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Abstract

This work focuses on wireless sensor networks. The nature of sensor networks brings new
kinds of issues that have not been encountered in the design of traditional wired and wireless
networks. Therefore new algorithms designed for sensor networks keep emerging. This work
intends to provide an environment that would allow simulation of these new algorithms.
Regarding the phenomena being simulated, this work particularly focuses on simulation of
routing algorithms for sensor network and simulation and a technique called distributed
phase shift beamforming.

Abstrakt

Tato práce se zabývá bezdrátovými senzorovými sít¥mi. Senzorové sít¥ p°iná²ejí nové druhy
problém·, se kterými se p°i návrhu tradi£ních drátových i bezdrátových sítí nepo£ítalo. Proto
vznikají nové algoritmy zam¥°ené na senzorové sít¥. Tato práce si klade za cíl poskytnout
prost°edí, které umoºní simulaci takových algoritm·. Co se tý£e konkrétních simulovaných
jev·, tato práce se zam¥°uje na sm¥rovací algoritmy pro senzorové sít¥ a techniku zvanou
beamforming.
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Chapter 1

Introduction

1.1 Introduction

During the last couple of years sensor networks became a very attractive �eld of study for
many researchers [10].

A sensor network typically consists of a large amount of inexpensive nodes that are usually
quite limited in terms of computational capabilities, memory capacity, communication speed,
area coverage of antennas, especially compared to traditional wireless networks [10]. Whereas
traditional wireless networks require some infrastructure such as base stations (which are
then serving as masters in master/slave communication paradigm in the network) to work
properly, sensor networks are completely unstructured [20].

The nature of the sensor networks brings new kinds of issues that have not been en-
countered in the design of traditional wired and wireless networks [2]. Especially the lack of
resources on each node implies a need for new algorithmic ideas that combine methods of
distributed computing with traditional centralized algorithms [10].

In large sensor networks, traditional stateful routing algorithms become essentially useless
due to the inability of the node to keep the required information about the state (i.e. a routing
table). Therefore new routing algorithms, including greedy stateless routing algorithms and
geographic routing algorithms have been designed.

As a node of a sensor network is typically powered by a battery, it is quite desirable to
extend the battery life. A few techniques that indirectly achieve that emerged. For example
distributed phase shift beamforming technique, that reduces the total power spent on a
transmission by reducing the electromagnetic interference in the network [6].

In order to verify that some ideas, conclusions, or algorithms concerning sensor networks
are valid, it is quite desirable to have these tested. Basically, there are two approaches to
achieve that, that are fundamentally di�erent. The �rst is to actually perform the test on a
real sensor network. This approach probably delivers very precise results. However, there are
some practical di�culties that emerge when it comes to actually using a real sensor network,
"It is di�cult to operate and debug such systems. This may have contributed to the fact
that only very few of these networks have yet been deployed. Real-world systems typically
consist of roughly a few dozen sensor nodes, whereas future scenarios anticipate networks of

1



2 CHAPTER 1. INTRODUCTION

several thousands to millions of nodes"[10]. The other approach is to design a model of a
sensor network and test the algorithms upon that model using a simulation.

This work focuses on simulations of sensor networks. The aim of this work is to �nd a
suitable simulation environment for speci�c algorithms and techniques that were designed
for sensor networks, namely this work focuses on simulation of routing algorithms for sensor
networks and on simulation of distributed phase shift beamforming technique. These are
further discussed in chapter 3.

1.2 Contents of this work

• Chapter 2 de�nes the problem that this work intends to solve and speci�es the re-
quirements that the solution is supposed to meet.

• Chapter 3 analyses known solutions, rates these solutions in terms of the requirements
de�ned in 2 and based on the results if this analysis proposes a solution and discusses
it's design.

• Chapter 4 thoroughly describes the details of the �nal solution, including the detailed
design of the components that the solution consists of and implementation caveats.

• Chapter 5 describes the methods that were used to assure the quality of the �nal
solution.

• Chapter 6 summarizes this work, rates the �nal solution in terms of the requirements
de�ned in 2 and suggests a future work that might be continuation of this work.



Chapter 2

Speci�cation

This chapter describes the expected result of this work and then it de�nes requirements that
the result should meet.

2.1 Aim of this work

The main goal of this work is to provide an appropriate simulation environment for sensor
networks. This could either mean �nding an existing simulator that meets the requirements
de�ned in 2.2, or �nding an appropriate simulation environment and modifying it to meet
the requirements (for example via developing a plugin to that environment), or develop-
ing a standalone simulator if the other options turn out not to be su�cient in terms of
requirements.

2.2 Requirements

Two areas of interest have been identi�ed as the key concerns of this work:

• Routing algorithms simulation: The �nal simulator shall allow the user to simulate
the behavior of wide range of routing algorithms in a simple and straightforward way.
The design should respect the nature of sensor networks and therefore incorporate the
support of sensor network speci�c algorithms such as geographic routing.

• Physical layer simulation: The �nal simulator shall allow the user to de�ne a
model of physical layer that supports advanced media access control techniques, such
as distributed phase shift beamforming.

The simulator should also show reasonable runtimes for each simulation task (even for
excessive amount of nodes simulated). That means that routing algorithm simulation run-
time should not be prolonged by complicated calculations in physical layer and vice versa.
In order to provide this functionality the OSI layers of the simulation must be clearly (by
well de�ned interface) separated.

Fundamental requirements that the output of this work is supposed to meet are summa-
rized in the following list:

3



4 CHAPTER 2. SPECIFICATION

1. Advanced transmission control that allows simulation of advanced media access control
techniques, such as distributed phase shift beamforming

2. Independent model of each layer of the protocol stack that is easily exchangeable for
a di�erent one in the future

3. Simple user interface of each layer of the protocol stack that allows the user to imple-
ment the protocol logic in a straightforward way

4. Reasonable simulation runtime even for large networks



Chapter 3

Analysis

Section 3.1 describes the most important phenomena to be simulated. Section 3.2 discusses
general aspects to keep in mind when simulating a wireless sensor network. Section 3.3
describes known solutions and critically evaluates their advantages and disadvantages with
regard to the requirements de�ned in 2. Section 3.4 concludes the analysis and upon it's
result section 3.5 proposes a solution.

3.1 Focus of this work

In order to design a truly useful simulator it is necessary to choose which phenomena require
more detailed model and which can be simpli�ed. This approach may be bene�cial since
the important details are included in the model of the simulated phenomenon while the run
time of the simulator does not exceed the reasonable limits.

3.1.1 Distributed phase shift beamforming

The �rst speci�c of this work is a focus on distributed phase shift beamforming (DPSBF)1.
Beamforming technique is used to a�ect the radiation pattern of the transmitter in order
to save energy and/or to lower the amount of electromagnetic interference in the sensor
network. These e�ects are achieved by using more (than one) antennas to transmit the same
signal simultaneously (of course this requires a proper synchronization of the antennas). The
resulting radiation pattern is a�ected by the addition of multiple signals. There are directions
where the signal is ampli�ed and directions where the signal is attenuated. Figure 3.1 depicts
this situation. The two nodes u and v that are denoted by circles around them represent
the transmitters in this situation. The node w denoted by a square around it represents a
receiver. The continuous line shows the range of the transmission when both transmitters
are transmitting together using DPSBF, whereas the dashed lines represent the range each
of nodes u and v would cover if it was transmitting alone using a standard transmission.
The �gure clearly shows that area a�ected by the transmission using DPSBF is smaller than
the area (and therefore the amount of nodes) a�ected by a standard transmission [6].

1Beamforming or spatial �ltering is a signal processing technique used in sensor arrays for directional
signal transmission or reception.[22]

5



6 CHAPTER 3. ANALYSIS

u

v
w

Figure 3.1: Comparison of radiation patterns of a single transmitter and two transmitters
using beamforming technique [6]

The name distributed comes from the fact that there is no antenna array and therefore
no central transmitter, the adjacent nodes of the network are used to shape the radiation
pattern instead.[6]. Description of how such nodes are synchronized is out of the scope of
this work. Any simulator that is able to simulate DPSBF must incorporate a detailed (and
customizable) model of the lowest layers of the protocol stack.

3.1.2 Geographic routing

The second speci�c issue this work focuses on are the routing algorithms used in wireless and
ad hoc networks. Geographic routing algorithms use the information about the geographical
position of the network nodes in order to make packet forwarding decisions. These are at-
tractive for sensor networks because they do not need to exchange routing information and
therefore work near stateless and require almost no memory for routing (which is desirable
since the resources are usually scarce in wireless sensors)[14]. Of course not only geographic
routing algorithms are used in sensor networks, but these require the most speci�c attributes
of the simulation environment. Mainly because geographic routing algorithms require the
sensors to know their position and the position of the destination. In order to design mod-
els of such algorithms the simulation environment must provide the information about the
geographical position of the network nodes in the user space.
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3.2 General concerns of sensor network simulation

3.2.1 ISO OSI coverage

When simulating a sensor network, it is not absolutely necessary to cover all the layers
of the ISO OSI model2. The reason for this assumption is that sensor networks di�er
from standard wired networks mainly in low level layers of the model. As an example that
supports this assumption, consider ZigBee. ZigBee is a speci�cation for a suite of high level
communication protocols used to create personal area networks built from small, low-power
digital radios. ZigBee is based on IEEE 802.15.4[36]. Figure 3.2 displays ZigBee protocol
stack. As can be seen, the higher level OSI layers are merged into one application layer. So
instead of implementing a traditional stack with seven layers, ZigBee implements only four
layers. Note that these four layers di�er from the �rst four layers of the TCP/IP stack (for
example the network layer (3) of the ZigBee stack actually implements logical link control
[8] that is in traditional networks covered by data link layer (2) [31]). In principle, this work
shall follow the same attitude. Only OSI layers 1-3 will be covered.

Figure 3.2: ZigBee protocol stack
[36]

3.2.2 Physical layer concerns

Before evaluating constraints of physical layer, essential parameters of radio transmission
must be de�ned. Physical layer constraints should be expressed with regard to these param-
eters. Basically, the sender node transmits data through an antenna with certain gain3 using

2OSI = Open system interconnections model. It speci�es abstract layers and each of this layers has
de�ned functions. It is a standard for systems interconnections [31]

3Power gain (or simply gain) is a unitless measure that combines an antenna's e�ciency and directivity[21]
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certain power into an open space. Some of the power is lost on the way to the receiver4 and
on the receiving side of the transmission there is another antenna with (in general) di�erent
gain. If the power level of the signal on the receiving side is su�cient, receiver considers it
as data, otherwise the signal is considered to be noise.

As mentioned earlier, it is quite necessary for the simulation environment to support
simulation of nodes having antennas with various gains transmitting in various directions.
The radiation pattern of an antenna is a plot of the relative �eld strength of the radio
waves emitted by the antenna at di�erent angles. It is typically represented by a three
dimensional graph, or polar plots of the horizontal and vertical cross sections. The pattern
of an ideal isotropic antenna, which radiates equally in all directions, would look like a
sphere. Many nondirectional antennas, such as monopoles and dipoles, emit equal power
in all horizontal directions, with the power dropping o� at higher and lower angles; this is
called an omnidirectional pattern and when plotted looks like a torus or donut.[21]. Some
representation of the radiation pattern should be implemented by the simulation environment
in order to support various types of radiation pattern. On the other hand the simulator
shall provide di�erent types of free space path loss calculation. Of course, the environment
should recognize interference on the physical layer. Advanced techniques using constructive
interference, such as beamforming shall be simulable in the environment.

3.2.3 Link layer concerns

As link layer simulation is not the primary goal of this work, a simple model of this layer, e.g.
Ideal planning is su�cient. In this case, ideal planning means planning of transmission
in a manner where there are no collisions possible. If conditions preventing a node from
transmission, such as network congestion occur, the data is being dropped until this condition
vanishes. Though the simulator should provide independent model of the link layer that could
be easily exchanged for a di�erent model (for example implementing some real protocol) in
case ideal planing turns out to be insu�cient in the future.

3.2.4 Network layer concerns

One of the main goals of this work is to provide viable environment for simulating algorithms
designed especially for sensor networks (for example geographical routing algorithms, for
more information refer to [20] or [2]). This concerns both existing algorithms and their
possible modi�cations and on the other hand brand new algorithms. This implies that
network layer model must be easily exchangeable with a completely di�erent model. Due to
the complexity and nature of geographical routing algorithms it is quite appropriate that the
network layer model of each node has the ability to access the global information about the
network model, such as network topology etc. This requirement comes from the fact that the
global knowledge of the network in each node could signi�cantly simplify the implementation
of such algorithms within the simulation environment.

4In telecommunication, free-space path loss (FSPL) is the loss in signal strength of an electromagnetic
wave that would result from a line-of-sight path through free space (usually air), with no obstacles nearby
to cause re�ection or di�raction [27].
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3.3 Known simulators

This section describes known simulators that may be suitable for sensor network simulation,
and critically evaluates their features and properties with respect to requirements de�ned
in 2. Table 3.1 summarizes the compliance of the known solutions with the requirements
de�ned in chapter 2.

3.3.1 OMNeT++

The "Objective Modular Network Testbed in C++" is an objective-oriented modular discrete
event simulator[10]. OMNeT++ itself is just a simulation core and the domain-speci�c
functionality is provided by model frameworks that are developed more or less independently
on OMNeT++.

3.3.1.1 INET framework

The INET Framework is an open-source communication networks simulation package for the
OMNeT++ simulation environment. even though it provides out of the box support for a lot
of network protocols, it lacks support of sensor network speci�c protocols. On the other hand
there are extensions of INET framework such asMiXiM, that provide sensor network speci�c
features.MiXiM shows supreme support of physical layer of sensor networks. It provides
various out of the box signal propagation models (called AnalogueModel), various media
access control techniques (called MacLayer) and user-de�ned model of Decider which
determines whether received signal is data or noise. The biggest disadvantage of using INET
framework is its complexity that disallows the user to e�ectively simulate large networks.
Another consequence of the frameworks complexity is complicated de�nition of the models.

3.3.1.2 Castalia

Castalia is another framework based on OMNeT++ supporting wireless sensor networks.
It can be used by researchers and developers who want to test their distributed algorithms
and/or protocols in realistic wireless channel and radio models, with a realistic node behavior
especially relating to access of the radio[5]. Castalia provides advanced channel model based
on empirically measured data that allows the path loss to change over time and nodes to
move. It also provides a couple of out of the box MAC and routing algorithms. The disadvan-
tages are basically the same as the ones mentioned in 3.3.1.1 and since these disadvantages
are not a speci�c disadvantages of a single framework, it is reasonable to assume that any
framework built upon OMNeT++ simulation library might show such disadvantages.

3.3.2 NS-2

NS-2 (Network simulator 2) is a general simulator originally designed for ip networks [37].
On one hand, NS-2 provides a considerable range of protocols that are speci�c for wireless
sensor network, including sensing channels, sensor models, battery models, and lightweight
protocol stacks for wireless micro sensors. On the other hand "the highly detailed packet
level simulations lead to a runtime behavior closely coupled with the number of packets that
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Solution
Transmission

Control
Exchangeable

Model
User

Interface
Short

Runtime

MIXIM Y Y N N

Castalia Y P N N

Shawn N N Y Y

NS-2 Y N N N

TOSSIM N N N Y

Table 3.1: Compliance of known solutions with the requirements of this work. Note that "Y"
denotes full compliance, "P" denotes partial compliance, and "N" denotes no compliance

are exchanged, making it virtually impossible to simulate really large networks. In principle,
Ns-2 is capable of handling up to 16,000 nodes, but the level of detail of its simulations
leads to a runtime that makes it hopeless to deal with more than 1,000 nodes [10]. Another
considerable drawback of NS-2 is that it uses TCL5 for model de�nitions, which may lead
to di�culties while using NS-2 [37].

3.3.3 TOSSIM

TOSSIM is a platform speci�c simulator that simulates TinyOS6 motes (sensors) at the bit
level. It actually compiles the code written for TinyOS into an executable that can be run
on a standard PC equipment [10]. While TOSSIM might be a powerful tool for testing
code designated for the TinyOS motes, it is virtually useless for simulating generic sensor
networks.

3.3.4 Shawn

Shawn is a sensor network simulator developed because the runtimes of other network sim-
ulators became unbearable when the amount of nodes reached a certain limit (hundreds of
thousands). Compared to other network simulators Shawn runs very quickly due to the fact
that it is not actually simulating the network stack. Instead of simulating some phenomenon,
it simulates the e�ects caused by the phenomenon (e.g. instead of simulating MAC layer, it
simulates packet loss and data corruption).[10] This basically implies that it lacks support
for any low-level speci�c protocols. On the other hand it supports very large networks.

3.4 Result of the analysis

Network simulators can be divided into two categories:

5TCL is a scripting language created by John Ousterhout. Originally "born out of frustration", according
to the author, with programmers devising their own languages intended to be embedded into applications,
Tcl gained acceptance on its own. It is commonly used for rapid prototyping, scripted applications, GUIs and
testing. Tcl is used on embedded systems platforms, both in its full form and in several other small-footprint
versions [32].

6"TinyOS is a free and open source software component-based operating system and platform targeting
wireless sensor networks (WSNs)" [34].
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• Heavy weight simulators like OMNeT++ or NS-2 tend to implement every protocol
possible on each OSI layer. This results in a very complex simulation environment.
The main advantage of such approach (considering this work's focus) is the ability
to simulate advanced low-level techniques such as beamforming. On the other hand
it comes with the price. Heavy weight simulators are not able to simulate networks
consisting of large amount of nodes in a �nite time.

• Light weight simulators like Shawn tend to simplify the physical aspects of the net-
work into statistical models. This e�ectively makes it impossible to simulate advanced
low-level techniques but on the other had the simulation times are better compared to
heavy weight simulators. Also the de�nition of the model to be simulated is signi�-
cantly simpler for the user.

The solution provided by this work shall combine the advantages of both approaches. It
shall simplify phenomena that are out of focus of this work using the statistical approach
in order to lower the complexity and accelerate the simulation. At the same time it shall
support the advanced features of physical layer. It will make the implementation of routing
algorithms easier by providing the global information about the network to each layer.

3.5 Proposed solution

As concluded in 3.4, the requirements de�ned in 2 are not met by known simulation envi-
ronments (there is no known solution that meets all the requirements). The problem of the
lightweight environments is the lack of support of low level protocols, on the other hand the
problem of the heavyweight environments is the complexity of usage and long run times.

The lightness can be achieved by designing a simulation environment just for the speci�c
area of sensor networks without the ambition to simulate di�erent phenomena in the future.
This approach leads to the lightest possible solution because there is no need for general-
ization. The simplicity of use could be achieved by moving the control �ow7 into the user
space.

Note that even though this has not been mentioned before, all the solutions described in
3.3 (except for TOSSIM) were in fact discrete event simulators. A discrete event simulator
is a simulator that considers time a discrete (integer) variable and processes one event at
each moment of time. User-de�ned actions are then invoked when speci�c events (hooked
to those actions) occur[12]. The fact that user-de�ned actions are triggered by events means
that the user-de�ned action only gets the program control �ow for the time that is necessary
in order to handle the event. This behavior is highly undesirable when designing the logic of
the sensor node (e.g. the routing algorithm), since it forces the user to organize the code in
an unnatural way. Instead of dividing the code into units that cover the same logic, the code
ends up divided into units handling each event. As a consequence the code of one algorithm
in unintentionally divided into those units, which can cause trouble writing, reading and
maintaining the code.

7In computer science, control �ow (or alternatively, �ow of control) refers to the order in which the
individual statements, instructions or function calls of an imperative or a declarative program are executed
or evaluated.[25]
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Since one of the most important requirements that this work is supposed to meet is to
allow a simple and straightforward way of implementation of routing algorithms (see 2), the
aforementioned problems with the event-based approach should be resolved. [12] de�nes
three di�erent paradigms of discrete simulations8:

1. Activity oriented paradigm: Under activity-oriented paradigm, the time is broken
into tiny slices. As in any other discrete simulation, time is represented as a discrete
variable. In activity oriented paradigm, each time this variable is incremented, the
state of the system is checked and if some new event occurs, it is properly handled
and time is increased (by the same tiny slice). The biggest drawback of this paradigm
is that there is a lot of time moments when nothing happens, which may cause the
simulation to run signi�cantly slower than necessary. The biggest advantage is the
simplicity of design.

2. Event oriented paradigm: Event oriented paradigm speeds up the execution by
"skipping" the moments that generate no event and are therefore not interesting for
the simulation. This is achieved by implementation of event set, the set of all the
pending events with time stamps indicating when each event is due. This approach
completely eliminates the busy waiting for the next event and therefore brings a major
performance improvement in comparison to the activity oriented paradigm. However,
under event oriented paradigm, the simulation spends a major portion of time �nding
the event with the lowest time stamp (i.e. the event that should be invoked next).
[12] suggest that a reasonable implementation of the event set is a heap-based priority
queue, that minimizes the �nding time of the next event signi�cantly. Note that it
is virtually impossible to have two di�erent events happen simultaneously under the
event oriented paradigm. Even if two di�erent events were assigned the same time
stamp, they would be invoked sequentially.

3. Process oriented paradigm: The name of the process oriented paradigm comes
from the resemblance to the Unix processes - under the process oriented paradigm each
simulation activity is modeled by a process. Of course the event set is also implemented
under process oriented paradigm and is basically the same as the one employed under
event based paradigm. The chief virtue of the process oriented paradigm is the implied
modularity of the code that the event based approach lacks. "The process-oriented
paradigm produces more modular code. This is probably easier to write and easier
for others to read. It is considered more elegant, and is the more popular of the two
main world views9 today."[12]. The usage of the actual processes is considered an
outdated approach. [12] suggests that usage of threads to implement process oriented
paradigm is more suitable than the actual processes. "Indeed one could write process-
oriented simulations using Unix processes. However, these would be inconvenient to
write, di�cult to debug, and above all they would be slow."[12]. For more information
about threads and processes, refer to any good book focusing on operating systems.

8Note that there exist other types of simulations than discrete ones (e.g. continuous simulation or process
simulation), but these are out of the focus of this work, because they are suitable for simulating di�erent
phenomena.[24]

9Note: by the two main world views the author means the event oriented paradigm and the process
oriented paradigm
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Considering the paradigms used in discrete simulations that are de�ned above, the process
oriented paradigm seems to be the most suitable for the needs of this work. However,
designing a process driven discrete event simulator requires a deeper thought. For example,
the most straightforward idea would be to implement each sensor network node as a thread.
Consider simple following example that is using pthreads10. The only purpose of this example
is to �nd out how many pthreads can be spawned inside one process.

1 #include <stdio.h>
2 #include <pthread.h>
3 #include <unistd.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7

8 #define THREAD_COUNT 1024
9

10 void *
11 routine (void *arg)
12 {
13 sleep(10);
14 pthread_exit(NULL);
15 }
16

17 int
18 main (void)
19 {
20 pthread_t th[THREAD_COUNT];
21 int ret;
22 int i;
23

24

25 for (i = 0; i < THREAD_COUNT; ++i) {
26 ret = pthread_create(&th[i], PTHREAD_CREATE_JOINABLE, routine, NULL);
27 if (ret != 0) {
28 fprintf(stderr, "pthread_create(%d): %s\n", i, strerror(errno));
29 exit(EXIT_FAILURE);
30 }
31 }
32

33 for (i = 0; i < THREAD_COUNT; ++i) {
34 ret = pthread_join(th[i], (void **)NULL);
35 if (ret != 0) {
36 fprintf(stderr, "pthread_join(%d): %s\n", i, strerror(errno));
37 exit(EXIT_FAILURE);
38 }
39 }
40

41 exit(EXIT_SUCCESS);
42 }

Listing 3.1: pthread test

The code was compiled on a 64 bit CentOS linux machine, compiled using gnu compiler
collection, with standard c �ags. The result of running the compiled code on the same

10Pthreads are POSIX implementation of threads. for more information refer to [13]
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machine follows:

[user@hostname tmp]$ gcc -o thread -lpthread thread.c -Wall -Werror -ansi
[user@hostname tmp]$ ./thread
pthread_create(384): Resource temporarily unavailable
[user@hostname tmp]$

The output of the binary clearly states that it was able to successfully spawn 383 threads
inside one process, but it was not able to spawn any more threads. The pthread manual
states that this error is returned if: "Insu�cient resources to create another thread, or a
system-imposed limit on the number of threads was encountered. The latter case may occur
in two ways: the RLIMIT_NPROC soft resource limit (set via setrlimit(2)), which limits the
number of process for a real user ID, was reached; or the kernel's system-wide limit on the
number of threads, /proc/sys/kernel/threads-max, was reached."[13]. Either way the error
was caused by the system inability to create another thread. Please note that the amount
of the threads that can be created depends on the amount of system resources available
and can be tuned. Firstly, the resources can be expanded (e.g. by running the code on
a machine with more resources available), secondly, the pthreads themselves can be tuned
using pthread_attr structure. User can for example tune the stack size of each thread.
In this case, the most likely reason preventing new threads from spawning is the lack of
memory on the machine. It is reasonable to assume, that by reducing the stack size of each
thread to a half of it's default value, ability to spawn roughly twice as many threads could be
achieved. However, such tuning comes with the price. Reducing the stack size of a thread is
a risky move because it increases the likelihood of the stack over�ow error. Considering the
nature of the sensor networks (number of nodes is usually large, it can exceed 10000 [10]),
this lack of threads is fairly limiting.

There are other ways to deal with the lack of physical threads. One of them is thread
pooling. Thread pool pattern works in a way that threads that are available serve the tasks
that are waiting to be served in queues[33]. As far as this work is concerned, the nodes of
the sensor network could be scheduled as tasks and could be served by a �nite amount of
threads. On the other hand, the problem with the thread pool is that it does not ensure
full concurrency (any amount of nodes can perform actions simultaneously) in the simulated
network. Last but not least this approach would bring new issues with synchronization of
the threads in the pool.

Even though the process oriented paradigm seem to be the most suitable tool in regards
to this work's needs, the use of physical threads on the other hand would not be the optimal
way to implement the paradigm. In fact, to ensure concurrency in the simulated network,
there is no need for real concurrency on the operating system level. It would be just enough
to be able to swap context between the execution units of the nodes. Fortunately, there are
tools that provide such a feature. The concept of coroutines11 provides such behavior. It
uses non-local jumps in order to alternate between two or more routine (called coroutines).

11"Coroutines are computer program components that generalize subroutines for nonpreemptive multitask-
ing, by allowing multiple entry points for suspending and resuming execution at certain locations. Coroutines
are well-suited for implementing more familiar program components such as cooperative tasks, exceptions,
event loop, iterators, in�nite lists and pipes."[26]
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Coroutines basically provide multitasking features in the operating system user space[18].
There is a couple of tools that implement coroutines:

• setjmp.h: The system header setjmp.h provides two functions: setjmp() and
longjmp(). Setjmp() stores the current calling stack and longjmp() returns to
the state stored by setjmp(). It just an implementation of the non-local jump.[16]

• ucontext.h: The ucontext.h header provides more advanced interface for creating
coroutines, but the principle is the same as in setjmp.h. It allows the user to store
and swap execution between di�erent contexts.[15]

• GNU pth: "Pth is a very portable POSIX/ANSI-C based library for Unix platforms
which provides non-preemptive12 priority-based scheduling for multiple threads of ex-
ecution (aka �multithreading�) inside event-driven applications. All threads run in the
same address space of the server application, but each thread has it's own individual
program-counter, run-time stack, signal mask and errno variable"[9]. As the author
says, pth library provides thread-like feeling in a user space. Internally, pth is imple-
mented using ucontext.h. Basically, pth provides the concept of coroutines wrapped
in a thread-like interface.

Because of the reasons mentioned in this section, this work implements a sensor network
simulator as an process oriented discrete event simulator using the GNU pth library to model
the processes.

12The mentioned non-preemptive (or cooperative) scheduling of the threads simply means that the thread
has to yield the control to the other threads voluntarily.
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Chapter 4

Implementation

Section 4.1 describes the design of the solution in detail. Section 4.2 explains the technical
details of the implementation, such as implementation language choice, used libraries and
tools. Then it discusses the complicated parts and caveats of the implementation as well as
the inputs and outputs of the resulting software product. At the end it de�nes requirements
for the target system of the simulation application that need to be met in order for the
software product to compile and execute correctly.

4.1 Design

This section describes the design of the proposed solution in detail. First it describes the
simulation core which implements the process-driven paradigm simulator proposed in section
3.4 and highlights the parts where the design of the simulation core diverts from the proposed
paradigm.

Then it describes an entity representing a single sensor called node (note that node is
an entity producing the simulation events that enter the simulation core and receiving the
events that leave the simulation core), it's properties and behavior. This description includes
information about the protocol stack that the node implements and the layers of the protocol
stack. Behavior and user accessibility of each layer of the protocol stack is discussed.

At it's end, this section introduces messages, a tool designated for delivery of the user
data directly between the user accessible sections without a�ecting the simulation.

4.1.1 Simulator core

First of all, it is necessary to de�ne what an event means in context of this work. Let us
consider a typical simulation task: a line of customers waiting for an atm. In that context,
the possible events are:

• a customer coming to the end of the line

• a customer at the front of the line starts drawing money

• a customer being served �nished transaction and leaves

17
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Figure 4.1: operation of the simulation scheduler

Let us de�ne the possible events of the simulator that is the subject of this work in the
same manner.

• a node starts transmitting data

• a node stops transmitting data

• a node starts receiving data

• a node stops receiving data

Of course this is just a rough draft of a de�nition, however it is clear already, that
these events overlap in terms of meaning. When some node(s) start transmitting, some
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other node(s) start receiving. Therefore as far as the simulation core is concerned, there is
only one kind of event de�ned, an event that represents a data transmission, that contains
information about the sources, destinations and duration of the transmission. This de�nition
connects the sources and destinations of the transmission, together with the duration, which
makes the implementation simpler. Please note that even though the event de�nition is
connected to the transmission itself, the nodes are still represented as threads (coroutines).

Having the simulation event well de�ned, it is possible to de�ne the event set mentioned in
3.5. Since the simulation core needs to ensure the concurrency of the nodes (more simultane-
ous transmissions) in the network, the simulation time must be properly synchronized. The
synchronization technique used in this work is based on [3]. Fair threads[3] describes a library
that combines usage of the native threads (pthreads) and user space threads (coroutines).
The paper de�nes the term instant as the period of time between each synchronization of the
cooperative threads. During each instant, the scheduler "fairly" gives each thread the op-
portunity to execute. When all threads linked to the scheduler performed what they needed
during the instant, the scheduler moves to the next instant[3]. This work uses a modi�ed
version of this synchronization technique. Of course, this kind of synchronization requires
two event sets instead of one. The �rst contains events that are due during this instant,
the second contains events that will be due during the next instant. Note that the events
that are present at the second event set, occurred during the current instant. The described
synchronization technique gives the nodes just a "feeling" of concurrency, the processing
of the "concurrent" events is still sequential. Using two event sets and using instants for
synchronization are the two most signi�cant deviations from the process oriented simulation
paradigm. The previous paragraph de�ned duration as a parameter of the event. It may now
become clearer why. The duration of the event speci�es the number of instants the trans-
mission (represented by the event) takes to �nish. And for this amount of instants the event
is present in the core. Thus the contents of the event set that is currently being processed
actually contains all the transmission that are currently taking place in the network.

Another feature that the core of the simulator provides is the support of timed waiting1.
It is clear that implementation of timed waiting in the simulation environment as proposed
here requires some context swapping. It may seem that this behavior could be modeled
as an event. However this work uses events strictly for modeling transmissions. Therefore
timed waiting is handled in a little bit di�erent way than transmissions. For this purpose
this work de�nes another data structure as the part of the simulation core. This structure is
just an associative array to which the key is the instant (when the timed waiting ends) and
the value is the list of nodes (to be woken up at this instant). The scheduler just checks if
there are nodes to be woken up at the end of each instant and then proceeds as de�ned in
the previous paragraph.

The last things that need to be de�ned are the beginning and terminating conditions. The
beginning of the simulation is the invocation of the simulation scheduler. The termination
condition is de�ned as a certain number of instants that the simulation scheduler is supposed
to perform.

The �owchart in Figure 4.1 depicts the operation of the simulation scheduler. First the
simulation scheduler schedules all the nodes for sending. Note that it is up to the user

1An example of timed waiting is standard sleep(int seconds) function
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to decide what nodes will actually perform the transmission and what nodes will wait for
reception or perform timed waiting. Then the scheduler processes all the events that are due
during the current instant. Any new event that might occur during this process is scheduled
for the next instant. When all the events that are due during the current instant are properly
handled, the event set assigned to this instant is just dropped (note that the set is empty)
and replaced by the event set assigned to the next instant (which is replace by an empty
event set). Before moving to the next instant, the simulation scheduler wakes up all the
nodes that are supposed to be woken up during the current instant.

The core of the simulator is naturally not accessible by the user. The user de�nes actions
for each node instead. As the main focus of this work are advanced media access techniques
(i.e. distributed phase shift beamforming) and routing algorithms, OSI layers 2 and 3 are
fundamental regarding the user interface. The parameters of the user interface on these
layers are described in detail in 4.1.2.6 and 4.1.2.7 for the layer 2 and layer 3 respectively.

4.1.2 Node

Since a network node is a key building element of the network to be simulated, this chapter
describes the attributes of the nodes thoroughly. A network node is the element of the
simulation that directly communicates with the simulation core. It is the element the events
are invoked upon (more precisely, it is the physical layer of a node). Each node has a unique
location in space, which in this work is considered a �at plane (in order to keep the simulation
simple). Therefore the position of a node in space is de�ned by two spatial parameters (x and
y). These parameters are de�ned by the user during the simulation initialization. Another
parameter of a node is a table of neighbors (item in a table is an identi�cation of another node
with associated transmitting power needed to reach the node). Note that this parameter
in no way simulates the real environment, it is just a convenience parameter that allows
reducing the amount of computations during the simulation, since it is computed during the
initialization. Chapters 2 and 3 specify that the user needs to access the global information
of the simulation, therefore another convenience parameter is the reference to the global
data.

Since there are expected user de�ned protocols on layers 2 and 3, it is highly desirable
to assign a coroutine to each OSI layer of each network node2. Having a separate coroutine
for each OSI layer of each node gives the user a "feeling" of continuous execution on each of
these layers. Given that the user does not know about the context switching, developing of
user de�ned protocols is simpli�ed signi�cantly.

4.1.2.1 Protocol stack

The node is designed to implement a three layer protocol stack. The protocol stack of the
simulation node is depicted in �gure 4.2. Note that the data link layer needs to be divided
into sub-layers. This is explained in 4.1.2.3. All the layers have some common attributes:

• Each layer remembers the reference to the parent node, upper and lower layers.

2In order to keep the description clear, all the previous mentions of network nodes in this work did not
take this fact into consideration.
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Figure 4.2: Simulation node protocol stack

• Each layer has communication ports to communicate with the rest of the simulation.
First communication port is called event port and is designated for communication
with the upper and lower layer and is only accessible from these layers. The second
communication port is called message port and is used for direct communication be-
tween any two layers of any two nodes inside the simulation. The communication
using messages is not the part of the simulation and is designated for transferring the
user data between nodes without a�ecting the simulation. For more information about
messages refer to 4.1.3.

• As mentioned before, each layer has it's own execution unit (coroutine).

Figure 4.2 shows that not all the layers of the protocol stack are user de�ned. At the �rst
sight, it may seem that having some layers built in could make the simulator less universal.
Actually, it is the other way around. The physical layer as the bottom of the protocol stack
has to be more or less built in, because it directly communicates with the simulation core.
Plus, all the "physical" parameters are available at the link layer as well. The other built in
layer (LLC) is a part of the model just for the user convenience. This layer actually does not
exist in the real sensor networks (as it duplicates the LLC sub-layer), but here it provides
some extra features that may or may not be useful for the user. The important fact is, that
if the extra features are not used, the built in LLC layer acts as if not present at the protocol
stack (just passes data between the neighboring layers).

Design of the built in layers di�ers fundamentally from the design of the user de�ned
layers. The control �ow in the user de�ned layers is a responsibility of the user, whereas in
the built in layers it is a responsibility of the simulator itself. Therefore the built in layers
can be designed and implemented as state machines. On the other hand, on the user de�ned
layers, the simulator only implements encapsulation of data passing and context swapping
between the layers.
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Data �ow between the layers is implemented as events. It is important to realize that
in context of a node and it's internals, the term event (a node event) has a fundamentally
di�erent meaning than the event in context of the simulation core (a simulation event), which
is de�ned in section 4.1.1. Simulation event is a term used by [12] and is directly connected
to the simulation itself. It is the event that is the member of the event set of the event
simulator. On the other hand, a node event is a method to pass information between the
internal parts of a node, which in context of a process oriented event simulator is a process.
As a process (a node) is basically opaque to the simulator core in terms of what the process
is actually doing and how, node events are not known by the simulation core. Thus a node

event is in no way a event in terms of the event simulation.

To avoid ambiguity of the terms, on the user de�ned layers this work strictly uses the
terminology of node events as follows:

• SEND send event represents a request from the upper layer to the lower layer to send
data

• ACCEPT accept event represents a request from the lower layer to the upper layer to
pass data to send (if any)

• RECV recv event represents a request from the upper layer to the lower layer to receive
data

• PASS pass event represents a request from the lower layer to the upper layer to accept
the received data

These events are depicted in �gure 4.3.

Figure 4.3: Event �ow between the layers

4.1.2.2 Physical layer

Since the physical layer in real sensor networks is usually a simple radio transmitter/receiver
with just one antenna, the model of the physical layer is a simple radio emulator. Even
though the radio emulation is not accessible by the user as it is internal part of the simulation
environment, it can be easily replaced by a more complicated model in the future. The
physical layer model has two notable attributes. First, the radio is not able to receive any
signal while transmitting and vice versa. Second, the radio is able to recognize that collisions
of the received signal.

The state machine depicted in �gure 4.4 describes the operation of the physical layer.
In the idle state the radio waits for events. When asked to transmit, it moves to the state
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Figure 4.4: operation of the physical layer

transmitting. When asked to receive data it moves to the state receiving. When asked to
receive data in the state transmitting, it just ignores the request (this implements the inability
to receive anything when the radio is transmitting), when asked to stop the transmission,
it moves to the state idle. While in state receiving, when asked to receive data, it signals a
collision and stays in the same state. When asked to transmit data, it signals an error. Any
other requests that are not mentioned above cause an error.

4.1.2.3 Data link layer

The data link layer model of the simulation environment proposed by this work is quite
elaborate. The reason is simple, the data link layer of the sensor networks is quite di�erent,
and in a way, more complicated than the one known from TCP/IP stack. In TCP/IP, �ow
control and error management is taken care of by the transport layer (TCP). This implies
that need for �ow control of the data link layer in TCP/IP is reduced[30]. On the other
hand, in the sensor networks, �ow control and error management is still managed by the
data link layer[7]. This implies that the data link layer in sensor network is more robust than
the one used in wired networks and that LLC3 actually performs more operations than just
multiplexing the network layer protocols. Therefore it is quite desirable to actually separate
the model of MAC4 and LLC.

On one hand, it is convenient to allow the user to operate on LLC sub-layer in order
to ensure modularity reusablity and universality, on the other hand implementing data ac-
knowledgement protocols might be bothersome for the potential users. This work proposes a
compromise between user control and user convenience on LLC sub-layer. The compromise
is achieved by splitting the LLC sub-layer into two parts. The bottom part is built in in

3logical link control sub-layer of the data link layer
4media access control sub-layer of the data link layer



24 CHAPTER 4. IMPLEMENTATION

the simulation core and is opaque user, whereas the uppermost part is fully controlled by
the user. The built in part implements a simple acknowledgement protocol, which the user
part is free to use or not. If the user decides not to use the built in features, the built in
part actually behaves as if not present. The following sections describe the design of the
sub-layers de�ned in this paragraph.

4.1.2.4 Medium access control sub-layer

The model of MAC sub-layer is completely controlled by the user including the control
�ow. There is only an interface built in in the simulation core that provides connection to
the neighboring layers (especially context switching that is unnoticed on the user side) and
global information about the simulation. The actions that can be performed from the user
space are following:

Figure 4.5: send request handling by the mac sub-layer

1. SEND When a MAC send event is invoked, MAC just converts the event into an event
acceptable by the physical layer (in this case asks for a transmission start), passes the
event to the physical layer and yields control (swaps context) to it. The process is
depicted in �gure 4.5.

2. RECV Handling of the receive request is a bit more complicated. First MAC registers
a timeout event (see 4.1.1) in the simulation core and then yields the control to the
physical layer. When it regains control, it checks whether the timeout expired. If
not, the whole process is repeated until an event is received or the timeout expires. If
there is an event of an appropriate type received, the data is passed to the user space.
Eventually the context is swapped to the user space. Flowchart in �gure 4.6 depicts
this process.

3. ACCEPT Accept request means that the user wants to acquire data from the upper
layer. If there were any data passed to the event port in the past by the upper layer,
the data are converted and passed into the user space. Otherwise an error is returned.

4. PASS Pass request means that the user wants to pass the received data to the upper
layer. If such request is claimed, the data together with the control are passed to the
upper layer.
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Figure 4.6: receive request handling by the mac sub-layer

5. NOTIFY Notify request means that the user wants to notify the upper layer about the
result of the previous send request. If such request is claimed, the result together with
the control are passed to the upper layer.

6. WAITWhen a wait event is invoked, the MAC passes the control �ow to the simulation
scheduler and waits for any event that might occur. When it regains the control �ow
it noti�es the caller about the type of the event that was received.

4.1.2.5 LLC built in sub-layer

As mentioned in 4.1.2.1, LLC built in is a sub-layer designed just for the user convenience. It
provides the features that are not interesting from a simulation point of view. Nevertheless,
if there is a need to replace the built-ins of the LLC layer in the future, all the features
provides by this layer may be re-implemented by the user in the LLC user sub-layer. The
provided features are:

• addressing : LLC built in provides basic addressing. The address is equal to the id of
the node. LLC addressing feature includes dropping of frames that are received but
not addressed to the node.

• data acknowledgment : Data acknowledgment is carried out using simple ack frames
that contain just an acknowledgement �ag and no data. These frames are sent by
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the receiver to the sender after the receiver checks that the received data is all right.
Data acknowledgement is managed on per-frame basis. That means that the upper
layers decide whether the sent data should or should not be acknowledged for each
send request.

• bu�ering : LLC built in bu�ers incoming frames that are for some reason not read
immediately by the upper layer (RX queue), as well as it bu�ers the frames that
should be sent and cannot be sent immediately (TX queue).

Figure 4.7: State machine describing the operation of the LLC built in sub-layer

State machine in �gure 4.7 depicts the operation of the LLC built in sub-layer. Note
that the state representing an error is not shown in order to keep the scheme of the state
machine clear. Basically, upon any event that occurs, LLC state machine moves to a state
designated for handling that event. The actual handling of the event consist of transformation
of the data to an appropriate form, passing that data to an appropriate neighboring layer,
swapping context to that layer and waiting for the result. Waiting for result means waiting
until the control �ow is regained and checking the result of the pending operation. This is
straightforward in case of simple action like sending data without acknowledgement, where
the control is regained almost immediately, since the only thing that needs to happen is the
check whether medium is available (on MAC layer) and the only possible results are success
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or fail. On the other hand, some operations, like sending with acknowledgement require more
robust logic for the result checking. In this case LLC has to handle di�erent events that may
occur before the acknowledgement is received, for example reception of a di�erent data (by
enqueuing them in the RX queue). When there are no pending events to be handled, LLC
state machine stays in the idle state.

List of possible events and description of their handling follows:

1. SEND The send event on LLC built in sub-layer implements the data acknowledgement
feature and is available in following forms:

• SEND_NONBLOCKING_NOACK An attempt to send the data is made and the result
is immediately returned to the upper layer. Event handler for a simple send event
works analogically to the one described in 4.1.2.4, which is depicted in 4.5.

• SEND_NONBLOCKING_ACK An attempt to send the data is made. In case of fail-
ure, the result is immediately passed to the upper layer along with the control.
In case of success, the event handler5 waits for the acknowledgement frame. It
returns a result along with the control to the upper layer when the acknowledge-
ment is received or the waiting for acknowledgement times out. This process is
depicted in �gure 4.8.

• SEND_BLOCKING_NOACK An attempt to send the data is made. In case of failure,
the context is swapped to the simulator core. Then the event handler waits for
control. This loop is repeated until the condition that prevents the event handler
from sending the data vanishes. After the data is sent, the result is returned to
the upper layer along with the control. This process is depicted in �gure 4.9.

• SEND_BLOCKING_ACK An attempt to send the data is made. In case of failure,
the context is swapped to the simulator core. Then the event handler waits for
control. This loop is repeated until the condition that prevents the event han-
dler from sending the data vanishes. After the data is sent, the event handler
waits for the acknowledgement frame. It returns a result together with the con-
trol to the upper layer when the acknowledgement is received or the waiting for
acknowledgement times out. This process is depicted in �gure 4.10.

2. RECV Incoming data are picked up from the event port and stored in the RX queue for
the future use. If an acknowledgement is required for the incoming data, the event han-
dler sends an acknowledgement in a way described in SEND_NONBLOCKING_NOACK.
Then the control is passed to the simulation core. This process is depicted in �gure
4.11.

3. PASS The control is immediately returned to the upper layer. Either with data, in
case the RX queue is not empty, or with an error noti�cation in the opposite case.
This process is depicted in �gure 4.12.

5event handler is a block of the simulator code designated for handling a speci�c event
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Figure 4.8: Flowchart describing handling of LLC blocking send event

4.1.2.6 LLC user controlled sub-layer

User controlled LLC sub-layer is the uppermost sub-layer of the data link layer. It's archi-
tecture is similar to all the other layers that are under user control. The user de�ned routine
is executed by the execution unit assigned to the layer. This routine communicates with
the rest of the simulation by requesting actions from the provided interface. The LLC user
controlled sub-layer basically wraps the features implemented by 4.1.2.5, so that they are
accessible to the user while the user still has a dedicated execution unit. The actions that
can be performed from the user space are following:

1. SEND Same forms of send request are available as the ones de�ned in 4.1.2.5. LLC
user layer just creates an appropriate event and passes it to the lower layer. Then the
event handler waits for the result which is then returned to the user space.

2. RECV An event requesting data is passed to the lower layer along with the control �ow.
Than the event handler waits for any event that might occur. When the data event
is received or when the user de�ned timer times out, the result is passed to the user
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Figure 4.9: Flowchart describing handling of LLC send event with acknowledgement

space. Event handler for receiving event works analogically to the one described in
4.1.2.4, which is depicted in 4.6.

3. PASS Pass action always succeeds, because it only passes the control along with the
user supplied data to the upper layer.

4. WAIT Wait action allows the routine in the user space perform conditional waiting6.
The event handler just waits for any event. When an event occurs, the type of that
event is returned to the user space.

4.1.2.7 Network layer

The network layer is the uppermost layer of the node model. As it is one of the user
control layers, it's architecture is similar to all the other layers that are under user control.
The user de�ned routine is executed by the execution unit assigned to the layer. This
routine communicates with the rest of the simulation by requesting actions from the provided
interface. The available actions on the network layer are:

6conditional waiting is the process where the calling execution unit is suspended until a speci�c condition
occurs. An example may be timed waiting, where the condition is expiration of prede�ned amount of time
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Figure 4.10: Flowchart describing handling of LLC blocking send event with acknowledge-
ment

1. SEND: send event handler of the network layer works in an analogous way to the user
LLC send event handler, which is described in 4.1.2.6. The action of the event handler
consists of requesting send on the lower layer and waiting for the result.

2. RECV: Event handler for receiving event works analogically to the one described in
4.1.2.4, which is depicted in 4.6.
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Figure 4.11: Flowchart describing handling of LLC recv event

4.1.3 Messages

All the structures representing layers of the simulated protocol stack incorporate an inbox

designated for messages of any kind that the application in the user space may need to trans-
fer between the nodes. This may become useful in case there is any information that needs
to be delivered to a di�erent node but there is a valid reason not to send this information
as data through the simulation core. A typical use case of such messages is a simulation in
which the user is not particularly interested in the contents of the frames that are sent be-
tween the network nodes (e.g. uses a data generator) but at the same time needs to transfer
some control data between the nodes.

The messages are addressed to a node and a layer, are guaranteed to be delivered to
the destination. The messages are delivered to the destination immediately, but the context
is not swapped to the recipient. Therefore the recipient can "read" the message no sooner
than the moment when the context is swapped to the recipient (an event is delivered to the
recipient). The simulation core is in no way responsible for receiving the messages, i.e. the
user de�ned routines must check the inbox for new messages periodically, because there is
no other way to determine whether a new message has been received.

4.2 Implementation

This section describes technical details of the implementation. First it explains what inputs
are needed for the simulation environment to run. It focuses on the details the user must not
omit in order to preserve the correct operation environment, Then it describes what outputs
user can expect. At it's end, this section de�nes what requirements need to be met in order
for correct compilation, installation and execution of the simulator.

The goal of this work is to provide a core of a universal sensor network simulator. All
the features that are implemented are discussed in 4.1. It is clear that a product of this
work is not a full simulator. In order to perform a simulation, a user must provide at least
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Figure 4.12: Flowchart describing handling of LLC pass event

implementation of the user de�ned layers. Therefore the core of the simulator is implemented
as a program library.

Language chosen for the implementation is C. There exist simulation environments that
are implemented in languages outside of C/C++ family, for example the one described in [12].
These simulators may be suitable for some light weight application, but when it comes to
performing heavy weight simulations (e.g. sensor network simulations), C is the most suitable
choice, because it shows the shortest run times due to it's "closeness" to the operating system
and hardware.

4.3 Input

Because the simulation core is implemented as a library, it cannot use direct inputs (e.g.
con�guration �le), instead it takes it's inputs as parameters of the initialization call. There
are three inputs that are necessary in order for the library to initialize correctly:
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1. transmission function The simulation core uses the transmission function to com-
pute the e�ects of a given data transmission in the network (actually it calculates the
radiation pattern of an/a set of antenna/s). It gives the user complete freedom to
implement any possible radiation pattern of a single antenna or even a virtual antenna
array. Annotation of the transmission function is captured in listing 4.1. Transmission
function is supposed to decide who are the transmitters and who are the receivers,
what power should each transmitter use to transmit and what power each receiver
receives when data is delivered between two nodes with given ids. Of course the func-
tion has access to the global simulation data. Note that transmission function takes a
parameter of type void * designated for user data. This parameter may be used for
example for beamforming control. This parameter originates in send() functions on
user de�ned layers, so when a user calls the function send() on any layer with the
given parameter, this parameter is passed to the transmission function.

1 typedef void (*pdsns_transmission_fun) (
2 /* input: global pdsns structure */ pdsns_t *,
3 /* input: source id */ uint64_t,
4 /* input: destination id */ uint64_t,
5 /* output: array of source nodes */ pdsns_node_t **,
6 /* output: transmission power of src */ double *,
7 /* output: number of sources */ size_t *,
8 /* output: array of dest nodes */ pdsns_node_t **,
9 /* output: transmission pwr of dsts */ double *,

10 /* output: number of destinations */ size_t *,
11 /* user data */ void *
12 );

Listing 4.1: annotation of the transmission function

2. neighborhood function The neighbor function is very similar to the transmission
function. The simulation core uses it to compute the neighborhood of each node during
the initialization. Because the topology of any wireless network highly depends on the
radiation pattern of all the antennas in the network, this function is also user de�ned.
The neighborhood function is supposed to output all the nodes that are in reach of
the inspected node a the power that is needed to reach each of the neighboring nodes.
Unlike the transmission function, this function is only called during the initialization.
The annotation of the neighborhood function is captured in listing 4.2.

1 typedef void (*pdsns_neighbor_fun) (
2 /* input: global pdsns structure */ const pdsns_t *,
3 /* input: inspected node */ const pdsns_node_t *,
4 /* output: array of neighbors */ pdsns_node_t **,
5 /* output: neighbor pwr */ double *,
6 /* output: neighbor count */ size_t *
7 );

Listing 4.2: annotation of the neighborhood function

3. Path to the network �le A network �le de�nes basic parameters of all the nodes in
the network. The network �le uses XML format. The syntax is quite simple. The only
two tags are <network> which is the wrapping tag and <node>. Node is a child of
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network (in XML terms). Wheres <network> has no attributes, <node> has four
mandatory attributes:

• x the �rst planar coordinate (signed integer type)

• y the second planar coordinate (signed integer type)

• sensitivity The smallest amount of power that the node is able to recognize as
data (any smaller power is always considered noise). The data type is double.

• maxpwr maximal power the node is able to use for transmitting (double)

A simple example of a network �le is captured in listing 4.3.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <network>
3 <node x="3" y="4" maxpwr="1.0" sensitivity="0.01"/>
4 <node x="-1" y="2" maxpwr="1.0" sensitivity="0.01"/>
5 </network>

Listing 4.3: network �le

Before actually running a simulation the user must de�ne the model that is actually going
to be simulated. The library provides a skeleton of this model, but the user must de�ne the
details using the user routines for the user controlled layers. These routines are similar to
the user routines of pthreads that are passed to pthread_create()[13] and are treated
exactly in the same way. The only di�erence is, that the execution unit is not a pthread,
but a GNU portable thread. These routines should be implemented with care and the user
should anticipate that these routines are called on each node's corresponding layer as soon
as the corresponding thread spawns. The routines should return no sooner than the end of
simulation is signalized. Returning from such a routine implies the end of existence of the
corresponding thread (and consequently the corresponding layer of the a�ected node). The
annotation of these routines can be reviewed in listing 4.4

1 /* main function of the MAC sublayer */
2 typedef void (*pdsns_usr_mac_fun) (pdsns_mac_t *);
3 /* main function of the LLC sublayer */
4 typedef void (*pdsns_usr_link_fun) (pdsns_link_t *);
5 /* main function of the network layer */
6 typedef void (*pdsns_usr_net_fun) (pdsns_net_t *);

Listing 4.4: user routines for the user controlled layers

It is very important to note that these routines are directly accessed by the GNU pth
library and realize what consequences it brings to the user. Basically, these routines are only
interrupted when they perform a blocking call (e.g. SEND or RECV or WAIT). There is no
way to interrupt them from outside, as this is the nature of the coroutines[9]. Therefore these
routines are required to behave "nicely" in a way that they deliberately yield control from
time to time by calling some blocking calls. For the same reason these routines must respect
the termination condition of the simulation. If the termination condition is disrespected, the
routine is canceled in a similar way a unix process would be by calling kill -SIGKILL[29].
Expected behavior of a user routine is depicted by a �owchart in �gure 4.13.
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Figure 4.13: Flowchart describing operation of a user routine

Another important issue to take into consideration when implementing the user routines
is the fact that the context actually gets swapped. As can be seen in �gure 4.13, context
swapping basically consist of storing of the current calling stack7 on the heap8, calling stack of
the destination coroutine is restored and the context is swapped to the destination coroutine.
This process is reversed when the control is returned to the user routine.

An important consequence of the stack overwriting is that during the period when other
routine is in control, the stack of the user routine is invalidated, which among other things
mean, that all the local variables of the user routine are invalid during that period. Therefore
passing addresses (pointers) of local variable to the blocking calls shall lead to the memory

corruption.

Thus the recommended approach to implementing the user routines is following. Instead
of allocating variables on the stack, the user should de�ne a structure containing all the
variables the user wishes to have on the stack. When the user routine is invoked, an instance
of this structure should be dynamically allocated on the heap. This approach is captured in
listing 4.5. Addresses of variables that are inside such a structure are safe to be passed to
the blocking calls.

1 struct usrstack
2 {
3 type1 *var1;
4 type2 *var2;
5 ...
6 };
7

7"In computer science, a call stack is a stack data structure that stores information about the active
subroutines of a computer program. This kind of stack is also known as an execution stack, control stack,
run-time stack, or machine stack, and is often shortened to just "the stack". Although maintenance of
the call stack is important for the proper functioning of most software, the details are normally hidden and
automatic in high-level programming languages. Many computer instruction sets provide special instructions
for manipulating stacks."[23]

8Being an opposite to stack memory, that is allocated statically, heap memory is a memory space desig-
nated for dynamic allocations by the program.



36 CHAPTER 4. IMPLEMENTATION

8 void
9 usr_routine (some arguments)

10 {
11 struct usrstack *stack;
12

13 stack = (struct usrstack *)malloc(sizeof(struct usrstack));
14 ...
15 blocking_call(&stack->var1);
16 ...
17 free(stack);
18 return;
19 }

Listing 4.5: correct stack allocation by the user routine

4.4 Output

The library core is versatile enough to have virtually no clue about what the user intends
to simulate and what outputs the user expects. It is therefore the responsibility of the user
application to de�ne and deliver the desired outputs. There is a su�cient infrastructure for
the user allowing for the collection of the information about the simulation.

4.5 Portability

The simulation library can be compiled and linked against under any environment that meets
following requirements:

• Automake The simulation library is built using Automake together with libtool.
Therefore any target platform must provide Automake package. "Automake is a
tool for automatically generating Make�le.in �les compliant with the GNU Coding
Standards. Automake requires the use of Autoconf."[1] For more information about
Automake and libtool refer to [1].

• GLib "GLib provides the core application building blocks for libraries and applica-
tions written in C. It provides the core object system used in GNOME, the main
loop implementation, and a large set of utility functions for strings and common data
structures."[4]. The simulation library requires GLib in version 2.0 or later available
on the target system. For more information about GLib, refer to [4].

• libxml "Libxml2 is the XML C parser and toolkit developed for the Gnome project
(but usable outside of the Gnome platform), it is free software available under the
MIT License. XML itself is a metalanguage to design markup languages, i.e. text
language where semantic and structure are added to the content using extra "markup"
information enclosed between angle brackets. HTML is the most well-known markup
language. Though the library is written in C a variety of language bindings make
it available in other environments."[19]. The simulation library requires libxml in
version 2.0 or later available on the target system. For more information about
libxml, refer to [19].
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• GNU pth The GNU portable threads library is the library providing concurrency for
the simulation core. It has already been discussed in 3.5. The simulation library
requires GNU pth in version 2.0.7 or later available on the target system. For more
information about GNU pth, refer to [9].
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Chapter 5

Testing

This chapter describes the methods that were used to test the solution. First this section
describes these methods in general, then it explains how they were used to ensure quality of
the solution.

Testing is an important part of a software project life cycle as it is supposed to detect
erroneous or any other undesired behavior before the software product is released. Chapter
5 describes the methods that were used to assure the quality of the software library that was
described in chapter 4 and explains why these methods were used.

In order to assure quality of the software library, two phase testing has been employed:

1. Unit testing:"In computer programming, unit testing is a software testing method by
which individual units of source code, sets of one or more computer program modules
together with associated control data, usage procedures, and operating procedures, are
tested to determine whether they are �t for use. Intuitively, one can view a unit as the
smallest testable part of an application. In procedural programming, a unit could be an
entire module, but it is more commonly an individual function or procedure. In object-
oriented programming, a unit is often an entire interface, such as a class, but could be
an individual method. Unit tests are short code fragments created by programmers or
occasionally by white box testers during the development process."[35].

2. Integration testing: "Integration testing (sometimes called integration and testing,
abbreviated I&T) is the phase in software testing in which individual software modules
are combined and tested as a group. It occurs after unit testing and before validation
testing. Integration testing takes as its input modules that have been unit tested,
groups them in larger aggregates, applies tests de�ned in an integration test plan to
those aggregates, and delivers as its output the integrated system ready for system
testing."[28]

5.1 Unit testing

There exist libraries that provide advanced unit testing for plain C, for example Check,
AceUnit, or GNU Autounit, but these are designated for mission-critical or much larger

39
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projects than this work actually is[11]. For purposes of this work, an old fashion style of
writing simple application tests using assert is quite enough.

All the data structures that are de�ned and used in the library were subjected to unit
testing. As an example of an unit test, consider a test of an universal queue that is used for
example as a RX and TX queue on LLC built in layer (discussed in section 4.1.2.5) or as the
event set of the simulation core (discussed in chapter 4.1.1). Unit test testing of the queue
is captured in listing 5.1.

1 #include <assert.h>
2 #include <errno.h>
3 #include <stdlib.h>
4 #include <stdio.h>
5 #include "libpdsns.h"
6

7 int
8 main (void)
9 {

10 pdsns_queue_t *q;
11 int *val, ret, i;
12

13

14 /*************************** create ***************************************/
15 q = pdsns_queue_init(free);
16 if (q == NULL)
17 perror("queue_init"), exit(EXIT_FAILURE);
18

19 /* a new queue must be empty */
20 assert(pdsns_queue_empty(q));
21

22 /***************************** push ***************************************/
23

24 if ((val = (int *)malloc(sizeof(int))) == NULL)
25 perror("malloc"), exit(EXIT_FAILURE);
26

27 *val = 42;
28 ret = pdsns_queue_push(q, (void *)val);
29 if (ret == PDSNS_ERR)
30 perror("queue_push"), exit(EXIT_FAILURE);
31

32 /* size must be 1 now */
33 assert(pdsns_queue_size(q) == 1);
34

35 if ((val = (int *)malloc(sizeof(int))) == NULL)
36 perror("malloc"), exit(EXIT_FAILURE);
37

38 *val = 666;
39 ret = pdsns_queue_push(q, (void *)val);
40 if (ret == PDSNS_ERR)
41 perror("queue_push"), exit(EXIT_FAILURE);
42

43 /* size must be 2 now */
44 assert(pdsns_queue_size(q) == 2);
45

46 /* i.e. queue is not empty */
47 assert(! pdsns_queue_empty(q));
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48

49 /***************************** pop ****************************************/
50 val = pdsns_queue_pop(q);
51

52 /* expecting a value now */
53 assert(val);
54

55 /* first out must be 42 */
56 assert(*val == 42);
57

58 /* size must be 1 */
59 assert(pdsns_queue_size(q) == 1);
60

61 free(val);
62

63 val = pdsns_queue_pop(q);
64

65 /* expecting a value now */
66 assert(val);
67

68 /* second out must be 666 */
69 assert(*val == 666);
70

71 /* size must be 0 */
72 assert(pdsns_queue_size(q) == 0);
73

74 /* i.e. queue is empty */
75 assert(pdsns_queue_empty(q));
76

77 free(val);
78

79 /**************************** misc ****************************************/
80 /* expecting no value from empty queue */
81 for (i = 0; i < 3; i++) {
82 val = pdsns_queue_pop(q);
83 assert(val == NULL);
84 }
85

86 /************************* cleanup ****************************************/
87 if ((val = (int *)malloc(sizeof(int))) == NULL)
88 perror("malloc"), exit(EXIT_FAILURE);
89

90 *val = 42;
91 ret = pdsns_queue_push(q, (void *)val);
92 if (ret == PDSNS_ERR)
93 perror("queue_push"), exit(EXIT_FAILURE);
94

95 /* expecting queue to clean up the value val, use valgrind to check */
96 pdsns_queue_destroy(q);
97 fprintf(stderr, "success\n");
98 exit(EXIT_SUCCESS);
99 }

Listing 5.1: unit test testing of an universal queue implemented by the library

When compiled and executed, such a test is expected to print success and return 0. In
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order to check that the memory is managed properly, the unit tests were run under valgrind1.
The output of the test listed in 5.1 is shown below.

[user@hostname path]$ valgrind ./pdsns_queue_unit && echo $?
==13040== Memcheck, a memory error detector
==13040== Copyright (C) 2002-2012, and GNU GPL’d, by Julian Seward et al.
==13040== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==13040== Command: ./pdsns_queue_unit
==13040==
success
==13040==
==13040== HEAP SUMMARY:
==13040== in use at exit: 0 bytes in 0 blocks
==13040== total heap usage: 7 allocs, 7 frees, 92 bytes allocated
==13040==
==13040== All heap blocks were freed -- no leaks are possible
==13040==
==13040== For counts of detected and suppressed errors, rerun with: -v
==13040== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 6 from 6)
0

5.2 Integration testing

As an integration test, a simple "Hello World" simulation using the simulation library has
been implemented. Even though it is the simplest simulation that could be implemented us-
ing the simulation library, it's code is still quite extensive, due to the versatility of the library.
Therefore the complete code of the "Hello World" simulation is not shown, nevertheless it
is still part of the distribution package.

The simulated network consists of two nodes, one sending and the other receiving a "hello
world" message. All the necessary user inputs are implemented as simple as possible and
therefore do not model any real environment. These are used to test whether the simulation
library work properly instead.

• neighborhood function creates a full topology (i.e. any node can directly transmit to
any other node) where every node needs to use it's maximal power to reach any other
node.

• transmission function returns all the nodes but the transmitting one as the recipients
of any transmission. Receiving power of each node is equal to it's sensitivity.

• MAC and LLC user sub-layers just forward the request from neighboring layers.

1Valgrind is a �exible program for debugging and pro�ling Linux executables. It consists of a core, which
provides a synthetic CPU in software, and a series of debugging and pro�ling tools. The architecture is
modular, so that new tools can be created easily and without disturbing the existing structure.[17]. It is
commonly used to debug errors caused by poor memory management
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• NET user layer designates one node for sending and the other nodes for receiving. The
sending node sends data while the others wait for reception.

The full code of the "hello world" simulation is part of the distribution package.
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Chapter 6

Conclusion

6.1 Conclusion

Aim of this work is to deliver a suitable simulation environment for simulating sensor net-
works. Namely, this work is focused on providing an environment for simulating routing
algorithms designed speci�cally for sensor networks and for simulating distributed phase
shift beamforming technique. These two simulation scenarios require the simulating envi-
ronment to have speci�c attributes that are de�ned in chapter 2.

Existing solutions were analyzed and a conclusion was made that none of the analyzed
solutions meets all the requirements de�ned by this work (refer to 3). Therefore a new
approach combining the techniques of known solutions that were suitable to achieve the aim
of this work, was employed. A standalone simulation library for sensor networks was designed
and developed (refer to 4). On one hand, the �nal solution is versatile in terms of simulating
sensor networks, on the other hand, the solution is not capable of simulating phenomena
outside of the �eld of sensor (or similar) networks. Compliance of the �nal solution with the
requirements speci�ed in chapter 2 is summarized in following list:

1. Advanced transmission control that allows simulation of advanced media access control

techniques, such as distributed phase shift beamforming : This point is satis�ed by
leaving the implementation of the radiation e�ects of a transmission on the user. User is
also in control of MAC and LLC sub-layers of the data link layer. For further information,
refer to 4.1.

2. Independent model of each layer of the protocol stack that is easily exchangeable for a

di�erent one in the future: This requirement is met by including only the simulation
core into the �nal solution and leaving the large portion of the protocol stack for the
user to implement. The layer of the protocol stack that is directly connected to the
simulation core is the physical layer.

3. Simple user interface of each layer of the protocol stack that allows the user to imple-

ment the protocol logic in a straightforward way : The �nal solution implements process
driven discrete event paradigm, which gives a user the "feeling" of continuous execu-
tion. Whereas other discrete event simulators expect the user to handle events when
they emerge, the �nal solution lets the user handle events when convenient for the user.

45
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4. Reasonable simulation runtime even for large networks Since this work only provides
the simulation core, not the models of the phenomena to be simulated, it is virtually
impossible make a proper measurement of the runtimes without actually implementing
models for all the layers of the simulated protocol stack, which is not covered by this
work. Therefore it cannot be determined at this moment whether this requirement is
met.

6.2 Future work

This work only provides a simulation core, i.e. there are implemented no out of the box
features, such as real protocols implementing layers of the simulated protocol stack. Readers
are therefore encouraged to implement protocols used in sensor networks.
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Appendix A

Installation guide

Software library implementing the simulation core is called libpdsns. Libpdsns is supposed
to be built using automake [1] and is distributed together with a standard con�guration
package for automake. The generic installation instructions (that also apply for libpdsns)
are available in the INSTALL �le of the package. These instruction are also available online
at [1] and for complete clarity also mentioned below.

A.1 Recommended installation

1. Download or copy the installation package. preferably to a location like /tmp since
the installation �les are used only once during installation and are needed no more
after the installation is �nished.

2. run the ./autogen.sh script.The output should look similar to this:

[user@hostname tmp]$ ./autogen.sh
libtoolize: putting auxiliary files in ‘.’.
libtoolize: copying file ‘./ltmain.sh’
libtoolize: Consider adding ‘AC_CONFIG_MACRO_DIR([m4])’ to conf
igure.ac and
libtoolize: rerunning libtoolize, to keep the correct libtool m
acros in-tree.
libtoolize: Consider adding ‘-I m4’ to ACLOCAL_AMFLAGS in Makef
ile.am.
configure.ac:5: installing ‘./config.guess’
configure.ac:5: installing ‘./config.sub’
configure.ac:2: installing ‘./install-sh’
configure.ac:2: installing ‘./missing’
src/Makefile.am: installing ‘./depcomp’
[user@hostname tmp]$

3. run the ./configure script. The con�gure script has a lot of options. Consider
using at least -prefix=/some/nonsystem/path because the path usually defaults
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to /usr/lib which is default place for user libraries. Since the only application using
libpdsns is going to be your simulation application, consider installing libpdsns to some
custom path. The output should look similar to this:

[user@hostname tmp]$ ./configure --prefix=/opt/libpdsns
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
checking for gcc... gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ISO C89... none needed
checking for style of include used by make... GNU
checking dependency style of gcc... gcc3
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking for a sed that does not truncate output... /bin/sed
checking for grep that handles long lines and -e... /bin/grep
checking for egrep... /bin/grep -E
checking for fgrep... /bin/grep -F
checking for ld used by gcc... /usr/bin/ld
checking if the linker (/usr/bin/ld) is GNU ld... yes
checking for BSD- or MS-compatible name lister (nm)... /usr/bin
/nm -B
checking the name lister (/usr/bin/nm -B) interface... BSD nm
checking whether ln -s works... yes
checking the maximum length of command line arguments... 196608
0
checking whether the shell understands some XSI constructs... y
es
checking whether the shell understands "+="... yes
checking for /usr/bin/ld option to reload object files... -r
checking for objdump... objdump
checking how to recognize dependent libraries... pass_all
checking for ar... ar
checking for strip... strip
checking for ranlib... ranlib
checking command to parse /usr/bin/nm -B output from gcc object
... ok
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checking how to run the C preprocessor... gcc -E
checking for ANSI C header files... yes
checking for sys/types.h... yes
checking for sys/stat.h... yes
checking for stdlib.h... yes
checking for string.h... yes
checking for memory.h... yes
checking for strings.h... yes
checking for inttypes.h... yes
checking for stdint.h... yes
checking for unistd.h... yes
checking for dlfcn.h... yes
checking for objdir... .libs
checking if gcc supports -fno-rtti -fno-exceptions... no
checking for gcc option to produce PIC... -fPIC -DPIC
checking if gcc PIC flag -fPIC -DPIC works... yes
checking if gcc static flag -static works... no
checking if gcc supports -c -o file.o... yes
checking if gcc supports -c -o file.o... (cached) yes
checking whether the gcc linker (/usr/bin/ld -m elf_x86_64) sup
ports shared libr
aries... yes
checking whether -lc should be explicitly linked in... no
checking dynamic linker characteristics... GNU/Linux ld.so
checking how to hardcode library paths into programs... immedia
te
checking whether stripping libraries is possible... yes
checking if libtool supports shared libraries... yes
checking whether to build shared libraries... yes
checking whether to build static libraries... yes
checking for pth_init in -lpth... yes
checking for xmlReadFile in -lxml2... yes
checking for g_hash_table_new in -lglib-2.0... yes
checking size of time_t... 8
checking size of size_t... 8
checking size of long... 8
checking size of int... 4
checking size of short... 2
checking size of char... 1
configure: creating ./config.status
config.status: creating Makefile
config.status: creating doc/Makefile
config.status: creating src/Makefile
config.status: creating config.h
config.status: executing depfiles commands
config.status: executing libtool commands
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[user@hostname tmp]$

4. Build the library using make command. The output should look similar to this:

[user@hostname tmp]$ make
make all-recursive
make[1]: Entering directory ‘/tmp/trunk’
Making all in doc
make[2]: Entering directory ‘/tmp/trunk/doc’
make[2]: Nothing to be done for ‘all’.
make[2]: Leaving directory ‘/tmp/trunk/doc’
Making all in src
make[2]: Entering directory ‘/tmp/trunk/src’
/bin/sh ../libtool --tag=CC --mode=compile gcc -std=gnu99 -DH
AVE_CONFIG_H -I. -I.. -Wall -Werror -O0 -ggdb -Wall -Werro
r -O0 -ggdb -I/usr/include/libxml2 ‘pkg-config --cflags glib-2.
0‘ -MT libpdsns.lo -MD -MP -MF .deps/libpdsns.Tpo -c -o libpdsn
s.lo libpdsns.c
libtool: compile: gcc -std=gnu99 -DHAVE_CONFIG_H -I. -I.. -Wal
l -Werror -O0 -ggdb -Wall -Werror -O0 -ggdb -I/usr/include/libx
ml2 -I/usr/include/glib-2.0 -I/usr/lib64/glib-2.0/include -MT l
ibpdsns.lo -MD -MP -MF .deps/libpdsns.Tpo -c libpdsns.c -fPIC
-DPIC -o .libs/libpdsns.o
libtool: compile: gcc -std=gnu99 -DHAVE_CONFIG_H -I. -I.. -Wal
l -Werror -O0 -ggdb -Wall -Werror -O0 -ggdb -I/usr/include/libx
ml2 -I/usr/include/glib-2.0 -I/usr/lib64/glib-2.0/include -MT l
ibpdsns.lo -MD -MP -MF .deps/libpdsns.Tpo -c libpdsns.c -o libp
dsns.o >/dev/null 2>&1
mv -f .deps/libpdsns.Tpo .deps/libpdsns.Plo
/bin/sh ../libtool --tag=CC --mode=link gcc -std=gnu99 -Wall
-Werror -O0 -ggdb -Wall -Werror -O0 -ggdb -I/usr/include/libx
ml2 ‘pkg-config --cflags glib-2.0‘ -o libpdsns.la -rpath /tm
p/libpdsns/lib libpdsns.lo -lglib-2.0 -lxml2 -lpth

libtool: link: gcc -shared .libs/libpdsns.o -lglib-2.0 -lxml
2 -lpth -Wl,-soname -Wl,libpdsns.so.0 -o .libs/libpdsns.so.0
.0.0
libtool: link: (cd ".libs" && rm -f "libpdsns.so.0" && ln -s "l
ibpdsns.so.0.0.0" "libpdsns.so.0")
libtool: link: (cd ".libs" && rm -f "libpdsns.so" && ln -s "lib
pdsns.so.0.0.0" "libpdsns.so")
libtool: link: ar cru .libs/libpdsns.a libpdsns.o
libtool: link: ranlib .libs/libpdsns.a
libtool: link: ( cd ".libs" && rm -f "libpdsns.la" && ln -s "..
/libpdsns.la" "libpdsns.la" )
make[2]: Leaving directory ‘/tmp/trunk/src’
make[2]: Entering directory ‘/tmp/trunk’
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make[2]: Leaving directory ‘/tmp/trunk’
make[1]: Leaving directory ‘/tmp/trunk’
[user@hostname tmp]$

5. And �nally install the library to the path you previously speci�ed by the -prefix
argument to the ./configure command, using make install command. Note
that you must have a permission to write the target path, so when installing to standard
system paths, you may need to become root beforehand. The output should look
something like this:

[user@hostname tmp]$ make install
Making install in doc
make[1]: Entering directory ‘/tmp/trunk/doc’
make[2]: Entering directory ‘/tmp/trunk/doc’
make[2]: Nothing to be done for ‘install-exec-am’.
test -z "/tmp/libpdsns/share/doc/libpdsns" || /bin/mkdir -p "/t
mp/libpdsns/share/doc/libpdsns"
/usr/bin/install -c -m 644 dip.pdf ’/tmp/libpdsns/share/doc/li
bpdsns’
make[2]: Leaving directory ‘/tmp/trunk/doc’
make[1]: Leaving directory ‘/tmp/trunk/doc’
Making install in src
make[1]: Entering directory ‘/tmp/trunk/src’
make[2]: Entering directory ‘/tmp/trunk/src’
test -z "/tmp/libpdsns/lib" || /bin/mkdir -p "/tmp/libpdsns/lib
"
/bin/sh ../libtool --mode=install /usr/bin/install -c libp
dsns.la ’/tmp/libpdsns/lib’
libtool: install: /usr/bin/install -c .libs/libpdsns.so.0.0.0 /
tmp/libpdsns/lib/libpdsns.so.0.0.0
libtool: install: (cd /tmp/libpdsns/lib && { ln -s -f libpdsns.
so.0.0.0 libpdsns.so.0 || { rm -f libpdsns.so.0 && ln -s libpds
ns.so.0.0.0 libpdsns.so.0; }; })
libtool: install: (cd /tmp/libpdsns/lib && { ln -s -f libpdsns.
so.0.0.0 libpdsns.so || { rm -f libpdsns.so && ln -s libpdsns.s
o.0.0.0 libpdsns.so; }; })
libtool: install: /usr/bin/install -c .libs/libpdsns.lai /tmp/l
ibpdsns/lib/libpdsns.la
libtool: install: /usr/bin/install -c .libs/libpdsns.a /tmp/lib
pdsns/lib/libpdsns.a
libtool: install: chmod 644 /tmp/libpdsns/lib/libpdsns.a
libtool: install: ranlib /tmp/libpdsns/lib/libpdsns.a
libtool: finish: PATH="/usr/lib64/qt-3.3/bin:/usr/local/bin:/us
r/bin:/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/davak/omnet/om
netpp-4.4/bin:/home/davak/bin:/home/davak/omnet/omnetpp-4.4/bin
:/sbin" ldconfig -n /tmp/libpdsns/lib
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----------------------------------------------------------------------
Libraries have been installed in:

/tmp/libpdsns/lib

If you ever happen to want to link against installed libraries
in a given directory, LIBDIR, you must either use libtool, and
specify the full pathname of the library, or use the ‘-LLIBDIR’
flag during linking and do at least one of the following:

- add LIBDIR to the ‘LD_LIBRARY_PATH’ environment variable
during execution

- add LIBDIR to the ‘LD_RUN_PATH’ environment variable
during linking

- use the ‘-Wl,-rpath -Wl,LIBDIR’ linker flag
- have your system administrator add LIBDIR to ‘/etc/ld.so.c
onf’

See any operating system documentation about shared libraries f
or
more information, such as the ld(1) and ld.so(8) manual pages.
----------------------------------------------------------------------
test -z "/tmp/libpdsns/include" || /bin/mkdir -p "/tmp/libpdsns
/include"
/usr/bin/install -c -m 644 libpdsns.h ’/tmp/libpdsns/include’
make[2]: Leaving directory ‘/tmp/trunk/src’
make[1]: Leaving directory ‘/tmp/trunk/src’
make[1]: Entering directory ‘/tmp/trunk’
make[2]: Entering directory ‘/tmp/trunk’
make[2]: Nothing to be done for ‘install-exec-am’.
test -z "/tmp/libpdsns/share/doc/libpdsns" || /bin/mkdir -p "/t
mp/libpdsns/share/doc/libpdsns"
/usr/bin/install -c -m 644 README ’/tmp/libpdsns/share/doc/lib
pdsns’
make[2]: Leaving directory ‘/tmp/trunk’
make[1]: Leaving directory ‘/tmp/trunk’
[user@hostname tmp]$

6. Enjoy!
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