
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR THESIS

Viktor Kozák

Local planning for a mobile robot

Department of Cybernetics

Thesis supervisor: RNDr. Miroslav Kulich, Ph.D.

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Viktor K o z á k

Studijní program: Kybernetika a robotika (bakalářský)

Obor: Robotika

Název tématu: Metody lokálního plánování pro mobilní robot

Pokyny pro vypracování:

1. Seznamte se s metodami pro lokálního plánování pro terestriální mobilní robot.
2. Implementujte vybranou metodu lokálního plánování.
3. Vytvořte rozhraní implementované metody do systémů Player/Stage a ROS.
4. Experimentálně ověřte funkčnost a vlastnosti implementované metody v simulátoru
 i s reálným robotem a získané poznatky zdokumentujte.

Seznam odborné literatury:
[1] Seder, M.; Macek, K.; Petrovic, I.: An integrated approach to real-time mobile robot control
 in partially known indoor environments. Industrial Electronics Society, 2005. IECON 2005.
 31st Annual Conference of IEEE, pp.6, 6-10 Nov. 2005, doi: 10.1109/IECON.2005.1569176
[2] Seder, M.; Petrovic, I.: Dynamic window based approach to mobile robot motion control in
 the presence of moving obstacles. Robotics and Automation, IEEE International Conference
 on, pp. 1986-1991, 10-14 April 2007.
[3] Robot Operating System, ros.org, accessed 26.6.2013.
[4] Vaughan, R. T.: Massively multi-robot simulations in Stage. Swarm Intelligence, 2(2-4):
 189-208, 2008.

Vedoucí bakalářské práce: RNDr. Miroslav Kulich, Ph.D.

Platnost zadání: do konce letního semestru 2013/2014

 L.S.

prof. Ing. Vladimír Mařík, DrSc.
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 28. 6. 2013

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Viktor K o z á k

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Bachelor Project: Local Planning for a Mobile Robot

Guidelines:

1. Get acquainted with local planning methods for a terrestrial robot.
2. Implement a chosen local planning method.
3. Create interfaces for Player/Stage and Robot Operating System (ROS).
4. Verify experimentally functionality and properties of the implemented method in a simulator
 and with a real robot. Describe and discuss the obtained results.

Bibliography/Sources:
[1] Seder, M.; Macek, K.; Petrovic, I.: An integrated approach to real-time mobile robot control
 in partially known indoor environments. Industrial Electronics Society, 2005. IECON 2005.
 31st Annual Conference of IEEE, pp.6, 6-10 Nov. 2005, doi: 10.1109/IECON.2005.1569176
[2] Seder, M.; Petrovic, I.: Dynamic window based approach to mobile robot motion control in
 the presence of moving obstacles. Robotics and Automation, IEEE International Conference
 on, pp. 1986-1991, 10-14 April 2007.
[3] Robot Operating System, ros.org, accessed 26.6.2013.
[4] Vaughan, R. T.: Massively multi-robot simulations in Stage. Swarm Intelligence, 2(2-4):
 189-208, 2008.

Bachelor Project Supervisor: RNDr. Miroslav Kulich, Ph.D.

Valid until: the end of the summer semester of academic year 2013/2014

 L.S.

prof. Ing. Vladimír Mařík, DrSc.
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, June 28, 2013

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all the
sources (literature, software, etc.) in accord to the Methodological Instructions on adherence
to ethical principles in the preparation of university theses.

In Prague on............................. ...

Acknowledgements

I would like to thank my thesis supervisor RNDr. Miroslav Kulich, Ph.D for his professional
leadership, advice on my work and for his patience with me. I would also like to thank my family
and all the people who supported me during my years at the university.

Abstrakt

Tato bakalá̌rská práce se zabývá porovnáńım r̊uzných metod lokálńıho
plánováńı pro mobilńı robot. V rámci práce byla pro tento účel implemen-
tována metoda Dynamic Window pro systém Player/Stage. Metoda byla
ově̌rena simulacemi na několika mapách, a otestována pro ř́ızeńı reálného
robota na systému SyRoTek, uḿıstěném v laboratǒri na Kateďre kybernetiky.
Źıskané výsledky byly porovnány s výsledky stávaj́ıćıch metod. Byly nalezeny
nejlepš́ı konfigurace pro použit́ı daných metod na systému SyRoTek.

Abstract

The subject of this bachelor thesis is a comparison of local planning algo-
rithms for mobile robot. As a part of the thesis Dynamic Window method
was implemented in the Player/Stage system. The Method was tested on
various simulations and for control of a real robot in the SyRoTek system,
located in a laboratory at the Department of Cybernetics. Results gained
from the experiments were compared with results of state-of-the-art meth-
ods. Best configurations for the use of given methods with the SyRoTek
system were found.

CONTENTS

Contents

1 Introduction 1

2 Motion planning 3

2.1 Global and local planning . 4

2.1.1 Global planning . 4

2.1.2 Local planning and obstacle avoidance 4

2.2 Local planning algorithms used in the thesis 4

2.2.1 Vector Field Histogram Plus . 5

2.2.2 Smooth Nearness-Diagram . 8

2.2.3 Dynamic Window Approach . 9

3 Robotic frameworks 11

3.1 Player/Stage . 11

3.1.1 Player . 11

3.1.2 Stage . 12

3.2 SyRoTek system . 12

4 Implementation of the Dynamic Window Approach 13

4.1 Basic navigation algorithm . 13

4.1.1 Setting initial variables . 14

4.1.2 Creation of a valid search space . 14

4.1.3 Selecting an optimal trajectory . 16

4.1.4 Necessary changes of the algorithm 16

4.2 Driver for Player/Stage . 18

i

CONTENTS

5 Experimental results 20

5.1 Parameters settings . 20

5.2 Simulations . 21

5.2.1 Design . 21

5.2.2 Results . 24

5.2.3 Simulation results for S1R robot . 24

5.2.4 Discussion . 31

5.3 Real robot - Parameter settings . 32

5.4 Experiments with the real robot . 35

5.4.1 Design . 35

5.4.2 Results . 36

5.4.3 Results from SyRoTek Arena with a real S1R robot 36

5.4.4 Discussion . 39

5.5 Discussion of the results . 39

6 Conclusion 41

List of Figures 46

List of Tables 47

ii

Chapter 1

Introduction

Local planning algorithms are an essential part of today’s mobile robot and autonomic vehicle
control. While the global planning decides the route of the robot based on the initial data given
to the planner, the local planning is a real-time motion control, based on the feedback from
sensors. It’s purpose is to keep the robot on an optimal track, following the global planner and
to avoid unexpected obstacles, making it a fundamental part for safe robot navigation.

The thesis aims to compare three local planning methods. The Dynamic Window Ap-
proach(DWA), Enhanced Vector Field Histogram(VFH+) and Smooth Nearness-Diagram(SND)
algorithms. It is focused on implementation of Dynamic Window Approach based on [1].

The goal of the thesis is to build a functional local planner based on DWA and find out
whether is it suitable for control of a mobile robot equipped with a laser range finder. For
that purpose the algorithm was tested on various maps in the Player/Stage system[2] and on
several maps with a real robot in the SyRoTek system[3]. After completion of the DWA based
algorithm a huge set of simulations was completed and the results were compared with the
results of VFH+ and SND algorithms in the same environment.

As a part of the thesis a large variety of parameter configurations was tested, for the use
with the navigation algorithms. The thesis aims to determine the best configurations for the
use with the SyRoTek system.

Chapter 2 gives the reader a short introduction to the topic. It explains the meaning of local
planning algorithms and covers basic descriptions of each approach and the main differences
between them.

Chapter 3 describes the frameworks used for simulations and experiments. It presents the
SyRoTek system and its characteristics. It also introduces the Player/Stage framework and
explains its uses and possibilities for robot control.

Chapter 4 describes the process of creating the algorithm and implementing it in the Play-
er/Stage framework for further use together with all the obstacles faced during the implemen-
tation.

1/48

Chapter 5 presents results of all simulations in Player/Stage program and experiments on
the real robot in the SyRoTek arena. In the first part are results for the DWA algorithm created
in this thesis and the SND and VFH+ algorithms from Player/Stage library. The last part of
the chapter is dedicated to the comparison of results for the created algorithm and algorithms
already implemented. It discusses the advantages, disadvantages and possible uses for each
algorithm.

2/48

Chapter 2

Motion planning

Motion planning is a term often used in robotics. It can be described as a task to produce
a continuous motion that connects the initial state of a system with the required state of the
system.

In [4], a simpler version of motion planning is described as the Piano Mover’s Problem.
Where the model of a house and a piano is given as input to the algorithm and the algorithm
must determine, how to move the piano from one room to another without a collision. Now, if
we simply exchange the piano with a mobile robot, we can get the basic image of the problem
described in this thesis.

Figure 2.1: Scheme of a robot control system.

3/48

2.1. GLOBAL AND LOCAL PLANNING

2.1 Global and local planning

Planning the trajectory for a mobile robot can be separated into two tasks. The global
planning, which usually works with a full or a partial map of the environment and decides,
which route to take to get to the goal and the local planning, which works with a real-time
feedback from the environment surrounding the robot and its purpose is to keep the robot
safely on the path chosen by the global planner and avoid any potential obstacles on the way.

An illustration of a communication structure of the navigation mechanism is shown in Fig.
2.1. During the process, the robot sends data from the laser and odometry sensors to the global
and local planners. The global planner compares the odometry information with the desired goal
position and sends information to the local planer. Local planner computes desired velocities
suitable for the optimal trajectory and sends a velocity command to the robot.

2.1.1 Global planning

The global planning algorithm usually gets a map of the environment, the parameters of
the robot, the starting point A and the point of the required destination B. Its purpose is
to generate additional points (P1,P2,...), creating the trajectory between A and B on which
it’s possible for the robot to move in a direct trajectory from point Pi to point Pi+1 without
colliding into any of the known obstacles.

Although global planning algorithms are essential for automatic motion planning, for the
purpose of this thesis the global planning algorithm was substituted by a human intervention
and the trajectory points were set manually.

2.1.2 Local planning and obstacle avoidance

Unlike the global planning which uses the initial data given to the planner, local planning and
obstacle avoidance work with real-time data gathered by sensors directly from the surroundings
of the robot. It is commonly used in unmanned vehicles and autonomous robots.
Obstacle avoidance is the task of maintaining a non-collision position of the robot. The task of
local planning is to determine the best trajectory based on information from the global planner,
and information from sensors.

2.2 Local planning algorithms used in the thesis

For the purposes of this thesis three methods of local planning were used, each one of them
based on a different concept. Methods were chosen for the ability to control a mobile robot
equipped with a laser range finder.

4/48

2.2. LOCAL PLANNING ALGORITHMS USED IN THE THESIS

2.2.1 Vector Field Histogram Plus

The Vector Field Histogram Plus(VFH+) is a method based on [5]. It is an improved version
of the original Vector Field Histogram(VFH) method, developed for real-time motion planning
in 1991, introduced in [6]. VFH is one of the most popular local planners currently used in
mobile robotics.

This method uses a histogram grid for representation of the robot’s environment. In the first
step a two-dimensional map grid is created using data from the robot’s range sensors. Reducing
the map grid around the robot’s current location, one-dimensional polar histogram is created.
Then in the last stage, the algorithm selects the most suitable direction based on the polar
histogram and a cost function.

An example of a polar histogram can be seen in following figures. In Fig. 2.2 we can see
polar obstacle density(POD) represented in smoothed polar histogram H’(k), where 0◦ is the
direction the robot is facing. In the picture the peeks A, B and C are the result of three
obstacles located near the robot. Smoothed polar histogram typically has ”peeks”, sectors with
high POD and ”valleys”, sectors with low POD. Any valley containing sectors with POD below
a certain threshold can be called a candidate valley. If there are more candidate valleys, the
VFH algorithm selects the valley that most closely matches the direction to the target. Then
it selects the most suitable sector within that valley and commands the robot. In Fig. 2.3 is
the same polar histogram as in the previous picture, shown in the map of the environment
surrounding the robot. In this map the robot is facing the target and we can see obstacles A,
B and C, represented as black squares, and the POD represented by the grey areas surrounding
the robot. Both pictures 2.2 and 2.3 are based on original pictures in [5] but were redrawn for
better quality.

Figure 2.2: Example of a smoothed polar histogram.

In the year 1998, several improvements were made to the VFH method. The updated method
was presented in [6] and named as VFH+ (sometimes referred to as ”Enhanced VFH) and that
is the version of VFH used for simulations in this thesis.

In the VFH+ method, several improvements were made over the original VFH method. The
most important ones are listed here.

5/48

2.2. LOCAL PLANNING ALGORITHMS USED IN THE THESIS

Figure 2.3: Illustration of the polar histogram from Fig. 2.2 shown in polar form overlaying part
of the environment.

• Threshold hysteresis
The original VFH method displayed an indecisive behaviour, when used in an environment
with several narrow openings. As the opening could alternate several times between an
open and blocked state during a few sampling times. During such situation, the robot’s
heading would alternate several times between this and another opening. By using thresh-
old hysteresis, this problem was solved and the robot trajectory became smoother and
more reliable.

• Size of the robot
The VFH+ takes the width of the robot into account, by enlarging the obstacle cell,
making it easier to implemented the method for robots of different sizes. This can be
seen in Fig. 2.4, where the cell is enlarged by a required obstacle avoidance distance from
the center of the robot rr+s = rr +ds, where rr is the robot radius and ds is the minimum
distance between the robot and the obstacle.

6/48

2.2. LOCAL PLANNING ALGORITHMS USED IN THE THESIS

Figure 2.4: Figure describing the use of enlarged obstacle cell. The picture was taken from [6].

• Dynamics and kinematics of the robot
In the original VFH method the dynamics and kinematics of the robot were neglected.
The method was assuming that the robot is able to change its direction of travel instantly,
as shown in Fig. 2.5a. Such assumption is impossible due to kinematics of the robot.
The VFH+ method uses a simple approximation suitable for most mobile robots. It
assumes that the robot’s trajectory is based on circular arcs, as shown in Fig. 2.5b. This
approximation was proved to improve the algorithm.

Figure 2.5: Approximation of trajectories: a) without dynamics, b) with dynamics. The picture
was taken form [6].

7/48

2.2. LOCAL PLANNING ALGORITHMS USED IN THE THESIS

2.2.2 Smooth Nearness-Diagram

The Smooth Nearness-Diagram(SND) method used for simulations is an improvement of
the original Nearness-Diagram(ND) presented in [7]. The SND algorithm removes oscillatory
patterns which occurred in ND algorithm and improves the overall driver performance. The
SND method was introduced in 2008 in [8].

The SND algorithm introduces the concept of gaps. Gaps are discontinuities in the depth
of obstacles around the robot which indicate potential paths into occluded areas of the en-
vironment. By navigating based on gaps, SND can avoid local trap situations without the
computational load of determining which areas of the environment are connected.

The idea of gaps can be explained using Fig. 2.6. A gap occurs at an angle where two
contiguous depth measurements are separated by more than the robot diameter r, or one of
the measurements returns no obstacle in range. The first type of gap occurs at (a) in Fig. 2.6,
the second at (b). We can distinguish between a left and right gap. Left gap means that the
closer measured obstacle is on the left side of the gap, as in (a) in Fig. 2.6, it indicate that
there may be an occluded area on the left. The opposite holds for right gaps.
By the pairs of consecutive gaps we can define different regions in the environment. A navigable
region(a ”valley”) is distinguished by either a left gap on its left side, a right gap on its right
side, or both. After assembling all the valleys surrounding the robot, all the gaps are compared
against the heading provided by the global planner. The valley containing the gap with the best
heading, Vbest, is determined and selected for further use.

Figure 2.6: A graphic representation of valleys and gaps used in the SND method. The picture
was taken from [8].

The original ND method then determines the desired trajectory based on the two closest
obstacles and the width of Vbest. Here is the main difference between the original ND method
and the new SND method.
The SND method measures a threat possessed by each of the obstacles. An obstacle is consid-
ered a threat if it lies within the safety distance of the robot. Where the treat measure increases

8/48

2.2. LOCAL PLANNING ALGORITHMS USED IN THE THESIS

as the obstacle gets closer to the robot. Using the threat measurements of each obstacle, a
deflection from the desired heading is computed and given to the algorithm. This computation
proved to remove some oscillatory patterns and improve the driver’s performance in narrow
paths.

2.2.3 Dynamic Window Approach

The Dynamic Window Approach(DWA) is a local obstacle avoidance method introduced in
1997 in [9]. This method is directly connected with the dynamics of the robot. It takes into
account limitations of the velocities and accelerations of the robot.

The algorithm is divided into two main components. In the first part, search space is generated
and in the second part, an optimal path is chosen from the generated search space.

Generating a valid search space

Valid search space is computed directly from the limitations of the velocities and accelerations
of the robot. A two dimensional search space is based around the current linear and angular
velocity(vc and wc). Using the acceleration parameters of the robot, the maximal and minimal
velocities are computed as:

vmax = vc + va, vmin = vc − vb (2.1)

and
wmax = wc + wa, wmin = wc − wb (2.2)

Where va and wa are maximal translational and rotational accelerations and vb and wb

are maximal decelerations executable by motors. According to the computation power of the
robot and the requested precision of the algorithm, a number of possible translational(Nv)
and rotational(Nw) velocities is chosen from the interval between the maximal and minimal
velocities. Of course, the interval is restricted by the maximum velocity of the robot and its
maximum turning rate. Combining these velocities a number of NvxNw velocity pairs is created.

Each velocity pair(v, w) is represented by a circular arc with the starting point in the center
of the robot. It’s radius is calculated as r = v

w
and the length of the arc is set as v. This

representation is called the dynamic window. All curvatures outside this dynamic window cannot
be reached by the robot in the next step, and thus are not considered for obstacle avoidance.
Each trajectory is then compared with readings from the laser range finder. The trajectory is
considered safe if the robot is able to stop before colliding with any object along the path.

In Fig. 2.7 is a graphic representation of the search space. For this example 5 linear and
7 angular velocities are set and the field of 35 pairs is created. Each pair is represented by
a circular arc with given length and radius. We can notice three different colors used for the
representation of the curvatures. The red color represents the expected trajectory for current

9/48

2.2. LOCAL PLANNING ALGORITHMS USED IN THE THESIS

velocity parameters of the robot. The blue color represents non-safe trajectories which would
cause a collision with some of the obstacles. Finally, the green color represents collision-free
trajectories. A combination of all collision-free trajectories creates the valid search space which
is later used in the algorithm, for the choice of the optimal path.

Figure 2.7: Graphic representation of possible robot trajectories. The picture was taken from
[1].

Selection of the optimal trajectory

The selection of the optimal trajectory is based on three basic attributes, which differ for
each velocity pair. The angular attribute ϑang, the velocity attribute ϑvel and the clearance
attribute ϑclear.

The angular attribute is telling us, how much is the direction of a particular trajectory similar
to the global goal position. The velocity attribute is chosen such, that higher linear velocities
are preferred. The clearance attribute is chosen in favour for trajectories further away from
potential obstacles.

To improve the robot performance, an adjustable parameter λ is given to each attribute.
Using these parameters, the behaviour of the algorithm can later be easily changed based on
the requirements for the robot’s behaviour or it can be set differently for different environments.
For each velocity pair a weighted sum is computed as follows:

Γ(v, w) = λangϑang + λvelϑvel + λclearϑclear (2.3)

With the highest sum, the optimal trajectory is chosen and the best velocities vbest and wbest

are set as the output of the algorithm.

10/48

Chapter 3

Robotic frameworks

In this work several robotic frameworks were used. In the first part the Player/Stage program
was used to create and test the DWA algorithm. After that the algorithm was tested in the
SyRoTek system on the real robot, together with other algorithms already implemented in
Player/Stage. Basic information about these programs are presented in this chapter, but for
more information about the projects, visiting their websites is recommended.

3.1 Player/Stage

The Player project creates free software tools and enables research in robot and sensor
systems. Nowadays Player is probably one of the most widely used open-source robot control
interfaces in research and post-secondary education. Its components include the Player robot
device interface, Stage robot simulator and Gazebo 3D robot simulator. Released under the
GNU General Public License, all code from the Player/Stage project is free to use, distribute
and modify. In this thesis Player is used for the control of the robot and Stage is used for
simulations. The description is based on information attained from the official website of the
Player project [10].

3.1.1 Player

Player provides a network interface to a wide variety of robot and sensor hardware and it
can be easily used for control of a real physical robot or simulated robot in Stage. Player’s
client/server model allows robot control programs to be written in any programming language.
It also allows the control programs to run on any computer with a network connection to the
robot.

11/48

3.2. SYROTEK SYSTEM

3.1.2 Stage

Stage can simulate from one up to hundreds of robots at a time in two-dimensional envi-
ronment. It also provides various sensor models, including sonar, laser range finder, odometry
and others. Typically, using little or no modification, Player clients, developed using the Stage
simulator, will work with the real robots.

3.2 SyRoTek system

The SyRoTek system(”System for robotic e-learning”) is used at Czech Technical University
in Prague. The system allows users to remotely control a multi-robot platform in a dynamic
environment allowing them to develop their own algorithms and monitor their behaviour on-
line during real experiments. The description is based on information attained from the official
website of the SyRoTek system [11].

The SyRoTek Arena is an enclosed space dedicated for robots. The Arena can be seen in
Fig. 3.1. The size of the Arena is 3.5 m x 3.8 m and it consist of the robot working space and
the necessary supporting subsystems (charging, lighting, visualization, etc). The robot working
space is a flat area with a number of obstacles placed inside. Some obstacles can be remotely
retracted, while the rest of them is fixed, however all obstacles can be manually removed in
order to create various configurations. The Arena is equipped with a global localization system
which estimates the robot’s identity together with its position and orientation using an image
processing method.

Figure 3.1: On the left picture is the SyRoTek arena and on the right picture is the S1R robot.

The system provides the S1R robots. The S1R robots can be equipped with a large variety
of sensors. For the experiments in this thesis a robot equipped with a laser range-finder is used.
The robot uses two wheels and a support slider for its movement. Its dimensions are (length x
width x height): 174 x 163 x 180 mm. The robot can be seen in Fig. 3.1.

12/48

Chapter 4

Implementation of the Dynamic
Window Approach

The implementation of Dynamic Window Approach(DWA) is a major part of this thesis. This
chapter is separated into several parts, each describing a specific part of the process. The first
part describes the basic algorithm for the robot navigation. It covers its creation and it gives a
description of most important parts of the algorithm. The second part describes the creation
of Player/Stage driver and configuration file usable for the navigation algorithm. The last part
contains information about modifications made after considering simulation results and further
use.

Several tools were used for the creation of the navigation algorithm, the Player/Stage frame-
work, for which the algorithm was created, the MATLAB software used for a graphic representa-
tion of robot trajectories during the development of the algorithm and a SyRoTek environment
for the use with the Player/Stage framework. The environment allowed the algorithm to be
tested directly with the Stage simulator. This allowed the development of the navigation al-
gorithm without the need of a special Player driver. The Player driver for the algorithm was
written later.

The DWA driver is written and tested using the Player v.3.0.2 and Stage 3.2.2 frameworks
on Ubuntu 12.10 software, so it may have to be modified if intended for use under different
software environment.

4.1 Basic navigation algorithm

The function of the navigation algorithm is to read data from sensors and from the global
planner as an input and to give the required future translational and angular velocities as an
output. The algorithm is intended for further use with Player/Stage framework, therefore there
is no restriction regarding the used programming language. Considering it’s simple and universal
use, the C++ language was chosen for the task.

13/48

4.1. BASIC NAVIGATION ALGORITHM

4.1.1 Setting initial variables

The algorithm can be divided into three parts. In the first part initial variables are set. This
part of the algorithm includes data readings from robot sensors, global position and global
planner. It also includes the creation of basic variables used later in the algorithm.

Firstly the program establishes a connection with Player proxies and takes the initial data
from them. In this part specific data are taken from the driver and set as local variables
for further use. These data include such information as robot radius, maximum speed, laser
specifications, and other information constant for the rest of the program. Among these data
are parameters given to the driver in a configuration file by the user. The structure and function
of the configuration file is closely described in Section 4.2.

After reading these time-invariant variables, the program goes into an infinite loop, until it is
terminated or until it reaches the goal. In the loop, current data from sensors are read including
such data as the current robot position, laser readings and current velocities, which have to be
updated in every run of the algorithm. In this part the algorithm checks with the global position
and the goal position. Eventually is terminated if the robot is within an acceptable distance
from the goal position. From the initial data, other basic variables are computed for further use
in the algorithm.

4.1.2 Creation of a valid search space

For this step maximal and minimal velocities are computed as in the equations 2.1 and 2.2
and limited by the maximum and minimum speed of the robot. Then a number of velocities is
chosen from within the intervals {vmin, vmax} and {wmin, wmax}. For the algorithm number of
12 angular and 5 translational velocities is chosen, but it can be easily changed according to
the required precision or the required speed of the algorithm.

Combining these velocities an array of velocity pairs is created. For every velocity pair in the
array additional parameters are computed. Namely the turning radius r, breaking distance db,
and coordinates of the center of the circle representing the velocity pair trajectory. The radius of
the circle is set as r = v

w
and the breaking distance is computed from the translational velocity

and the maximal translational deceleration. The coordinates are on a line perpendicular to the
direction of the robot, located in the distance equal to r. For a special case where w = 0, is
the radius r substituted by an incomparably large number, to simulate a straight line.

To determine which velocity pairs provide a safe trajectory, on which the robot is able to stop
before colliding with any object along the path, an algorithm for intersection of two circles is
used. One circle is a representation of the robot’s trajectory, defined by the additional parameters
of each velocity pair. The second circle represents an obstacle detected by the sensor.

Circles representing the obstacles are created in a similar way as it was described in 2.2.1.
Each circle has the origin in a distance di from the center of the robot in the corresponding
angle αi. In Fig. 2.4 the radius of each circle is set as rr+s = rr + ds, where rr is the robot

14/48

4.1. BASIC NAVIGATION ALGORITHM

radius and ds is the minimum distance between the robot and the obstacle. In this algorithm
additional parameter r+ is used.

Originally all the obstacles would be represented by circles with identical radius, but that is
not exact. If we take a part of the environment covered by one part of the sensor, which gives
us one distance reading, and illustrate it as a circular sector, it can be seen that with greater
distance from the center of the robot, the sensor should cover a larger space. Therefore the
radius of a circle representing the obstacle should be larger, with distance from the center of
the robot. In the algorithm this problem is compensated by adding the r+ parameter to the
circle radius representing the obstacle. The r+ parameter is computed as:

r+i = di
Lrπ

360Na

(4.1)

Where di represents the distance of current obstacle, Na represents the quantity of angle
readings taken from the laser range finder and Lr is the range of the laser in degrees. The final
circle radius for the obstacle is then R = rr+ds+r

+. An example of the obstacle representation,
used in the algorithm, is shown in Fig. 4.1. To illustrate the size changes in the circles, very
low measurement density is used in the picture.

Figure 4.1: Illustration of the radius extension for different obstacles is presented on the left
picture. MATLAB visualisation of robot trajectories is on the right picture.

After computing all the necessary data, the algorithm for intersection of two circles is used.
Every circle representing the trajectory for a velocity pair is compared with all circles representing
the obstacles. If an intersection is found, the distance of the intersection and the center of the
robot is compared to the breaking distance belonging to the corresponding velocity pair. The
velocity pairs with no intersection and pairs with breaking distance lower than the distance to
the intersection are selected. A valid search space is created from these pairs and used further
in the algorithm.

15/48

4.1. BASIC NAVIGATION ALGORITHM

To test this part of the algorithm the MATLAB software was used for graphic visualisation
of the circles representing the trajectories and obstacles. The result of the algorithm can be
seen in Fig. 4.1. The robot is in the center of the figure. It is moving forward and the front
part of the robot is marked with the red color. The red circles represent obstacles and the blue
lines represent possible robot trajectories which are not in collision with any of the obstacles.

4.1.3 Selecting an optimal trajectory

After the creation of the valid search space, additional attributes are assigned to each velocity
pair and the optimal trajectory is chosen. For the choice of the optimal trajectory three attributes
are computed, each attribute within the interval {0, 1}, with 0 being the best possible option.
The attribute for obstacle avoidance ϑclear, defines how far is the robots trajectory from colliding
into an obstacle. The angular attribute ϑang, defines how well the trajectory follows the desired
direction to the goal.The speed attribute ϑvel ensures, that higher translational velocities are
prioritized.

Each of these attributes is then multiplied by an adjustable parameter λ, that can be set
by the user to modify the characteristics of robot’s behaviour. A closer description of these
parameters is given in 2.2.3. A weighted sum is computed for each velocity pair using the
equation 2.3. Then a velocity pair with the lowest weighted sum is selected as the best choice
for the optimal trajectory. The selected velocity pair is given as an output of the navigation
algorithm and used in the velocity command for the motors.

4.1.4 Necessary changes of the algorithm

During the development of the navigation algorithm, few changes had to be made to improve
its behaviour. Some were only minor changes in the structure of the algorithm or in parameters,
but other changes highly improved the overall driver performance. After first simulations a major
problem in robots behaviour occurred, the navigation algorithm constructed to prefer higher
translational velocities caused the robot to avoid narrow openings and to move in undesired
directions.

The problem is closely described in Fig. 4.2. The robot is moving in a straight trajectory
from position A to B and then it‘s supposed to go to C. The main focus of the picture should
be on the circles c1 and c2 representing possible robot trajectories from the B position.

A huge difference between the radii of the circles can be seen on the picture, while the c2
circle represents a trajectory with a relatively small turning radius, the radius of the c1 circle is
too big and the robot would be unable to perform any sharp turns on this trajectory. That is
caused by the imbalance between the maximal translational and maximal angular velocities.

The radius of the circle can be computed as r = v
w

. The value of the radii is set as:

r1 =
v1

wmax

=
1.6

1
(4.2)

16/48

4.1. BASIC NAVIGATION ALGORITHM

and

r2 =
v2

wmax

=
0.5

1
(4.3)

Although we can see that both circles represent trajectories with the same angular velocity,
in this case the maximal possible angular velocity(wmax), there is a great difference in radii of
the circles because each of them is connected with a different translational velocity(v1 and v2).
This implements that if the robot cannot achieve higher angular velocity, it’s turning ratio can
be increased by decreasing it’s translational velocity.

This issue was solved by reducing the translational velocity proportionally to the difference
between the current robot heading direction and the direction to the goal. If the difference
exceeds certain value, the maximal allowed translational speed of the robot is reduced.

Figure 4.2: Graphic visualisation of different robot trajectories

During the experiments on the real robot a new function has been developed. The function
makes the robot slow down before reaching its goal. The function can be turned off through
the configuration file, while turned off, the speed of the robot may be increased on direct
trajectories. The function was developed after the simulations were made, so in the simulations
the robot did not slow down before the goal.

The DWA driver requires information on current velocities of the robot, but other interfaces
are sometimes unable to provide such information. An on/off option was made to substitute
the velocity readings by the last velocity command. During the experiments with the SyRoTek
system, this option didn’t seem to have negative impact on the drivers behaviour.

17/48

4.2. DRIVER FOR PLAYER/STAGE

4.2 Driver for Player/Stage

The navigation algorithm was created and tested using the SyRoTek environment in Play-
er/Stage. Although the environment secured a connection with Stage simulation program, it
was desirable to create a new Player driver specifically for this algorithm. The new Player driver
allows other users and other drivers to use the DWA algorithm. It is intended for the support
of similar functions and usability as other drivers for the Player/Stage framework. It has to be
able to secure a connection between the player server and users client code.

A Player driver is a tool used for communications between the physical robot and users
client code. It implements standard methods for communication with proxies, listed in the
Player documentation. A proxy is a Player-defined standard communication used to access
various interfaces, to provide data from robot to client and vice versa.

Although most manuals found on the internet provide basic information on the matter, they
proved to be insufficient for the task of creating a complex driver. The creation of the driver
is mildly inspired by [12], but most of the code is written using information from the official
Player/Stage web site [10], the code from the example driver provided in the standard Player
distribution and the SND driver written by Joey Durham and Luca Invernizzi.

Information on how to write a driver are not included in this thesis. Such information could
be find on the Player/Stage web site or in some of the manuals on the internet. This chapter
presents only information connected with the developed DWA driver, problems faced during the
development and information on the use of this particular driver.

When writing a driver for Player, it is possible to choose from static and plugin drivers. For
the development of the driver for the DWA algorithm the plugin driver was chosen. That means
that the driver is not a part of the main Player distribution code and is managed as a shared
object loaded at runtime. It also means that the driver has to be compiled before use and
the path to the driver has to be added in the player configuration file. Reasons for developing
DWA as a plugin driver are the advantages over the static drivers. The plugin drivers are easier
to build, their code can be maintained in a separate source repository and they allow easier
development with faster code/compile/test cycle.

Before writing a driver, it has to be decided which interfaces will be supported by it. An
interface is a pre-defined set of messages and data types for communication with a certain
device or an algorithm and the Player project already has a large variety of these implemented.
Interfaces for this driver are the position2d interface, used for position information, velocity and
odometry information and position commands and the laser interface, used for communication
with the laser.

After the selection of interfaces, a configuration file with given parameters can be created
for the driver. A configuration file is a text file with the *.cfg extension. Its purpose is to define
the supported drivers for the system and give details for each driver. For each supported driver
required and provided interfaces are listed, and additional configuration parameters are given.

18/48

4.2. DRIVER FOR PLAYER/STAGE

An example of a configuration file for the driver can be seen in Listing 4.1. A driver is
identified by its name and for the plugin driver by a path to a shared library. The provided
and required interfaces are listed. This driver provides the position2d interface through which
it commands the robot and it requires the position2d and laser interface for information from
sensors. The name of the driver and interfaces are the main parameters in configuration file.
Additional parameters to adjust the characteristics of the driver can be given in the configuration
file by the user. In this example robot radius and maximum speed parameters are set.

The last parameter in the example is an optional option for all the drivers, the alwayson
option. If the alwayson is set as 1, then the driver will be setup when the Player server starts,
without waiting for any client connection. It is useful for drivers with startup delays, and drivers
used without a client. It is very useful for the development of new drivers.

driver

(

name "dwdriver"

plugin "dwdriver.so"

provides ["position2d:1"]

requires ["input:::position2d:0" "output:::position2d:0" "laser:0"]

robot_radius 10

max_speed 0.3

alwayson 0

)

Listing 4.1: An example of a configuration file.

All the parameters for the DWA driver are listed in the beginning of the ”dwdriver.cc” file
on the CD, together with their description. The parameters are also listed in the manual on the
website created for the DWA driver [13].

With the configuration file ready, the driver can be finally written and tested. A large part of
the code is a modified version of the code taken from the SND driver written by Joey Durham
and Luca Invernizzi. Some changes were made only in the names of variables, functions and
classes, but few bigger changes had to be made. The driver had to be adjusted for a different
navigation algorithm. Functions for the reading of current velocities were added and lines for
communication between the configuration file and the navigation algorithm were made, making
it possible for the user to adjust robots behaviour without the need of a direct change in the
inner algorithm.

19/48

Chapter 5

Experimental results

This chapter covers results from experiments with the developed algorithm. To achieve usable
results, the algorithm was tested together with the SND and VFH algorithms from Player/Stage
libraries.

5.1 Parameters settings

After it‘s development, the DWA algorithm was tested on various maps and parameter con-
figurations with the highest success rate were chosen for further experiments. The configurations
for the VFH algorithm were chosen by the same method. At first the algorithms were tested
manually. After achieving satisfactory results, a broad range of parameter configurations was
made, based around the parameter values found by hand. These configurations are shown in
tables 5.1 and 5.2.

The configuration for the SND algorithm is the same configuration which is currently used
with the SyRoTek system. The SND algorithm proved to be reliable on the SyRoTek system by
previous use, and thus will be used as a milestone for the expected results.

Driver Number of combinations Parameter min. max. step
DWA 320 robot radius 0.10 0.13 0.01

ValAngle 5 20 5
ValVelocity 5 20 5
ValObstacle 0 20 5

Table 5.1: Tested parameters for the DWA driver.

The configurations for the DWA algorithm in table 5.1 were tested on the Arena 0 map (Fig.
5.1). 10 test runs were made for each configuration and best 60 configurations, which achieved
100% success rate, were taken for the final round of experiments described in Section 5.2.

20/48

5.2. SIMULATIONS

These configurations are missing the slow parameter, which turns on or off the function to slow
down before the target. The reason for this is that the ”slow down” function was developed
after the simulations. That means that the robot doesn’t slow down before obstacles during
the simulations.

The configurations for the VFH algorithm in table 5.2 were tested on the Arena 0 map
(Fig. 5.1). The 9 most successful configurations were taken for the final round of experiments
described in Section 5.2.

Driver Number of combinations Parameter min. max. step
VFH 108 cell size 0.01 0.02 0.01

window diameter 10 20 10
safety dist 0ms 0.05 0.09 0.02

weight desired dir 5 9 2
free space cutoff 0ms 2000000 4000000 1000000

Table 5.2: Tested parameters for the VFH driver.

The search for ideal parameter configurations for the DWA algorithm is made on a larger
scale than for the VFH algorithm. That is because the DWA algorithm is developed as a part
of this thesis and it is desirable to promptly test it’s full capability.

5.2 Simulations

Various simulations were made, using the Stage simulator. The simulator made it possible to
create a larger variety of maps for the simulations. Thanks to the Stage simulator, any idea for
a map of the environment could be easily designed in a form of a simple black and white picture
or in the form of a *.world file where each obstacle is represented by its size and position.

To achieve more exact results from the simulations, 50 test runs were made for each config-
uration of every algorithm on every map. The simulations were made for one configuration of
the SND algorithm (tbl. 5.4), 9 configurations for the VFH algorithm and 60 configurations for
the DWA algorithm. The choice of the configurations is based on Section 5.1.

5.2.1 Design

While designing areas for the experiments there were three main objectives to take into
consideration. First objective was to test the algorithm in narrow corridors, second to test it
in wide, open space and the last one was the combination of the prior two, to test the overall
behaviour. According to these objectives, several maps were designed to test the S1R robot on
simulations in environments similar to the Arena in the SyRoTek system.

21/48

5.2. SIMULATIONS

A short description and a schema of every map is presented. The width of the narrowest
passageway in the map is included in the description, it is marked with the shortcut ”n.p.”. The
schema contains the map of the environment with the starting position represented by a blue
icon of the robot, and the goal position represented by a red icon. Some of the maps contain
a secondary starting point represented by a yellow icon or a black line representing the desired
trajectory of the robot.

Figure 5.1: Arena 0 (n.p. = 28 cm) on the left and Arena 1 (n.p. = 28 cm) on the right. The
maps are used for the simulations of the SyRoTek arena for the S1R robot.

22/48

5.2. SIMULATIONS

Figure 5.2: Arena 2 (n.p. = 60 cm) on the left and Arena 3 (n.p. = 85.5 cm) on the right. The
maps are used for the simulations of the SyRoTek arena for the S1R robot.

Figure 5.3: Arena 4 (n.p. = 60 cm), used for the simulation of the SyRoTek arena for the S1R
robot.

23/48

5.2. SIMULATIONS

5.2.2 Results

Results are given in the form of a table displaying the most important values for every
algorithm. The values are: texp, tmin, tmax, speedexp and the success rate. The texp is the average
time in which the robot reached the goal, tmin is the minimal time and tmax is the maximal
time. The speedexp is the average speed of the robot and the success rate is a percentage value
of successful runs.

For the simulations the tables present the results for the best configuration of each algorithm
on the particular map and the results for the best configuration of the DWA and VFH algorithms
overall. The best results are chosen at first by the success rate and then by the average time.

Graphic representation of the data is subjected under each table. Five-number summary is
used to get the five most important sample percentiles in the graph. The sample minimum, the
lower quartile, the median, the upper quartile and the sample maximum. The results are then
discussed in the end of the chapter.

5.2.3 Simulation results for S1R robot

The robots model was restricted to maximum speed 0.3 ms/s, maximum turn-rate 1 rad/s,
maximum acceleration 0.05 m/s and maximum turn-rate acceleration 0.05 rad/s. It’s size is
(length x width): 0.174 x 0.162. The configuration for SND algorithm was already given (tbl.
5.4) and the overall best parameters in the configuration file for the DWA and VFH algorithm
were determined as follows in tbl. 5.3, these are the parameters marked as the dwa best and
vfh best in the tables and graphs.

Driver parameter value Driver parameter value
DWA robot radius 0.1 VFH cell size 0.01

ValAngle 5 window diameter 20
ValVelocity 20 safety dist 0ms 0.09
ValObstacle 0 weight desired dir 5

free space cutoff 0ms 3 000 000

Table 5.3: The overall best parameters from simulations for the DWA and VFH drivers.

Driver parameter value
SND robot radius 0.06

min gap width 0.14
obstacle avoid dist 0.06

Table 5.4: The best parameters from the simulations for the SND driver.

24/48

5.2. SIMULATIONS

Arena 0

Arena 0 (Fig. 5.1) simulates the passage through series of narrow passage ways with various
direction changes.

Algorithm texp tmin tmax speedexp success rate
dwa 80.842 77.364 91.326 0.1263 100%
snd 80.621 78.812 81.654 0.1247 100%
vfh 153.701 145.762 164.423 0.0775 32%

dwa best 82.693 77.629 108.207 0.1247 100%
vfh best 168.896 155.660 182.886 0.0709 22%

Table 5.5: Results for Arena 0

Dwa Snd Vfh Dwa best Vfh best

80
10

0
12

0
14

0
16

0
18

0

algorithm

tim
e

[s
]

Dwa Snd Dwa best

78
80

82
84

86
88

algorithm

tim
e

[s
]

Figure 5.4: Graphic comparison of times achieved by each algorithm. Comparison of all algo-
rithms can be seen on the left picture. To offer more detailed view, the picture on the right
shows only the comparison for SND and DWA algorithms.

25/48

5.2. SIMULATIONS

Arena 1

Arena 1 (Fig. 5.1) simulates a passage through a very narrow corridor. The width of the
corridor is less than twice the diameter of the robot. This map has considerably lower success
rate than other maps. Thanks to that it was possible to push the navigation algorithms to their
limits and see the difference in their reliability.

In order to achieve a higher success rate and thus larger quantity of times for the computation
of more reliable data, additional experiments were made on this map, using a different starting
point, described in Fig. 5.1. Computed data are thus split into two sets of results.

Algorithm texp tmin tmax speedexp success rate
dwa 268.092 239.299 305.973 0.1153 18%
snd 211.084 208.311 213.881 0.1429 66%
vfh 305.431 289.636 322.115 0.1042 20%

dwa best 253.711 233.581 304.169 0.1228 10%
vfh best 303.762 286.719 324.883 0.1057 14%

Table 5.6: Results for Arena 1 while using the first starting point.

Dwa Snd Vfh Dwa best Vfh best

22
0

24
0

26
0

28
0

30
0

32
0

algorithm

tim
e

[s
]

Figure 5.5: Graphic comparison of times achieved by each algorithm.

26/48

5.2. SIMULATIONS

Algorithm texp tmin tmax speedexp success rate
dwa 146.402 143.614 150.819 0.1160 56%
snd 131.035 127.802 133.538 0.1269 92%
vfh 191.199 177.542 212.584 0.0945 60%

dwa best 146.402 143.614 150.819 0.116 56%
vfh best 189.953 175.381 209.555 0.0946 58%

Table 5.7: Results for Arena 1 while using the second starting point.

Dwa Snd Vfh Dwa best Vfh best

14
0

16
0

18
0

20
0

algorithm

tim
e

[s
]

Dwa Snd Dwa best

13
0

13
5

14
0

14
5

algorithm

tim
e

[s
]

Figure 5.6: Graphic comparison of times achieved by each algorithm. Comparison of all algo-
rithms can be seen on the left picture. On the right picture is only the comparison for SND and
DWA algorithms.

27/48

5.2. SIMULATIONS

Arena 2

Arena 2 (Fig. 5.2) simulates the passage through a wider corridor. The width of the corridor
is more than 3 times greater than the diameter of the robot.

Algorithm texp tmin tmax speedexp success rate
dwa 84.189 80.400 88.307 0.1715 100%
snd 85.318 84.542 85.982 0.1656 100%
vfh 115.864 108.242 121.508 0.1425 100%

dwa best 86.129 83.206 89.810 0.1691 100%
vfh best 115.864 108.242 121.508 0.1425 100%

Table 5.8: Results for Arena 2

Dwa Snd Vfh Dwa best Vfh best

90
10

0
11

0
12

0

algorithm

tim
e

[s
]

Dwa Snd Dwa best

82
84

86
88

algorithm

tim
e

[s
]

Figure 5.7: Graphic comparison of times achieved by each algorithm. Comparison of all algo-
rithms can be seen on the left picture. On the right picture is only the comparison for SND and
DWA algorithms.

28/48

5.2. SIMULATIONS

Arena 3

Arena 3 (Fig. 5.2) simulates the passage through a very wide corridor. The width of the
corridor is more than 5 times greater than the diameter of the robot.

Algorithm texp tmin tmax speedexp success rate
dwa 56.485 54.863 59.866 0.1761 100%
snd 57.641 56.442 58.428 0.1688 100%
vfh 56.976 50.263 67.827 0.2201 100%

dwa best 56.949 55.276 60.168 0.1756 100%
vfh best 56.976 50.263 67.827 0.2202 100%

Table 5.9: Results for Arena 3

Dwa Snd Vfh Dwa best Vfh best

50
55

60
65

algorithm

tim
e

[s
]

Figure 5.8: Graphic comparison of times achieved by each algorithm.

29/48

5.2. SIMULATIONS

Arena 4

Arena 4 (Fig. 5.3) simulates the way through a wide passage with several direction changes
and open spaces alongside the desired trajectory.

Algorithm texp tmin tmax speedexp success rate
dwa 48.548 46.269 51.362 0.1628 100%
snd 65.310 64.239 66.157 0.1106 100%
vfh 77.051 65.769 120.463 0.1352 80%

dwa best 51.523 47.455 78.900 0.1572 100%
vfh best 73.684 66.366 112.436 0.1382 66%

Table 5.10: Results for Arena 4

Dwa Snd Vfh Dwa best Vfh best

50
55

60
65

70
75

algorithm

tim
e

[s
]

Figure 5.9: Graphic comparison of times achieved by each algorithm.

The DWA algorithm showed exceptional results in this arena. The average time of the
algorithm is much better then the time of the other two. The possible explanation could be the
fact that the DWA driver didn’t slow down before the targets in these simulations.

A function to slow down before the target was implemented after the simulations. Before
the implementation of the ”slow down” function, it was as if the function was turned off. The

30/48

5.2. SIMULATIONS

DWA driver now allows the user to turn the option on or off at his will, while the other drivers
always slow down as they are closing to the target.

5.2.4 Discussion

The SND algorithm proved to be the most reliable amongst the three algorithms tested. The
results form the Arena 1 show a great difference between the success rate of the SND algorithm
and the success rate of other two algorithms. This algorithm also proved to have similar time
results as the other algorithms on most of the maps.

The DWA algorithm proved to be less reliable, when used in long narrow passages in the
Arena 1, aside from this map, its performance was mostly equal or superior to the performance
of the SND algorithm.

The VFH algorithm proved to be less reliable than the other two and it’s time results were
worse than the results of the other two algorithms. It also showed some specific behaviour,
which is closely described later in this chapter.

31/48

5.3. REAL ROBOT - PARAMETER SETTINGS

5.3 Real robot - Parameter settings

While several simulations could be performed at the same time, the experiments on the real
robot could only be made ”one at the time”, that made the experiments quite time consuming.
Therefore the initial experiments to determine the best configurations were made on a smaller
scale than during the simulations. After that 20 test runs were made for three final configurations
and for the best configuration from the simulations.

Two sets of the initial experiments were made, a small set of experiments made on the first
map and a larger set of experiments on the second map.

Driver Number of combinations Parameter min. max. step
DWA 36 robot radius 0.08 0.12 0.02

ValAngle 10 20 10
ValVelocity 10 20 10
ValObstacle 0 20 10

VFH 32 cell size 0.01 0.02 0.01
window diameter 10 20 10
safety dist 0ms 0.05 0.09 0.04

weight desired dir 5 9 4
free space cutoff 0ms 2000000 3000000 1000000

SND 27 robot radius 0.04 0.08 0.02
min gap width 0.12 0.16 0.02

obstacle avoid dist 0.04 0.08 0.02

Table 5.11: Tested parameters for Map 1.

The initial experiments for the first map for the real robot were made on a small scale. Two
test runs were made for each configuration from the table 5.11 for every algorithm and the best
three configurations were chosen accordingly to the success rate and the average speed. After
that, 20 test runs were made for each configuration and for the best configuration gained from
the simulation results.

32/48

5.3. REAL ROBOT - PARAMETER SETTINGS

Driver Parameter A B C sim.
DWA robot radius 0.08 0.08 0.10 0.10

ValAngle 20 20 10 5
ValVelocity 20 10 10 20
ValObstacle 20 0 0 0

VFH cell size 0.01 0.02 0.01 0.01
window diameter 20 20 10 20
safety dist 0ms 0.05 0.09 0.09 0.09

weight desired dir 9 0 9 5
free space cutoff 0ms 2000000 2000000 3000000 3000000

SND robot radius 0.04 0.04 0.04 0.6
min gap width 0.14 0.12 0.14 0.14

obstacle avoid dist 0.04 0.04 0.06 0.06

Table 5.12: Chosen parameters for Map 1.

The initial experiments for the second map were made on a much larger scale than for the
first one. Two test runs were made for each configuration from the table 5.13 for every algorithm
and the best 10 configurations were chosen for the second round of experiments by the success
rate and the average speed. In the second round 10 runs were made for each configuration and
the three best configurations with highest success rate and average speed were chosen. In total
20 test runs were made for these 3 configurations and for the best configuration gained from
the simulation results.

Driver Number of combinations Parameter min. max. step
DWA 48 robot radius 0.07 0.10 0.01

ValAngle 10 20 10
ValVelocity 10 20 10
ValObstacle 0 20 10

SND 27 robot radius 0.04 0.08 0.02
min gap width 0.12 0.16 0.02

obstacle avoid dist 0.04 0.08 0.02

Table 5.13: Tested parameters for Map 2.

33/48

5.3. REAL ROBOT - PARAMETER SETTINGS

Configuration Driver texp success rate Driver texp success rate
A DWA 144.776 90% SND 118.684 100%
B 156.885 90% 126.087 100%
C 165.070 70% 133.976 100%
D 163.327 70% 120.280 100%
E 167.728 60% 130.371 100%
F 173.089 90% 136.411 100%
G 147.012 90% 120.075 100%
H 141.254 70% 137.294 100%
I 148.762 50% 135.443 100%
J 152.518 50% 171.664 90%

Table 5.14: Map 2. Results for the best 10 configurations after 10 test runs.

Driver Parameter A G B sim.
DWA robot radius 0.08 0.07 0.08 0.10

ValAngle 20 10 20 5
ValVelocity 10 10 10 20
ValObstacle 0 0 10 0

Table 5.15: Chosen parameters for Map 2, DWA driver.

Driver Parameter A G D sim.
SND robot radius 0.04 0.04 0.04 0.06

min gap width 0.12 0.16 0.14 0.14
obstacle avoid dist 0.04 0.04 0.04 0.06

Table 5.16: Chosen parameters for Map 2, SND driver.

34/48

5.4. EXPERIMENTS WITH THE REAL ROBOT

5.4 Experiments with the real robot

For the experiments on a real robot, SyRoTek system was used. SyRoTek system is limited
to a smaller area but also offers the possibility to freely rearrange the set up of its arena.

5.4.1 Design

The maps for the real robot were designed with the same concept as the maps in the
simulations.

Figure 5.10: Map 1 (n.p. = 28 cm. 60 cm while using the second starting point) on the left
and Map 2 (n.p. = 28 cm) on the right. The maps are used for the experiments with a real
S1R robot in the SyRoTek system.

35/48

5.4. EXPERIMENTS WITH THE REAL ROBOT

5.4.2 Results

For the experiments on the real robot new trial experiments were made, to determine the
best possible configurations for each algorithm. The three most suitable configurations of each
algorithm were chosen for further experiments together with the best configuration gained from
the simulation data. The tables present the results for the best configurations of each algorithm
on the particular map and the results for the configuration gained from simulation data.

5.4.3 Results from SyRoTek Arena with a real S1R robot

The robot was restricted to its maximal speed 0.45 ms/s and its maximal turn-rate 1 rad/s.

Map 1

Map 1 (Fig. 5.10) simulates the passage through an environment containing a narrow cor-
ridor. Since the VFH algorithm wasn’t able to complete the whole map, an additional starting
point had to be placed after the narrow part of the passage (see the Fig. 5.10). The data are
thus split into two sets of results. The first part is for the first starting point and it contains
only the results of the DWA and SND algorithms. The second part contains the results for all
the algorithms on a trajectory starting from the second starting point.

Configurations A for DWA and B for SND driver from the table 5.12 were the best con-
figurations for this map, when the first starting point was used. These are the configurations
highlighted in the table 5.17 and showed in the graph 5.11.

Algorithm Configuration texp tmin tmax success rate
dwa A 53.478 52.171 54.896 100 %

B 53.860 51.830 56.792 100 %
C 58.337 55.530 60.868 95 %

sim 57.8326 55.928 60.781 100 %
snd A 61.441 59.680 67.977 100 %

B 60.937 56.670 65.888 100 %
C 63.321 61.117 68.186 100 %

sim 63.055 57.268 67.715 100 %

Table 5.17: Map 1. Results for the real robot, while using the first starting point.

Configurations C for VFH and C for SND driver from the table 5.12 were the best configura-
tions for this map, when the second starting point was used. The best configuration for the DWA
driver is the configuration selected from the simulation results. These are the configurations
highlighted in the table 5.18 and showed in the graph 5.11.

36/48

5.4. EXPERIMENTS WITH THE REAL ROBOT

Algorithm Configuration texp tmin tmax success rate
dwa A 33.058 30.561 34.543 95 %

B 33.456 30.418 35.402 100 %
C 32.340 30.939 34.405 100 %
sim 32.321 30.972 33.907 100 %

snd A 37.602 35.856 39.933 95 %
B 37.690 36.370 39.404 100 %
C 37.071 35.358 37.884 100 %

sim 37.249 35.557 39.390 100 %
vfh A 37.707 34.508 41.228 100 %

B 37.502 34.106 40.962 100 %
C 36.469 25.398 40.708 100 %

sim 46.867 34.561 182.435 90 %

Table 5.18: Map 1. Results for the real robot, while using the second starting point.

Dwa Snd Dwa sim. Snd sim.

55
60

65

algorithm

tim
e

[s
]

Dwa Snd Vfh Dwa sim Snd sim Vfh sim

32
34

36
38

40
42

algorithm

tim
e

[s
]

Figure 5.11: Graphic comparison of times achieved by each algorithm. The picture on the left
represents the results using the first starting point. The picture on the right represents the
results using the second starting point.

37/48

5.4. EXPERIMENTS WITH THE REAL ROBOT

Map 2

Map 2 (Fig. 5.10) simulates the passage through an environment containing a lot of narrow
corridors. Since the VFH algorithm wasn’t able to complete the map, only the DWA and SND
algorithms were tested.

Configurations A for DWA and A for SND driver from the tables 5.15 and 5.16 were the
best configurations for this map. These are the configurations highlighted in the table 5.19 and
showed in the graph 5.12.

Algorithm configuration texp tmin tmax success rate
dwa A 143.153 124.298 156.942 95 %

G 144.866 111.429 197.131 95 %
B 153.975 131.620 167.875 90 %

sim 174.318 141.168 206.722 80 %
snd A 119.462 116.555 123.733 100 %

G 120.788 117.771 129.183 100 %
D 119.949 117.774 126.956 100 %

sim 140.640 133.426 147.559 95 %

Table 5.19: Map 2. Results for the real robot.

Dwa Snd Dwa sim. Snd sim.

12
0

14
0

16
0

18
0

20
0

algorithm

tim
e

[s
]

Figure 5.12: Graphic comparison of times achieved by each algorithm

38/48

5.5. DISCUSSION OF THE RESULTS

5.4.4 Discussion

The SND driver was more reliable and faster in narrow passages, than the DWA driver. The
DWA driver is faster than the other two drivers, while used in environments containing less
narrow passages.

When using the real robot, the VFH driver was successfully used only with environments
which didn’t contain any narrow passages. Therefore such narrow environments were used only
for the experiments with the DWA and SND drivers. In wider environments the VFH driver
achieved similar results as the other two drivers.

The SyRoTek system doesn’t offer information on the current velocity of the robot, so for the
experiments this reading was substituted with the desired velocity value from previous iteration.
Fortunately this modification didn’t seems to have any noticeable impact on the results.

When testing the algorithms on a real robot, few video footages were taken. These videos
are available on the CD, presented with the thesis. The footages contain the test runs with the
DWA and SND algorithms, using their best configurations for the SyRoTek Arena.

5.5 Discussion of the results

Recommended use for the drivers

The SND driver has proved to be the most reliable both in simulations and experiments.
The DWA algorithm had equal results only when used in environments wider than twice the
diameter of the robot.

The choice of the algorithm with best achieved times depends on the environment. In narrow
environments the SND driver would be the best choice while the DWA algorithm could be
recommended for environments with wider passages. The DWA offers an on/off function for
slowing down before obstacles. If turned off, the function can increase robots speed on direct
trajectories.

Both the SND and DWA algorithms should be easy to use. They have only a few important
parameters and since the main parameters are connected with the robot radius, it’s easy to
determine how to set which parameter, even for an unskilled user.

The VFH driver is inferior to other two drivers in both reliability and speed. Its parameters
were originally set for a different robot and the description of the parameters is insufficient for
a proper recalibration by someone unfamiliar to the driver.

Comments on the experiments and simulations

• SND There were no complications with this driver, it was easy to use and it had no
specific functions or characteristics worth mentioning.

39/48

5.5. DISCUSSION OF THE RESULTS

• DWA A new modification had to be made on the DWA driver for the experiments in the
SyRoTek system. Unlike the other drivers the DWA driver requires information on current
velocities of the robot. An on/off option was made to substitute the velocity readings by
the last velocity command.

• VFH While the SND and DWA drivers support a connection with robot’s global position,
the VFH driver doesn’t. Therefore an additional function had to be created in the client
file to convert the global coordinates to the coordinates used by the VFH driver. The
function is in the client file on the CD provided with the thesis.
Even after the function was created, the driver had trouble initializing, so every one out of
six runs it would load incorrectly and it would have to be restarted. Another modifications
would have to be made to correct this error entirely, but that was not necessary for the
purpose of this thesis.

Particular situation occurred with the VFH driver whenever the robot got stuck close to an
obstacle and couldn’t go as planed, it seemed to start its ”escape function”. The escape
function appears to have a simple system, the robot keeps turning counter-clockwise,
looking for an open space in which it could continue it’s motion. This function deals with
the problem of a robot getting stuck near an obstacle, but has one weakness, the robot
always starts turning counter-clockwise regardless of the position of the target. That
sometime causes the robot to lose a lot of time, just by turning in the opposite direction
than the direction of the target. This function makes it unfavourable for the algorithm to
be used in environments containing any narrow turns in the clockwise direction.
If this function would be fixed to select the turning direction accordingly to the position
of the target, it could significantly improve the performance of the VFH driver.

40/48

Chapter 6

Conclusion

The goal of this thesis was to compare the results of three local planning algorithms, to
develop the Dynamic Window method for the Player system and to find the best possible
configurations for these three algorithms for the SyRoTek system.

The Dynamic Window algorithm was successfully implemented as a plugin driver for the
Player system and tested both in the Player/Stage environment and on a real robot with the
SyRoTek system. The DWA driver proved to be reliable and the robot’s movement speed was
comparable to other two drivers. It even had superior speed when used in environments with
passage ways wider than twice the diameter of the robot.

The next part of the thesis was to find the best parameter configurations for the three
tested drivers. These drivers were the DWA driver implemented as a part of this thesis and
the SND and VFH drivers from the Player project library. Over 20 000 simulations and 120
hours of experiments with the real robot on the SyRoTek system were made to find the best
configurations for the drivers. The results from these experiments will be presented to the
Department of Cybernetics at the Czech Technical University in Prague, where the SyRoTek
system is placed. Hopefully it will be beneficial for further use of local navigation drivers with
this system.
During the process, the DWA and VFH drivers were made operational with the SyRoTek system.
The configuration and client files for these drivers were put on the CD, provided with this thesis.
The SND driver was already operational with the SyRoTek system.

After the best parameter configurations were found, a set of simulations and experiments
was made to gain the results needed for the comparison of the drivers. The comparison proved
the SND driver to be the most reliable one. The SND driver also achieved the best time results
in narrow environments. The DWA driver proved to be slightly inferior to the SND driver in
narrow environments, but in wider environments it proved to have equal results in reliability
and equal or superior time results. The VFH driver proved to be insufficient for the use in
narrow environments. It doesn’t offer any advantages over the other two drivers and it’s use
was accompanied with several difficulties.

41/48

A website has been launched for the DWA driver [13]. The website contains information about
the driver, detailed manual and a download section with the project files. As the next course of
action, the developed DWA driver will be offered to the Player/Stage project. If approved by
the Player project, the DWA driver will become a part of the standard Player distribution and
information from this website will be moved to the official website of the Player project.

42/48

BIBLIOGRAPHY

Bibliography

[1] M. Seder, K. Maček, I. Petrovič, An integrated approach to real-time mobile robot control
in partially known indoor environments. Industrial Electronics Society, 2005. IECON 2005.

[2] Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard. The Player/Stage Project: Tools
for Multi-Robot and Distributed Sensor Systems. pages 317-323, Coimbra, Portugal, July
2003.

[3] M. Kulich , J. Chudoba , K. Kosnar , T. Krajnik , J. Faigl and L. Preucil SyRoTek—Distance
teaching of mobile robotics, IEEE Trans. Educ., 2013

[4] S. M. LaValle, PLANNING ALGORITHMS. Published by Cambridge University Press in
2004.

[5] J. Borenstein and Y. Koren, The Vector Field Histogram-Fast Obstacle Avoidance for Mobile
Robots. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1991.

[6] I. Ulrich and J. Borenstein, VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots.
IEEE International Conference on Robotics and Automation, 1998.

[7] J. Minguez and L. Montano, Nearness diagram (ND) navigation: Collision avoidance in
troublesome scenarios. IEEE Transactions on Robotics and Automation, 2004.

[8] J. W. Durham and F. Bullo, Smooth Nearness-Diagram Navigation. Intelligent Robots and
Systems, 2008. IROS 2008.

[9] D. Fox, W. Burgard and S. Thrun, The Dynamic Window Approach to Collision Avoidance.
Robotics and Automation Magazine, IEEE, 1997.

[10] The official website of the Player Project.
http://playerstage.sourceforge.net/

[11] The official website of the SyRoTek system.
https://syrotek.felk.cvut.cz/

[12] B. Petersen and J. Fonseca, Writing Player/Stage Drivers, a howto for ERSP Player Driver
Source Package. From the project: Player/Stage - Player driver implementation for ERSP,
2006.

43/48

BIBLIOGRAPHY

[13] The website launched for the implemented DWA driver.
http://imr.felk.cvut.cz/dwa/

44/48

LIST OF FIGURES

List of Figures

2.1 Scheme of a robot control system. 3

2.2 Example of a smoothed polar histogram. 5

2.3 Illustration of the polar histogram from Fig. 2.2 shown in polar form overlaying
part of the environment. 6

2.4 Figure describing the use of enlarged obstacle cell. The picture was taken from
[6]. 7

2.5 Approximation of trajectories: a) without dynamics, b) with dynamics. The pic-
ture was taken form [6]. 7

2.6 A graphic representation of valleys and gaps used in the SND method. The
picture was taken from [8]. 8

2.7 Graphic representation of possible robot trajectories. The picture was taken from
[1]. 10

3.1 On the left picture is the SyRoTek arena and on the right picture is the S1R
robot. 12

4.1 Illustration of the radius extension for different obstacles is presented on the left
picture. MATLAB visualisation of robot trajectories is on the right picture. . . 15

4.2 Graphic visualisation of different robot trajectories 17

5.1 Arena 0 (n.p. = 28 cm) on the left and Arena 1 (n.p. = 28 cm) on the right.
The maps are used for the simulations of the SyRoTek arena for the S1R robot. 22

5.2 Arena 2 (n.p. = 60 cm) on the left and Arena 3 (n.p. = 85.5 cm) on the right.
The maps are used for the simulations of the SyRoTek arena for the S1R robot. 23

5.3 Arena 4 (n.p. = 60 cm), used for the simulation of the SyRoTek arena for the
S1R robot. 23

5.4 Graphic comparison of times achieved by each algorithm. Comparison of all
algorithms can be seen on the left picture. To offer more detailed view, the
picture on the right shows only the comparison for SND and DWA algorithms. 25

45/48

LIST OF FIGURES

5.5 Graphic comparison of times achieved by each algorithm. 26

5.6 Graphic comparison of times achieved by each algorithm. Comparison of all
algorithms can be seen on the left picture. On the right picture is only the
comparison for SND and DWA algorithms. 27

5.7 Graphic comparison of times achieved by each algorithm. Comparison of all
algorithms can be seen on the left picture. On the right picture is only the
comparison for SND and DWA algorithms. 28

5.8 Graphic comparison of times achieved by each algorithm. 29

5.9 Graphic comparison of times achieved by each algorithm. 30

5.10 Map 1 (n.p. = 28 cm. 60 cm while using the second starting point) on the left
and Map 2 (n.p. = 28 cm) on the right. The maps are used for the experiments
with a real S1R robot in the SyRoTek system. 35

5.11 Graphic comparison of times achieved by each algorithm. The picture on the
left represents the results using the first starting point. The picture on the right
represents the results using the second starting point. 37

5.12 Graphic comparison of times achieved by each algorithm 38

46/48

LIST OF TABLES

List of Tables

5.1 Tested parameters for the DWA driver. 20

5.2 Tested parameters for the VFH driver. 21

5.3 The overall best parameters from simulations for the DWA and VFH drivers. . 24

5.4 The best parameters from the simulations for the SND driver. 24

5.5 Results for Arena 0 . 25

5.6 Results for Arena 1 while using the first starting point. 26

5.7 Results for Arena 1 while using the second starting point. 27

5.8 Results for Arena 2 . 28

5.9 Results for Arena 3 . 29

5.10 Results for Arena 4 . 30

5.11 Tested parameters for Map 1. 32

5.12 Chosen parameters for Map 1. 33

5.13 Tested parameters for Map 2. 33

5.14 Map 2. Results for the best 10 configurations after 10 test runs. 34

5.15 Chosen parameters for Map 2, DWA driver. 34

5.16 Chosen parameters for Map 2, SND driver. 34

5.17 Map 1. Results for the real robot, while using the first starting point. 36

5.18 Map 1. Results for the real robot, while using the second starting point. . . . 37

5.19 Map 2. Results for the real robot. 38

6.1 CD Content . 48

47/48

Appendix

CD Content

In table 6.1 are listed names of all root directories on CD

Directory name Description
DWA driver Contains the newest version of the DWA driver. The ver-

sions in other folders are the versions used during the ac-
tivities connected with their folder location.

Results Database files from the simulations and text files from the
experiments on the SyRoTek system.

Simulation files Maps, world files, client files, configuration files and the
dwa driver files used for the simulations.

SyRoTek files Maps, client files, configuration files and the dwa driver
files for the SyRoTek system.

thesis.pdf The pdf file containing this thesis.
Thesis Source files for this thesis.
Video Videos from the experiments in the SyRoTek system.

Table 6.1: CD Content

	Introduction
	Motion planning
	Global and local planning
	Global planning
	Local planning and obstacle avoidance

	Local planning algorithms used in the thesis
	Vector Field Histogram Plus
	Smooth Nearness-Diagram
	Dynamic Window Approach

	Robotic frameworks
	Player/Stage
	Player
	Stage

	SyRoTek system

	Implementation of the Dynamic Window Approach
	Basic navigation algorithm
	Setting initial variables
	Creation of a valid search space
	Selecting an optimal trajectory
	Necessary changes of the algorithm

	Driver for Player/Stage

	Experimental results
	Parameters settings
	Simulations
	Design
	Results
	Simulation results for S1R robot
	Discussion

	Real robot - Parameter settings
	Experiments with the real robot
	Design
	Results
	Results from SyRoTek Arena with a real S1R robot
	Discussion

	Discussion of the results

	Conclusion
	List of Figures
	List of Tables

