack of concrete methods and toolset in applying model driven development

to specific areas such as web application testing and services. The results of this work can

be applied to practical purposes with the methodological support to integrate into existing

software development practices.

8

Contents

Acknowledgments 5

Abstract 7

1 Introduction 15

1.1 Key challenges . 16

1.2 Contributions of the thesis . 18

1.3 Structure of the thesis . 19

2 Background 21

2.1 Model Driven Engineering . 21

2.2 Essential concepts in modeling and meta-modeling 22

2.2.1 Model and meta-model . 22

2.2.2 Model transformation . 23

2.3 Unified Modeling Language . 26

2.4 Object Constraint Language . 26

2.5 Domain specific language . 27

2.6 Role of domain specific language in MDA . 28

3 Previous work and case studies 31

3.1 Overview of model transformation approaches 31

3.1.1 Graph transformation . 31

9

10 CONTENTS

3.1.2 API approach . 32

3.1.3 XSLT approach . 33

3.1.4 Declarative approach . 33

3.1.5 Imperative approach . 34

3.1.6 The hybrid approach . 34

3.2 Domain specific modeling language approaches 35

3.3 Case studies . 38

3.3.1 Formal specification of model transformation 39

3.3.2 Agile Development of PIMs in Model Driven Architecture 48

3.4 Summary . 57

4 Domain specific language for modeling 59

4.1 Preliminaries . 59

4.2 Background . 60

4.2.1 Web services . 60

4.2.2 Current Approaches in Web Service Development 61

4.2.3 Related work . 61

4.3 Challenges and Current Limitations . 63

4.4 Features of a DSL as a modeling language . 65

4.5 Model Driven Development of Web Service using SWSM 68

4.6 Summary . 75

5 Model driven web testing framework with DSL 77

5.1 Motivation . 77

5.2 Model based testing . 78

5.3 Challenges . 80

5.4 Approach on using DSL for web page modeling 81

5.5 Modeling of page behavior using state machine 85

5.6 Automation of test case generation with WTML 92

CONTENTS 11

5.7 Integration with other platform . 95

5.8 Related work . 98

5.9 Summary . 100

6 Conclusions 101

7 Relevant publications of the author 105

12 CONTENTS

List of Figures

2.1 OMG’s Model Driven Architecture (source: omg.org). 23

3.1 Graph rule to insert association between two classes 41

3.2 Conference IS sample use cases . 51

3.3 Starting with simple paper statechart diagram 52

3.4 Conference class models . 53

4.1 Multi-tenancy architecture service sharing . 64

4.3 Web services syntax with SWSM . 68

4.2 Simplified syntax diagram of web services with SWSM 69

4.4 Port syntax with SWSM . 70

4.5 Operation syntax with SWSM . 70

4.6 Binding syntax with SWSM . 71

4.7 Development of web services with SWSM . 73

5.1 Simplified syntax of a Page in WTML . 83

5.2 Syntax of an Element model in a page . 84

5.3 Syntax of parameters in a page . 84

5.4 Model of behavior of a page . 85

5.5 State model of a page . 86

5.6 Events in a page model . 86

13

14 LIST OF FIGURES

5.7 Model of commands in each state . 87

5.8 Model of transitions defined in each state . 87

5.9 Represented syntax graph of the sample source code 89

5.10 Mapping a sample state transition between programming language (left) and

WTML (right) . 90

5.11 A rule for adding transition between two states 91

Chapter 1

Introduction

Along with the growing software market in recent years, business requirements are changing

more rapidly which leads to the continuously growing in the complexity of enterprise applica-

tions. This makes it hard to find the case nowadays which we can deliver a software system

with the assumption that one-size-fits-all [61]. The complex nature of software systems cre-

ated more challenges in software development and maintenance. It is well-known from the

work of Dijkstra [20] that the techniques addressing the complexity of software development

include the principles of abstraction, information hiding, encapsulation and decomposition.

Model Driven Engineering (MDE) addresses the complexity problem with the approach to

raise the abstraction level by focusing on the creation of models, aiming to increase produc-

tivity by maximizing compatibility between systems, simplifying the process of design and

promoting communication between individuals and teams working on the system.

The movement towards software development with the use of models has been increased

rapidly over the past several years. Organizations are increasingly seizing the opportunity

to move their intellectual property and business logic from source code into models, allowing

them to focus on the important aspects of their systems. The introduction of models has

opened up new possibilities for creating, analyzing, and manipulating systems through var-

ious types of tools. Model driven approaches enable architects to achieve a solution where

15

16 CHAPTER 1. INTRODUCTION

communication ability is promoted while creating artifacts that become parts of the overall

solution.

Recent trend in the software development strategy envisions cloud computing and dis-

tributed systems continue to gain more mainstream adoption as more companies move into

the cloud. With mobile experiences gradually gain space against the desktop experience, cloud

computing continues to accelerate and become more and more significant [34]. Big data may

be competing with cloud computing for the tech news headlines, but many providers and

businesses are now starting to see the value in combining the two. “Big data as a service”

seems like one of the most practical options for big data analytics, as it is scalable and within

the reach of any organization, no matter its size or resources. These cloud providers are also

overcoming the technical barrier by transforming Hadoop from an open source platform to

an enterprise-ready service [3]. All of these reasons force cloud and distributed systems to

constantly grow in their complexities with external factors are becoming more unpredictable

[64]. From this standpoint, Model-driven Engineering methodologies have been applied as a

solution for better reaction to the market trend and aims to increase efficiency and bring more

agility to the development life cycle. However, with the regularity of the different applicable

domains in web applications, it is unattainable to finalize a method or approach that could

fit in any situation. In the next section we look at some of the problems and key challenges

in this field.

1.1 Key challenges

Computer-aided software engineering (CASE) was a popular effort to apply set of methods

and tools to help developers in the process of analyzing and developing systems with the help

of general purpose and graphical representations. This concept aims to create the software

systems with high-quality, defect-free and maintainable. However, there are limitations to

this approach, there are difficulties in linking CASE tools from different vendors since each of

them were constrained to a different notations with different code structures and data classi-

1.1. KEY CHALLENGES 17

fications. Another challenge in this context is to obtain automation in software development.

The major obstacle in achieving such automation exists due to the lack of effective modeling

and transformation technologies [21]. General purpose modeling often provides a set of gen-

eral elements applicable to any situation. This leads to abstractions that may not be needed

in every domain, hence adds redundancy and obstacle in effective usage. To address the

issue, there is a need for an approach to software development that can focus on higher level

specifications of programs in Domain-Specific Modeling Languages, offering greater degrees

of automation, and embrace effectively the domain knowledge.

The challenge in applying domain specific language in modeling is to define correct stan-

dards and tool sets that can integrate effectively. There have been standards defined by the

Object Management Group from a high-level. The challenge, however, still remains in various

phases of the process to provide not only the appropriate set of technologies and tools but

also best practice methods that could react to the frequent change in business requirement

within various phases of model evolution.

Model Driven Architecture (MDA) aims to separate application structure - Platform Inde-

pendent Model (PIM) from its functionality - Platform Specific Model (PSM). The mapping

between these models is realized by model transformation. The problem of model trans-

formation based on Meta-Object Facility (MOF) can, then, be stated in the following way:

“Given a source model ‘m1’ described by a meta-model ‘MM1’ we define an automatic process

making it possible to obtain a model ‘m2’ conforming to a meta-model ‘MM2’” [17]. Model

transformations require specialized support in order to realize their full potential. There are

still open issues in their foundations, semantics, structuring mechanisms that demand further

research and study. Model transformations also require methodological support to integrate

into existing software development practices. Further more, MDA provides the concepts from

a high level, there is an absence of clear methodology and results on how to apply MDA for

a specific domain with specific requirements such as the web domain. In areas such as model

driven development of web services, current methods often focus on the usage of a generic

modeling language such as UML, which leads to complex class diagrams and obstacle in

18 CHAPTER 1. INTRODUCTION

achieving automation. This creates several issues in software reuse, development speed and

cost-effectiveness, which need to be resolved.

1.2 Contributions of the thesis

This research brings a contribution to automated model-driven development by firstly an-

alyzing and studying overview of several model transformation approaches, which emerged

from practical case studies. This includes the taxonomy study which can help in giving an

overview of the techniques and their best-suited application domains. With a more compre-

hensive overview in the domain of interest, this can help a developer in making decision of

choosing the approach that is best suited for his requirements.

Main result of this work is the introduction of an approach to the development of web

services by using model driven techniques with domain specific language. As a result, a DSL

for modeling of web services called SWSM (Simple Web Service Modeling) is developed and

introduced. To demonstrate this approach, a case study of web service development from

modeling to code generation is also illustrated with the associated techniques. This approach

aims at improving productivity and maintainability of web services by raising the level of

abstraction from source code in a general purpose language to high-level, domain-specific

models such that developers can concentrate on application logic rather than the complex-

ity of low-level implementation details. This design addresses the underlying challenges by

providing support for software reuse and development speed via simple syntax, better code

readability and easier program integration.

As a solution for quality assurance of web applications, we build a framework for model

driven testing of web application that focuses on automation and regression testing. Our

techniques are based on building abstractions of web pages and modeling state-machine-

based test behavior using Webpage Testing Modeling Language (WTML) - a domain specific

language that we developed for web page modeling. These techniques aim to reduce the time-

to-market and maintain high standards of the application by identifying in advance possible

1.3. STRUCTURE OF THE THESIS 19

faults with automated test case generation and execution. This is the answer to the lack of

concrete methods and toolset in applying model driven development to specific areas such as

web application testing and services.

1.3 Structure of the thesis

The thesis is organized as follows. Chapter 2 introduces basic definitions, terminology and

background. Chapter 3 summarizes and gives overview on the state of the art in model

transformation, model driven development and previous related results. In this chapter, we

also describe several existing approaches and some results from our case studies. Chapter

4 addresses the challenge in development of fast-growing web platforms and Platform-as-a-

Service architecture by introducing our approach to the development of web services using

domain specific language and model driven techniques. We present our effort to implement

SWSM as a DSL to support modeling and automation. Chapter 5 demonstrates our approach

on quality assurance of web application, which focuses on automation and regression testing

by implementing a framework for model driven testing. We present our techniques in modeling

web pages and state-machine-based test behavior using WTML - a DSL that we developed

for this purpose. Chapter 6 concludes and outlines the future work.

20 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Model Driven Engineering

A model is a simplified representation of an aspect of the world for a specific purpose. Nowa-

days, in many complex systems, a lot of aspects need to be considered from architectural

to dynamic behaviors, functionalities and user interfaces. In Model-Driven Engineering, all

aspects are put together and presented as models. The design process can be described as the

weaving of all these aspects into a detailed design model. Model-driven methods aim at au-

tomating this weaving process. Model-driven development (MDD) is a software development

methodology which focuses on creating models, or abstractions of something that describes

the elements of a system. It is meant to increase productivity by maximizing compatibility

between systems, simplifying the process of design and promoting communication between

individuals and teams working on the system [74].

The promise of MDA [31] is to allow definition of machine-readable applications and

data models that enable long-term flexibility with regards to implementation, integration,

maintenance, testing and simulation. MDA could be seen as a framework that defines the

architecture for models. Based on this architecture, models represent a part of the system’s

functionality, structure or behavior. Moreover a consistent structure of these models is de-

fined.

21

22 CHAPTER 2. BACKGROUND

MDA defines two main modeling structures, namely Platform Independent Models (PIMs)

and Platform Specific Models (PSMs). PIMs provide formal specifications of the structure

and/or functionality of a given system, leaving out technical particulars about that system.

PSM then deals with such implementation-specific concerns. This viewpoint of models is

very important and beneficent for many reasons. Such approach makes it easier to reproduce

implementations of the same model into different platforms, when they are referring to the

same initial structure with no platform-specific semantics. Validation of such model is also

easier then when platform-specific concepts are embodied into the implementation. Given

such consistency, it may be possible under certain circumstances to automatically transform

a PIM into different target PSMs, using some mappings and patterns and attaching some

platform-dependent information into the process. PIMs, PSMs and mappings are based on

metamodel concepts, usually expressed in some core OMG technologies such as Unified Mod-

eling Language (UML), Meta Object Facility (MOF) [33] or Common Warehouse Metamodel

(CWM) [30]. A metamodel is actually a model that describes another model. This layered

architecture is also defined by MOF as seen in Fig 2.1.

2.2 Essential concepts in modeling and meta-modeling

2.2.1 Model and meta-model

A model can be defined as a simplification of the subject, and its purpose is to answer some

particular questions aimed towards the subject or simply something we want to reason about.

A model can give us the view of attributes such as functionality, time constrains, security

etc. In the development process, models are developed through extensive communication

among product managers, designers, and members of the development team. As the models

approach completion, they enable the development of software and systems.

To work with each model, we need to have information about which exact properties

and the relations it may hold. In other words, we need to know the structure of the model.

This information is expressed in the metamodel, where a metamodel is a model that makes

2.2. ESSENTIAL CONCEPTS IN MODELING AND META-MODELING 23

Figure 2.1: OMG’s Model Driven Architecture (source: omg.org).

statements about what can be expressed in valid models. A metamodel can be considered

as yet another abstraction, highlighting properties of the model itself. A model shows a

simplification of a subject. A meta-model offers the vocabulary for formulating reasonings on

top of a given model. While both are models, they are different in intent and interpretation

[73]. A model conforms to its metamodel in the way that a computer program conforms to the

grammar of the programming language in which it is written [74]. Model-driven engineering

with metamodels within model-driven principles is an attempt on leveraging these concepts

to bring productivity to software development.

2.2.2 Model transformation

Model transformations can be considered as components that take models as input. There

is a variety of kinds of model transformation, which differ in their inputs, outputs and also

in the way they are expressed. A model transformation usually specifies which models are

24 CHAPTER 2. BACKGROUND

acceptable as input, and if appropriate what models it may produce as output, by specifying

the meta-model to which a model must conform. The source and target models can be

expressed either in the same modeling languages or in different formats.

Model transformations and languages hence could be classified according to several at-

tributes, some of the major classifications as seen in the work of Czarnecki et al. and Mens

and Van Gorp [15][54] are:

I Number and type of inputs and outputs. In principle a model transformation may have

many inputs and outputs of various types. The only absolute limitation is that a model

transformation will take at least one model as input. However, a model transformation

that did not produce any model as output would more commonly be called a model

analysis or model query.

I Endogenous versus exogenous. In order to transform models, these models need to

be expressed in some modeling language (e.g., UML for design models, a domain spe-

cific language for modeling or programming languages for source code models). The

syntax and semantics of the modeling language itself is expressed by a meta-model. En-

dogenous transformations are transformations between models expressed in the same

language. Exogenous transformations are transformations between models expressed

using different languages [54]. For example, in a process conforming to the OMG

Model Driven Architecture, a platform-independent model might be transformed into

a platform-specific model by an exogenous model transformation.

I Horizontal versus vertical transformations. A horizontal transformation is a transfor-

mation where the source and target models reside at the same abstraction level. Typical

examples are refactoring (an endogenous transformation) and migration (an exogenous

transformation). A vertical transformation is a transformation where the source and

target models reside at different abstraction levels. A typical example is refinement,

where a specification is gradually refined into a full-fledged implementation [54].

2.2. ESSENTIAL CONCEPTS IN MODELING AND META-MODELING 25

I Unidirectional versus bidirectional. A unidirectional model transformation has only one

mode of execution: that is, it always takes the same type of input and produces the

same type of output. Unidirectional model transformations are useful in compilation-

like situations, where any output model is read-only. The relevant notion of consistency

is then very simple: the input model is consistent with the model that the transfor-

mation would produce as output, only. For a bidirectional model transformation, the

same type of model can sometimes be input and other times be output. Bidirectional

transformations are necessary in situations where people are working on more than one

model and the models must be kept consistent. Then a change to either model might

necessitate a change to the other, in order to maintain consistency between the models.

Because each model can incorporate information which is not reflected in the other,

there may be many models which are consistent with a given model.

I Syntactical versus semantic transformations. A final distinction can be made between

model transformations that merely transform the syntax, and more sophisticated trans-

formations that also take the semantics of the model into account. As an example of

syntactical transformation, consider a parser that transforms the concrete syntax of a

program (resp. model) in some programming (resp. modeling language) into an ab-

stract syntax. The abstract syntax is then used as the internal representation of the

program (resp. model) on which more complex semantic transformations (e.g. refac-

toring or optimization) can be applied. Also when we want to import our export our

models in a specific format, a syntactical transformation is needed [54].

A model transformation can be implemented in a general purpose programming language

or by a domain specific model transformation language. In some model transformation

languages, a model transformation is itself a model, hence this model also conforms to a

meta-model which is part of the model transformation language’s definition.

26 CHAPTER 2. BACKGROUND

2.3 Unified Modeling Language

Unified Modeling Language (UML) is a standardized, general-purpose modeling language in

the field of software engineering used for visualizing, specifying, constructing, and document-

ing the artifacts of a software-intensive system. The UML offers a standard way to write a

system’s blueprints, including conceptual things such as business processes and system func-

tions as well as concrete things such as programming language statements, database schemas,

and reusable software components.

The Unified Modeling Language includes a set of graphic notation techniques to create

visual models of object-oriented software-intensive systems. In theory models can be defined

in any language, however according to Object Management Group’s standards, models should

be defined in a MOF-compliant language, UML is one of such languages. This argument is

supported by the ability to facilitate and improve reuse, as well as being able to conform

and exchange information with other tools from the OMG family. UML is well-known for

its extensive graphical notation and diagramming techniques. However, not all complicated

designs can be simplified and fully expressed by pictures. There are cases where additional

information needs to be captured in a different way. For this reason the UML includes the

Object Constraint Language (OCL), a textual language that allows a UML modeler to specify

additional constrains and other requirements that sometimes graphical models are just not

enough good for.

2.4 Object Constraint Language

In the OMG’s MDA, precise modeling and behavior of action, execution, query and trans-

formation on models are essential. OCL is one of the approaches that can be used for this

purpose. We often see OCL appears in an UML diagram or in the supporting documenta-

tion describing a diagram such as business rule definitions. However, this does not mean

that OCL is strictly entitled with UML. We can also use OCL on non-UML diagram for the

same purpose. In terms of language category, OCL is a declarative language for describing

2.5. DOMAIN SPECIFIC LANGUAGE 27

rules that apply to a UML model. OCL was developed at IBM and now is a part of UML

standard. Initially, OCL was only a formal specification language extension to UML. Now,

as we mentioned, OCL can be used with any MOF OMG’s meta-model, including UML. In

terms of operations and functionality, OCL supports three (out of five) required relational

algebra operations. Union, Difference, and Select are all supported by operations defined

on the OCL collection types. However, the operation Product (or Cartesian Product) and

Project are not supported, and cannot be supported as they directly require a facility for

structured aggregation or a notion of tuples [52].

UML combined with OCL enables the resolution for many of the tasks that are required

for MDA. OCL was originally viewed as a way to introduce constrains or to restrict certain

values in a model. Nevertheless, OCL can also be used to support query expressions, derived

values, conditions, business rules etc. OCL can express concepts that are not supported

by UML diagrams, hence making models at all levels more precise. OCL can also support

transformation tools and code generation as a key component to MDA.

2.5 Domain specific language

General purpose modeling languages like UML are like multipurpose knives, they can be used

for many objectives from cutting to peeling or even drilling. However, imagine using a knife

to drill a hole is clearly not effective. The basic design principle of a domain specific language

(DSL) is targeted to a particular kind of problem, rather than a general purpose language

that aimed at any kind of software problem. It is a programming language or specification

language dedicated to a particular problem domain, a particular problem representation

technique, and/or a particular solution technique.

In software development and domain engineering, a domain-specific language is a pro-

gramming language or specification language dedicated to a particular problem in the de-

velopment of a range of software systems. It can be a particular representation technique,

and/or a particular solution technique to a specific software problem domain. The concept

28 CHAPTER 2. BACKGROUND

is not new, special-purpose programming languages and all kinds of modeling/specification

languages have always existed, but the term has become more popular due to the rise of

domain-specific modeling. Using domain specific language can be a solution to several prob-

lems encountered in various software development aspects. A DSL can reduce the cost implied

in development and maintenance of software systems [18].

Domain-specific languages have (with declared syntax or grammars) very specific goals in

design and implementation. A domain-specific language can be either a visual diagramming

languages, such as those created by the Generic Eclipse Modeling System, programmatic

abstractions, such as the Eclipse Modeling Framework, or textual languages. For instance,

the command line utility grep in Unix systems has a regular expression syntax, which matches

patterns in lines of text. The sed utility defines a syntax for matching and replacing regular

expressions. Often, these tiny languages can be used together inside a shell to perform more

complex programming tasks [75].

Recent movement within the MDA initiatives is introducing a concept of domain specific

modeling that utilizes customized modeling languages to raise the level of abstraction but

at the same time narrow downs the design space. This allow developers to work directly

with the domain concepts of the problem space and provide automation support for software

development.

2.6 Role of domain specific language in MDA

Domain specific language in MDA contains languages for creating models. The process of

modeling software systems in a specific domain is often referred to as Domain Specific Model-

ing (DSM) and the languages used in for this purpose are often referred to as Domain Specific

Modeling Languages (DSML).

The DSM philosophy uses the concept of narrowly defined modeling languages is con-

trasted with larger standardized modeling languages, such as UML. These general languages

provide abstractions that may not be needed in every domain, this could add redundancy and

2.6. ROLE OF DOMAIN SPECIFIC LANGUAGE IN MDA 29

confusion to domain experts. The principle of DSML utilizing notations that relate directly

to a familiar domain not only helps flatten learning curves but also facilitates the commu-

nication between a broader range of experts, such as domain experts, system engineers and

software architects. In addition, the ability of DSM to synthesize artifacts from high-level

models to low-level implementation artifacts, simplifies the activities in software development

such as developing, testing and debugging [49].

The key challenge in applying DSM is to define useful standards that enable tools and

models to work together portably and effectively [21]. Existing de facto standards include the

Object Management Group’s Model Driven Architecture [32], Query/View/Transformations

(QVT) [29] and the Meta Object Facilities (MOF) [33]. These standards can also form

the basis for domain-specific modeling tools. There are several attempts in building the

infrastructures and tools for DSM. Some of which are the Generic Modeling Environment

(GME), ATLAS Model Management Architecture, Eclipse Modeling Framework (EMF) [49].

In history, initial success stories from industry adoption of DSM have been reported, one of

which is the story about Saturn’s multi-million dollar cost savings associated with timelier

reconfiguration of an automotive assembly line driven by seven domain-specific models [50].

There are also various projects from companies in industry, such as BMW, formerly Nokia

(now belongs to Microsoft), Honeywell that have successfully adopted DSM within their

software development processes.

30 CHAPTER 2. BACKGROUND

Chapter 3

Previous work and case studies

3.1 Overview of model transformation approaches

Model transformation overview is useful for users in the domain of interest, it can help a

developer make a decision of choosing the appropriate approach that is best suited for his

requirements. Having a broad perspective on current state-of-the-art also helps us identify the

advantages and weaknesses of different methods when building the domain specific language

for model driven development of web services in the following chapters. Based on the study

of current model transformation technologies, the following sections depict the classification

and overview on the previous work and methods in model driven development approaches.

3.1.1 Graph transformation

In many cases, (meta-) models are represented in UML formalism. As a result, the models

can be viewed as graphs. It is therefore natural to consider the use of graph grammars to

express model transformation. Graph transformation [45] approaches are very well founded

theoretically. They favor matching and replacement. They are based on syntactic graph rules

that consist of finding a Left Hand Side graph and replacing it by a Right Hand Side graph.

This approach has the power of a clear operational idea, which enhances rule specification.

The complexity of this approach stems from its non-determinism in scheduling and application

31

32 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

strategy, which requires careful consideration of termination of the transformation process

and the sequence of rule application [17].

Early work involving graph transformation and models largely centered on their use in

defining the semantics of different modeling diagram types, such as the continuing work of

Kuske et al.[45]. More recent work by Kuster et al. [46] has defined a more general model

transformation approach using graph transformation as the underlying mechanism, allowing

them to draw upon some of the properties of graph transformations in a model transformation

context. Heckel et al. [35] have continued this work, reasoning about confluence with typed

attributed graphs. [48] have proposed model transformation approaches which are essentially

based upon simplified views of graph transformations, as is Agrawal et. al’s more mature

GReAT system [1].

Although graph transformations have several interesting properties when applying to

model transformations, it is still not used widely in practical situation due to the complexity

and lack of structuring mechanisms. Solutions based on the graph transformation paradigm

therefore have limited real-world usage [72]. Nevertheless, graph transformations can be

considered as foundation theory that can be applied when implementing other types of trans-

formation.

3.1.2 API approach

This type of transformation is based firstly on Meta Object Facility specification. MOF is

used in many modeling tools to create model repositories. After that Application Program-

ming Interfaces (API) are generated for each supported meta-model. These interfaces are

used to describe the model transformation process by means of programs written in an im-

perative language: Java, C++, etc. This approach provides the user with a set of interfaces

used to describe the transformation process as a series of instructions that allow the gener-

ation of a target model from a corresponding source model. The use of APIs to describe a

transformation process is a powerful solution because programming languages generally have

good performance at runtime. Basically, the entire procedure must be performed by the user.

3.1. OVERVIEW OF MODEL TRANSFORMATION APPROACHES 33

This user is in charge of the organization and description of all stages, explicitly in terms of

imperative statements [17].

3.1.3 XSLT approach

Along with XML technology, XML Metadata Interchange (XMI) enables the exchange of

meta-models as a standard. There is a need for bridging between XML processing and other

form of data and a language for that purpose is in demand. XSL stands for EXtensible

Stylesheet Language and XSLT stands for XSL Transformations. As models are described

in XML format, it appears that EXtensible Stylesheet Language Transformation (XSLT) is

a convenient solution for model transformation. XSLT is an appropriate standard for XML

document transformation, but suffers from limitations in realizing model transformation.

Moreover, XSLT data types are limited; this restricts the scope of information that must be

computed during the transformation process. In a DTD, the syntax and the semantics of an

XML documents are fixed, and transformation rules therefore have to deal with both [17].

The main weakness of XSLT lies in the fact that it was adequate for the simple transfor-

mations but has serious shortcomings for more advanced transformations. Recently, a formal

proof was constructed that XSLT is Turing complete. However it took several years before

that was proven and in practical usages the limits in XSLT make it harder to conveniently

apply this approach. A final issue which makes expressing model transformations in XSLT

less than ideal is that XML documents are represented as a tree structure; models are, in the

general case, naturally representable as graphs. Although graphs can be represented by trees

with link references between nodes, the difference in representation can lead to an unnatural

representation of many types of model transformations [72].

3.1.4 Declarative approach

In declarative approach, the relationship between concepts in the source and the target meta-

model is defined by patterns. The transformation is defined by a set of rules. A rule lays forth

a pattern of source model concepts, which is then transformed into a set of elements in the

34 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

target model. The sequence of the various stages of the transformation process is controlled

by the user, thanks to operators that allow the carrying out of explicit transformation rules

invocation. The implementation is realized by an inference engine [17]. However, one of the

disadvantages of this approach is the significant amount of work burden the developer with

specifying all the constraints supporting the transformation.

3.1.5 Imperative approach

Imperative approach as similar to imperative programming works in the paradigm that de-

scribes the transformation in terms of statements that change the program states. Imper-

ative approach defines a sequence of commands to perform. An example of this approach

is Transformation Rule Language (TRL). This language [29] is in essence a standard rule-

based imperative language specialized for UML-esque model transformations. This comes in

several forms: concepts such as ‘transformation rule’ are raised to first-class status; some of

the information recorded in the new first class elements is used for additional purposes e.g.

to create tracing information; extra syntax is provided for e.g. accessing the stereotype of a

UML model element. Rules consist of a crude signature (comprising the types of the source

and target model elements) and an imperative body. The syntax and semantics of actions are

essentially that of the Object Constraint Language (OCL) [28] augmented with side-effects

and a small handful of necessary control structures. The benefit of such an approach is its

relative familiarity to users, and the knowledge that largely imperative solutions traditionally

lead to efficient implementations. However TRL is only capable of expressing unidirectional

stateless transformations, due to the imperative nature of rule actions [72].

3.1.6 The hybrid approach

In a declarative approach, a transformation is defined by a set of relations between the con-

cepts of the source and target models, as described in their meta-models. The implementation

is realized by an inference engine, which allows the application of the transformation to gen-

erate the target model. In an imperative approach, a transformation is described by a set

3.2. DOMAIN SPECIFIC MODELING LANGUAGE APPROACHES 35

of algorithms as functions or procedures that explicitly describe the sequence of transforma-

tion applications. Hybrid approaches combine the declarative and imperative approaches as

used in [60]. The declarative approach is generally used in the definition and selection of

the transformations which can be applied, while the imperative approach is well adapted to

describing the transformation strategy by a control flow of execution rules, and hence to exe-

cuting the transformation [17]. In hybrid languages, transformation rules mix the syntax and

the semantics of the concepts they handle. ATLAS Transformation Language (ATL) [60] as

an example implements imperative bodies inside declarative shell to specify transformation.

3.2 Domain specific modeling language approaches

In order to implement a domain specific modeling language, some essential design principles

can be applied. There have been research on how to effectively design a software system in

general that could be useful also for domain specific languages. Peffers et al. in [63] proposed

a methodology where several elements of design processes are identified. This process includes

six steps: problem identification and motivation, definition of the objectives for a solution,

design and development, demonstration, evaluation, and communication. Several useful case

studies were demonstrated in various application domains. In an attempt to produce a more

concrete guideline with specific steps, Hevner et al. [38] presented several important guidelines

in design science:

1. Producing a viable artifact

2. Tackling a relevant problem

3. Evaluating the proposed design solution

4. Contributing clear and verifiable results to research

These items are important for our study to evaluate several approaches in domain specific

modeling and understand the challenge of creating a high quality modeling framework.

36 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

Inline with the principle of producing of viable artifacts, DSL approaches have been used

not only in software but also many other industries such as industrial machine control, embed-

ded systems, mobile application specifications, and web application development. MetaEdit+

is one of the tool that focusses on meta-modeling and code generation [40]. By raising the level

of abstraction using meta models, it aims to increase productivity and maintain good level of

code reuse. Meta-modeling has a similar expressiveness to the grammar-based approach, this

increases the compatibility of different systems. One drawback from this approach is that

complex operations resulting from rule compositions cannot be easily realized by using this

tool. Luoma et al. [51] presented suggestions for developing a family of applications with

domain specific modeling tools, based on experiences with MetaEdit+ and applying DSMLs

in different domains. Lessons learned from this work can be used for the development of

a modeling tool with support for DSML and code generation as well as building a domain

specific framework.

DSMLs can be used to solve problems in the software development process. Software

architecture modeling is one of the aspects that was attempted to tackle in the work of Kaul

et al. [41]. In this approach, Patterns-oriented Software Architecture Modeling Language

(POSAML) is developed as a visual modeling language for middleware provisioning. Several

non-functional or systemic concerns must be addressed when provisioning (configuring, opti-

mizing, and validating) distributed applications on their middleware platforms. Practitioners

generally manage this problem with the manual configuration of XML files, which can be

very time-consuming, straining, and error-prone work. As a solution, the POSAML is pro-

vided, which raises the level of abstraction for provisioning middleware. As a visual aid, the

POSAML introduces the ‘‘middleware building block’’ which is implemented with software

patterns, and offers a technology-independent solution to middleware provisioning [43].

In electronic and computer hardware industry, ProcGraph [39] is developed as a DSML

in the domain of programmable logic controllers (PLCs). ProcGraph consists of three vi-

sual tools, each describing a particular aspect of software to be produced. The procedural

control entities diagram shows the system’s composition as well as the relationships between

3.2. DOMAIN SPECIFIC MODELING LANGUAGE APPROACHES 37

conceptual components. The state transition diagram describes the behavior of conceptual

components. The entity dependency diagram shows different dependencies between the con-

ceptual components also it represents a mixture of the first two diagrams. Automatic code

generation is used to transform a model from a higher level of abstraction to produce a PLC

programming code, which is later imported to interpret the produced code and generate the

executable code for PLCs. Data acquisition is a demanding process that includes highly

specialized equipment [43].

There has been work attempting to study and analyze the advantages and disadvantages

in the development of domain-specific modeling languages. Sprinkle et al. [69] presented an

overview and describes several disadvantages with over-engineering of DSMLs and possible

coupling of models. To reduce the risk of developing over-engineered DSMLs, there is a

need to focus on the extensibility and changeability of grammar rules and vocabularies. This

enables resulting models and the language definition to be evolved interactively starting from

a small core language.

Amyot et al. [4] presented an evaluation of development tools for domain specific language.

Several development tools for DSMLs are analyzed such as the Generic Modeling Environment

(GME), Rational Software Architect, XMF-Mosaic and Eclipse Modeling Framework (EMF).

Among them, the support for model evolution can be seen in GME and EMF. Another

criterion is integration with other languages. The tools that fulfill this criterion achieve

integration either by building on UML or by technological integration via the Eclipse platform.

It remains unclear how gaps between similar but slightly different concepts and structures

are bridged in these solutions.

Several attempts on study of the evolution and migration ability of domain specific mod-

eling language have also been carried out. Herrmannsdoerfer et al. in [37] examined the GMF

framework and presented a detailed study regarding the evolution of languages and models.

It identifies the need for language evolution by operators. This can be supported within the

formal techniques of algebraic graph transformation by providing corresponding rules for the

different operators that are proposed, whereas an equivalent solution in the GMF framework

38 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

requires considerable effort.

Sprinkle and Karsai proposed a visual language for specifying domain model evolutions in

[70]. While this language is also inspired by graph transformations, it aims to create domain-

specific visual languages that are defined by meta-modeling. To define transformation, this

approach utilize a fundamental set of operators [11]. Another approach utilizing meta model

concepts can be seen in [6]. This approach presented a concept for automatically deriving

transformations of statements from evolutions of domain-specific languages.

Empirical research in software engineering is a challenging discipline. The main disad-

vantage of DSLs is the cost of their development, requiring both domain and language devel-

opment expertise. This is one of the reasons why DSLs are still not widely adopted in many

emerging domains [44]. There is also the lack of guidelines and experienced reports on DSL

development. As more and more systems are moving into cloud-based architecture recently,

there is a shortage of guidelines for helping DSL developers in the web domain. Chapter 4

and 5 present our approaches to this area and introduces the suitable implementations for

working with web services and web application testing.

3.3 Case studies

In this section, we look at several case studies as background information to model driven

development process. This is aimed to provide useful information in building the domain

specific language for model driven development in the following chapters. There exist various

techniques to define and perform model transformations. Some of these techniques provide

transformation languages to define transformation rules and their application, which can be

either graphical or textual, either imperative or declarative.

We first looked at a formal approach using graph theory and triple graph grammars to

specify model transformation. This provides a higher level of structuring and specification,

allows us to define the complete behavior of a transformation and its process in order for ef-

fective verification and reuse of transformations. We apply this formalism in the construction

3.3. CASE STUDIES 39

of transformation rules from the domain specific language representing state machine models

to Java programing language in Chapter 5.

3.3.1 Formal specification of model transformation

Specification of models and model transformations play an essential role in model-driven

software development. It is important to have higher level of structuring and specification,

to define the complete behavior of a transformation and its process in order for effective

verification and reuse of transformations. In this sub-section, we describe a formal approach

to specify model transformation using graph grammar and the ability to support bidirectional

transformation with triple graph grammar.

Graphs and graph transformations are used in a variety of use cases for specifying, an-

alyzing and optimizing systems. From the work of Ehrig et al. [23], using graphs to specify

model transformations is proven to work as an adequate basis to specify model transforma-

tions between different domain-specific modeling languages. If effectively constructed, this

approach can support the specification for visual, formal and bidirectional transformation.

For exogenous model transformations, triple graph grammars has proven to be a well-

suited formalism [22] and they were successfully applied in several domains. Let us define

the concepts needed for the construction of model transformations:

Definition 1. Graph: A graph G = (GV , GE , sG, tG) consists of a set GV of nodes, a

set GE of edges, and two functions sG, tG : GE → GV , which are the source and the target

function that define edges by connecting nodes.

Definition 2. Morphism: Given graphs G, H a graph morphism f : G → H, where f

= (fV , fE) consists of two functions fV : GV → HV and fE : GE → HE that preserve the

source and the target function, i.e. fV ◦sG= sH◦fE and fV ◦tG = tH◦fE.

A graph morphism f is injective if both functions fV , fE are injective [23]. Graphs and

graph morphisms define the category Graph. In the modeling world, these definitions of

graphs can be used to represent various artifacts such as class diagrams. Graphs and diagrams

are very useful means to describe complex structures and systems and to model concepts and

40 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

ideas in a direct and intuitive way. Let us now define the typing concept in order to describe

the structure of such artifacts.

Definition 3. Typed graph: Given a distinguished graph TG, called type graph, a typed

graph G = (G, typeG) consists of a graph G = (V, E, s, t) together with a type morphism

typeG : G → TG from G to its type graph TG. The distinguished graph TG is a type graph.

A tuple (G, typeG) of a graph G together with a graph morphism typeG : G → TG is called

a typed graph.

Given typed graphs G = (G, typeG) and H = (H, typeH), a typed graph morphism f is a

graph morphism f : G → H, such that typeH ◦ f = typeG.

This concept plays a part in the creation of meta-models, in which their models are

conformed to. This concepts can also be used in object-oriented modeling graphs to describe

two levels: the type level - given by a class diagram and the instance level - given by all valid

object diagrams. This idea can be described more generally by the concept of typed graphs,

where a fixed type graph TG serves as abstract representation of the class diagram [5]. To

describe the conditions which a graph needs to fulfill in order to belong to a type, we need to

define graph grammar. A graph grammar specifies a graph language as set of all those graphs

that can be created by applying transformation rules starting with a given start graph.

Definition 4. Typed Graph Rule: A typed graph rule p = L
l← K

r→ R consists of

three typed graphs L: the left-hand side graph, K: the gluing graph, R: the right-hand side

graph, and two injective typed graph morphisms l and r.

Definition 5. Typed Graph Grammar: A typed graph grammar GG = (TG, S, R)

consists of a type graph TG , a start graph S and set of graph rules R. If a rule p is applicable

to a graph G via a morphism m : L → G, called match, the transformation G
p⇒ H is defined

by two pushouts or double-pushout (DPO):

L
l← K

r→ R

m ↓ k ↓ ↓ m∗

G ←
l∗

D →
r∗

H

3.3. CASE STUDIES 41

The typed graph language L of GG is defined by L = {G | ∃ typed graph transformation

S ⇒*G}.

As seen in Fig. 3.1, to introduce associations in a class diagram, the rule for inserting

association between two existing classes is expressed as:

Figure 3.1: Graph rule to insert association between two classes

Informally, assume a given graph G, a graph rule p: L
l← K

r→ R and a graph morphism

m: L → G, the double pushout is carried out in two phases:

1. Pushout complement : The context graph is obtained “deleting” from G all elements

images of elements in L but not of elements in K.

2. Pushout fill : The final graph is obtained “adding” to context graph all elements which

don’t have a pre-image in K.

For the association insertion rule as in Fig. 3.1, when applying the rule to a source class

diagram having a match, this results in two classes having the new association between them

inserted.

In order to define a transformation in a declarative way and still execute the transforma-

tions in both directions, Triple Graph Grammars (TGGs) can be introduced as a technique

for model transformation. Let us define the concepts:

Definition 6. Triple Graph and Triple Graph Morphism: Three graphs SG, CG,

and TG, called source, connection, and target graph, together with two graph morphisms sG

42 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

: CG → SG and tG : CG → TG form a triple graph G = (SG
sG←CG

tG→ TG). If SG, CG,

and TG are empty graphs, we say that G is empty.

Triple Graph Morphism: A triple graph morphism m = (s, c, t) : G → H between two

triple graphs G = (SG
sG←CG

tG→ TG) and H = (SH
sH←CH

tH→ TH) consists of three graph

morphisms s : SG → SH, c : CG → CH and t : TG → TH such that s ◦ sG = sH ◦ c and t

◦ tG = tH ◦ c. Triple graph morphism m is injective, if morphisms s, c and t are injective.

Triple graphs and triple graph morphisms form the category TripleGraphs. From the

definitions of triple graph and triple graph morphism, we can now define the grammar that

is made up from triple graphs:

Definition 7. Triple Graph Grammar: A triple rule tr = L
tr→R consists of triple

graphs L and R and an injective triple graph morphisms tr. A triple graph grammar TGG =

(TG, S, TR) consists of a triple type graph TG, a triple start graph S and triple rules TR

typed over TG.

L = (SL
sL← CL

tL→ TL)

tr ↓ s ↓ c ↓ t ↓

R = (SR ←
sR

CR →
tR

TR)

From triple rule tr, we can also define triple graph transformation step (TGTstep): Given

a triple rule tr = (s, c, t) : L → R, a triple graph G and a triple graph morphism m = (sm,

cm, tm) : L → G, called triple match m, a triple graph transformation step (TGTstep) G

tr,m⇒ H from G to a triple graph H is given by three objects SH, CH and TH in category Graph

with induced morphisms sH : CH → SH and tH : CH → TH. Morphism n = (sn, cn, tn) is

called comatch.

3.3. CASE STUDIES 43

As the result, we obtain a triple graph morphism d : G → H with d = (s´,c´,t´) called

transformation morphism. A sequence of triple graph transformation steps is called triple

transformation sequence (TGT-sequence) [22]. A triple graph grammar TGG = (S, TR)

consists of a triple start graph S and a set TR of triple rules. The triple graph language L of

triple graph grammar is defined by:

L = {G | ∃ triple graph transformation S ⇒* G}.

Triple graph grammar can be used to define the relation between two types of models as

well as to transform a model of one type into another, to compute the correspondence between

two existing models, or to maintain the consistency between the two types of models as defined

by the TGGs. When one of the models is changed, the other one can be change accordingly,

which means that the transformations or synchronizations can be applied incrementally [42].

Definition 8. Direct triple transformation: Given a triple rule tr = L
tr→R consists

of triple graphs L and R. A direct triple transformation G
tr,m⇒ H of a triple graph G via a

triple rule tr and a match m : L → G is given by the pushout:

L
tr→ R

m ↓ n ↓

G →
f

H

From a triple rule, we can derive a source rule trS and a target rule trT , which specify the

changes done by this rule in the source and target components, respectively. Additionally, we

can derive the forward rule trF which describes the changes done by the rule to the connection

and target. Similarly, the backward rule trB describes the changes done by the rule to the

connection and source parts. In this process, the source rule creates a source model, which

can then be transformed by the forward rules into the corresponding target model. This

means that the forward rules define the actual model transformation from source to target

models. In the backward direction, the target rules create the target model, which can then

be transformed into a source model applying the backward rules. Thus, the backward rules

44 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

define the backward model transformation from target to source models [27]. This way, we

can specify the transformation in both direction when needed. Let us specify the derived

rules in more detail:

Definition 9. Derived Triple Rules: From each triple rule tr = L → R we have the

following source, forward, target and backward rules:

SL ← ∅ → ∅

s ↓ ↓ ↓

SR ← ∅ → ∅

source rule trS

∅ ← ∅ → TL

↓ ↓ ↓ t

∅ ← ∅ → TR

target rule trT

SL
s◦sL← CL

tL→ TL

id ↓ c ↓ ↓ t

SR ←
sR

CR →
tR

TR

forward rule trF

SL
sL← CL

t◦tL→ TL

s ↓ c ↓ ↓ id

SR ←
sR

CR →
tR

TR

backward rule trB

3.3. CASE STUDIES 45

From the the triple rules TR, we can define the language VL = {G|∅⇒*G via TR} of

triple graphs. Given a triple graph G = (SG
sG←CG

tG→TG), we define the projection projT (G)

to the target is triple graph GT = (∅ ∅← ∅ ∅→ TG) and the projection projS(G) to the source

is triple graph GS = (SG
∅← ∅ ∅→ ∅). This shows that each TGT-sequence can be decomposed

in transformation sequences by corresponding source and forward rules and vice versa, which

provides the support for incremental changes [23]. Assume projX is a projection defined by

restriction to one of the triple components where X∈{S, C, T}, we can derive the source and

target languages. Source language VLS is derived by projection to the triple components:

VLS = projS(VL). Target language VLT is derived by VLT = projT (VL).

Model transformations from elements of the source language VLS0 to elements of the

target language VLT0 can be defined on the basis of forward rules. In the opposite direc-

tion, they can be defined using backward rules hence make it possible to define backward

transformations from target to source graphs and altogether form the bidirectional model

transformations. To specify the consistency of source elements, let us define the following:

Definition 10. Match and Source Consistency: Let tr∗S and tr∗F be sequences of

source rules triS and forward rules triF , which are derived from the same triple rules tri for

i = 1,...,n. Let further G00
tr∗S⇒ Gn0

tr∗F⇒ Gnn be a TGT-sequence with (miS,niS) being match

and comatch of triS (respectively (mi,ni) for triF) then match consistency of G00
tr∗S⇒ Gn0

tr∗F⇒

Gnn means that the S-component of the match mi is uniquely determined by the comatch niS

(i = 1,...,n).

A TGT-sequence Gn0
tr∗F⇒ Gnn is source consistent, if there is a match consistent sequence

∅
tr∗S⇒ Gn0

tr∗F⇒ Gnn.

Note that by source consistency the application of the forward rules is controlled by the

source sequence, which generates the given source model.

Theorem 1: Canonical Decomposition and Composition:

1. Decomposition: For each TGT-sequence G0
tr∗⇒Gn there is a canonical match con-

sistent TGT-sequence G0 = G00
tr∗S⇒ Gn0

tr∗F⇒ Gnn = Gn using corresponding source rules tr∗S

and forward rules tr∗F .

46 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

2. Composition: For each match consistent transformation sequence G0 = G00
tr∗S⇒ Gn0

tr∗F⇒ Gnn = Gn using corresponding source rules tr∗S and forward rules tr∗F , there is a canonical

transformation sequence G0
tr∗⇒Gn.

3. Bijective Correspondence: Composition and Decomposition are inverse to each

other.

The proof of this theorem is presented in the work of Ehrig et al. [22]. This allows us

to infer the bijective correspondence between decomposition and composition. The main

significance it brings is the equivalence of forward and backward TGT-sequences which can

be derived from the same general TGT- sequence.

Definition 11. Model Transformation using forward rule: A model transformation

sequence (GS,G1
tr∗F⇒Gn,GT) consists of a source graph GS, a target graph GT , and a source

consistent forward TGT-sequence G1
tr∗F⇒ Gn with GS = projS(G1) and GT =projT (Gn).

A model transformation MT : VLS0VVLT0 is defined by model transformation sequences

(GS,G1
tr∗F⇒Gn,GT) with GS∈VLS0 and GT∈VLT0.

Using the same pattern, backward transformation based on backward rule can be defined

analogically. To verify the transformation, we need to make sure that the transformation is

justified. Let us define the correctness and completeness of the transformation:

Definition 12. Syntactical Correctness and Completeness: Given a model trans-

formation MT : VLSVVLT . We say that:

I MT is syntactically correct, if for each model transformation sequence (GS ,G1
tr∗F⇒Gn,GT)

there is G=(GS← GC→GT)∈VL.

I MT is complete, if for each source model GS∈ VLS there is a model transformation

sequence (GS ,G1
tr∗F⇒Gn,GT)

Theorem 2. Correctness of results: A model transformation MT : VLSVVLT based on

forward rules is syntactically correct and complete.

Proof:

3.3. CASE STUDIES 47

1. Syntactical Correctness: From Definition 11 of model transformation using forward

rule, with a model transformation sequence (GS ,G1
tr∗F⇒Gn,GT) we have source consis-

tent forward TGT-sequence G1
tr∗F⇒ Gn, this means there is a match consistent sequent

∅
tr∗S⇒G1

tr∗F⇒ Gn. Applying theorem 1 with composition we imply that ∅tr
∗
⇒ Gn, this means

for G=Gn there is G∈ V L with G = (GS←GC→GT) hence GS∈ VLS , GT∈ VLT .

2. Completeness: Since we have a source model GS∈ VLS , there exits G = (GS←GC→GT)

where G∈ V L. This implies that there exists a TGT-sequence ∅tr
∗
⇒ G. Applying the first

part of theorem 1 with decomposition we have a match consistent sequence ∅
tr∗S⇒G1

tr∗F⇒

Gn. This hence defines a model transformation sequence (GS ,G1
tr∗F⇒Gn,GT) using G =

(GS←GC→GT).

Taking both 1. and 2. into account, we have completed the proof of Theorem 3. This

guaranteed the correct and complete results of TGG-model transformation. This approach

hence allows us to formally define higher level of structuring and specification of model

transformation as well as specify the complete behavior of a transformation in both directions

using triple rules.

Summary

In this sub-section, the basic concepts of graph and triple graph grammars are formalized in

a theoretical way. Triple graph grammars have been applied and implemented as a formal

basis for model transformations. This allows us to specify models and model transformations

effectively that provide the support for bidirectional transformations, the ability in automatic

derivation of forward, backward and several other transformations out of just one specified

set of rules for the integrated model defined by a triple of graphs.

The advantage of triple graph grammars comes from the fact that the relation between

the two models cannot only be defined, but the definition can be made operational so that

one model can be transformed into the other in either direction. This allows incremental

change propagations between two models. This change propagation is also bidirectional

48 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

and is especially useful for iterative software engineering processes where a model evolves

continuously.

In the situation where a model transformation is required to be reversible to translate

information back to source models, the formalism using triple graph grammars is a promising

approach. For example, a transformation of a domain-specific model to some formal model

for the purpose of validation should be reversible to transform back analysis results stemming

from the formal model [22].

This formalism can be seen on a number of work in various tracks such as adding nested

application conditions [27], specifying equivalent model transformation based on plain rules

from one with forward rules [23], on the fly construction of model transformation [24]. This

serves as the background theory for our further work. Our contribution to this domain is

to use graph transformations to manipulate models and use generators to produce source

code. We apply triple graph grammar to the transformation of finite state machine in the

domain specific language for testing of web applications. Our approach utilizes this theory

and constructs the transformation between the state machine modeling language and Java

codes. We describe this technique in section 5, Chapter 5.

3.3.2 Agile Development of PIMs in Model Driven Architecture

As the second case study, we looked at model driven development process from the agile

perspective. A good understanding of the agile modeling process can help in the design

decision when constructing the domain specific language for model driven development of

web services in the next chapters. In this process, automation is achieved by applying model

transformations to Platform Independent Models (PIMs). This sub-section looked at the

development process from software engineering and project management perspective. We

introduce an approach to developing PIMs by using UML, OCL and promotes agility by

applying agile modeling for this purpose. A practical example will be demonstrated.

In the modeling process, efforts are being put into filling the gaps between requirements

analysis and actual implementation. This gap is widely considered as the main source leading

3.3. CASE STUDIES 49

to poor quality applications that are hard to maintain and reuse in the future. Specialized

methods from Model-driven Engineering perspective have been introduced and widely ap-

plied, making the situation better and increasing efficiency of the whole process. In this

section, we point out the advantages that are brought from applying formal engineering prin-

ciples in practice. Particularly we describe an approach of developing a PIMs by using UML

and OCL while promote agility by applying agile modeling principles. We aim to use a com-

bination of UML and OCL to build PIMs. These PIMs need to be enough precise, consistent,

full of information, and enable a more complete generation of PSMs. In our approach we

utilize plain UML for the class, use case, and state chart diagrams. However, any modeling

language can be used at this stage, such as domain specific modeling languages designed for

a particular application domain. OCL is used to formalize integrity constraints and other

system related conditions. OCL for querying models at instance-level is used to verify models

in advance, therefore brings more agility to the development process.

Our case study

We combine MDA with Agile Modeling (AM) in this approach. Agile Modeling defines a

collection of core and supplementary principles that when applied on a software development

project set the stage for a collection of modeling practices [13]. The most important principles

include [65]:

I Assume Simplicity.

I Embrace Change.

I Enabling the Next Effort is Your Secondary Goal.

I Maximize Stakeholder Investment.

I Incremental Change.

I Model With a Purpose.

50 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

I Multiple Models.

I Rapid Feedback.

MDA and AM principles are used in the process of creation of PIMs. An important concept to

understand about AM is that it is not a complete software process. AM’s focus is on effective

modeling and documentation. In general, development of PIMs can be a long process, in

order to be agile, it need to be developed in incremental, rapid cycles. This results in

small incremental deliverables with each deliverable building on previous functionality. Each

deliverable is thoroughly tested to ensure model quality is maintained. The first step in

this process is to capture domain information, in which we should avoid having too complex

patterns too soon or over-architect the system. One important principle in this process is

“Enabling the Next Effort is Your Secondary Goal”. To enable it, we need to make sure that

not only the outcome models is of good quality, but also create enough documentation so

that the people work on the next effort can be effective.

Our experiment case is a web application as an information system. It is a simple system

of a conference management (conference information system) where authors can submit their

papers and edit their registration information. The conference system can also manage mul-

tiple conferences. With agile methodology, we start from a simple model (assume simplicity)

and make the model reusable. For this purpose we need to create a generic PIM which can

be adapted to the specific software system when needed. The following components need to

be developed:

I Use cases

I State model (state diagrams)

I Class diagram : Entity and relationship (their attributes and integrity constraints (with

OCL))

I System behavior model (operations)

3.3. CASE STUDIES 51

One of the important principles is to introduce the definition a “black box” in the system

behavior before proceeding to a logical design. This decision has a clear impact during

analysis since operations required to specify the system response to the external events are

not assigned to classes but recorded in an artificial type. In this way, responsibilities are not

assigned to objects during analysis [65]. This utilizes the agile philosophy “embrace changes”.

In the development process, towards a reusable model for different project, we have to include

different kind of stakeholders and contractors. Depending on particular project, stakeholders

can have different background knowledge and cultures. To support consistency between all

stakeholders, principles of agile modeling should be applied. This includes“assume simplicity,

embrace change, incremental change” and “maximizing stake holder investment”.

1) Use cases

The use case model consists of the definition of use case diagrams. This provides a view

on the ways users can interact with the system. In our experiment, use case diagram of a

simple conference information system can be simplified as follow:

Figure 3.2: Conference IS sample use cases

52 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

It is important to start modeling with a simple system, through different iterations, more

precise and complex features will be added via communication across multi functional mem-

bers in the team. This includes business holders, project management, operations and other

involved parties. In our case study, more user roles and behavior will be added along each

iterations.

Model constraints can be specified with OCL. An example is unique properties: each user

has an unique ID.

context User::UniqueUserId():Boolean

body: User.allInstances()->isUnique(userId)

2) Statechart diagram

When developing PIMs, statechart diagrams show the events that lead to changes in

object states and specify the system response to these events. The state model includes a

statechart diagram for each object with an important dynamic behavior. At the PIM level,

statechart diagrams can be defined using a protocol state machine. For simplicity, we can

assume an example of statechart diagrams for a paper could be started with:

Figure 3.3: Starting with simple paper statechart diagram

Applying agile modeling to this section, our approach aims to follow the principles“assume

simplicity, embrace change” and “rapid feedback”. It is essential to start with a simple model,

this allows the statechart diagram to be reviewed fast with rapid feedback. In the weaving

process of all aspects together, “rapid feedback” also plays a more important role in the

building-up of models. The process involves communication with various stake holders. In

this communication, models need to be simple with a single objective as in “modeling with a

purpose”. Any change to the model will be reviewed via the incremental modeling phases. In

3.3. CASE STUDIES 53

this case study, the statechart diagram can be later enriched with various states emerged from

feedback such as “on hold”, “waiting for review”, “camera ready submitted” etc.. Through

many iterations, both with design and communications, the model will gradually reach the

complete state.

3) Class diagram and operations

The approach includes applying OCL in specifying constrains, derivation and query. Con-

sider the case of UML diagram as follow:

Figure 3.4: Conference class models

This is a class model diagram of a conference service from a basic starting point. There

are a number of conferences. These conferences are documented with how many papers they

have received and some information about them. In agile modeling, the principles apply to

this phase includes “model with a purpose” by focusing on the useful features first, e.g. we

only introduce properties of the class diagrams that we think will be used at the moment.

By starting with a simple set of models, we follow “assume simplicity”, hence allows us to

embrace change more efficiently. In order to be more agile, there is a need to validate the

correctness of the model upon each iteration, this enables us to utilize test-first modeling as

a combination of test driven and model driven development.

In order to facilitate testings, we need to query values from model to assert the correct-

ness and validity of constraints or business logic. OCL can be used to query and derive from

instance-model for this purpose. Let us define some of the operation needed in our case study.

Let us assume that 2 points will be calculated for each paper submitted to a conference. Ap-

54 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

plying the techniques with OCL model querying from the previous section, several properties

of the model can be achieved, the attribute point can be derived in OCL as follow:

context Conference::point: Integer

derive: 5*numberOfPapers

To get the number of conferences recorded in the service, we can derive as follow:

context ConferenceService::numberOfConferences :Integer

derive: conferencesCreated->size()

As we start from the most simple models, the agile principles of “embrace change” and

“incremental change”can to be applied by feedback and validation at the end of each iteration.

For this purpose, we need to run and test the models in order to verify the design. In the

case study, our approach includes using OCL to query data at instance-level, starting form

the simple ones first. One convenient way to query data with OCL is to use the OCL select()

query. Assuming we have to query for the number of conferences that have the number of

submitted paper greater than a certain value:

context ConferenceService:: numberOfConfsOverTarget(target:Integer):Integer

body:conferencesCreated->select(numberOfPapers>target)->size()

The OCL query above should return an integer value as the number of conferences having

numbers of submitted paper greater than a value as target. If we need to query a collection,

OCL can return the result also as a collection:

context ConferenceService:: conferencesOlderThan(someYear:Integer):Set(Player)

body: conferencesCreated->select(year<someYear)

This function returns a Set as result of the query. We know that some aggregate functions

are often used in a query language such as Structured Query Language. As we see from

previous section, in OCL this is not quite straight-ahead, but these functions still can be

3.3. CASE STUDIES 55

implemented. A query to find the average value of a collection can be implemented with

OCL as follow:

context ConferenceService::averagePoint(): Real

body: conferencesCreated.point->sum()/conferencesCreated->size()

The equivalent query in SQL could simply be constructed as: SELECT AVG(point)

FROM Conference. We see that most Database Management Systems (DBMS) provide

many built-in aggregate functions and they can be used quite conveniently for cases like this.

With OCL, however we have to manually define our functions for such purpose. In the case

of finding the average value, we had to get the sum of all points and divided by the number

of conferences we have. This function returns the average point of all conferences in the

ConferenceService as a real number. In the case of finding the maximal value, our sample

is to find the best conferences which are the conferences that score the highest number of

points. Some calculations need to be performed:

context ConferenceService::bestConference():Set(Conference)

body: conferencesCreated->select(

point = conferencesCreated->sortedBy(point)->last().point)

This OCL snippet required a sorting of all conferences according to their points. After

that, we performed a projection to the list of all conferences with the condition where the

number of points equals to the maximal number of points from that sorted list. This approach

on querying instance-model for testing can promote agility by verifying the models agains

specifications on each iteration hence reduce potential errors. The principle of developing

working software via test-first approach in agile model driven development can be supported

by OCL instance-model querying. This process continues after each iteration, allow changes

to be introduced to the models faster.

In the case study, the development of PIMs was more agile by starting with a simple set of

models, applying incremental changes via feedback from various stake holders in the project.

56 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

Communication is made important in the modeling process to increase the possibility for

various parties to be involved early in the model design. The process was more efficient with

fail-fast character by applying test driven development to modeling. The development of

PIMs is completed after successful verification the models to the requirements and business

logics that was added or changed through out many phases of the project. Lesson learned

in this case study can be applied to the design of domain specific language for model driven

development such that it needs to be simple enough to enhance readability and able to

embrace agile principles by supporting incremental changes and involvement of more stake

holders.

To support agile model driven development via test-first approach, OCL can be used to

query data for testing at instance-model level. In general, OCL is quite handy in supporting

simple queries despite the fact that we had to manually implement some of the aggregate

functions and manually manipulate data. In term of expressiveness, OCL lacks the direct

support for Product and Project operators [2], however, OCL can be used as a good tool for

navigation, simple queries for deriving values and helpers to support testing in agile modeling.

In the MDA, a PIM describes a software system that supports some business indepen-

dently of the implementation technology. There are approaches to bring more context to PIMs

to extend the traditional notion of PIMs in the MDA by capturing the common aspects of

a class of applications instead of modeling a particular system. The approach proposed in

this section can also be implemented in this context. As the proposed guidelines are generic

enough, the approach for agile development of PIMs could also be applied using the same

principles on domain specific modeling languages (rather than UML) that capture a class

of systems in a particular domain such as Simple Web Service Modeling Language (SWSM)

which is introduced in Chapter 4.

3.4. SUMMARY 57

3.4 Summary

In this chapter, we analyzed and covered several techniques for model driven development

from our case studies. We outlined a formal specification of model transformation based on

triple graph grammars, results from this formalism is later applied to the design of a domain

specific language for modeling and testing of web applications in the following chapters.

We made an attempt to apply agile principles to the modeling process with a case study.

Important principles to follow include: assume simplicity in starting models, incremental

changes via short modeling iterations, focus on the important features by modeling with a

purpose. This allows us to be efficient when coping with frequent changes and maximize stake

holders’ influence in the development process via rapid feedback. The work of the author on

agile development of PIMs has been cited as references in US Patent No. 8516435 and No.

8495559. This study provides us with lessons to apply in our design of the domain specific

language approach in the following chapters.

From practical viewpoints, presenting some layer of abstraction will increase effectiveness

by making code (and spent time for preparing it) more useful and easily adaptable in the

future. On the other hand, changes in requirements, platforms and sometimes even personnel

require fast altering of existing artifacts at minimal costs. Hence, the need of an automatiza-

tion process is in place and indispensable. In addition to that, to cope with the fast-changing

environment, there is a need also for techniques that can be aligned with agile principles

and potentially become an actual standard in the variety of existing tools available in recent

emerging domains such as the web domain. In the next chapters, we introduce our approach

using Domain specific language for modeling and exogenous transformation utilizing hybrid

templating techniques for code generation.

58 CHAPTER 3. PREVIOUS WORK AND CASE STUDIES

Chapter 4

Domain specific language for

modeling and transformation

4.1 Preliminaries

Cloud computing and distributed systems continue to gain more mainstream adoption as

more companies move into the cloud. With mobile gradually taking over the desktop experi-

ence, cloud architecture continues to accelerate and provides more impact to the evolution of

software [34]. Model-driven Engineering methodologies have been applied (as a solution) for

better reaction to market trends and aims to increase efficiency as well as bring more agility

to the development life-cycle of cloud and distributed systems. However, since there are many

different applicable domains in web applications and distributed systems, the challenge is to

introduce an approach that can effectively support automation in model-driven development

of that application domain. In this chapter, we present our effort towards the solution for this

issue by analyzing the concepts involved in key aspects of web service design and introduces an

approach to the development of web services by using model-driven techniques with domain

specific language. As a result, a DSL for modeling of web services named SWSM (Simple

Web Service Modeling) was developed and introduced. To demonstrate this approach, a case

59

60 CHAPTER 4. DOMAIN SPECIFIC LANGUAGE FOR MODELING

study of web service development from modeling to code generation is also illustrated with

the associated techniques. This chapter is structured as follows: In the next section, we

review some knowledge of web services and domain specific language as background informa-

tion. The subsequent section discusses the current state of web services development using

model-driven techniques. We also highlight the features of the DSL that we aim achieve when

designing a new DSL for modeling of web services. In the next section, we introduce SWSM

- our designed DSL for modeling and development of web services and how to apply it at a

specific point during design phase. In the last section, we present some conclusions on web

service development using SWSM and its applications.

4.2 Background

4.2.1 Web services

With the growing demands in recent years, distributed computing and e-business process-

ing systems are made possible by adopting a new paradigm of Service-Oriented Computing

(SOC). SOC enables building agile networks of collaborating business applications across

distributed locations and promote service oriented architecture. Web services are the current

most important technologies based on the idea of SOC, and are self-describing, self-contained,

modular components that can be published, located, and invoked across the web via standard

interfaces and protocols [78].

The key technologies of Web services include XML (Extensible Markup Language), UDDI

(Web Services Description Language, Universal Description, Discovery and Integration) and

SOAP (Simple Object Access Protocol)[14]. Currently the development of web services in

MDD involves using UML to specify services precisely and in a technology-independent man-

ner. However, UML is not the optimal way for modeling of web services; the efficiency could

be improved by using a specific language to address the detailed nature of web services. In-

troducing a new DSL can set up the stage for automatic generation of a part of the XML and

code, such as Java code, that implements the services. It also makes it easier to re-target the

4.2. BACKGROUND 61

services to use different web services implementation technologies when required.

4.2.2 Current Approaches in Web Service Development

Currently development of web services fall into two main categories associated with the

order in which models are developed: top-down and bottom-up. In top-down approach we

first design the abstraction and description of web services, after that we add more detail

implementation and business logic to it, in this process, modeling is a crucial part. A good

web service starts with a good design. The UML approach for this has some drawbacks,

UML is a tool for generic design, it is not straight forward to address easily all the aspect

of web service. Besides, creating XML/WSDL is a complicated process with a lot of detail

information. In contradiction to that, modeling process at the first place intended to abstract

away unnecessary details and makes it easier to understand the system. Hence, there is a

need to create a better mechanism to solely support the design of web services. Using a

dedicated DSL for this purpose can turn into a promising approach in this situation.

In bottom-up development, the design process starts with a given prototype or presen-

tations of a class, other web service artifacts are generated from the given prototype. This

means part of the implementation must be designed at the first steps. This approach means

changes made from the first steps will propagate and require changes on all model artifacts.

Aligning with principles of MDD, top-down approach is considered more suitable and is

one of the solutions to better support software reuse. Our approach using model specific

language in top-down paradigm can be the feasible choice for development of web services.

4.2.3 Related work

Model-driven development of web services is still evolving to address the problem of complex-

ity, integration, fast-changing technology in the software industry. Model-driven development

of web-services is addressed in the work of Benguria et al.[7]. This approach focused on build-

ing platform independent models for service oriented architecture. The solution provides

a platform independent meta-model for Service Oriented Architecture (SOA) and a set of

62 CHAPTER 4. DOMAIN SPECIFIC LANGUAGE FOR MODELING

transformations that link the meta-model with specific platforms following the Model Driven

Architecture (MDA) approach. There are also existing UML-based approaches to modeling

services. UML collaboration diagrams have been used extensively to model behavioral-aspects

such as service collaboration and compositions in the work of Bezivin et al. [8]. In this ap-

proach, the Platform-Independent Model is created using UML. This PIM is transformed

using Atlas Transformation Language to generate PSMs based on three target platforms:

Java, Web Service and Java Web Service Developer Pack (JWSDP). This approach showed

that UML profiles allow the extension of the UML meta-model. However, UML profiles make

the creation of transformation rules difficult.

The support for software as a service and services modeling have been also addressed by

providing lightweight extensions to UML through Profiles, these approaches can be seen in

the work of Frankel and Parodi [26] and Bordbar et al. [9]. UML-profiles for services and

SOA are proposed by the approach of Heckel [36]. This effort developed a suitable syntax for

this domain by sketching a UML profile for SOA based on UML 1.x standards with a direct

mapping between WSDL 1.1 elements and their model elements. Once the profile is properly

defined, its semantics can be given in terms of a graph transformation. This approach has an

advantage of UML generality, it can be used to model just about any type of application, run-

ning on any type and combination of hardware, operating system, programming language,

and network. However, since UML is large and complex, using multiple models/diagrams

makes it difficult to keep them consistent with each other and more code has to be added

manually. There are also other efforts to provide domain specific languages for modeling of

web services and service-oriented architecture. A qualitative, explorative study that provides

an initial analysis of a number of such approaches through a series of three prototyping ex-

periments in which each experiment has developed, analyzed, and compared a set of DSLs for

process-driven SOAs can be seen in the work of Oberortner [62]. Maximilien et al. developed

a DSL for Web APIs and Services Mashups [53]. This effort describes a domain-specific lan-

guage that unifies the most common service models and facilitates service composition and

integration into end-user-oriented Web applications. A number of interesting design issues

4.3. CHALLENGES AND CURRENT LIMITATIONS 63

for DSLs are discussed including analysis on levels of abstraction, the need for simple and

natural syntax and code generation. On the track of non-UML-based modeling approaches,

there are efforts aiming to aid modeling of services. The Web Services Modeling Framework

(WSMF) from Fensel & Bussler [25] defines conceptual entities for service modeling. It is an

effort to build the Web Service Modeling Framework (WSMF) that provides the appropriate

conceptual model for developing and describing web services and their composition (com-

plex web services). Its philosophy is based on the following principle: maximal de-coupling

complemented by a scalable mediation service. Web-Service Modeling Ontology (WSMO)

[47] provides a conceptual framework and a formal language for semantically describing all

relevant aspects of Web services in order to facilitate the automation of discovering, combin-

ing and invoking electronic services over the Web. It has its foundations in WSMF but it

defines a formal ontology to semantically describe web services. The Web Services Modeling

Language (WSML) [16] provides a formal syntax and semantics for the WSMO based on

different logical formalisms.

4.3 Challenges and Current Limitations

Advances on programming languages still cannot cover all aspects of the fast-growing com-

plexity of web platforms. In a wide range of systems, especially distributed ones, more

and more middle-ware frameworks are developed in languages such as Java or .Net, which

contain thousands of classes and methods as well as their dependencies. This requires con-

siderable effort to port systems to newer platforms when using these programing languages

[34]. Therefore, general programming languages cannot be considered as first-class languages

to describe system-wide and non-functional aspects of a system. There is a need to raise

the level of abstraction while still providing specific domain attributes for modeling of such

systems.

With mobile technology adoption continuing to gain momentum, in the next few years

more cloud based and software-as-service (SaaS) systems will grow. As more systems migrate

64 CHAPTER 4. DOMAIN SPECIFIC LANGUAGE FOR MODELING

Figure 4.1: Multi-tenancy architecture service sharing

to the cloud, there is a big space for web services to continue gaining popularity. SaaS, and

recently Platform-as-a-Service (PaaS), as different layers of cloud computing, require different

approach to web service development and deployment. In these infrastructures, the so-called

multi-tenancy becomes an essential factor. The multi-tenant architecture (as depicted in Fig.

4.1) ensures the customization of tenant-specific requirements while sharing the same code-

base and other common resources. In this figure, four customizations of different tenants are

built based on the shared service implementation and infrastructure. Web services in multi-

tenant platforms need a way of abstracting away the configuration and make it possible for

every part of the service to be customized for a specific tenant. These platforms are often

built from the meta-data driven solution. This therefore means that the application logic can

be based on meta-data which later can be customized [34].

The challenge in this architecture is to adopt or develop a modeling language at the

appropriate abstraction level to separate the logical models from its technical aspects. This

detaches the definition of service architectures independently from the used specific platforms.

A modeling language raising the level of abstraction allows us to reuse models and keeps

4.4. FEATURES OF A DSL AS A MODELING LANGUAGE 65

platform-specific artifacts at a separated tier in the development workflow. Having a modeling

language based on services aspects with the ability to set aside technical concerns and still

be able to tackle a problem in a specific platform is hard to come across.

There are existing general purposes modeling languages such as UML. UML is a standard

for software system modeling. It is able to represent various kinds of software systems, from

embedded software to enterprise applications. To allow this flexibility, UML provides a set

of general elements applicable to any situation such as classes or relationships [7]. However,

in the SaaS or PaaS architecture, the class systems in UML often forces systems to be

represented or surrounded by classes, this could make the models difficult to understand

and use. In addition UML provides facilities to specialize UML for a specific domain as so-

called UML profiles. But frequently, these mechanisms are not able to represent the semantics

behind the domain concepts [7]. The challenge therefore remains in defining a domain specific

language that can be suitable for the modeling and development of this infrastructure. In

the case of modeling web services, the creation of a high-level DSL turns into a necessity for

software reuse, higher development speed and better cost-effectiveness.

4.4 Features of a DSL as a modeling language

Introducing a new DSL with the support for modeling at a good abstraction level is crucial.

This DSL can later be used for automatic generation of the model artifacts and code that

implement the services. In theory, a general modeling language could also be used for this

purpose but an appropriately designed DSL will perform the same job much more effectively.

We define a set of features that are essential to the DSL design in model-driven development

of web services. All of these features should be considered during the creation of a DSL to

ensure the quality of the language.

Effectiveness: The language needs to be able to deliver useable output without having to

re-tailor based on specific use case while being easy to read and to understand. This means

that the language is able to bring up good solution on specific domain and focus on solving the

66 CHAPTER 4. DOMAIN SPECIFIC LANGUAGE FOR MODELING

particular range of problems. Effectiveness also needs to guarantee the unambiguity feature

of language expressions and capability to describe the problem as a whole from a higher level.

Automation and Liveness: As the modeling language can raise the level of abstraction

away from programming codes by directly using domain concepts, an important aspect is

the ability to generate final artifacts from these high-level specifications. This automation

transformation has to fit the requirements of the specific domain. Liveness feature ensures

changes from models described by the language are propagated to the next phase of devel-

opment automatically.

Support Integration: The DSL has to be able to provide support via tools and platforms.

The DSL needs to be able to integrate with other parts of the development process. This

means that the language is used for editing, debugging, compiling and transformation as well

as integrated together with other languages and platform without any heavy effort.

When designing and implementing DSLs as executable languages, there is a need to choose

the most suitable implementation approach. Related work from Mernik et al. [55] identifies

different implementation patterns, all with different characteristics. These patterns provide

another perspective to consider when making the design decision of DSL. These options can

be broken down to the following categories:

I As interpreter : In this method, DSL constructs are recognized and interpreted using a

standard fetch-decode-execute cycle. With this pattern no transformation takes place,

the model is directly executable.

I As compiler/application generator : DSL constructs are translated to base language

constructs and library calls. People are mostly talking about code generation when

pointing at this implementation pattern.

I Using pre-processor : DSL constructs are translated to constructs in an existing lan-

guage (the base language). Static analysis is limited to that done by the base language

processor.

4.4. FEATURES OF A DSL AS A MODELING LANGUAGE 67

I Embedding design: DSL constructs are embedded in an existing GPL (the host lan-

guage) by defining new abstract data types and operators. A basic example is applica-

tion libraries. This type of DSL is mostly called an internal DSL. The good side of this

is that grammar, parsers and tools are immediately available. However, the challenge

with an embedded DSL is to tactfully design the language so that the syntax is within

the confines of what the host language allows, yet is as expressive and concise.

I Using extensible compiler/interpreter : A GPL compiler/interpreter is extended with

domain-specific optimization rules and/or domain-specific code generation. While in-

terpreters are usually relatively easy to extend, extending compilers is hard unless they

were designed with extension in mind.

I Commercial off-the-shelf : existing tools and/or notations are applied to a specific do-

main. In this approach, it is not needed to define new DSL, editor and DSL implemen-

tation, one only needs to make use of a Model Driven Software Factory. One example

is using the Mendix Model-Driven Enterprise Application Platform targeted at the

domain of Service-Oriented Business Applications.

I Hybrid : a combination of the above approaches.

The choice of the approach is very important because it can make a big difference in the

total effort to be invested in DSL development. With the success of open source projects like

Xtext, development of DSL is made affordable and the development is focused on building

the grammar, while support for static analysis and validation of models are possible out of

the box.

We aim to maintain the set of features defined in this section while designing SWSM. This

allows us to provide automatic transformation, agility and integration to the development

cycle. This ensures that the process of model-driven development of web services using SWSM

is efficient.

68 CHAPTER 4. DOMAIN SPECIFIC LANGUAGE FOR MODELING

4.5 Model Driven Development of Web Service using SWSM

Web service technologies depend on the use of XML, SOAP, WSDL. These standards are

important, but they do not effectively support automation of code evolution at different

phases in the multi-tenancy development cycle. A DSL for modeling web services is therefore

useful because it can effectively support automation in model-driven development. In the

process of designing a suitable DSL for this purpose, we consider some valuable lessons

described in the work of Wile [77]:

Lesson T2 : You are almost never designing a programming language. Most DSL designers

come from language design backgrounds. There the admirable principles of orthogonality and

economy of form are not necessarily well-applied to DSL design. Especially in catering to

the pre-existing jargon and notations of the domain, one must be careful not to embellish or

over-generalize the language.

Lesson T2 Corollary : Design only what is necessary. Learn to recognize your tendency

to over-design.

Keeping this principle as an effective approach in designing, we made an effort to design

SWSM as a modeling language for web services at the appropriate abstraction level. As a

proof of concept, this language aims to increase the efficiency of the development process by

letting user focus only on the modeling of essential aspects that comprise web service.

The syntax needs to be simple yet as expressive and concise. The possible set of simplified

syntax diagrams for the components of this DSL can be depicted as in Fig. 4.2.

To describe the service as an aggregation of several ports, the keyword webservice is used

for modeling web services. Following is the syntax diagram for this model declaration (Fig.

4.3).

Figure 4.3: Web services syntax with SWSM

4.5. MODEL DRIVEN DEVELOPMENT OF WEB SERVICE USING SWSM 69

Figure 4.2: Simplified syntax diagram of web services with SWSM

70 CHAPTER 4. DOMAIN SPECIFIC LANGUAGE FOR MODELING

The semantics of the language expressions starts with the web service definition followed

by its name. There could be a number of ports associated with this web service and this

mapping is described by the port keyword followed by a string identifier of a port. It is

worth to mention that ID is a term representing the name (identification) of an element.

Value of the target namespace is a string followed by targetNamespace keyword. This enables

developers to specify the relationship between a port and a particular web service. In most

cases the association is a one-to-many mapping. The syntax diagram of ports can be depicted

as in Fig. 4.4.

Figure 4.4: Port syntax with SWSM

A port identified by name (ID) consists of one or many operations, each operation is then

defined by the set of input and output. This semantics can be seen in the syntax diagram of

an operation in Fig. 4.5.

Figure 4.5: Operation syntax with SWSM

Each input and output of an operation is of the type message. The keywords input and

output make the semantics of an operation signature easy to comprehend by describing the

parameters for the operation with its returning type. The message element defines the data

elements of an operation. Each message can consist of one or more fields (parts). These fields

play the role of the parameters of a function call as in a traditional programming language.

All modeled fields form the method signature for each operation.

Given a collection of operations O1. . . On with associated input and output messages, we

define the mapping to web services and ports:

I One or more operations (O1. . . On) are mapped to a port P1 to describe one function

4.5. MODEL DRIVEN DEVELOPMENT OF WEB SERVICE USING SWSM 71

Figure 4.6: Binding syntax with SWSM

of a web service.

I P1 defines the connection point to a web service, one or more web services (W1. . . Wn)

are modeled within an SWSM file.

The message format and protocol details for a web service are modeled via binding. A bind-

ing is identified by its name (ID on the diagram), the mapping to a port is described by

port attribute. The binding style is represented by bindingStyle attribute. Value of transport

attribute has the direct semantics of defining which transportation protocol to use. For ex-

ample, in the case of HTTP, we can simple assign“http” to transport. This is more convenient

than the approach currently used in WSDL where ”http://schemas.xmlsoap.org/soap/http”

is assigned. To define the operations that the port exposes, the mapping operationBinding

is used. For each operation binding, the corresponding SOAP action is described with its

encoding type of input and output.

The best way of illustrating the syntax is to start modeling web services in a case-study.

The first step in model-driven development of web services is designing the models. The

output of this phase are models that conform to a web service meta-model, which can be

represented in a textual format complying to the grammar of a DSL. Model artifacts are later

used as input for the generation process. One of the important influencing factors is that any

changes in the models will propagate changes in other stages. SWSM has a mechanism to

support change propagation. To start modeling web services with SWSM, the process begins

with representing the principal elements of a web service in the modeling language:

I Types: used to define the abstract elements in the description of the web service. They

can be simple or complex type. Identified by the keyword type.

I Messages: are units of information exchanged between the web service and the cus-

72 CHAPTER 4. DOMAIN SPECIFIC LANGUAGE FOR MODELING

tomer application (logically they are input, output messages and sometimes also fault

messages). Each operation provided by a Web service is described by at most, one

input message and one output message. These messages relate to the parameters of the

operation. In SWSM messages are identified by the message keyword.

I Interfaces (or portTypes in WSDL1.0): they constitute aggregations of operations pro-

vided by the service. In SWSM interfaces start with the keyword interface.

I Bindings: they specify in particular the protocol used to invoke the methods of an

interface. In SWSM bindings start with the keyword binding.

I Services and ports: the service can constitute an aggregation of ports. A port is an

endpoint enabling the access to an interface through an URI address. Services are

identified by the keyword webservice. We can define multiple web services within a

single design.

Utilizing MDD principles, web service development using SWSM can be decomposed into

four steps:

1. Modeling the web service using SWSM.

2. Enhancement and automatic validation of web service models.

3. Generating Java code using built-in code generation feature of SWSM.

4. Code refinement, refactoring and testing.

To demonstrate the modeling syntaxes, we can see how SWSM is used to represent various

essential elements of web services in a case study. To model the service as an aggregation

of several ports, the keyword webservice is used. The code bellow shows how the keyword

webservice is used to define a service called DictionaryService:

webservice DictionaryService {

port LookUpPort

4.5. MODEL DRIVEN DEVELOPMENT OF WEB SERVICE USING SWSM 73

Figure 4.7: Development of web services with SWSM

targetNameSpace "http://ws.mydictionary.net/lookUp" }

end

The semantics of the webservice block indicates a web service, which can consist of one

or many ports. This can be seen from the syntax diagram described above. However, on this

dictionary look-up example, there is only one port named LookUpPort declared. In the next

step, the ports associated to the service also need to be defined:

port LookUpPort {

op LookUp

}

end

In a port, there are operations involved, LookUp operation is the one in this case. A port is

associated with an interface by the association binding. The meta-class interface constitutes

an aggregation of several operations.

binding LookupBinding {

portType LookUpPort

operationBinding OpBinding

transport http soapBindingStyle rpc

} end

74 CHAPTER 4. DOMAIN SPECIFIC LANGUAGE FOR MODELING

Each operation (identified by the keyword op) consists of message(s) which defines its

inputs and outputs. A message naturally refers to a meta-class indicating its simple or

complex type:

op LookUp {

input Input

output Output

}

message Input {

username : String

word: String

}

message Output {

meaning : String

wordType : String

related : Integer

}

In addition, we can also define the action associated with an operation by using the

keyword opBinding :

opBinding OpBinding {

soapAction "http://me.com/action"

inputSoapBody literal

outputSoapBody literal

}

For the HTTP protocol binding of SOAP, the value of soapAction is required. For other

SOAP protocol bindings, this value could be omitted. The inputSoapBody and outputSoap-

Body keywords indicate whether the message parts are encoded using some encoding rules.

4.6. SUMMARY 75

Putting all the pieces together gives us the information needed to model a simple web

service. These models are later used as input for code generation. SWSM makes it possible

to design web services by using simple and fast syntaxes. In contrast to other approaches,

SWSM is uncomplicated, rapid and easy to adapt. The syntax used in SWSM is simple and

more intuitive in comparison to the complex structure of UML. The order in which aspects

of a web service are defined is the same as the logical order, when we design a web service.

This makes the designing process more natural and perceptive, hence allows agile principles

to be applied easily. Using SWSM enables us to focus only on the essential aspects of the

web service. This approach promotes model-driven development principles and makes the

web service development process more efficient [57].

All of the SWSM language infrastructures can be packed as a plug-in for the Eclipse

integrated development environment. This includes a text editor with autosuggestion and

validation capabilities. This enables the development phase to be carried out seamlessly. We

also built a code generation feature (Java language) based on a code template engine and

embedded it into SWSM. Textual models created using SWSM are used as input for the

generation of Java web services. Code generation can be executed right within the editor.

The role of MDA in this development process is to raise the level of abstraction in which

we develop systems. This is aimed to improve productivity similarly as when we moved

from assembly language to third-generation languages. At first, third-generation language

compilers did not produce code as optimal as hand-crafted machine code. Over time, however,

the productivity increase justified the changeover, especially as computers speeded up and

compiler technology improved [26]. SWSM is similarly used at a different level of abstraction

to third-generation programming languages, to tackle overall productivity.

4.6 Summary

MDD approach can be applied to web services in order to increase the resilience of implemen-

tations, as web services technologies change and evolve. This chapter brings up the design

76 CHAPTER 4. DOMAIN SPECIFIC LANGUAGE FOR MODELING

theory and methodology for implementing and utilizing a domain specific language for model-

driven development of web services. Adopting domain specific languages, such as the one we

introduce, can increase productivity and ease the burden of development of web services as

the backbone on SOA systems. SWSM also reduces the cost implied in maintaining the

systems and provides a solution to software reuse.

SWSM was written at a good abstraction level. This improves code readability and makes

program integration easier. SWSM enables users without experience in programming at a

higher level to focus only on knowledge of their concerned domain. Hence under this approach,

it is possible for different stakeholders such as business experts and IT experts to model web

services during early stages of web services design. This enhance the agile modeling capability

in maximizing involvement of stake holders. Another advantage of SWSM for modeling is

the ability to generate more verification on the syntax and semantics than a general modeling

language. This can reduce errors on the testing or debugging process. However, we also need

to point out that this approach has several drawbacks. There is an extended learning curve

for a new language, even though SWSM as a domain specific language proves to be a lot

easier to learn than a general programming language. Additionally, as a general language is

adopted by more people, it could be more feasible to find staff capable of solving the problem

using their language knowledge. There are also spaces for improvement in the syntaxes of

SWSM.

In practice, approach using SWSM can be applied to the web service development process

in various environments. As members of our team are working with companies in the top

global Fortune 500 dealing with large-scale web services for financial services and telecom-

munication industries, the outlined approach has started to gain adoption in equity research

department of the investment bank and initially has been applied successfully.

Chapter 5

Model driven web testing

framework with DSL

5.1 Motivation

As more and more systems move to the cloud, the importance of web applications have

increased. Web applications need more strict requirements in order to support higher avail-

ability. The techniques in quality assurance of these applications hence become essential,

therefore the role of testing for web application becomes more significant. The reasons for

validating the correctness of web application in model driven development include:

I Web-based applications and pages are error-prone: Web-based applications are often

more fragmented due to its nature of having many components. These components are

developed by humans and susceptible to errors. In some situations, web application

specifications need to support complex business logic which makes it hard to specify

correctly from the beginning. The need to support multiple concurrent access in the

nature of web application also makes the implementation more error-prone.

I Web applications need high availability: More strict up-time criteria are demanded in

web applications nowadays, this requires the specification to be followed more strictly,

77

78 CHAPTER 5. MODEL DRIVEN WEB TESTING FRAMEWORK WITH DSL

hence testing needs to be more intensive. Web-based applications and pages provide a

bridge of sharing applications and information between various locations. Changes to

one system may affect many other downstream ones. This leads to the need of testing

to be performed at many levels to assure the system is precise and resource-efficient.

I The process of test development is time consuming: Web applications and pages are

usually built based on a variety of technologies. Developing test cases for this type of

system often needs repetitive work, not to mention the execution of regression testing,

thus more automation is needed in this process in order to reduce time-to-market.

Model-driven test development can be applied in order to obtain better automation of software

testing. This approach can reduce the repetitive cycle of test development and execution. In

the web domain, the challenge however remains in the creation of models and the complexity

of configuring, launching, and testing big number of valid configuration and testing cases. This

chapter proposes a solution towards this challenge with an approach using Domain Specific

Language for model driven testing of web application. Our techniques are based on building

abstractions of web pages and modeling state-machine-based test behavior using domain

specific language. This methodology and techniques aim at helping software developers as

well as testers to become more productive and reduce the time-to-market, while maintaining

high standards of web application quality. This section also outlines the theoretical ideas and

analysis from lessons learned during the real industry implementation of the framework.

5.2 Model based testing

We analyze model-based testing from the model driven development perspective. Model-

based testing can be considered as one component in model-based design. In the computer

world, it is used for designing and optionally also executing artifacts to perform software

testing or system testing. Models can be used to represent the desired behavior of a System

Under Test (SUT), or to represent testing strategies and a test environment.

5.2. MODEL BASED TESTING 79

A model describing a SUT is usually an abstract, partial presentation of the SUT’s desired

behavior. Test cases derived from such a model are functional tests on the same level of

abstraction as the model. These test cases are collectively known as an abstract test suite.

An abstract test suite cannot be directly executed against an SUT because the suite is

on the different level of abstraction. An executable test suite needs to be derived from a

corresponding abstract test suite. The executable test suite can communicate directly with

the system under test. This is achieved by mapping the abstract test cases to concrete

test cases suitable for execution. In some model-based testing environments, models contain

enough information to generate executable test suites directly. In others, elements in the

abstract test suite must be mapped to specific statements or method calls in the software to

create a concrete test suite.

Tests can be derived from models in different ways. Because testing is usually experimen-

tal and based on heuristics, there is no known single best approach for test derivation. It

is common to consolidate all test derivation related parameters into a package that is often

known as ”test requirements”, ”test purpose” or even ”use cases”. This package can contain

information about those parts of a model that should be focused on, or the conditions for

finishing testing (test stopping criteria) [76].

Currently, testing usually comprises between 30% and 70% of all software development

projects [58]. Hence, a good testing methodology and toolset will enable software developers

and testers to become more productive and reduce the time-to-market, while maintaining

high standards of software quality.

The purpose of the model-driven testing in the web domain is to provide a framework

that helps developers to perform the following tasks:

I Create models of web applications or pages: This enable developers to create the ab-

straction of the components. Developers can later use the model created as a skeleton

for the test project. In this way, the test plan can be reviewed and simulated to discover

problems in the implementation or model before the actual code is ready for test.

80 CHAPTER 5. MODEL DRIVEN WEB TESTING FRAMEWORK WITH DSL

I Model behaviors: The behaviors and interactions of the web application and pages

are modeled using the modeling language to later support test case generation. These

behavior models simulate the features of the web application.

I Generate test cases for the web components: The tools generate tests using data from

the component (page) models and the behavior models. It is often a good practice to

have the test cases that cover all required test specifications.

I Test execution: The generated tests can be later either manually or automatically

executed by some triggers. This test execution automatically compares the observed

results with the results predicted by the model. Thus, developers can walk through an

unit test case to examine each test interaction and identify where the test failed.

In the each phase (task) of the process, there are sill challenges need to be resolved in order

to achieve a more efficient process in model-based testing of web applications. In the next

section, we analyze some of the challenges in this area.

5.3 Challenges

The process of web application development starts with concepts, mock-ups and requirements.

After that, following many iterations, more and more mature prototypes are gradually created

towards a working solution. Testing needs to be performed at every iteration in this process.

This nature makes testing web applications a routine task from designing the tests to tests

execution and report. When maintaining such systems, any additional change to the system

also requires the execution of a complete regression test. Therefore, there is a need to build

a testing platform that can automate this testing process from development to execution.

There exist many model-based testing approaches and tools which vary significantly in

their specific designs, testing target, tool support, and evaluation strategies. In the web

domain, there is a noticeable increase in the number of model-driven testing techniques in

recent years. The challenge in this area is firstly to have a good design of a modeling language

5.4. APPROACH ON USING DSL FOR WEB PAGE MODELING 81

that used to represent the system. Secondly, there is the challenge for effectively defining the

process of test case generation and evaluation. There are several aspects of a model-driven

testing technique that need to be considered:

I Effective Modeling Language: The modeling language used to model the system for

testing, as a domain specific language, should bring up good solution on the web domain

while being easy to read and to understand. This language needs to be effective and

designed with agility support to ensure that models can adapt to changes seamlessly.

I Automation: This is an important aspect in model driven development, it is the ability

to generate final artifacts from high-level specifications. Automation also enable test

case generation and execution mechanism to perform easily without manual refinements.

I Tool Support: The tool chain and platform support is essential for any approach. This

allows the integration with other parts of the development process. This means that the

platform should provide tools for editing, debugging, compiling and transformation. It

should also be able to be integrated together with other languages and platforms without

a lot of effort.

Although there exist several techniques with different designs, they usually don’t provide

adequate results in every applicable domain [58]. There are also challenges in other aspects

of the modeling process: on one hand, the model has to be written in a notation powerful

enough to describe any elements of the web page. On the other hand, it has to be abstract

enough to ease the process of model creation and promote software reuse.

In the next section we introduce our approach and analyze how these challenges can be

addressed using our designed DSL for model-bases testing of web applications.

5.4 Approach on using DSL for web page modeling

Our approach is based on the principle of raising the level of abstraction by modeling web

pages and describe their behaviors using the theory of State Machines. In order to check the

82 CHAPTER 5. MODEL DRIVEN WEB TESTING FRAMEWORK WITH DSL

conformance between the application and the model, the automated process for generating

test cases from the model is used. Our approach uses DSL to develop the testing model

together with the functional web page model development. We aim at introducing a DSL

and the tool set that fit for this purpose.

In this approach, designing a new DSL with the support for modeling at a good abstraction

level is crucial. This DSL can later be used for automatic generation of the model artifacts and

code that implement the services. There are three essential requirements to the DSL design

that we aim to achieve during the creation of a DSL to ensure the quality of the language.

Firstly, the language needs to be effective, while being easy to read and to understand.

Secondly, as the modeling language can raise the level of abstraction away from programming

code by directly using domain concepts, automation needs to be achieved to generate final

artifacts from these high-level specifications. This automatic transformation at the same time

has to fit the requirements of the specific domain. Finally, the DSL has to be able to provide

support via tools and platforms. The DSL needs to be able to integrate with other parts

of the development process. This means that the language is used for editing, debugging,

compiling and transformation. It should also be able to be integrated together with other

languages and platforms without a lot of effort.

The starting point for a DSL for web page modeling is an abstraction of a web page. This

abstraction model comprises the effective elements that are involved in the testing process

and, optionally, the behavior of the transitions to be simulated and validated during the test

execution. The following diagram (Fig. 5.1) depicts the simplified syntax rules of a page

model:

5.4. APPROACH ON USING DSL FOR WEB PAGE MODELING 83

Figure 5.1: Simplified syntax of a Page in WTML

The semantics of the language expressions starts with the page definition identified by its

name (ID). In order to have package information for code generation, a package name can be

optionally declared. Base URL is then assigned to each page. This gives us the possibility for

customization of the parameters for the URL. Main information for a page are the elements.

A page can have arbitrary number of elements. In order to to query elements in a web page,

we identified it with the XPath expression. The syntax for an element can be seen as in Fig.

5.2.

84 CHAPTER 5. MODEL DRIVEN WEB TESTING FRAMEWORK WITH DSL

Figure 5.2: Syntax of an Element model in a page

Each element starts with the keyword element followed by its name (ID). We then use a

string literal to store its XPath expression. An element can optionally be clickable, this can

be declared by the keyword clickable.

We then define the parameters of the page. A page can have any number of parameters.

Each parameter starts with the keyword param as in Fig. 5.3.

Figure 5.3: Syntax of parameters in a page

Another type of parameter can be seen in the next block in a page as in Fig. 5.1 is the set

of parameters to later be used in the code generation process to repeatedly test against. This

is defined by the keyword iterateParam. The parameters for iteration are comma-separated.

This makes the focus on regression testing easy, since repetitive tests using different parameter

configurations can be achieved with this declaration.

The last components are the actions and transitions. These are the optional components

to define the actions and transition between pages. This can be used later when we want to

use state machine to model the test cycle of the whole web platform. This is described in the

next section.

To demonstrate the simplicity of the model creation process in this approach, we can see

how simple it it to write a textual model of a web component from a web application in a

case study.

page RatingPage{

baseUrl "http://testhost/www/test"

element content "//*[@id=’content’]"

5.5. MODELING OF PAGE BEHAVIOR USING STATE MACHINE 85

element user "//*[@id=’user’]"

element submit "//*[@id=’submit’]" clickable

iterateParam itemID "12,13,14,15,16"

param action "add"

}

This eight-line-of-code model at this abstraction level allows us to be very flexible on

building the elements and logic needed for the test. At this level code reused is heavily

promoted. This can be reused on many pages yet enables us to generate large amount of

codes for test automation. Our benchmark pointed out that 90 lines of concise Java code were

generated from this. This means we saved a significant amount of time that was otherwise

supposed to be spent on test development. Overall, even if we take into account the time

spent on developing and learning a new DSL such as WTML, this can still potentially provide

a good productivity gain in test development.

5.5 Modeling of page behavior using state machine

In order to model the behavior of the web page, we use state machine to model the actions and

transitions between states of the page. With lessons learned from the successful application of

state machine in different fields such as: definition of programming and modeling languages,

modeling e-commerce and web services, we design a behavior model that is simple enough

to model the states and transactions associated with various types of events but yet abstract

enough to be able to address problems in a wide range of web page modeling challenges.

Overall, the behavior model can be depicted as:

Figure 5.4: Model of behavior of a page

86 CHAPTER 5. MODEL DRIVEN WEB TESTING FRAMEWORK WITH DSL

Our behavior model consists of a set of commands that users can perform on the page, a

set of events that can happen on the page, and a set of states that can be activated from the

set of input events. This allows us to describe the actions on the page that trigger different

events, the set of commands that users are able to interact with on the page and the possible

state transitions.

In each state, we define the actions that can be performed within the state scope, the

transitions that can be triggered from the current state:

Figure 5.5: State model of a page

The state model starts with the keyword state followed by its name (ID). Each state can

consist of one or many actions and transitions. The state model does not have to know about

how the actions are defined or implemented, it just have to know about the set of command

IDs in each action. This way, we separate the state from other implementation aspects of the

page, making it possible to abstract away the specific details and making code reuse more

easy.

The next component of the behavior model are events. Events can be simply modeled as:

Figure 5.6: Events in a page model

In this model, each event is defined by its name (ID). We solve the modeling and triggering

of events by creating a model that can describe how the event could be generated. This is

done by having the command ID (the second ID block) followed after the event name (defined

by the first ID block). This command is executed in order for the event to be fired. Finally,

an assertion string could also be added in case we want to assert the outcome of a command

5.5. MODELING OF PAGE BEHAVIOR USING STATE MACHINE 87

and fire the event accordingly.

Following the page model from previous section, we define the model of a command which

interact with the elements on the page as following:

Figure 5.7: Model of commands in each state

The command is defined by its name (ID), followed by the literal “:” and the type of

action that the command is executed. Example action type of the page could be TYPE,

CLICK, SUBMIT etc. These options are defined as an enum of type Act. Optionally we

can define the location where the command is aimed at by the keyword at followed by the

element ID that was defined on the page as described on the previous section.

The last block on a state definition are transitions. Transitions are defined inside each

state as we can see previously on the model of state. Since transitions are defined for each

state, we just need to supply the event ID and the target state ID that this event triggers to.

Figure 5.8: Model of transitions defined in each state

The first block is the event ID followed by the symbol “->” and the new state ID that

this event triggered to. Transitions complete the model of states that a page can be in.

To implement the transformation from state machine to programming codes, one approach

is to utilize the theory from triple graph grammars. In object oriented languages, we can

realize states as classes, transitions then can be described as methods inside these classes.

Given the syntax graph GS of the models, code generation can be done via the transformation

from GS to the syntax graph GT of the target programming language. The mapping between

both graphs via a correspondence graph GC forms the triple graph grammar.

88 CHAPTER 5. MODEL DRIVEN WEB TESTING FRAMEWORK WITH DSL

There have been attempts to build the syntax graph of Java as the target programming

language in various ways [71]. With the help of Java Development Tools (JDT) inside Eclipse

IDE, we can achieve this by using the given API from the plugin. There have also been work

to construct type graph model for Java programs as seen in [66]. Graph rules and grammars

allow us to define the transformation as seen on Chapter 4. It is important to have the

mapping from the syntax graph of the state machine model to the syntax graph of Java code.

Let us look at a code example in Java for a sample state with the transition methods:

...

public class HomeState implements State {

@Transition(target = FormSubmitedState.class)

public void submitForm(TestPageModel testPage) {

testPage.typeUserName();

testPage.typePassword();

testPage.clickSubmitButton();

}

@Transition(target = ContextMenuState.class)

public void gotoContextMenu(TestPageModel testPage) {

testpage.clickContextMenuButton();

}

}

In this example, the State interface is a marker interface to indicate a state object. The

@Transition annotation defines the target state and the transition conditions. Each state

is defined by a class, the transition between states can be described by the methods inside

that class. Within the transition method, we can execute actions on the page hence make it

possible for the test cases to be executed. This can be represented as a syntax graph as in

Fig. 5.9.

With this representation and the syntax graph of the models, we have both source and

5.5. MODELING OF PAGE BEHAVIOR USING STATE MACHINE 89

Figure 5.9: Represented syntax graph of the sample source code

target models represented by graphs. Hence, we can apply graph transformation to build the

connection between models and codes. We need to derive the mappings between GS and GT

that can provide the elements in which will be needed for defining the transformation. In this

sample, we define the mapping of the state transition with the associated Java code. We can

collect the necessary attributes that need to be translated based on the attributes from the

graph. The mapping between a state transition and Java codes can be seen as in Fig. 5.10.

In this mapping, directly mapped elements are denoted by dashed lines. The target

state “ContextMenuState” and other non-related elements from all graphs are omitted for

simplicity. The reference from a transition to its target can be derived in the Java syntax

graph by graph pattern matching without attribute comparison. In this case, the node

SimpleType with name = “ContextMenuState” can be connected to TypeDeclaration by an

additional edge.

As proven in section 1, chapter 4, with triple graph grammar we can define rules that can

support the adding, removing of states and their transitions, which can be used to propagate

90 CHAPTER 5. MODEL DRIVEN WEB TESTING FRAMEWORK WITH DSL

Figure 5.10: Mapping a sample state transition between programming language (left) and
WTML (right)

changes from GS to GT . Recall from Def. 4.: A typed graph rule p = L
l← K

r→ R consists

of three typed graphs L: the left-hand side graph, K: the gluing graph, R: the right-hand side

graph, and two injective typed graph morphisms l and r.

In theory, if a rule p is applicable to a graph G via a morphism m : L → G, called match,

the transformation G
p⇒ H is defined by two pushouts or double-pushout (DPO):

L
l← K

r→ R

m ↓ k ↓ ↓ m∗

G ←
l∗

D →
r∗

H

In our case, a sample rule for adding of transition between two states can be seen as in

Fig. 5.11. In this scenario, we can see that in each component we have elements that origin

from GS , GT and the corresponding graph. The LHS of the rule represents the graph having

two states in which the transition between them will be added. The RHS of the rule shows

5.5. MODELING OF PAGE BEHAVIOR USING STATE MACHINE 91

Figure 5.11: A rule for adding transition between two states

92 CHAPTER 5. MODEL DRIVEN WEB TESTING FRAMEWORK WITH DSL

the complete graph after a new transition from one state to another state was added. This

approach preserves the semantics of the state machine model, provides facility to support

incremental updates and change propagation. The drawback of this is the complexity of the

syntax graph representing the generated code that makes it hard to derive the complete set

of rules in the complex scenario. In those situations, the approach of using unidirectional

transformation by applying templating techniques for code generation can be a solution.

This technique is useful since model navigation manipulation is performed by a templating

language in an imperative way. This allows more logics to be easily applied to the construction

and provides faster deliver time when dealing with complex syntax structures.

Overall, representing the page behavior using finite state machine in this case enables the

possibility for this approach to be applied to a wide range of web applications and pages.

With this level of model abstraction, we can perform both transformations based on TGG or

on imperative methods. We can reach the appropriate compromise between generality and

expressive power which enhances code reuse and better reaction to changes. This makes the

integration with agile development easier.

5.6 Automation of test case generation with WTML

According to the Institute of Electrical and Electronics Engineers (IEEE) standards, a test

case is“a documentation specifying inputs, predicted results, and a set of execution conditions

for a test item” [68]. As the definition states, there are three required elements in a test case;

test inputs, predicted results and conditions of execution. IEEE’s definition also clarifies the

difference between test data and test case.

In order to generate test cases, test data must first be generated. Test data can be gener-

ated using different sources that describe the system, system’s behavior or how the system will

be used, such as source code, system specifications, system requirements, business scenarios

and use cases. Our approach utilizes specification-based method for test case generation.

In this approach, we focus on the verification of the web system against the design spec-

5.6. AUTOMATION OF TEST CASE GENERATION WITH WTML 93

ification that was available on the test models. This comprises of abstract information on

the available operations and its parameters. Information from the specifications allows gen-

eration of test cases for boundary-value analysis, equivalence class testing or random testing

[59].

In WTML platform, in order to generate the tests, we first need to generate the model

implementation of the page to be tested against. A sample on how the page in Java was

generated is as bellow:

...

@Page

@ComponentScan(basePackages={"net.webmodeling.testing"})

public class FirstPage {

private final static String baseUrl="http://www.testpage.org/";

private final static String iterateParamName="value";

@Autowired

private AutoBrowser browser;

@Value("#{’AAA,BBB,CCC’.split(’,’)}")

private List<String> iterateParams;

private static final By rating =

By.xpath("//*[@id=’viewcomments_click’]");

public String getRating() {

return browser.getTextValue(rating);

}

public void clickOnRating() {

browser.clickOn(rating);

94 CHAPTER 5. MODEL DRIVEN WEB TESTING FRAMEWORK WITH DSL

}

...

From the web page model syntax as seen on previous section, iterateParam is used when

we want to iterate over a set of input parameters when testing a page. This becomes handy

especially on the development of regression tests.

Another important aspect is @Page annotation, we introduced this annotation to inject

special configuration to a page. This allows us to use Spring framework for processing pre-

and post- Java bean creation. Testing data is injected directly into the page from the test

models by using Spring @Value annotation. All setters and getters are also automatically

generated from elements in the models.

For the generation of test cases, we define the following algorithm to generate tests from

the models:

1. For all commands in behavior model do:

If command type is one of [TYPE, CLICK, GET, MOUSEMOVE, etc] that was pre-

defined in our action type, generate a method to perform this action by calling utility

methods from our implemented AutoBrowser model.

2. For all events in behavior model do:

Generate a boolean method is<EventName> to test the equality between the outcome

of command in the event (by calling the method that was generated in the previous step)

and the assertion string in that event.

3. Finally, for all states in behavior model do:

Generate a test<StateName> method.

Within that method, execute all actions defined in the state.

For all transitions in the state model, test the assertion for output of actions in the

input event and the assertion string that defined for that event.

5.7. INTEGRATION WITH OTHER PLATFORM 95

This algorithm generates the tests that were modeled using the transitions between different

states of the state machine. At each level, all the assertions are performed in order to test

the correctness of the behavior against test data.

This approach also provides a solution for automating regression testing. To support

regression tests, we can reuse the existing test cases from the previous system tests. Regression

testing is performed when additions or modifications are made to an existing system. Since

this could be run and generated automatically, regression testing could be performed anytime

using WTML platform when there is a requirement.

5.7 Integration with other platform

One of the essential features of the modeling tool is the ability to integrate with other plat-

forms. Selenium is a suite of tools to automate web browsers across many environments.

We design WTML such that it can utilize Selenium to provide automatic simulation with

browsers. WTML raises the level of abstraction by modeling the elements and actions on the

web page. This model will then be used as input to generate code for modeling page accord-

ingly. We use Java as the target language. Using Spring framework dependency injection

we then can integrate layered architecture in the code generated. Configurations are injected

into JUnit tests via Spring annotation.

To support WTML platform, we created our defined annotations in Java, this Page an-

notation consists of Configuration that can be later injected and directives to load the appli-

cation context. We also defined our browser implementation in order to integrate with web

driver from Selenium and provide automatic processing. In general this browser is defined in

the following way:

...

@Component

public class AutoBrowser {

private static final int TIME_OUT_SEC = 10;

96 CHAPTER 5. MODEL DRIVEN WEB TESTING FRAMEWORK WITH DSL

private static final Logger LOGGER = LoggerFactory.getLogger(AutoBrowser.class);

@Autowired

private WebDriver webDriver;

public void clickOn(By location) {

webDriver.findElement(location).click();

}

public WebElement findElement(By location) {

return webDriver.findElement(location);

}

public void goToPage(String url) {

webDriver.get(url);

}

public void goToUrlWithParam(String baseUrl, Map<String,String> params) {

final StringBuilder pageUrl = new StringBuilder();

pageUrl.append(baseUrl + "?");

for (Map.Entry<String, String> entry : params.entrySet()) {

pageUrl.append(entry.getKey());

pageUrl.append("=");

pageUrl.append(entry.getValue());

pageUrl.append("&");

}

goToPage(pageUrl.toString());

}

public void goToUrlWithSingleParam(String baseUrl, String paramName,

String paramValue) {

final StringBuilder pageUrl = new StringBuilder();

5.7. INTEGRATION WITH OTHER PLATFORM 97

pageUrl.append(baseUrl + "?");

pageUrl.append(paramName);

pageUrl.append("=");

pageUrl.append(paramValue);

goToPage(pageUrl.toString());

}

@PreDestroy

private void destroy() {

webDriver.quit();

}

public int getNumberOfElements(By location) {

return webDriver.findElements(location).size();

}

public String getTextValue(By location) {

return webDriver.findElement(location).getText();

}

public String getAttributeValue(By location, String attributeName) {

return webDriver.findElement(location).getAttribute(attributeName);

}

public String getCssValue(By location, String propertyName) {

return webDriver.findElement(location).getCssValue(propertyName);

}

...

After the configuration of Selenium web driver is defined and loaded, we inject web driver

into our AutoBrowser, this way we keep the Selenium code separated from our browser

logic. This allows us to only focus on the requirements and logics of code generation and

98 CHAPTER 5. MODEL DRIVEN WEB TESTING FRAMEWORK WITH DSL

automation test runners. Finally, we define all necessary methods for our automated browser

such as getNumberOfElements from a given XPath address inside any page.

With the integration of Selenium, we are able to perform automatic browser actions. This

makes it possible to write automated tests for a web application directly in WTML, which

allows for better integration in existing unit test frameworks.

5.8 Related work

In the UML world, there have been effort on proposing techniques to automatically generate

and execute test cases starting from a UML model of the Web Application by Ricca et al.

[67]. This approach requires a manual work in several phases. There is manual work on

the creation of models for testing and in the test refinement phase. Our approach has an

advantage of fully automation in test case generation using the abstract web model and its

action.

Cavarra et al. [12] presented the approach on test case generation utilizing UML. The

authors’ approach is based on extending UML using UML profiling capabilities. In these

approaches, two profiles are created for different purposes. The first one is used to model

the system under test by extending class diagrams, object diagrams, and state diagrams to

support testing properties. The other profile is used to capture the test directives which are

composed of the object diagrams and state diagrams. A transformation is then used to verify

and produce scripts that can later be used to generate test cases.

Yuan et al. [79] present an automatic approach to generate test cases of a given business

process of a web service. Business Process Execution Language and UML activity diagrams

are used to define the process under test. The UML Testing Profile standard and the concepts

from test control notations are used to construct the test case model. In this approach, the

authors defined a framework for building concise test models that can be used to generate

automatically test cases by applying the Model-Driven Architecture approach and possibly

conformed transformation techniques. The generated test model can be tailored to target

5.8. RELATED WORK 99

many test types such as unit testing, component testing, integration testing, or system testing.

A model-based testing approach is presented by Bouquet et al. in [10]. Their approach

is based on a combination of class, object, and state diagrams which can be found in UML

and OCL expressions to automatically generate test cases from these models. Test cases are

generated using a test generator that takes these diagrams and constraints as input. The

authors discuss the need to alter the semantics of OCL to allow OCL expressions to have a

side effect on the system state. In an overview of model driven testing techniques from the

work of Mussa et al. [58], the authors pointed out the shortcomings of this approach that

it violates OCL semantics, which may hinder the acceptance of the approach by the UML

community. One possible solution is to use an action language to express expressions that

change the state of the system.

There has been also a direct attempt to use UML activity diagrams to generate test

cases for Java programs in the work of Mingsong et al. [56]. The approach is based on the

generation of test cases then compares the running traces with the activity diagram to reduce

the test case set. The disadvantage of this approach is the limitation to the UML activity

diagram that makes it impossible to obtain concurrency or loops for the tests.

Deutsch et al. [19] introduced an approach that models data-driven web applications. This

approach used Abstract State Machine to model the transitions between pages, determined by

the input provided to the application. The structure and contents of web pages, as well as the

actions to be taken, are determined dynamically by querying the underlying database as well

as the state and inputs. The properties to be verified concern the sequences of events (inputs,

states, and actions) resulting from the interaction, and are expressed in linear or branching-

time temporal logic. This approach has an advantage of wide-range error detection. However,

this leads to complex models that can made the integration with development methodologies

impossible.

100 CHAPTER 5. MODEL DRIVEN WEB TESTING FRAMEWORK WITH DSL

5.9 Summary

With the fast-changing aspect of recent web-based systems, techniques to assure the quality

of these systems play a very important role in the development process. In this chapter, we

outlined the theoretical ideas and analysis from lessons learned during the real implemen-

tation of the web testing framework. The approach introduced in our research provides a

methodology for using a domain specific language in model-driven testing of web applications.

This is the solution to the challenge in reducing overall test development time by supporting

the reuse of common testing components.

Adopting WTML in combination with the MDA initiative allows early testing of model-

driven systems and eases the sharing of models between the system developers and the system

testers. This provides a more complete methodology and framework for modeling and test

generation in the model driven development of web application testing paradigm.

WTML was designed at the appropriate abstraction level to provide better model read-

ability. This is aimed at reducing test maintenance costs, since changes happen at the model

level and are captured by the test models. When there are changes, we only have to regen-

erate the tests from the test models and all test cases are updated to the new specifications.

This framework also enhances team communication because the model, test cases provide a

clear, unambiguous, and unified view of both the system under test and the test. This tech-

nique decouples the testing logic from the actual test implementation. This makes the test

architecture more robust and scalable. The shortcomings of this approach include a learning

curve needed to adopt a new modeling language and the limitation of test behaviors based

only on the possible elements modeled in a page abstraction.

Domain specific language such as WTML can be applied to automation testing of web-

based applications and pages. In practice, this approach has initially gained adoption in

testing of large web systems supporting financial metrics data in the financial industry where

the author had the chance to work with.

Chapter 6

Conclusions

The overall goal of the research described in this dissertation is to provide solutions to the

challenges in model driven development of software systems in recent emerging domain. The

key contributions include:

1. We analyzed current approaches to model transformation, provided an overview of the

approaches and their use cases in practice. We outlined the common weaknesses and

advantages of these approaches. This information is useful for the decision-making

when dealing with model transformation requirements. We made an attempt to build

a guideline to agile development of PIMs in MDD with a case study. The work of the

author on agile development of PIMs has been cited as references in US Patent No.

8516435 and No. 8495559.

2. In response to the challenges in recent emerging fields, we developed a framework for

development of web services using domain specific language in the MDD paradigm. We

introduced SWSM - a DSL for modeling web services that support automation with

code generation. This technique addresses the problem in web service development of

software-as-service systems that often require the support for tenant-specific architec-

ture. This is a novel approach that is a solution to the challenge in applying model

driven development within the web domain.

101

102 CHAPTER 6. CONCLUSIONS

3. We presented an approach for model driven testing of web applications that focuses

on automation and regression testing. We implemented and introduced WTML as a

language for web pages modeling and automatic test cases generations. Our techniques

are based on building abstractions of web pages and modeling state-machine-based test

behavior. This approach is the answer to the recent challenges in the quality assurance

of the fast-changing web systems.

The practical benefit of the research is to reduce human effort and potential errors by in-

troducing techniques and approaches in order to automate the model driven development

process in a specific domain. This is done by providing better software reuse, higher devel-

opment speed and better cost-effectiveness via the utilization of the DSL for modeling and

code generation. The application in the finance industry, where the author has a chance to

work with, have demonstrated the objectives of the approach to reduce the time-to-market

and maintain high standards of the application by identifying in advance possible faults with

automated test case generation and execution.

To conclude, as more cloud based and software-as-service systems gain adoption recently,

these systems require different approach to web service development and deployment with

a more tenant-specific architecture. Current methods often focus on the usage of a generic

modeling language such as UML, which leads to complex class diagrams and obstacle in

achieving automation. The presented techniques address the challenge in the development of

such systems by providing appropriate abstraction level to separate the logical models from

its technical aspects. The contribution of the thesis is the answer to the lack of concrete

methods and toolset in applying model driven development to specific areas such as web

application testing and services. As members of our team are working with companies in the

top global Fortune 500 dealing with large-scale web services for financial services, the outlined

DSL approach has started to gain adoption and initially has been applied successfully.

The future work could be the continuation on objective improvements and further prac-

tical appliance of such techniques in other fields such as mobile model driven development

103

and every day model driven development processes.

104 CHAPTER 6. CONCLUSIONS

Chapter 7

Relevant publications of the author

Publications in impacted Journals
Author’s

contribution (%)

V. Nguyen, X. Qafmolla, K. Richta. Domain Specific Language

Approach on Model-driven Development of Web Services, Journal of

applied science, Acta Polytechnica Hungarica. Vol. 11, No. 8, 2014.

ISSN 1785-8860.

80

105

106 CHAPTER 7. RELEVANT PUBLICATIONS OF THE AUTHOR

Publications in reviewed Journals
Author’s

contribution (%)

V. Nguyen. Model Driven Testing of Web Applications using Domain

Specific Language, International Journal of Advanced Computer

Science and Applications, Vol. 6, No. 1, 2015. ISSN 2156-5570.

100

V. Nguyen, X. Qafmolla. Model Transformation in Web Engineering

and Automated Model Driven Development. In: International Journal

of Modeling and Optimization. Vol. 1, no. 1, 2011, p. 7-13. ISSN

2010-3697.

The paper has been cited in:

I Rahmouni, M’hamed, and Samir Mbarki. MDA-Based ATL

Transformation to Generate MVC 2 Web Models, International Journal

of Computer Science and Information Technology, Vol. 3, No. 4, 2011,

ISSN 0975-3826.

I Arvidsson, Daniel, and Fredrik Persson. Evaluating a Design Pattern

for Black-Box Testing in Executable UML, Technical Report,

Department of Computer Science and Engineering, University of

Gothenburg, 2012.

60

107

Publications indexed by ISI/Scopus
Author’s

contribution (%)

V. Nguyen, X. Qafmolla. On Instance-model Querying and

Meta-model Transformation. In: Proceedings of the International

Conference on Software Engineering. Hong Kong: The International

Association of Engineers IAENG, 2010, p. 710-715. ISSN 2078-0958.

ISBN 978-988-17012-8-2.

77

X. Qafmolla,V. Nguyen. Automation of Web Services Development

Using Model Driven Techniques. In: Proceedings of The 2nd

International Conference on Computer and Automation Engineering

(ICCAE 2010). Singapore: Institute of Electronics Engineers, Inc.,

2010, p. 190-194. ISBN 978-1-4244-5585-0.

The paper has been cited in:

I Simon, Balazs, Balazs Goldschmidt, and Karoly Kondorosi. “A

Metamodel for the Web Services Standards.” Journal of grid

computing, Vol. 11, no. 4 (2013): 735-752.

I Chih-Min, L. O., and Sun-Jen Huang. “Applying Model-Driven

Approach to Building Rapid Distributed Data Services.” IEICE

TRANSACTIONS on Information and Systems, Vol. 95, no. 12 (2012):

2796-2809.

I Mukhtar, Mohammed Abdalla Osman, A. Azween, and Alan G.

Downe. “A Proposed Compiler to Integrate Model Driven Architecture

with Web Services–Road Map.” International Journal of Computer

Applications, Vol. 15, no. 7 (2011): 1-7.

I Zohrevand, Z.; Bibalan, Y.M.; Ramsin, R. “Towards a Framework for

the Application of Model-Driven Development in Situational Method

Engineering”, Software Engineering Conference (APSEC), 2011 18th

Asia Pacific, pp. 122 - 129. ISSN 1530-1362.

50

108 CHAPTER 7. RELEVANT PUBLICATIONS OF THE AUTHOR

I Mukhtar, M.A.O.; Hassan, M.F.B.; Bin Jaafar, J. “Optimizing method

to provide model transformation of model-driven architecture as

web-based services”, Computer & Information Science (ICCIS), 2012

International Conference on, On page(s): 874 - 879 Volume: 2, 12-14

June 2012

I Tavares, Nı́rondes AC, and Samyr Vale. “A Model Driven Approach for

the Development of Semantic RESTful Web Services.” In Proceedings

of International Conference on Information Integration and Web-based

Applications & Services, p. 290. ACM, 2013.

I Zohrevand, Zahra, Yusef Mehrdad Bibalan, and Raman Ramsin.

“Towards a framework for the application of model-driven development

in situational method engineering.” In Software Engineering Conference

(APSEC), 2011 18th Asia Pacific, pp. 122-129. IEEE, 2011.

109

Other publications
Author’s

contribution (%)

V. Nguyen, X. Qafmolla. Towards automated model driven

development with model transformation and domain specific

languages, In: Proceedings of the International Conference on

Computer and Software Engineering, Kuala Lumpur, 2012, pp.

128-134. ISBN 978-93-82242-22-2.

50

V. Nguyen, X. Qafmolla. On Model Transformation Methods and

Testing of Model Transformation to Support Automated Model Driven

Development. In: Proceedings of the 3rd International Conference on

Computer and Automation Engineering. Singapore: Institute of

Electronics Engineers, Inc., 2011, vol. 1, p. 171-175. ISBN

978-1-4244-9462-0.

70

V. Nguyen, X. Qafmolla. Agile Development of Platform Independent

Model in Model Driven Architecture. In: Proceedings of the Third

International Conference on Information and Computing. IEEE, 2010,

p. 344-347. ISBN 978-1-4244-7081-5.

The paper has been cited in:

I Matinnejad, R. “Agile Model Driven Development: An Intelligent

Compromise”, Software Engineering Research, Management and

Applications (SERA), 2011 9th International Conference on, pp. 197 -

202. ISBN 978-1-4577-1028-5.

I Botturi, G.; Ebeid, E.; Fummi, F.; Quaglia, D. “Model-driven design for

the development of multi-platform smartphone applications”,

Specification & Design Languages (FDL), Forum on, pp. 1 - 8, 2013.

ISSN 1636-9874.

50

110 CHAPTER 7. RELEVANT PUBLICATIONS OF THE AUTHOR

Cited by US Patents:

I Akkiraju, Rama Kalyani T. ; Bhandar, Manisha Dattatraya ; Dhoolia,

Pankaj ; Fu, Shiwa ; Ghosh, Nilay ; Mitra, Tilak ; Mohan, Rakesh ;

Nigam, Anil ; Saha, Dipankar ; Zhao, Wei , “System and method for

generating implementation artifacts for contextually-aware business

applications”, Patent No. 8516435.

I Akkiraju, Rama Kalyani T. ; Mitra, Tilak ; Thulasiram, Usha ,

“Extracting platform independent models from composite applications”,

Patent No. 8495559.

X. Qafmolla, V. Nguyen. Model-driven Practices in Web Engineering.

In: Objekty 2009. Hradec Králové: Univerzita Hradec Králové, 2009,

vol. 1, p. 185-195. ISBN 978-80-7435-009-2.

50

V. Nguyen, X. Qafmolla. Metamodel Transformation with Kermeta.

In: Objekty 2008. Žilina: Žilinská univerzita v Žiline, Fakulta riadenia

a informatiky, 2008, p. 109-116. ISBN 978-80-8070-927-3.

50

111

Less relevant publications

Publications in reviewed journals
Author’s

contribution (%)

X. Qafmolla, V. Nguyen, K. Richta. Metamodel-based Generation of

Web Content Management Systems. International Journal on

Information Technologies and Security. 2014, 2014(4), 17-30. ISSN

1313-8251

10

Other publications

X. Qafmolla, V. Nguyen. Semiautomatic Generation of Content-based

Web Applications: An Evaluation of Supporting Tools. Assoc. Prof.

Dr. Yurdagül Ünal, Hacettepe University, Department of Information

Management.

20

V. Nguyen, X. Qafmolla. A Practical Approach on Implementing

Scrum in Mid-size Companies. In: Objekty 2009. Hradec Králové:

Univerzita Hradec Králové, 2009, vol. 1, p. 293-304. ISBN

978-80-7435-009-2.

50

X. Qafmolla, V. Nguyen. A Two-Way Meta-Modeling Approach in

Web Engineering. In: Procedia Information Technology and Computer

Science. Istanbul, Bahçeşehir Üniversitesi, 2012, ISSN 2147-5105.

50

112 CHAPTER 7. RELEVANT PUBLICATIONS OF THE AUTHOR

Bibliography

[1] Aditya Agrawal, Gabor Karsai, and Feng Shi. Graph transformations on domain-specific

models. Technical report, Institute for Software Integrated Systems, Vanderbilt Univer-

sity, 2003.

[2] D. H. Akehurst and B. Bordbar. On querying UML data models with OCL. In UML

2001 - The Unified Modeling Language. Modeling Languages, Concepts, and Tools. 4th

International Conference, pages 91–103. Springer, 2001.

[3] Gil Allouche. Top 5 latest trends in cloud computing, 2013. URL

http://www.itproportal.com/2013/09/20/top-5-latest-trends-in-cloud-computing/.

[Accessed Jan. 23, 2014].

[4] Daniel Amyot, Hanna Farah, and Jean-Francois Roy. Evaluation of development tools

for domain-specific modeling languages. In Reinhard Gotzhein and Rick Reed, editors,

System Analysis and Modeling: Language Profiles, volume 4320 of Lecture Notes in

Computer Science, pages 183–197. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-

68371-1.

[5] Luciano Baresi and Reiko Heckel. Tutorial introduction to graph transformation: A

software engineering perspective. In In Proc. of the First International Conference on

Graph Transformation (ICGT 2002, pages 402–429. Springer, 2002.

[6] Peter Bell. Automated transformation of statements within evolving domain specific

113

114 BIBLIOGRAPHY

languages. In Proceedings of The 7th OOPSLA Workshop on Domain-Specific Modeling,

OOPSLA ’07, pages 172–177. ACM, 2007.

[7] Gorka Benguria, Xabier Larrucea, Brian Elveseter, Tor Neple, Anthony Beardsmore,

and Michael Friess. A platform independent model for service oriented architectures. In

Guy Doumeingts, Jorg Muller, Gerard Morel, and Bruno Vallespir, editors, Enterprise

Interoperability, pages 23–32. Springer London, 2007. ISBN 978-1-84628-713-8.

[8] J. Bezivin, S. Hammoudi, D. Lopes, and F. Jouault. Applying mda approach

for web service platform. In Enterprise Distributed Object Computing Conference,

2004. EDOC 2004. Proceedings. Eighth IEEE International, pages 58–70, 2004. doi:

10.1109/EDOC.2004.1342505.

[9] Behzad Bordbar and Athanasios Staikopoulos. Automated generation of metamodels for

web service languages. Computer Science at Kent, page 203, 2004.

[10] Fabrice Bouquet, Christophe Grandpierre, Bruno Legeard, and Fabien Peureux. A test

generation solution to automate software testing. In Proceedings of the 3rd International

Workshop on Automation of Software Test, AST ’08, pages 45–48, New York, NY, USA,

2008. ACM. ISBN 978-1-60558-030-2.

[11] Benjamin Braatz and Christoph Brandt. A framework for families of domain-specific

modelling languages. Software & Systems Modeling, 13(1):109–132, 2014. ISSN 1619-

1366.

[12] Alessandra Cavarra, Charles Crichton, Jim Davies, Alan Hartman, and Laurent Mounier.

Using uml for automatic test generation. In In international symposium on testing and

analysis ISSTA. Springer-Verlag, 2002.

[13] Alistair Cockburn. Agile Software Development. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2002. ISBN 0-201-69969-9.

BIBLIOGRAPHY 115

[14] World Wide Web Consortium. Web services architecture, 2009. URL

http://www.w3.org/TR/ws-arch. [Accessed Feb. 22, 2014].

[15] K. Czarnecki and S. Helsen. Feature-based survey of model transformation approaches.

IBM Systems Journal, 45(3):621–645, July 2006. ISSN 0018-8670.

[16] J. De Bruijn and H. (Ed.) Lausen. The web service modeling language WSML, 2012.

URL http://www.w3.org/Submission/WSML/. [Accessed Feb. 20, 2014].

[17] May Dehayni, Kablan Barbar, Ali Awada, and Mohamad Smaili. Some model transfor-

mation approaches: a qualitative critical review. Journal of Applied Sciences Research,

5(11):1957–1965, 2009. URL http://www.insipub.com/jasr/2009/1957-1965.pdf.

[18] Arie Van Deursen and Paul Klint. Little languages: little maintenance? Journal of

Software Maintenance: Research and Practice, 10(2):75–92, 1998. ISSN 1096-908X. doi:

10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5.

[19] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verification of data-driven

web applications. Journal of Computer and System Sciences, 73(3):442 – 474, 2007. ISSN

0022-0000. Special Issue: Database Theory 2004.

[20] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1st edition, 1997. ISBN 01321-5871X.

[21] Schmidt Douglas C. Model-driven engineering. IEEE Computer, 39(2):25–32, 2006.

[22] Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and Gabriele Taentzer.

Information preserving bidirectional model transformations. In Proceedings of the

10th International Conference on Fundamental Approaches to Software Engineering,

FASE’07, pages 72–86, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-71288-

6.

[23] Hartmut Ehrig, Claudia Ermel, and Frank Hermann. On the relationship of model

transformations based on triple and plain graph grammars. In Proceedings of the Third

116 BIBLIOGRAPHY

International Workshop on Graph and Model Transformations, GRaMoT ’08, pages 9–

16, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-033-3.

[24] Hartmut Ehrig, Claudia Ermel, Frank Hermann, and Ulrike Prange. On-the-fly con-

struction, correctness and completeness of model transformations based on triple graph

grammars. In Andy Schurr and Bran Selic, editors, Model Driven Engineering Lan-

guages and Systems, volume 5795 of Lecture Notes in Computer Science, pages 241–255.

Springer Berlin Heidelberg, 2009. ISBN 978-3-642-04424-3.

[25] Dieter Fensel and Christoph Bussler. The web service modeling framework {WSMF}.

Electronic Commerce Research and Applications, 1(2):113 – 137, 2002. ISSN 1567-4223.

doi: http://dx.doi.org/10.1016/S1567-4223(02)00015-7.

[26] David Frankel and John Parodi. Using model-driven architecture to develop web services.

2012.

[27] U. Golas, H. Ehrig, and F. Hermann. Formal specification of model transformations

by triple graph grammars with application conditions. ECEASST, 39:1–26, 2011. URL

http://journal.ub.tu-berlin.de/eceasst/article/view/646.

[28] Object Management Group. Object constraint language specification v1.1, 1997. URL

http://www.omg.org/cgi-bin/doc?ad/97-08-08. [Accessed Jan. 5, 2014].

[29] Object Management Group. OpenQVT revised submission to the MOF 2.0 Q/V/T

RFP, 2003. URL http://www.omg.org/cgi-bin/doc?ad/2003-08-05. [Accessed Dec.

12, 2013].

[30] Object Management Group. Common warehouse metamodel, 2009. URL

http://www.omg.org/spec/CWM/1.1/. [Accessed Jan. 15, 2014].

[31] Object Management Group. OMG model driven architecture, 2009. URL

www.omg.org/mda. [Accessed Jun. 12, 2014].

BIBLIOGRAPHY 117

[32] Object Management Group. The architecture of choice for a changing world, 2012. URL

http://www.omg.org/mda. [Accessed Feb. 15, 2014].

[33] Object Management Group. Meta object facility specification, 2013. URL

http://www.omg.org/spec/MOF/2.0/. [Accessed Feb. 5, 2014].

[34] Johan Den Haan. The enterprise architect - building an agile enterprise, 2013. URL

http://www.theenterprisearchitect.eu. [Accessed Feb. 20, 2014].

[35] Reiko Heckel, Jochen Malte Kuster, and Gabriele Taentzer. Confluence of typed at-

tributed graph transformation systems. In Proc. ICGT 2002. Volume 2505 of LNCS,

pages 161–176. Springer, 2002.

[36] Reiko Heckel, Marc Lohmann, and Sebastian Thöne. Towards a uml profile for service-

oriented architectures. In Model Driven Architecture: Foundations and Applications,

page 115. Citeseer, 2003.

[37] Markus Herrmannsdoerfer, Daniel Ratiu, and Guido Wachsmuth. Language evolution in

practice: The history of gmf. In Proceedings of the Second International Conference on

Software Language Engineering, SLE’09, pages 3–22, Berlin, Heidelberg, 2010. Springer-

Verlag. ISBN 3-642-12106-3, 978-3-642-12106-7.

[38] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in

information systems research. MIS Q., 28(1):75–105, March 2004. ISSN 0276-7783.

[39] Gregor Kandare, Stanislav Strmčnik, and Giovanni Godena. Domain specific model-

based development of software for programmable logic controllers. Comput. Ind., 61(5):

419–431, June 2010. ISSN 0166-3615.

[40] Juha Kärnä, Juha-Pekka Tolvanen, and Steven Kelly. Evaluating the use of domain-

specific modeling in practice. In Proceedings of the 9th OOPSLA Workshop on Domain-

Specific Modeling, 2009.

118 BIBLIOGRAPHY

[41] D. Kaul, A. Kogekar, A. Gokhale, J. Gray, and S. Gokhale. Posaml: A visual modeling

framework for middleware provisioning. In System Sciences, 2007. HICSS 2007. 40th

Annual Hawaii International Conference on, pages 289c–289c, 2007.

[42] E. Kindler and R. Wagner. Triple graph grammars: Concepts, extensions, implementa-

tions, and application scenarios. Technical report, Software Engineering Group, Depart-

ment of Computer Science, University of Paderborn, 2007.

[43] Tomaz Kos, Tomaz Kosar, and Marjan Mernik. Development of data acquisition systems

by using a domain-specific modeling language. Computers in Industry, 63(3):181 – 192,

2012. ISSN 0166-3615.

[44] Tomaz Kosar, Pablo E. Martinez Lopez, Pablo A. Barrientos, and Marjan Mernik. A

preliminary study on various implementation approaches of domain-specific language.

Information and Software Technology, 50(5):390 – 405, 2008. ISSN 0950-5849.

[45] Sabine Kuske, Paul Ziemann, and Martin Gogolla. Towards an integrated graph based

semantics for UML. Proc. Int. Workshop on Graph Transformation and Visual Modeling

Techniques (GT-VMT 2002), 2003.

[46] J.M. Kuster, R. Heckel, and G. Engels. Defining and validating transformations of

UML models. In 2003 IEEE Symposium on Human Centric Computing Languages and

Environments, 2003. Proceedings, pages 145–152, 2003. doi: 10.1109/HCC.2003.1260218.

[47] H. Lausen, A. Polleres, and D.(Ed.) Roman. Web service modeling ontology (wsmo),

2005. URL http://www.w3.org/Submission/WSMO/. [Accessed Feb. 23, 2014].

[48] Tihamer Levendovszky, Gabor Karsai, Miklos Maroti, Akos Ledeczi, and Hassan Charaf.

Model reuse with metamodel-based transformations. In of Lecture Notes in Computer

Science, pages 166–178. Springer, 2002.

[49] YueHua Lin. A model transformation approach to automated model evolution. University

of Aslabama at Birmingham, 2007.

BIBLIOGRAPHY 119

[50] Earl Long, Amit Misra, and Janos Sztipanovits. Increasing productivity at saturn.

Computer, 31(8):35–43, August 1998. ISSN 0018-9162.

[51] Janne Luoma, Steven Kelly, and Juha-Pekka Tolvanen. Defining domain-specific model-

ing languages: Collected experiences. In Proceedings of the 4th OOPSLA Workshop on

Domain-Specific Modeling, 2004.

[52] Luis Mandel and Maria Victoria Cengarle. On the expressive power of OCL. pages

854–874, 1999.

[53] E Michael Maximilien, Hernan Wilkinson, Nirmit Desai, and Stefan Tai. A domain-

specific language for web apis and services mashups. In Service-oriented computing–

ICSOC 2007, pages 13–26. Springer, 2007.

[54] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electron. Notes

Theor. Comput. Sci., 152:125–142, March 2006. ISSN 1571-0661.

[55] Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop domain-

specific languages. ACM computing surveys (CSUR), 37(4):316–344, 2005.

[56] Chen Mingsong, Qiu Xiaokang, and Li Xuandong. Automatic test case generation for uml

activity diagrams. In Proceedings of the 2006 International Workshop on Automation of

Software Test, AST ’06, pages 2–8, New York, NY, USA, 2006. ACM. ISBN 1-59593-

408-1.

[57] Web modeling Group. Swsm language, 2013. URL

http://webmodeling.net/documentation.html. [Accessed Dec. 21, 2013].

[58] M. Mussa, S. Ouchani, W. Al Sammane, and A. Hamou-Lhadj. A survey of model-driven

testing techniques. In Quality Software, 2009. QSIC ’09. 9th International Conference

on, pages 167–172, Aug 2009.

120 BIBLIOGRAPHY

[59] Mark Harman Mustafa Bozkurt and Youssef Hassoun. Testing web services: A survey.

Technical Report TR-10-01, Department of Computer Science, King’s College London,

January 2010.

[60] Universite De Nantes, Groupe Sodifrance, Jean Bezivin, Erwan Breton, Gregoire Dupe,

and Patrick Valduriez. The ATL transformation-based model. In Management Frame-

work, Research Report, Atlas Group, INRIA and IRIN, 2003.

[61] Viet Cuong Nguyen and Xhevi Qafmolla. Metamodel transformation with kermeta. In

Objekty 2008, volume 1, pages 109–116, 2008.

[62] Ernst Oberortner, Uwe Zdun, and Schahram Dustdar. Domain-specific languages for

service-oriented architectures: An explorative study. In Towards a Service-based Internet,

pages 159–170. Springer, 2008.

[63] Ken Peffers, Tuure Tuunanen, Marcus Rothenberger, and Samir Chatterjee. A design

science research methodology for information systems research. J. Manage. Inf. Syst.,

24(3):45–77, 2007. ISSN 0742-1222.

[64] Xhevi Qafmolla and Viet Cuong Nguyen. Automation of web services development using

model driven techniques. In Computer and Automation Engineering (ICCAE), 2010 The

2nd International Conference on, volume 3, pages 190–194. IEEE, 2010.

[65] Anna Queralt and Ernest Teniente. A platform independent model for the electronic

marketplace domain. Software & Systems Modeling, 7(2):219–235, 2008. ISSN 1619-1366.

[66] Arend Rensink and Eduardo Zambon. A type graph model for java programs. In Formal

Techniques for Distributed Systems, volume 5522 of Lecture Notes in Computer Science,

pages 237–242. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-02137-4.

[67] Filippo Ricca and Paolo Tonella. Analysis and testing of web applications. In Proceedings

of the 23rd International Conference on Software Engineering, ICSE ’01, pages 25–34,

Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1050-7.

BIBLIOGRAPHY 121

[68] IEEE Computer Society. IEEE standard for software test documentation. Technical

report, 2008.

[69] J. Sprinkle, M. Mernik, J. Tolvanen, and D. Spinellis. Guest editors’ introduction: What

kinds of nails need a domain-specific hammer? Software, IEEE, 26(4):15–18, July 2009.

ISSN 0740-7459.

[70] Jonathan Sprinkle and Gabor Karsai. A domain-specific visual language for domain

model evolution. Journal of Visual Languages and Computing, 15:3–4, 2004.

[71] Michael Striewe. Using a triple graph grammar for state machine implementations.

In Graph Transformations, volume 5214 of Lecture Notes in Computer Science, pages

514–516. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-87404-1.

[72] Laurence Tratt. Model transformations and tool integration. Software & Systems Mod-

eling, 4(2):112–122, 2005. ISSN 1619-1366.

[73] Girba Tudor. The moose book, 2013. URL http://www.themoosebook.org/. [Accessed

Feb. 2, 2014].

[74] Wikipedia. Model driven engineering, 2011. URL

http://en.wikipedia.org/wiki/Model-Driven-Engineering. [Accessed Jun.

12, 2014].

[75] Wikipedia. Domain-specific language, 2012. URL

http://en.wikipedia.org/wiki/Domain-specific-language. [Accessed Jul. 3,

2014].

[76] Wikipedia. Model driven testing, 2014. URL

http://en.wikipedia.org/wiki/Model-based-testing. [Accessed Jul. 4, 2014].

[77] David Wile. Lessons learned from real dsl experiments. Sci. Comput. Program., 51

(3):265–290, June 2004. ISSN 0167-6423. doi: 10.1016/j.scico.2003.12.006. URL

http://dx.doi.org/10.1016/j.scico.2003.12.006.

122 BIBLIOGRAPHY

[78] Xiaofeng Yu, Yan Zhang, Tian Zhang, Linzhang Wang, Jun Hu, Jianhua Zhao, and

Xuandong Li. A model-driven development framework for enterprise web services. In-

formation Systems Frontiers, 9(4):391–409, 2007. ISSN 1541-7719.

[79] Qiulu Yuan, Ji Wu, Chao Liu, and Li Zhang. A model driven approach toward business

process test case generation. In Proc. of the 10th International Symposium on Web Site

Evolution (WSE), pages 41–44, 2012.

Anotace

Jednou ze současných výzev softwarového vývoje je přizp̊usobeńı softwarového systému

měńıćım se požadavk̊um a nárok̊um uživatele a změnám prostřed́ı. Konečným ćılem je vnořit

tyto požadavky do vysokoúrovňové abstrakce, což umožňuje dosáhnout přizp̊usobeńı zák-

ladńı implementace softwaru ve velkém rozsahu. Modelem ř́ızené inženýrstv́ı (Model-Driven

Engineering, MDE) je jednou z kĺıčových technik, která podporuje tento záměr. Efektivńı

vytvářeńı model̊u a jejich transformace jsou zde hlavńımi činnostmi, které umožňuj́ı převod

zdrojových model̊u na ćılové za účelem změny modelové struktury nebo převodu model̊u na

jiné softwarové produkty. Naš́ım hlavńım ćılem je umožnit automatizaci a automatizovaný

vývoj systému z odpov́ıdaj́ıćıch model̊u. I když již existuje několik vysokoúrovňových př́ıs-

tup̊u, je zde stále absence jasné metodiky a výsledk̊u pro aplikaci techniky MDE na specifickou

oblast se specifickými požadavky, jako je oblast webových aplikaćı. Tento výzkum se snaž́ı

přispět k řešeńı problému automatizace vývoje model̊u t́ım, že poskytuje přehled existuj́ıćıch

př́ıstup̊u s několika př́ıpadovými studiemi a zavád́ı nový př́ıstup v rozv́ıjej́ıćı se oblasti we-

bových aplikaćı a služeb. Abychom se mohli vypořádat se současným trendem rostoućı složi-

tosti webových služeb, jakožto programových páteř́ı moderńıch distribuovaných a cloudových

architektur, navrhujeme př́ıstup s použit́ım doménově specifického jazyka pro modelováńı we-

bových služeb jako řešeńı současné výzvy ve škálovatelnosti modelováńı a vývoje webových

služeb. Analyzujeme současný stav problému a implementujeme doménově specifický jazyk,

nazvaný Simple Web Service Modeling, pro podporu automatizovaného, modelem ř́ızeného

vývoje webových služeb. Tento př́ıstup je řešeńım pro problémy ve vývoji systémů typu

“software-as-a-service”, které vyžaduj́ı podporu pro tuto specifickou architekturu.

V oblasti zajǐst’ováńı kvality webových aplikaćı budujeme modelovaćı jazyk pro modelem

ř́ızené testováńı webových aplikaćı, který se zaměřuje na automatizaci a regresńı testováńı.

Naše techniky jsou založeny na budováńı abstrakce webových stránek a modelováńı chováńı

test̊u založené na konečném automatu s použit́ım námi vyvinutého doménově specifického

jazyka pro modelováńı webových stránek Web Testing Modeling Language. Tato metodika

a techniky pomáhaj́ı softwarovým vývojář̊um i tester̊um zvýšit produktivitu a zkrátit dobu

uvedeńı na trh při zachováńı vysokých standard̊u webových aplikaćı. Navrhované techniky

jsou odpověd́ı na nedostatek konkrétńıch metod a sad nástroj̊u pro aplikaci modelem ř́ızeného

vývoje na specifické oblasti, jako jsou testováńı webových aplikaćı a webové služby. Výsledky

této práce mohou být aplikovány na praktické problémy s metodickou podporou pro inte-

grováńı do stávaj́ıćıch postup̊u softwarového vývoje.

