
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Bachelor’s Project

Analysis of students schedules and checking unusual study
plans - collection of web applications

Filip Sivák

Supervisor: doc. Ing. Tomáš Svoboda, Ph.D.

Study Programme: Open Informatics, Bachelor

Field of Study: Software systems

June 9, 2014

iv

v

Aknowledgements
I would like to thank to Daniel Vecerka for support with virtual server cwtest and Leona
Svobodova for providing valuable feedback for the application.

vi

vii

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on May 12, 2014 .

viii

Abstract

This work describes usage, implementation and deployment of web application designed to
find when students have free time in their schedule, to find empty rooms, find out which
minor study fields students of Open Informatics have completed and report on collisions in
schedule. The application is implemented in Java using Spring framework for the server and
Google web toolkit for the client. The application is loading data from KOSapi web service.

ix

x

Contents

1 Introduction 1
1.1 About this work . 1
1.2 How to read this work . 1

2 Problem analysis 3
2.0.1 User . 3
2.0.2 Timer . 3

2.1 Requirements . 3
2.1.1 Functional requirements . 3
2.1.2 Non-functional requirements . 4

2.2 Showing timetable of multiple students . 4
2.2.1 Existing solutions . 4
2.2.2 Implemented solution . 7

2.3 Finding an empty room . 7
2.3.1 Existing solution . 8
2.3.2 Implemented solution . 8

2.4 Check of unusual study plans . 8
2.5 Detecting collisions . 8

2.5.1 Existing solution . 9
2.5.2 Implemented solution . 9

3 User guide 11
3.1 Finding out when students have free time . 11
3.2 Finding free room . 12
3.3 List of minors of students . 13

3.3.1 Definition of minor in application . 14

4 KOSapi 15
4.1 Extracting interesting data from KOSapi . 15

4.1.1 The list of students of particular programme or branch 15
4.1.2 Timetable of student . 15
4.1.3 Completed courses of student . 15

4.2 Limitations . 16
4.2.1 Absence of join . 16
4.2.2 Fetching data for all semesters at once 17

xi

xii CONTENTS

4.2.3 Support for caching . 17
4.2.4 No last-modified header . 17
4.2.5 CORS is disabled . 17

4.3 Problems . 17
4.3.1 Inaccessible data . 17
4.3.2 Non unique codes . 18
4.3.3 Missing pieces of data . 18
4.3.4 Using atom:updated field does not speed up fetching process 18

5 Implementation 19
5.1 Architecture . 19

5.1.1 Server packages . 19
5.1.2 Application context . 20
5.1.3 Asynchronous execution . 21
5.1.4 Handling GWT RPC calls . 22
5.1.5 Handling GWT HttpSession . 22
5.1.6 Serving standard web pages using Spring MVC 22
5.1.7 Package shared . 22
5.1.8 Logging . 22

5.2 Domain layer . 23
5.2.1 Data sources and strategies . 23
5.2.2 Instantiation of proxy . 23
5.2.3 Choosing the right strategy . 23
5.2.4 Motivation behind proxies . 24
5.2.5 Persistence . 24
5.2.6 JPA . 24
5.2.7 Sending JPA entities through GWT RPC 25
5.2.8 H2 database . 26
5.2.9 Building KOSapi query . 26
5.2.10 Working with atom feed . 26
5.2.11 JAXB unmarshalling . 26

5.3 Persentation layer . 26
5.3.1 GWT . 27
5.3.2 Advantages . 27
5.3.3 GWT module architecture . 28
5.3.4 User interface . 28
5.3.5 Communication with server . 28
5.3.6 Showing progress of long running task 30
5.3.7 Using JPA annotations . 30
5.3.8 Bug workaround in enhanced compilation of JPA entities 30
5.3.9 Code sharing specificities . 31
5.3.10 Solving problems with GWT . 31
5.3.11 Thymeleaf . 31
5.3.12 Configuration with Spring . 32
5.3.13 Bootstrap . 32

CONTENTS xiii

6 Application 33
6.1 Finding when students have free time . 33

6.1.1 Finding when room is free of lecture 34
6.1.2 Checking unusual study plans . 35
6.1.3 Watching for collisions . 36

7 Programmer’s guide 37
7.1 Development . 37

7.1.1 Obtaining the source code . 37
7.1.2 Importing project to IDE . 37
7.1.3 Productivity tips . 37
7.1.4 Code style . 38
7.1.5 Running the application with jetty . 38
7.1.6 Speeding up jetty startup . 38
7.1.7 Testing with JUnit . 38

7.2 Build . 39
7.2.1 Makefile . 39

7.3 Production requirements . 39
7.4 Development requirements . 39
7.5 Instalation for development . 40

8 Conclusion 41
8.1 Possible extensions of application . 41

8.1.1 Finding empty room in examination time 41
8.1.2 Student’s schedule assistant . 41
8.1.3 Exam collision alerts . 42

xiv CONTENTS

List of Figures

2.1 List of study fields . 5
2.2 List of courses in single study field . 5
2.3 Example timetable of course APO. Hours 3 and 4 was omitted due to the

length of image. 6
2.4 Example of support app output . 7
2.5 List of rooms . 8

3.1 Student filter component . 11
3.2 Timetable component . 12
3.3 Selection (higlighted with blue color) shows courses and students that has

lecture in last two hours of lessons. 13
3.4 Empty rooms . 13
3.5 Example of minor record . 14

4.1 State diagram showing possible states of course enrollment 16

5.1 Deployment diagram showing structure of project 20
5.2 Activity diagram showing strategy decision algorithm 24
5.3 Using GWT rpc . 29

6.1 TimetableSum diagram . 34
6.2 Organization of minor listing data . 36

xv

xvi LIST OF FIGURES

Chapter 1

Introduction

1.1 About this work

This work describes web application that finds when students have free time, what rooms
are empty and which minor1 study fields have students of Open Informatics finished. The
application is loading data from information system of Czech Technical University in Prague,
creates data aggregations and serves them to user in an interactive form. Application loads
only the subset of data that belongs to Faculty of Electrical Engineering and uses KOSapi []
web service to obtain the data.

1.2 How to read this work

Work is divided into nine chapters.
Users of the application (faculty clerks) should read chapters 2 and 3 to get an overview of
the application and information on how to use it. Programmers that want to implement their
own client for KOSapi should read chapters 4 and 6. Programmers that want to extend the
application that is described by this work should read chapters 6, 5 and 7.

• Chapter 2, describes what problems the application solves and discuss contribution of
this work.

• Chapter 3 serves as user guide, with screen shots of application and possible scenarios
of usage.

• Chapter 4 describes used data source and provides useful tips and recommendations for
using it in readers own work.

• Chapter 5 provides details on implementation of application. This chapter is recom-
mended for everyone who would like to do changes to application.

1Minor is optional study field that is printed on diploma

1

2 CHAPTER 1. INTRODUCTION

• Chapter 6 describes how were problems solved.

• Chapter 7 serves as programmer’s guide and describes deployment procedure, required
toolset and hardware.

• Chapter 8 provides summary on completed work and discusses possible extensions of
application.

Chapter 2

Problem analysis

2.0.1 User

Users are administrative workers of faculty, teachers or students. Users are logged in based
on FELID1 authentication, that is provided by server (authentication is not concern of
application).

2.0.2 Timer

There are some tasks that are not invoked by user, but by timed event. Such tasks can be
re-fetching of data or sending email alerts.

2.1 Requirements

2.1.1 Functional requirements

See chapter 2 to see what problems application solves. Only formal definition of requirements
follows.

1. App will allow user to find when specific group of students has free time

(a) App will allow user to specify group of students by grade, study programme or
study stage

(b) App will allow user to specify group of students by set of courses or their parallels

2. App will allow user to find what rooms are free of lectures by specified time and filter

(a) App will allow user to filter out rooms by type, department and capacity

3. App will allow to user to list students that have completed minor specialization

(a) App will allow to filter out students by grade

4. App allows user to control the caching mechanism
1FELID is authentication similar to OAuth

3

4 CHAPTER 2. PROBLEM ANALYSIS

2.1.2 Non-functional requirements

1. Application provides feedback for long running operations (such as fetching for kosapi)

2. Application provides fast response for cached data

3. Application can be accesses only by authenticated users

2.2 Showing timetable of multiple students

The application shows timetable of given set of students in single table, so that user can
quickly find suitable time for happening or rescheduling a lecture. The user has two options
of specifying set of users:

1. By student programme, grade and study type

2. By courses or parallels

Finding the common schedule of students of given programme and grade allows to plan a
meeting for many students. Tough students of same programme have some common courses,
their schedule is very diverse and the application must take into an account schedules of all
given students. There are some periods in academic year when schedules are being changed
very often, so the application must allow to fetch data directly from KOSapi instead of using
caching mechanism.

2.2.1 Existing solutions

Finding when students have free time is non-trivial task. Timetables of individual students
are very diverse as any student can enroll voluntary course and pick what parallel of lecture
he will attend.
For an example, teacher wants to plan meeting for students of second grade that study
Open Informatics in bachelor cycle. Teacher can ask students personally during the lecture.
However, only few would answer and students that are not present would not have an
opportunity to comment. Using online service such as http://doodle.com that allows to
propose terms and let students to pick the ones that best suits them is better than asking
them directly, but not every student is going to give the teacher feedback and the teacher is
forced to create a lot of possible terms because he doesn’t know when his students are busy.
Another possibility is going to faculty web http://fel.cvut.cz, and navigate through links
“Studium”, “Studijní plány”, “Bakalářské - Otevřená informatika”, “prezenční” to receive list of
possible study fields.

http://doodle.com
http://fel.cvut.cz

2.2. SHOWING TIMETABLE OF MULTIPLE STUDENTS 5

Figure 2.1: List of study fields

Now the teacher needs to open each study field in the new tab. Per each tab, he needs to do
following actions:

1. Choose a language

2. Locate semester he is interested in

3. Compare all three tables to get all mandatory courses of the students

4. Open descriptions of courses in new tabs

Figure 2.2: List of courses in single study field

There is nine courses in study plan of second grade students of bachelor Open Informatics.
For each tab with the course, teacher must click on the code of the course to get to the
timetable of the course. Timetables are located at the address http://www.fel.cvut.cz/cz/
education/rozvrhy-ng.B132/public/cz/ where B132 is code of semester one is interested
in. At last, it is now possible to visually compare nine different timetables.
It’s good to point out, that such procedure does not yield precise result, as tables of courses
are missing:

1. Courses that students enrolled beyond the scope of study programme

2. Courses that students enrolled second time

Moreover, such procedure cannot be applied to summer semesters of last grades as their
schedule is not dependent on the study plan.

http://www.fel.cvut.cz/cz/education/rozvrhy-ng.B132/public/cz/
http://www.fel.cvut.cz/cz/education/rozvrhy-ng.B132/public/cz/

6 CHAPTER 2. PROBLEM ANALYSIS

Figure 2.3: Example timetable of course APO. Hours 3 and 4 was omitted due to the length
of image.

Using existing support application
Support application on address https://cw.felk.cvut.cz/support/rozvrhy_predmetu/
index.php is capable of showing timetable of multiple courses given by codes. There are useful
predefined course groups that can be found on course ware site https://cw.felk.cvut.cz
by following navigation: “misc”, “radaoi”, “ruzne”, “rozvrhy_minoru”. Main disadvantages are
that the data does not show voluntarily enrolled courses.

https://cw.felk.cvut.cz/support/rozvrhy_predmetu/index.php
https://cw.felk.cvut.cz/support/rozvrhy_predmetu/index.php
https://cw.felk.cvut.cz

2.3. FINDING AN EMPTY ROOM 7

Figure 2.4: Example of support app output

2.2.2 Implemented solution

Application completely automates the process of going throuh schedules. User specifies group
that he is interested in and receives single comprehensible table that shows when students
are busy and what courses they attend.Instead of long comparison of multiple timetables,
user has now possibility to get valuable information using just few clicks. User can navigate
to description of course or record of user in user database2. After submiting request, url of
web application in browser is appended with serialization data of user input so that user can
share his url to other user.

2.3 Finding an empty room

The application allows to find an empty room based on search criteria:

1. Time (lecture hours)

2. Minimal capacity

3. Locality

4. Type of room

5. Division

Application lists rooms in table and allows to display schedule of individual rooms.
2https://udb.fel.cvut.cz/ provides basic information about student and links schedules of active

semesters

https://udb.fel.cvut.cz/

8 CHAPTER 2. PROBLEM ANALYSIS

2.3.1 Existing solution

The teacher can ask administrative clerk of his division to get list of possible rooms. He
would then check timetable of each room using the list of rooms http://www.fel.cvut.cz/
cz/education/rozvrhy-ng.B132/public/cz/mistnosti/index.html.

Figure 2.5: List of rooms

The teacher must go though room schedules one by one. Moreover, existing timetable
application does not provide any information on capacity or type of room.

2.3.2 Implemented solution

The user can pick suitable time by clicking on timetable that displays when students have
time, define restrictions as capacity, type of room and location and by clicking a single button
get list of all rooms, that met criteria and doesn’t have scheduled lecture.

2.4 Check of unusual study plans

Study programme Open informatics offers possibility to graduate minor field alongside the
major. The list of all minors can be found on []. Minor is accredited after completion of
defined set of courses. The Application displays list of all students that have finished minor,
showing what courses they have finished in what semesters. The user can display unfinished
minors to see what courses have students not completed or not enrolled at all. There is no
existing solution, apart from asking students what minors have they completed.

2.5 Detecting collisions

Planning timetable is hard task, so timetable is changed only if necessary. That is, when
teacher does not have time, there is new course and so on. Rescheduling parallel requires
knowledge of students timetables as described in section 2.2.
Collisions are being watched in defined groups. When lectures of two or more courses of
given group overlaps, it is consiedered as a collision. When lecture has only one parallel of
excercise to enroll, it is also checked for collisions. Course groups that are being watched for
collisions are defined in the same way as minors.

http://www.fel.cvut.cz/cz/education/rozvrhy-ng.B132/public/cz/mistnosti/index.html
http://www.fel.cvut.cz/cz/education/rozvrhy-ng.B132/public/cz/mistnosti/index.html

2.5. DETECTING COLLISIONS 9

2.5.1 Existing solution

Existing support application [] allows to display timetable of given group of courses. It
highlights detected collisions of parallels, allowing administrative clerks to reschedule in a
way that does not causes collision.
Shortcomings of existing application

1. Application loads data only few times a day, leaving clerks to wait to see feedback to
their change

2. Application does not show voluntarily enrolled courses

3. Clerks must check application by themselves

2.5.2 Implemented solution

User specifies course groups to watch and groups of users that watches given course groups.
User group is specified by set of emails. Application send emails to specified email addresses
whenever collision in their watched group occurs. Such approach allows to do more extensive
checks, as they are performed automatically, typacally once a day.

10 CHAPTER 2. PROBLEM ANALYSIS

Chapter 3

User guide

The web application is located on address http://cwtest.felk.cvut.cz:8080/rozvrhy_
studentu/. Open address in your Internet browser to use the application. It’s recommended
to use a current Internet browser. The application has navigation menu located at the top of
application that user can use to navigate between sections.

3.1 Finding out when students have free time

At first, the user should specify which students he wants to analyze, using the top most form:

Figure 3.1: Student filter component

It is possible to choose multiple study programmes, study types and grades. Current semester
is always chosen as default, but user can choose different one if he wants to. All the data
are loaded from cache (if present in cache) by default. To load most current data, uncheck
“Použít cache” button. Application will load current data from server. This operation might
take few minutes so progress is displayed and refreshed every second. Once data are loaded,
they are shown in a table below.

11

http://cwtest.felk.cvut.cz:8080/rozvrhy_studentu/
http://cwtest.felk.cvut.cz:8080/rozvrhy_studentu/

12 CHAPTER 3. USER GUIDE

Figure 3.2: Timetable component

Table shows numbers in different colors. The more red the number is, the less students have
time at that hour. There is a text above table that shows total count of students that are in
the specified group. Each cell of table represents one lecture hour. The number represents
count of students that are at school at given time.

There is a list of courses located at the right of the table. List is sorted by student count.
Click on the item to go to description of course that is located on http://fel.cvut.cz.
Hover with mouse over the link to see tooltip with full name of course. Click on the plus icon
to see list of students that are enrolled in given course.

You can refine the list by selecting on cells in the table. To select a cell, simply click on it.
Cell will change its color from white to light blue to provide feedback. You can select as many
cells you want. List of courses will show courses that take place only at time represented by
selected cells (see figure 3.3). To show all courses again, unselect cells or click on the count of
all students.

3.2 Finding free room

Provide minimal needed capacity, location and type of room by filling the form. Specific
division can be selected from drop down list to restrict returned list only to rooms that belong
to given division. Clicking the button “Vyhledat místnosti” shows the list of rooms. Note
that some rooms has capacity set to 5 while they can provide place for up to 20 students.
The user can click on code of room to navigate on schedule web page.

http://fel.cvut.cz

3.3. LIST OF MINORS OF STUDENTS 13

Figure 3.3: Selection (higlighted with blue color) shows courses and students that has lecture
in last two hours of lessons.

Figure 3.4: Empty rooms

3.3 List of minors of students

Click on the “Minory” link located at the horizontal top menu. The list of students that
have completed minor is shown. Each student has shown a list of minors he has completed.
Click on the link “Zobrazit nedokončené minory” to see all students that have completed or
enrolled a course that is a part of a minor. The list bellow shows three possible states of
minor course. Note that students that has some unfinished courses in current semester was
not examined yet and can complete minor at the end of semester.

14 CHAPTER 3. USER GUIDE

1. Finished (absolvován) - course was finished

2. Unfinished (neabsolvován) - course was not yet finished, or was failed

3. Not enrolled (nezapsán) - student did not enroll this course

Figure 3.5: Example of minor record

3.3.1 Definition of minor in application

Minors are defined by administrators of application by providing XML configuration files.
The files are located at src/main/webapp/data/coursegroups directory and can have any
name. The application needs to be restarted in order to reload configuration (subjected to
change).

1 <CourseGroup isMinor="true" minimalCount="3" name="OI minor Grafika dobj (BP)">
2 <CourseCode required="true">A7B39PGR</CourseCode>
3 <CourseCode>A7B39MVR</CourseCode>
4 <CourseCode>A7B39KMA</CourseCode>
5 <CourseCode>A7B39MGA</CourseCode>
6 <CourseCode>A7B39GRT</CourseCode>
7 </CourseGroup>

Listing 1: Usage of import tag in application context xml configuration.

CourseGroup must have attribute isMinor set to true in order to be considered a minor by
the application. Minimal count denotes how many courses from the list must be completed in
order to finish a minor. Additional attribute required can specify course that is mandatory,
thus finishing courses “A7B39KMA”, “A7B39MGA” and “A7B39GRT” does not complete
shown minor.

Chapter 4

KOSapi

KOSapi https://kosapi.fit.cvut.cz/projects/kosapi/wiki is REST web service writ-
ten as a interface for KOS information system. It contains information about students, their
schedules, enrolled courses, registered exams and more. Kosapi uses XML as it’s transfer
format. Each item is wrapped in atom feed, which is distinguished by XML namespace atom.

4.1 Extracting interesting data from KOSapi

4.1.1 The list of students of particular programme or branch

Students can be filtered by grades, study form, programme or branch. Here is an example
of students of first and second grade of programme Open Informatics, that has code BP4.
Note that supplying parameter specifying study stage (bachelor or magister) is not needed,
because bachelor and magister programmes has different codes.
studentssem=B132&faculty=13000&limit=1000&query=studyForm==FULLTIME;studyState=
=ACTIVE;(grade==1,grade==2);programme==BP4

4.1.2 Timetable of student

To obtain timetable of single student run query: https://kosapi.feld.cvut.cz/api/3/
students/sivakfil/parallels?limit=1000 Note TimetableSlot field, that has information
about when given parallel takes place. There might be more than one TimetableSlots per
parallel!

4.1.3 Completed courses of student

There is a resource in KOSapi called enrolledCourses, that allows to find out, what courses
have student enrolled and completed. Moreover, using knowledge about processes in university,
one might find out whether student have received assessment or attended exam. See the
figure 4.1.

15

https://kosapi.fit.cvut.cz/projects/kosapi/wiki
studentssem=B132&faculty=13000&limit=1000&query=studyForm==FULLTIME; studyState==ACTIVE;(grade==1,grade==2);programme==BP4
studentssem=B132&faculty=13000&limit=1000&query=studyForm==FULLTIME; studyState==ACTIVE;(grade==1,grade==2);programme==BP4
https://kosapi.feld.cvut.cz/api/3/students/sivakfil/parallels?limit=1000
https://kosapi.feld.cvut.cz/api/3/students/sivakfil/parallels?limit=1000

16 CHAPTER 4. KOSAPI

Start

Author = student

Author =

administrator

Author =

lecturer

Author =

examiner

No

assesment

No exam

attended

course ended successfuly or

unsuccessfuly

Check isComplete field on

CourseEnrollment entity.

[examination

ended]

[examination ended]

[examination

ended]

[examination ended]

[exam

attended]

[assesment assigned]

[assesment

assigned]

[administrator enrolls course]

[student enrolls course]

Figure 4.1: State diagram showing possible states of course enrollment

Each KOSapi atom entry has field author. That field changes every time when someone
alters an entity. Based on author and time, one can deduce what state is course enrollment
in. Note that as opposed to parallels, with enrolledCourses, information about what courses
was enrolled before timetable was set is availabe. Data source is therefore usable even in
pre-enrollment (“předzápis”) stage.

4.2 Limitations

4.2.1 Absence of join

REST does not allow to join tables. For example: when fetching students and their parallels,
it is impossible to fetch all students and their parallels at once. That results in fetching each
student’s parallel list separately, which takes a long time. One might accelerate fetching by
firing requests asynchronously. Note that this is not possible in PHP. Possible solution would
be to allow feeds to return just the relationships between the students and the parallels.

4.3. PROBLEMS 17

4.2.2 Fetching data for all semesters at once

Data can be fetched only for one concrete semester. It would be great if one could pass
special case all to sem parameter1 and then retrieve all the data. User of KOSapi would
still be able to differentiate semesters in data, as data contains semester field.

4.2.3 Support for caching

Some data operations require having all the data stored locally (e.g. in database). For
example, when checking what rooms are free to use in certain time, algorithm must go
through timetable of all rooms. There are periods of year, when timetables are changed and
data must be refetched frequently. Instead of refetching timetables of all rooms, it would be
nice to ask KOSapi only of the changed ones. An example url is https://kosapi.feld.cvut.
cz/api/3/parallels?updatedAfter=1399733293, where value of updatedAfter parameter
is unix timestamp. Since KOSapi internally stores all the data in SQL database, it would not
be hard to implement.

4.2.4 No last-modified header

It would be helpful to provide last-modified header to every response. Atom feed has
currently field updated that corresponds to time, when was feed assembled (i.e. time of
request). More helpful would be to assign to updated field the date of oldest entity in the
feed. Same date could be supplied to last-modified header, so that HTTP HEAD2 [] request
could be performed to check availability of new data.

4.2.5 CORS is disabled

Cross-Origin Resource Sharing allows JavaScript clients to perform request to other domains
that would otherwise be blocked by browsers due to the security. Internet browsers block
requests to other domains, so that potential attacker would not access session of an user.
Since KOSapi is web service and there are no security risks, it should provide header
Access-Control-Allow-Origin with value of ’*’ (i.e. allow all). Reader can read more in [].

4.3 Problems

There are hidden problems that might surprise programmers of clients. Being aware of those
might help one to implement his own client.

4.3.1 Inaccessible data

Some data are not accessible by KOSapi. For example, special case of programme with
code 9CIZI serves as programme for students of other universities. Requesting KOSapi
url https://kosapi.feld.cvut.cz/api/3/programmes/9CIZI results in HTTP 500 error

1sem is short for semester
2HEAD request is like GET request, but returns only header resulting in faster responses

https://kosapi.feld.cvut.cz/api/3/parallels?updatedAfter=1399733293
https://kosapi.feld.cvut.cz/api/3/parallels?updatedAfter=1399733293
https://kosapi.feld.cvut.cz/api/3/programmes/9CIZI

18 CHAPTER 4. KOSAPI

with message: “Well, this doesn’t look good. . . There’s some stranger behind the door:
class org.jboss.resteasy.spi.UnhandledException”. However requesting https://kosapi.feld.
cvut.cz/api/3/programmes?query=code==9CIZI does not result in error and shows data.
Fetching parallels of course U3V FEL3 results in same error.

4.3.2 Non unique codes

Code 9CIZI is used for multiple programmes. Query https://kosapi.feld.cvut.cz/api/
3/programmes?query=code==9CIZI returns 7 records.

4.3.3 Missing pieces of data

Some fields are missing, resulting in meaningless data.

1. There are timetable entries without specified day

2. There are course enrollments without specified course

These could be a problem of KOS database itself, but developer must take them in account
and never assume he will get all the fields.

4.3.4 Using atom:updated field does not speed up fetching process

KOSapi provides possibility of fetching only listed fields. One could write query: https:
//kosapi.feld.cvut.cz/api/3/parallels?limit=500&fields=entry(id,updated) to re-
ceive parallels only with id and updated field, filter out parallels that have not changed
since the last fetching and request only updated parallels by their id. However, retrieving
only few fields is not faster then retrieving them all. It is also not possible to fetch
multiple parallels by their id, as id is not accessible by query and is passed directly in url.

3University of third age

https://kosapi.feld.cvut.cz/api/3/programmes?query=code==9CIZI
https://kosapi.feld.cvut.cz/api/3/programmes?query=code==9CIZI
https://kosapi.feld.cvut.cz/api/3/programmes?query=code==9CIZI
https://kosapi.feld.cvut.cz/api/3/programmes?query=code==9CIZI
https://kosapi.feld.cvut.cz/api/3/parallels?limit=500&fields=entry(id,updated)
https://kosapi.feld.cvut.cz/api/3/parallels?limit=500&fields=entry(id,updated)

Chapter 5

Implementation

The application is written as web application in Java Enterprise Edition (Spring framework),
leveraging Hibernate (JPA 2) and JAXB libraries, GWT framework and Spring MVC for
presentation, using Maven build system.

5.1 Architecture

1. cz.cvut.felk.rozvrhy.server - server side code

2. cz.cvut.felk.rozvrhy.shared - code that is shared between server and client

3. cz.cvut.felk.rozvrhy.client - code that is intended for GWT application

There are two applications in project:

1. Server - handles requests from user, makes calls to KOSapi and database

2. GWT application - runs in users browsers, takes input from user and makes calls to
server

5.1.1 Server packages

1. async - support for asynchronous task execution

2. config - loading of xml configuration files

3. dao - fetching data from KOSapi and database

4. engine - services used to do operations on data

5. gwt - GWT RPC call handler and utils

6. KOSapi - services that serves direct communication to KOSapi

19

20 CHAPTER 5. IMPLEMENTATION

UserdPC

«executionEnvironment»
WebdBrow ser

«GWTdApplicatGGG
Clientdapplication

CWTESTdServer

«executionEnvironment»
Tomcat

«Springdapp»
Serverdapplication

FEEdschedulerdanalyser

KOSAPI dserver

«restdwebservice»
KOSAPIdservice

KOSdserver

KOSddatabase

H2ddatabase

databaseGh2Gdb

1

SQL

1

1

SQL

1

RESTdxml

1

Q

GWTdRPC

1

Figure 5.1: Deployment diagram showing structure of project

5.1.2 Application context

Application context is a central provider of configuration for Spring. There are two application
contexts, one for production and one for testing, that is used by JUnit. Note that JUnit
application context extends production context by using import tag.

1 <beans xmlns="...">
2 <import resource="applicationContext.xml" />
3

4 <!-- Mocking servlet context -->
5 <bean class="org.springframework.mock.web.MockServletContext">
6 <property name="contextPath" value="src/main/webapp/" />
7 </bean>
8 </beans>

Listing 2: Usage of import tag in application context xml configuration.

5.1. ARCHITECTURE 21

5.1.3 Asynchronous execution

The native way
Java provides an elegant way to perform asynchronous execution by providing interface
ExecutorService [] that allows to submit Runnable or Callable instances and get Future []
object. Future is ValueHolder [], that will have it’s value accessible after submitted task
(runnable or callable) is finished. Call isDone() method to check, whether task is finished or
not. Calling get() causes blocking of execution until the task is done.

The Spring way
Spring provides convenient way of dealing with asynchronous tasks. Instead of submitting
the task directly to executor, it is recommended to let the Spring to handle asynchronous
execution on its own. Using own executor outside Spring’s awareness might end up with
running more executors at once, which would waste resources. To use Spring’s task executor,
firstly, one must declare task executor in application context:

1 <bean id="taskExecutor"
2 class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
3 <property name="corePoolSize" value="5" />
4 <property name="maxPoolSize" value="10" />
5 </bean>

Listing 3: Declaring executor.

Secondly, one must write service that will be called asynchronously with methods annotated
by @Async annotation. Those methods must return Future<?>. Finally, async service is
injected into service that calls it.

1 @Async
2 public Future<Timetable> refetchStudentAsync(String student, String semester) {
3 List<Parallel> parallels = parallelKosapi.getTimetables(student, semester);
4 return new AsyncResult<Timetable>(new Timetable(student, semester, parallels));
5 }

Listing 4: Example of async method

Note that it is not possible to call async method directly. Injected instance must always be
used, as Spring injects proxy that submits task to task executor [].

Getting progress of executing task
Executed task is basically collection of futures. Some of them might by unfinished, wile
others might be already completed. Simply iterate through collection and ask which have
been completed using method isCompleted(). Divide number of completed tasks by number
of all tasks to get percentage.

22 CHAPTER 5. IMPLEMENTATION

5.1.4 Handling GWT RPC calls

GWT toolkit comes with RemoteServiceServlet servlet that is capable of handling GWT
requests and serving responses. By extending this servlet, we can easily integrate it into
our spring application. The extension is called Spring4Gwt and is located in server.gwt
package.

Spring4Gwt class was based on Spring4Gwt [] project. List of changes that I have done:

1. Added HTTP session support

2. Exchanged commons logging with SLF4J

3. Better handling of exceptions

5.1.5 Handling GWT HttpSession

RemoteServiceServlet class that is provided by GWT contains method getThreadLocalRequest()
that returns instance of HttpServletRequest. HttpServletRequest contains method named
getSession() that returns HttpSession. Session is then stored into ThreadLocal variable
that associates session to current thread that is associated to request. Class GwtSessionValueHolder
is a value holder that associates itself to GwtSession. Any stored value can be restored within
one session in different RPC calls.

5.1.6 Serving standard web pages using Spring MVC

Controllers are needed to serve web pages. The controller is specific service that will be
delegated when HTTP request is captured and controller fits URL pattern. Controllers are
situated in package web.

5.1.7 Package shared

The root of package contains transfer objects that are generated by application and are
transfered over network to client.

1. collisions - JAXB entities and data structures describing course groups and collisions

2. kosapi.dto - entities that are fetched from KOSapi and persisted to database

5.1.8 Logging

SLF4J logging facade is used to log events on server. Log4j implementation is used to perform
actual logging. SLF4J provides possibility to exchange Log4j for different logger, while not
being forced to change code itself. Static factory LoggerFactory.getLogger() is used to
obtain instance of a logger.

5.2. DOMAIN LAYER 23

5.2 Domain layer

Domain layer of application is very specific as it has multiple data sources to get data
from. Both data sources share same domain entities, stored in the package: cz.cvut.felk.
rozvrhy.shared.kosapi.dto. Entities are accessible from GWT application (code is shared)
and are transferable through network using GWT RPC. Each entity is mapped to itself using
Dozer that removes lazy initialization collections that are not serializable. An alternative
would be to hold separate dtos for transfer, but single class representation was chosen for
better maintainability.

5.2.1 Data sources and strategies

There are two data sources:

1. Database - serves as cache for entities to allow fast operations over data

2. KOSapi - web service that is primary source of data

Data Access Objects (dao for short) are used to retrieve data from database. DAO is class that
has exposed methods for retrieving or persisting data based on given parameters. Instances
of DAO are provided by dependency injection using @Resource annotation. It is not possible
to use @Autowired annotation, because proxied instance of DAO is needed.

1 @Resource(name="studentDao")
2 protected IStudentDao studentDao;

Listing 5: An example injection of proxied dao.

Dependency injection will inject an instance of a “Proxy”. Proxy will intercept every call and
delegate to given InvocationHandler bringing dynamical approach into static world of Java.

5.2.2 Instantiation of proxy

Proxies are instantiated by DaoFactory service. Proxy.newProxyInstance method on
java.lang.reflect.Proxy object is called to create proxy. Second parameter of new-
ProxyInstance is MethodInvocator implementing object.

5.2.3 Choosing the right strategy

DaoStrategyInvocator object is responsible for choosing strategy. See the diagram 5.2.

All methods are delegated on concrete strategy, except for setCache(boolean) call, which is
intercepted and not delegated. SetCache call serves to set the strategy. If cache is disabled,
only KOSapi strategy is used.

24 CHAPTER 5. IMPLEMENTATION

Intercept call

set caching

strategy

Invoke method on database dao

Strategy setted

Invoke on

kosapi dao

Throw exception

ReturnReturn

Call is intercepted by

proxy

[successfuly fetched from kosapi]
[successfuly fetched from kosapi]

[called setCache method]

Figure 5.2: Activity diagram showing strategy decision algorithm

5.2.4 Motivation behind proxies

Using proxy with InvocationHandler allows to have strategy expressed on single place in
application. Not using proxy would result into hardly maintainable code as any change to a
strategy would require change in all DAO services!

5.2.5 Persistence

Database strategy uses typical persistence schema, where each database DAO extends
BaseDAO class that has instance of persistence context (Entity manager)1

5.2.6 JPA

Java persistence api (JPA for short) is used to take care about communication with database
and object relational mapping. Details about connection are written in persistence unit
persistence.xml. Different persistence unit is used in production and different in development

1Entity manager provides direct contact to database and is part of JPA implementation provided by third
party, in our case Hibernate

5.2. DOMAIN LAYER 25

mode. Choice is made based on target run in makefile by copying the right persistence unit
into META-INF folder.

5.2.7 Sending JPA entities through GWT RPC

JPA entities fetched from database are being proxied in order to provide transparent lazy
initialization. Proxy is not serializable, moreover the data are not present in entity until
proxy loads them (proxy loads data on getter call).
When GWT servlet receives object to send through GWT RPC, it needs to serialize it.
Serializer walks through object, asking each getter to get him data. At that time, no
hibernate session is opened, so LazyInitializationException occurs.
General solution is to use object mapper as Dozer and implement CustomFieldMapper to
handle not initialized collections [].

1 public class DozerCustomFieldMapper implements CustomFieldMapper
2 {
3 public boolean mapField(Object source, Object destination, Object sourceFieldValue,
4 ClassMap classMap, FieldMap fieldMapping)
5 {
6 // Check if field is derived from Persistent Collection
7 if (!(sourceFieldValue instanceof AbstractPersistentCollection)) {
8 // Allow dozer to map as normal
9 return false;

10 }
11

12 // Check if field is already initialized
13 if (((AbstractPersistentCollection) sourceFieldValue).wasInitialized()) {
14 // Allow dozer to map as normal
15 return false;
16 }
17

18 // Set destination to null, and tell dozer that the field is mapped
19 destination = null;
20 return true;
21 }
22 }

Listing 6: Custom field mapper that nulls every non-initialized collection, so that entity can
be serialized.

26 CHAPTER 5. IMPLEMENTATION

5.2.8 H2 database

H2 database is used as a database to back up persistence. It’s embedded database similar to
SQLite reader might be familiar with. H2 can run in three regimes:

1. File - used by application

2. In memory

3. Server

Selection of regime is made by specifying JDBC connection url. Application is using
file regime, so that no additional interventions of server administrator are needed. H2
comes with own database management application, similar to PgAdmin (used with Post-
gresql) or PHPMyAdmin (used with MySQL). The management app can be found on H2
database website []. To connect to database file, use same connection url as is defined in
persistence unit (but use absolute url). Example JDBC url: jdbc:h2:/home/username/
scheduleApp/database;LOCK_TIMEOUT=10000 Note LOCK_TIMEOUT variable that is required,
because default lock timeout is too low and causes exception when database is under load.
When connected to H2 database file, lock file is created. That means, it is not possible to
open database while the application is using it and simultaneously look at the data.

5.2.9 Building KOSapi query

In order to fetch feed from KOSapi, query url needs to be built. For purposes of building
complicated queries, KosapiRequestBuilder was implemented. KOSapi request builder
incorporates Builder [] and Fluent interface [] patterns to achieve comfortable work.

5.2.10 Working with atom feed

KOSapi encapsulates data in form of an atom feed. The atom feed is parsed as a plaintext
and then JAXB unmarshalles content of atom:content element.

5.2.11 JAXB unmarshalling

JAXB is powerful XML parser that marshalls annotated POJO classes into XML and
unmarshalles XML into POJO classes. Instance of JaxbContext is needed to get instance of
marshaller/unmarshaller. JaxbContext is accessible by dependency injection. All KOSapi
entities that are fetched extends abstract class XmlDto, that holds common data as atomId.

5.3 Persentation layer

Presentation layer is responsible for serving data outputs of application to the end user.
Modern web applications are now being presented in interactive way. Especially when working
with complicated GUI components as a timetable, client code is needed to provide nice and
fluent user experience. Instead of creating Flash application, or Java applet, JavaScript

5.3. PERSENTATION LAYER 27

language with usage of web browser API is being embraced. However, JavaScript is hard to
learn language with it’s pitfalls and specificities. There are currently (at the time of writing)
several approaches how to simplify JavaScript development:

1. Using abstraction framework such as jQuery

2. Using language that compiles into JavaScript as CoffeScript

3. Using framework that introduces static typing using annotations as Google closure

4. Using tools such as Bower and Grunt to take care of dependency resolution and build

5. Using framework that compiles typed language into JavaScript as Google Web Toolkit
(GWT for short)

The application uses both Spring MVC and GWT as a tools of presentation layer. GWT is
used for search of student group free time and lecture free rooms. Spring MVC is used in
non-interactive reports such as listing students that have completed minor specializations.

5.3.1 GWT

GWT allows to build web application using Java language by compiling Java code into
JavaSript that is run on users web browser. It compiles different code for each browser
using technique named “deffered binding”. GWT is framework developed by Google aimed
at Java developers that are familiar with Java environment and know only little about web
development.

5.3.2 Advantages

1. Uses typed language for development

2. Allows to share Java code across client and server

3. Programmer can use IDE that he is already familiar with from Java environment

4. IDE can provide autocompletion and type hinting

5. Programmer can use data structures he is already familiar with

6. Programmer can easily automatically refactor code across big codebase

7. GWT provides wast collection of widgets with good extendability support that are very
similar to swing components

Disadvantages

1. GWT compilation and development mode startup are painfully slow

2. GWT does not emulate all classes (for example GWT is missing Calendar class)

3. GWT does not have reflection

4. GWT has relatively big learning curve, as some problems are hard to debug

28 CHAPTER 5. IMPLEMENTATION

5.3.3 GWT module architecture

GWT applications are divided into modules that can be run individually. Module can be
considered to be a single page application. Modules can also serve as a libraries, as one
module can extend another. Modules are defined by XML files, that are placed in the root
of modules package. Application has single module named GWT, that can be found the in
package cz.cvut.felk.rozvrhy.client. Module has single entry point class named Entry
(analogy in Java Main class could be found). Entry class is invoked after web page is opened.
Once all files are loaded, method onModuleLoad() is fired on entry point class.
GWT applications are similar to Swing applications. They use panels and widgets to show
GUI, that are translated into HTML. For example, VerticalPanel is rendered as DIV element.
TextBox is rendered by appending input with type text into page.

5.3.4 User interface

There are two general ways of creating user interface in GWT. The first is using form designer
that comes with GWT plugin for eclipse. GWT Designer [] takes form designers one step
further as it successfully tries to understand code. Changing anything in code results in
change in designer, which will render components as is expected. On the other hand, GWT
designer is slow and clunky. The second way of describing user interface is to use a UiBinder [].
In UiBinder, user interface structure is defined in form of XML as would similarly in HTML.
Behavior is defined in UiBinder class that is interlinked to the XML file. All components
are written in UiBinder, except for StudentFilterComponent, that was designed in GWT
Designer. To open component in GWT Designer, click on the class with right button and
choose GWT Designer in “open with” context submenu.

5.3.5 Communication with server

When the application starts, module needs to load list of semesters from server, so that user
can select valid semester. GWT uses own serialization protocol called GWT RPC. GWT
RPC uses standard HTTP communication, but encodes data in a special way, respecting
structure of data and keeping Java references.
In order to use GWT RPC, following must be defined:

1. Remote interface

2. Asynchronous remote interface

3. Server implementation of remote interface

4. Client implementation of async. remote interface

Sent data must meet following conditions:

1. All sent objects must implement java.io.Serializable or IsSerializable interface

2. All sent objects must have no args constructor

3. All thrown exceptions must extend java.lang.Exception (not RuntimeException!)

5.3. PERSENTATION LAYER 29

«interface»

Shared::RpcInterface

+ operation(String) :int

«interface»

Shared::RpcInterfaceAsync

+ operation(String, AsyncCallback<i...

Name of interface is always suffixed with "Async"

Client::

GwtProxy
Client::Callback

+ onSuccess(int) :void

+ onFailure(Throwable)...

Shared

+ RpcInterface

+ RpcInterfaceAsync

Client

+ Callback

+ GwtProxy

+ AsyncCallback

Server

+ RpcInterfaceImpl

GWT proxy is created by

GWT.create() method, using

deferred binding.

«interface»

Client::AsyncCallback

+ onSuccess(int) :void

+ onFailure(Throwable...

«service»

Server::RpcInterfaceImpl

+ operation(String) :int

Call is always initialized by client HTTP

based GWT PRC call, as Server has no

active way of reaching client.

GWT RPC

«use»

Figure 5.3: Using GWT rpc

30 CHAPTER 5. IMPLEMENTATION

5.3.6 Showing progress of long running task

Application allows user to reload all the data from KOSapi instead of reading them from
potentially outdated cache. Such operation takes a lot of time and user would have no
feedback on progress of operation.
Instead of responding after the fetch form KOSapi is done, server runs fetching asynchronously
and responds immediately with AsyncJobNotDoneException. When obtaining such exception,
client is obliged to repeat his request after some time (e.g. one second). If running job is still
not finished, server will throw another AsyncJobNotDoneException, setting its percentage
property to provide user continuous feedback. After server is finished with computation,
client receives data and calls appropriate handler that process it.
Abstract class client.util.RpcRequest was written to automate the process. All that is
need to do is to fill the template methods [].

5.3.7 Using JPA annotations

In order to use JPA annotations in entity classes, source code of annotations must be provided
on classpath of development mode application and compiler. Sources can be downloaded as
maven dependencies:

1 <dependency>
2 <groupId>org.hibernate</groupId>
3 <artifactId>hibernate-annotations</artifactId>
4 <version>3.5.6-Final</version>
5 <classifier>sources</classifier>
6 </dependency>
7

8 <dependency>
9 <groupId>javax.persistence</groupId>

10 <artifactId>persistence-api</artifactId>
11 <version>1.0.2</version>
12 <classifier>sources</classifier>
13 </dependency>

Listing 7: Maven dependencies of annotation sources.

All that is needed is to include target/rozvrhy_studentu/WEB-INF/lib folder on classpath.

5.3.8 Bug workaround in enhanced compilation of JPA entities

Class in GWT is considered enhanced, when containing @Entity annotation. Unfortunately,
enhanced compilation causes bug in serialization [], so workaround had to be implemented.
All JPA entities are annotated normally, except @Entity annotation. Entities are specified
in orm.xml file, that specifies which classes are JPA entities. The file orm.xml is located
alongside persistence context in META-INF directory.

5.3. PERSENTATION LAYER 31

5.3.9 Code sharing specificities

Not all classes from Java can be used in shared code, as not all of them are emulated in GWT.
A good example are regular expressions, where server and client code uses completely different
implementations and thus, regular expressions cannot be shared across the platforms.

5.3.10 Solving problems with GWT

When having problem with GWT, developer can do following actions:

1. Set the DEBUG log level

2. Clear gwt-unit cache

3. Restart browser, clear browser cache

5.3.11 Thymeleaf

Thymeleaf is Java library that serves as template engine, providing natural templates2. It
can be easily integrated in Spring MVC and is very easy to learn.

1 <th:block th:unless="${collisions.isEmpty()}">
2 <div th:each="collision : ${collisions}">
3 Den: Pondl
4 </div>
5 <hr />
6 </th:block>

Listing 8: Example of thymeleaf templating.

Note that thymeleaf requires that templates are valid XML documents and that it is possible
to use syntetic element th:block, so that it is not required to insert redundant div just to
use if statement. Thymeleaf does not contain layouting (template inheritance like Apache
blocks or Facelets) out of the box, so “thymeleaf-layout-dialect” additional dialect is used.

2Natural template is template that will be correctly displayed in web browser if opened as file without
application

32 CHAPTER 5. IMPLEMENTATION

5.3.12 Configuration with Spring

In order to use Thymeleaf, maven dependencies must be included in pom and mvc-dispatcher.servlet.xml
configuration must include:

1 <!-- Thymeleaf template engine -->
2 <bean id="templateResolver"
3 class="org.thymeleaf.templateresolver.ServletContextTemplateResolver">
4

5 <!-- Folder where to find templates -->
6 <property name="prefix" value="/WEB-INF/templates/" />
7 <property name="suffix" value=".html" />
8 <property name="templateMode" value="HTML5" />
9

10 <!-- Allows templates to be automatically reloaded when modified (useful in dev mode) -->
11 <!-- Set to true in production mode! -->
12 <property name="cacheable" value="false" />
13 </bean>
14

15 <bean id="templateEngine" class="org.thymeleaf.spring3.SpringTemplateEngine">
16 <property name="templateResolver" ref="templateResolver" />
17

18 <!-- Add dialect to Thymeleaf -->
19 <property name="additionalDialects">
20 <set>
21 <!-- Allows layouts -->
22 <bean class="nz.net.ultraq.thymeleaf.LayoutDialect"/>
23 </set>
24 </property>
25 </bean>
26

27 <bean class="org.thymeleaf.spring3.view.ThymeleafViewResolver">
28 <property name="templateEngine" ref="templateEngine" />
29

30 <!-- Allow UTF-8 character encoding in order to add support for check language -->
31 <property name="characterEncoding" value="UTF-8" />
32 </bean>

Listing 9: Thymeleaf-spring integration in configuration file mvc-servlet-dispatcher.xml

5.3.13 Bootstrap

Bootstrap CSS framework from http://getbootstrap.com/ was used in Spring MVC pages.
Because bootstrap styles are not prefixed by default, bootstrap was recompiled in Less with
added prefix []. Bootstrap styles are applied to childs of element with class bootstrap, which
allows compatibility with GWT styles.

http://getbootstrap.com/

Chapter 6

Application

This section describes how was individual use cases implemented.

6.1 Finding when students have free time

User must specify set of students he wants to process. Set of students can be described as:

1. Combination of grade, programme and type of study (bachelor or magister)

2. Set of courses or parallels

The user uses StudentFilterComponent that is part of GWT application (figure 3.1).
Once the user fills the data, StudentFilterComponent sends it’s model StudentFilter
to server through GWT RPC protocol to service named TimetableRpcService that implements
ITimetableRpcService interface.

At first, the service fetches list of the students based on provided StudentFilter using
IStudentDao data access object. IStudentDao is obtained by dependency injection in the
form of a proxy object, that decides which strategy to use, based on caching settings stored
in StudentFilter provided by client.

An example url of fetching students of first and second grade of bachelor programme Open In-
formatics, that has code “BP4”: https://kosapi.feld.cvut.cz/api/3/students/?sem=B132
&faculty=13000&limit=1000&query=studyForm==FULLTIME;studyState==ACTIVE;(grade=
=1,grade==2);programme==BP4, that fetches timetable is in KOSapi represented by timetable
Slot field returned in parallel entity. An example of query obtaining timetable of student
“sivakfil”: https://kosapi.feld.cvut.cz/api/3/students/sivakfil/parallels?limit=
1000. Since there is no way of obtaining timetable of given set of users, application must
fetch timetables one by one for each user. Fetching asynchronously significantly improves
performance.

Once all timetables are fetched in form of collection, the data are aggregated into structure
that the client application can easily process and serve to the user. Such structure is called
TimetableSum.

33

https://kosapi.feld.cvut.cz/api/3/students/sivakfil/parallels?limit=1000
https://kosapi.feld.cvut.cz/api/3/students/sivakfil/parallels?limit=1000

34 CHAPTER 6. APPLICATION

TimetableSum
TimetableCourseDto CourseSlot

Course

IsSerializable

shared::

TimetableSlot

hour :int

day :int

Student

1 1..*

1

1

11..*
TimetableSlot

1
0..*

Figure 6.1: TimetableSum diagram

6.1.1 Finding when room is free of lecture

In order to find whether room is free of lecture (i.e. there is no lecture going on in the room
in the given time), the application must have knowledge of timetables of all rooms. KOSapi
provides information on rooms in feed rooms and room timetables in parallels (field room
in timetableSlot). In order to get timetables of all rooms, the application must fetch all
timetables.
The application stores timetable as collection of TimetableUnit entities. TimetableUnit is
one lecture hour1 described by hour, day, room and parent parallel entity. Such representation
is possible due to discrete division of school day into hours and allows to write convenient
queries that are fast. Because it’s not possible to fetch all timetables of rooms from KOSapi
at once, application fetches the data only from database.
Query joins Room table to itself, asking for all rooms except for those that has timetable
unit for given hour. JOIN FETCH clause says to JPA to eagerly initialize given relation.

1Lecture hour is 45 minutes long

6.1. FINDING WHEN STUDENTS HAVE FREE TIME 35

1 SELECT r FROM Room r
2 JOIN FETCH r.division
3

4 WHERE r.id NOT IN (
5 SELECT r2.id FROM Room r2
6 JOIN r2.timetableUnits tu
7 WHERE ((tu.day-1) * :daySpan + tu.hour) IN (:hours)
8)
9

10 AND r.division.code = :divisionCode
11 AND r.capacity >= :minCapacity
12 AND r.locality IN (:localities)
13 AND r.type IN (:types)

Listing 10: Query that finds empty rooms.

6.1.2 Checking unusual study plans

As minors are specific trait of Open Informatics programme, KOSapi has no knowledge
about them. KOS itself does not provide support for minors yet. The minors are defined
by XML files (see section 3.3.1), that are unmarshalled by JAXB and loaded by service:
cz.cvut.felk.rozvrhy.server.config.CourseFilterLoaderService.
To determine whether student have finished minor, application must fetch information about
completed courses for every semester that student was enrolled to. The required data
are located in enrolledCourses feed. An example query is: https://kosapi.feld.cvut.
cz/api/3/students/sivakfil/enrolledCourses?sem=B132. KOSapi allows to fetch only
one semester per request, so application needs to load all semesters separately. Note that
enrollments of previous years are not going to be changed, so it is pointless to fetch them
again. Each course enrollment entity contains field “completed”, which tells information about
whether the student successfully finished course or not. This information is used to determine
whether the student have finished minor or not. Data are aggregated into map of Students
to list of their minors.

https://kosapi.feld.cvut.cz/api/3/students/sivakfil/enrolledCourses?sem=B132
https://kosapi.feld.cvut.cz/api/3/students/sivakfil/enrolledCourses?sem=B132

36 CHAPTER 6. APPLICATION

Serializable

Comparable

shared::Minor

collisions::CourseGroup

collisions::CourseCode

engine::

MinorDegreeService
MinorDegreeService returns map <Student, List<Minor>>,

where user can find course enrollments and courses.

MinorCourse

- name :String

«enumeration»

ECourseState

 COMPLETED

 NOT_COMPLETED

 NOT_ENROLLED

XmlDto

Serializable

dto::CourseEnrollment

1

1..*

1

1

method getListing()

0..*

1

student: Student

0..*

Figure 6.2: Organization of minor listing data

The service returns map of Students to collection of Minor. Each Minor has collection of
MinorCourse, that can be at state completed, not completed or not enrolled. If MinorCourse
is in state completed or not completed, CourseEnrollment is not null. Each Minor is
associated to CourseGroup that defines it.

6.1.3 Watching for collisions

When the user or timed event triggers check of collisions, CourseCollisionDetectionService
service walks through collection of all course groups and retrieves timetables of defined courses.
Each timetableUnit2 is stored into map. If map contains cell with two timetableUnits at
the same place that are lectures or exercise parallels that are the only parallels of course,
collision have occurred.

2one lecture hour

Chapter 7

Programmer’s guide

The application is deployed on cwtest.felk.cvut.cz virtual server. Tomcat is used as a
servlet container serving application. After war archive is compiled, application is deployed
using tomcat manager application located at https://cwtest.felk.cvut.cz/manager/html.

7.1 Development

7.1.1 Obtaining the source code

Complete source code is located in git repository at https://gitlab.fel.cvut.cz/svobodat/
rozvrhy-support-apps. You can browse generated javadoc at http://cwtest.felk.cvut.
cz:8080/rozvrhy_studentu/javadoc/index.html.

7.1.2 Importing project to IDE

In “Eclipse” or “Spring tool suite” (which is extended Eclipse), one can follow these steps:

1. Open new workspace at repository directory (choose workspace at IDE startup)

2. Open File -> Import -> Maven -> Existing maven projects

3. Select the pom.xml of project and click “Finish”

7.1.3 Productivity tips

Google plugin for eclipse1 is not required for development. However, it is recommended as
it can be helpful to beginners. Don’t forget to use Source tab to generate getters, setters,
constructors, toString methods and even methods based on interface. Static type check is
one of biggest advantages of using Java over using dynamically typed language.
List of useful shortcuts:

1. ctrl+o - resolves imports
1https://developers.google.com/eclipse/?hl=cs

37

https://cwtest.felk.cvut.cz/manager/html
https://gitlab.fel.cvut.cz/svobodat/rozvrhy-support-apps
https://gitlab.fel.cvut.cz/svobodat/rozvrhy-support-apps
http://cwtest.felk.cvut.cz:8080/rozvrhy_studentu/javadoc/index.html
http://cwtest.felk.cvut.cz:8080/rozvrhy_studentu/javadoc/index.html

38 CHAPTER 7. PROGRAMMER’S GUIDE

2. ctrl+shift+t - finds type (class, enum or interface) by name

3. ctrl+l - go to line

Creating junit test: right click on class that is to be tested, “new”, “new JUnit test case”

7.1.4 Code style

The code adopts the standard Java conventions. Transient annotations are written with fully
qualified names, so that they can be distinguished.Names of enums are prepended with E,
names of interfaces with I.

7.1.5 Running the application with jetty

Maven plugin named “jetty-maven-plugin” is used to run application locally. Use target make
jetty to run server. To run client application in development mode, use target make gwtdev.

7.1.6 Speeding up jetty startup

Jetty is scanning classpath for Serlvet 3 annotations. Project does not use Servler 3 features, so
it would be only waste of time. Setting empty regular expression to WebInfIncludeJarPattern
configuration variable skips scanning and speeds up startup of jetty significantly.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <Configure class="org.eclipse.jetty.webapp.WebAppContext">
3 <Call name="setAttribute">
4 <Arg>org.eclipse.jetty.server.webapp.WebInfIncludeJarPattern</Arg>
5 <Arg>^$</Arg>
6 </Call>
7 </Configure>

Listing 11: Setting empty regular expression to speed up startup of Jetty

7.1.7 Testing with JUnit

JUnit is powerful testing framework, that is used to run tests. However, application doesn’t
have 100% test coverage and tests are not design for automated testing, but for programmer
to check wheter service returns what it should. Programmer can write test, or look at existing
test and run it without starting web server, but cannot run all tests at once. Enabling
automated testing would require mocking KOSapi web service, which was out of time frame
of this work.
To run a test, use "test" target of "make" and set variable "TEST" to class name of testcase
you want to run. You don’t need to supply fully qualified name. An example of running test:
make test TEST=IStudentDAOTest. Note that when test ends with error, your exception is
located in “target/surefire-reports” folder, not in console output of maven. In order to use

7.2. BUILD 39

dependency injection in JUnit test, test must extend BaseTest class, that is annotated to be
run with SpringJUnit4ClassRunner class.

1 @RunWith(SpringJUnit4ClassRunner.class)
2 @ContextConfiguration(locations = {"/appContextJUnit.xml"})
3 public abstract class BaseTest { ... }

Listing 12: BaseTest class annotation that allows to use dependency injection in JUnit tests

7.2 Build

7.2.1 Makefile

Makefile is used because it provides interface to the build system that is generally known by
programmers. It also allows to define useful targets.
Some of useful targets:

1. all - shows help

2. runserver - runs jetty and gwt codeserver for development

3. jetty - runs jetty

4. compile - compiles GWT application, generates javadoc, compiles server application,
produces war that can be deployed

5. clean - cleans all compiled code

7.3 Production requirements

Server application requires at least Java 6 runtime environment and servlet container, such
as Tomcat 6. Server with multicore processor is recommended since the application and web
server are using concurrent processing. Client application requires modern web browser with
CSS3 selectors capabilities, JavaScript and cookies enabled.

7.4 Development requirements

Developer must use unix based operating system 2 with Java 7 JRE (because of jetty), Java
6 JDK, GWTSDK (is downloaded by Makefile), wget (to download GWTSDK) and Maven 3.
GWT plugin must be present in web browser for GWT development. Port 8080 must be
open for listening.

2Ubuntu or MAC OS is fine

40 CHAPTER 7. PROGRAMMER’S GUIDE

7.5 Instalation for development

1. Install Java 7 JDK, or Java 7 JRE and Java 6 JDK, if you don’t have them

2. Install Maven 3 and wget packages if you don’t have them

3. Checkout project from GIT repository

4. Run command make runserver that will do everything that is needed to the point
that jetty and GWT DevMode is running

5. Open application in DevMode

Chapter 8

Conclusion

The application allows to find suitable time for meeting for a large number of students and
find an empty room suitable for meeting. The application also allows to check completion of
unusual study plans such as minor study fields.
The application is implemented as a web application with interactive client. Server is
implemented in Java Enterprise Edition and uses current, common and standard technologies
such as Spring framework, JPA or GWT and implements generally known design patterns
from [] and [] so that other programmers can get familiar with application as fast as possible
and reuse as much code as possible. The application leverages Java platform by sharing client
and server code, using concurrency and static type system.
The most interesting features of the application are implemented strategy pattern for caching
using relational database, interactive client application and usage of many standard libraries
and technologies that are being used by other programmers.

8.1 Possible extensions of application

The application can be easily extended with other useful use cases. Here are some of ideas
that I have found interesting.

8.1.1 Finding empty room in examination time

There is no possible way to find an empty room after semester is ended. By fetching data
about exams, one could find rooms that does not have examinations at given time. This
could help to quickly plan additional term for an exam.

8.1.2 Student’s schedule assistant

KOS web application that is accessible by students is very user unfriendly. Each semester,
students must assemble their schedule. They are forced to either conduct extensive search for
courses they might be interest in or sign up for courses that are not so good or related to
their field of study.
The solution could be an extension of existing application that would:

41

42 CHAPTER 8. CONCLUSION

1. List courses student can add to his timetable without causing a collision

2. Allow student to move around his parallels in drag ’n drop fashion to discover more
optimal schedule configurations

3. Alert student of collisions and traveling between different locations

4. Instantly access score and notes from “student questionare” of given course student
plans to include to his schedule

Extension can be easily built on top of existing application, using GWT framework for
complex UI and existing KOSapi integration for evaluation. Data access layer is written so
that adding another data source would be easy, so fetching data from student survey would
be easy. Capability of quickly finding free space in schedule was already proven in finding
lecture free rooms use case.

8.1.3 Exam collision alerts

Each exam period, students are facing collisions in exam terms. Extension that would send
an email to teachers who plan exam, that would cause major collision in exams might be
helpful.

	Introduction
	About this work
	How to read this work

	Problem analysis
	User
	Timer

	Requirements
	Functional requirements
	Non-functional requirements

	Showing timetable of multiple students
	Existing solutions
	Implemented solution

	Finding an empty room
	Existing solution
	Implemented solution

	Check of unusual study plans
	Detecting collisions
	Existing solution
	Implemented solution

	User guide
	Finding out when students have free time
	Finding free room
	List of minors of students
	Definition of minor in application

	KOSapi
	Extracting interesting data from KOSapi
	The list of students of particular programme or branch
	Timetable of student
	Completed courses of student

	Limitations
	Absence of join
	Fetching data for all semesters at once
	Support for caching
	No last-modified header
	CORS is disabled

	Problems
	Inaccessible data
	Non unique codes
	Missing pieces of data
	Using atom:updated field does not speed up fetching process

	Implementation
	Architecture
	Server packages
	Application context
	Asynchronous execution
	Handling GWT RPC calls
	Handling GWT HttpSession
	Serving standard web pages using Spring MVC
	Package shared
	Logging

	Domain layer
	Data sources and strategies
	Instantiation of proxy
	Choosing the right strategy
	Motivation behind proxies
	Persistence
	JPA
	Sending JPA entities through GWT RPC
	H2 database
	Building KOSapi query
	Working with atom feed
	JAXB unmarshalling

	Persentation layer
	GWT
	Advantages
	GWT module architecture
	User interface
	Communication with server
	Showing progress of long running task
	Using JPA annotations
	Bug workaround in enhanced compilation of JPA entities
	Code sharing specificities
	Solving problems with GWT
	Thymeleaf
	Configuration with Spring
	Bootstrap

	Application
	Finding when students have free time
	Finding when room is free of lecture
	Checking unusual study plans
	Watching for collisions

	Programmer's guide
	Development
	Obtaining the source code
	Importing project to IDE
	Productivity tips
	Code style
	Running the application with jetty
	Speeding up jetty startup
	Testing with JUnit

	Build
	Makefile

	Production requirements
	Development requirements
	Instalation for development

	Conclusion
	Possible extensions of application
	Finding empty room in examination time
	Student's schedule assistant
	Exam collision alerts

