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Abstract / Abstrakt

Network security can be viewed as a long lasting arms race between ad-

versaries and intrusion detection systems designers, each of them trying to

reach their goals by reacting to the oponent’s actions. A potential break-

through in this race could be made by anticipating the adversary’s next

move. We attempted to achieve it by devising a procedure, which serves for

designing optimal attacks against a particular network detector based on

anomaly detection. The proposed method is tested against exact optimal

values, and verified to efficiently produce maximal attacks on the mentioned

detector. Our findings are important for the evaluation of the security of

the analysed detection system and can be used for its improvement.

Na sít’ovou bezpečnost lze nahlížet jako na dlouhotrvající závod ve zbrojení

mezi útočníky a tvůrci detektorů sít’ovych útoků, ve kterém se obě strany

snaží dosáhnout svých cílů reagováním na akce svých protivníků. Poten-

ciálním zlomem v tomto závodě by mohlo být předpovídání útočníkových

dalších kroků. Toho jsme se pokusili dosáhnout navržením procedury, která

má sloužit k přípravě optimálních útoků na konkrétní detektor, fungující na

principu detekce anomálií. Navrhovaný algoritmus je poté testován oproti

známým ideálním hodnotám a je ověřeno, že efektivně produkuje max-

imální útoky na zmiňovaný detektor. Výsledky této práce jsou důležité pro

odhad bezpečnosti zkoumaného detekčního systému a mohou být použity

k jeho zdokonalení.
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Chapter 1

Introduction

Complexity of security systems is growing as a reaction to ever more

advanced and refined attacks. Particularly in the area of network intrusion

detection systems (IDS) a long lasting arms race can be observed between

IDS designers and adversaries, each of them attempting to reach their goals

by reacting to opponent’s actions.

There are two basic approaches in detection of network intrusion: signa-

ture based and anomaly based detection.

Signature based detection works with a database of known attacks. The

detection can be then imagined as a comparison of actual events in the

network with the known attacks in the database, so called signatures. This

approach is limited by the quality of the database, which needs to be

updated regularly. Signature based detection is vulnerable to the zero-day

attacks, i.e. new unknown attacks.

Anomaly based detection’s aim is to model legitimate traffic and discover

the abnormal events, possibly attacks. This approach may detect the zero-day

attacks, but usually has other disadvantages, such as high false positive rate

(i.e., high frequency of false alarms), because not every anomaly is necessary

malicious.

A framework for empirical evaluation of security systems proposed in

[1] could be a potential break through in the competition between IDS
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designers and adversaries. The framework is based on a general model of

adversary. Also rather than a mere reaction to a new attack, a step ahead

is suggested: IDS designers should search for the vulnerabilities in their

systems and design attacks themselves.

The motivation for making an attack can be rendered in two main points.

The first of them is assessing security of the detecion system. Knowing

where the weaknesses of the detector lie is a very valuable information. It

can be then decided, whether the weakness can be harmfuly exploited by

an adversary and needs a countermeasure, or can be disregarded. Which

brings us the the second point. A well designed attack can be viewed as the

proactive step in the aforementioned arms race between IDS designers and

adversaries. By anticipating the adversary’s future actions and designing

appropriate countermeasures the security of the system can be increased

and eventual damage prevented.

Inspired by this framework we first analyse a particular network intru-

sion detector in Chapter 2. Then we proceed with planning of an attack

against the detector in Chapter 3, which is the main contribution of this

thesis. Our goal is to find a method for designing optimal attacks agains

the analysed detector. Before drawing the final conclusions, the proposed

method for designing attacks is thoroughly tested in Chapter 4.

1.1 Prior art

Adversarial machine learning is an emerging field of study, which concerns

how learning process and its outcomes can be altered by an adversary.

Adaptive detection systems are popular in the area of network security,

because they can react on new threats and to continual changes of user’s

behaviour. However, the adversary can attempt to spoil the learning phase or

he can try to make his attack improperly classified as a legitimate behavior.

There are various ways how adaptive systems can be subverted. Variety of
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examples concerning such malicious behavior can be found in the work of

Barreno et al. [3][4]. They introduce a taxonomy of attacks, based on the

influence, specificity, and security violation of the attacks, and also possible

countermeasures are suggested.

The general approach of describing attacks by their taxonomy is further

extended by Biggio et al. [1]. The adversary is modeled there according

to his goal, knowledge, capability and attack strategy. Also an example of

attack on detectors of malware at test time is presented. It comprises of

hiding malicious software into PDF files. The attack is based on gradient

descent optimization method and is tested against two types of machine

learning detectors: support vector machines and multi-layer perceptron

(artificial neural network). In both cases the detection function is available to

the attacker and it is analytically differentiable, therefore gradient method is

feasible for finding the optimal attack by minimizing the detection function.

A mimicry method is incorporated, which attempts to imitate the negative

(not malicious) samples potentially helping the gradient method to escape

local minima.

Various poisoning attacks have been described in [1][5]. The main

distinction of this kind of attacks is they are aimed on the learning phase

of the detector, while earlier mentioned attacks targeted test phase. The

training set is poisoned by injecting malicious samples, either targeting one

attack sample to be misclassified, or causing high error rate of the learned

classifier in general.

Two very important ideas in the context of this thesis can be found

in the work of Comesaña et al. [2]. It is the “blindness” of the attack,

meaning the limited knowledge of the adversary about the detector, and

the application of numeric optimization method (there Newton method,

here gradient ascent method). They describe a blind attack on a picture

watermarks detector in the study. Picture watermarking is a different area,
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but the general approach can be applied elsewhere, particularly in network

intrusion detection.

Two scenarios are explored in the study: in one of them the aim is to

remove watermark from a picture with minimal picture distortion. The

other scenario is focused on creating forgeries i.e. finding minimal change

of an unwatermarked picture so that it is classified as watermarked.

A similar scenario as in the watermarking example can be found in the

work of Nelson et al. [6]. They describe an adversary, who has a limited

knowledge about the detector, but is able to query the detector in order to

obtain valuable information about it, which can be used to evade detection.

The proposed attack is near-optimal and minimizes the difference from the

intended ideal attack. Targeted detector belongs to the family of convex-

inducing classifiers, similarly as linear classifiers, most of the anomaly-based

detectors and other popular detectors.

1.2 Problem formulation

Let’s define network flow as a tuple (x1, x2, x2, x4), where the elements x1 to

x4 represent source IP address, source port, destination port and destination

IP address, respectively.

Network background traffic B is defined as a set of network flows

B = {(x1, x2, x2, x4), ...}. Network traffic can be split into time windows

t1, t2, ...: Bt1 ,Bt2 , ....

We expect adversary’s resources to be limited, therefore we define the set

of adversary’s available IP addresses I and the set of adversary’s available

ports P . Using the resources the adversary designs an attack, formally a set

of attack network flows A = {(i1, p1, pd, id), (i2, p2, pd, id), ...}, where source

IPs i1, i2, ... ∈ I and source ports p1, p2, ... ∈ P can be set by the adversary,

but the target ports and IPs are fixed and determined by the attack.
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The network traffic seen by IDS consists of the background traffic B and

injected attack flows A.

T = B ∪A

The traffic is monitored by a detector, which aims to separate the back-

ground and the attack traffic. It comprises of a detection treshold δ, which

is constant for the detector, and a detection function f . The function f

is a mapping from network traffic T to a real number for each of the IP

addresses K involved in the traffic:

f : T → R|K|

The goal of the adversary is to attack a system protected by IDS, which

means to insert as many attack flows, as possible without being detected.

Naturally the attack should be as quick as possible which is represented as

the injection of maximal number of network flows to the target in minimal

time, in our case one time window t. We can then formalize adversary’s

task for attack time t as:

max
i,p

∑
i∈I

ni

subject to:

f (B ∪A) < δ

Where ni is the number of flows injected from IP address i. The maximal

number of attack flows is sought over IP addresses i and ports p used

by adversary. The task is constrained by the detection function f and the

detection treshold δ, which expresses the condition of the attack not being

detected.

The adversary does not have direct access to f and δ and needs to treat

the detector d as a black box:

d : T → {true, f alse}|K|
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Detector computes the value of detection function f for each of the IP

addresses K involved in the analyzed traffic and compares the value with

detection treshold δ, producing ouput true (false) for malicious (legitimate)

traffic respectively. The adversary can see only the ouput and thus has

access solely to the information, whether the constraint was satisfied, or not.

Instead of a single detector, an ensemble of m detectors f1 to fm can

be used together with detection tresholds δ1 to δm, whereas the worst case

scenario for the attacker is assumed - none of the detectors can give positive

response to the attack.

f1(B ∪A) < δ1

f2(B ∪A) < δ2

...

fm(B ∪A) < δm

A scenario with a more informed adversary could be assumed, if also

the values of detection functions f0 to fm were available to the adversary

in addition to the binary output classifying traffic as malicious/legitimate.

This case will not be concerned in this thesis.

We can further extend the attack to multiple time windows by replacing

single attack window t by a range of time windows t = 0, 1, 2, ..., n − 1,

assuming A =
n−1⋃
t=0
At).

Clearly, the task is a NP complete problem, because with no additional

information about the detection function the only way to design optimal

attack is to search all possible combinations of attack IP addresses and ports

and find the maximal number of attack flows, which are not detectable.

However, for a special category of detectors - convex boundary inducing

classifiers - there is an efficient way how to solve the task. It will be discussed

in more details in following chapters.
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Chapter 2

Anomaly detection

Anomaly detection is based on modelling legitimate behavior of systems.

Events which do not conform to the model are considered anomalous,

possibly malicious. In this chapter we will discuss how malicious network

traffic can be distinguished from normal traffic by a particular anomaly

detector. After describing the details about its internals, we will take a look

at some of the detector’s main properties: monotonicity of its detection

function, which quantifies the level of anomaly of the examined traffic, and

the detection boundary, which splits the traffic to legitimate and anomalous.

We assume that decision boundary of most intrusion detection systems is

convex, because any convex combination of legitimate behaviors should be

legitimate as well. Also when various detectors are combined together and

individual detectors within the ensemble have convex decision boundary,

the final boundary is convex.

The main advantage of such detectors from the adversary’s point of

view is the possibility of employing a simple optimization method, namely

the gradient ascend method, to find the global maximum, respresenting

an optimal attack, in polynomial time. In other types of detectors with

non-convex decision boundary the search would often stop in local minima,

which would lead to suboptimal results.

This chapter explains the details of the detector, which is later used in
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the experimental evaluation of the proposed method. First, there will be

described the format of data, the detector operates with. Then the details

about how the detector is created and how it works will be presented.

Unfortunately not all assumptions can be correct all the time, which

also happened to our assumption about the detector. Before the end of this

chapter we will study the detector properties and come to an interesting

conclusion: Even though the detector is based on anomaly detection, its

decision boundary is not convex.

2.1 NetFlow format

In order to perform network traffic analysis it is necessary to capture its main

characteristics and store them in some compact representation. Network

traffic is a complex system, so naturally only a fraction of the information

describing it can be stored and not every kind of information is useful for

the analysis.

One convenient way of recording the traffic is to use the standard Net-

Flow format, because it can be easily exported into logs directly from

network routers. The content of the network packets is disregarded, only

the metadata about the traffic are stored, describing the communication

inside the network in terms of so called network flows. These can be imag-

ined as an unidirectional connection between two points in the network.

Each connection has its origin and destination (ip address and port), time of

start and duration, type of network protocol, information about the volume

of the communication (number of packets, number of bytes, number of

flows) and some additional information (type of service and flags for TCP

protocol). These are the metada stored in NetFlow logs. An example of

such a log can be seen on Figure 2.1.
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Figure 2.1: Sample NetFlow log

Such a description allows analysis of greater and more abstract patterns

in the behavior of users participating in network traffic, rather than analysis

from the perspective of the content of packets.

2.2 Detector

This thesis is focused on designing a block-box attack, which means ad-

versary has no knowledge about the detector. However, the detector is

a vital part of the experimental evaluation and was implemented specifically

for this thesis. Also various optimization adjustments were made to the

detector, which are necessary for the attack design. Thus, we dedicate this

whole section to its thorough description.

Our detector belongs to the anomaly based approach in network detec-

tion described earlier in this chapter. It is based on a detector introduced

in [7]. The detection is performed on the data of NetFlow logs described

in previous section (see 2.1). As was previously said the detector does

not inspect the content of network packets, it only uses information about

source and destination ip addresses and port numbers.

The detection consists of three main building blocks, first two defining

the detector and the third one represents the input data. First block is the

model of regular traffic, detection tresholds constitute the second building

block, and the last block is the features, extracted from the traffic to be

detected. In the following sections we will describe the details necessary for

creating the detector and extracting detection features from the data.
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Feature space

The detector does not use the flows from NetFlow logs directly, it rather

works with the distributions of attributes characterizing the network traffic

such as ip addresses and port numbers. Also not the entire information

about the distributions is necessary. Convenient compressed way for de-

scription of distributions is the average unpredictability, which is known as

the Shannon information entropy. The entropy exactly expresses the in-

formation needed for anomaly detection, because the detector models the

predictable - legitimate - traffic, and the unpredictable traffic is suspicious and

can be considered malicious or further analysed.

In order to compute the entropies, flows are grouped with respect to ip

addresses. This can be done in two ways - aggregation according to source

and destination ip addresses, resulting in two possiblities how to construct

the detector.

Memory

Before the input vectors for detection can be created from raw data, there

is one significant aspect of the detector, which needs to be clarified. The

detector does not work online, meaning that it is not checking each new

flow as soon as it appears in the NetFlow log. Instead, the time is discretized

in time windows of 5 minutes length and every five minutes new NetFlow

log is exported and processed by the detector. Also the detector has its own

memory. The data it is being created on are aggregated from 5 such time

windows, which means the memory has length of 5× 5 = 25 minutes.

The whole process can be imagined as a 25 minutes long sliding window,

where every 5 minutes some flows (from the oldest time window of memory)

are discarded, and some new flows are added.
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Level of anomaly

The features extracted from raw data compose input vectors x for each ip

address present in the actual traffic. Input vectors have length 15: 5 time

windows, each producing 3 items: entropy of source ports, entropy of des-

tination ports and entropy of source/destination ip addresses, depending

on the type of aggregation. The matrix of input vectors is then transformed

with PCT (principal component transformation), obtaining set of eigenvec-

tors {yj ∈ R15}r
j=1 and eigenvalues λ1 > λ2 > ... > λr. All eigenvectors

corresponding to eigenvalues lesser than 10−6 are discarded for numerical

stability.

For assessing the value of detection function f, sometimes called the level

of anomaly, following formula is used on each ip address i:

f (xt(i)) =
k

∑
j=1

(yT
j xt(i))2

λj
(2.1)

f⊥(xt(i)) =
r

∑
j=k+1

(yT
j xt(i))2

λj
(2.2)

From these two equations the values of two detectors are acquired.

Equation 2.1 employs the first k major components from PCT, defining

one detector. The rest (r− k) minor components in Equation 2.2 result in

another detector. According to the original source of the detector [7], the

constant k was set to 1.

Combining two ways of aggregating flows (source/destination IP ad-

dresses) with two ways of computing detection function (major/minor PCT

components) altogether four detectors are created (see 2.1).
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major PCT components minor PCT components
source IPs detector1 detector2

destination IPs detector3 detector4

Table 2.1: Four different detectors are created.

Tresholds

Having computed the level of anomaly of each ip address appearing in

the network traffic, there must be defined a treshold for discerning the

anomalous activity from the legitimate one. We can assume that 5% of the

traffic can be investigated by a human operator, so the 5% most anomalous

ip addresses will be reported by the detector as potentially malicious. The

absolute value of the treshold is computed independetly for each of the four

detectors, and relative to the level of anomaly of all ip addresses currently

active in the traffic.

Intersection of detectors

Each detector splits the feature space into two parts. One part is called

the decision region, where traffic is considered legitimate, the other part is

marked malicious. In order to construct the final detector, the four simple

detectors described earlier in this chapter are combined together. The

most strict way how to do it is intersecting their decision regions. This

corresponds to the safe strategy of the attacker, when he does not want to

be detected by any detector from the ensemble.

2.2.1 Detector properties

As the last step before we can start designing an attack, we need to analyse

the detector’s basic properties. First of them is the monotonicity of the

detection function. In other words we need to verify that the value of

17



detection function will increase (or at least not decrease) whenever we inject

some attack flows.

A simple test has been done, where the known attack flows captured

during the NetFlow log (see Chapter 4.1) were injected into the traffic one

by one. The value of the detection function of each of the 4 detectors can be

seen on Figure 2.2.

200 400 600 800 1000 1200 1400 1600 1800
0

0.01

0.02

Detector − SRC aggregation

 

 

fMajor
treshold

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

Detector − SRC aggregation

 

 

fMinor
treshold

200 400 600 800 1000 1200 1400 1600 1800
0

0.01

0.02

Detector − DST aggregation

 

 

fMajor
treshold

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

Detector − DST aggregation

 

 

fMinor
treshold

Figure 2.2: Monotonicity check: Horizontal scan

Similar tests were done for other two attacks, which were also captured

in the university’s network traffic. The results are analogical and can be

seen in Appendices A.1 and A.2

We have explored the characteristics of detection function under condi-

tions of a progressing attack. From the monotonicity test we can conclude,
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that its behavior coincides with our expectations of an increasing function.

As the next step we will be examining the decision boundary of the

detector. The boundary is studied according to the number of flows injected

from given number of ip addresses. The number of ip addresses defines

the dimension of the space, in which the detection boundary is observed.

On Figure 2.3 there can be seen the decision boundary plotted for 3 ip

addresses.
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Figure 2.3: Decision boundary

There can be observed an interesting property of the detector on the

figure. The boundary is non-convex, which has some grave consequences for

the designing of optimal attacks. Unlike the previous test of monotonicity,

this result was quite unexpected. Some major adjustments had to be done to

address this problem and they will be further described in the next chapter.
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Chapter 3

Planning the attack

We devised two scenarios for the purposes of designing an attack. They

differ from each other in terms of how and when the detector is used, so

naturaly the choice of the scenario strongly influences obtained results.

After the description of scenarios we present a classic optimization

technique: gradient ascent method. It is combined with computation of nu-

merical gradient, which allows to treat the detector as a black-box, whereby

simulating an adversary’s attempt to design an attack with no knowledge

about the detector.

The gradient method is adapted for the domain of network commu-

nication, specifically for designing an optimal attack. Besides a thorough

description of the proposed method, also an explanation is included of how

we managed the problem of the decision boundary non-convexity.

For estimating quality of results obtained from the proposed method

we need a reference solution, which will be acquired by a procedure called

exhaustive search. This procedure is described in this chapter and later

used in Chapter 4.

The gradient method is then employed in designing two types of attack.

First of them is quite simple, because it is limited in duration to a single

time window. The number of different feasible (undetectable) attacks is low
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enough to explore them all in exhaustive search, so the result of our method

can be compared with exact optimal values.

Second attack is much more complex, because it extends to multiple

time windows, and it will be investigated only theoretically.

To finalize the attack planning some important implementation details

will be explained, before proceeding to the experimental evaluation in the

next chapter.

3.1 Attack scenarios

The detection consists of three building blocks: model of normal traffic,

detection tresholds and input vectors representing the traffic to be detected.

The details, about how these blocks are built, were described in Chapter

2.2, but so far it hasn’t been mentioned, how the blocks work together and

what data they are built on. We devised two scenarios, defining how the

detection is performed and how the detector is used for the design of attack.

3.1.1 Scenario 1

Scenario 1 is the most straighforward option. Blocks 1 and 2 of the detector

are computed on time windows t−5 to t−1 and also the attack is designed

based on this detector and time window t−1. After the attack is ready, it

is injected in the time window t0. The injected attack is then verified by

a second detector, whose first part (model1) remains the same as in the first

detector, but tresholds are created from data of t−4 to t0. The concept can

be better understood by looking at Figure 3.1.
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Figure 3.1: Scheme of Scenario 1

3.1.2 Scenario 2

Second scenario is similar to the first one in the point when the attack is

designed (time t−1) and when it is injected to the traffic (time t0). Also

the computation of tresholds is based on the same time windows as in the

previous scenario. Unlike in scenario 1 the model1 is computed one window

earlier. This way the first detector is obtained, which serves for the purposes

of attack design.

The feasibility of the attack is again verified with a second detector,

which is computed on the same basis as the first one in this scenario, but

shifted one time window ahead. A better idea of the process of creating the

detectors and preparation of the attack can be gained from the Figure 3.2.

The difference between both scenarios is following: In scenario 1 the

detector is trained on the same data as attack, which can make it more

biased towards the detector. We can thus anticipate the attack to be stronger,

but also with higher chance of being detected by the second detector.

As opposed to the first scenario, the building blocks in scenario 2 are

more spread in time and thus cover more data. Consequently the attack

should be less biased to the detector used for its design. It follows, that the

strength will be probably lower, but the same holds for the chances of the

attack being detected by the second detector.
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Figure 3.2: Scheme of Scenario 2

3.2 Gradient method

In this section a well known optimization method will be presented, which

is often used for its simplicity combined with good effectivity in domains

with continuous space representation: The gradient ascent method. For this

thesis the method is combined with numerical computation of gradient,

which allows us to use it even with limited knowledge about the detector,

which is treaded as a black-box. Otherwise it would be possible to compute

the gradient analytically.

As was said in Chapter 1.2, our goal is to design an optimal attack

against the introduced detector. The quality or strength of the attack is

defined as the number of flows injected to the target server without being

detected.

In the Problem formulation the attack was defined as a set of flows.

However there are infinitely many possible representations and for each

purpose different representation can be the most efficient.

For gradient method the following one proved to give the best results.

The attack is defined as a distribution of flows α between attacker’s source

ip addresses:

α = (α1, α2, ..., αk),
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where k is the number of ip addresses the adversary can use. We ensure α

to be a valid distribution by laying

αi ≥ 0 and ∑
∀i∈I

αi = 1

The number of flows ni to be injected from ip address i can be calculated

from the distribution by the formula

ni = αi · n,

where n is the total number of flows to be injected.

The search space is consituted by all possible distributions. The method

is called gradient ascent, because starting in some initial point it iteratively

traverses the search space in the direction of increasing gradient of the

objective function. The search is stopped once the gradient drops to (or

below) zero, which means a local, or in case of convex objective function,

global maximum is reached.

The basic iteration cycle is composed of two actions: compute gradient

in actual point of the search space, make a step in this direction and repeat.

We will now describe these two actions in detail.

Gradient

Numerical computation of gradient allows us to calculate the gradient with

a mere binary output from the detector. In contrary if we assumed the

adversary’s knowledge about the detector is not limited, we suppose it

would be possible to determine the gradient analytically.

Numerical gradient is computed via a well known formula 3.1. Although

there is a speciality connected to our representation of attacks. A distribution

α of k variables can be expressed in k− 1 independent variables, because

αk = 1−
k−1
∑

i=1
αi, induced from the condition that ∑

∀i∈I
αi = 1 to be a valid

distribution.
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Gradient is then computed with respect to the k− 1 independent vari-

ables only:

∇ f (α) = [
∂ f (α)

∂α1
, ...,

∂ f (α)
∂αk−1

] (3.1)

where

∂ f (α)
∂αu

=
f (α1, ..., αu + h, ..., αk − h)− f (α1, ..., αu, ..., αk)

2h
(3.2)

Another speciality in the computation of gradient is the substraction of

h from αk in Equation 3.2. The reason is again in the condition of α being

a valid distribution. If we add h to an element of αu, we must substract it

from the dependent variable αk in order to keep
k
∑

i=1
αi = 1.

Line search

So far we haven’t discussed, what the objective function f (α) is, that we are

optimizing. It is a mapping:

f : Rk →N

The function f (α) takes a distribution α ∈ Rk as its input and returns

the maximal number of flows n ∈N, which can be injected under the given

distribution.

More precisely it iteratively increases n from zero until the attack n · α

is detectable. Last n which produced an undetectable attack is the re-

quired value. This procedure is called line search and encloses a simple

one-dimensonal optimization task of finding maximal attack along a fixed

direction, given by the input distribution.

On Figure 3.3 there is the line search procedure with input direction

α = [α1, α2], which projects the distribution to the decision boundary. It is

displayed in 2D space, representing the numbers of flows n1 and n2 injected

from 2 attack ip addresses.
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Figure 3.3: Line search procedure

Step size

We already described, that gradient is computed in each point of the search

αs. The gradient leads the search towards the optimum. After gradient

is computed a step to the next point αs+1 needs to be made. Usualy in

gradient method optimization there is some step size coefficient δ, which

may be fixed or adapted during the search.

αs+1 = αs + δ · ∇ f (αs) (3.3)

On Figure 3.4 there can be seen how delta is employed in the search.

Gradient ∇ f (αs) is shortened there to g.

Finding δ could be seen as another one-dimensional optimization task.

To circumvent this task we used a greedy approach, where we pick the first

improving δ and rely on the gradient, that it will adjust the search direction

in the next step, even though the chosen δ was not optimal.

The first improving step size is sought on an interval, determined by
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Figure 3.4: Step size computation

conditions of α remaining a distribution. It must hold that

k

∑
i=1

αs+1,i = 1

and thus:

0 ≤
k−1

∑
i=1

αs+1,i ≤ 1

By employing Equation 3.3 we get:

0 ≤
k−1

∑
i=1

(αs,i + δ · ∂ f (αs)

∂αs,i
) ≤ 1

The lower and upper limits for the step size can be derived by isolating δ:

δ ≥ −

k−1
∑

i=1
αs,i

k−1
∑

i=1

∂ f (αs)

∂αs,i

δ ≤
1−

k−1
∑

i=1
αs,i

k−1
∑

i=1

∂ f (αs)

∂αs,i
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3.2.1 Discretization

We encountered two main problems during implementation of the gradient

method. Firstly, the decision boundary is not convex, which means the

gradient method can not consistently find global maxima, because it is

a local optimization tool. Depending on the starting point the search

terminates in some of the optima (local or global).

Second problem is the discrete nature of the search space. When we

project the decision boundary - originally a smooth continuous function - to

the discrete space, it breaks up into a combination of step functions. The

steps can be viewed as alternating local minima and maxima of the objective

function, which is proportional to the distance between the boundary and

the origin (see Figure 3.4).

Practically, both these problems collapse to a single challenge of escaping

local maxima. We managed to solve it by gathering more information about

the neighborhood of the searched point. The gradient is computed not for

just one size of the step in numerical gradient, but for various values and

both negative and positive. What can be accomplished by this approach can

be seen on Figure 3.5.

Figure 3.5: Various values of h in computation of gradient can lead the search
towards different local maxima. The objective function is only illustrative.
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This way the local maxima caused by the discretization can be overcome.

More precisely any local maxima with locality less than hmax (the greatest h

from all employed in the search). Locality can be expressed as the diameter

of an area, for which the generally local maximum represents a global

maximum.

So far nothing has been said about the local maxima possibly connected

with the non-convexity of the decision boundary. Can they be overcome

by searching with gradient of different h-sizes? A general statement can’t

be concluded, but based on our available data, if there exists more than

one local maxima, all of them have equal value. Further details about the

effectivity of the proposed adjustment can be found in Chapter (4.3).

3.2.2 Algorithm

To summarize the gradient method, we present here the pseudocode of the

earlier described procedure.

Algorithm 1: Gradient method
Input : init_point
Output : max_attack

actual← init_point;
actual_flows← sum(init_point);
max_flows← 0;
while actual_flows > max_flows do

max_flows← actual_flows;
for h ∈ {h1, ..., hn} do

calculate numerical gradient g in actual point (Equation 3.1);
calculate first improving step size δ (Section 3.2);
update actual according to g and δ (Equation 3.3);
temp_flows← sum(actual);
if temp_flows > actual_flows then // find maximum

actual_flows← temp_flows ; // over different

max_attack← actual ; // sizes of h (3.2.1)
end

end
end
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Both for computation of gradient and step size the value of objective

function is needed. This value is aquired by line search procedure, which

was already described earlier in Section 3.2. In addition we show the

pseudocode of Algorithm 2, because this procedure is crucial for the whole

process of attack design.

Algorithm 2: Line search (Section 3.2)
Input : direction
Output : max_flows, max_attack

malicious← false;
max_attack← empty;
max_flows← 0;
actual_flows← 0;
coefficient c ← maximal element from the direction vector;
n← 0;
while not malicious do

n← n + 1;
if actual_flows ≥ max_flows then

max_flows← actual_flows;
max_attack← actual;

end

actual← direction ·n
c

;

actual_flows← sum(actual);
malicious← use detector on actual

end

Line search projects any input vector (usually an attack distribution) to

the detection boundary of the detector. In other words, it finds out the

maximal possible attack, which is achievable under the given distribution.

The return value is the number of flows injected by such attack and for con-

venience also the attack itself. The procedure also guarantees the returned

attack is not detectable.

30



3.2.3 Single window and Multiple windows attack

The introduced algorithm represents a method for designing attacks of

limited duration. The limiting factor is the length of a time window defined

by the detector - 5 minutes. If the attack was to exceed this limit, a new

detector would have to be incorporated into the design to perform detection

in the new window.

In reality the change to the proposed method wouldn’t be too dramatic.

The method regards the detector as a block box and needs solely a binary

response from it (legitimate/malicious). Thus the verification part wouldn’t

have to change at all. Only the representation of the attack would have to

be altered. Also when more time windows are concerned, new possibilities

of how to combine the attacks between them come into play. The search

space increases exponentially with each new time window.

Due to the rising number of combinations it also wouldn’t be possible

to compare the attack with an exhaustive search, becuase the number of

possibilities is simply too high. Other ways of acquiring accuracy of the

method would have to be introduced, but we doubt an exact result could

be obtained. Probably some approximate techniques, such as Monte-Carlo

sampling, would help.

Due to these reasons the attack to multiple windows will not be regarded

in this thesis, although we claim the proposed method should be able to

solve this task and the necessary modifications would have merely an

implementation character.

3.3 Exhaustive search

Going through all possible combinations of attacks is the only possible way

of verifying that our proposed method finds the global maximum. We can

apply the monotonicity property of the detector to limit the infinite space of
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all combinations (of course adversary’s resources are in practice limited, so

the space of all combinations is not infinite, but its size is still enormous).

So the monotonicity can be employed by the means that once the attack is

detected, it can never become undetectable again by adding more flows.

Again we use a different attack representation for this method. In this

case we can take advantage of enumerating all possible combinations of

attacks, if expressed by the number of flows injected from each of the adver-

sary’s ip addresses. It wouldn’t be possible if we used the representation

by distributions, because distributions are expressed by real numbers, thus

there are infinitely many of them even though they project to the same

finite set of attacks. An example of such representation is a vector [7,5,2,1],

describing an attack consisting of 7 flows injected from one ip, 5 flows from

another one, etc.

Procedure

In exhaustive search all possible combinations of attacks must be traversed

and checked by a detector. The strongest undetectable attack found is

returned as a results. Theoreticaly the search space of all combinations is

infinite, but we can limit it by employing the monotonicity property of the

detector. It means that when an attack is detectable, it can never become

undetectable again by increasing its strength.

Note that by combinations we mean combinations with repetitions,

because the adversary’s ip addresses are undistinguished (vector [7 2 1 1]

describes the same attack as [2 7 1 1]).
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3.4 Implementation

3.4.1 Flow injection

An inseparable part of the process of attack design is the flow injection.

The proposed methods (both gradient method, and exhaustive search) are

iterative procedures, which means that before the optimal attack is found,

some intermediate attacks must be checked, whether they are detectable.

The detection is done by inserting the attack flows into the data representing

the traffic. One can imagine the flow injection as a simulation of the actual

attack. Naturaly, if the flows were injected into the real traffic, it couldn’t

be undone, once the attack was detected or a better one was found. So it is

only simulated instead.

The cycle of designing an attack, simulating it, and finding out whether

it already reached the detection boundary, or can be further increased, is

obvious. Now we will discuss the details of the flows insertion.

The target is identified by its ip address and its port number. Generally,

the variables that can be adjusted by the adversary are the source ip address

and the source port number. But usually the source port number is set by

operating system and is set to different values for each connection. If each

of the attack flows was for example a http request, they all would have

different port numbers. We assume this case, when inserting the attack

flows, because it is a more difficult position for the adversary. So if we

successfuly design an attack under this condition, it is a stronger evidence

than if we were successful with an easier attack.

The last variable: ip addresses used and the number of flows injected

from them, are defined in the attack design process, so now we have all

information necessary for attack injection.

However, for better understanging how the traffic works, it is helpful to

know, that flows usually exist in pairs of request-response. If the request is
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successful, i.e. the destination ip address and port are available through the

network, there always follows the response. This fact is extremely important

for modelling artificial traffic (i.e. when designing an attack), because if

only flows of one direction with no response would be created, it wouldn’t

be a reallistic traffic.

There are more domain-specific specialities of network traffic such as

linking of http requests with requests to the DNS servers (web browsing),

etc. These links are not concerned when artificial attack flows are generated.

3.4.2 Detector optimization

Routine working cycle of the detector consists of updating the detector

(model and tresholds) every 5 minutes (when new data come in), extracting

features from the data of actual traffic and performing the detection on

them. The whole process was described in more details in Chapter 2.2.

For the purpose of designing an attack, the life cycle is a bit different.

The detector doesn’t need to be updated, only the input data change when

an attack is injected. The general procedure could generally look like this:

1. inject attack into actual traffic (simulation)

2. extract features

3. perfom detection on all attack ip addresses

4. reset actual traffic and repeat until best attack is found

However, this is a very inefficient way of designing an attack, because

not all of the operations need to be repeated each iteration. The background

traffic (the rest of the traffic, excluding adversary’s and target ip addresses)

doesn’t change upon injection of attack. We can thus extract the detection

features beforehand and update only those values affected by the inserted

flows.
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This simple modification speeds up the process substantially and turns

the attack design from being rather theoretical to practicaly applicable

in terms of time complexity. However, there is one more option how to

accelerate it by a simple time-memory trade-off. The ouputs of the detector

can be cached, which means when we receive a response from the detector

stating about an attack it is legitimate/malicious, the response is stored and

next time the detector is queried for the same attack, which happens quite

often because of the repeated gradient computation, it will restore the old

result from memory instead of performing the demanding detection again.

Also before adding new attack into the cache or before looking it up, the

attack needs to be sorted. The reason was already mentioned in Chapter 3.3 -

the attack [7,2,1,1] is equivalent with [2,7,1,1], so by sorting it we circumvent

this redundancy.
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Chapter 4

Experimental evaluation

This chapter is dedicated to verification of the assumptions we have made

during the planning of the attack and to the evaluation of the proposed

procedure for designing network attacks.

First we will present the data set, on which the experiments will be

performed. Then we will proceed with comparison of the attack scenarios

described in Chapter 3.1. Based on the results of this comparison, the more

suitable scenario will be chosen for the next test. We will show, that even

though our method is an application of local optimization tool and the

objective function is not convex, we are able to consistently obtain optimal

results and successfuly design an optimal attack against the presented

detector of anomalies in network traffic.

We will also compare the gradient method with the exhaustive search

in terms of efficiency, which can be expressed in number of detector calls

necessary for finding an optimal attack.

4.1 Real traffic

The NetFlow data, which were made available for this thesis, consist of a 3

hours and 25 minutes long capture of traffic in our university network. It

contains over 6.5 million entries (almost 800MB of data).
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Worth mentioning is that the capture contained a real attack on the

university server. The attack comprised of horizontal scan to identify victim,

password cracking to gain access to the victim, and finally from downloading

a large file simulating stealing the data.

Preprocessing

The raw data in NetFlow format have to be preprocessed before they can be

used for further analysis. The preprocessing consists of parsing, extracting

the desired information and storing in a matlab .mat file. The detection is

performed on the source and destination ip addresses and ports. Together

with the number of flows in each connection, only these 5 data items are

stored for each entry in the NetFlow log.

4.2 Comparison of attack scenarios

Two possible attack scenarios were described in Chapter 3.1. They differ

from each other in how the detector and the data of traffic are used for the

design of attack. First scenario is more compact, while the second scenario

spreads to more time windows and thus is expected to better capture the

unpredictability of the traffic, producing weaker but less detectable attacks.

The comparison was executed in two separate runs of exhaustive search,

each of them for a different scenario. Both scenarios have the same form:

first detector is used for attack design, the prepared attack is then injected

into the following time window and verified by a second detector.

During the runs four values were tracked: number of true positives (TP),

true negatives (TN), false positives (FP) and false negatives (FN). These

values are often used in the area of classification, although their meaning

is slightly shifted here. In this test we observe in which cases both the

first detector, used for attack design, and the second detector, used for the
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verification, give the same response (then it is TP if both detect, TN if both

miss the attack) and where each of them gives different response (FN if

attack detected during verification, FP otherwise). See Table 4.1 for a better

understanding of these terms.

1st detector
attack no attack

2nd detector attack TP FN
no attack FP TN

Table 4.1: Explanation of the values tracked in the test

In Table 4.2 the four tracked values are charted. Rows express the

number of IP addresses used in the attack (dimension) and the column in

the middle shows the number of different attacks for the given dimension.

Scenario 1 Scenario 2
Dim TP TN FP FN total TP TN FP FN

1 1 8 0 0 9 1 7 1 0
2 9 34 0 2 45 11 28 6 0
3 107 9 0 49 165 120 7 2 36
4 480 0 0 15 495 482 0 0 13

Table 4.2: Comparison of attack scenarios. Scenario 2 exhibits lower number
of FN, which means it produces more robust attacks.

For both scenarios the exhaustive search was limited to 4 attack IP

addresses with 9 flows injected from each of them in maximum. Beyond

these limits any attack would be marked as malicious by both detectors

from both scenarios, so we don’t have to inspect these combinations.

We can see from the TN column, that in scenario 1 a higher number

of attacks was declared feasible by both detectors. However, this partial

advantage is outweighted by the FN column, which expresses the number

of attacks, which were legitimate for the first detector, but malicious for the

second one. For a more robust attack we need to minimize the number of

false negatives, which is clearly lower in the second scenario. Comparing
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the false negative rate ( FN·100%
FN+TP ) we get almost 10% versus 7.4% favoring

scenario 2.

Our expectations about the scenarios described at the end of Chapter 3.1

were confirmed by the test, so we can commit to scenario 2 and start using

it in further evaluation. Just to clarify, the second detector is very important

for discovering how well an attack is designed in terms of unpredictability

of traffic (i.e, how robust the attack is). Though, optimizing the attack for

robustness is not the aim of this thesis and is well out of the scope. For

this reason we use just one detector for attack design and we optimize for

strength.

4.3 Single window attack

We have put some serious challenges on our gradient method by placing

this continuous-space optimization tool into a discrete space and requiring

it to find global maximum of a non-convex objective function. Can the

proposed method fulfill these requirements? And what is the right way to

verify them?

We could track the intermediate points of the search and decide, whether

it behaves reasonably. This could be maybe done, but it would be very

inefficient and probably subjective. We need a statistical evidence, that the

method does, what we expect it to.

Local optimization methods are known to get stuck in local optima, but

sometimes they accidentaly end up in a global optimum. It only depends

on the starting point of the search. In the next test we will run the gradient

method from various starting points and watch the results. The results

will be averaged and compared with the exact optimal values obtained by

exhaustive search.

To gain the necessary statistical significance of the test the starting points
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will be composed of all the possible combinations for an attack under the

same limits as in exhaustive search.

In Table 4.3 you can see the results of the test. Rows express the number

of ip addresses used in the attack (dimension). In the first column the

exact optimal values of attacks are printed. These values were acquired

by exhaustive search through all possible attacks. The second column

contains the average result values of our proposed gradient method. For

completeness the number of combinations of all possible attacks and thus

the number of different starting points for the test is specified in the third

column.

Dim Exhaustive search Gradient method Combinations
1 7 7 7
2 14 14 28
3 14 14 84
4 11 14 210

Table 4.3: Comparison of Gradient method with Exhaustive search

Besides the fact, that the gradient method was able to find the optimal

attack from all the 329 tested starting points, there is one interesting detail

worth noting. The attack from 4 ip addresses has the exact optimal value

equal to 11, while the gradient method has an average of 14 over all 210

starting points. How is it possible to reach a more than optimal value?

Explanation is simple and shows the flexibility of the gradient method.

Exhaustive search generates only the combinations, where all the ip ad-

dresses have non-zero number of flows. This limits the maximum strength

of the attack, because an attack lead from 4 ip addresses is easier to detect.

Gradient method has reached better results, because it will find the ideal

distribution (possibly by setting some ip addresses to zero flows) even if the

ip addresses have more than zero flows at the beginning of the search.
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4.4 Efficiency of the procedure

After proving that our method finds optimal attacks, we were interested in

stating how efficient the method is. Because measuring computation time is

dependent on the testing environment, mainly on the computation power

of the testing machine, we decided to compare the efficiency in terms of

number of detector calls.

The gradient method was again compared to the exhaustive search. In

Chapter 3.4.2 we described, that the detector is optimized by caching its

outputs. It ensures, that the detection is performed at most once per each

attack combination, and we can measure only these unique detector calls.

The look-ups in the cache are not regarded in the test, because they are

much faster relative to the actual detection.

In exhaustive search the number of detector calls is equal to the number

of different possible attacks. In gradient method this number depends

on the starting point of the method. To address this variability we ran

the gradient method from all possible starting points (i.e., all the attacks

examined by exhaustive search) and averaged the results.
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Figure 4.1: Gradient method and exhaustive search compared in number of
detector calls per attack dimension.
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On Figure 4.1 the results are plotted according to the dimension of the

attack, which is equal to the number of ip addresses involved in the attack.

We can observe that in low dimensional attacks both methods are compa-

rable in the number of detector calls, but in higher dimensions the gradient

method performs better than exhaustive search. Note that there is still

possible speed-up in the gradient method. For example the line search

procedure, which finds the decision boundary with linear time complexity

relative to the boundary’s distance from the origin, could be replaced by

a binary search, which has logarithmic complexity. However, we leave such

improvements to the future work.
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Chapter 5

Conclusion

The goal of this thesis was to design a procedure finding an optimal attack

against a particular network detector based on anomaly detection. We

defined optimality of an attack in the sense of attack strength, expressed in

number of flows injected to the target, with condition of undetectability of

the attack.

The advantage of our approach over the prior art is that the intrusion

detection system is treated as a black-box, which means that the attacker

does not need to known anything about its internals. The mere binary

output is sufficient to find the attack.

We found a suitable representation of attacks, which allowed the use

of gradient method for optimization. We encountered various problems

connected to the discrete nature of the domain of network communication.

Other serious obstacle was the non-convexity of the decision boundary of

the detector.

In Chapter 4 we proved by various tests, that our solution of the encoun-

tered problems, as well as solution of the whole task, can be considered

successful. The tests included a comparison of two different attack scenarios

(4.2), which have been devised in Chapter 3.1. Based on this comparison

the more suitable attack scenario was chosen, producing more robust at-

tacks. We also proved, that our proposed method consistently gives optimal
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results (4.3). The optimality was checked against exact values obtained by

exhaustive search.

We also tested the efficiency of the gradient method compared to the

exhaustive search (4.4). We found out that in attacks, which involve less ip

addresses (1 or 2), both methods are comparable in efficiency, because the

search space is small, however for more ip addresses (3 or 4) our proposed

method performs significantly better. A speed-up is still possible and

a concrete improvement was suggested for future work.

As was suggested in Chapter 3, it is possible to analyse the detection

systems by designing attacks against them. Our method can be used to find

vulnerabilities in IDS or to assess its level of security. More informed IDS

designers can then find better countermeasures long before any real attack

occurs.

Our proposed method does not take into account some of the domain

specifics, such as communication with DNS servers. These specifics could

be viewed as side effects in real attacks, which make them more abnormal

and easier to detect. By not including the side effects to our method we

produce stronger attacks and thus when assessing the level of security of

a system we acquire the upper limit. This is important, because in security

the most interesting information is the worst case scenario results.

There are some challenges left in the task of designing attacks. For

example it would be interesting to study the effect of unpredictability of

the network traffic on the feasibility of designed attacks. We optimized on

strength of the attack, but it is also possible to optimize on robustness. Such

attacks would have higher chance of not being detected.

Although we were successful with the single window attack, we would

like to extend its duration to multiple time windows. We argue, the gradient

method could work in general for designing attacks of unlimited duration,

and hopefully we will be able to implement the extension in the future.
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Appendix A

Attachments
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Figure A.1: Monotonicity check: SSH Password Cracking
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Appendix B

Attachments on cd

B.1 Practical part

original NetFlow logs

precomputed data

source code files1

B.2 Theoretical part

pdf file containing the text of the thesis

Latex source code of the thesis

1With courtesy to Mr. Pevný a file loader.cpp is included, who allowed this function to
be used in this thesis. It serves for parsing network traffic to matlab.
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