

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Master’s Thesis

Data-driven job allocation in taxi services with autonomous
drivers

Jan Zikeš

Supervisor: Ing. Michal Jakob, Ph.D.

Study Programme: Open Informatics

Field of Study: Artificial Intelligence

January 4, 2015

iv

v

Aknowledgements
I would like to thank to the supervisor of this thesis Ing.Michal Jakob, Ph.D, who has
helped to the creation of this work by his guidance, encouragement and his advices through
the whole process of writing and the development of the Master’s Thesis.

vi

vii

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on January 4, 2015 .

viii

Abstract

In our work we have first formalized the matchmaking mechanism that is currently used
as a part of the novel taxi booking system using smart phone applications. Then we have
identified the system that is selecting the drivers to who the request should be sent as a
critical place for the improvement of the existing mechanism.

Then we have formalized the sub-problem of selecting the particular most relevant drivers to
who the request should be sent. After this formalization we have proposed the probabilistic
classifier model as a one from possible and also very natural solution of how to improve the
matchmaking mechanism.

Afterwards we have also analyzed the dataset that was available to us. We have also per-
formed several visualizations of the data. Then we have implemented and experimented with
several additional feature extraction methods from the available dataset.

In the next section of our work we have implemented several scripts in Python that eas-
ily enabled us to learn various kinds of models from the available data. We have particularly
learned Naive Bayes model, K nearest neighbors and decision tree forest model. For all the
mentioned models we have experimented with various features from those that were available
directly form the data to those that we had to artificially derive and compute based on the
various fields in the dataset.

At the end we have performed evaluation of all the mentioned models. We have first
performed evaluations of the models on its own and then also as a integral part of the
matchmaking mechanism. We have also come up with several recommendations towards
the implementation of our proposed models into the real world production system of our
industrial partner.

ix

x

Contents

1 Introduction 1
1.1 AI and modern technology in transportation 1
1.2 Vehicle passenger matchmaking mechanisms 2
1.3 Approach to the problem . 3
1.4 Objectives of this work . 3

2 Related Work 5
2.1 Transportation on demand or taxi allocation 5

2.1.1 Towards taxi system optimization . 5
2.2 Transport resource allocation . 6

2.2.0.1 Parking lots allocation optimization 6
2.2.0.2 Shared vehicle allocation optimization 6

2.2.1 Taxi systems optimization . 7
2.3 Transportation optimization using machine learning 7

2.3.1 Learning approaches to forecast the traffic 7
2.3.2 Learning approaches in the taxi dispatching domain 7
2.3.3 Learning methods using taxi companies data 8

2.4 Related work summary . 8

3 Matchmaking mechanism 9
3.1 The taxi ordering protocol . 9

3.1.1 Matchmaking algorithm inputs . 11
3.1.1.1 Map - graph of the city . 11
3.1.1.2 Taxi drivers . 11
3.1.1.3 Passengers . 11
3.1.1.4 Taxi ride request . 12

3.1.2 Matchmaking algorithm outputs . 12
3.2 Request recipient selection problem . 12

3.2.1 Inputs of the request recipients selecting algorithm 13
3.2.2 Outputs of the request recipients selecting algorithm 13
3.2.3 Request recipients selecting algorithm description 13

3.2.3.1 N best taxi drivers . 13
3.3 Mechanism evaluation . 14

3.3.1 Key performance indicators . 14
3.3.2 Evaluation framework . 14

xi

xii CONTENTS

3.3.2.1 Real world outcomes . 15
3.3.2.2 Our system predictions . 15

3.4 Available datasets description . 15
3.4.1 Transactions data . 15
3.4.2 Driver activity data . 17

4 Driver response model 19
4.1 Learning problem description . 19

4.1.1 Probabilistic classification . 20
4.1.2 Learning top K . 20

4.2 Evaluation framework of the driver response model 21
4.3 Features construction from the data . 21

4.3.1 Original features from the data . 21
4.3.2 Computed or derived features . 22
4.3.3 Final feature vector . 25
4.3.4 Other considered and not used features 25

4.4 Used machine learning methods . 27
4.4.1 Naive Bayes . 27
4.4.2 K nearest neighbors . 27
4.4.3 Decision tree forest . 28

4.5 Conclusion on the proposed driver response models 28

5 Implementation 29
5.1 Python . 29

5.1.1 NumPy . 29
5.1.2 Scikit learn . 29

5.1.2.1 Naive Bayes . 30
5.1.2.2 K nearest neighbors . 30
5.1.2.3 Decision tree forests . 30
5.1.2.4 K-means clustering . 30
5.1.2.5 Grid search . 31

5.2 Particular scripts description . 31
5.2.1 Data preprocessor . 31
5.2.2 Feature extractor . 31
5.2.3 Feature builder . 31
5.2.4 Drivers model . 31
5.2.5 Tree visualizer . 33
5.2.6 Evaluator . 33

6 Evaluation 35
6.1 Evaluation scenario . 35

6.1.1 Driver response model evaluation scenario 35
6.1.2 Mechanism evaluation scenario . 36

6.2 Evaluation metrics . 36
6.2.1 Evaluation metrics for the driver response model 36
6.2.2 Evaluation metrics for the matchmaking mechanism 36

CONTENTS xiii

6.3 Model configuration . 37
6.3.1 Estimated parameters for K nearest neighbors 37
6.3.2 Estimated parameters for decision tree forests 37

6.4 Measured results . 37
6.4.1 Driver response model evaluation . 38

6.4.1.1 Results for Naive Bayes classifier 38
6.4.1.2 Results for K nearest neighbors 38
6.4.1.3 Results for decision tree forest 38
6.4.1.4 Conclusion on the prediction quality measurements 39

6.4.2 Matchmaking mechanism evaluation 39
6.4.2.1 Results for the Naive Bayes classifier: 41
6.4.2.2 Results for K nearest neighbors: 41
6.4.2.3 Results for decision tree forest: 42
6.4.2.4 Conclusion on the mechanism evaluations 43

6.5 Recommendations towards the A/B testing 46
6.5.1 Re-run of the table evaluating method 46
6.5.2 Starting with our mechanism in the production 46

7 Conclusion 47
7.1 Future work . 48

A Data analysis 55
A.1 Visualized features in the first step . 55

A.1.1 Prior probability based on the day in a week 55
A.1.2 Prior probability based on the hour in a day 55
A.1.3 Prior probability based on both time of the day and day in a week . . 57
A.1.4 Prior probability based on the distance between passenger and taxi. . 57
A.1.5 Prior probability based on the estimated traveling time of the taxi

driver to the passenger . 57
A.1.6 Drivers acceptance prior probability with respect to the drivers geo-

graphical position . 57
A.1.7 Drivers acceptance prior probability with respect to the passengers

geographical position . 57
A.1.8 Drivers acceptance prior probability with respect to that if the desti-

nation was entered . 60
A.1.9 Conclusion . 60

A.2 Visualized features in the second step . 60
A.2.1 Prior probability based on the traveling time of the taxi driver to the

passenger . 60
A.2.2 Prior probability based on the distance between the taxi driver and

the passenger . 60
A.2.3 Prior probability based on the price per km quoted by the taxi 63
A.2.4 Prior probability based on the hour in a day 63
A.2.5 Prior probability based on the day in a week 63
A.2.6 Prior probability based on both the weekday and the time of a day . . 63
A.2.7 Prior probabilities based on the passengers device 63

xiv CONTENTS

A.2.8 Prior probability based on the drivers geographical position 66
A.2.9 Prior probability based on the passengers geographical position 66
A.2.10 Conclusion . 66

B User Guide 69

C Content of the CD 71

List of Figures

3.1 Sequence diagram of the taxi booking protocol 10
3.2 Class diagram of the data structures used by matchmaking algorithm 11

5.1 recommended script run order . 32

6.1 Number of classifications per model . 40
6.2 average accepts and declines percentage . 44
6.3 Visualized tabular data . 45

A.1 step1: prior probability based on the weekday 56
A.2 step1: prior probability based on hour of the day 56
A.3 step1: prior probability based on hour of the day and day in a week 58
A.4 step1: prior probability based on distance between driver and passenger . . . 58
A.5 step1: prior probability based on traveling time between driver and passenger 59
A.6 step1: prior probability based on the taxi drivers geographical position 59
A.7 step1: prior probability based on the passengers geographical position 61
A.8 step1: prior probability based on if the destination was entered 61
A.9 step2: prior probability based on if the traveling time between passenger and

driver . 62
A.10 step2: prior probability based on if the distance between passenger and driver 62
A.11 step2: prior probability based on the drivers quoted price 64
A.12 step2: prior probability based on hour in a day 64
A.13 step2: prior probability based on the day in a week 65
A.14 step2: prior probability based on both the day in a week and hour in a day . 65
A.15 step2: prior probability based on the geographical position of the taxi driver . 67
A.16 step2: prior probability based on the geographical position of the passenger . 67

C.1 Content of the enclosed CD . 71

xv

xvi LIST OF FIGURES

List of Tables

4.1 Table of used features . 26

6.1 Decision tree forest parameters table . 37
6.2 Evaluation of the Naive Bayes classifier . 38
6.3 Evaluation of the K nearest neighbors . 38
6.4 Evaluation of the decision tree forest . 39
6.5 Table of mechanism evaluation using Naive Bayes without additional features 41
6.6 Table of mechanism evaluation using Naive Bayes with additional features . . 41
6.7 Table of mechanism evaluation using Knn without additional features 42
6.8 Table of mechanism evaluation using Knn with additional features 42
6.9 Table of mechanism evaluation using Decision tree forest without additional

features . 42
6.10 Table of mechanism evaluation using Decision tree forest with additional features 43

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

Transportation in the cities has always been fascinating mechanism, together with the fact
that there are still more and more people moving to the cities almost all around the world1.
This fact demands still more and more innovations to keep the growth of the transportation
systems in the cities sustainable. One possible way, how the sustainability can be reached is
utilizing emerging new technologies that can help us to organize transportation in a smart
way and thus make it more accessible and convenient for all the inhabitants of the cities.
The modern technology can either help us to make traveling more comfortable or it can also
gives us the ability to collect and analyze the data, which can be then used for the further
analysis and optimization of the transportation.

1.1 AI and modern technology in transportation

In the recent years we could have also noticed that there has appeared a huge amount of
innovations in the fields of transportation on demand, ride sharing and also particularly in
the taxi industry. All around the world there were introduced various services using advan-
tages of the modern technology, such as smart phones or also other "smart" devices. These
modern technologies has in many places of the world almost fully replaced the from history
well known cab hailing or dialing the dispatching service phone number to order a taxi. From
pioneers of connecting the technology and taxi industry in the world we can name famous
companies such as Uber, Lyft, Hailo or mytaxi. From the Czech Republic we should mention
liftago that is starting to be very active in implementing also various new innovations, but
there are also other more or less successful projects usually owned by already existing taxi
dispatching companies.

On the other hand there was recently performed also huge amount of work in the field
of various data collection and analytics based on the data. We can maybe say that we are
experiencing some kind of hype around fields such as machine learning, statistics and also
in other related fields. In recent years we could have also seen the whole newly created or at
least named fields that were basically based on previously known principles from mentioned
machine learning and statistics, but it also incorporates the other fields. From fields that

1<http://en.wikipedia.org/wiki/Overpopulation>

1

http://en.wikipedia.org/wiki/Overpopulation

2 CHAPTER 1. INTRODUCTION

has recently appeared we can name for example Big Data, Data Science or Internet of Things.

But when we are speaking about Data Science or Internet of Things we can notice that
certainly the previously mentioned modern transport on demand and taxi booking systems
are not just simplifying and speeding up the way we order the transportation, but these
systems also has potential of generating huge amounts of the data from various sensors and
devices. These devices can be modern technologies such as smart phones, GPS devices, but
also some old improved devices such as taximeters. All the recorded data can by possibly an-
alyzed for either further improving the own business of the industry innovating companies.
This can also lead to decreasing of the fuel consumption and decreasing of the emissions
produced by the taxis, but we can also imagine the data usage, together with the growth of
smart devices penetration among the city inhabitants, even for some global improvements of
the whole transportation systems in the cities such as traffic control systems or dynamically
setting the price of road tolls.

As one of the the first companies that are trying to connect applications for booking the
transportation on demand or taxis with the data analytics we can name Uber which data
department also sometimes publishes some interesting insights on their blog2. But also other
companies are starting to invest to the connecting of the industry with data analytics for
example also the previously mentioned Czech liftago.

We can also imagine that the mobile application for the transport on demand or taxi ordering
together with the data analytic might be just the beginning. For example upcoming era of
self driving cars might even help us in the analyzing the data by removing non optimal and
not fully deterministic behavior that we can sometimes experience on the side of the taxi
drivers. Future mechanisms can also combine data analytic with coordination and resource
allocating mechanisms same as also combine the taxi booking systems with other modes of
transportation such as shared bikes or other standard types public transport.

1.2 Vehicle passenger matchmaking mechanisms

One from the most important problems that is needed to be solved by the vast majority
of the above mentioned companies is passengers matchmaking mechanism design on which
we have also focused in this work. This problem basically deals with the allocation of the
transportation resources such as taxis or other kinds of vehicles on demand to the passengers.
In this problem we have especially paid attention on the optimality of the allocation on the
both sides and on the availability of the transportation resources to the passengers.

Since this problem has two sides it is usually difficult to reach some optimal situation for
both sides the passengers and the drivers, but we can try to perform various optimizations
to connect passengers with the most optimal vehicles for them from those that are available
in the city.

2<https://blog.uber.com/tag/uberdata/>

https://blog.uber.com/tag/uberdata/

1.3. APPROACH TO THE PROBLEM 3

1.3 Approach to the problem

In our work we have particularly focused on the improvement of the already existing novel
technology using systems. We are especially interested in the optimization of the vehicle
passenger matchmaking mechanisms. Thank to the fact that we have available data from
the real world system operation we are able to use advantage of it and study various machine
learning methods that can be used thanks to the available logged data about the history
of the system service. The data was provided to us by the leading Czech taxi industry
innovating company that wish not to be named in the work. In this work we have tried
several machine learning methods and we have also proposed it’s evaluation framework that
can help us to compare all the similar methods to the our proposed one.

1.4 Objectives of this work

Our goal in this work is to introduce and experiment with several methods that would con-
nect modern taxi allocating companies systems with the data analytic mechanisms mostly
known from the field of machine learning and improve it’s taxi allocation efficiency. This
might help us to move current state of the taxi allocation systems few steps forward towards
the optimal self organizing autonomous systems that we can imagine to surround us in the
future.

Our second goal is to show that there it is really still possible to optimize currently working
vehicle passenger matchmaking mechanisms and to improve these mechanisms in a way that
it will be also possible to use them autonomously in the future era of self driving cars.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

Because of this work is touching not only optimization of the transportation resources allo-
cation, but also the data mining and machine learning we have to divide this section to three
different parts. From which one is dealing with the transportation itself and different possible
approaches of how to optimize it, the second part is dealing with usage of the coordination
mechanisms and also about it’s usage particularly in the transportation domain and finally
the third part that is introducing the related work in the field of machine learning, especially
methods that can be used to improve the transportation on demand or taxi allocation.

2.1 Transportation on demand or taxi allocation

Generally topic of our work can be classified as the optimization in the field of transporta-
tion. For our work was the main focus was on fields where we can do some improvement by
modern computing techniques such as artificial intelligence, machine learning, multi-agent
systems or any other related approaches.

We went through many different papers dealing with the usage of the publicly available
data and existing transport related real time APIs. For example there is interesting research
paper dealing with the traffic network analysis in London [1] or another paper dealing with
the real time traffic modeling and estimation [2]. We also went through several ideas and
futuristic papers describing what research can possibly be done in the future such as [3].

2.1.1 Towards taxi system optimization

Thank to the dataset that was provided to us we have decided to focus especially on the
taxi booking mechanisms and to it’s optimization based on the data. This domain was
previously also investigated, particularly there is probably being made serious research by
the US companies such as Uber or Lyft, at least based on how they present themselves.
Unfortunately there is publicly available probably only a fraction of the research that is
being made by mentioned companies. On the other hand there has previously has been
performed some research in the academia that is most of the time publicly available.

5

6 CHAPTER 2. RELATED WORK

2.2 Transport resource allocation

First possibility of how to treat transportation optimization problem is as a multi agent coor-
dination problem. Here we have especially focused on the limited resource allocation systems
of the various kinds from the shared bicycles to the optimal taxi allocation mechanisms.

2.2.0.1 Parking lots allocation optimization

There has recently been proposed several papers dealing with the parking optimization. First
of all there is couple of papers describing how the system should be designed from the soft-
ware engineering point of view, for example [8] or [9].

Then there was made some work also in the field of usage of multi-agent systems in or-
der to optimize parking lots allocation. In the majority of papers there are used methods
such as multi-agent negotiation in [10] or slightly more complex approach in [11].

There was also found some literature on global optimization approaches to solve the problem.
The most interesting is [12] where was used tabu search in order to optimize the parking
lot allocation. Unfortunately this approach is feasible only on very small instances of the
problem.

There is also worth of mention that there already exists successful implementation of the
intelligent parking system in San Francisco1.

2.2.0.2 Shared vehicle allocation optimization

There is also some related literature that is dealing directly with bike, car or other vehicle
sharing. Majority of the related literature is dealing with the analysis of current working
bike sharing services. For example analysis and system expansion recommendations in the
Washington D.C. metropolitan area [13]. Then another paper that analyzes bike sharing
systems in various cities [14] mainly from the demand and its distribution point of view.
And again very similar analysis was performed on the bike sharing system in Vienna in [15].

There is following some work where authors are trying to compute the best possible lo-
cations where the bike sharing stations should be placed. In the wast majority of cases
there are used multi-criteria optimization methods. For example in [16] are authors trying
to optimally set up the network in Athens. Or in [17] authors has used genetic programming
to optimally position the stations in Snatander.

Much deeper analysis of the bike sharing system in Lyon was performed in [18]. In this
work there was for example detected which stations are wrongly positioned, what are the
passenger behavior patterns and there was also introduced some basic system, how to do
some predictions from the data.

1Intelligent parking system in San Francisco <http://sfpark.org/how-it-works/>

http://sfpark.org/how-it-works/

2.3. TRANSPORTATION OPTIMIZATION USING MACHINE LEARNING 7

Step further was made in [19] where authors have proposed and analyzed two systems for
the re balancing of the bike sharing stations. First approach was optimization of the vehicles
that are transporting bikes from full stations to the empty ones. Second approach was some
basic proposal of dynamic pricing.

There is also some work dealing with the optimization of the car sharing systems with
pre-booking needed from the side of the passengers. In [20] they have proposed multi-agent
system with in advance reservations and negotiations.
There is also first related work [21] where authors performed analysis of the current bike
sharing system in Singapore using the stochastic network flow model.

2.2.1 Taxi systems optimization

Particularly in the taxi industry there was made some work that deals with the taxi dis-
patching system optimization from the multi agent systems point of view in [22] or in [23].
There has also been done some previous work in the mechanisms for taxi allocation in the
work related to the CTU in [24].

2.3 Transportation optimization using machine learning

There has already been done some work dealing with usage of the machine learning methods
in the domain of transportation, but on the other hand there was found only a few papers
that are particularly dealing with the taxi allocation mechanism using machine learning
methods.

2.3.1 Learning approaches to forecast the traffic

Work in this field seems to be very inspired by the machine learning methods dealing with
internet traffic flow. Here the interesting overview of the work that has previously been done
can be found in [25]. Then there was found several papers dealing with traffic prediction, the
most interesting were approaches where the authors are using Bayesian networks approach
[26] and time series analysis approach [27].

2.3.2 Learning approaches in the taxi dispatching domain

Particularly in the taxi dispatching domain we can divide the work that has been made to
two groups. In the first group there are authors trying to estimate how will the upcoming
request look like. For example where will be the place to pickup the next passenger, or what
will be his most probable next passenger’s destination. Interesting blog post about esti-
mating this was written by the uber data team1. Overview on passenger hunting strategies
based on the machine learning methods was previously studied in [28] and in [29]. There were
also performed some experiments with mechanisms predicting taxi passenger demand in [30].

1<https://blog.uber.com/passenger-destinations>

https://blog.uber.com/passenger-destinations

8 CHAPTER 2. RELATED WORK

Second group of works is looking to the taxi allocation problem from the other side. It
is trying to predict for passengers where they can find vacant taxis. Which is viable problem
especially in a big cities such as New York or London, where getting a taxi in certain time of
the day might be a serious problem. This problem is widely described in [31]. There was also
found research paper [32] that is trying to combine the both already introduced approaches
to the taxi system optimization.

2.3.3 Learning methods using taxi companies data

Another interesting research area is usage of the taxi companies data for learning other
interesting patterns in the transportation. Here we can mention especially [33] where authors
are trying to learn the interesting areas in the cities based on the time of the day and it’s
corresponding movement patterns from the taxi history GPS data. In the second interesting
paper [34] there has authors assumed that taxi drivers are very skilled in terms of city
navigation and thus they have used the data from the taxi drivers to learn the fastest routes
in the city.

2.4 Related work summary

We have found quiet big amount of related literature that is dealing with the transport
resource allocation in general, we have also found some literature that is starting to use
machine learning methods for various transportation optimization. On the other hand there
was found only a few papers that were dealing with some kind of optimization in the taxi
allocation in particular. There was also found no literature that was trying to combine the
machine learning with taxi passenger matchmaking mechanisms, this provides the oppor-
tunity for our work to to perform a research that has already not been described in the
literature.

Chapter 3

Matchmaking mechanism

In this section we will describe the whole matchmaking mechanism from global point of
view. We will start with the description of how we model the protocol of the existing
taxi booking mechanism and how we formalize the whole matchmaking mechanism. Then
we will introduce the sub problem called the request recipient selection problem, which is
the most important sub problem for us. Particularly in this section we will deal with the
formalization of the problem and with the way of how we can evaluate the request recipient
selection problem. On the other hand in the following section 4 we will describe one possible
way of how to solve the request recipient problem. At the end of this section we will describe
in detail all the datasets that we have available for this work in order to optimize the
matchmaking mechanism.

3.1 The taxi ordering protocol

The goal of our work is to optimize the currently existing mechanism of our industry part-
ner that has the following structure: There are two mobile applications and one server side
application. One mobile application that is dedicated to the passengers and one that is
dedicated to the taxi drivers. The server side basically only mediates the communication
between both passenger’s and driver’s mobile applications. For better understanding of the
whole taxi ordering protocol, it can be seen in the UML sequence diagram 3.1.

You can pretty well notice that there are different possible actions at a certain point of
the communication on both sides of the protocol. First of all we can obtain three different
reactions from the taxi driver to the passengers request. It can be rejection, timeout or
acceptance. Because of in the real world we are mainly interested only in accepts we have
decided to treat both reject and timeout like the same class called reject. For as accurate
as possible modeling of this step we have decided to introduce the driver response model in
the following section 4.

On the other side of the system there can each of the passengers decide if he would like
to accept some offer from the driver or if he decides not to select any of the offers. Again
for modeling of this step we have decided to later introduce the so called passenger’s model
which is very similar to the already mentioned driver response model.

9

10 CHAPTER 3. MATCHMAKING MECHANISM

Figure 3.1: Sequence diagram of the taxi booking protocol

3.1. THE TAXI ORDERING PROTOCOL 11

Figure 3.2: Class diagram of the data structures used by matchmaking algorithm

3.1.1 Matchmaking algorithm inputs

First of all let us describe what are our known inputs of the matchmaking algorithm. We
have tried to sort them from the high level to the low level inputs. For better understanding
of the matchmaking algorithm from the data point of view there was also presented the UML
class diagram which describes more in details the entire data flow. The diagram can be seen
in the figure 3.2.

3.1.1.1 Map - graph of the city

In our work we are dealing with the geographical data on the map of the city. The city
map is represented as a Graph G = (V,E) where edges E are representing the connections
between intersections on the map. Every edge is a organized two-tuple E = (d, t), where d
is the edge length and t is the time that is needed to travel along the edge. And vertices V
are representing the intersections.

3.1.1.2 Taxi drivers

One side of our system consists of the list of taxi drivers each in detail described by driver
descriptor shown in the figure 3.2. Each driver has Driver ID which is the unique identifier
of the driver in the system, Driver position which is the driver’s actual position, Quoted
tariff per km that is driver’s actual tariff per km of the ride with passenger, Quoted waiting
tariff that represents the driver’s price per one minute of waiting, Quoted initial fee which is
the fee that every passenger has to pay to the driver when he enters the taxi, diver’s rating
represents the actual driver’s rating in the system which is a real number from 1 to 5 and
Driver device represents the type of the mobile device that the particular drive uses.

3.1.1.3 Passengers

On the other side of our system we have the list of passengers. Same as in the case of
taxi drivers even for the passengers we can see each passenger described by the passenger
descriptor in the figure 3.2. Each passenger has Passenger ID which is the unique identifier

12 CHAPTER 3. MATCHMAKING MECHANISM

of the passenger in the system, Passenger position which represents the passenger’s actual
geographical position, Pickup location that represents the geographical point of the desired
journey origin, Expected destination which represents the geographical point of the desired
passenger’s destination and Device that represents the type of the device that on which the
passenger has installed the application.

3.1.1.4 Taxi ride request

Passengers are then sending requests to the mediator server. Each request contains the
information about at least one passenger. The mediating server side system then chooses
all the relevant taxi drivers to who the passenger’s request should be passed. From this
information we are getting to the resulting list of requests that contains records where each
consists of both all the information about the passenger and all the information about the
driver. In case that there are no drivers available in the system then there is created no
request and the empty request list is sent back to the passenger. In addition to the passenger’s
information and information about all the selected drivers the taxi ride request contains also
Inquiry id which contains the id of the taxi ride request and inquiry timestamp that represents
the time when the request was created. Again we can see the taxi ride request description
in the figure 3.2

3.1.2 Matchmaking algorithm outputs

The desired output of our matchmaking algorithm is the particular allocation of the passenger
to the particular taxi drivers.

3.2 Request recipient selection problem

From the description of the whole matchmaking mechanism we could have noticed that the
matchmaking mechanism has several steps. First of all there have to be sent a taxi ride re-
quest by the passenger. Afterwards there have to be performed some kind of selection of the
recipients among taxi drivers and at the end there will the passenger perform his selection
of the taxi driver. Particularly the request recipient selection problem is a sub problem of
the matchmaking mechanism that contains all the mentioned steps except the selection of
the best driver that is performed by the passenger.

The main reason why we have particularly focused on the improving of the mechanism
by solving and optimizing the request recipient selection was the demand from our industry
partner for who it seemed to be one from the most problematic part of the currently working
mechanism. From the data that we have available we can also see that in this part is really
big potential for the improvement of the matchmaking mechanism. From the comparison of
the newly created dataset from the activity data and the transaction dataset we could have
also noticed that transaction data contains only a fraction of the drivers that were available
for every transaction. Thus we can actually say that there was already performed some kind
of request recipient selection. On the other hand here comes the question how optimal and
by which mechanism were performed the particular selections that were made and that we

3.2. REQUEST RECIPIENT SELECTION PROBLEM 13

can see in the transaction data. Based on the conversation with the company providing
us the data there were used some kinds of algorithms using the heuristic knowledge. The
goal of our work is to improve this request recipient selection algorithm using the heuristic
knowledge, by some our more general on machine learning based approach.

3.2.1 Inputs of the request recipients selecting algorithm

As the input to our request recipient selection algorithm we are basically getting only the
passenger’s request for the particular ride and on the other side the database of all the
available taxi drivers at the certain moment. This data structure can be formalized as the
list of taxi ride requests as it was described in the section 3.1.1.4 where requests differs one
from each other only in it’s driver part.

3.2.2 Outputs of the request recipients selecting algorithm

The desired output provided by the request recipients selection algorithm is the list con-
taining N selected taxi drivers as they were described in the section 3.1.1.2. We can notice
here that only remaining step to solve the whole matchmaking mechanism using the request
recipient selection problem solving algorithm is to select the best driver among the output
which we will for our purposes let on the user of the application.

3.2.3 Request recipients selecting algorithm description

The final solution that should be provided by the mechanism can be basically divided into
two different parts. First part is estimating the probability that driver will accept the
passenger’s request. Second part is the assignment of the N best taxi drivers for every
passenger’s request. Dividing the potentially only one part to the two separate parts is very
much driven by the industry partner. Normally we could only broadcast the drivers with
probability higher than for example 0.5, but on the other hand from the industry partner
point of view there is a pressure on having at least some request with accept taxi drivers
action so we better compute probabilities for all the available drivers and then we perform
the selection of the N best taxi drivers.

3.2.3.1 N best taxi drivers

As the result of the first and second part of the mechanism is the selection of the N best taxi
drivers from all the taxi ride requests sent to the taxi drivers in the given time. N best taxi
drivers will be selected based on the probability pdra that the driver d will accept request r.
In the other words we will try to maximize

∑
d∈N pdra . The other problem is determining

the number N, for simplicity and possibility to compare the results we are later in this work
using the same N as it was used in the test data, but for the implementation in the real
world there still can be performed some optimizations and optimal N estimation.

14 CHAPTER 3. MATCHMAKING MECHANISM

3.3 Mechanism evaluation

First of all we have identified several key performance indicators that we would like to
optimize in our work. Then we have proposed evaluation framework which we have used for
all the evaluations of our whole matchmaking mechanism. Particularly the only change that
we have focused on the matchmaking mechanism was the request recipient selection so the
evaluation mainly deals with the evaluation of the request recipient selection sub-problem
described in the section 3.2.

3.3.1 Key performance indicators

First from our goals is to decrease the total number of "spam" requests that are being sent
to the taxi drivers. In other words we would like to increase the ratio rr = ra

rt
, where ra is

number of requests that was sent and that was accepted by the taxi driver and rt is number
of requests that was sent.

Second key performance indicator that we would like to optimize is the total number of
accepted requests we would particularly like to increase this number. In other words we
would like to increase the ra accepted requests from the previous section.

Unfortunately in the current taxi ordering system, there is sometimes happening that for
some passengers there is accepted no offer from the taxi drivers at all. So the another goal
of our system is to increase number of passengers that are getting at least one offer from the
available taxi drivers.

3.3.2 Evaluation framework

In order to evaluate our mechanism we have decided to introduce one more evaluation that
will not evaluate only the model, but also the whole matchmaking mechanism. Particularly
in the evaluation we are evaluating the proposed algorithms that are solving the request
recipient selection problem as it was described in the section 3.2.

In this part we have especially focused on the evaluating predicted outcomes based on the
real world data. The majority of the evaluations were made according to the following table.

Real world

Our model

Reject Accept Don’t know
Reject
Accept
RnS
AnS

First of all we will try to explain this very important table more in details. The table deals
with outcomes of the different passenger’s journey requests. There will be recorded real world
outcomes that will be available in the transaction data in the columns and the outcomes

3.4. AVAILABLE DATASETS DESCRIPTION 15

predicted by our mechanism will be recorded in the rows. During the evaluation section
there will be presented this table several times. We will try to show there both, the total
counts and relative counts. Usually absolute counts as a given outcome action counts and
relative counts usually in percents from all the records in the table.

3.3.2.1 Real world outcomes

Real world outcomes or in other words the the request recipient selection that was performed
in the reality by the currently deployed system by our industrial partner are represented by
the columns in the table. First of all you can notice the last column which is called "Don’t
know". In this column will be recorded all the records for which we don’t know what would
be the outcome, because we do not have recorded these driver in the real world transaction
data described in the section 3.4.1. On the other hand in the first column we have records
that has ended in the real world either by the reject action of the driver or by the driver
letting the order to be time outed. And in the second column there are all the records in
which we have drivers accept as the final outcome in the data.

3.3.2.2 Our system predictions

Request recipient selections performed by our system are represented in the rows. We can
notice four different types of the records and thus four different outcomes. First of all we have
there "reject" outcome. In this row will end up all the selected requests as it was described
in 3.2.2 where we have predicted reject outcome, but still several one from the best from
all the rejects to just provide certain number of the drivers that needs to be provided for
the passenger. Then we have row with "accept" this row represents all the requests that
has been predicted accept outcome by our model and the accept was so good that we have
actually select the driver among n best drivers. Another line denoted "RnS" would contain
all the drivers for which has our model predicted reject outcome and we have not selected
them in the n best drivers and finally "AnS" is the group of the drivers where has our model
predicted accept action, but we had already selected enough even better accepts, thus we
have not selected the particular driver.

3.4 Available datasets description

For our work we have available two different datasets. The first dataset basically contains
the transactions data or in other words the data that are describing the communication
between passengers and drivers. The second dataset describes which drivers were active in
the particular time of the day.

3.4.1 Transactions data

Our transaction data describes the communication between passengers and the taxi drivers
for August and September 2014. We can look at our transactional data in two different
ways. First of all we have several consecutive records that belongs to one transaction, in
other words one request from the passenger is described in several records of the dataset,

16 CHAPTER 3. MATCHMAKING MECHANISM

because the communication with each of the drivers that was broadcasted by the system is
recorded as a separate record. On the other hand for purposes of this work we can have a
look at the data in a simplified way that each row of the data is independent request of the
passenger to the driver.

Transactions data contains following fields1:

Inq_ID
ID of the transaction.

Broad_Driv_ID
ID of the driver that was broadcasted by the passengers request.

Driv_Pos_At_Inq
Position of the driver at the time of the passengers inquiry in the format latitude/longitude.

Inq_At
Timestamp of the time when the transaction has started.

Broad_At
Timestamp of the time when the transaction was broadcasted to the driver.

Pass_ID
ID of the passenger.

Pass_Pos_At_Ord
Position of the passenger at the time of the passengers inquiry in the format lati-
tude/longitude.

Req_Pick_Loc
Passenger’s desired pick up location in the format latitude/longitude.

Ride_Exp_Dest
Position of the passenger destination at the time of the passengers inquiry in the format
latitude/longitude. It is available only when passenger has entered the information.

Broad_Cnt
Number of taxi drivers that were broadcasted in the particular transaction.

Driv_Act
Action that was performed by the driver, one from TIMEOUT, ACCEPT, DECLINED.
For purposes of this work we have decided to treat TIMEOUT and DECLINED as the
same outcome, because we are only interested in ACCEPTs.

Driv_Pr
Total amount charged by the driver at the end of journey.

1There were omitted the data describing the finished journey as actual driver waiting time or actual driver
arrival time.

3.4. AVAILABLE DATASETS DESCRIPTION 17

Driv_Ac_At
Timestamp of the time when driver performed ACCEPT or DECLINED actions.

Quot_Tar_Per_Km
Unit price per km in Czech crowns.

Driv_Wait
Unit price per minute of drivers waiting for the passenger time in Czech crowns.

Driv_Init_Fee
Unit price that has to be paid at the begging of the journey in Czech crowns.

Driv_Rat
Average rating of the driver, float numbers from 0 to 5.

Comp_State
The final state of the journey TIMEOUTED, CANCELED, FINISHED.

Pass_Dev
Device type of the passenger, either AND or IOS.

Driv_Dev
Device type of the driver, there was found only AND or empty record.

The described raw data were later analyzed in the appendix A, processed and used for ad-
ditional feature extraction which is described in the following section 4.3.

From the processing of the dataset we should especially mention the removing of the data
records that was not making any sense. To this category belongs all the data records where
was the "PassengerPositionAtOrdering" further than within heuristically set 5km from the
"RequestPickupLocation". We can of course imagine situations when booking taxi with this
kind of setting might be justifiable, but most of the time records like this seemed to be
only users from places where the service is not available playing with the mobile application.
Another data records that were removed were all the records where the "RequestPickupLo-
cation", the "RideExpectedDestination" or the "DriverPositionAtInquiry" where outside of
the Prague bounding box. The Prague bounding box was set as 49.9 < latitude < 50.3 and
14.15 < longitude < 14.9.

3.4.2 Driver activity data

Our second dataset that was available for this work was the driver activity dataset that
contains recorded information about which driver was available in the certain time of the
day. This dataset is especially useful for the later evaluation of the entire matchmaking
mechanism.

The driver activity dataset is quiet simple and contains only few fields in comparison with
the transaction dataset on the other hand it contains huge amount of records. Driver activity
dataset contains following fields:

18 CHAPTER 3. MATCHMAKING MECHANISM

Driv_ID
ID of the driver.

Time_Stmp
Timestamp of the time when the record was recorded.

Driv_Pos_Lat
Latitude of the drivers position.

Driv_Pos_Lon
Longitude of the drivers position.

Driv_St
Current state of the driver, either AVAILABLE or SERVING.

As you can see the driver activity data records are very simple. Unfortunately the data
had to be further preprocessed and merged with the transaction dataset. First of all we
have created the dictionary where keys were particular minutes during the whole time pe-
riod and values were lists of tuples containing the driver and it’s position for all the drivers
that were available in the particular minute. Using this dictionary we have created another
dataset corresponding to the transaction data, but this time without label fields Driv_Act
and Compl_State. The dataset we have created by iterating over all the requests and adding
requests to all the drivers that were available in the same minute as in which the original
request was sent.

When we have look at our system once again we can see that we can optimize the already
existing mechanism by only focusing on it’s sub-part that optimizes the request recipient
selection in a way that the requests are being sent only to the relevant drivers. Very natural
way of how to try to optimize the currently working system when we have available data
is by the implementation of the machine learning models. Particularly in our case we have
introduced one model that is called the driver response model and other model that is called
the passenger’s model. When we have more detailed look at the models we can realize that
basically both models are more or less the same with the only difference that the drivers
model should be learn on the Driv_Act labels and the passengers model only on the subset
of the data where was already performed drivers accept action and as a label there should
be used the field Comp_State. It might also be advantageous to keep both models separate
for the case when we would potentially have some features that are related only to one of the
models. We can especially imagine some additional features that might be added later on
for the passenger’s model. Particularly in our work we have especially focused on the driver
response model, because here both we and the company that has provided us the data for
this work see the biggest potential to improve the currently working taxi allocation system.

We have more in detail focused on all the machine learning techniques that we have ex-
perimented with in the following section 4. In the following section 4 we have also described
all the methods that we have used for the feature extraction from the data and about how
we have particularly learned and evaluated particular driver response models.

Chapter 4

Driver response model

In this section we have introduced the way how we have decided to improve the solution of
the request recipient solution mechanism in comparison with currently deployed mechanism
that is not using advantages of the machine learning, any other artificial intelligence methods
nor any other smarter approach. First of all we have tried to formalize and describe the
entire learning problem, then we have described all the mechanisms that we use in order to
extract desired features from the dataset that was available to us. Features description has
naturally been followed by the detailed description of the machine learning methods that we
have experimented with in our work. At the end we have also explained the way how can
be the learned model evaluated.

4.1 Learning problem description

For the optimization of the request recipient selection problem we have decided to introduce
so called "driver response model". In the driver response model we have tried to particularly
predict the probability of that there will be selected accept action for the passengers request
from the data. In other words we have tried to predict p(yd|xd, Dd,Md) where categorical
variables ydi ∈ {Ad, Cd} and xdi ∈ {Ad, Cd} where Ad stands for driver’s ACCEPT action,
Cd for drivers DECLINED action or for driver letting the passenger’s request to be time
outed (TIMEOUTED action). Dd represents the dataset and Md represents our particular
driver response probabilistic model.

Goal of this model is to determine the probability of driver to accept the given request.
Based on this model’s predictions we will be able to determine more precisely which drivers
are potentially the best drivers with the highest probability of accepting the passengers re-
quest. Then we can basically only sort the drivers by the predicted probability and send the
request to the N best drivers. In a consequence this optimized solution using the probabilis-
tic classifier model should help us to generally decrease number of "spam" request sent to
the driver and also to increase the probability that the passenger’s request will actually be
served by one of the drivers by actually finding some more relevant drivers than those that
were selected by the currently working mechanism.

19

20 CHAPTER 4. DRIVER RESPONSE MODEL

The particular types of models that predicts us the class with it’s associated probability
are called probabilistic classifiers. The reason why usage of this kind of classifier models in-
stead of the standard classifier is advantageous for us is the that there is an industry driven
need to better target several drivers with lower probability that is still the highest among
all the drivers than to not send the request to any of the drivers. In other words it’s better
to spam less likely drivers than give up directly after receiving the passengers request seeing
that we don’t have fully relevant taxi driver for him at a current moment.

4.1.1 Probabilistic classification

At the beginning of this section we have identified that natural way of treating the prob-
lem when we need to predict the probability is using probabilistic classifiers. There exist
various methods of probabilistic classification that are more in detail described in [35] from
these methods the most natural and well known seems to be Naive Bayes which detailed
description can be found in [36]. Unfortunately our problem does not fulfill the Naive Bayes
condition that all the features should be independent. For example we can clearly see that
for example the distance between taxi driver and passenger departure point depends on the
taxi driver’s and passenger’s departure point.

As a second representative of the probabilistic classifier can be considered any ensemble
method. Here the approach how to compute the final posterior probability is simple, we
only need to divide the number of classifiers voting for particular class by number of total
classifiers. As an example that should perform well for our data we can name random forest
classifier that is more in detail described in [37]. Here we just have to be careful about the
classifier training mechanism.

Third example of probabilistic classifier we can under certain conditions see in artificial
neural networks (ANNs). Conditions that the ANN have to meet are more in detail de-
scribed in [38], especially in section B.

Last, but not least method that we will consider for our work are support vector machines
(SVMs) which is not probabilistic classifier in its nature, but there exist some methods of
turning it into one. Very detailed description of these methods can be seen in [39].

The very last method that we have considered for our work is simple modification of the
KNN, where we can simply compute the probability by division of the elements of certain
class in the K nearest neighbors by the K. More details are described in [40].

4.1.2 Learning top K

Another very interesting problem for our work is so called learning top K problem. This is
important for us mainly because in the request recipient part of our mechanism we have to
select top K most relevant taxis and we can gain some inspiration from various learning top
K approaches.

Majority of the work has previously been done in the field of document retrieval, which

4.2. EVALUATION FRAMEWORK OF THE DRIVER RESPONSE MODEL 21

is not a big problem for us, because documents are same as taxi requests usually represented
as vectors. Some basic overview, where learning top-k is descried as a part of the learning
to rank algorithm can be seen on the wikipedia1. Some work describing top-k as a part of
the learning to rank algorithm was described in [41]. Learning top-k was investigated with
it’s evaluation framework in [42].

4.2 Evaluation framework of the driver response model

Evaluation of the probabilistic classifier like models can be done in a very simple way. First
of all, because of we have only the classification to two classes we can set probability 0.5
as a threshold for classifying the records to particular classes. We have used this assump-
tion and we have computed and recorded how many items from the training set with label
ACCEPTED were classified as ACCEPTED and how many of them were classified as DE-
CLINED. Then we have recorded the same for items with DECLINED label in the real world
data.

Second important metric that we use for measuring the trained classifier performance is
the brier score2. The biggest advantage of the brier score is that it also reflects very well
how far was on average the predicted probability from the actual label.

The resulting measured values we have recorded in the following table.

brier
score

correct
accepts

correct
declines

accepts as
declines

declines
as accepts

no artificial features
artificial features

4.3 Features construction from the data

This section we have basically divided into the two parts, in the first part we have described
the features that we have available directly from the data and in the second part those
features that are from the extraction point of view little bit more interesting, features that
we have derived or computed by our own from the data. During the selection of the features
we have used our previously performed data visualizations that are available in the appendix
A.

4.3.1 Original features from the data

For the training of the driver response model we can use directly several available data
records, particularly we have used:

1<http://en.wikipedia.org/wiki/Learning_to_rank>
2<https://www2.physics.ox.ac.uk/sites/default/files/2011-06-09/2010_qjrms_136_1364_

preprint_pdf_14112.pdf>

http://en.wikipedia.org/wiki/Learning_to_rank
https://www2.physics.ox.ac.uk/sites/default/files/2011-06-09/2010_qjrms_136_1364_preprint_pdf_14112.pdf
https://www2.physics.ox.ac.uk/sites/default/files/2011-06-09/2010_qjrms_136_1364_preprint_pdf_14112.pdf

22 CHAPTER 4. DRIVER RESPONSE MODEL

driver’s ID
ID of the driver that was broadcasted by the passengers request, copied field Broad_Driv_ID.

passenger’s ID
ID of the passenger, copied field Pass_ID.

timestamp
Timestamp of the time when the transaction was broadcasted, copied field Broad_At.

Then we have done first only small data preprocessing tasks that were usually using only
one simple API call to obtain the desired value. Particularly we have used Python build in
API for work with timestamps and remote ATG’s API for computing distances and traveling
time between two geographical points. At the end we have created following features:

hour
Feature that represents the hour of the day and that was computed from the Broad_At
timestamp.

day
Feature that represents the day of the week that was again computed from the Broad_At
timestamp.

journey length
Distance of the journey with passenger that was computed from the fields Req_Pick_Loc
and Ride_Exp_Dest.

journey time
Time of the journey with passenger which was again computed from Req_Pick_Loc
and Ride_Exp_Dest.

journey to pick up length
Feature that represents the distance that the driver has to travel to pick up the passen-
ger it was naturally computed from the fields Driv_Pos_At_Inq and Req_Pick_Loc.

journey to pick up time
Time needed to travel the journey to pick up the passenger it was again computed
from the fields Driv_Pos_At_Inq and Req_Pick_Loc.

4.3.2 Computed or derived features

To even improve our models we have decided to introduce some other relevant features that
are potential hidden in the data and there is needed little bit more complicated computations
on the data to obtain these features.

For the first set of features we have heuristically set the geographical point with latitude
50.0880400 and longitude 14.4207600 that is representing the center of Prague. Then we
have computed straight line distances and azimuths from this point to the various important
points for us. We have obtained following features:

4.3. FEATURES CONSTRUCTION FROM THE DATA 23

drivers position distance
Represents the straight line distance between the Prague center point and the drivers
position, it uses the Driv_Pos_At_Inq field.

drivers position azimuth
Represents the azimuth from the city center to the drivers actual position obtained
again from the field Driv_Pos_At_Inq.

passengers position distance
Feature that stands for the straight line distance between the Prague center point and
the passengers desired pick up position, it uses the Req_Pick_Loc field.

passengers position azimuth
Feature that describes the azimuth from the city center to the passengers desired pick
up position obtained again from the field Req_Pick_Loc.

passengers destination distance
Represents again the distance from the distance from the heuristically set center of
Prague, but this time to the passengers desired destination point. It uses Ride_Exp_Dest
field.

passengers destination azimuth
Feature that describes the azimuth from the city center to the passengers desired des-
tination, it uses the field Ride_Exp_Dest.

Our next set of artificiality constructed features that we have introduced were ids of the
geographical points cluster. For computation of this we have used K-means unsupervised
learning method. We have run this separately for drivers positions, passengers start positions
and for passengers destination positions. As a distance measure for K-means we have used
the Euclid distance. The only problem of this approach was how to select the appropriate
number of clusters. Here we have decided for trying experimentally K=10, 20 and 50.
Particularly we have computed following features:

ID cluster10 driver position
This represents the ID of cluster to which there belongs the drivers position when the
number of clusters for K-means algorithm was set to 10. There was used the field
Driv_Pos_At_Inq.

ID cluster20 driver position
This feature analogically represents again the ID of the cluster where the drivers
position belongs, but this time for K set for 20. Again there was used the field
Driv_Pos_At_Inq.

ID cluster50 driver position
Again even this feature corresponds again to the ID of the cluster where the drivers
position belongs, but this time for K set for 50. Again even in this case there was used
the field Driv_Pos_At_Inq.

24 CHAPTER 4. DRIVER RESPONSE MODEL

ID cluster10 passenger pick up
This represents the ID of cluster to which there belongs the passengers requested pick
up point when the number of clusters for K-means algorithm was set to 10. There was
used the field Req_Pick_Loc.

ID cluster20 passenger pick up
This feature again represents again the ID of the cluster where the passengers requested
pick up location belongs, but this time for K set for 20. Again there was used the field
Req_Pick_Loc.

ID cluster50 passenger pick up
Again even this feature corresponds again to the ID of the cluster where the passengers
desired pick up location belongs, but this time for K set for 50. Again even in this case
there was used the field Req_Pick_Loc.

ID cluster10 passenger destination
This feature represents the ID of cluster to which there belongs the passengers desired
destination point when the number of clusters for K-means algorithm was set to 10.
There was used the field Ride_Exp_Dest.

ID cluster20 passenger destination
This feature analogically represents again the ID of the cluster where the passengers
desired destination geographical point belongs, but this time for K set for 20. Again
there was used the field Ride_Exp_Dest.

ID cluster50 passenger destination
Again even this feature corresponds again to the ID of the cluster where the passengers
desired destination location belongs, but this time for K set for 50. Again even in this
case there was used the field Ride_Exp_Dest.

Another artificially created set of features for which we have used K-means method were
segmentation of the drivers. In this case the data were needed to be preprocessed for the
run of the K-means. First of all we had to create new data set in which new record looked
as follows di = (hjd , djd , poshdjd , ad, ahdjd) where hjd represents average number of requests
sent to this driver in a certain hour of the day, djd represents average number of requests
sent to the driver in a certain day of the week, poshdjd position of the driver based on the
time of the day and based on the day in a week, ad represents the total drivers accept ratio
and ahdjd which represents the drivers accept ratio based on the time of the day and day in a
week. Again same as in the previous case the problem was, how to set properly the number
of clusters, in this case we have experimentally decided for K=5, 10 and 20. From this we
have obtained following features:

driver’s cluster5 ID
This feature represents the ID of cluster to which there belongs the driver when the
number of clusters for K-means algorithm was set to 5. There were used various fields
of the original dataset for the K-means clustering.

4.3. FEATURES CONSTRUCTION FROM THE DATA 25

driver’s cluster10 ID
This feature analogically again represents the ID of the cluster where the particular
driver belongs, but this time for K set for 10. Again there were used various fields of
the dataset.

driver’s cluster20 ID
Again even this feature corresponds again to the ID of the cluster where the particular
driver belongs, but this time for K set for 20. Even in this case there were used various
fields of the original dataset.

The last new introduced features on the side of the driver was computed number of total
requests and the number of accepted features by the driver within the last hour and within
the last day.

last hour accepts
Feature that represents the total number of accepted requests from the driver during
the last hour.

last hour requests
Represents the feature that stands for the total number of requests sent to the particular
driver during the last hour.

last day accepts
Feature that represents the total number of accepted requests by the driver during the
last 24 hours.

last day requests
Represents the feature that say how many requests were sent to the particular driver
during last 24 hours.

4.3.3 Final feature vector

For better clarity we have collected all the mentioned features from the two sections above
and recorded them to the following table 4.1.

4.3.4 Other considered and not used features

There were also several features that we have experimented with, but which we at the end
have not used. The reason why these features were not used was that all of these features
seemed to be reasonable, but it was currently impossible to clearly extract them from the
data. On the other hand we still strongly believe that in the future together with the growing
market penetration by the application it will be possible to extract and use below mentioned
features. So we are proposing them as something like possible future work.

position on the taxi stand
Our idea was to use the position on the taxi stand as a feature, but unfortunately
there were clearly seen taxi stand spots in the data very rarely, because the application
covers only certain percentage of all the available taxi drivers in Prague.

26 CHAPTER 4. DRIVER RESPONSE MODEL

feature name type
driver’s ID categorical
passenger’s ID categorical
timestamp numerical
hour numerical
day numerical
journey length continuous
journey time continuous
journey to pick up length continuous
journey to pick up time continuous
drivers position distance continuous
drivers position azimuth continuous
passengers position distance continuous
passengers position azimuth continuous
passengers destination distance continuous
passengers destination azimuth continuous
ID cluster10 driver position categorical
ID cluster20 driver position categorical
ID cluster50 driver position categorical
ID cluster10 passenger pick up categorical
ID cluster20 passenger pick up categorical
ID cluster50 passenger pick up categorical
ID cluster10 passenger destination categorical
ID cluster20 passenger destination categorical
ID cluster50 passenger destination categorical
driver’s cluster5 ID categorical
driver’s cluster10 ID categorical
driver’s cluster20 ID categorical
last hour accepts numerical
last hour requests numerical
last day accepts numerical
last day requests numerical

Table 4.1: Table of used features

4.4. USED MACHINE LEARNING METHODS 27

driver is on taxi stand or not
Our second idea was to at least determine if the driver is on the stand spot. But
unfortunately determining where is the taxi parking just from the transaction data
was not possible. Here would probably help to use some additional dataset containing
locations of all the taxi stand positions.

standing or cruising state of the driver
Again our idea was to determine if the driver was standing or cruising. The problem
with this feature was that it was very hard to determine if the driver is moving or not
from the drivers activity data since it seemed that the times periods when drivers were
recording their positions varied a lot.

4.4 Used machine learning methods

We have experimented with several machine learning models learned on the either the data
set with all the features or on the data set with just the features that were introduced in the
section original features from the data.

4.4.1 Naive Bayes

As the first and very natural approach of how to build the probabilistic classifier we have
selected Naive Bayes method as it is described in [43]. Particularly we have first trained two
"submodels", the Multinomial naive bayes model from the categorical features and Gaussian
naive bayes model from the continuous features. Then we have learned final Gaussian naive
bayes model on the probabilities predicted by both of the models as it is recommended in 3.

The biggest disadvantage of using the naive bayes classifier is that it assumes that all the
features are independent, which we can clearly see is not true in case of our data set. For
example we can say that usually the distance and traveling time between two points are
highly correlated features.

4.4.2 K nearest neighbors

Another very easy to interpret classifier that can be turned to the probabilistic classifier is
K nearest neighbors method. Which was again described in [43]. In this case we have used
the Euclid distance as a measure of the distance between points. Then we have used the
standard cross validation to obtain optimal parameter K. We were able to see that this K
was usually estimated to numbers from 20 to 40. This number varied based on the features
that were covered by the data set that we have used for learning. Then we have determined
the probability of acceptance or reject by simply computing the number of records classified
as accept in the K best records divided by the total number K.

3<http://stackoverflow.com/questions/14254203>

http://stackoverflow.com/questions/14254203

28 CHAPTER 4. DRIVER RESPONSE MODEL

4.4.3 Decision tree forest

The most sophisticated probabilistic classifier method that we have used were decision tree
forests. In this case there was used the implementation of the random forest classifier from
the scikit learn library4. Which performs combining the particular tree classifiers by averag-
ing their probabilistic prediction, instead of letting one tree vote for one particular class.

On the other hand the disadvantage of the random forest classifier from the scikit learn
library is that it does not perform pruning algorithms during the learning of the partic-
ular trees. This fact tends to cause overfitting by particular trees used for the classifica-
tion. One possible way, how to prevent particular trees from the overfitting is to manually
set the parameters max_depth that determines the maximal allowed depth of the tree,
min_samples_split which determines the minimum number of samples that are required
to split an internal tree node and min_samples_leaf that determines what is the minimum
number of samples per newly created leafs.

Naturally the last parameter that we had to determine was number of decision trees that we
have used for learning. Again same as in the case o K-nn we have used cross validation to
set the optimal parameters for the data sets from the different periods of the time.

4.5 Conclusion on the proposed driver response models

In this section we have described various feature extraction tasks that we have performed.
More over we also have identified several possible features by which we believe that we will
be able to even improve our models in the near future when there will be higher market
penetration by the taxi booking application.

Then we have also investigated and selected methods of how to learn the model that will
predict certain class with it’s associated probability. At the end we have also identified Naive
Bayes, K nearest neighbors and decision tree forest as three methods which we will use as a
driver response models. The main reason of choosing particularly these methods was that
Naive Bayes and K nearest neighbors are very easy to interpret as a probabilistic classi-
fier model and decision tree forest is based on the related literature is supposed to perform
very well in terms of the prediction quality. In the next sections we will show more details
about how we have implemented the learning of the mentioned models and also how has the
particular models performed in the evaluation section.

4<http://scikit-learn.org/stable/modules/ensemble.html#forests-of-randomized-trees>

http://scikit-learn.org/stable/modules/ensemble.html#forests-of-randomized-trees

Chapter 5

Implementation

As it was mentioned in the previous sections the whole system was implemented in Python
as several independent scripts that can be run separately. Our system also advantages of the
Python built in libraries such as NumPy or Scikit learn [44] which provide us very powerful
and easy to use tools for the data analysis and machine learning models training.

5.1 Python

We have selected Python because it is widely used general purpose programing language
for which there was already implemented a huge number of various open source libraries for
machine learning and artificial intelligence. Our scripts were developed particularly in the
Python version 2.7. which assures us better compatibility with the most of the frequently
used machine learning libraries.

Another reason for using Python was it’s very good readability a simplicity to write the
code together with possibility to implement the critical operation in C/C++ which we can
notice in mentioned libraries Numpy and Scikit learn. From this you can also notice that
critical for us is to use CPython, the default and most widely used implementation of Python.

5.1.1 NumPy

As a first of the libraries that were used by our scripts we should mention NumPy, which
is the extension to Python that enables to perform very similar operations as Matlab pro-
gramming language in Python. In other words it enables easy to use optimized computation
with matrices and vectors.

5.1.2 Scikit learn

Another very important Python library for us is Scikit learn. This library provides easy
to use, very robust and stable stack of various machine learning algorithms. These algo-
rithms are also optimized in terms of the speed performance and its critical parts are usually
implemented in C/C++. Particularly for our work we have used below described algorithms.

29

30 CHAPTER 5. IMPLEMENTATION

5.1.2.1 Naive Bayes

The first machine learning algorithm that we have used from Scikit learn was Naive Bayes
classifier 1. It is better to say that is more than just one algorithm the whole family of
algorithms. We have particularly used Gausian and the multinomial Naive Bayes.

5.1.2.2 K nearest neighbors

Another Scikit learn algorithm that was used in our scripts was K nearest neighbors 2. We
have particularly used the standard K nearest neighbors. Advantage of the Scikit learn
implementation was that it has let us quiet easily to try out both approaches, when the
weights for one particular class were distance and uniform value for each point.

5.1.2.3 Decision tree forests

Probably the most complex machine learning algorithm from Scikit learn that we have used
was decision tree forest 3. Particularly we have used the algorithm called RandomForest-
Classifier which trains a certain number of decision trees classifiers on the various sub-sets
of the input data and sub-set of input data features. There is used averaging of the trees
probabilistic prediction instead of the single vote assigned for each of the trees.

The biggest disadvantage of the Scikit learn RandomForestClassifier implementation is that
there is not implemented any algorithm that supports particular decision tree classifier prun-
ing. For this reason there had to be used the Grid search with cross validation to determine
the particular parameters to prevent the classifier from overfitting.

5.1.2.4 K-means clustering

The last important algorithm from Scikit learn that was used in our scripts is K-means
clustering 4. This algorithm performs simple data clustering in two steps. At the beginning
there are randomly selected K points from the data as means. Then in the first step there
are computed closest means for the each data point. Then in the second step there are
recomputed new means. As a criterion that should be minimized we use standard Euclidean
distance.

As you could have noticed from the description of the K-means algorithm, it is an algorithm
with no guaranties of returning the optimal solution. Thus in the Scikit learn implementa-
tion of the K-means there is a possibility to chose number of how many times is K-means
with different initial points as cluster centroids is run.

1<http://scikit-learn.org/stable/modules/naive_bayes.html>
2<http://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-classification>
3<http://scikit-learn.org/stable/modules/ensemble.html#forests-of-randomized-trees>
4<http://scikit-learn.org/stable/modules/clustering.html#k-means>

http://scikit-learn.org/stable/modules/naive_bayes.html
http://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-classification
http://scikit-learn.org/stable/modules/ensemble.html#forests-of-randomized-trees
http://scikit-learn.org/stable/modules/clustering.html#k-means

5.2. PARTICULAR SCRIPTS DESCRIPTION 31

5.1.2.5 Grid search

Last functionality from Scikit learn that was widely used in our work was grid search 5. Grid
search is basically the implemented combination of searching for the optimal parameters from
"grid" of all the possible parameters with the cross validation. We have used this method
to estimate the optimal parameters for our supervised classifiers.

5.2 Particular scripts description

As we have mentioned in the previous section our program consists of several scripts that
can be run independently. In this section we will describe all the important scripts one by
one. In the figure 5.1 you can see, how it is recommended to run the scripts to train and
evaluate models on the provided data. There is no single pipeline script, because of very
long time needed top run some of the scripts, particularly computing distances and traveling
time via ATG’s API or grid search for particular model parameters.

5.2.1 Data preprocessor

In the data preprocesor there are all the possible functions that can select various data
subsets, for example data subset for certain amount of time, data subset for all the entries
within the Prague bounding box. This script also contains functions that are computing
distances and the traveling time for all the desired geographical points pairs.

5.2.2 Feature extractor

In this script there are functions that extracts only the important features from the data
matrix that contains also various other data fields that are not further used for the clas-
sifier learning. It also performs date conversion to the weekday and hour format and also
geographical point to the polar coordinates.

5.2.3 Feature builder

In the Feature builder we can find creation of all the features that are created by the unsuper-
vised learning methods, such as K-means clustering of the passenger’s origin and destination
coordinates, driver’s position coordinates or K-means clustering of the particular Taxi drivers
and passengers.

5.2.4 Drivers model

In this script we have all the classification models learning related functions. We have
implemented all of the classifiers as separate classes that we are able to persist in a file for
further use. We have also implemented the possibility to compute the Brier score for each
of the probabilistic classification models.

5<http://scikit-learn.org/stable/modules/grid_search.html>

http://scikit-learn.org/stable/modules/grid_search.html

32 CHAPTER 5. IMPLEMENTATION

Figure 5.1: recommended script run order

5.2. PARTICULAR SCRIPTS DESCRIPTION 33

5.2.5 Tree visualizer

Tree visualizer is only a small script that enable us to convert each of the decision trees to
the .pdf format. This can be useful for visual control the learned decision trees.

5.2.6 Evaluator

Last and very important script is the evaluator which contains various functions to perform
evaluation of the learned models. Evaluation functions that can be found in this script were
described in the section evaluation framework and measured results will be described in the
following section evaluation.

34 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

The evaluation of our models or more over evaluation of the whole matchmaking mechanism
is quiet complicated and even more it seems to be even impossible to perform a perfect
evaluation based only on the historical data. So we can not clearly say that our evaluation
would clearly tell us that our proposed model works actually better than the already working
system selecting the taxi drivers based on some heuristics. For very precise evaluation of
our system there would be needed to perform at least some kind of additional A/B testing
involving the run of our model in the real system.

First of all we describe, how we perform the evaluation, then we describe the metrics that
we have measured. After this we also describe the way, how we have set the parameters of
our models that were used in our mechanism. In the next section we measure, record and
visualize the important measured values and as a last part of this chapter we introduce few
information about how should be performed the following A/B testing and what should be
measured during this kind of testing.

6.1 Evaluation scenario

Since we had available the consecutive transactional data for August and September 2014
we have have decided to split the data for training and testing data in a way to have one
testing week or in other words the last 7 days of September 2014 we have used as a test
dataset and the rest of the data we have used as a training data.

6.1.1 Driver response model evaluation scenario

First part of our evaluation has used only the transactional data described in the section
3.4.1. As it was said before we have split the data for the training and the test dataset.
Then we have found optimal parameters using previously described grid search from the
scikitlearn. After that we have again learned the model using whole training dataset and
measured the evaluation metric on the testing data. We have performed all these evaluation
steps twice, first of all for the models learned on the data without new artificially computed
features and once on the dataset with all the derived features from the dataset that we have
described in the section 4.3.2.

35

36 CHAPTER 6. EVALUATION

6.1.2 Mechanism evaluation scenario

Second part of the evaluation deals with the evaluation of the integrated model within the
mechanism. As a data input we have used the newly created dataset containing merged
both the transactional data with the driver activity data as it was described in the section
3.4.2. Here we must say that there were some obvious inconsistencies in the data. Thus
we have decided to remove all the records that were clearly inconsistent. As an example we
can mention case when there was certain driver available based on the transactional data,
but not available based on the drivers activity data or when in the transactional data has
appeared the driver that whose ID was never spotted in the driver activity data. At the end
we end up with only 4245 valid data records with label accept and 22614 data records with
label decline, which is in the both cases slightly below 60% of the original records in the
transaction data.

Again as in the model evaluation we have also for the mechanism evaluation we have per-
formed all of the evaluations for all the classifiers, once without artificially created features
and once with artificially created features that were described in the section 4.3.2.

In the evaluation method that we have introduced we are basically recording only the number
of records in the table which should at least show that the learned model is not completely
wrong. For better visualization we have then also computed percentage values from all the
records and the percentage of accepts and declines from the real world transaction data that
were selected.

6.2 Evaluation metrics

Again in this section we have first introduced the evaluation metrics for the driver response
model evaluation and the for the evaluation of whole matchmaking mechanism using the
integrated driver response model.

6.2.1 Evaluation metrics for the driver response model

In this section we were particularly measuring five different metrics. First of all we were
computing the brier’s score of the learned model on the tested data. Then we have computed
four values where first was number of accepts classified as accept with probability higher than
0.5, then number of accepts classified to be accept with probability smaller than 0.5. The
same we have measured and recorded for declines. More details about metrics can be seen
in the section 4.2.

6.2.2 Evaluation metrics for the matchmaking mechanism

Measured and recorded metrics for the matchmaking mechanism corresponds pretty much
with the proposed evaluation framework in the section 3.3.2. In other words we were measur-
ing all the tabular data of how many times there was predicted to one of the four categories

6.3. MODEL CONFIGURATION 37

number of trees max depth min samples split min samples leaf
without artificial features 125 30 4 2
with artificial features 195 45 1 2

Table 6.1: Decision tree forest parameters table

for all the data that had label accept, decline or data where we don’t know the label. Our
four categories to which the particular drivers could have been predicted were accept and
selected (accept), decline and selected (decline), accept and not selected (AnS) or decline
and not selected (DnS). For better clarity of the measured result we have also recorded the
percentage from all the evaluated requests in the parenthesis.

6.3 Model configuration

As it was described in the previous sections, we have used so called grid search from the
scikit learn library that internally uses the cross validation to find the best parameters for
our K nearest neighbors and decision tree forest models.

6.3.1 Estimated parameters for K nearest neighbors

For the K nearest neighbors was the situation quiet easy. The only parameter that we had
to determine was K, the number of neighbors that should be taken into the account.

We have performed the grid search first for the model learned on the data without artificially
created features. Where the optimal K was selected as 21. And then we have performed
the grid search again, but this time for the data with artificially created features, where the
optimal K found as 30.

6.3.2 Estimated parameters for decision tree forests

For decision tree forests become the situation slightly more complicated, because of several
other parameters than just number of trees that had to be estimated. First of all it was the
number of trees in the forest, then maximal depth of the tree, minimum samples needed for
the split, and minimum samples needed in the leaf.

We have first performed the grid search for the model learned on the data without arti-
ficially created features. The optimal parameters are shown in the table below. Then we
have again performed the grid search for data with artificially created features and again the
optimal parameters can be found in the following table 6.1.

6.4 Measured results

In this section we have separately performed the evaluation for the driver response model
using various machine learning techniques. Then we have separately evaluated the whole

38 CHAPTER 6. EVALUATION

brier
score

correct
accepts

correct
declines

accepts as
declines

declines
as accepts

no artificial features 0.2594 2586 36052 4597 3765
artificial features 0.2834 2875 34931 4308 4886

Table 6.2: Evaluation of the Naive Bayes classifier

brier
score

correct
accepts

correct
declines

accepts as
declines

declines
as accepts

no artificial features 0.3061 1022 36890 6161 2927
artificial features 0.3045 1404 35852 5779 3965

Table 6.3: Evaluation of the K nearest neighbors

mechanism that was relaying on the model. We have also summarized conclusion for every
part of the evaluation.

6.4.1 Driver response model evaluation

First and the easiest way how we possibly could evaluate probabilistic classifier model was
to divide the data set to the train and test data and then compute the Brier score on the
test data. Another very simple way of the evaluation is to compute the number of correctly
predicted labels. Basically we are just comparing the labels of the taxi drivers for that we
have the label available with our predicted labels. Unfortunately we have recorded label only
for the fraction from the total amount of drivers in the system.

6.4.1.1 Results for Naive Bayes classifier

As we have said before first we have performed the evaluation of the model learned on the
data without artificially crated features and then the same evaluation of the model this time
learned on the data containing also the artificially created features. All the measured values
were recorded in the following table 6.2.

6.4.1.2 Results for K nearest neighbors

Analogously as for the Naive Bayes even for K nearest neighbors we have learned one model
on the data without artificially created features and one on the data containing this set of
features. Again we have recorded the measured values to the following table 6.3.

6.4.1.3 Results for decision tree forest

Same as for the previous two probabilistic classification models we have again even for the
decision tree forests learned two models, one for data without artificially created features
and one for data with this set of features. Again the measured results were recorded in the
following table 6.4.

6.4. MEASURED RESULTS 39

brier
score

correct
accepts

correct
declines

accepts as
declines

declines
as accepts

no artificial features 0.2597 3087 35254 4096 4563
artificial features 0.2489 3414 34320 3769 5497

Table 6.4: Evaluation of the decision tree forest

6.4.1.4 Conclusion on the prediction quality measurements

First of all we have performed the visualization of the measured values in the figure 6.1.
From the probabilistic classifier accuracy measurements and it’s visualization we can see
that the best performing model for our data was the decision tree forest learned on the data
containing also the artificially constructed features. On the other hand we can see that the
Naive Bayes model was doing also surprisingly well and in the case when we did not used
artificially created features it has performed more or less the same as the decision tree forest.
Unfortunately by introducing new features that were probably not independent on others has
quality of the Naive Bayes remain more or less the same and we can probably not expect any
significant improvement of the Naive Bayes model by introducing new features. The worst
performing model in terms of plain model evaluation was definitely K nearest neighbors.

6.4.2 Matchmaking mechanism evaluation

In this section we have focused on the evaluation of the whole proposed mechanism using
our model. Our goal is to select N best taxi drivers based on the model and then evaluate
this selection. From this measurements it should be possible to see how much are selections
using our model different from already existing mechanism based on some heuristics and it
was also possible to see that our model actually works, but unfortunately it was very difficult
to evaluate if our model actually works better than the current mechanism.

We have performed the evaluation using tables introduced in the evaluation framework sec-
tion 3.3.2. We have filed this tables with total occurrences for the whole period of the last 7
days of September 2014. In parenthesis we have recorded the the percentage from the total
amount of accept and reject records that was available also in the driver’s activity data. We
have also learned all of the models twice. Firstly using the data without artificially created
features and then on the data containing both direct features from the data and also the
artificially constructed features as it is described in the section 3.4.2.

In addition to the evaluation on the total data using tables we have decided to compute
and record the percentage of accepts from the real world data that were selected by our
model ans the percentage of real world declines that were selected by our model, because
these number are very interesting for us from the matchmaking mechanism point of view.

40 CHAPTER 6. EVALUATION

Figure 6.1: Number of classifications per model

6.4. MEASURED RESULTS 41

Real world

Our model

Reject Accept Don’t know
Reject 3486 (1.42%) 735 (0.30%) 36183 (14.77%)
Accept 327 (0.13%) 30 (0.01%) 6220 (2.54%)
RnS 18436 (7.53%) 3443 (1.41%) 170638 (62.16%)
AnS 336 (0.14%) 37 (0.02%) 5099 (9.38%)

Table 6.5: Table of mechanism evaluation using Naive Bayes without additional features

Real world

Our model

Reject Accept Don’t know
Reject 3519 (1.44%) 739 (0.30%) 37548 (15.32%)
Accept 255 (0.10%) 19 (0.01%) 4901 (2.00%)
RnS 18658 (7.62%) 3468 (1.42%) 172456 (70.39%)
AnS 182 (0.07%) 19 (0.01%) 3235 (1.32%)

Table 6.6: Table of mechanism evaluation using Naive Bayes with additional features

6.4.2.1 Results for the Naive Bayes classifier:

First of all we have recorded measured model performance values for model learned on the
data without artificially created features in the following table 6.5. You can see total number
of records and percentage of total records in the parenthesis. Afterwards we have computed
that on average there was selected 18.02% accepts from all the accepts that could have been
potentially selected and 16.86% of declines from all the declines for that we had recorded
decline in the transaction dataset.

Then we have performed exactly the same measurements, but this time for the model learned
on the data with artificially created features. The measured values we have recorded in the
table 6.6. Then we have again computed the average per request percentages with the result
that there was selected 17.86% accepts from all the accepts that could have been potentially
selected and 16.70% of declines from all the declines that could in the transaction dataset
that could have been selected.

6.4.2.2 Results for K nearest neighbors:

Again as in case of the Naive Bayes even in here we have first computed and recorded the
measurements for the model learned on the data without artificially created feature. The
data can be seen in the following table 6.7. In this case our measured average accept selec-
tion percentage was 18.42% from all the accepts available in the real world data and average
decline percentage was 18.10% again from all the declines available in the real world data.

Then we have again performed the same evaluation, but this time for the model trained
on the data with artificially created features. Again the measured values were recorded in

42 CHAPTER 6. EVALUATION

Real world

Our model

Reject Accept Don’t know
Reject 3838 (1.57%) 740 (0.30%) 40185 (16.40%)
Accept 248 (0.10%) 42 (0.02%) 1928 (0.79%)
RnS 18436 (7.52%) 3426 (1.40%) 175129 (71.48%)
AnS 92 (0.04%) 37 (0.02%) 898 (0.37%)

Table 6.7: Table of mechanism evaluation using Knn without additional features

Real world

Our model

Reject Accept Don’t know
Reject 4261 (1.74%) 891 (0.36%) 40823 (16.66%)
Accept 166 (0.07%) 18 (0.01%) 822 (0.34%)
RnS 18077 (7.38%) 3291 (1.34%) 175792 (71.75%)
AnS 110 (0.04%) 45 (0.02%) 703 (0.29%)

Table 6.8: Table of mechanism evaluation using Knn with additional features

the following table 6.8. Afterwards we have again computed the average accept selection
percentage as 21.41% from all the available data records with accept label and average de-
cline selection percentage as 19.58% again from all the available real world data with the
label decline.

6.4.2.3 Results for decision tree forest:

Same as in the previous two cases even for the decision tree forest classifier we have used
the same evaluation methodology. Again first we have measured the values for the model
trained on the data without artificially created features. This measured values can be seen
in the following table 6.9. Afterwards we have again computed the average selection per-
centage. This time as 12.51% for accepts, again from all the accepts that were available in
the transactions dataset and average decline percentage as 15.90% from all the data with
label decline in the transactions real world data.

Then we have again performed the same evaluation, but this time for the model trained
on the data with artificially created features. The measured values were recorded in the fol-
lowing table 6.10. Then we have again computed the average accept selection percentage as

Real world

Our model

Reject Accept Don’t know
Reject 1080 (0.44%) 119 (0.05%) 10138 (4.14%)
Accept 2516 (1.03%) 414 (0.17%) 32714 (13.35%)
RnS 17610 (7.19%) 3421 (1.40%) 152301 (62.16%)
AnS 1408 (0.57%) 291 (0.12%) 22987 (9.38%)

Table 6.9: Table of mechanism evaluation using Decision tree forest without additional
features

6.4. MEASURED RESULTS 43

Real world

Our model

Reject Accept Don’t know
Reject 1171 (0.48%) 242 (0.10%) 9148 (3.73%)
Accept 2174 (0.89%) 535 (0.22%) 33711 (13.76%)
RnS 16764 (6.84%) 3097 (1.26%) 145598 (59.43%)
AnS 2505 (1.02%) 371 (0.15%) 29683 (12.12%)

Table 6.10: Table of mechanism evaluation using Decision tree forest with additional features

18.30% from all the available accepts in the real world data and the average decline selection
percentage as 14.79% from all the available real world data with the decline label.

6.4.2.4 Conclusion on the mechanism evaluations

When we have a look at the measured values in the mechanism performance measurements
we can clearly see that number of accepts and declines does not match with the data from
the model prediction quality measurements. This is caused by the usage of the combina-
tion of the transaction and the driver activity data. Unfortunately driver activity data were
available only in the separate data set and we could have noticed that both datasets did not
match as accurately as it would be needed for better evaluation of the system. Unfortunately
this fact causes that the measurements in this section were probably more just a guideline
and should be interpreted very carefully. Also because of this we even recommend before
implementing this system into the production to repeat this experiment in a real world set-
ting aside of the production code.

Nevertheless we have at least visualized the real world accept selection percentages and
real world declines percentages in the figure 6.2. Then we have also visualized all the data
from the tables in the figure 6.3, where we have focused only on the columns where we had
available the label for the data which are particularly interesting for us.

Since we are interesting in high percentage of selected accepts and the low percentage of se-
lected rejects/declines, we can again see that the best performing model seems to be again the
decision tree forest trained on the data with artificially created features, where the difference
between accepts and declines was the highest. But unfortunately this time the observation
is not that obvious as it was in the evaluation of only the driver response model. We can
again see that the Naive Bayes models were performing quiet well too, especially when we
did not have available additional artificially created features from the data. We can also see
that K nearest neighbors performed surprisingly well in selecting accepts, but unfortunately
also quiet badly in selecting declines. On the other hand we must say that the improvement
in comparison with the original taxi selection system is probably not as big as we would
like to achieve. From the data it seems that usually when there were selected taxis with
outcome decline, then there was probably not many other taxis that would score better and
that could improve the final selection. This can be seen from the fact that usually there are
high numbers in reject not selected and accept not selected for our best performing models.
The other problem is that we have majority of the data in the column where we don’t know
the label and thus we don’t know if the selection of such a record was actually improving of

44 CHAPTER 6. EVALUATION

Figure 6.2: average accepts and declines percentage

6.4. MEASURED RESULTS 45

Figure 6.3: Visualized tabular data

46 CHAPTER 6. EVALUATION

the situation that we have recorded in the data or if we would have made the situation even
worse.

6.5 Recommendations towards the A/B testing

In this section we have tried to describe what should be the following steps towards imple-
menting our mechanism in to the production.

6.5.1 Re-run of the table evaluating method

First of all we strongly recommend to run the mechanism evaluating method using tables
once again, but this time aside of the production code with exactly the same space of the
taxi drivers. Here we should particularly focus on that if our mechanism select real world
requests with the accept outcome and if our model drops real world requests with the decline
outcome, in other words we should focus especially on the first two rows of the evaluation
table.

6.5.2 Starting with our mechanism in the production

We recommend then to start with the implementation of our mechanism slowly and piece-
wise. First of all the mechanism should be used only for allocating the jobs for the taxi
drivers in certain small percentage of cases and then it should be measured if the acceptance
rate among drivers selected by the mechanism is significantly higher. Then the percentage of
the request allocated by our mechanism might be slowly increased. Than it should be again
measured and verified that the usage of our mechanism really brings the higher acceptance
rate by the taxi drivers. The process of increasing the number of requests should be run
several times based on the measured results. Disadvantage of the standard A/B testing like
this might be quiet a long time that will be required to determine if our predicted model
really improves the current matchmaking mechanism.

Another option for us is to use some from slightly more advanced methods for the hy-
pothesis testing. Example of very nice approach might be so called Bayesian Bandit12 which
is based on comparing the beta distributions and that is very easy to implement.

1<https://www.chrisstucchio.com/blog/2013/bayesian_bandit.html>
2<http://www.mlguru.cz/bayesovsky-bandita-chytrejsi-a-levnejsi-ab-testovani/>

https://www.chrisstucchio.com/blog/2013/bayesian_bandit.html
http://www.mlguru.cz/bayesovsky-bandita-chytrejsi-a-levnejsi-ab-testovani/

Chapter 7

Conclusion

In this work we have first visualized various interesting aspects of the data set that was
provided to us. Than we have selected and constructed several new interesting features that
helped us to create and further improve the mechanism, later we have introduced one possi-
ble system of how to design the passengers allocation mechanism based on the data driven
probabilistic classifier models. Advantage of this system is that we can basically plug in any
classifier model that will give us prediction of the class with the corresponding probability,
thus we have have also performed experiments with several models of this category.

We have also introduced the evaluation framework for our mechanisms based on this prob-
abilistic classifier model. We have performed all the evaluations based on this framework,
that were possible to perform on our available data.

First of all we have evaluated that our driver response models works and we are able to
learn some patterns from the available data. On the other hand we can say that our mod-
els are not absolutely perfect. This might be caused by several factors. First of all we
will probably never be able to record all the variables that describes whole passenger taxi
matchmaking mechanism. From this point of view we can name factors like weather or some
subjective feeling of either of sides. Last example bring us to other problem which is a
human factor which is unfortunately on the both sides of our mechanism. It’s usually very
difficult to predict very specific human behavior related situations. As an example we can
name that driver might see someone on the street at the same time when he was broadcasted
by the application and naturally his optimal behavior would be to give a ride to the hailing
passenger, but there might be also others very hard to predict situation like driver falling
asleep during the waiting, driver having a puncture or many others.

On the other hand when we were performing evaluation of the whole mechanism that con-
tained our model we could have seen that our mechanism produces reasonable results, but
we can just hardly tell if our system would really perform better than the already existing
mechanism that uses few basic heuristics. One from the reasons why our evaluations did
not clearly answered this question were some inconsistencies in the datasets that we had
available. On the other hand we can say that further testing of our mechanism can be quiet
easily done aside of the currently working mechanism. So the first step towards implement-

47

48 CHAPTER 7. CONCLUSION

ing our system in production that we recommend is to perform once again our matchmaking
mechanism evaluation aside of the real world system. After this experiment there might be
performed first implementations of our mechanism to the real world system.

In terms of particular machine learning models comparison we can see that the best per-
forming model for us was the decision tree forest. We could have seen that until we have
used only several features available directly from the data Naive Bayes worked quiet well
for us, but unfortunately after computing another relevant features from the data we could
have seen performance deterioration of the Naive Bayes, but also the improvement of the
decision tree forest. This fact makes also decision tree forest promising algorithm towards
introducing another new relevant features that might appear together with some additional
recorded fields or other changes of the currently working system.

7.1 Future work

There are still remaining several ideas of what can be possibly improved and investigated in
order to even improve our mechanism.

First of all we can see huge potential in usage of the deep learning methods instead of
the standard machine learning methods that we have used. This might be advantageous for
two reasons. First of all there might be performed some kind of automatic feature identifica-
tion and creation using deep learning. This might even simplify our work and might be even
better for future adding of new data fields. Second advantage of deep learning might be even
in the improvement of the machine learning model prediction performance. Someone might
argue that we might not have available enough data for the usage of the deep learning, but
there exists several tricks how to work with datasets that contain tens to hundreds thousands
records same as our dataset. We can see that several datasets published at deeplearning.net1

has the comparable size as our training dataset, same as several Kaggle competitions2 that
were won by the deep learning methods.

Our other idea of what can be possibly done in the future to improve our mechanism is
the combination of our model together with the data about passengers and drivers behavior
in the applications. From these maybe little bit more business intelligence point of view
models we could for example extract several new input features for our models. These fea-
tures might for example represent passengers and drivers better than using simple K-means
on the few data fields that are available for us from the transactions dataset.

Another field that might improve the matchmaking mechanism a lot is the own design of the
mechanism. In our work we were pretty much fixed to the currently working mechanism,
but introducing some other changes to the mechanism from extending the time that drivers
has for the reply to some motivation for the drivers to accept more request might also lead
to the improvement of the existing system.

1<http://deeplearning.net/datasets/>
2<http://benanne.github.io/2014/04/05/galaxy-zoo.html>

http://deeplearning.net/datasets/
http://benanne.github.io/2014/04/05/galaxy-zoo.html

Bibliography

[1] Network Performance Traffic Analysis Centre Traffic levels on major
roads in Greater London, Published by Transport for London in March
2012, available at <http://www.tfl.gov.uk/cdn/static/cms/documents/
traffic-note-1-traffic-levels-in-greater-london-2010.pdf>

[2] Ryan Jay Herring Real-Time Modeling and Estimation with Streaming Probe Data
using Machine Learning, Published at eSholarship University of California in
Fall 2010, available at <http://bayen.eecs.berkeley.edu/sites/default/files/
thesis/ryh10.pdf>

[3] Carlos Gershenson Living in Living Cities, Published at arXiv.org in November 2011,
available at <http://arxiv.org/pdf/1111.3659v3.pdf>

[4] Jean-François Cordeau, Gilbert Laporte The Dial-a-Ride Problem (DARP): Variants,
modeling issues and algorithms, Published at Quarterly Journal of the Belgian, French
and Italian Operations Research Societies 1.2 (2003) in June 2002, available at <http:
//www.dim.uchile.cl/~tcapelle/BIBLIOGRAFIA%20TESIS/Laporte.pdf>

[5] Rémy Chevrier, Arnaud Liefooghe, Laetitia Jourdan, Clarisse Dhaenens Solving a Dial-
a-Ride Problem with a Hybrid Evolutionary Multi-objective Approach: Application to
Demand Responsive Transport, Published at Elsevier in 2012, available at <http://
hal.inria.fr/docs/00/67/85/82/PDF/chevrier_ASOC2012.pdf>

[6] Gerardo Berbeglia, Jean-Francois Cordeau, Gilbert Laporte A Hybrid Tabu Search and
and Constraint Programming Algorithm for the Dynamic Dial-a-Ride Problem, Published
at INFORMS Journal on Computing in 2012, available at <https://www.cirrelt.ca/
DocumentsTravail/CIRRELT-2010-14.pdf>

[7] M. Schilde, K.F. Doerner, R.F. Hartl Integrating stochastic time-dependent travel
speed in solution methods for the dynamic dial-a-ride problem, Published at Else-
vier in 2014, available at <http://www.sciencedirect.com/science/article/pii/
S0377221714002197>

[8] K.Sairam, R.Nandakrishnan, Veeramuth Venkatesh Competent Smart Car parking: An
OSGi Approach, Published in Journal of Artificial Intelligence 6.1 in 2013, available at
<http://docsdrive.com/pdfs/ansinet/jai/0000/48352-48352.pdf>

[9] Yanfeng Geng, Christos G. Cassandras New “Smart Parking” System Based on Resource
Allocation and Reservations, Published at Intelligent Transportation Systems, IEEE

49

http://www.tfl.gov.uk/cdn/static/cms/documents/traffic-note-1-traffic-levels-in-greater-london-2010.pdf
http://www.tfl.gov.uk/cdn/static/cms/documents/traffic-note-1-traffic-levels-in-greater-london-2010.pdf
http://bayen.eecs.berkeley.edu/sites/default/files/thesis/ryh10.pdf
http://bayen.eecs.berkeley.edu/sites/default/files/thesis/ryh10.pdf
http://arxiv.org/pdf/1111.3659v3.pdf
http://www.dim.uchile.cl/~tcapelle/BIBLIOGRAFIA%20TESIS/Laporte.pdf
http://www.dim.uchile.cl/~tcapelle/BIBLIOGRAFIA%20TESIS/Laporte.pdf
http://hal.inria.fr/docs/00/67/85/82/PDF/chevrier_ASOC2012.pdf
http://hal.inria.fr/docs/00/67/85/82/PDF/chevrier_ASOC2012.pdf
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2010-14.pdf
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2010-14.pdf
http://www.sciencedirect.com/science/article/pii/S0377221714002197
http://www.sciencedirect.com/science/article/pii/S0377221714002197
http://docsdrive.com/pdfs/ansinet/jai/0000/48352-48352.pdf

50 BIBLIOGRAPHY

Transactions on 14.3 in 2013, available at <http://ieeexplore.ieee.org/xpl/login.
jsp?tp=&arnumber=6082832>

[10] Claudia Di Napoli, Dario Di Nocera, and Silvia Rossi Agent Negotiation for
Different Needs in Smart Parking Allocation, Published by Springer International
Publishing in 2014, available at <http://link.springer.com/chapter/10.1007/
978-3-319-07551-8_9>

[11] Shuo-Yan Chou, Shih-Wei Lin, Chien-Chang Li Dynamic parking negotiation and
guidance using an agent-based platform, Published at Expert Systems with Applica-
tions in 2008, available at <http://www.sciencedirect.com/science/article/pii/
S095741740700293X>

[12] Soumya Banerjee, Hameed Al-Qaheri An intelligent hybrid scheme for optimizing park-
ing space: A Tabu metaphor and rough set based approach, Published in Egyptian
Informatics Journal in 2011, available at <http://www.sciencedirect.com/science/
article/pii/S1110866511000077>

[13] David William DaddioMAXIMIZING BICYCLE SHARING: AN EMPIRICAL ANAL-
YSIS OF CAPITAL BIKESHARE USAGE , Published by University of North Car-
olina at Chapel Hill in 2012, available at <http://rethinkcollegepark.net/blog/
wp-content/uploads/2006/07/DaddioMP_Final-Draft.pdf>

[14] Oliver O’Brien, James Cheshire, Michael Batty Mining bicycle sharing data for gener-
ating insights into sustainable transport systems, Published in J Transport Geography in
2013, available at <http://www.complexcity.info/files/2013/08/BATTY-JTG-2013.
pdf>

[15] Patrick Vogela, Torsten Greisera, Dirk Christian Mattfelda Understanding Bike-Sharing
Systems using Data Mining: Exploring Activity Patterns, Published at Procedia-Social
and Behavioral Sciences 20 in 2011, available at <http://www.sciencedirect.com/
science/article/pii/S1877042811014388>

[16] G.K.D Saharidis, A. Fragkogios and E. Zygouri A Multi-Periodic Optimization Modeling
Approach for the Establishment of a Bike Sharing Network: a Case Study of the City
of Athens, Published at Proceedings of the International MultiConference of Engineers
and Computer Scientists in 2014, available at <http://www.iaeng.org/publication/
IMECS2014/IMECS2014_pp1226-1231.pdf>

[17] Juan P. Romero, Angel Ibeas, Jose L. Moura, Juan Benavente, Borja Alonso A
simulation-optimization approach to design efficient systems of bike-sharing, Pub-
lished at Procedia-Social and Behavioral Sciences in 2012, available at <http://www.
sciencedirect.com/science/article/pii/S1877042812042449>

[18] Pierre Borgnat, Céline Robardet, Jean-Baptiste Rouquier, Patrice Abry, Eric Fleury,
and Patrick Flandrin SHARED BICYCLES IN A CITY: A SIGNAL PROCESSING
AND DATA ANALYSIS PERSPECTIVE, Published at Advances in Complex in 2011,
Systems available at <http://hal.archives-ouvertes.fr/docs/00/49/03/25/PDF/
velov_acs.pdf>

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6082832
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6082832
http://link.springer.com/chapter/10.1007/978-3-319-07551-8_9
http://link.springer.com/chapter/10.1007/978-3-319-07551-8_9
http://www.sciencedirect.com/science/article/pii/S095741740700293X
http://www.sciencedirect.com/science/article/pii/S095741740700293X
http://www.sciencedirect.com/science/article/pii/S1110866511000077
http://www.sciencedirect.com/science/article/pii/S1110866511000077
http://rethinkcollegepark.net/blog/wp-content/uploads/2006/07/DaddioMP_Final-Draft.pdf
http://rethinkcollegepark.net/blog/wp-content/uploads/2006/07/DaddioMP_Final-Draft.pdf
http://www.complexcity.info/files/2013/08/BATTY-JTG-2013.pdf
http://www.complexcity.info/files/2013/08/BATTY-JTG-2013.pdf
http://www.sciencedirect.com/science/article/pii/S1877042811014388
http://www.sciencedirect.com/science/article/pii/S1877042811014388
http://www.iaeng.org/publication/IMECS2014/IMECS2014_pp1226-1231.pdf
http://www.iaeng.org/publication/IMECS2014/IMECS2014_pp1226-1231.pdf
http://www.sciencedirect.com/science/article/pii/S1877042812042449
http://www.sciencedirect.com/science/article/pii/S1877042812042449
http://hal.archives-ouvertes.fr/docs/00/49/03/25/PDF/velov_acs.pdf
http://hal.archives-ouvertes.fr/docs/00/49/03/25/PDF/velov_acs.pdf

BIBLIOGRAPHY 51

[19] Julius Pfrommer, Joseph Warrington, Georg Shildbach, Manfred Morari Dynamic ve-
hicle redistribution and online price incentives in shared mobility systems, Published at
arXiv.org in 2013, available at <http://arxiv.org/pdf/1304.3949.pdf>

[20] Karama Jeribi, Hinda Mejri, Hayfa Zgaya, Slim Hammadi Vehicle Sharing Ser-
vices Optimization Based on Multi-Agent Approach, Published at 18th World
Congress of the International Federation of Automatic Control in 2011, available at
<http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac11-proceedings/
data/html/papers/0615.pdf>

[21] Jia Shu, Mabel Chou, Qizhang Liu, Chung-Piaw Teo, I-Lin Wang Bicycle-Sharing
System: Deployment, Utilization and the Value of Re-distribution, Published by Na-
tional University of Singapore-NUS Business School, Singapore in 2010, available at
<http://bschool.nus.edu/Staff/bizteocp/BS2010.pdf>

[22] Andrey Glaschenko, Anton Ivaschenko, George Rzevski, Petr Skobelev Multi-Agent
Real Time Scheduling System for Taxi Companies, Published at 8th International Con-
ference on Autonomous Agents and Multiagent Systems, Budapest in 2009, available
at <http://www.ifaamas.org/Proceedings/aamas09/pdf/03_Industrial_Track/13_
70_it.pdf>

[23] Kiam Tian Seow, Nam Hai Dang and Der-Horng Lee A Collaborative Multiagent Taxi-
Dispatch System , Published at Automation Science and Engineering, IEEE Transactions
in 2010, available at <http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=
5286312>

[24] Jan Zikeš Auction-based Taxi Allocation with Dynamic Pricing, published at CTU
in 2012, available at <https://dip.felk.cvut.cz/browse/details.php?f=F3&d=
K13136&y=2012&a=zikesjan&t=bach>

[25] Thuy T.T. Nguyen and Grenville Armitage A Survey of Techniques for Internet Traffic
Classification using Machine Learning, Published in Communications Surveys & Tuto-
rials, IEEE in 2008, available at <http://ieeexplore.ieee.org/xpl/login.jsp?tp=
&arnumber=4738466>

[26] Shiliang Sun, Changshui Zhang, Guoqiang Yu A bayesian network approach to traffic
flow forecasting, Published at Intelligent Transportation Systems, IEEE Transactions
in 2006 available at <http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=
1603558>

[27] AiLing Ding, XiangMo Zhao, Licheng Jiao Traffic flow time series prediction based on
statistics learning theory, Published at The IEEE 5th International Conference on. IEEE
in 2002, available at <http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=
1041308>

[28] Bin Li, Daqing Zhang, Lin Sun, Chao Chen, Shijian Li, Guande Qi, Qiang Yang Hunting
or waiting? Discovering passenger-finding strategies from a large-scale real-world taxi
dataset, Published at IEEE International Conference in 2011, available at <http://
ieeexplore.ieee.org/xpl/abstractAuthors.jsp?tp=&arnumber=5766967>

http://arxiv.org/pdf/1304.3949.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac11-proceedings/data/html/papers/0615.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac11-proceedings/data/html/papers/0615.pdf
http://bschool.nus.edu/Staff/bizteocp/BS2010.pdf
http://www.ifaamas.org/Proceedings/aamas09/pdf/03_Industrial_Track/13_70_it.pdf
http://www.ifaamas.org/Proceedings/aamas09/pdf/03_Industrial_Track/13_70_it.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5286312
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5286312
https://dip.felk.cvut.cz/browse/details.php?f=F3&d=K13136&y=2012&a=zikesjan&t=bach
https://dip.felk.cvut.cz/browse/details.php?f=F3&d=K13136&y=2012&a=zikesjan&t=bach
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4738466
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4738466
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1603558
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1603558
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1041308
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1041308
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?tp=&arnumber=5766967
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?tp=&arnumber=5766967

52 BIBLIOGRAPHY

[29] Jing Yuan, Yu Zheng, Liuhang Zhang, XIng Xie, Guangzhong Sun Where to Find
My Next Passenger?, Published at Proceedings of the 13th international conference on
Ubiquitous computing in 2011, available at <http://dl.acm.org/citation.cfm?id=
2030128>

[30] Moreira-Matias L., Gama J., Ferreira M., Mendes-Moreira J., Damas, L. Predict-
ing Taxi–Passenger Demand Using Streaming Data, Published at ieeexplore.ieee.org
in 2013, available at <http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?tp=
&arnumber=6532415>

[31] Santi Phithakkitnukoon, Marco Veloso, Carlos Bento, Assaf Biderman, Carlo Ratti
Taxi-Aware Map: Identifying and Predicting Vacant Taxis in the City, Published by
Springer Berlin Heidelberg in 2010, available at <http://link.springer.com/chapter/
10.1007/978-3-642-16917-5_9>

[32] Yuan, N.J., Yu Zheng, Liuhang Zhang, Xing Xie T-Finder: A Recommender System for
Finding Passengers and Vacant Taxis, Published at Knowledge and Data Engineering,
IEEE Transactions in October 2010, available at <http://ieeexplore.ieee.org/xpl/
login.jsp?tp=&arnumber=6261314>

[33] Yang Yue, Yan Zhuang, Qingquan Li, Qingzhou Mao Mining Time-dependent Attractive
Areas and Movement Patterns from Taxi Trajectory Data, Published at 17th International
Conference on. IEEE in 2009, available at <http://ieeexplore.ieee.org/xpl/login.
jsp?tp=&arnumber=5293469>

[34] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun,
Yan Huang T-Drive: Driving Directions Based on Taxi Trajectories, Published at 18th
SIGSPATIAL International conference on advances in geographic information systems in
2010, available at <http://dl.acm.org/citation.cfm?id=1869807>

[35] Alexandru Niculescu-Mizil, Rich Caruana Predicting Good Probabilities With Su-
pervised Learning, Published at 22nd international conference on Machine learning
in 2005, available at <http://machinelearning.wustl.edu/mlpapers/paper_files/
icml2005_Niculescu-MizilC05.pdf>

[36] Ashutosh Garg and Dan Roth Understanding Probabilistic Classifiers, Published by
Springer Berlin Heidelberg in 2002, available at <http://l2r.cs.uiuc.edu/~danr/
Papers/ecml01.pdf>

[37] Leo Breiman Random forests, Published in Machine learning 45.1 in 2001, available at
<http://link.springer.com/article/10.1023/A:1010933404324>

[38] Guoqiang Peter Zhang Neural Networks for Classification: A Survey, Published in Sys-
tems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
in 200, available at <http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=
897072>

[39] John C. Platt Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods (1999) available at <http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.41.1639&g>

http://dl.acm.org/citation.cfm?id=2030128
http://dl.acm.org/citation.cfm?id=2030128
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?tp=&arnumber=6532415
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?tp=&arnumber=6532415
http://link.springer.com/chapter/10.1007/978-3-642-16917-5_9
http://link.springer.com/chapter/10.1007/978-3-642-16917-5_9
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6261314
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6261314
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5293469
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5293469
http://dl.acm.org/citation.cfm?id=1869807
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2005_Niculescu-MizilC05.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2005_Niculescu-MizilC05.pdf
http://l2r.cs.uiuc.edu/~danr/Papers/ecml01.pdf
http://l2r.cs.uiuc.edu/~danr/Papers/ecml01.pdf
http://link.springer.com/article/10.1023/A:1010933404324
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=897072
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=897072
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1639&g
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1639&g

BIBLIOGRAPHY 53

[40] Amir F. Atiya Estimating the Posterior Probabilities Using the K-Nearest Neighbor Rule,
Published in Neural computation in 2005, available at <http://alumnus.caltech.edu/
~amir/posterior-prob-est.pdf>

[41] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, Hang Li Learning to rank: from pair-
wise approach to listwise approach, Published at 24th international conference on Machine
learning in 2007 available at <http://dl.acm.org/citation.cfm?id=1273513>

[42] Fen Xia, Tie-Yan Liu, Hang Li Top-k Consistency of Learning to Rank Methods, Pub-
lished at Advances in Neural Information Processing Systems in 2009, available at
<http://research.microsoft.com/pubs/103073/topk-tr.pdf>

[43] Stephen Marsland Machine Learning: An Algorithmic Perspective, Published by Chap-
man & Hall/CRC in 2009

[44] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M.,
Prettenhofer P., Weiss R., Dubourg V. Vanderplas J., Passos A., Cournapeau D., Brucher
M., Perrot M., Duchesnay E. Scikit-learn: Machine Learning in Python, Published at The
Journal of Machine Learning Research in 2011, available at <http://jmlr.csail.mit.
edu/papers/v12/pedregosa11a.html>

http://alumnus.caltech.edu/~amir/posterior-prob-est.pdf
http://alumnus.caltech.edu/~amir/posterior-prob-est.pdf
http://dl.acm.org/citation.cfm?id=1273513
http://research.microsoft.com/pubs/103073/topk-tr.pdf
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

54 BIBLIOGRAPHY

Appendix A

Data analysis

We were provided the data that describes two step passenger taxi matching in the real world.
In the first step we are trying to determine the probability of taxi driver accepting, rejecting
or letting be time outed the passengers request. We have tried to visualize several "prior"
probabilities with respect to various features from data.

All the visualizations were made separately for whole data set and for all the data from
last 28 days.

A.1 Visualized features in the first step

In this step we are interested only in that the taxi driver will accept the passengers request
we don’t care about that if the passengers acceptance of the journey will follow.

A.1.1 Prior probability based on the day in a week

We have observed that this prior probability differs among particular days of the week.
We were able to observe that the lowest prior probability of acceptance was measured on
Saturday, approximately 0.21 and the highest on Wednesday, approximately 0.27. When we
have looked only on the data from last 28 days we were able to see more or less the similar
pattern of the drivers behavior. For details see figure A.1.

A.1.2 Prior probability based on the hour in a day

From our visualizations it is possible to see that the highest prior probability of request
being accepted by the taxi driver is between 23:00 and 24:00 around 0.33 and the lowest
prior probability is between 16:00 and 17:00 around 0.17. When we have visualized the same
for last 28 days we could see that the highest prior probability of request being accepted by
the taxi driver is between 21:00 and 22:00 and then between 23:00 and 24:00 this probability
is around 0.31. On the other hand the worst situation is between 16:00 and 17:00 when the
prior probability is only 0.13. For details see figure A.2.

55

56 APPENDIX A. DATA ANALYSIS

Figure A.1: step1: prior probability based on the weekday

Figure A.2: step1: prior probability based on hour of the day

A.1. VISUALIZED FEATURES IN THE FIRST STEP 57

A.1.3 Prior probability based on both time of the day and day in a week

We can see that the highest request acceptance prior probability is during the workdays
around midnight, it is usually from 0.3 to 0.4 and by far the lowest probability probability
of the taxi request being accepted we can see on Friday between 16:00 and 17:00 when the
probability is only 0.1. When we have look on the visualization of the data for last 28 days we
can see that the highest prior probability of taxi request will be accepted we have in nights
except night from Friday to Saturday and from Saturday to Sunday, again the number varies
from 0.3 to 0.4. On the other hand the lowest prior probability we can expect on everyday
afternoon except Sunday, this probability is usually again around 0.1. For details see figure
A.3.

A.1.4 Prior probability based on the distance between passenger and taxi.

We can see that the highest prior probability of request being accepted by the taxi driver we
have when the distance between taxi driver and passenger is small in this case it is around
0.5 then it decreases to values around 0.2 when the distance is from 6 to 10 kilometers. In
last 28 days we were able to see again more or less the same pattern. More details can be
seen on figure A.4.

A.1.5 Prior probability based on the estimated traveling time of the taxi
driver to the passenger

We can see that as we have expected there is the highest prior probability when the traveling
time is low, around 0.45 and low when the traveling time is higher, around 0.1. We can also
see more or less the same pattern when we have look only on the data from last 28 days.
More details can be seen on figure A.5.

A.1.6 Drivers acceptance prior probability with respect to the drivers
geographical position

We can see that there is slightly higher probability of the passengers request being accepted
when the driver is in the city center and it decreases towards the suburbs. When we visualize
data from the last 28 days we can see that this pattern is even more significant. More details
you can see on figure A.6.

A.1.7 Drivers acceptance prior probability with respect to the passengers
geographical position

From our visualizations there is possible to see that there is higher probability for passengers
request to be accepted when the passenger is closer to the city center and lower when he is
in suburbs. When we have look on data for last 28 days than it seems that there are several
spots where the prior acceptance probability is higher and it seems that this time it does
not directly corresponds to the city center. More details you can see on figure A.7.

58 APPENDIX A. DATA ANALYSIS

Figure A.3: step1: prior probability based on hour of the day and day in a week

Figure A.4: step1: prior probability based on distance between driver and passenger

A.1. VISUALIZED FEATURES IN THE FIRST STEP 59

Figure A.5: step1: prior probability based on traveling time between driver and passenger

Figure A.6: step1: prior probability based on the taxi drivers geographical position

60 APPENDIX A. DATA ANALYSIS

A.1.8 Drivers acceptance prior probability with respect to that if the
destination was entered

We can see that there is slightly higher prior probability of trip request being accepted by the
taxi driver when there was entered the destination. Particularly prior probability without the
destination entered was 0.24 and with the destination entered 0.28. On the other hand when
we have a look on the data from last 28 days we can see that the probability of acceptance
without entered destination was 0.23 and with entered destination 0.24. Details can be seen
on figure A.8.

A.1.9 Conclusion

From our visualizations we can see that we were able to see that values of our features directly
correlates with the request being accepted by the taxi driver. On the other hand we can’t
clearly say that our measured features are independent, thus we can not only multiply these
prior probabilities to get our final predicted probability of request being accepted by the
taxi driver. One example of features that are clearly not independent we can name distance
between taxi driver and passenger and traveling time between passenger and taxi driver.

A.2 Visualized features in the second step

In this step we are interest in that the whole journeys will be successfully set up after the
request was accepted by the taxi driver.

A.2.1 Prior probability based on the traveling time of the taxi driver to
the passenger

We can see that again there is higher prior probability that the passenger will accept drivers
offer when the traveling time of the driver to the passenger is low, particularly around 0.43
and it gets lower to 0 when the traveling time is high. When we have visualized data for last
28 days we have seen that the pattern starts in a same way, but then from certain traveling
time we don’t have enough data and the data we have are basically only noise. More details
you can see on figure A.9.

A.2.2 Prior probability based on the distance between the taxi driver and
the passenger

Quiet similar observation as in the section of traveling time to the passenger we can also get
from the plot of prior probabilities with respect to the distance between passenger and the
taxi driver. The prior probability of acceptance when the passenger was close to the taxi
was more than 0.5 and when the passenger was far than it has decreased to less than 0.2. In
the data from last 28 days we were able to see that the decrease of the prior probability with
distance was not that steep, but unfortunately from certain values we did not have enough
data and in the visualization we can see basically only noise. More details you can see on
figure A.10.

A.2. VISUALIZED FEATURES IN THE SECOND STEP 61

Figure A.7: step1: prior probability based on the passengers geographical position

Figure A.8: step1: prior probability based on if the destination was entered

62 APPENDIX A. DATA ANALYSIS

Figure A.9: step2: prior probability based on if the traveling time between passenger and
driver

Figure A.10: step2: prior probability based on if the distance between passenger and driver

A.2. VISUALIZED FEATURES IN THE SECOND STEP 63

A.2.3 Prior probability based on the price per km quoted by the taxi

We can see that in the price range where are the most of taxis in Prague, between 13CZK
and 28CZK there is possible to see that prior probability slightly decreases as the price
increases. On the other hand in the data from last 28 days we can see that there is almost
no correlation between price quoted by the taxi and prior probability of that the proposed
journey will be accepted by the passenger. More details you can see on figure A.11.

A.2.4 Prior probability based on the hour in a day

From the plots it is possible to see that the highest prior probability of taxi drivers offer
being accepted by the passenger is in the night hours, especially from 4:00 to 5:00 particularly
0.45. On the other hand the lowest probability of accepting the offer from the taxi drivers is
between 12:00 and 13:00 and then between 17:00 and 18:00 when it is 0.25. When we have
look at the data from last 28 days we can see that the situation was completely different.
The highest probability of the offer being accepted from the passenger we can see between
10:00 and 13:00 when it is almost 0.55 and the lowest, slightly around 0.35 in the morning
from 8:00 to 9:00 and then from 15:00 to 17:00. For more details see figure A.12.

A.2.5 Prior probability based on the day in a week

From our visualizations there is possible to see that the lowest prior probability of taxi drivers
offer being accepted by the passenger is on Monday, slightly over 0.32 on the other hand the
highest probability we can see on Saturday, particularly slightly above 0.36. When we have
look only on the data from last 28 days we can see that the situation has changed and the
lowest probability is on Saturday, around 0.34 and the highest on Wednesday, approximately
0.38. For more details see figure A.13.

A.2.6 Prior probability based on both the weekday and the time of a day

We can see That the highest prior probabilities of taxi drivers offer being accepted by the
passenger is in nights from Monday to Tuesday, from Tuesday to Wednesday, from Wednes-
day to Thursday and from Thursday to Friday when the highest probability is usually slightly
after the midnight and it is around 0.55 on the other hand the lowest prior probability we
can expect on Sunday in the afternoon when it is around 0.15 and in the Monday between
4:00 and 5:00 when it is 0.18. When we have look on the data from the last 28 days we can
clearly see that we don’t have enough data for some conclusion. For more details see figure
A.14.

A.2.7 Prior probabilities based on the passengers device

We have also performed visualizations separately for the passengers that are using device
with android and those who are using iOS. We were able to see that there is slightly higher
probability of accepting the offer by the iOS users and there is also seen slightly higher prior
probability of the iOS user to accept more expensive driver and driver that travels from the
bigger distance.

64 APPENDIX A. DATA ANALYSIS

Figure A.11: step2: prior probability based on the drivers quoted price

Figure A.12: step2: prior probability based on hour in a day

A.2. VISUALIZED FEATURES IN THE SECOND STEP 65

Figure A.13: step2: prior probability based on the day in a week

Figure A.14: step2: prior probability based on both the day in a week and hour in a day

66 APPENDIX A. DATA ANALYSIS

A.2.8 Prior probability based on the drivers geographical position

From the visualizations we can see that generally the prior probability of taxi being accepted
is high in the city center, but then it is also high at some specific locations in the suburbs.
In the data from last 28 days we can see that prior probability of driver being accepted by
the passenger is high at some suburban spots. For more details see map on figure A.15.

A.2.9 Prior probability based on the passengers geographical position

From the data we can see that there are clearly locations from where passengers prior prob-
ability of accepting the taxi driver is higher than in others, but we can’t generally say this
happens in the center or in the suburbs. Exactly the same situation we can see from the
data from last 28 days. For more details see map on figure A.16.

A.2.10 Conclusion

We can several correlations between particular recorded features and the probability of the
taxi drivers offer being accepted. On the other hand we can also see several dependencies
between particular features, again as a example we can name taxi geographical positions of
both taxi drivers and passengers with distances and traveling time.

A.2. VISUALIZED FEATURES IN THE SECOND STEP 67

Figure A.15: step2: prior probability based on the geographical position of the taxi driver

Figure A.16: step2: prior probability based on the geographical position of the passenger

68 APPENDIX A. DATA ANALYSIS

Appendix B

User Guide

Before you try to run the program from the enclosed CD you should read following few
information about how to make the program run and where and which variables is possible
to set.

System Requirements

Program should be possible run on the most of the major operating systems. Though
installed Python2.7 and compatibile version of LAPACK is needed.

Dependencies

To make the source code from the enclosed CD work you have to first download some publicly
available dependencies. The dependencies can be easily installed using pip. Particularly by
running the command "pip install -r requirements.txt" in the code root directory. In case
that you are for some reason not using pip you can also manually install all of the packages
separately. For all the needed packages please see requirements.txt.

Variables

Geo utils variables

In the script geoutils.py you can experiment with various variables, especially with the Prague
bounding box or with the heuristically set center of Prague.

Model Variables

In the script drivers_models.py you can experiment with different parameters of the partic-
ular models as it was described in the section 6.3.

69

70 APPENDIX B. USER GUIDE

Preprocessing cariables

In the script feature_builder.py you can also experiment with different K representing the
number of clusters used for feature building.

Appendix C

Content of the CD

Figure C.1: Content of the enclosed CD

71

	Introduction
	AI and modern technology in transportation
	Vehicle passenger matchmaking mechanisms
	Approach to the problem
	Objectives of this work

	Related Work
	Transportation on demand or taxi allocation
	Towards taxi system optimization

	Transport resource allocation
	Parking lots allocation optimization
	Shared vehicle allocation optimization

	Taxi systems optimization

	Transportation optimization using machine learning
	Learning approaches to forecast the traffic
	Learning approaches in the taxi dispatching domain
	Learning methods using taxi companies data

	Related work summary

	Matchmaking mechanism
	The taxi ordering protocol
	Matchmaking algorithm inputs
	Map - graph of the city
	Taxi drivers
	Passengers
	Taxi ride request

	Matchmaking algorithm outputs

	Request recipient selection problem
	Inputs of the request recipients selecting algorithm
	Outputs of the request recipients selecting algorithm
	Request recipients selecting algorithm description
	N best taxi drivers

	Mechanism evaluation
	Key performance indicators
	Evaluation framework
	Real world outcomes
	Our system predictions

	Available datasets description
	Transactions data
	Driver activity data

	Driver response model
	Learning problem description
	Probabilistic classification
	Learning top K

	Evaluation framework of the driver response model
	Features construction from the data
	Original features from the data
	Computed or derived features
	Final feature vector
	Other considered and not used features

	Used machine learning methods
	Naive Bayes
	K nearest neighbors
	Decision tree forest

	Conclusion on the proposed driver response models

	Implementation
	Python
	NumPy
	Scikit learn
	Naive Bayes
	K nearest neighbors
	Decision tree forests
	K-means clustering
	Grid search

	Particular scripts description
	Data preprocessor
	Feature extractor
	Feature builder
	Drivers model
	Tree visualizer
	Evaluator

	Evaluation
	Evaluation scenario
	Driver response model evaluation scenario
	Mechanism evaluation scenario

	Evaluation metrics
	Evaluation metrics for the driver response model
	Evaluation metrics for the matchmaking mechanism

	Model configuration
	Estimated parameters for K nearest neighbors
	Estimated parameters for decision tree forests

	Measured results
	Driver response model evaluation
	Results for Naive Bayes classifier
	Results for K nearest neighbors
	Results for decision tree forest
	Conclusion on the prediction quality measurements

	Matchmaking mechanism evaluation
	Results for the Naive Bayes classifier:
	Results for K nearest neighbors:
	Results for decision tree forest:
	Conclusion on the mechanism evaluations

	Recommendations towards the A/B testing
	Re-run of the table evaluating method
	Starting with our mechanism in the production

	Conclusion
	Future work

	Data analysis
	Visualized features in the first step
	Prior probability based on the day in a week
	Prior probability based on the hour in a day
	Prior probability based on both time of the day and day in a week
	Prior probability based on the distance between passenger and taxi.
	Prior probability based on the estimated traveling time of the taxi driver to the passenger
	Drivers acceptance prior probability with respect to the drivers geographical position
	Drivers acceptance prior probability with respect to the passengers geographical position
	Drivers acceptance prior probability with respect to that if the destination was entered
	Conclusion

	Visualized features in the second step
	Prior probability based on the traveling time of the taxi driver to the passenger
	Prior probability based on the distance between the taxi driver and the passenger
	Prior probability based on the price per km quoted by the taxi
	Prior probability based on the hour in a day
	Prior probability based on the day in a week
	Prior probability based on both the weekday and the time of a day
	Prior probabilities based on the passengers device
	Prior probability based on the drivers geographical position
	Prior probability based on the passengers geographical position
	Conclusion

	User Guide
	Content of the CD

