

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science and Engineering

Bachelor's Project

Collab � Collaborative Raster Painting Editor

Martin Indra

Supervisor: Ing. Ond°ej Macek

Study Programme: Open Informatics, Bachelor

Field of Study: Software Systems

January 5, 2015

iv

v

Declaration

I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic �nal thesis.

In Prague on January 5, 2015 .

vi

Abstract

Collab is a project which aims to create a full platform empowering users with a graphical
editor which could be connected to is's other instances via a computer network in a way that
all interconnected users draw on the same �canvas� and see each others work immediately.

The thesis introduces matters of collaborative painting, suggests a solution based on
surveys, designs �nal project architecture and describes actual implementation. The project
was divided into multiple independent parts. CRPP � Collaborative Raster Painting Protocol
is a network protocol and it's documentation. Collab Desktop is a desktop client users will
use for collaborative painting. Collab Canvas is a Java SWING library for graphical editors
implementing interface which make it easy to connect it to a network. Collab Server is a
server to which the client connects.

The Collab project was in most parts successful. There is designed network protocol,
several Java libraries and server and desktop applications ready to use.

vii

viii

Abstrakt

Collab je projekt, jehoº cílem je vytvo°it celistvou platformu poskytující uºivatel·m gra�cký
editor, který m·ºe být napojen k jiným vlastním instancím p°es po£íta£ovou sí´ takovým
zp·sobem, ºe v²ichni propojení uºivatelé mohou kreslit na stejné plátno a vidí v reálném
£ase práci ostatních.

Práce uvádí problém sdíleného kreslení, navrhuje °e²ení na základ¥ re²er²í, navrhuje
�nální softwarovou architekturu a popisuje vlastní implementaci. Projekt byl rozd¥len do
n¥kolika nezávislých £ástí. CRPP � Collaborative Raster Painting Protocol je gra�cký sí´ový
protokol a jeho dokumentace. Collab Desktop je aplikace, kterou uºivatelé pouºijí pro sdílené
kreslení. Collab Canvas je Java SWING knihovna pro gra�cké editory, která implementuje
rozhraní usnad¬ující napojení na sí´. Collab Server je server, ke kterému se mohou p°ipojovat
klienti p°es CRPP.

Collab projekt byl z velké £ásti úsp¥²ný. Vznikl návrh a dokumentace sí´ového protokolu,
n¥kolik Java knihoven, server a klientská aplikace ve verzi p°ipravené k pouºití.

ix

x

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Organization . 1

1.3 Speci�cation and requirements . 1

1.4 State of the art . 2

2 Architecture 3

2.1 Protocol . 3

2.2 Collab Canvas . 4

2.3 Collab Desktop . 4

2.4 Collab Server . 4

3 Network protocol 5

3.1 Protocol layers . 5

3.2 Image data format . 6

3.3 Image changes distribution . 8

3.4 Commands . 8

3.4.1 Outgoing commands . 8

3.4.2 Incoming commands . 9

3.4.3 Duplex commands . 9

3.5 Paint command . 10

4 Collab Canvas 11

4.1 Interface . 11

4.2 Usage . 13

4.3 Network painting . 14

5 Collab Server 15

5.1 Core . 15

5.2 Network layer . 15

5.3 Painting layer . 15

5.4 HTTP Server . 16

6 Collab Desktop 17

6.1 Painting Tools . 18

6.2 Con�guration . 19

xi

xii CONTENTS

7 Development 21

7.1 Open-source . 21
7.2 Used development supporting tools . 21

8 Conclusion 23

List of Figures

2.1 Collab deployment diagram . 3

3.1 Complete data endpoint to endpoint path . 5
3.2 Down layer's message structure . 6
3.3 Up layer's message structure . 7
3.4 Update application example . 8

4.1 Collab Canvas class diagram . 12

5.1 Rooms on a server . 16

6.1 Screenshot of Collab Desktop . 17

xiii

xiv LIST OF FIGURES

List of Tables

1.1 List of some available tools and their features 2

xv

xvi LIST OF TABLES

Chapter 1

Introduction

Collab is a digital analogy to a physical place where multiple people have access and can
draw on a canvas simultaneously. It provides the possibility of collaborative sketching over
geographical distance as if in physical proximity.

There are several ways to represent visual content, this project is concerned about two
dimensional raster graphics. That means a matrix of pixels where each is represented by a
color de�ned by a particular number of color channels each stated by a particular number
of bits (color depth).

1.1 Motivation

There is an increasing need for virtual connection for both professional and unprofessional
collaboration via the Internet. Part of the issue is visual representation and sharing of all
kinds of visual material. This need is partially ful�lled by current technologies, but no
free software is presenting users with all the crucial features of comfortable visual sharing.
These features are described further in this chapter and the free-software issue is described
in Open-source (page 21).

1.2 Organization

The project is trying to bring a solution on all levels necessary for a complete, usable software.
It concerns a client, server, multiple libraries, network protocol, problem description, design
and documentation.

1.3 Speci�cation and requirements

The project should solve the problem of real-time visual connection by sharing gradual
changes into the graphics within milliseconds after they occur. Multiple users are connected
onto a canvas and are synchronized to its content. Everybody on the canvas can paint and
simultaneously receive new data from other collaborators.

1

CHAPTER 1. INTRODUCTION

Each time somebody paints something the change is immediately displayed to him and
within fractions of seconds distributed to the other users. Immediate feed-back is important
for the sake of usability, otherwise the user would be distracted by not seeing an immediate
response. Application of the changes among other connected people can take perceivable
time but no more than several seconds, otherwise it would disturb the cooperation.

There has to be an authority or system guaranteeing accurate synchronization among
users. There should be no di�erences between the data each client has lasting more than a
noticeably long period of time.

The graphics and data interchange have to be speci�ed in generic enough terms to enable
various clients to share all kinds of raster graphical content. The data interchange protocol
should enable users to both remove and add other content and to do so into mutually
overlapping layers.

1.4 State of the art

There is no universally accepted and well de�ned term regarding real-time visual sharing.
The most wide spread name under which the technology is regarded in general is paint chat.
Paint chat is de�ned as a collaborative painting tool combined with a textual chat.

multi-platform real-time raster general free software

Cosketch [Cos14] yes no yes no no

Whiteboard [Meg14] yes yes yes no no

openCanvas [Por14] no ? yes no no

Table 1.1: List of some available tools and their features

Most of the tools or software available in December 2014 support only basic features
and cannot be used in the sense of a general graphical editor [con14b]. Table 1.1 illustrates
the limitations of some available software. According to the research of this thesis there
is no feature rich multi-platform general collaborative graphical editor available under free
software license. Collab aims to �ll this technological gap.

2

Chapter 2

Architecture

Collab is divided into several parts which are the network protocol, server and desktop client.
Collab Desktop and Collab Server use a network library for the connection and data relay
and Collab Desktop uses another library for painting. See 2.1 for illustration.

Figure 2.1: Collab deployment diagram

2.1 Protocol

The Collab project is based on a protocol developed for the purpose of real-time graphical
data sharing. It's name is Collaborative Raster Painting Protocol abbreviated as CRPP.
The protocol is design to be data and processing time e�cient if the graphics are changed
gradually.

CRPP is a binary protocol functional over a TCP/IP connection. CRPP is not hardly
linked to Collab software so it can be used with any graphical editor.

3

CHAPTER 2. ARCHITECTURE

Protocol performance

The most demanding part of the protocol is graphics distribution. All other data are not
sent so frequently and are at least one-fold smaller in size. It requires the transition of image
data every time a change occurs from any to all users.

The goal was to �t the transition into a generally available internet connection band-with.
The most limiting part of an average internet connection is its upload bandwidth [Tec14].
Because of that 100KiBps was considered as the maximal upload throughput. 200KiBps
was used as a limiting download speed.

Network requirements were tested experimentally in a painting application prototype
which enabled the drawing of thin coloured lines. Users were asked to draw di�erent shapes,
pictures and texts. Then every 500 milliseconds of newly created image data were cut-o�
into squares of 50 pixels. Squares with no change were discarded and the remaining were
compressed into PNG images with maximal compression. This PNG data was gathered for
about 10 minutes and the maximal and mean pace of data generation were counted.

The measurement results gave a rough estimation of throughput requirements at 45KiBps
maximal and 20KiBps average per user. The data amount �uctuated around the average
most of the time. If we considered eight users as the maximum on a canvas then we get
160KiBps minimal download throughput. The results are a perfect �t for an average internet
connection of end-users.

2.2 Collab Canvas

Collab canvas is a Java framework based on SWING. Its purpose is to put away most of the
work needed to create a graphical editor compatible with CRPP. Collab Canvas solves all of
the problems connected to graphics rendering and composition so project developers using
this framework can focus more on editor features instead of all underlying algorithms.

2.3 Collab Desktop

Collab Desktop is a Java SE graphical editor using Collab Canvas framework. Collab Desktop
put together all parts required for a fully functional collaborative editor.

2.4 Collab Server

Collab Server is a Java application which implements network protocol. It communicates
with clients and distributes and holds graphical and meta data in memory.

4

Chapter 3

Network protocol

For the purpose of cross-compatibility among servers and clients there is a TCP/IP based
protocol. Its name is Collaborative Raster Painting Protocol (abbreviated CRPP as it will
be referred to later). The protocol is binary and it sends shared information by separate
messages.

3.1 Protocol layers

The protocol is divided into two separate layers as is illustrated by �gure 3.1.

Figure 3.1: Complete data endpoint to endpoint path

Down layer, called CRPP Binary, is responsible for message packing and its transmission.
It receives message on one side and sends that message on the other side of the connection.
It is responsible for delivering messages in the same order as they were sent. CRPP Binary
could be in theory substituted by any other message transmitting protocol (e.g. RabbitMQ

5

CHAPTER 3. NETWORK PROTOCOL

and its AMQP) but its own implementation was used for the sake of processing speed and
bandwidth requirements.

In CRPP Binary every message send as byte sequence and represents independently
interpretable information. The messages are structured into a header and body. Header is
composed of message ID (�rst four bytes) and body length (another four bytes). Message
structure is illustrated by �gure 3.2.

Figure 3.2: Down layer's message structure

The upper layer interprets the data types and communicates with the build on applica-
tion.

The messages in the upper layer are composed of a command (four-byte long ASCII
code) and parameters. Each command represents speci�c task and could but needn't carry
additional data. The command data payload is slitted into parameters, where each one has
its own name and body. A parameter's name is de�ned as four ASCII characters. Then four
bytes of the body length precede the body itself. The parameters could contain any binary
data which are interpreted in accordance with the command and parameter name. The up
layer is illustrated by �gure 3.3.

3.2 Image data format

Images are represented as a raster of pixels with 32 bit color depth, where 24 bits represent
a color (red, green, blue) and 8 transparency (Alpha channel). 32 bit color depth has been
chosen because of its su�cient accuracy and wide spread use among computers. There are a
great amount of image data formats supporting either 24 bits (color only) or 32 bits (color and
transparency) color depth, some of them supporting lossless or lossy compression [con14a].

There is a requirement for 100% accuracy in data distribution but because of the con-
straints of limited network capacity lossless compression is used. Because of easy portability
PNG (Portable Network Graphics [fS04]) was chose for visual data representation. PNG is
wide spread and highly supported among a wide variety of platforms.

6

3.2. IMAGE DATA FORMAT

Figure 3.3: Up layer's message structure

7

CHAPTER 3. NETWORK PROTOCOL

3.3 Image changes distribution

Every time, up to 500ms after somebody makes a change into the graphics the change is
distributed to the other clients via the server. The protocol has support for sending only a
rectangle cut-out of the edited image which is applied on the same position on the other sides
of the connection. The change is distributed as the di�erence from the original image as an
add or erase update. An add update is applied by a standard painting algorithm source over
(the weighted average of color with regard to alpha channel). A remove update is applied
by erasing (making more transparent) as much as how opaque the update is (see equation
3.1).

ra = oa · (1− ua) (3.1)

where ra is the value of the alpha channel of the resulting image, oa is the alpha value
of the original image and ua is the value of alpha of the update image. See the illustration
of the update process on �gure 3.4.

Figure 3.4: Update application example

3.4 Commands

The following is the list of commands speci�ed by CRPP protocol.

3.4.1 Outgoing commands

• GCIN � get connection info � a request for connection info

• AUTN � authenticate � authenticates the client

• GRLI � get rooms list � a request for a list of the rooms on the server

• CROM � create room � a request for a new room

• OJRO � join to room outgoing � a request to connect the client to a particular room

• ODRO � disconnect from room outgoing � to disconnect the client from the room

• ALAY � add layer � a request for a new layer in a canvas

8

3.4. COMMANDS

• RLAY � remove layer � a request to remove a layer

• SLAL � set layer location � request for moving a layer to another position (a�ects the
order of the layers)

• ACAN � add canvas � a request for a new canvas in the room

• RCAN � remove canvas � a request for deleting canvas in room

• HTIM � make HTTP image � a request for an HTTP accessible snapshot of a canvas

• OCHA � chat message outgoing � sends a chat message

3.4.2 Incoming commands

• SINF � server info � information about the server

• CINF � connection info � info about the connection state

• SSUC � client connection success � information that a request a�ecting the connection
(e.g. authentication) has been successful

• SERR � client connection problem � information about a problem with the connection
(e.g. with authentication)

• RLIS � rooms list � a list of rooms on the server

• IJRO � join to room incoming � the client has been connected to the room

• IDRO � disconnect from room incoming � the client has been disconnected from the
room

• ULIS � users list � list of clients (users) in room

• LORD � layers order � the new order of layers

• SRES � set resolution � the new resolution of a canvas

• ICHA � chat message incoming

3.4.3 Duplex commands

• SNIC � set nick � set the nick of the client (user)

• PANT � paint � information about a particular layer update

• SLAN � set layer name

9

CHAPTER 3. NETWORK PROTOCOL

3.5 Paint command

Paint command has been chosen as an example of a message. It carries information about
where, which and how an image change should be applied. As has been stated before, an
update has one of two types, add and erase.

An update has to be identi�ed by an ID in order to make the clients able to remove it
from temporary memory. It solves the problem of latency by giving the clients the possibility
to store unreceived changes in a temporary memory which causes the user to see changes
immediately.

Then it carries the ID of the canvas and the layer it's been changed from. Coordinates
indicating the exact area where the update should be applied and the update data itself.

• PANT � paint

� UDTY � update type

� UDID � update ID

� LYID � layer ID

� CNID � canvas ID

� XCOR � X coordinate

� YCOR � Y coordinate

� UIMG � update image

10

Chapter 4

Collab Canvas

Collab Canvas is a general Java library for raster graphical editors. It provides an environ-
ment for both local and collaborative painting. It works with 32 bit color depth (RGBA)
and layers.

Collab Canvas could be used in a SWING application as it provides JComponnent.

4.1 Interface

All Collab Canvas functionality is hidden behind general interfaces so any future modi�cation
to the functionality will not break backward compatibility. The code structure can be seen
on �gure 4.1.

Zoomable is an interface for zooming the canvas in and out. It provides a function for
setting zoom absolutely, relatively and for transforming coordinates from the original zoom
to the current zoom and vice-versa.

Visible is an interface for working with cursor related things. The canvas is able to display
three types of graphics which move simultaneously with the mouse cursor. They are the
mouse cursor itself, the tool cursor and the tool image. All of the three could be set via the
interface.

The mouse cursor is a small image representing the mouse pointer as commonly used in
other software.

The tool cursor is an image moving with mouse cursor in it's proximity. The purpose of
this cursor is to represent the currently used painting tool.

The tool image is graphics illustrating what will be painted to the canvas if the tool is
applied. It could be a big image and it is scaled with the canvas.

Selectionable is an interface working with selection. It enables the retrieval of the current
selection, selecting the whole canvas area or its parts.

Collab Canvas works with general, pixel-precise and semi-transparent selections. A se-
lection is represented by a raster of pixels which are mapped to the painting image pixels.

11

CHAPTER 4. COLLAB CANVAS

Figure 4.1: Collab Canvas class diagram

12

4.2. USAGE

Each pixel carries a value between 0 to 255 where one end represents the full selection and
the other no selection. Therefore each pixel could be selected with an independent amount
of transparency. When a paint or erase update is applied it is applied only to the selected
pixels and only to the level of selection opacity.

Paintable is an interface working with image data itself. It works with layers, so it enables
the addition, removal and sorting of them. It could set a layer opacity or transparency and
get the value. It works with the image so it provides a function for retrieving rectangular
cut-o�, selection cut-o� and/or the whole image from the selected layer only or all layers
rendered together. It gives a function for getting and setting a canvas resolution. And it has
a function for painting and erasing.

The most important function, that is the paint function, gets one parameter and it is
paint data. Paint data is the object compounded from an array of paint images. Paint image
has a type which could be add or erase, apply points (an array of two-dimensional points
upon which the image will be applied) and image data.

Networkable is an interface which connects the canvas with the outside world. It has a
function for adding and removing network listeners (for outgoing updates) and a function
for informing about and providing a network (image) update.

A network update is the object of its ID, layer ID, canvas ID, type (add or erase),
coordinates and image data.

Informing is an interface binding listeners on changes in mouse position and zoom.

4.2 Usage

Elementary use of Collab Canvas can be seen on the following code example.

1 // c r e a t e new canvas with new ID
2 canvas = CollabCanvasFactory . createNetworkCollabCanvas (
3 new NetworkIDGenerator () {
4
5 protec t ed i n t nextId = 1 ;
6
7 @Override
8 pub l i c i n t generateNextID () {
9 re turn nextId++;
10 }
11 } , ++las t ID) ;
12
13 // l i s t e n f o r user events over canvas
14 canvas . g e tL i s t enab l e () . addLis tener (t h i s) ;
15 // s e t s canvas pa in tab l e area s i z e to 300x200
16 canvas . ge tPa intab l e () . s e tRe so lu t i on (300 , 200) ;
17 // c r e a t e new l ay e r in canvas
18 i n t layerID = canvas . ge tPa intab l e () . addLayer () ;
19 // s e l e c t c r ea ted l ay e r
20 canvas . ge tPa intab l e () . s e l e c tLaye r (layerID) ;
21 // s e t cur so r o f cur r ent " t o o l "
22 canvas . g e tV i s i b l e () . setToolCursor (generateToolCursor ()) ;
23 // s e t image o f cur r ent " t o o l "

13

CHAPTER 4. COLLAB CANVAS

24 canvas . g e tV i s i b l e () . setToolImage (generateToolImage ()) ;
25 // add canvas to frame
26 frame . getContentPane () . add (canvas . getCanvasComponent () ,
27 BorderLayout .CENTER) ;

4.3 Network painting

When a user draws something on the canvas it needs to be distributed to other users soon.

Because other collaborating clients could paint simultaneously a dis-synchronization
could occur. It is caused by the e�ect of a switched order of the changes among users.
The user who paints something gets his changes immediately but the changes from other
users could come with a delay and vice-versa.

So in order to keep all the users synchronized precisely there has to be an authority, that
is the server. Therefore Collab Canvas respects incoming data as valid and superior to it's
own. But waiting for updates from the server is not a plausible solution because users need
to see what they have drawn immediately. Collab Canvas uses temporal painting memory
to overcome this problem.

So when a user paints something it is initially stored to the temporal memory, that is an
overlaying layer. Ever few dozen milliseconds the Canvas cuts-o� the memory into square
blocks, each identi�ed by an ID. Then these data are sent to the listening (network) interface
and then the delay comes into play. Over the listening interface there is the authority which
processes the data and responds back with an update. When an update is received it
is applied to the permanent graphics memory and removed from the temporary one with
respect to the ID.

In summary the graphical data are split into three layers. These layers are the permanent
layer, temporary layer and temporary block layer. The permanent layer stores �nal, syn-
chronized graphics. The temporary layer stores recently painted graphics. And temporary
block layers store graphics which were painted recently but have not been acquired from an
authority yet.

14

Chapter 5

Collab Server

The Collab Server provides interconnectedness among users. It governs information ex-
changes by acquiring data and deciding which clients should be informed of the change.

The main purpose of the server is to empower clients to share graphics but it integrates
additional features such as painting rooms (the digital analogue of an atelier), textual chat
and taking screen shots which are then accessible from web browsers via HTTP as pictures.

The server is a compound of four parts, which are core, network layer, painting layer and
HTTP server.

5.1 Core

The server's core is responsible for loading the con�guration, from a �le or command line, and
starting server. It is separated from the rest of implementation so it is potentially capable
of restarting the server or serving as a watchdog.

5.2 Network layer

The network layer is based on the Collab Network library and it serves as a mediator between
computer network (clients behind it) and painting layer. Every piece of information is
translated into a coherent form for the opposite side and passed there immediately. For
more info about network communication see Network protocol (page 5).

5.3 Painting layer

Painting layer is the most important part of the server. It is responsible for all the logical
functions of the server. It connects clients, works with rooms, routes chat messages, composes
room images and so on. It stores info about all entities present and processes interactions
among them. All the information is stored in memory.

In a room the server continually composes images into layers as clients do. Continuous
image processing requires more computational power but has lower memory requirements.

15

CHAPTER 5. COLLAB SERVER

Figure 5.1: Rooms on a server

It is impossible to decide which data have to be stored without any processing which would
cause the server to store everything. The fact that there is a lower amount of image data to
save is very important because the image data are large in size. Continuous composing makes
the server capable of sending the newest version of painted layers to newly connected clients
with no need for history or additional computation. Because the server stores already com-
posed images instead of painting history it is able to generate a screen-shot instantly, sending
a lower amount of data to new clients and to save the image without extra compilation.

5.4 HTTP Server

Collab Server integrates the feature of taking web-accessible screen-shots of a canvas. It is
done through an integrated HTTP server. Whole Collab Server is monolithic where HTTP
part is based on Jetty1. The feature can be disabled in server con�guration.

HTTP server provides a simple HTML page with some information about Collab on root
path, not-found page for non-existing URLs and PNG images on specially generated paths.
Each image path is compiled from randomly generated string which is coded by SHA-2562

hash algorithm and then transformed to text by Base643.

Screen-shots are stored only in memory and the number of them is limited in server
con�guration.

1O�cial web of Jetty is http://www.eclipse.org/jetty/
2SHS hashes are speci�ed here http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-

512.pdf
3Base64 documentation is available here https://tools.ietf.org/html/rfc4648

16

Chapter 6

Collab Desktop

Collab Desktop is the actual graphical editor. It is the most visible part of the project. Most
Collab users will not learn or directly encounter any other part of the project.

There is a strong emphasis on Collab Desktop's UI, because it is often encountered by
non-technical users and because its position as a front liner of the project. See screenshot
6.1.

Figure 6.1: Screenshot of Collab Desktop

The application guides the user from connecting to a server via room selection or creation
to actual communication among users, painting and image persisting.

17

CHAPTER 6. COLLAB DESKTOP

6.1 Painting Tools

A crucial part of Collab Desktop is called Paint Engine which is an internal interface for the
general functionality of painting on Collab Canvas and multiple painting tools are connected
to it. The implemented painting tools are listed below.

• Brush � lines painting

• Clearer � erase or repaint a whole layer

• Paint Bucket � �ll a bordered area with a color

• Pipette � take a color from a point in a layer

• Selection � select a particular area of a canvas and disable modi�cations outside of the
area

• Text � write a text in a layer

• TEX� render and draw a mathematical formula using TEXsyntax

Every painting tool is con�gurable so the user can de�ne it's features (e.g. brush thick-
ness, jitter or opacity).

Paint Engine is designed in a way which enables the unlimited addition of more tools
with a variety of features. The following is code generating brush lines.

1 pub l i c Brush . PaintBrush pa intL ine (i n t x1 , i n t y1 , i n t x2 , i n t y2) {
2 x1 −= paintImage . getWidth () / 2 ;
3 x2 −= paintImage . getWidth () / 2 ;
4 y1 −= paintImage . getHeight () / 2 ;
5 y2 −= paintImage . getHeight () / 2 ;
6
7
8 Brush . PaintBrush paintBrush = new Brush . PaintBrush (paintImage) ;
9 i n t s i z e = Math .max(paintImage . getWidth () , paintImage . getHeight ()) ;
10
11 f l o a t dx = x2 − x1 ;
12 f l o a t dy = y2 − y1 ;
13 f l o a t s t ep s = (f l o a t) Math . s q r t (dx ∗ dx + dy ∗ dy) / (s tep ∗ s c a l e) ;
14 dx /= s t ep s ;
15 dy /= s t ep s ;
16
17 f l o a t x = x1 ;
18 f l o a t y = y1 ;
19 Random random = nu l l ;
20 i f (j i t t e r != 0) {
21 random = new Random() ;
22 }
23
24 f o r (i n t i = 0 ; i <= st ep s ; i++) {
25 f l o a t xr = x ;
26 f l o a t yr = y ;
27 i f (random != nu l l) {
28 f l o a t l o c a l J i t t e r = j i t t e r ∗ (f l o a t) s i z e ∗ random . nextFloat () ;
29 f l o a t adx = ((random . nextFloat () ∗ 2 f) − 1 f) ∗ l o c a l J i t t e r ;
30 f l o a t ady = (f l o a t) Math . s q r t (l o c a l J i t t e r ∗ l o c a l J i t t e r − adx ∗ adx) ;
31 i f (random . nextBoolean ()) {
32 ady ∗= −1;

18

6.2. CONFIGURATION

33 }
34 xr += adx ;
35 yr += ady ;
36 }
37 paintBrush . addPoint ((i n t) xr , (i n t) yr) ;
38 x += dx ;
39 y += dy ;
40 }
41
42 re turn paintBrush ;
43 }

6.2 Con�guration

Collab Desktop is con�gurable so the user can change and save properties such as the default
server address and port, default canvas dimensions, etc. The con�guration is stored in the
user's home directory as an XML �le.

19

CHAPTER 6. COLLAB DESKTOP

20

Chapter 7

Development

7.1 Open-source

All parts of Collab project are licensed as open source and/or free software. Most parts are
distributed under GNU GPL 3 licence but several other open-source or free software licences
were implemented.

7.2 Used development supporting tools

Versioning The Collab project is large in size, it has over 20 000 lines of code. It is
free software so other participants are anticipated. For those reasons there was need for
versioning.

Git is a new and advanced distributed versioning system. Git is widely known and
supported and is very commonly used for open-source projects. There are several free Git
hosting, some of them with advanced features such as GitHub.

GitHub is a web-based hosting service for software development projects that use the
Git revision control system. GitHub o�ers both paid plans for private repositories, and free
accounts for open source projects [Git15].

Git is distributed therefore easy migration is possible.

For previous reasons Git was chosen as a versioning system and is hosted on GitHub.

Issue tracking every non-trivial software project has its bugs and planned features. Be-
cause of that an issue tracking system was implemented into the development. Requirements
for the system were in basic features, that is to store tickets, comments, users, ticket states
and projects. Flyspray is used as the issue tracking system within The Colab project.

Flyspray is an uncomplicated, web-based bug tracking system written in PHP for assist-
ing with software development [Tea12]. It is easy to install on most servers because it is
based on common technologies.

21

CHAPTER 7. DEVELOPMENT

Wiki is standard for open-source projects. It functions as documentation, a place for
know-how and as a persistent communication canal. DokuWiki is used for its stability and
easy maintenance.

DokuWiki is a simple to use and highly versatile Open Source wiki software that doesn't
require a database [Tea14].

22

Chapter 8

Conclusion

The bachelor thesis was written to describe the possibility, limitations and creation of a
collaborative graphical editor.

Collaborative graphical editor is a compound of a vast variety of technologies on multiple
layers. There are limitations to Internet connectivity, processing power and memory capacity.
The solution has to take into account all the technical and practical limitations, feature
requirements of users in both unprofessional and professional environments and human habits
and perception. The solution therefore has to be complex, rich and use some advanced
techniques, designs and algorithms.

Most of the problems of the project were solvable with enough dedication but some of
the most di�cult required very intense work and a long time to be solved. The work would
be smoother with more developers and graphical designers. But regardless of all obstacles I
have encountered I consider the results as satisfying.

The main limitation of the Collab project as it is in it's current version is that it has only
a desktop client. It would bring more users and comfort if there was an HTML5 client as a
perhaps limited substitute for a full featured desktop version. Smartphone versions would
bring even more portability and usefulness.

Collab is being developed as free-software. The development will continue with a focus
on community around free-software, which include works on more detailed documentation,
guides for beginners in the project and improvements into the infrastructure. If more devel-
opers took part in the development it could grow into a very advanced, multiplatform and
widespread collaborative painting tool.

Technologies such as Collab are still not widely known and used but that can be changed
by continued and scaled development. Collab has the potential of spreading a whole new
method of digital human to human interaction and even socialization.

Source codes of the project have over 20 000 lines of code spread over �ve separate Git
repositories. There are several hundreds of closed tickets in Collab's issue tracking system.

23

CHAPTER 8. CONCLUSION

24

Bibliography

[con14a] Wikipedia contributors. Image �le formats, 2014.

[con14b] Wikipedia contributors. Paint chat, 2014.

[Cos14] Cosketch.com. Cosketch, 2014.

[fS04] International Organization for Standardization. Iso/iec 15948:2004, 2004.

[Git15] GitHub, Inc. About github, 2015.

[Meg14] MegaScopes.com. Whiteboard, 2014.

[Por14] Portalgraphics. opencanvas, 2014.

[Tea12] Flyspray Development Team. Flyspray � the bug killer!, 2012.

[Tea14] DokuWiki Development Team. Dokuwiki, 2014.

[Tec14] Internet Techies. What is average broadband speed in your country? answer is here,
2014.

25

