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Abstrakt

Tato prace se zabyva problémem explorace prostfedi mobilnim autonomnim robotem.
V prdci jsou pfedstaveny tfi metody pro jednoho robota a jedna pro skupinu robot.
Cilem préce je porovnat tyto metody z hlediska ¢asu potfebného na prozkoumani celého
ment vydat. T¥i z téchto metod patti do skupiny frontier-based ptistupti. Zde je definovéna
skupina kandidatt na navigac¢ni cile robotu, které jsou na pomezi prozkoumaného a ne-
prozkoumaného prostfedi. V kazdé metodé je vSak vhodna cilova pozice vybirana jinak.
Prvni piistup vybird nejblizsi, druhy se snaZi najit nejkratsi cestu pfes vSechny tyto poten-
ciondlni cile pomoci feSeni tilohy obchodniho cestujiciho a tfeti metoda jpfifazuje roboty
k témto ciliim. V poslednim pfistup je navigace feSena pomoci propagace vinoplochy
v nehomogennim prostfedi. Porovnéni je provedeno simulacemi pro réizné parametry a

explora¢ni scénéfre.

Abstract

The thesis addresses the problem of the mobile robot exploration of unknown en-
vironment. There are presented three approaches for a single robot exploration
and one for multi-robot exploration mission. The goal of the thesis is to compare
these approaches regarding the time needed to explore the whole environment.
The main problem is to find the most suitable goal location where the robot should
navigate in order to explore the environment efficiently. Three of these methods
belongs to the class of the so called frontier-based methods. In these methods, a set
of candidate locations is defined to be at the the border of the already known and
not yet explored parts of the environment; however, in each approach, the most
suitable goal location is selected differently. The first method selects the nearest
candidate, while the second method finds the shortest path to visit all the can-
didates as a solution of the traveling salesman problem. The last frontier-based
method is designed to the multi-robot exploration and it assigns robots to the goal
candidates. In the last approach, the selection of the goal candidate and path plan-
ning is solved using a wave front propagation in an inhomogeneous environment.
The comparison is performed simulations for various parameters settings and se-
lected exploration scenarios.
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Introduction

Mobile robotics is a very fast developing field these days, due its wide use. We use
mobile robots in many places. Due to their durability, we can use them in environments,
where human could not survive. For example we can use them in space, at areas of nuclear
disasters, at burning buildings. But we can also use them as a cheaper labor in factories
or as a messenger in an office. And nowadays, they are also becoming part of our normal
life as vacuum cleaners.

The first robots were radio controlled by an operator; so, they did not need any kind of
artificial intelligence or sensors. It is good an idea, because they just do what you want and
it is also not so hard to create it. But radio controlled robots can’t be used everywhere and
you need someone who will control it. For example you can’t control robot on Mars due to
long delay. In these situations you need robots with a certain level of autonomy. But this
is not that easy task to do. You need to give a robot some knowledge about environment
(map), where it will be operating, but then robot will need to know where it is on the map.

However at some situations you do not have any a priory knowledge about the robot’s
operating environment. In these situations you need to install some additional sensor
to gather information about environment around the robot. With this information, robot
should be able to navigate safely through the environment. But there are more ways how
to do it. Firstly your robot could follow a line on the ground, which will lead him towards
his goal. Secondly your robot could have reactive algorithm, where it considers only cur-
rent scan. But these ways may not be enough for some applications, for example if you
need to create a map for later use.

Here, the robotic exploration comes. It is a problem, where a mobile robot goes through
an unknown environment and creates a map of it. This is a complex task, where the robot
needs to track its position, integrate sensor readings into a map and determine a goal lo-
cation and last but not least, it is also needed to find route to goal and follow it. In this
thesis, we assume that the robot is able to localize itself and thus the localization prob-
lem of the mobile robot navigation is considered to be solved. Although we consider this
assumption, there is still a lot of work on other aspects of the exploration. Integration of
sensor readings is a quite simple task, but determination of the next robot goal location
and planning a route to it are a more difficult tasks. There are many different approaches
how to do it. There are differences in when to determine a new goal, but also where to the
goal should be located.

In most cases, we want to explore the given environment in the shortest time possible,
but we also need to do it safely. In this thesis, we aim to compare exploration strategies by
the time needed to explore whole environment, and by the length of the exploration path.
We also aim to compare different settings and environments and find out which have the
most influence.



Chapter 1

Problem Definition

If we want to explore an environment with a mobile robot, we need to solve the robot’s
navigation. The navigation consists of the localization, path planning and motion control,
but it is also related to the mechanical parts of the mobile robot such as dynamic and
kinematic properties of our robot. In this thesis, we focus on solving the navigational part
of problem where we need to find the best goal to accomplish the mission, i.e., to explore
the environment as quickly as possible.

In this thesis, we use robot that is able to move on a flat surfaces (floor) and has a
differential motion control. We also assume it is equipped with laser range finder, which
is omnidirectional and has maximum range p = 10m.

The algorithmic part contains the following parts. First, we need to choose how to
represent the environment. There are various models, which are briefly described in Sec-
tion Once we have environment model, we have to read data from sensors that are
integrated into map, which is described in Section Then we have to solve the local-
ization problem. There are many ways to do it which will be described in next section.
Last but not least, we have to navigate our robot towards computed goal location, which
is described in Section

1.1 Localization

There are many ways to localize our robot. Firstly we can use odometry, which mea-
sures the travelled distance by counting how many times robot’s wheels are turned. But
this may not be exact, because if we use wheels they can slip and our measurement is
ruined. Secondly we can use some positioning system such as GPS, but this also may not
be exact, because signals may not be available everywhere and it does not work in indoor.

We can use some external observer or additional reference localization system. But we
must ensure that it can see the robot at every place, which is not always possible. We can
also use some pivot points and our robot can navigate by them. But we do not always
have them. So we can create them while we are creating map. Furthermore we can use
two robots to localize each other, but to ensure correct localization, they can be moving
only one at the time. And there are many other ways to do it.

In our experiments, we are considering that the robot is localized sufficiently precise.
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1.2 Sensors

Sensors are robot’s eyes and ears. There are many types of sensors, but most useful
for our problem are distance sensors. We use laser a distance sensor, which is fast and
accurate, but it only measures distance in one plane; so, when there is something, which is
under or above this plane we can’t see it with this sensor. So, we can consider an ultrasonic
sensor, which generates an ultrasonic wave with a conical shape sound that is able to sense
in that cone and we can use it to prevent bumping into obstacles that are not visible to the
laser sensor.

All these sensors are suffering by noise. There is natural noise, but when we use multi-
robot exploration we also have to count with eventual interference between them. Because
of this we use a model of this sensor, which considers probability that the data we mea-
sured are not real.

The robot in our experiments has one laser range finder situated at the center of the
robot body and have omnidirectional field of view. The sensing range of the sensor is lim-
ited and it is one of the parameter studied in the experimental evaluation of the methods.

1.3 Environment model

Basic models of environment are: occupancy grid, geometrical map, topological map
and symbolic map. Every model has its pros and also its cons.

A geometrical map represents environment using geometrical entities. Type of repre-
sentation is chosen with regard to the computational complexity of finding the relative
positions of two geometric entities. The environment is approximated by segments or by
curves of the second order, which is more accurate, but also a more complex to work with.

A topological map is defined by states and transitions between these states. These
maps lack scale, which means distance and direction can change, but the relationship
between states is maintained.

A symbolic map can be considered as an extension of the topological map. This map
consists of objects and relations between them. The objects are names of places in environ-
ment and relations define if something is in something else or how far away the objects
are.

The last type of the environment model is occupancy grid which is used in all strate-
gies we use in this thesis. The occupancy grid consists of a set of cells that are arranged
into a grid. Each cell contains probability value indicating it is an obstacle. Because of it, it
is very easy to create and manipulate with it. But if we have a large space to explore or if
we want a very accurate map it can be memory-intensive. With today’s level of computer
technology it is not a significant issue, and thus occupancy grids are widely used. New
scans are included into map using Bayes’ theorem.

1.4 Navigation

By navigation we mean planing a safe route towards the particular goal location. We
can divide the navigation problem into two separate parts:
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1. local navigation

2. global navigation

The global navigation works with the given map and tries to find a safe and fast route
to reach the given goal location. For this purpose, there are many solutions that can be
used. In this thesis we use four of them. They are described in Chapter |2l Regardless of
the particular global navigation method, all of them share the same problem that is to
determine a path from the current robot location to the desired goal location. However
the environment may not be static or some measurement may not be exact. Thus, the
precomputed path at the global level may not be valid when a new information about
the environment is available. Therefore, we have to compute the route very often, but this
may be computationally demanding because of considering a global (large) map of the
environment.

An alternative, and probably more suitable, method is to use a local navigation. The
local navigation uses current sensor measurement to prevent collisions of the robot with
an obstacle. In a case a new obstacle is detected it can either try to navigate the robot
around the obstacle and then back to planned path. Or it can stop robot and call global
navigation to recompute the path with the updated map that includes this new obstacle.



Chapter 2

Robotic Exploration and Strategies

In robotic exploration, the robot is requested to create model (map) of unknown en-
vironment. We want to do it according to the specified rules. Based on the considered
criteria robot needs to select the most suitable goal location where to navigate. In this
thesis, the main criterion is the time needed to explore the whole environment.

Exploration of unknown environment effectively is a complex task, because it is un-
known what is the best navigational goal according to the global optimization criterion
that can be evaluated only after the mission is completed. It is because we do not have
initial knowledge about the environment and thus we cannot plan the robot moves be-
forehand. So, we have to plan the robot moves in the field and thus the we need to per-
form on-line, in situ, decision making based only the information about the environment
acquired so far. We have to use some methods to plan our path as close as possible to
perfect path.

Each method in this thesis is an iterative procedure, where we can identify the follow-
ing important steps:

1. Division of current map into some section e.g. explored and unexplored.
Check if there are any unexplored reachable places.

Determination of possible goal candidates (e.g. frontiers described in Section [2.1.1)).

Selection of the next robot goal from the set of goal candidates.

AR

Navigation towards selected goal while the robot constantly collects new data from
sensors and integrates them into the current map of environment.

6. When the robot reaches the goal, or there is some interruption the next iteration is
started.

2.0.1 Occupancy grid

In all methods, in this thesis, the occupancy grid is used. To create it we have to divide
the environment into a grid of squared cells of desired size. Each cell is assigned a value
of probability that there is an obstacle. At the beginning, all cells have the same value of
the probability being occupied set to 0.5. For every scan we create group of cells where we
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did not found an obstacle and group of cells where we found something. Then we update
value of these cells accordingly to this formula.

PM

P =
2PM — M —P+1’

2.1)

Where M is sensor model and P is the probability of the cell is an obstacle. Sensor
model is used because there are some measurement uncertainties; so, we cannot add
0% /100% but something about 40%/90% depending on the particular sensor. So, we need
more than one scan to be sure what is there as we can see in Figure where white de-
notes free space, black represent detected obstacles and gray denotes unknown, but more
white means higher probability of free space.

Figure 2.1: Example of occupancy grid.
Since the calculation of paths do not use the physical dimensions of the robot, we need
to ensure the robot will not collide with obstacles. This can be done by inflating obstacles.

It means that for the following calculations we enlarge all obstacle cells by a radius disc
the shaped robot.

2.1 Frontier-based “greedy”

The greedy selection of the next robot goal is the fundamental approach. It was intro-
duced in [10].

2.1.1 Frontiers

When we have filled our occupancy grid with newest data we have to determine goal
where to navigate the robot next. To do so we need to simplify the grid. It is not necessary

6
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to know the exact value of probability a cell is an obstacle. We only need to distinguish if
the cell is freespace, occupied or unexplored. To do this we need to set particular thresh-
olds of the probability. In this thesis, we set the threshold as follows: if the probability is
lower than 30% the cell is considered as freespace, if it is higher than 70% it is considered
as obstacle and unexplored area otherwise.

To gain some new information the robot has to navigate towards unexplored area, but
it also has to go only through the explored freespace to be sure that it doesn’t crash into
some not yet explored obstacles. So, the robot has to navigate to the border between the
detected freespace cells and unknown cells. If a map is large we may end with lots of
these cells; so, we have to cluster them into sets. These sets are represented by one point,
which Yamauchi named as frontier in his work [10].

2.1.2 Navigation

When we have frontiers we need to select the right one where we want to go. There
are many different approaches to do so. We can select the one, which is composed of the
highest number of cells; so, there may be most new information. We can also select the
nearest one as is done in this approach. Or we can create the shortest route through all of
these which is explained in Section 2.2}

The selection if the nearest frontier is the easiest and the most obvious thing to do.
But still we need to decide, which frontier is the nearest one. The robot can past partic-
ular places at different speed than through others, e.g., passing large freespace area vs
navigation through a narrow passage This is considered in the Fast Marching approach
described in Section[2.3] For this greedy Yamauchi’s approach this aspect is not taken into
account.

However, we must reckon with the fact that there can be obstacles and thus using a
pure Euclidean distance is not sufficient and we need to find paths among obstacles to
provide a collision free navigation. One of the approaches can be based on a conversion
of the map into a graph where each cell is a vertex that is connected with the adjacent cells
(vertices). Then, we can use a general path planning algorithm that operates on graphs ,
e.g., A*, Breadth-first and Depth-first search.

Although the general graph-based search techniques can be utilized, we rather use
a different techniques called Distance Transform (DT) [8]. The DT algorithm is a variant
of front wave propagation planning approach (e.g., similar to an artificial potential field
techniques) and it fills all freespace cells of map with their distance from the selected
location (i.e., robot position in the map) as shown in Figure In our case, the location
is the robot position that is shown as the red cell. Once the distance map is computed, it
is easy to find the nearest frontier which is shown as the green cell.

After selecting the next robot goal, we need to plan a path for the robot to reach the
goal location. To achieve this, we start from the frontier and we are looking for a neigh-
boring cell with the lowest value of its distance to the robot location. Although this ap-
proach provides a feasible path for a robot, such a path may consists of unnecessary turns
because it is computed using only in eight possible directions from each cell as it is shown

in Figure

So, we can perform a simple smoothing algorithm, which provides a shorter path with
less turns as it is shown in Figure[2.2(c)} This algorithm goes from one end of path to other.
When it reaches the cell, from which the starting cell is not directly visible, it comes back

7
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to previous cell and deletes all cell between starting cell and this one. Then, it starts from
that cell and continues to the last one in the plan.

102( 98|94 (98 |102(10,7|11,7(12,7|128(13,2|137 102(98 |94 |98 |10,2(10,7|11,7(127|12,8(13,2|137 10,298 |94 | 9,8 (10,2|10,7|11,7|12,7|12,8(13,2| 13,7

92|88 (84|88 (92|102(11,2(122|118(122|127 92 |88 |84 (88|92 (102(11,2|122(11,8|122 7 92|88 (84(88|92(102|11,2(122|11,8/122 1’7

82|78 (74 g 82 (78|74 |78(88)|98(108|11,2|108 117 8278 |74 g 17

72|68 |64 72|68 |64 9f 102|107 72|68 |64 . 10,7

62 58|54 X 62 (58|54 (50|54|58]|62 8 92 (97 62|58 |54 X 97

52|48 |44 h 52|48 |44 (40|44 48|52 B|82|87 52|48 |44 b 87
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34 (24|14 X

30|20(10 ' = 40|50 (60|70 30(20]|10 10(20|30[40|50(60]|70

30(20]|10

34|24 |14 X 34 (24|14 |10(14 |24 (34|44 |54|64|74 34|24 (14|10 (|14(24|34(44|54 |64 |74
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42 138|34(30|34(38|42(52(62|72](82 42 (38|34(30|34|38(42|52(62|72]82 42 138|34(30|34(38|42|52(62 72|82

(a) Freespace cells filled with (b) Route computed only by (c) Route smoothed by smooth-
their distance from the selected following minimum from eight ing algorithm
location neighbors

Figure 2.2: Distance Transform

Now, we have selected next goal location and computed path to reach the goal and we
can finally ask our robot to follow the path. The final part of the decision-making strategy
is to decide when we should recompute new goal. This is discussed in Chapter

2.2 Traveling salesman problem

The previous approach computes the cost to frontier cell as the distance to it and se-
lects the closest frontier cell to the robot. But this can lead to a situation when the robot
is navigated to new unexplored parts of the environments while there are some frontiers
that have to be visited later, which can be seen in Figure This can lead to significant
(and probably unnecessary) prolongation of the exploration time.

To avoid this we can to use a more informed approach. One such approach has been
introduced in [7]. This approach does not compute the cost only by distance to frontier
cell, but as a length of the path to visit all frontiers cells. This path can look like the path
showed in Figure This problem can be interpreted as the Traveling Salesman Prob-
lem, which have been first studied by mathematicians starting in the 1930s [9]].

The TSP stands to find a shortest Hamilton cycle in the weighted graph. It is NP-hard
problem, and therefore, approximation algorithms can be used. The TSP is formulated to
find the best closed tour, while for the problem of selecting the next goal to navigate the
robot in the exploration mission we rather need an open path. This can be addressed by
transforming the problem into an extended graph adding a fictive vertex s., to a set of
vertices V, where d(s~, 50) = 0and Vi € {1,n} : d(sx, si) = w and w is a sufficiently large
number [7]. This will ensure that s, and s are neighbors in the found tour visiting all
vertices V of the graph.

In general, the TSP approaches work on graphs, and therefore, we need to convert the
grid based representation of the environment into a graph. This can be done as follows.
We select goal candidates using Representatives of Free Edges (RFE) introduced in [3]

8
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Then, we take these cells as vertices of our graph and each vertex is connected with all
other vertices. Weights of the edges are computed as the lengths of the paths between the
particular vertices (cells) using the Distance Transform [8].

L
\

(a) Greedy approach (b) Traveling Salesman Problem approach

Figure 2.3: Difference between greedy and TSP approach. Taken from [7]

2.3 Voronoi Transform and Fast Marching Method

This approach, introduced in [5], is trying to make the navigational paths smooth and
also as far from obstacles as possible. This should ensure the fastest motion of the robot
along the path, because it is not necessary to slow down the robot due to proximity of
obstacles. Moreover, such paths do not contain sharp turns, where the robot needs to
slow down. This is achieved by applying the Extended Voronoi Transform (EVT) onto a
map of the environment, which computes speedmap for Fast Marching method (FM).

2.3.1 Extended Voronoi Transform

EVT converts a binary image of visible environment into a gray scale image. This im-
age is darker near the obstacles as it is shown in Figure Each point in this image
corresponds to one cell in the occupancy grid. But values in cells do not represent proba-
bility of cell being obstacle, but its distance to the nearest obstacle. The algorithm imitates
repulsive electric potential, which is exerted by the obstacles and the robot. It means the
robot tries to stay as far away from obstacles as possible and selects a safe trajectory.

Considering this principle provides a smooth trajectory; however, simple following
the gradient of the distance may lead the robot to places of local minima. Therefore, it is
necessary to address this issue and to avoid getting stuck at these locations.

2.3.2 Fast Marching Planning Method

Fast Marching Method is based on propagation of front wave in a heterogeneous en-
vironment. This is similar to the Distance Transform, but it allows us to set different speed
in a different parts of environment.

The Fast Marching method alone does not guarantee smooth trajectory, because it de-
termines only a shortest geometrical path. This path is not only choppy but it hugs corners

9
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Figure 2.4: Example of Extended Voronoi Transfer.

very closely; thus, the robot can collide with that obstacles. This can be avoided by en-
larging obstacles, but the trajectory would still not be smooth. To ensure smoothness and
safety of the trajectory we need to combine the Fast Marching with the Extended Voronoi
Transform.

This is done by decreasing speed of front wave near obstacles according to the repul-
sive electric potential. Then the trajectory tends to be close to Voronoi diagram but thanks
to the propagation of the front wave it will not be stucked in places of local minima.

2.3.3 Finding the Next Navigational Goal

The important part of the exploration strategy is a selection of the next navigational
goal in order to explored the whole environment as quickly as possible. We can use fron-
tier based approach similarly to the greedy or the TSP-based approach, but authors of [5]
proposed a different method based on the direct utilization of the Fast Marching method.
The approach is based on trying to navigate the robot into the most unexplored area,
which is achieved by creating an attractive potential emitted by the unexplored areas.

So, we create two new maps. One similar to the one, which we use in other strategies,
but unknown cells are considered as freespace and expected the border of map is consid-
ered as the obstacles. In the second map are unknown cells considered as freespace and
all other cells are considered as obstacles. Then, EVT is applied and matrices W and VT
are obtained. The final matrix (map) WV is computed as

WV =VT-05+W. 2.2)

Then, the next goal is picked as the cell with the maximal value in the matrix WV. This
cell should be the most unexplored place; so, the knowledge gain should be maximal.
Such a new goal is computed when robot reaches it (path to it is short) or when this goal
becomes unreachable.

10



Chapter 2. ROBOTIC EXPLORATION AND STRATEGIES

2.4 MinPos

The methods described in the previous sections use only a single robot for the explo-
ration. To decrease the required time needed for exploration of the whole environment
more robots can be utilized. This will not only decrease the time, but it may also provide
a more robust solution. When one robot stops working, the other robots can continue the
mission. But if we use n robots, we cannot except that the time will be decreased n-times
. This is caused by sharing the common working space and also the efficiency of the coor-
dination of several robots.

This lead to some problems that have to be addressed. First, we need to avoid detect-
ing other robots as obstacles. We also need to distribute targets across all robots to avoid
more robots going to the same target. One of possible approaches to deal with multi-robot
exploration has been introduced in [1]].

In [1]], authors proposed to assign the frontiers to particular robots in a decentralized
way. This means that each robot decides where to go autonomously. Each robot knows
where other robots are located and robots also share location of all current frontiers. Then,
each robot assigns a rank for each frontier cell. The rank represents the number of robots
that are closer to the frontier than the robot assigning the rank. Then, the robot selects the
frontier with the lowest rank. If two frontier cells have same rank the closest is selected.
This assignment is illustrated in Figure

Fzﬂ Rq_>F1

R1
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e
Fi 5—0O 8 “QA F1 . F1
F2 F1 e
. -
_— - H-. .
F4  l=—0) - F1 .*_’\(/)O F1
R1 w2

(a) (b) (©

Figure 2.5: (a) displays frontier assignment in two steps with MinPos, (b)(c) compares
MinPos (top) and greedy (bottom) approaches, taken from [1]
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Chapter 3

Experiments

In this thesis we have compared exploration strategies by the travelled distance needed
to explore the whole environment. Because all strategies considered in this thesis are com-
posed of the same components, we can combine these parts to create hybrid strategies,
which could have better results than the basic ones. We have combined the following
aspects:

¢ Determination of the goal candidates
¢ Selection of the next robot goal from the set of goal candidates

¢ Planning a path to the selected goal location that is followed by the robot during the
autonomous navigation

3.1 Considered Strategies

Of these combinations, the following combinations were created:

Greedy approach (GR) — An original Yamauchi’s approach [10], where the goal can-
didates are all frontier cells and the robot selects the closest one according to the length of
the path from the robot current location to the frontier cell using the Distance Transform.

Greedy clustered approach (GRS) — A modified greedy assignment, where the goal
candidates are not all frontier cells, but they are clustered by the K-means algorithm [7].
Then, the closest representative cell of the frontier cell cluster is selected as the next robot
goal.

Greedy with FM approach (FM) — A modified Yamauchi’s approach [10]. The goal
candidates are all frontier cells, but the robot selects the closest one using EVT and FM
metric described in Section

Greedy with FM clustered approach (FMS) — This approach is the same as the pre-
vious one, but the frontier cells are clustered with the K-means algorithm.

Travelling salesman approach (TSP) — This approach is based on solving the travel-
ing salesman problem and is described in Section[2.2} In this approach, we have to cluster
frontier cells, otherwise it would be computationally very demanding [7].

All these strategies were also tested with different path planning. We used DT path
planning, which produces shorter plans, but paths are close to walls. Then, we used FM

12
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planning method, that produces path that are longer, but they are also farther away from
walls. This could be helpful, because for example if a robot, with a short laser range, is in
a corridor and hugs the wall, it cannot see the other side of corridor, but if it goes through
the middle of corridor it may see both sides.

So all tested strategies are following;:

¢ GR-dtpath — greedy approach with DT based path planning
* GR-fmpath — greedy approach with FM based path planning

¢ GRS-dtpath — greedy approach with DT based path planning and clustered frontier
cells

* GRS-fmpath — greedy approach with FM based path planning and clustered fron-
tier cells

¢ FM-dtpath — greedy approach using FM metric with DT based path planning
¢ FM-fmpath — greedy approach using FM metric with FM based path planning

¢ FMS-dtpath — greedy approach using FM metric with DT based path planning and
clustered frontier cells

¢ FMS-fmpath — greedy approach using FM metric with FM based path planning and
clustered frontier cells

¢ TSP-dtpath — TSP based approach with DT based path planning
¢ TSP-fmpath — TSP based approach with FM based path planning

3.2 Considered parameters

The comparison of the exploration strategies was done for different scenarios. Each of
this scenario consist of the sensor range p € 3m, 5m, 7m, replanning condition and envi-
ronment with starting position. Replanning conditions are: TR — goal replanning, where
the new goal is selected when robot reaches the current one, 7SR — where the new goal is
selected after 7 discrete step, or when the robot reaches current one. Environments was jh,
which is office like environment, and potholes, which is unstructured environment, with
dimensions 21m x 24m and 40m x 40m. We can see them in Figure Because the used
framework is deterministic, we used small random perturbation in starting position, so
we created 20 variants. Thus for each strategy we have 2 x 2 x 3 x 20 = 240 scenarios.

The occupancy and navigational grids used in this experiments had resolution of
0.05m. Robot had diameter of 0.3m and is equipped with omnidirectional laser ranger.

3.3 Discrete time results

All these experiments were done in the framework [4], which works in discrete time.
Therefore the computational demands are not considered in this thesis. We studied influ-
ence of several parameters and it cannot be compared in one table so we have to divide
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Figure 3.1: Environments used in experiments.

this comparison to more subsections. As we made many experiments for several scenar-
ios, only selected results are presented here.ﬂ

3.3.1 Influence of the laser range p

The influence of the laser range can be summarized in one sentence: the farther we
see, the more we see. But we cannot see around the corner; thus, we can miss some un-
explored places especially in a ragged environment. So there is no direct proportion in
the laser range and the time needed for exploration of whole environment. There’s more
logarithmic proportion as we can see in Figure
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Figure 3.2: Distance travelled at potholes environment and with TR replanning

1All the results in a form of tables presenting the average required lengths of the exploration paths are
depicted in Appendix
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3.3.2 Influence of the path planning

The results indicates, that the FM paths are almost always longer than the paths deter-
mined by the DT. But we these differences are more significant for longer sensor ranges,
which support our assumption, that traveling further from walls could be helpful, be-
cause for example if a robot, with a short laser range, is in a corridor and hugs the wall, it
cannot see the other side of corridor, but if it goes through the middle of corridor it may
see both sides. We can see this in Figure
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Figure 3.3: Comparsion of the required traveled distance to explore the whole environ-
ment by a signle robot with different path planning methods in the jh environment

But we thought that the FM paths are faster in real-time; so, we also tested this aspect
and present the obtained results in Section

3.3.3 Influence of the replanning condition

Generally, we can assume, that more frequent determination of the next navigational
goal, a more recent information about the environment is used for the planning and thus
a can obtain better But if we are replanning too often, then we may run into some oscilla-
tions. In Figure there are required length of the exploration paths for two considered
replanning conditions, three sensor ranges, and two environments. We can see that for the
jh environment the influence of the frequency of replanning is quite important and faster
replanning significantly decrease the exploration time. On the other hand, for the used
open space environment potholes the frequency does not have a significant impact to the
exploration performance.

3.3.4 Influence of the goal candidate generation

During the experiments we found out that clustering of the frontier cells using the K-
means method can produce shorter travel distances. But this has been observed only for
exploration strategies that uses DT for selection of the next robot goal. It is because for the
clustered frontier cells, a central cell of the cluster is selected as the representative of the
cluster and the robot travels farther from a wall and thus explores a larger portion of the
environment. But for the FM based approaches the central cell is selected by the algorithm
itself, because the middle is the furthest cell from the obstacle. When we cluster cells and
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Figure 3.4: Comparsion of distance travelled by a robot with different replanning condi-
tions and sensor ranges in different environments

the frontier edge is long, the middle may not be the representative cell and the robot can
be forced to travel to a different one. We can see this in results presented in Figure

Also in ragged environments there is not a huge difference as we can see in Figure
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Figure 3.5: Comparsion of distance travelled by robots with different replanning condition
and with different laser ranges in jh and potholes environments

3.4 Real time speeds of path planning methods

Because our robot cannot go through all the paths with the same speed, we also tested
how fast it can go with the different path planning. For this purpose we used the Play-
er/Stage framework [6]. In this setup, we utilize the local motion control to follow the
planned path based on the Smooth Nearness-Diagram (SND) algorithm, introduced in
[2]. This controller slows down the robot near obstacles, but also drives the robot further
from them to prevent the robot from crashing into an obstacle. This causes that the path
the robot actually passes may differ from the generated by our strategy.

16



Chapter 3. EXPERIMENTS

The influence of the path generation to the ability of the robot to follow the planned
path has been evaluated in was tested on fully explored jh environment and with the robot
with the same dimensions used in the previous experiments. A path to travel has been
prepared to visit 7 selected locations. The locations and their required visit is depicted in

Figure[3.6]

n

On 515 Toomsec [1,0]

Figure 3.6: The map with the path the robot must follow

We run this experiment 20 times for each strategy and we found out that the paths
produced by the FM based path planner were longer, but still the robot passed them in a
shorter time than the paths determined by the DT algorithm, see Table

Table 3.1: Results from Player/Stage

Path Distance Time Average Speed ratio

Planning [m] [s] Speed[m/s] according to DT
DT 95.21 337.60 £15.86 0.282+0.013 1
FM 102.86  287.69 +2.36  0.358 + 0.003 1.27

Times and speeds in this table are averages from 20 runs with the standard deviations.
For paths of robots see Figure
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(a) Path produced by robot following DT (b) Path produced by robot following FM
path planning method using SND driver path planning method usinf SND driver

Figure 3.7: Comparsion of paths produced by different path planning mathod
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Conclusion

In this thesis, four exploration strategies are presented. We also present two path plan-
ning methods and tested combinations of the strategies and path planning methods. We
evaluated performances of these combinations in a discrete time framework, which does
not depend on computational resources; thus, we could compare only the quality of the
proposed strategies.

The presented results indicate the performance of exploration strategy depends on
several parameters. We discovered that longer sensor range leads to better results, but
there is not a proportion relation. We also discovered that a more frequent determination
of the next navigational goal significantly decreases the exploration time. However, this
does not have a significant impact in open space environments. Then, we discovered that
clustering of frontier cells by K-means algorithm decreases the exploration time for strate-
gies that uses DT for selection of the next robot goal. On the other hand, it increases the
exploration time for the strategies that uses FM for selection of the next robot goal.

The results for path planning methods can be interpreted in two ways. Results from
discrete time framework indicate the length of DT based path planning method is shorter.
On the other hand results from Player/Stage framework indicates that using FM based
path planning method in combination with SND driver produces paths that are about
30% faster. When we combine these two results we find out that strategies with the DT
based path planning are shorter, but the overall time needed for exploration is greater
than for strategies with FM based path planning.

We compared strategies for exploring the whole unknown environment, but in most
cases we do not need to explore the whole environment. We are only looking for some
information. Therefore the next logical step is generalization into informative planing,
which tries to get the highest quality information using least possible sources (time or
fuel, ...). These strategies are implemented for partially known environment which each
iteration in robotic exploration is. So we should use informative planing algorithms to
evaluate goal candidates with predicted information quality. Then we will be able to select
the goal candidate which will give us the most information instead the nearest one.
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Appendix A

CD Content

Attached CD contains source codes of framework, Bachelors Thesis in PDF format and
source codes of this text in IXTEX.

CD structure is in next table.

Table A.1: Structure of CD

Folder Description

src\mre discrete time framework source codes
src\plstg  source codes for player stage framework
doc bachelors thesis source codes
thesis.pdf bachelors thesis text
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Detailed Results

Table B.1: Map jh TR replanning condition

fm path dt path
[m]  [m]  [m] [m]  [m]  [m]
TSP 223 194 192 209 176 164
FM 252 197 189 251 191 169
EMS 266 230 225 274 210 193
GR 248 200 171 242 185 166
GRS 212 185 187 217 165 162

Table B.2: Map jh 7SR replanning condition

fm path dt path
p=3 p=5 p=T7 p=3 p=>5 p=7T
[m] [m]  [m] [m] [m]  [m]
TSP 177 151 144 164 129 124
FM 180 176 154 177 163 154
FMS 211 158 160 195 154 151
GR 206 164 160 181 159 146
GRS 189 164 196 136 146

22



Chapter B. DETAILED RESULTS

Table B.3: Map potholes TR replanning condition

fm path dt path
p=3 p=> p=7T p=3 p=> p=7T
[m]  [m]  [m] [m]  [m]  [m]
TSP 512 337 271 511 331 267
FM 580 373 314 575 350 265
EMS 580 380 293 568 376 290
GR 598 351 305 564 327 295
GRS 551 370 300 558 346 299

Table B.4: Map potholes 7SR replanning condition

fm path dt path
p=3 p=>5 p=7 p=3 p=5 p=T
[m]  [m]  [m] [m]  [m]  [m]
TSP 480 322 234
FM 375 282 531 345 233
FMS 388 320 543 390 253
GR 298 496 341 293
GRS 486 346 259

Table B.5: Map jh TR replanning condition

fm path dt path

TSP 619 539 533 746 629 586
FM 700 547 525 896 682 604
FMS 739 639 625 979 750 689
GR 689 556 475 864 661 593
GRS 589 514 519 775 589 579
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Table B.6: Map jh 7SR replanning condition

fm path dt path

TSP 492 419 400 586 461 443
FM 500 489 428 632 582 550
FMS 486 439 444 696 550 539
GR 572 456 444 646 568 521
GRS 525 456 700 486 521

Table B.7: Map potholes TR replanning condition

fm path dt path

TSP 1422 936 753 1825 1182 954
FM 1611 1036 872 2054 1250 946
FMS 1611 1056 814 2029 1343 1036
GR 1661 975 947 2014 1168 1054
GRS 1531 1028 833 1993 1236 1068

Table B.8: Map potholes 7SR replanning condition

fm path dt path

TSP 1714 1150 836
FM 1042 783 1896 1232 832
FMS 1078 889 1939 1393 904
GR 828 1771 1218 1046
GRS 1736 1236 925
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