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Abstract

Object detection is a classic task in computer vision. WaldBoost algo-
rithm is a state-of-the-art method for object detection due its high detection
accuracy and real-time speed. However, since the traditional scanning win-
dow method classifies all the windows independently and doesn’t make use of
the information shared among overlapping windows, there is still a possibility
of a significant speed-up by exploiting this property.

We evaluate number of scanning patterns and predictors for spatially ad-
jacent windows, inspired by work of Hradǐs et. al. Furthermore, we generalize
this idea from spatially adjacent widows to multiple scales and propose Wald-
Boost with Crosstalk Prediction. Evaluating on a state-of-the-art dataset
for face detection, we show that a significant speed-up can be achieved with
WaldBoost with Crosstalk Prediction with no or a little loss of precision,
outperforming the reference method of Hradǐs et. al.

Abstrakt

Detekce objektu je klasická úloha poč́ıtačového viděńı. WaldBoost je
jeden z nejlepš́ıch algorimů současnosti pro detekci objektu d́ıky vysoké
přesnosti detekce a rychlosti v reálném čase. Standardńı metoda skenovaćıho
okna klasifikuje všechna okna nezávisle na sobě, ačkoli překrývaj́ıćı se okna
sd́ıĺı velké množstv́ı informace. Prozkoumáńı této vlastnosti může vést k
výraznému zrychleńı standardńı metody.

Inspirováni praćı Hradǐse a spol. vyhodnot́ıme několik rýzných vzorc̊u
skenováńı a prediktor̊u pro okna překrývaj́ıćı se v prostoru. Dále generalizu-
jeme tuto myšlenku od sousedńıch oken např́ıč škálami obrázku a navrhneme
detektor WaldBoost with Crosstalk Prediction. Metodu vyhodnot́ıme na
jednom z nejlepš́ıch současných dataset̊u pro detekci obličej̊u, ukážeme, že
je možné standardńı detektor výrazně zrychlit s žádnou, př́ıpadně malou
ztrátou kvality detekce, zároveň předč́ıme referenčńı metodu Hradǐse a spol.
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Chapter 1

Introduction

Object detection is a computer vision problem with many applications. Com-
monly, the applications require not only high accuracy in terms of low false
negative and false positive rates but also high processing speed.

The scanning window technique combined with a rejection cascade of
classifiers introduced by Viola and Jones [3] represents the state-of-the-art
(e. g. work of Benenson et. al. on topic of face detection [4] or pedestrian
detection [5]) and has been the dominant approach for object detection in
recent years. Since its introduction, a large number of follow-up work has
appeared in the literature.

In this work, we focus on the problem of increasing the speed of Viola-
Jones type of methods. The WaldBoost [6] algorithm offers a competitive
speed-precision trade-off using Wald’s quasi-optimal sequential probability
test and it achieves high detection rates for various object classes while keep-
ing the ability to process tens of images per second. Recent advances in deep
neural networks [7] have influenced state-of-the-art in object recognition sig-
nificantly, however, fast object detection is still beyond its capabilities.

The standard scanning window detectors treat the decisions made about
individual windows as independent despite the clear dependence of the signal
in overlapping windows. This observation has been made by [8], [2] or [9].

A feature-centric approach was proposed by Schneidermann [8]. He pro-
posed to pre-compute a set of feature values on a regular grid. The features
are available for all the corresponding windows. This resulted in a significant
speed-up of the algorithm. However, the reported speed for face detection
was about 2 frames per second on 1.8GHz processor, which is not competi-
tive even when the hardware speed-up since the publication of the paper is
considered.

Hradǐs et. al. [2] proposed a method that exploits the fact that in-
formation is shared between overlapping scanning windows. The method

1



2 CHAPTER 1. INTRODUCTION

introduces an auxiliary classifier for suppressing of evaluation at neighboring
positions. While a window is being classified with the standard WaldBoost
classifier, the response of the suppressing classifier is being computed virtu-
ally for free on the same features using only a different look-up table. If the
confidence of the suppressing classifier reaches a threshold level, the neigh-
boring position is discarded. However, if the confidence is low, the response of
the suppressing classifier is ignored, even though it might contain a valuable
information about the neighbor.

Dollár et. al. [9] use the correlation of pedestrian detector responses
in nearby positions to build a sophisticated ”crosstalk” cascade which en-
ables neighboring detectors to communicate and achieve major computa-
tional gains. The problem we focus on, face detection, differs from pedestrian
detection in the average number of evaluated weak classifiers per window –
about 3 for face detection, approximately 30 for pedestrian detection – which
makes the scheme impractical.

In this work, we follow this line of investigation and propose a new tech-
nique that benefit from inter-window dependences.

First, we generalize the idea of exploiting information from neighboring
windows to multiple scales. The motivation behind this is to suppress all the
sub-windows on lower image pyramid levels corresponding to a single window
on a certain pyramid level based just on a single prediction response. This
can lead to a significant speed-up of the classifier, given the number of all
sub-windows grows exponentially with decreasing pyramid level.

Second, inspired by the work of Hradǐs, we propose new predictors for
spatially adjacent windows and evaluate their performance.

Third, the ”suppression classifier” of Hradǐs that makes a 0-1, suppress or
don’t suppress decision, is generalized and the predictor is treated as a (rather
strong) weak classifier that is available at every location at no computational
cost.

The rest of the thesis is structured as follows. AdaBoost algorithm, the
basic element of WaldBoost classifier, is described in Chapter 2. Chapter 3
overviews the sequential analysis in object detection and WaldBoost. The
idea of exploiting the neighbors for a faster detection is discussed in Chap-
ter 4 together with an overview of [2] and introduction of WaldBoost with
Crosstalk Prediction. Chapter 5 describes the implementation details and
training data. The results of the work are presented and discussed in Chap-
ter 6. Finally, the thesis is concluded in Chapter 7.



Chapter 2

AdaBoost

For object detection we use WaldBoost [6]. WaldBoost algorithm is build
upon properties of two other algorithms: it uses AdaBoost [12] algorithm to
select and order weak classifiers and Wald’s sequential probability ratio test
(SPRT) [10] to determine the decision thresholds. AdaBoost algorithm is a
boosting algorithm, which means that it combines multiple weak classifiers
to build a single strong classifier. The AdaBoost algorithm, as opposed to
its predecessors, does not need an upper bound on the weak classifiers errors
over training set weightings to be known a priori. It uses an adaptation to
actual errors of weak classifiers on the training set.

AdaBoost selects and combines weak classifiers h(t) : X → R by summing
up their responses

fT (x) =
T∑
t=1

h(t)(x), (2.1)

which for 2-class task can be denoted as

HT (x) = sign(fT (x)). (2.2)

There is a number of AdaBoost variants for different domains (discrete,
real-valued, multi-class, ranking scores), in this work we use the real-valued
version. The strong classifier response function fT is then given by a sum of
real-valued responses of weak classifiers h(t). See the AdaBoost training in
Algorithm 1.

2.1 Training error upper bound

AdaBoost uses the following theorem to find a weak classifier in each step:

3



4 CHAPTER 2. ADABOOST

Algorithm 1 Real AdaBoost training

Input: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
Output:
Initialize: sample weight distribution D1(i) = 1

m
;

for t = 1, . . . , T do

1. Train weak learner using distribution Dt

2. Get weak hypothesis ht : X → {−1,+1} with error

εt = Pi Dt(ht(xi) 6= yi)

3. Choose αt = 1
2
ln
(

1−εt
εt

)
4. Update

Dt+1(i) = Dt(i)
Zt
×

{
e−αt if ht(x) = yi

eαt if ht(x) 6= yi
= Dt exp(−αtyiht(x))

Zt

where Zt is a normalization constant

end for
Output: the final hypothesis

H(x) = sign
(∑T

t=1 αtht(x)
)

Theorem 1 (Schapire and Singer [12]). Assuming the re-weighting scheme
from Algorithm 1, the following bound holds on the training error of HT

1

m
|{i : HT (xi) 6= yi}| ≤

T∏
t=1

Zt. (2.3)

Instead of minimizing the training error directly the greed approach is
applied to upper bound minimization. In each step t, the weak classifier and
its parameters are selected such that

Zt =
m∑
i=1

wt(i) exp(−yiht(xi)) (2.4)

is minimized. Since Zt < 1 when εt < 0.5, the upper bound is decreased
in each step.
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Figure 2.1: The domain-partitioning weak classifier. The response of feature
q(x) on object x is partitioned into bind j = 1, . . . , K. The leftmost and the
rightmost bins cover the respective half-spaces. In each bin j, the response
of the weak classifier h(x) is computed from the sum of positive (W j

+) and
negative (W j

−) weights of the training samples falling into the bin. The
smoothing constant ε is used to avoid numerical problems.

2.2 Domain-Partitioning Weak Classifiers

In this work the weak classifiers class H return their confidence based on a
feature domain partitioning [12]. Weak classifiers h(x) ∈ H are linked to one
feature q(x) : X → R. The feature responses are partitioned into disjoint
blocks X1, . . . , XK covering the whole domain and output real values for each
block and returns one of K numbers αj according to which block a sample
belongs to. Uniform-width interval bins are example of such a partitioning
(see Figure 2.1).

The α values are found by minimizing Zt in equation 2.4. Let us define

W j
b =

∑
i:xi∈Xj∧yi=b

wt(i); j = 1, . . . , K; b ∈ {+1,−1} (2.5)

a sum of the weights of samples from class b falling into j-th bin Xj. Then
we can rewrite equation 2.4 to

Zt =
∑
j

∑
i:x∈Xj

wt(i)e
−yiaj (2.6)

=
∑
j

(W j
+e
−αj +W j

−e
+αj) (2.7)
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which is minimized when

αj =
1

2
log

(
W j

+

W j
−

)
, (2.8)

The stronger the response, the more different are the sums W j
+ and W j

−.
To avoid numerical problems when computing α, a smoothing coefficient ε is
used

αj =
1

2
log

(
W j

+ + ε

W j
− + ε

)
. (2.9)

The recommended setting is ε = 1/m.



Chapter 3

Sequential analysis in object
detection & WaldBoost

3.1 Sequential analysis

Wald [10] developed the sequential decision-making theory as the statisti-
cal tool to test sequential hypothesis. He formulated a two-class sequential
classification task and proved that evaluation-time-optimal solution is the
sequential probability ratio test.

3.1.1 Sequential Probability Ratio Test

Wald proposed a Sequential Probability Ratio Test (SPRT). SPRT is a se-
quential strategy S∗, where

St(x) =


+1 if Rt(x) ≤ B

−1 if Rt(x) ≥ A

] if B < Rt(x) ≤ A

(3.1)

where Rt(x) is a likelihood-ratio of two hypotheses:

Rt(x) =
p(x1, . . . , xt|y = −1)

p(x1, . . . , xt|y = +1)
. (3.2)

The values A and B constrain the error rates α and β. To find A and B that
provide exactly the required α and β is not suitable pro practice, therefore,
Wald [11] suggested A and B to be set to their upper and lower bounds

A =
1− β
α

,B =
β

1− α
. (3.3)

7
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Such a setting of A and B may increase at most one of the resulting proba-
bilities α′ and β′. Wald showed the the potential increase is negligible.

3.2 WaldBoost

If SPRT is to be efficient in a classification problem where the measurements
are not independent and identically distributed (non-i.i.d.), the decision func-
tions 3.1 have to be evaluated fast. Incorporating the new measurements
should be computationally simple and should not depend on the number of
measurements taken so far. If the joined class-conditional densities or the
likelihood ratios would have to be actually estimated, this would be unfeasi-
ble. Also, the order of measurements matters in the non-i.i.d. case (the first
measurements taken should be the most informative ones).

Šochman and Matas proposed WaldBoost [6] to avoid the computation
of likelihood ratios by projecting the objects to a single scalar value using a
discriminatively trained classifier and reformulating the decision functions in
a way that that directly thresholds the classifier output.

They use AdaBoost [12] algorithm as the classifier. AdaBoost is very
efficient for the task since it chooses and orders the measurements accord-
ingly to their discriminative strength. The classifier is a sum of the weak
classifiers and thus enables the inclusion of additional measurements into the
classifier’s output to be constant and independent on the number of previous
measurements.

3.2.1 Decision functions for classification

Let Ht be a real-valued output of a classifier incorporating features 1, . . . , t,
the likelihood ratio Rt is reformulated as

Rt(x) =
p(Ht(x)|y = −1)

p(Ht(x)|y = +1)
. (3.4)

Assuming the likelihood ratio is a monotonic function of Ht(x), the decision
functions can be reformulated such that the classifier output is compared
instead of the likelihood ratio:

St(x) =


+1 if Ht(x) ≥ θ

(t)
B

−1 if Ht(x) ≤ θ
(t)
A

] if θ
(t)
A < Ht(x) ≤ θ

(t)
B

(3.5)

The thresholds θ
(t)
A and θ

(t)
B are estimated from training data such that the

conditions are equivalent to the conditions using R(x). Standard procedures
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Algorithm 2 WaldBoost classification

Input: ht, θ
(t)
A , θ

(t)
B and γ for t ∈ 1, . . . , T

Output: a classified object x
for t = 1, . . . , T do

1. If Ht ≥ θ
(t)
B , classify x as +1 and terminate

2. If Ht ≤ θ
(t)
A , classify x as -1 and terminate

end for
If Ht(x) > γ, classify x as +1, -1 otherwise

(e. g. histogram, Gaussian Mixture Model, kernel density estimation) can
be used to estimate the class-conditional densities p(Ht(x)|y = −1) and
p(Ht(x)|y = +1).

3.2.2 WaldBoost classifier

The classification functions Ht(x) are computed as sums of weak classifiers
ht(x). It is denoted by an ordered set of T weak classifiers ht(x), the thresh-

olds θ
(t)
A and θ

(t)
B and the threshold γ, that is used for the final response HT (x)

for the object that pass through the whole sequence without being decided -
this basically happens very rarely, most samples are decided in earlier stages.

The WaldBoost classification algorithm (see Algorithm 2). The deci-
sion functions are applied successively, each functions uses the response of a
weak classifier ht(x) and sums it with the cumulative result of the previous
Ht−1(x) to evaluate Ht(x). In each stage t, the temporary classifier response

is compared to thresholds θ
(t)
A and θ

(t)
B and terminated if the corresponding

conditions are met. If the decision is not made, the algorithm continues to
the next decision function. If the decision is not after in T stages, the final
response is thresholded by γ.

3.2.3 WaldBoost for object detection

The WaldBoost learning process is shown in Algorithm 3. The input of the
algorithm are a large training set P , desired error rates α and β and number
of training iterations T . It outputs the strategy, which is represented by
an order set of weak classifiers ht(x), t ∈ {1, . . . , T} and the corresponding

thresholds θ
(t)
A and θ

(t)
B . The algorithm extends real AdaBoost by bootstrap-

ping (sampling of the training set) and by decision thresholds.
In each iteration, a weak classifier is learned as in real AdaBoost. The
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Algorithm 3 WaldBoost classification

Input:

• sample pool P = { (x1, y1), . . . (xN , yN)}; xi ∈ χ; yi ∈ +1,−1

• desired final FN rate α and FP rate β

• number of iterations T

Initialize: A = 1−β
α

, B = β
1−α , data weights w1(xi, yi) = 1

N

Output: Weak classifiers ht(x) and the decision thresholds θ
(t)
A and θ

(t)
B .

for t = 1, . . . , T do

1. Sample training set T = { (x1, y1), . . . (xm, ym)} from P
2. Find ht(x) by real AdaBoost Algorithm on training set T with weights
wt and update the weights

3. Find the optimal thresholds θ
(t)
A and θ

(t)
B

4. discard the samples from P for which Ht(x) ≥ θ
(t)
B or Ht(x) ≤ θ

(t)
A

end for

training set T changes every iteration and the weights have to be assigned
accordingly. The decision thresholds θ

(t)
A and θ

(t)
B have to be set such that

they satisfy the constraints on the full training set P .
The bootstrapping is necessary due to the fact, that the training set is

pruned very efficiently a in later iterations only a fraction of the original set
remains. In order for the training set to remain representative, the initial
number of samples in the original set would have to be unnecessarily large,
if the bootstrapping was not used, which would significantly slow down the
learning with no measurable impact on the quality of the final classifier.



Chapter 4

Exploiting neighbors for faster
scanning window detection

The standard scanning window detectors treat the decisions made about in-
dividual windows as independent despite the clear dependence of the signal in
overlapping windows. Below, we first briefly overview the method of Hradǐs
et. al. [2], where he exploits the information shared between spatially over-
lapping windows. We generalize his method in Prediction of spatially ad-
jacent windows and introduce new scanning patterns and predictor types
to improve the prediction performance.

Furthermore, we exploit the fact, that the information can also be propa-
gated through the image pyramid levels. We generalize this idea in Predic-
tion over pyramid.

Finally we combine both Prediction of spatially adjacent windows and
Prediction over pyramid into a single detector WaldBoost with Crosstalk
Prediction.

4.1 Neighborhood suppression by Hradǐs et.

al. [2]

Hradǐs et. al. proposed to learn a classifier for suppression of the evaluation
of the detection classifier in the neighborhood of the currently examined
window. He reuses the features used by the reference detector and adds just
a single look-up table, so that additional computational cost is almost zero.

The weak hypotheses are a combination of features f and a look-up table
operation l : N→ R

ht(x) = lt(ft(x)). (4.1)

11
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Figure 4.1: Image pyramid and a scanning window. With a decreasing pyra-
mid level the relative detection window size decreases, therefore a single
window on level n contains multiple windows on lower levels.

The task of learning the suppressing classifier can then formalized as learning
a new soft cascade with a decision strategy S ′ and hypotheses h′t, where the
weak hypotheses reuse the features ft from the original classifier, only new
lookup-table functions l′t are learned.

He applies the traditional scanning pattern and uses a single predictor for
predicting a single position, therefore a maximum speed-up of 2x is possible.
The suppression process is visualized in Figure 4.2.

4.2 WaldBoost with Crosstalk Prediction

WaldBoost with Crosstalk Prediction consists of a reference WaldBoost de-
tector, Prediction of spatially adjacent windows and Prediction over pyramid.
Similarly to [2], both predictors reuse the features computed with the original
classifier. We use Local Binary Patterns (LBP) features [1] (further discussed
in 5) for the classification and AdaBoost for prediction. For the LBP features
used, a single additional look-up for the prediction at is about 10 times faster
than the feature calculation.

4.2.1 Prediction of spatially adjacent windows

Prediction of spatially adjacent windows generalizes the method of Hradǐs [2]
in two ways. First, it breaks away from the top-to-bottom, left-to-right scan-
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Figure 4.2: Scanning an image in ordinary line-by-line fashion while using
neighborhood suppression [2]

ning pattern. Second, it does not use the information for suppression only,
but contributes as a weak classifier. The prediction spatially overlapping
windows is assessed like zero-length boosted detector and stops evaluation if
the confidence is high enough else it is reused as the bias for the detection
classifier. The steps of the prediction over neighborhood are following:

Step 1: 2d partitioning of image

Divide set I of all windows positions in image into 2 disjoint sets C and
N such that the Minkowski sum C ⊕ N covers the original domain, i.e.
I = C ⊕ N . C is set of all center positions, N is set of all neighboring
positions. See examples of the neighborhood types in Figure 4.4. Each
element x ∈ C has its corresponding set of neighbors x′ ∈ N .

Step 2: Windows classification

1. For each x ∈ C evaluate H(x) and Hp(x′).

2. For each x′ ∈ N evaluate

H ′t(x
′) = Ht(x

′) + kmin(Hp(x′), 0), (4.2)

where H is the original classifier, Hp is the predictor, t = 0, . . . T and
H0(x

′) = 0. Note that the suppression is handled here by enabling t = 0
and thus not evaluating the original classifier.

The algorithm for learning the predictor is described in Algorithm 4



14 CHAPTER 4. EXPLOITING NEIGHBORS

(a) S1:1 (b) S2:1 (c) S2:2

(d) S3:1 (e) S3:2 (f) S3:3

Figure 4.3: Example of scanning patterns

(a) PL (b) PLR (c) P8

Figure 4.4: Types of predictors: PL (prediction left), PLR (prediction left &
right), P8 (prediction for all 8 surrounding positions). Gray color corresponds
to center windows C, white to neighboring windows N .
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Algorithm 4 Training predictor Hp

Input:

• original soft cascade HT (x) =
∑T

t=1 ht(x), its termination thresholds
θ(t) and its features ft

• training set {(x1, y1) . . . , (xm, ym)},x ∈ χ, y ∈ {−1,+1}, where the
labels yi are manually obtained.

Output:

• look-up table functions lpt of the new predictor Hp

Initialize: sample weight distribution D1(i) = 1
m

for t = 1, . . . , T do

1. estimate new lpt such that its

c
(j)
t = −1

2
ln
(
Pi∼D(ft(xi)=j|yj=+1)

Pi∼D(ft(xi)=j|yj=−1)

)
2. add lpt to predictor

Hp
t (x) =

∑t
r=1 l

p
r(fr(x))

3. remove from the training set samples for which Ht(x) ≤ θ(t)

4. update the sample weight distribution

Dt+1(i) ∝ exp(−yiHp
t (xi))

end for

4.2.2 Prediction over pyramid

Prediction over pyramid is a novel approach. It exploits the fact that a single
window on image pyramid level n contains multiple windows on levels l′ < l
(see Figure 4.1). With common detector settings (step size = 2px, scale =
1.2, window size = 24x24px) each window in pyramid level l contains approx.
4 windows on pyramid level l−1, 9 windows on level l−2, 16 windows on level
l−3 etc., thus offering a potential for a great speed-up if ale the sub-windows
are suppressed at once.

As in Prediction of spatially adjacent windows, we reuse the features
computed by the original detector and use just different look-up table, thus
keeping the computational overhead close to zero.

The parameters of classification with prediction over pyramid are lPY R

and θPY R. If the prediction response for window x on pyramid level l ≤ lPY R

is lower than θPY R, then all windows x′ that are fully overlapped by x are
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Algorithm 5 WaldBoost with Crosstalk Prediction classification of center
windows

Input: ht, θ
(t)
A , θ

(t)
B , γ, h

SPA
t , hPY Rt , for t ∈ 0, . . . , T , where ft = fSPAt =

fPY Rt

Output: a classified object x, HSPA(x), HPY R(x)
for t = 1, . . . , T do

1. evaluate HSPA
t (x) and HPY R

t (x)

2. If Ht ≥ θ
(t)
B , classify x as +1, r = t, terminate

3. If Ht ≤ θ
(t)
A , classify x as -1, r = t, terminate

end for
If Ht(x) > γ, classify x as +1, -1 otherwise

classified as -1. Note that windows x′ can only be on pyramid levels l′ < l.
The higher the value of lPY R is set, the higher speed-up is expected, however,
with an increased risk of missing a target objects. The same holds for value
θPY R.

We learn a predictor for suppressing such windows which don’t include
a positive sample in any corresponding sub-window on lower pyramid levels.
The same learning algorithm 4 as for Prediction of spatially adjacent windows
is used.

4.2.3 WaldBoost with Crosstalk Prediction

WaldBoost with Crosstalk Prediction combines the reference detector Ht,
prediction of spatially adjacent windows HSPA and prediction over pyramid
HPY R in a straightforward manner. The additional computational cost is
almost zero since the weak hypotheses of predictors are ordered identically as
the weak hypotheses of the reference detector, therefore only two additional
look-up tables are needed.

The classification of a center windows and spatially neighboring windows
is summarized in Algorithm 5 and 6 respectively. Algorithm for object de-
tection in image with WaldBoost with Crosstalk Prediction is summarized
in Algorithm 7. It accepts an image on the input and outputs windows cor-
responding to detected objects. If the neighborhood is selected such a single
neighbor position is spatially predicted from multiple center windows, the
mean value of these predictions is used.
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Algorithm 6 WaldBoost with Crosstalk Prediction classification of spatially
neighboring windows

Input: k, ht, θ
(t)
A , θ

(t)
B , γ, h

SPA
t , hPY Rt , for t ∈ 0, . . . , T , where ft = fSPAt =

fPY Rt

Output: a classified object x, H ′SPA(x), HPY R(x)
for t = 0, . . . , T do

1. evaluate HSPA
t (x) and HPY R

t (x)

2. evaluate H ′t(x) = Ht(x) + kmin(HSPA(x), 0)

3. If H ′t ≥ θ
(t)
B , classify x as +1, r = t, terminate

4. If H ′t ≤ θ
(t)
A , classify x as -1, r = t, terminate

end for
If H ′t(x) > γ, classify x as +1, -1 otherwise
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Algorithm 7 WaldBoost with Crosstalk Prediction for object detection in
image

Input:

• image I

• neighborhood type P and scanning pattern S

• constants k, θSPA, θPY R, lPY R

• functions Ht, H
′
t, H

SPA
t and HPY R

t

• function p(x) that returns a set of all windows x′′ that are fully over-
lapped by x

Output: set D of windows classified as +1
Initialize:

• initialize set X of all windows x to be classified in image I by building
an image pyramid

• divide all x ∈ X into disjoint sets L1, . . .LL, where Ll consists of all
windows on image pyramid level l

• let x′ be the spatial neighbors of x according to neighborhood type P

• D = ∅
for l = L, . . . , 1 do . for each image pyramid level
C = ∅,N = ∅
add all center windows x ∈ Ll into C accordingly to S
add all neighboring windows x ∈ Ll into N accordingly to P

for each x ∈ C do . for each center window
evaluate H(x), HSPA(x′) and HPY R(x)
if H(x) = +1 then add x to D
end if
if l ≤ lPY R and HPY R(x) ≤ θPY R then

remove all x′′ ∈ p(x) from their corresponding set L
end if

end for

for each x ∈ N do . for each neighbor window
evaluate H ′(x) and HPY R(x)
if H ′(x) = +1 then add x to D
end if
if l ≤ lPY R and HPY R(x) ≤ θPY R then

remove all x′′ ∈ p(x) from their corresponding set L
end if

end for

end for
return D . Output set of windows classified as +1
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Implementation details

5.1 Training data

The predictors were trained on the set consisting of 20000 positive and 70000
negative samples (patches with resolution 24x24 pixels).

The positive training samples for Prediction of spatially adjacent windows
were generated such that each position containing a face in ground truth was
shifted by 2 pixels to all 8 directions (right, left, top, bottom, right-top,
right-bottom, left-top, left-bottom). See Figure 5.1 for examples of positive
training data.

The positive training samples for Prediction over pyramid were generated
such that each window fully overlapping an annotated face, no matter on
what image pyramid level, was considered as positive. See Figure 5.2.

The negative samples were generated by random sampling of human an-
notated images that did not include any face.

5.2 Features

The purpose of features is to extract useful information from the given data
with a low computational cost. Features can express the prior knowledge of
the object class and can make learning much easier and faster than using
directly the raw image data. In general, different features are suitable in dif-
ferent tasks, however, Local Binary Patterns (LBP) are proven to be efficient
for number of different classes. In this work we used Extended Set of Local
Binary Patterns [1] by Trefný and Matas (see Figure 5.3).

19
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Figure 5.1: Positive training samples for Prediction of spatially adjacent
windows

Figure 5.2: Positive training samples for Prediction over pyramid
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Figure 5.3: Extended set of LBPs [1]: (a) conventional LBP thresholded
by center pixel value; (b) 8-bit coded modified LBP (mLBP) thresholded
by pixels mean value; (c) transition coded LBP (tLBP); (d) direction coded
LBP

5.2.1 What is measured

The local binary pattern operator [13] is a non-parametric descriptor on gray-
scale space invariant to monotonic transformations of the intensity function.
The basic LBP pattern measures a 3x3 pixel square.

The output of LBP is a binary code, which is computed by thresholding
the eight neighborhood pixel values by the value of the center pixel, see Figure
5.4 (a). The operator was further extended to rotation symmetric and multi
scale version [14], see Figure 5.4 (b). This LBP pattern is parametrized by
the neighborhood size P and the radius R and is denoted as:

LBPP,R =
P−1∑
p=0

s(gp − gc)2p (5.1)

where

s(x) =

{
1 if x ≥ 0

0 if x < 0
, (5.2)

gp correspond to gray values regularly spaced on circle and gc is the gray cen-
ter value. Gray values at non integer positions are obtained by interpolation.

LBPs are commonly used in classification of distributions (histograms)
of semi-local neighborhoods. In the approaches exploiting the spatial ap-
pearance, single LBP measurements tend to be unstable and sensitive to
localization and noise. This was addressed by citezhang, who introduced a
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Figure 5.4: LBP comparison values: (a) original LBP, (b) rotation symmetric
and multiscale LBPP,R, (c) Examples of multi-block local binary pattern
(MB-LBP)

Multi-Block LBP (MB-LBP) [15]. He compares mean values of 3x3 adjacent
rectangular blocks instead of comparing the pixel values, which can be done
in constant time using the integral image [3]. MP-LBPs enable generating
large sets of operators with different aspect ratios and scales (see Figure
5.4), however, it’s not invariant to monotonic intensity transformations, as
the original LBPs, it only preserves the invariance to affine intensity changes.

5.2.2 Encoding methods

Motivated by spatial appearance classification models, Trefný and Matas [1]
proposed novel encoding methods: Transition Local Binary Patterns and
Direction coded Local Binary Patterns.

Transition Local Binary Patterns (tLBP) - The LBP thresholds tje
neighboring gray pixel values by the center value. This provides a rough
information of the relation of neighbors to the center pixels, however, the
relations between pixels with the same binary value are lost. Binary code
of tLBP is composed of neighbor pixel comparisons in clockwise direction,
which enables to encode the information between neighboring pixels.
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Figure 5.5: Examples of generated codes and schemes of possible pixel in-
tensity values for a given pixel sequence: (a) LBP encoding rule, (d) dLBP
encoding rule

Formally, it can be denoted as

tLBPP,R = s(g0 − gP−1) +
P−1∑
p=1

s(gp − gp−1)2p, (5.3)

where gp is a gray value p-th neighbor of center pixel. tLBP is gray-scale
invariant.

Direction coded Local Binary Patterns. Motivation behind dLBP
is to provide a better information in sense of a direction function. Using
a standard LBP operator, there are 4 basic directions through the center
pixel. Motivated by spatial appearance classification models, Trefný and
Matas encode intensity variation along these directions into 2 bits so that
the resulting binary word is of the same length as the original LBP. The first
bit encodes, whether the difference of edge pixels grows or falls due to the
center one. See figure 5.5 for comparison of LBP and dLBP rules for a given
direction. Both LBP and dLBP rules encode the binary information of the
center pixel being an extrema. Unlike the LBP rule, dLBP does not encode
it as maximum or minimum, but instead it encodes, whether the sign of first
and second differential is the same. Using this property the dLBP is not inly
gray-scale intensity invariant, but also has the intensity inversion invariance
property.

Formally written:

dLBPP,R =
P ′−1∑
p′=0

(
s(gp′ − gc)(gp′+P ′ − gc)22p′ + s(|gp′ − gc| − |gp′+P ′ − gc|)22p′+1

)
(5.4)
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Chapter 6

Experiments

We evaluated the performance of our method on FDDB dataset [16] while
using the reference detector as a baseline. In fact, we used 2 reference de-
tectors: FRONTAL (frontal-view) and MULTI (multi-view) WaldBoost face
detector consisting of 1000 weak classifiers.

FRONTAL face detector is a classic WaldBoost detector using one lookup-
table per a feature. It is trained for recognizing faces from a frontal view.
The average number of weak classifiers per a single window on FDDB dataset
was 2.19.

MULTI detector is a WaldBoost detector that uses 5 look-up tables for
each feature. Each table is trained on different angle of rotation in order
to detect such faces that are not in vertical position. MULTI detector is
basically an improved version of FRONTAL detector, it results in about 3%
better detection performance on FDDB dataset. The average number of
weak classifiers evaluated per a window is 6.22.

The parameter settings of the detectors were following: step size = 2px,
scanning window size = 24px, scaling constant = 1.2.

The following two metrics were evaluated: (a) detection performance /
speed, (b) geometric accuracy / speed. Speed is denoted as relative average
number of evaluated weak classifiers per image window comparing to the
reference detector.

To evaluate (a), the average value of TP rate in range of FP ∈ [10, 1000]
(in logarithmic space) is taken (see 6.1). This interval represents the ”most
informative” part of ROC curve. With lower values of FP, only easily de-
tectable target objects are considered as TP and these don’t vary significantly
among state-of-the-art detectors. With higher values of FP, the number of
misclassified background objects is too high for detector to be usable in real
applications. Therefore, the classifier with the best performance within the
specified interval can be considered as the best classifier overall. Since the

25
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ROC in this interval in logarithmic space has a shape close to straight line,
taking the average of it is an efficient way to enumerate the ROC curve by a
single number.

To evaluate (b), the average successful detection bounding box overlap to
the ground truth is used. Each detected bounding box with overlap ≥ 0.5 to a
ground truth box is considered a successful detection bounding box (overlap
of two boxes is computed conventionally as an intersection over union).

6.1 Prediction of spatially adjacent windows

MULTI. The evaluation of number of neighborhood types combined with
different scanning patterns is shown in Figure 6.2. The best overall perfor-
mance was reached by predictor for neighborhood P8 with scanning pattern
2:2. This predictor was capable of gaining 2x speed-up with no impact on
detection rate and 3x speed-up with losing less than 0.3% of detection rate.

We also included the predictor HRADIS in the evaluation. HRADIS cor-
responds to suppression classifier from [2] with the only difference, which
is using only a single threshold for final predictor response instead of using
a WaldBoost like set of thresholds. We argue this does not have a signifi-
cant impact on the performance. See that HRADIS does quite well in the
geometric accuracy, but is one of the weak ones in the detection performance.

In general, neighborhood type P8 proved to be the best one of tested
neighborhoods, on the other hand, neighborhood type PL is the weakest
one. This supports the idea, that predicting multiple positions at once is a
good approach.

Evaluation of using the predictor response as a starting point for selected
predictors (setting k = 1) is shown in Figure 6.3. As one can see, using the
prediction as a starting point of the original detector for the original classifier
doesn’t have as significant impact on the performance as the suppression
itself, in fact, in most cases cases it resulted in a slightly worse detection
performance.

FRONTAL. The evaluation of number of different neighborhood with and
without using the predictor response as the starting point of the reference de-
tector classifier is shown in 6.4. Similarly to MULTI, the neighborhood type
P8 with scanning pattern s2:2 resulted in the best performance in recogni-
tion/speed metric outperforming PLR s3:1 and HRADIS. Difference between
setting k=0 or 1 turned out to be similarly negligible as with MULTI, while
providing a little worse performance overall.
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(b) ROC curve within FP interval [10, 1000]
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(c) ROC curve within FP interval [10, 1000] in logarithmic
space

Figure 6.1: ROC curve in logarithmic space
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In the figures, each point represents a single ROC curve. ROC curves
were obtained by shifting the zeroth threshold of θ

(0)
A .

6.2 Prediction over pyramid

MULTI. The evaluation of prediction over pyramid is shown in Figure 6.5.
The ROC curves here were generated by shifting the value of θPY R, whereas
the bottom most point of each line corresponds to θPY R = ∞, which is
equivalent to leaving out all the pyramid levels below given lPY R.

Note that a curve representing lPY R = 4 gets to about 0.2% better detec-
tion rate than the reference detector while speeding-up almost 1.5x. See when
setting lPY R=Inf, the performance gets significantly worse. The most inter-
esting results from these are probably the curves corresponding to lPY R = 4
and 6. This means, that the predictor can still well predict the responses of
windows that are scaled down by factor of 1.24 and 1.26.

See examples of successful face detection with prediction over pyramid in
Figure 6.7. To generate these, lPY R was set to ∞ and θPY R was set as high
as possible with keeping the results identical to the output of the detector
without prediction. Note that the best result is equivalent to 33x speedup
of the original classifier. The images with lower speed-up (higher number of
evaluated weak classifiers) generally correspond to images containing faces
on relatively low levels (small faces in large images). This is understandable,
since the predictions made on high levels tend to be very imprecise for win-
dows on low levels and since these images contain small faces, the threshold
θPY R must be set very low not to result in missing these faces.

Examples of failure are shown in Figure 6.8. Here, boxes containing faces
are marked as negatives with the predictor. Surprisingly, the boxes are not
as large compared to faces as one would expect. Also, two of the missed men
are wearing a hat, which could be the reason for the failure. These failures
are matter of future investigation, possible solution cloud be extending the
training dataset.

FRONTAL. See results for evaluation of prediction over pyramid in Figure
6.6. The prediction over pyramid turned out to be very sensitive for a θPY R

setting. However, from these results it seems the prediction over pyramid
results in rather worse performance than the original detector, since none of
the points resulting from the experiments ended up being significantly over
the reference curve.

In the figures, each point represents a single ROC curve. ROC curves
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Figure 6.2: Prediction over neighborhood: multi-view detector.
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Figure 6.3: Prediction over neighborhood: multiview detector. Using predic-
tor response as the starting point for the original detector.
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Figure 6.4: Prediction over neighborhood: frontal detector.
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were obtained by shifting the value of θPY R.

6.3 WaldBoost with Crosstalk Prediction

MULTI. The results of WaldBoost with Crosstalk Prediction are in Figure
6.9. We used the best performing predictor of spatially adjacent windows:
P8 predictor with s2:2 scanning pattern and we tested number of different
parameters setup of the predictor over pyramid. See that we were capable of
reaching 3x, 4x, 5x and 6x speed-up with losing about 0, 0.5, 0.7 and 1.5%
of the detection rate respectively with no significant lose of the geometric
accuracy. Such a speed-up would be impossible with predicting only a single
position as in [2]. Interestingly, 5x speed-up with losing 0.7 % of detection
rate result in 1.23 evaluated weak classifiers per window in average while still
a keeping state-of-the-art performance. The geometric accuracy also remains
almost unchanged up to 5x speed-up.

See examples of detections including the relative number of evaluated
weak classifiers per window in 6.11.

FRONTAL. See Figure 6.10. Identically to MULTI, we used P8 s2:2 as
the predictor of spatially adjacent windows. We reached 1.5x, 3x, 4x and 5x
speed-up with losing about 0, 0.7, 1.5 and 2.7 % of the detection rate with
almost no loss of the geometric accuracy. The loss in recognition is a bit more
significant here than in case of MULTI, but considering the average number
evaluated weak classifiers per a single window, we get 1.46, 0.73, 0.54 and
0.4, therefore less than one evaluated classifier per 2 windows, which is very
decent when considering not the top-notch, but still very high detection rate.
Furthermore, the quality of geometric accuracy remains almost the same as
the reference detector.

In the figures, each point represents a single ROC curve. ROC curves
were obtained by shifting the value of θPY R.
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Figure 6.5: Prediction over pyramid: multi-view detector.
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Figure 6.6: Prediction over pyramid: frontal detector.
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(a) 0.03 (b) 0.06 (c) 0.16

(d) 0.21 (e) 0.24 (f) 0.28

(g) 0.41 (h) 0.44 (i) 0.77

Figure 6.7: Prediction over pyramid: successful detections. Numbers in
captions represent a relative number of evaluated weak classifiers compared
to the reference detector without prediction.
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Figure 6.8: Prediction over pyramid: failures. Red boxes correspond to
windows, that were discarded due to a low predictor response, although the
reference detector would detected the face on lower image pyramid levels.
Predictor responses for these were -1.6, -2.5 and -3.5 respectively.
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Figure 6.9: WaldBoost with Crosstalk Prediction: multi-view detector
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Figure 6.10: WaldBoost with Crosstalk Prediction: frontal detector.



6.3. WALDBOOST WITH CROSSTALK PREDICTION 39

(a) 0.10 (b) 0.11 (c) 0.12

(d) 0.14 (e) 0.15 (f) 0.15

(g) 0.16 (h) 0.18 (i) 0.19

Figure 6.11: WaldBoost with Crosstalk Prediction detection results. Num-
bers in captions represent a relative number of evaluated weak classifiers
compared to the reference detector without prediction.
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Chapter 7

Conclusion

The scanning strategy and the selection of predictors is a significant factor
in quality of the prediction algorithm. In this work, we generalized the idea
of exploiting information from spatially neighboring windows to multiple
scales and we proposed new predictors for spatially adjacent windows and
evaluated their performance. We proposed a novel WaldBoost with Crosstalk
Prediction, which uses the information shared between windows that overlap
spatially or over image pyramid.

Inspired by work of Hradǐs et. al. [2], the prediction is computed on the
same features as the detection, therefore no additional computational cost is
required (adding one additional look-up table results in 1.1 times longer pro-
cessing time). We evaluated the detection performance with the prediction
on state-of-the-art dataset for face detection, when the detection rate, geo-
metric accuracy and speed were measured. We used 2 reference WaldBoost
detectors: frontal-view and multi-view detector. For both detectors, experi-
ments showed that a significant speed-up can be achieved with no or a little
loss of detection rate and geometric accuracy, outperforming the reference
method of Hradǐs et. al.

Testing with a multi-view detector, which computes about six weak clas-
sifiers per evaluated window, the final detector using the best performing of
the predictors was 3 times as fast as the reference detector without prediction
with no loss of the detection rate and up to 5 or 6 times as fast with losing
only 0.7% or 1.5.% of the detection rate respectively.

Testing with a frontal-view detector, which computes about 2 weak clas-
sifiers per evaluated window, the final detector was about 3 times faster when
losing less then 1% and more than 4 times faster when losing 1.5% of the
detection rate, which is equal to less than one evaluated weak classifiers per
2 windows.

Evaluation of proposed method on other dataset for face detection and
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other object classes (pedestrians, cars) is one of topics for future work. New
scanning patterns and possibly new neighborhood types can be tested to
improve the prediction of spatially adjacent windows. Optimizing the scale
parameter for the prediction over pyramid could also be a topic for investi-
gation. The prediction over pyramid proved to have a potential for a great
speed-up, therefore it is worth considering, whether it shouldn’t be treated as
an additional standalone classifier instead of training it to reuse the features
of the reference detector.
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