
Master’s thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering

Department of Computer Science

Animal Breeders Content
Management System

Marek Polcar

May 2014

Supervisor: Tomáš Černý

Acknowledgement / Declaration
I would like to thank Tomáš Černý
for being my supervisor.

I also need to thank my mother because
she has been truly helpful throughout
the entire work.

Last but not least, please allow me
to thank the university for providing
me with the priceless knowledge let-
ting me create the system the thesis
discusses.

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 12. 5. 2014

. .

v

Abstrakt / Abstract
Tato diplomová práce pojednává o ana-
lýze, implementaci, nasazení a otesto-
vání služby, která umožní chovatelům
zvířat publikovat svůj obsah na inter-
netu.

Analýza ukázala, že chovatelé vynikají
ve vytváření jedinečného a osobitého ob-
sahu, avšak mají značné problémy s for-
mou prezentace. Ta často postrádá lo-
gické členění a nesplňuje základní pod-
mínky pro publikování obsahu na inter-
netu. Chovatelé si tím, ač nevědomky,
zbytečně zhoršují svou pozici při nabí-
zení a prodeji odchovaných zvířat.

Vyvinutá služba ulehčuje chovatelům
vkládání rozmanitého, chovatelsky
specifického obsahu, přičemž se snaží
zachovat jednoduché a přátelské uživa-
telské rozhraní.

Klíčová slova: systém pro správu ob-
sahu, prototypování, responzivní web
design, Maven, Java EE, PrimeFaces,
Heroku, jednotkové testování, testováni
použitelnosti

The goal of this thesis is to analyze,
implement, deploy and test a service
that will allow animal breeders publish
content on the Internet.

The analysis shows that breeders excel
at creating remarkable content but
they miss a basic knowledge about
the suitable form for it. The content
they create is usually unlogically orga-
nized which makes it hard for a visitor
to consume. In the end the breeders
unknowingly harm their business by not
being able to display their content in vi-
sually appealing and understandable
way on the Internet.

The service that has been developed
allows the breeders to publish var-
ious, breeding-specific content, but
aims to keep the user interface simple
and friendly at the same time.

Keywords: content management sys-
tem, prototyping, mobile first, respon-
sive design, Maven, Java EE, Prime-
Faces, Heroku, unit testing, usability
testing

vi

Contents /
1 Introduction .1

1.1 Hypothesis .1

1.2 Executive Summary1

2 Analysis .2

2.1 Main Use Cases2

2.1.1 Puppies presentation2

2.1.2 Choosing a Father
for an Upcoming Litter4

2.1.3 Keeping Animal’s Diary . . .4

2.1.4 Having Complete In-
formation about the Dog . .5

2.1.5 Keeping Track of Dog’s
Descendants5

2.2 Related Work And Existing
Systems. .5

2.2.1 Advertisement Portals5

2.2.2 General Content Man-
agement Systems.6

2.2.3 Custom Made Website.7

2.2.4 Breeding Station Cat-
alogues .8

2.2.5 Animal Pedigree Cata-
logues .8

2.3 Requirements. .8

2.3.1 Priorities of Require-
ments .9

2.4 Use Cases .9

2.5 Domain Model 13

3 Software Design 15

3.1 Architecture . 15

3.1.1 Programming Language . 15

3.1.2 Web Server 15

3.1.3 Database Layer 15

3.1.4 Security 15

3.1.5 Hosting 16

3.1.6 Data Storage 16

3.1.7 Front-end Framework 16

3.2 Design Model 17

3.3 Graphic Design 18

3.3.1 Layout . 18

3.3.2 Public Pages 20

3.3.3 Admin Pages 20

3.3.4 Responsive Design 21

4 Implementation. 23

4.1 Encountered Problems
and Solutions. 23

4.1.1 Programming Language . 23

4.1.2 Security 24

4.1.3 File Upload. 24

4.1.4 Autosuggest Prime-
Faces Component with
Diacritics 25

4.1.5 JSF Composite Com-
ponents 26

4.1.6 Markdown Support 26

4.1.7 Maven Spring Depen-
dencies. 27

4.1.8 Pedigree Recursive
Construction 29

4.1.9 PrettyTime Integration . . 30

4.1.10 PrettyFaces Integration. . 30

4.1.11 Spring Beans View
Scope Support 31

4.2 State Diagrams 32

4.3 Database Model 34

4.4 Screenshots . 36

5 Deployment . 39

vii

6 Testing . 41

6.1 Unit Testing . 42

6.1.1 Test Driven Develop-
ment . 43

6.2 Integration Testing 44

6.3 Stress Testing 45

6.4 Usability Testing 46

6.4.1 Principles. 46

6.4.2 Hypothesis 46

6.4.3 Testing 46

6.4.4 Results 47

7 Static Code Analysis 49

8 Future . 51

8.1 Scope Extension 51

8.2 Additional features 51

8.3 Monetization 51

8.4 No Success Prediction 52

9 Conclusion . 53

References . 54

A Abbreviations . 57

B Functional Requirements 58

B.1 Implemented 58

B.2 Not implemented. 59

C Non-functional Requirements . . . 60

D Use Case Scenarios 61

D.1 Station. 61

D.2 News Section 62

D.3 Links Section 63

D.4 Guestbook . 64

D.5 Animal . 65

D.6 Litter . 67

D.7 Custom Page 69

E Public Pages Content 71

E.1 About Us . 71

E.2 News . 71

E.3 Links . 71

E.4 Guestbook . 71

E.5 Contact . 72

E.6 Animal Profile 72

E.7 Breed — (Fe)Males 72

E.8 Breed For Sale 73

E.9 Past Litters . 73

E.10 Litter Profile 73

E.11 Retired . 73

E.12 In Memory . 74

E.13 Custom Page 74

F Admin Pages Content 75

F.1 Animals Admin 75

F.2 Litters Admin 75

F.3 Custom Pages Admin 75

G User Experience Test Scenario . . 76

G.1 Public Pages 76

G.2 Admin Pages 76

H CD Contents. 78

viii

Tables / Figures
6.1. Unit tests coverage 42

6.2. Usability problems 47

7.1. Source code statistics 49

7.2. Java code statistics. 49

2.4. Advertisement Portal Item
Example .6

2.5. General Content Manage-
ment System Example7

2.6. Custom Made Website Ex-
ample .7

2.7. Breeding Station Catalogue
Example .8

2.8. The project triangle9

2.9. Actors in the system9

2.10. Station use cases 10

2.11. News use cases 10

2.12. Links use cases 11

2.13. Guestbook use cases 11

2.14. Animal use cases 12

2.15. Litter use cases 12

2.16. Custom page use cases 13

2.17. Domain Model 14

3.1. Utilized technologies 16

3.2. Design Model 17

3.3. Page layout wireframe 18

3.4. Progressive Enhancement 19

3.5. Responsive Design Adapta-
tion . 21

3.6. Smartphone share of audience . 22

4.1. Cost analysis of good enough . . 23

4.2. Spring Data MongoDB 24

4.3. Autosuggest with diacritics 25

4.4. Autosuggest in frontend use . . . 25

4.5. JSF composite component 26

4.6. Markdown support 27

4.7. Maven Spring dependencies . . . 27

4.8. Spring core dependencies 28

ix

4.9. Spring Data MongoDB de-
pendencies . 28

4.10. Spring Security dependencies . . 29

4.11. Pedigree recursive creation 30

4.12. PrettyTime JSF integration . . . 30

4.13. PrettyTime frontend result 30

4.14. PrettyFaces and managed
bean . 31

4.15. PrettyFaces JSF link compo-
nent . 31

4.16. Spring beans view scope 32

4.17. Spring view scope integration . 32

4.18. Litter child state diagram 33

4.19. Animal state diagram 33

4.20. Litter state diagram. 34

4.21. Database model 35

4.22. MongoDB animal document . . . 36

4.23. About Us page screenshot 36

4.24. About Us page on mobile 37

4.25. Responsive menu screenshot . . . 38

4.26. Sticky top bar screenshot 38

5.1. Deployment model 39

5.2. Deployment Schema 39

6.1. Cost to fix a bug 41

6.2. Testing Triangle 42

6.3. Parameterized unit test 43

6.4. Result of a unit test 43

6.5. Selenium test run 1st part 44

6.6. Selenium test run 2nd part 45

6.7. Stress Testing Chart 45

x

Chapter 1
Introduction

1.1 Hypothesis
There is no user-friendly and accessible solution on the Czech market that would allow
breeding stations to advertise their services and products and facilitate business among
various breeding stations on national and potentially international level.

1.2 Executive Summary

The proposed system targets two types of clients — breeding stations (professionals)
and customers who want to buy a pet (non-professionals). Based on the research
of current existing solutions and business needs of the breeding stations, proposed
system will allow following:

Breeding stations:. to create an easy-to-make, visually appealing Internet presentation. to create a database of owned animals including their relationships to each other. to create individual profiles for each animal. to advertise the station/animals to potential buyers both from professional and non-
professional community

Customers looking for a pet:. to intuitively find all of the information about their potential pet. to easily contact owners of the pets and facilitate the buying process

Considering the idea behind the proposed system is to be proven right, there is a po-
tential for the system to become a standard for breeding purposes on an international
level.

1

Chapter 2
Analysis

The proposed system is going to serve as a proof of concept of dogs breeding station
content management system. Should the pilot be successful, business planning is to be
done as well as probable scope extension of the system.

2.1 Main Use Cases
Proper understanding of real-live use cases is the essential thing when it comes to cre-
ating any kind of a new system. The main idea is that the proposed system must deal
with the use cases in a smart unobtrusive way. Users must immediately fall in love
with the new system and it’s fresh functionalities because it is doing what they would
expect it to do in a clear, friendly way.

2.1.1 Puppies presentation

The use case of presenting puppies is fairly simple. The potential buyer gets to know
about certain breeding station by seeing the advertisement or some recommendation.
Now it is time for the breeder to deliver more information about the puppies he has
to offer to the buyer.

The best option for both sides is when the buyer is able to come over to breeder’s house
and see the whole litter along with the mother and also the environment that the pup-
pies will be raised in for two months. In this scenario the breeder can explain everything
the buyer needs to consider before buying one of the puppies. This case extremely well
solves the use case of tranfering the much needed information from the breeder to a po-
tential buyer. Unfortunately enough this option is not always feasible due to the dis-
tances and time cost of the whole process.

The Internet can certainly speed up the process. Since this paper describes the cre-
ation of a new web portal for now we will assume that the breeder doesn’t have any
website presentation on his or her own. 1) But he or she needs to present how adorable
the puppies are. A set of photos should solve the case. Most adopted way of sending
pictures via the Internet in the Czech Republic is by using the email. So he or she
sits down at the computer, selects the most recent photos, adds some comments about
each of the puppies’ characteristics. Estimated date of the offtake is also included
and the SEND button is pressed. The breeder is happy because he or she satisfied
the customer’s thirst for the information and it took him or her only couple of minutes.

While this way of doing things is definitely feasible it is not very cost effective. Consid-
ering the breeding station is a popular one and has a lot of puppies for sale throughout

1) When creating a new system it is always the best to start from scratch. Core functionalities solving
the use cases can arise more freely and be more accurate to the users’ needs.

2

. 2.1 Main Use Cases

the whole year the activity of sending emails becomes boringly repetitive and needless
to mention very time consuming. If only there was a way that would allow the breeder
to compose the information along with attached photos only once. This forms to a very
nice use case that the proposed system should handle.

Figure 2.1. Litter state planned.

A litter becomes reality even before a single puppy is born. Breeding is a bussiness
as any other hence some planning is required. The breeder knows mating times of all
his or her bitches. Although it might not be definite who the father of the litter will be
at the time of planning it does not really matter at this time fo the process. 1)

Requirement: Allow the user to make a planned litter with none, one or both parents
and estimated date.

Figure 2.2. Litter state current.

The puppies are just born. There is not much to tell about them at this stage because
they are simply too young. Perphaps except of their sex and color. The breeder still
wants to share the happy event with the world so he or she needs to be able to say
a few things about the litter along with the photo of the mother and her children sucked
in at her milk-giving breast.

Requirement: Allow the user to change the state of a litter to current.

Requirement: Allow the user to compose text information talking about the litter
as a whole as well as to attach pictures.

As the children get bigger and older the breeder needs to capture their weight, looks
and slowly morfing personality. There is also need to tell the world whether the puppy
is for sale, reserved or not for sale at all if the breeder decides to keep it.

Requirement Allow the breeder to set puppy’s state within the selling process:
for sale, reserved, sold, not for˜sale. All of the possible states are pretty much
self explanatory. Although special behaviour is observed when a child is sold. Until
then the breeding station is the owner of the puppy. But selling the puppy of course
means changing the ownership of the animal. Two situations can happen now. Either
the buyer is an owner of another breeding staition or he is a person having the dog
as a pet.

Requirement Allow the breeder to transfer the ownership of a puppy to either a breeding
station or a person.

Figure 2.3. Litter state archived.
1) Looking for a proper father will be further discussed in next section.

3

2. Analysis .
Everything goes well and all of the children are either sold or not for sale at all.
That means that the breeder can close the sellling phase and archive the litter.

Requirement: Allow the breeder to change the state of a litter to archived when all
of the children are either sold or not for˜sale.

The buyer might realize that purchasing a dog pet was not such a good idea and wants
to return it back to the breeding station. Or he or she does not want to pay the repay-
ments for it. As the breeder gets back the puppy in reality it also requires transfering
the ownership back to the original breeding station. Assuming the buyer is not capable
of doing it for whatever reason the breeder has to be able to do it.

Requirement: Allow the breeder to reclaim an ownership of already sold animal back
to his or her breeding station without requiring permition of the buyer.

Or the buyer decides that he or she will rather sell the unwanted animal to some other
person or breeding station.

Requirement: Allow the buyer to transfer an animal to another person or a breeding
station.

2.1.2 Choosing a Father for an Upcoming Litter

It is very important for the breeder to have the best matching male possible for the bitch
when it comes to mating. The genes play a huge role when deciding about the par-
enthood combinations. And of course the temporary spouses cannot be family related.
This all means that the breeder often needs to look around a bit for a proper male.

Usually there is a list of stud males available for mating purposes at the website
of the particular dog breed cynological club. There are two problems with this source
of information. Firstly, although the animal listing could contain some information
about the male dog it doesn’t offer the family structure of ancestors that the person
who looks for the proper dog would appriciate.

Secondly, to be enlisted in club’s website the owner needs to contact the organization
by himself and give them the necessary information along with a photo of the male dog.
Which is obviously redundant because he could simply have all the information just
in place at his or her breeding station website. Needless to say that he or she would
need not to forget about updating the dog’s information everytime the male gets a new
reward or wins prestigious show.

2.1.3 Keeping Animal’s Diary

There are two applicable use cases when keeping animal’s diary comes in hand. The first
case considers a buyer getting a puppy from a breeder. The happy buyer after some time
surely wants to show how the dog had grown up and is enjoying the family vacation
at the sea coast. So he sends an email describing the activity they had been doing
with some pictures attached. The breeder is also happy because he or she can see
that the animal is doing well. This positive feedback also happens to be the best content
for breeding station’s website. But now he needs to resize the photos so that they look
good on the website and also upload and edit the whole thing. If only there was a way
a buyer would be able to do the hard work of creating the content just once. And that is
exactly the purpose of keeping dog’s diary. Ideally the content then automatically
appears on the breeder’s website as a handy reference.

4

. 2.2 Related Work And Existing Systems

The second case is for breeder’s need of presenting the updates about the breeding
station. Usually the news section of a website is used for mentioning all the successes
the dogs had received at the shows. But then the information gets lost with the time
moving on. Needless to say it has no actual connection to the animal so anyone looking
at the dog’s profile is unnecessarily missing this information.

2.1.4 Having Complete Information about the Dog

Animal profile would not be complete without displaying the parents and a date of birth.

Requirement: Allow the breeder to set animal’s parents and a birthdate.

There could be quite a lot of various information that a breeder would like to insert
about the animal:.animal’s nature. it’s brief history. list of awards won. list of examinations passed

Requirement: Allow the breeder to create a general content describing the animal.

2.1.5 Keeping Track of Dog’s Descendants

The more an owner of a male dog is presenting at his or her website the better. The say-
ing “A picture is worth thousands words.” also applies in this situation. The owner
of a male is not able to keep the animal’s profile page up to date with recent photos
of it’s children.

Requirement: List all the children and litters on the animal’s profile page.

2.2 Related Work And Existing Systems
No complex solution has been found during the research that would solve all the uses
cases that the breeder is dealing with. Hence this section talks about the options
that each covers at least some of the use cases and is widely used amongst breeders
nowadays.

The outcome of this section should be that the proposed system would take the best
out of all the various options.

2.2.1 Advertisement Portals

There are two webportals 1), 2) in the Czech Republic that have the biggest market
share when it comes to publishing ads of animals for sale. The biggest advantage
of presenting the offer on such a site is that these sites tend to have great Search Engine
Optimization (SEO). The result of that is when a potential buyer searches for a puppy
using Google or any other search tool the advertisement webportal will typically be
on the first page of the search results which gives the seller some certainity that people
will find the puppy.

1) http://www.bazos.cz/
2) http://www.ifauna.cz/psi/inzerce/r/

5

http://www.bazos.cz/
http://www.ifauna.cz/psi/inzerce/r/

2. Analysis .

Figure 2.4. Advertisement Portal Item Example

On the other hand they both suffer from more or less the same bad approach for selling
children of animals. To put it simply a puppy is not like a chair. It grows with age.
It has got parents and siblings. All of that information could be easily lost within
one single advertisement. Additionally, with every site a breeder decides to publish
an advertisement on the amount of time the breeder needs to spend if keeping the photos
and information up to date increases.

The proposed system should make a big effort to accomplish the same great results
for it’s content to be displayed within the first pages in search engines. It should also
embrace the ease when creating the offer that comes with understandable interface
and clear form of filling the information.

2.2.2 General Content Management Systems

Since there is nothing like the proposed system the breeders tend to make use of general
content management systems. They usually come for free. They are great for creating
general content that does not change very often and does not have some sort of logical
structure. The problem is that these systems are not sufficient for breeders needs.

Breeders are forced to come up with their own consistent form of structuring the content.
Futhermore they have to stick with the created form and put a lot of time and energy
to keep the content nice and organized. It comes as no surprise that most of the breeders
are simply not capable of doing so.

6

. 2.2 Related Work And Existing Systems

Figure 2.5. General Content Management System Example

The lesson learnt here is that the proposed system should be free for all in some basic
version. It should also allow breeders to easily create content without having them
worry about the form that the content will be displayed in. The system will make sure
that all of the information a breeder had put in is consistent and well organized letting
the breeder stay focused on what is most important for him or her — the content itself.

2.2.3 Custom Made Website

Some breeders realize that having a professional web presentation is one of many things
that undoubtedly help the business. They have the website created with some sort
of custom content management system. But no breeder would go that far that he
or she would order and pay for creating a system with the functionalities as the proposed
system will have just for his or her single breeding station. In fact the breeder might
not even realize that he or she could benefit from such a system.

Figure 2.6. Custom Made Website Example

7

2. Analysis .
Breeders usually buy an internet domain along with a custom made web presentation.
The domain name reflects the name of the breeding station and acts as a form of pro-
fessionalism. The proposed system should also allow a breeder use own custom domain
or at least have some sort of Uniform Resource Locator (URL) branding in place.

2.2.4 Breeding Station Catalogues

There are couple of websites 1) 2) that try to collect all the breeding stations. They
usually provide a filter to sort the stations by breed or location. The breeding station
gets a chance to describe it’s activites as well as insert it’s contact information and some
pictures.

Figure 2.7. Breeding Station Catalogue Example

It is not really sufficient to use such a service as a full presentation of a breeding station
but could serve well when improving SEO by building backlink structure. It also might
bring some visitors to the owner’s website from such a service.

2.2.5 Animal Pedigree Catalogues

A pedigree database3) is only one use case solving service. It is missing an essential
context information about the animals. Furthermore a breeder needs to create the en-
try manually and make the animal information redundant since it is already present
on the breeding station’s website.

2.3 Requirements
Functional requirements describe what the system must do. They are derived from
the real-world user stories. Some were mentioned earlier in the Analysis chapter 2.
There is a complete list in the appendix B.

Non-functional requirements are often called qualities of a system. Those for the pro-
posed system are enclosed in the appendix C

1) http://www.celysvet.cz/seznam-chovatelske-stanice-psu.php
2) http://www.hafici.cz/psi/chovatelske-stanice-psu/
3) http://www.pedigreedatabase.com/

8

http://www.celysvet.cz/seznam-chovatelske-stanice-psu.php
http://www.hafici.cz/psi/chovatelske-stanice-psu/
http://www.pedigreedatabase.com/

. 2.4 Use Cases

2.3.1 Priorities of Requirements

The proof of concept nature of the proposed system tells us that the requirements
need to have priorities assigned because there is only limited time and resources avail-
able for the project. A Venn-diagram 2.8 style chart of the project triangle shows
visually the potential overlaps between speed, quality and low cost, along with the in-
ability to accomplish all three indicates the bottomline that the quality of the project is
the variable that will be shifted in time. As for the proposed system matters that boils
down to fewer requirements being implemented.

Figure 2.8. The project triangle as a “pick any two” Venn-diagram.

Fast refers to the time required to deliver the product, Good is the quality of the final
product, and Cheap refers to the total cost of designing and building the product. This
triangle reflects the fact that the three properties of a project are interrelated, and it
is not possible to optimize all three – one will always suffer.

2.4 Use Cases

As Craig Larman says in his book [1], a use case diagram is an excellent picture
of the system context; showing the boundary of a system, what lies outside of it,
and how it gets used. It serves as a communication tool that summarizes the behaviour
of a system and its actors.

The figure 2.9 shows the actors in the system. The Guest is just a random visitor.
The Admin is usually a breeder.

Figure 2.9. Actors in the system

9

2. Analysis .
In the following figures primary actors are located on the left side whereas supporting
actors are shown on the right side. The figures 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16
show the use cases for the breeding content management system. Models put together
related use cases. Each model consists of system boundaries and actors who are asso-
ciated with use cases. The use cases cover all the functional requirements and define
the relationships between the users and the system itself.

There is a complete scenario list in the appendix D.

Figure 2.10. Station use cases. Scenarios are appended in D.1

Figure 2.11. News use cases. Scenarios are appended in D.2

10

. 2.4 Use Cases

Figure 2.12. Links use cases. Scenarios are appended in D.3

Figure 2.13. Guestbook use cases. Scenarios are appended in D.4

11

2. Analysis .

Figure 2.14. Animal use cases. Scenarios are appended in D.5

Figure 2.15. Litter use cases. Scenarios are appended in D.6

12

. 2.5 Domain Model

Figure 2.16. Custom page use cases. Scenarios are appended in D.7

2.5 Domain Model

Domain model consists of classes and their attributes. Those are based on the important
verbs and nouns identified in requirements and use case work.

The figure 2.17 shows that the class Station is the essential one. Everything else is
tied to it. It also has got the 1:1 relationship with the User which represents a breeder
in the system.

13

2. Analysis .

Figure 2.17. Domain Model

14

Chapter 3
Software Design

3.1 Architecture

Each and every architecture facet solution has been examined with respect to recent
best practises and verified techniques.

3.1.1 Programming Language

Java1) has been chosen as a programming language because it is proven by the years yet
still claimed to be the fastest option [2] when it comes to server-side web applications.

As for the web framework, choice was Java Server Faces (JSF) framework with Prime-
Faces2) component suite. JSF provided the component-based approach and Prime-
Faces itself features 100+ rich set of JSF components. PrimeFaces also offers Asyn-
chronous JavaScript and XML (AJAX) partial rendering which is in combination with
component-based backing beans a very powerful weapon.

PrettyFaces library3) provided friendly URLs which is one of the non-functional re-
quirements.

3.1.2 Web Server

Apache Tomcat4) was chosen to act as a web server. It is open-source, simple, trans-
parent and low-resource demanding servlet container.

3.1.3 Database Layer

The requirements for the database system were speed, reliability and the possibility
of fast prototyping. NoSQL architecture satisfies all the needs. The leading document
database is MongoDB5) so it was chosen for the project. It supports indexes, replication,
auto-sharding, fast in-place updates, map/reduce and much more.

3.1.4 Security

Spring Security framework6) takes care of user authentication and authorization.

1) http://www.java.com/en/
2) http://www.primefaces.org/
3) http://ocpsoft.org/prettyfaces/
4) http://tomcat.apache.org/
5) http://www.mongodb.com/leading-nosql-database
6) http://projects.spring.io/spring-security/

15

http://www.java.com/en/
http://www.primefaces.org/
http://ocpsoft.org/prettyfaces/
http://tomcat.apache.org/
http://www.mongodb.com/leading-nosql-database
http://projects.spring.io/spring-security/

3. Software Design .
3.1.5 Hosting

Most of the resources alocated for the development of the proposed system must be
invested in implementing the features because a proof of concept is to be created. Thus
cloud hosting is very appropriate for the matter since the basic configuration is offered
for free and everything works out of the box.

Platform as a service (PaaS) is a category of cloud computing services that provides
a computing platform and a solution stack as a service. PaaS offerings facilitate the de-
ployment of applications without the cost and complexity of buying and managing
the underlying hardware and software and provisioning hosting capabilities.

Figure 3.1. Technologies used in implementation.

Heroku platform1) offers a huge variety of addons, a stack located in Europe, 512 MB
free memory plan and super easy git-push like deployment. All of that makes it perfect
for such prototyping.

3.1.6 Data Storage

Heroku only offers ephemeral filesystem2). For that reason a permanent filesystem so-
lution is required in order for the system to be able to store the pictures that users will
upload. Amazon S33) comes in hand with it’s 5 GB free storage and easy to use Applica-
tion Programming Interface (API). Amazon has also got servers in Ireland which makes
it latency wise convenient for users browsing in the Czech Republic.

3.1.7 Front-end Framework

Twitter Bootstrap4) has been utilized. It has got a very complete set of Cascading Style
Sheets (CSS) components. Unlike it’s competitors, it does not expect the developer
to understand underlying CSS perfectly, but tries to offer everything there is to easily
bootstrap a project.

1) https://www.heroku.com/
2) https://devcenter.heroku.com/articles/dynos#ephemeral-filesystem
3) http://aws.amazon.com/s3/
4) http://getbootstrap.com/

16

https://www.heroku.com/
https://devcenter.heroku.com/articles/dynos#ephemeral-filesystem
http://aws.amazon.com/s3/
http://getbootstrap.com/

. 3.2 Design Model

3.2 Design Model

Design model is created by applying the General Responsibility Assignment Software
Patterns (GRASP) to a domain model.

The getters and setters methods were left out in the figure 3.2. According to [3]
the model should try to achieve the utter clarity.

Figure 3.2. Design Model

17

3. Software Design .
3.3 Graphic Design

It is important to make sure the design is cleverly fabricated, as a flaw in design can
lead to a flaw in coding, which in turn can lead to a flaw in the system.

3.3.1 Layout

The analysis of current breeders websites revealed couple of important repeating ele-
ments and patterns. Those form a basic page structure.

Figure 3.3. Page layout wireframe

Top Menu

Visitors perceive top right corner of a webpage as a less important area that holds links
to static information such as guestbook or contact page.

The items in the menu are sorted in particular order which should reflect the timely
sequential steps that a visitor should take. Firstly he or she starts at About Us page
then continues through News and Guestbook finally reaching Contact Page.

Left Menu

The upper part of the left menu is where the important links usually are. It is also
a great place for dynamically created content since there is vertical space for any number
of items in the menu. This way the system will be able to properly display a menu with
all the pages about the animals in a consistent manner.

18

. 3.3 Graphic Design

Picture 3.3 shows that the most important content breeding animals is located
in the upper part of the left menu whereas sections past litters and custom pages
are located in the lower part.

Content Section

The entire layout is content centric based on the mobile first approach [4]. It says
the designer should take the advantage of progressive enhancement rather than ap-
plying graceful degradation as seen in the figure 3.4. This way the content is focused
on the most important elements. Since mobile phones have only small resolution display
which is a portrait mode (width smaller than height) the content is vertically linear.
The visitor is given the direction in which he or she should consume the content —
simply from the top to the bottom. He or she does not get distracted by less important
side elements.

Figure 3.4. Progressive Enhancement [5]

Second phase of the design is moving from mobile layout to desktop layout. The designer
now feels free because he or she has much more space to use. It does not work the other
way because if the designer starts with desktop layout and then proceeds to mobile
layout he or she feels sad simply because not everything from desktop layout can fit
to smaller size mobile screen.

But still the stress is put to keep the layout as clean and simple as possible so
that the visitor is not disctracted even when using desktop computer. In this manner
only left sidebar navigation menu is added in desktop mode. The vertically linear
approach is still persisted.

Footer Area

Footer section is composed of two parts. Firstly, upper part contains complete list
of breeding station pages as well as the contact information. It serves the visitor

19

3. Software Design .
as an overview and lets him decide where would he or she like to continue browsing.
Also having the contact information in the footer is essential since it is the fundamental
mean of communication between a potential buyer and a breeder and so it has to be
displayed on every page.

Secondly, the lower part of the footer contains information about the user session.
A breeder gets the option of signing in or out in this section. There are also links that let
visitor navigate throughout the entire system. One can create new breeding station
following the link in this section. That is very desirable behaviour since the proposed
system has to be self-promoting.

3.3.2 Public Pages

There is a list of all public pages the proposed system will serve in the appendix E.

Public pages are accessible without signing in. The speculation is that these will make
more than 95% of the traffic. The proposed system has to use as few resources as possi-
ble. That will ensure that the content is delivered to the visitor’s browser in the fastest
way. Such practises include:.No useless stylesheet and JavaScript files loaded..Only neccessary database requests..Properly designed database indexes..The smallest picture sizes transfered — no scaling down in the browser..Pictures stored in a cloud — ensures best possible latencies due to closest server

location.

The content consists of reusable elements. That solves two purposes. Firstly, a de-
veloper can take advantage of repeating elements and create reusable components
which means following the Don’t Repeat Yourself (DRY) principle thus producing less
code. Secondly, it also serves well the user because he or she can get acquainted with
the elements hence feel more comfortable browsing the website.

Each page has to be represented with meaningful URL. That way the visitor knows
where he or she is within the website or where he or she would be taken by clicking
on the link.

3.3.3 Admin Pages

There is a list of all admin pages the proposed system will have in the appendix F.
There is not that many of them as one would have expected thanks to the utilization
of inline editing features. Embracing this approach keeps the complexity of the website
at minimum although the system is complex and there is a lot of input required from
the breeder. He or she simply edits the information right where the information is
displayed which is practical and intuitive.

By putting the admin tools right along with the information itself the system makes use
of AJAX partial rendering. Let’s say the breeder wants to assign a father to an animal.
He or she accomplishes that by navigating to the animal’s profile page and then clicking
on the add father button. The website sends an AJAX request to the server and only
the area showing who the father is gets changed with the content just received from
the server that allows the breeder to assign the father. That way the interface feels

20

. 3.3 Graphic Design

like a native application due to it’s low latency. It is also payload efficient since only
the smallest portion of HTML code is transfered over the network.

Even stronger emphasis is put to reuse components in admin pages due to a bigger
complexity of the components. There are buttons and textareas and pop ups and more
buttons. The sooner gets the breeder familiar with the interface of the system the better.
Consistent reusable components definitely help.

3.3.4 Responsive Design

Responsive design is one that adapts to various screen sizes. For successful adapta-
tion the layout needs to change as well as font sizes, flow of elements and picture
sizes. The purpose is that the visitor must be able to comfortably consume and browse
the content no matter what device is at use.

Figure 3.5. Responsive Design Adaptation. [6]

There used to be a special mobile version of a website when the smartphones hit the mar-
ket not that long time ago but due to the wide diversity of screen sizes and resolutions
present in today’s technology marketplace, mobile versions are often no longer suffi-
cient in delivering optimal user experiences. Yet some services(e.g. Facebook) still use
a mobile version instead of fully responsive one.

The numbers supporting the need for mobile/tablet website version speak for them-
selves. Czech Statistical Office counted the internet use of mobile and tablet devices
in the Czech Republic in Q2 2013 to be 22,3% 1).The Monetate Q4 2013 Ecommerce
Quarterly 2) published February 2014 gives insight 3.6 on smartphone vs tablet vs
desktop share of audience for large Ecommerce brands.

1) http://www.czso.cz/csu/2013edicniplan.nsf/t/31002945B2/$File/97011338.pdf
2) http://monetate.com/research/

21

http://www.czso.cz/csu/2013edicniplan.nsf/t/31002945B2/$File/97011338.pdf
http://monetate.com/research/

3. Software Design .

Figure 3.6. Smartphone vs tablet vs desktop share of audience for large Ecommerce
brands. [7]

22

Chapter 4
Implementation

A diligent execution of the implementation phase is crucial for the proof of concept
nature of the system. The focus is set on the most important requirements with keeping
limited resources (manpower and time) in mind.

Every aspect needs to be though through cautiously in regards to the prototyping style
of the development. The goal is to get the quality “good enough” in terms of the number
of core requirements implemented as well as sufficient degree of implementation quality.

The article by James Bach [8] says: “The utilitarian view of quality is framed in terms
of positive and negative consequences. The quality of something should be consid-
ered good enough when the potential positive consequences of creating or employing it
acceptably outweigh the potential negatives in the judgment of key stakeholders.”

Figure 4.1. Cost analysis of just barely good enough.[9]

4.1 Encountered Problems and Solutions

4.1.1 Programming Language

At the beginning the developer tried the combination of SpringMVC framework with
Thymeleaf templating library1) but there were two things that he found really annoy-
ing. Firstly, Spring MVC is a request-based framework which in the end meant creating
endless amount of controllers. Secondly even worse, Thymeleaf has got no User Inter-
face (UI) components in it’s repertoire. Every UI element would have been implemented
from scratch which is not desired when the focus should be placed on fulfilling the re-
quirements in the shortest time.

Spring Data MongoDB2) provides an integration with the MongoDB document
database. Easy integration with Spring Context using annotations is possible. There

1) http://www.thymeleaf.org/
2) http://projects.spring.io/spring-data-mongodb/

23

http://www.thymeleaf.org/
http://projects.spring.io/spring-data-mongodb/

4. Implementation .
is for example feature “Automatic implementation of Repository interfaces including
support for custom finder methods.” which allows only defining the method such
as findByUrl in the code example in the figure 4.2 a) and injecting the automatically
created interface implementation into a service class using annotation 4.2 b).

a) b)

Figure 4.2. Spring Data MongoDB

4.1.2 Security

A password is stored in the database as a hash which is an encrypted sequence of char-
acters obtained after applying certain algorithms and manipulations on user provided
password. On the other hand saving the passwords into the database in it’s plain form
is considered unsecure because anyone who gets access to the database would be able
to see the passwords.

The problem today is that hardwares have become so fast that any brute force attack
using dictionary and rainbow tables can crack any password that has been hashed
by simple hash alghoritm. To solve this problem, general idea is to make the hash
function slow enough to impede attacks, but still fast enough not to cause a noticeable
delay for the user. This feature is essentially implemented using some CPU intensive
algorithms such as PBKDF2, Bcrypt or Scrypt. These algorithms take a work factor (also
known as security factor) or iteration count as an argument. This value determines how
slow the hash function will be. When computers become faster in future the work factor
can be increased to balance it out. The proposed system uses for hashing passwords
PBKDF2WithHmacSHA1 which is implementation of PBKDF2 algorithm in Java.

Authorization is more complicated because the standard approach when a user is autho-
rized upon successful login could not be employed because the user obtains admin role
only if he or she is the owner of the currently displayed breeding station.

4.1.3 File Upload

Pictures is the only file content that users are allowed to upload. The maximum size
for the file is 10 MB and only ten pictures can be uploaded at once. Pictures get
uploaded to the system running on Heroku. Each picture is then downsized to 640 pixels
and 145 pixels thumbnail version. Both pictures are transfered to Amazon S3 Storage
placed into a breeding station’s folder having an unique name.

24

. 4.1 Encountered Problems and Solutions

4.1.4 Autosuggest PrimeFaces Component with Diacritics

It is essential for Czech users to be able to type the words without the diacritics but
match corresponding words containing diacritics.

At the time of the implementation the possibility to provide own JavaScript function
for matching the suggested words in the PrimeFaces’ SelectOneMenu component was
broken. The easiest workaround was to replace PrimeFaces’ method that had not been
utilized with custom method as you can see on the first line in the figure 4.3.

Figure 4.3. Autosuggest JavaScript matching with diacritics

There is the result of the implemented function in the figure 4.4. It matches the words
typed without diacritics to the ones with diacritics as well as the other way around.

Figure 4.4. Autosuggest frontend component

25

4. Implementation .
4.1.5 JSF Composite Components

JSF composite components have been utilized in order to follow the Don’t Repeat
Yourself (DRY) principle . There is a litter component in the figure 4.5. It takes
the cz.cilf.chs.d.Litter object as a required parameter and displays a litter header,
a list of children and a litter detail link.

Figure 4.5. JSF composite component

4.1.6 Markdown Support

It is always a good practise to offer an advanced functionality for more experienced
users. That is the reason why Markdown support has been implemented. Users can
take advantage of it while creating the post or page content. Upon saving the inserted
text content the HTML is stripped for security reasons. The PegDownProcessor1)
includes various plugins such as support for tables or automatic links creation.

1) https://github.com/sirthias/pegdown

26

https://github.com/sirthias/pegdown

. 4.1 Encountered Problems and Solutions

Figure 4.6. Markdown support beans

4.1.7 Maven Spring Dependencies

There is an issue with integrating Spring Security using Maven with the latest release
of Spring Framework. Spring Security has transitive dependency on Spring version 3.2.6
but in the system there is already defined Spring version 4.0.0. Version mismatch can
and will cause a lot of trouble in compile time as well as runtime.

To solve this issue Spring BOM (Bill Of Materials) is utilized. A BOM dependency keeps
track of version numbers and ensures that all dependencies (both direct and transitive)
are at the same version. An added benefit of using the BOM is that you no longer need
to specify the version attribute when depending on Spring Framework artifacts.

There is a part of pom.xml regarding the spring dependencies in the figure 4.7.

Figure 4.7. Maven Spring dependencies

27

4. Implementation .
You can see the transitive dependencies of Spring Framework 4.8, Spring Data Mon-
goDB 4.9 and Spring Security 4.10 in the diagrams below.

Figure 4.8. Maven Spring core transitive dependencies diagram

Figure 4.9. Maven Spring Data MongoDB transitive dependencies diagram

28

. 4.1 Encountered Problems and Solutions

Figure 4.10. Maven Spring Security transitive dependencies diagram

4.1.8 Pedigree Recursive Construction

The animal profile page offers a possibility to display an animal’s pedigree. There
is a bean responsible for constructing the pedigree in the figure 4.11. It recursively
traverses the ancestors tree until the depth reaches the NUMBER_OF_ANCESTORS constant.

29

4. Implementation .

Figure 4.11. Pedigree recursive construction

4.1.9 PrettyTime Integration

Showing the relative date instead of the absolute one is very popular these days.
The PrettyTime1) library is used to provide such functionality. In the figure 4.12
is an example of JSF usage. The figure 4.13 shows the frontend result of a guestbook
post saying “před chvílí” which means “moments ago” in English.

Figure 4.12. PrettyTime JSF integration

Figure 4.13. PrettyTime frontend result

4.1.10 PrettyFaces Integration

One of the non-functional requirements states that the system has to have nice URLs.
There is no native support for this functionality in JSF framework. That is why Pret-
tyFaces library has been utilized. PrettyFaces offers configuration in XML or using
annotations.

There is a guestbook bean in the example 4.14. You can see the annotation
@URLMapping having id key which equals to mappingId used for creating links

1) http://ocpsoft.org/prettytime/

30

http://ocpsoft.org/prettytime/

. 4.1 Encountered Problems and Solutions

as in the figure 4.15. The pattern key is the url that it would match and the viewId
points to the JSF file that will be displayed.

Figure 4.14. PrettyFaces and managed bean

A link component from pretty namespace is used in order to create a link. It takes
the mappingId and necessary parameters to build the URL. This way of construct-
ing URLs gets convenient because the URL pattern itself is only defined in the bean
annotation.

Figure 4.15. PrettyFaces JSF link component

4.1.11 Spring Beans View Scope Support

JSF framework offers very convenient view lifetime bean scope. The bean with such
a scope gets created when a user enters a certain URL and gets destroyed when he
or she leaves to another URL. Most of the PrimeFaces components are AJAX based.
When a component makes an AJAX Postback (performs a POST request to the very
same URL) the bean does not get destroyed thus it is able to keep it’s state for these
future AJAX requests.

Since Spring Data MongoDB has been utilized it was necessary to autowire the Spring
annotated services into the beans which in the end meant using the Spring autowiring
mechanism and Spring beans altogether. But Spring does not have a view bean scope.
The figure 4.16 shows a custom implementation of the view scope for Spring beans
and it’s integration 4.17 in the spring context XML descriptor.

31

4. Implementation .

Figure 4.16. Spring beans view scope implementation

Figure 4.17. Spring view scope integration (spring-application-context.xml)

4.2 State Diagrams

Litter child states diagram in the picture 4.18 shows the states the animal can get
within a litter which state is for sale.

32

. 4.2 State Diagrams

The child is added as born which gives a breeder the time to decide if he or she would
like to keep the animal or not.

Figure 4.18. Litter child state diagram

An animal becomes active either upon creating, or by archiving the litter in which
the animal has been born.

An animal is moved to Retired section of the website once it gets the state retired.
Similarly the animal transfers to the section In Memory upon dying.

Figure 4.19. Animal state diagram

The section For Sale of the website shows adult animals with for sale state and lit-
ters with planned and for sale states. Otherwise the section becomes empty.
That should guide the breeders to create litter ahead with the state planned so
that the most important part of the website does not get empty.

A planned litter can have none, one or both parents. A first child can only be added
if both parents are assigned. The litter becomes for sale upon adding the first child.

The breeder is allowed to archive a litter once all of the children get not for˜sale
or sold state. Upon archiving the litter is moved to Past Litters section of the web-
site.

33

4. Implementation .

Figure 4.20. Litter state diagram

All of the constraints introduced in the figures above should help the breeder follow
a logical path of managing litters.

4.3 Database Model

There are no M:N relationship tables in the model 4.21. MondoDB is NoSQL database
also known as schemaless, and therefore the one-to-many or many-to-many relation is
stored the same way as in Java objects. The object (document) would contain the array
of either foreign keys or documents as for example in the figure 4.22 there is a Picture
object acting as a profilePicture attribute. The biggest advantage is that there is
only need to access one collection (= table in SQL world) to retreive one document
with all the information. The only limitation is the 16 MB limit per document.

Every time there is an aggregation used in the model 4.21 it actually means that the tar-
get object lays within the source object. Again the profilePicture in the figure 4.22
is a perfect example.

34

. 4.3 Database Model

Figure 4.21. Database model

There is an example of a MongoDB animal document in the figure 4.22. On the left
side a) there is a representation of the document in MongoVUE1) explorer whereas
on the picture b) there is an actual JavaScript Object Notation (JSON) object as it is
saved in the database.

The _id key is primary key automatically generated by MongoDB database server and it
is unique within the database. The _class key is a reference to the type of serialized
Java class generated by Spring Data MongoDB2). The sex, breed and state keys are
ids of Java enumerations.

1) http://www.mongovue.com/
2) http://projects.spring.io/spring-data-mongodb/

35

http://www.mongovue.com/
http://projects.spring.io/spring-data-mongodb/

4. Implementation .

a) b)

Figure 4.22. MongoDB animal document

4.4 Screenshots
The left bar menu in the figure 4.23 is generated by the system depending what content
the breeder had put in. The background image has been chosen to suit properly the dog
breeders’ business. On the other hand, it had to be general enough to go well with all
the possible breeds and look elegant yet professional.

Figure 4.23. Desktop About Us page screenshot

The left bar menu and top right menu are shrinked to a button in the mobile version
as you can see in the figure 4.24. In the b) picture there is a left bar menu animated
to the screen upon clicking the top left button in the header. However, the left bar
menu contains the same items as the footer does so the user can actually choose what
navigation flow he or she prefers.

36

. 4.4 Screenshots

The picture 4.24 nicely shows the mobile first approach being utilized. The user does
not get distracted while browsing. When he or she reaches the end of the page there is
a convenient footer section which gives him or her plenty of options to continue browsing
so that the user should not get lost.

Lastly, it is very important to show the contact information on every page because it
should serve for the user as a main mean of getting in touch with the breeder.

a) b)

Figure 4.24. Mobile About Us page screenshot

The figure 4.25 shows the top right menu being displayed upon clicking on the top right
menu button. It adapts to all small and medium sized devices.

37

4. Implementation .

Figure 4.25. Responsive menu screenshot

The top bar is sticky as you can see in the figure 4.26. That is convenient for two reasons.
Firstly, the header shows the name of the breeding station. Having the name visible all
the time should assure the user of his or her whereabouts. Secondly, since the header
is glued to the top edge of the screen the user can click on any of the menu buttons
at any time which makes it easier for him or her to browse the pages and possibly find
the information he or she is looking for faster.

Figure 4.26. Sticky top bar screenshot

38

Chapter 5
Deployment

The model in the figure 5.1 shows the basic overview of the system structure.

Figure 5.1. Deployment model

Deployment steps:
1. After a feature is completed the unit tests run in the development environment.
2. If the unit tests pass the feature is deployed to the staging environment.
3. Selenium tests run in the staging environment.
4. If the selenium tests pass the feature is deployed to the production environment.

Figure 5.2. Deployment Schema

These steps are performed manually as of now simply because it is sufficient enough but
for the future the plan is to use some sort of continuous integration system which would
automatically trigger next step if the tests in the current step run successfully.

39

5. Deployment .
The development environment is a computer which uses a local database.

The staging environment is an application hosted by Heroku cloud platform. It has got
it’s own database and Amazon S3 bucket for uploaded pictures. This environment has
to be identical to the production one in order to achieve proper simulation of testing
conditions.

40

Chapter 6
Testing

The sooner the bug is identified, the cheaper it will be to fix the problem. The cost
of fixing a bug can be represented by something around a logarithmic function, where
the cost can increase by more than 10 times as the project progresses through the phases
of the software development life cycle. That is the reason why it is so important
to validate and verify the outcome of each phase of the life cycle.

Figure 6.1. Cost to fix a bug [10]

The two terms validation and verification are often confused but understand-
ing the difference is substantial. Validation asks the question “Are we building
the right product” thus ensures that the product actually meets the user’s needs,
and that the specifications were correct in the first place. Whereas verification
on the other hand asks “Are we building the product right?” thus ensuring
that the product has been built according to the requirements and design specifi-
cations.

Another aspect of testing is proper test suites arrangement. The Y axis in the figure 6.2
shows the amount of the execution time each test suite should take as well as the ratio
of automatization. The unit tests should be fully automated while UI tests are more
or less considered as manual labour.

41

6. Testing .

Figure 6.2. Testing Triangle [11]

There is a strong correlation between the number of the tests and the cost of the execu-
tion. The unit tests are very cheap to execute which makes them suitable for running
as much as possible.

Each test suite is executed at different time of the software development life cycle
which is described in the Deployment 5 section.

6.1 Unit Testing

A unit is usually a method or a class. A unit test serves as a mean of verification
that the particular unit is bug free. The goal is to discover the bugs as early as possible
reducing the cost of repair to minimum.

The main emphasis has been put to test the service classes since they basically are
the moving parts of the system. The coverage can be seen in the table 6.1.

Package Class, % Method, % Line, %
beans 33%(11/33)27%(101/370)39%(523/1348)
domain 72%(16/22)40%(123/306) 67%(610/910)
orm 100%(3/3) 100%(7/7) 96%(23/24)
security 25%(1/4) 7%(1/14) 4%(1/23)
service 92%(12/13) 84%(76/90) 80%(259/320)
spring 0%(0/1) 0%(0/6) 0%(0/15)
utils 44%(4/9) 35%(13/37) 50%(73/145)
validator 0%(0/1) 0%(0/2) 0%(0/7)

Table 6.1. Unit tests coverage.

The figure 6.3 shows the DRY principle in practise. We need to test the function
that takes care of creating URLs from names. Instead of writing test case for each input
and expected output we code only one testing method and pass the array of inputs /
outputs as a parameter.

42

. 6.1 Unit Testing

Figure 6.3. Parameterized unit test

In the figure 6.4 is displayed how the result of the above test looks like when run
in IntelliJ IDEA Integrated Development Environment (IDE).

Figure 6.4. Result of a unit test

6.1.1 Test Driven Development

Test driven development is a software development process that relies on the repetition
of a very short development cycle consisted of first writing the test and then implement-
ing the only relevant code to make the test pass. It lets the developer to test the yet
to be implemented unit’s API helping him or her discover the possible design problems
even before writing a single line of code implementation. All of that should afterwards
lead to better code structure.

43

6. Testing .
After the first paragraph a utilization of the test driven development may seem as a must
do while programming but there is a big downside to it as well. It is time consuming
as any other coding and for that reason TDD was not employed while developing
the system.

Due to the nature of a rapid prototyping method the developer needs to focus on fast
delivering features. But while implementing a feature the developer might discover
that the architecture he or she has chosen is inappropriate thus being forced to throw
away some of the code he or she has already coded and that becomes extremely painful
when there is also unit tests code included.

6.2 Integration Testing

Selenium tests run in the staging environment. Their goal is to verify that the system
behaves correctly. They do so by following a predefined list of steps simulating a user
interaction in the browser.

The test suite has been composed following the same scenario (appended in G) that has
been used during the usability testing. The steps taken should verify all of the crucial
functional requirements.

There is a result of selenium test run in the figure 6.5 executed in Firefox extension
Selenium IDE1). There is one noticeable thing. The HTML elements could not be tar-
geted by the ID attributes because JSF by the specification generates the ID attributes
according to the position in the component tree. Adding a single HTML element be-
fore the targeted control element later in the development would result into the need
of reworking the selenium test case. That is why relative XPath selecting has been
utilized.

The command waitForElementPresent is necessary because the form for setting
the birth of date is loaded via AJAX. If the command was omitted the test case would
fail because the Selenium IDE would not be able to immediately type the date 1.1.14
into the //span/input.

Figure 6.5. Selenium test run 1st part

1) http://docs.seleniumhq.org/projects/ide/

44

http://docs.seleniumhq.org/projects/ide/

. 6.3 Stress Testing

In the last test case in the figure 6.6 there is a verification that the system redirected
the user to the index page upon station deletion. It also checks that the user has been
logged out by verifing the link for the login page being present.

Figure 6.6. Selenium test run 2nd part

The system is ready to be deployed to the production environment upon successful
selenium test suite run.

6.3 Stress Testing
A five minute stress test was carried out by Load Impact1) service. The figure 6.7 shows
the results. The green line shows how active clients were added throughout the test.
The heroku server does good job scaling up the performance under stress.

Figure 6.7. Stress Testing Chart

The For Sale page has been selected for the test for two reasons. Firstly, it is the most
important page on the website. Secondly, it represented well an average page of the web-
site since it is consisted of both animals and litters hence the database was put to test
as well as Amazon S3 bucket which served the uploaded animals’ pictures.

1) https://loadimpact.com/

45

https://loadimpact.com/

6. Testing .
Heroku cloud platform and it’s free plan has been proven to satisfy the stress load needs
which the proof of concept system will experience in the future.

Moreover, there always will be the possibility to easily scale up the performance if ever
the load needs significantly increase.

6.4 Usability Testing
A usability testing is a powerful technique of verification that the members of the target
audience are able to make the system work for them in the way it is supposed to based
on the identified functional requirements.

6.4.1 Principles

Will Dayble explains in his talk [12] some of the most fundamental principles that should
be followed when delivering flawless user experience. He makes a good point when
making the analogy of a drunk user. He points out that a drunk person requires
a guidance, gets distracted easily and needs to be reminded more times of the same
thing. All of that also applies to the Internet users.

Lukáš Marvan gave a great presentation [13] about User Experience (UX) testing. He
sums up the most important aspects of usability testing:.The respondent needs to feel comfortable..Refreshments should be available..The scenario should ideally form into a story..The respondent should always share his or her thoughts..The test is about the product, not the respondent.

6.4.2 Hypothesis

The respondents should be able to follow the testing scenario and complete all
of the steps.

6.4.3 Testing

The developed system has been usability tested by three members fitting the target
audience 16-50 age range both male and female animal breeders. Both persons have
had some experience with creating the Internet content regarding their breeding station.
During the testing the appended scenario G was followed.

Only three respondents were asked to participate in the testing because similar testing
outcomes were observed in both cases. Doing more testing of the exact UI would not
be cost effective.

The testing scenario was created so it would verify the most important functional
requirements. Firstly, the testers were asked to browse through breeding station pre-
sentation simulating a potential buyer behaviour. That involved finding the for sale
section, locating the profile of an animal of their interest and finally finding the contact
information. The detailed list of steps is described in the Public Pages Usability Testing
appendix G.1.

46

. 6.4 Usability Testing

Secondly, the testers were told they liked the platform and fancied creating their own
presentation. There is a list of detailed steps in the appendix G.2. Before each step
they were told the motivation behind the action they were about to take. They started
by creating the breeding station followed by filling in some text in the About Us page.
Contact information was also demanded to insert.

They went on by creating their first animal, setting a planned litter and adding some
children to it. They also experienced the process of changing the state of a child
in the litter as well as a final sale of all the children followed by archiving the litter.

Lastly, the testers were told to create some content using the custom pages feature
and also to put some links in the Links page.

6.4.4 Results

All three respondents were able to successfully finish the presented scenario.

In the first part examining the public profile they found the relevant information pretty
quickly and without any hesitation. The section For Sale is logically placed in the up-
per part of the left menu. The contact information is displayed on every page at the bot-
tom in the footer area where the visitor acknowledges it even before he or she needs it.
Hence the assumptions made during the Design Proposal phase were confirmed.

The admin interface seemed to be more difficult to handle. Parts like breeding station
creation or filling in the contact information were proven to be fine. The assumption is
that the respondents have not struggled because they have already used similar forms
in their lifetime.

However, the animal and litter creation became more difficult to execute. The respon-
dents were confronted with UI components that they have never seen anywhere else
before. It is due to the fact that the components were designed to solve the particu-
lar use case in the most sophisticated manner creating a room for possible confusion
as a result of unfamiliarity.

Step #times occuredProblem Severity
11 2 Was unable to create a custom page. Critical
12 2 Was unable to create a link. Critical
4-2 2 Closed the uploading pictures dialog before the pictures got uploaded. Serious
5-2 2 Did not use the selection menu for existing animals. Serious
5-4 2 Did not use the diary feature when creating content for a child. Serious
3 1 Did not follow the watermarked pattern for mobile phone number. Minor
11 1 Deleted chars “=” acting as a underline for the markdown heading. Minor
3 1 Filled in the street name without the house number. Minor
12 1 Filled in a text with diacritics in the URL field. Minor

Table 6.2. Severity levels of usability problems report

Another misconception has been observed when the respondents were asked to create
a custom page. The system requires the user first to create a group for the page so
that the link to the page could be properly categorized in the left menu. The testing
showed that the respondents were confused about the group necessity which in the end
forbade them to create the custom page at all.

47

6. Testing .
The same behaviour was observed in the Links page. A better approach is proposed
which would automatically create a general group for the first couple custom pages
and let the breeder reorganize the custom pages later if he or she feels like it.

Overall, the respondents liked the system and showed interest in using it when it gets
released.

48

Chapter 7
Static Code Analysis

In this chapter we talk about source code statistics. Source code line stats were in com-
bination by IntelliJ IDEA Statistic plugin1) and SonarQube platform2).

The number of comment lines in table 7.1 might seem very low (below 1%), but
as Robert C. Martin says [14] “The proper use of comments is to compensate for our
failure to express ourself in code.”

Language Total Blank Lines Comments
Java 8051 1591 57
HTML (JSF) 3539 755 6

Table 7.1. Source code statistics

The numbers in table 7.2 were gathered using the Sonar tool. The complexity of Java
code is computed following these rules:.Keywords and operators increasing the complexity: if, for, while, case, catch,

return (not being the last command), &&, ||, ?..Keywords that do not increase complexity: else, default, finally..Getters and setters do not count as methods hence they do not increase the com-
plexity.

Code stats Complexity Duplications
101 classes 1.7 / method 0.7%
9 packages 9.0 / class 57 lines

542 methods 9.4 / file 4 blocks

Table 7.2. Java code statistics

1) http://plugins.jetbrains.com/plugin/4509
2) http://www.sonarqube.org/

49

http://plugins.jetbrains.com/plugin/4509
http://www.sonarqube.org/

7. Static Code Analysis .
Static code analysis available in IntelliJ IDEA IDE1) has been utilized. It offers over
600 automated code inspections [15] such as.Finding probable bugs.Locating the “dead” code.Detecting performance issues. Improving code structure and maintainability.Conforming to coding guidelines and standards.Conforming to specifications

All of these mentioned above were used during the development which resulted in higher
code quality.

50

Chapter 8
Future

The proposed system is a proof of concept a.k.a prototype or pilot. It serves the purpose
of finding out whether the service provided by the system would be useful to the target
audience.

8.1 Scope Extension
The system is available only in the Czech Republic meaning that there is only one
.cz internet domain running and only czech mutation was prepared. On the other
hand the service is ready to expand and it is only matter of resources to translate
texts and prepare additional set of internet domains. Since the system is just a proof
of concept the resources available for the project have been spent on proving the concept,
not scaling it to different areas.

The prototype is only considering dog breeders but the inner parts of the system are
ready for handling more creatures. The plan is to add the creatures one by one because
there needs to be some customization done for each individual creature.

8.2 Additional features
The use case is fairly simple. Let’s say an average family decides to buy a puppy.
Nowadays they can either browse through advertisements or use a search engine looking
for “chihuahua puppies for sale in prague”. But that is exactly all the information our
system has to offer.

There could be a search component created. A visitor can filter puppies by breed
and location of the breeding station having the results shown in a nice friendly way
either on a map or in a list sorted by distance of the breeding station or for example age
of the puppy. This feature becomes extremely powerful if the service spreads globally
since a user (client) would be able to easily find the animal just across the borders.

8.3 Monetization
The service aims to be profitable in the future. The eventual profit might come in a long
run since more functionality might be needed providing the prototype gets successful.

One way of making money could be via advertisements since the visitors will be mostly
interested in a particular animal breed which can lead to great targeting options for po-
tential advertisers.

Freemium Strategy might also be introduced which would offer more functionality
for paying breeders.

51

8. Future .
8.4 No Success Prediction

There is a book about good decisions in life and work[16]. In the chapter “Pre-
pare To Be Wrong” Chip Heath and Dan Heath introduce a study which talks about
the prospective hindsight approach. It shows that when one tries to come up with
reasons for an event that might happen in the future it is better to take the prospective
hindsight approach and ask the other way around. Instead of thinking why the system
would not succeed in the future the question is “It is one year after releasing the service
to the public and the system is a total failure. Why hasn’t it succeeded?”. It forces us
to fill in the blanks between today and a certain future event which feels a bit more
concrete, offering firmer cognitive footholds.

Taking prospective hindsight approach here is a list of couple reasons why the ser-
vice may not succeed:.A similar service will emerge. One that will be more sophisticated and possibly

a duplication of the system..Breeders will find the system hard to use due to it’s complexity..The system will fail to satisfy one or more non-functional requirements which will
result in driving away breeders and visitors.

Having such a list of possible reasons of failure will help to plan for the future.

52

Chapter 9
Conclusion

The analysis showed that there is a market opportunity for the Animal Breeders Content
Management System service. The implemented system has yet to prove the concept.

The system has been designed and implemented in a fast prototyping way. On the other
hand, the stress has been put to develop reusable code which would lead to the possi-
bility of faster delivering the additional features.

The service is thoroughly tested embracing unit tests and integration tests which will
result in significantly minimizing the downtime of the service.

As of now the system works flawlessly in the staging environment. The project will
be released to the public later this year when all of the necessary business aspects are
taken care of.

53

References

[1] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. Prentice Hall, 2004, 2000.
ISBN 9780131489066.

[2] Serdar Yegulalp. Surprise! Java is fastest for server-side Web apps, 2013.
http://www.infoworld.com/t/java-programming/surprise-java-fastest-server-
side-web-apps-230565.

[3] Ing. Jiří Mlejnek. Návrh - návrhové třídy a vzory, 2011. Katedra softwarového
inženýrství, FIT, ČVUT.
https://edux.fit.cvut.cz/oppa/BI-SI1/prednasky/BI-SI1-P06m.pdf.

[4] Luke Wroblewski. Mobile First. A Book Apart, 2011. ISBN 978-1-937557-02-7.

[5] Brad Frost. Mobile-First Responsive Web Design, 2011.
http://bradfrostweb.com/blog/web/mobile-first-responsive-web-design/.

[6] Nitin Hayaran. Vertically Responsive Design : Keeping Things Above The Fold,
2013. 23Spaces.
http://www.nitinh.com/2013/03/vertically-responsive-design-keeping-things-
above-the-fold/.

[7] Danyl Bosomworth. Mobile Marketing Statistics 2014, 2014.
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/
mobile-marketing-statistics/.

[8] James Bach. The Challenge of ”Good Enough” Software, 1995, 2003.
http://www.satisfice.com/articles/gooden2.pdf.

[9] Scott W. Ambler. Just Barely Good Enough Models and Documents: An Agile Best
Practice, 2005-2014.
http://www.agilemodeling.com/essays/barelyGoodEnough.html.

[10] Arthur Minduca. Quality assurance in software development: When should you
start the testing process?, 2014.
http://arthurminduca.com/2014/03/07/quality-assurance-in-software-development-
when-should-you-start-the-testing-process/.

[11] Allan Kelly. Testing triangles, pyramids and circles, and UAT, 2013.
http: / / allankelly . blogspot . cz / 2013 / 05 / testing-triangles-pyramids-and-
circles.html.

[12] Will Dayble. The User Is Drunk, 2013. Squareweave.
https://www.youtube.com/watch?v=r2CbbBLVaPk.

54

http://www.infoworld.com/t/java-programming/surprise-java-fastest-server-side-web-apps-230565
http://www.infoworld.com/t/java-programming/surprise-java-fastest-server-side-web-apps-230565
https://edux.fit.cvut.cz/oppa/BI-SI1/prednasky/BI-SI1-P06m.pdf
http://bradfrostweb.com/blog/web/mobile-first-responsive-web-design/
http://www.nitinh.com/2013/03/vertically-responsive-design-keeping-things-above-the-fold/
http://www.nitinh.com/2013/03/vertically-responsive-design-keeping-things-above-the-fold/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.satisfice.com/articles/gooden2.pdf
http://www.agilemodeling.com/essays/barelyGoodEnough.html
http://arthurminduca.com/2014/03/07/quality-assurance-in-software-development-when-should-you-start-the-testing-process/
http://arthurminduca.com/2014/03/07/quality-assurance-in-software-development-when-should-you-start-the-testing-process/
http://allankelly.blogspot.cz/2013/05/testing-triangles-pyramids-and-circles.html
http://allankelly.blogspot.cz/2013/05/testing-triangles-pyramids-and-circles.html
https://www.youtube.com/watch?v=r2CbbBLVaPk

. .
[13] Lukáš Marvan. Testování použitelnosti prakticky, 2011. AVG Technologies.

http://pt.slideshare.net/BoBMarvan/testovn-pouitelnosti-prakticky.

[14] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall PTR, 2008. ISBN 9780132350884.

[15] IntelliJ IDEA Team. IntelliJ IDEA How-To: Static Code Analysis, 2013. JetBrains.
http://www.jetbrains.com/idea/documentation/static_code_analysis.html.

[16] Dan Heath Chip Heath. Decisive: How to Make Better Choices in Life and Work.
Crown Business, 2013. ISBN 9780307956392.

55

http://pt.slideshare.net/BoBMarvan/testovn-pouitelnosti-prakticky
http://www.jetbrains.com/idea/documentation/static_code_analysis.html

Appendix A
Abbreviations

AJAX Asynchronous JavaScript and XML is a group of interrelated Web de-
velopment techniques used on the client-side to create asynchronous Web
applications.

API Application Programming Interface specifies how some software com-
ponents should interact with each other.

CSS Cascading Style Sheets is a style sheet language used for describing
the look and formatting of a document written in a markup language.

DRY Don’t Repeat Yourself is a principle of software development aimed
at reducing repetition of information of all kinds.

GRASP General Responsibility Assignment Software Patterns consists of guide-
lines for assigning responsibility to classes and objects in object-oriented
design.

HTTP The Hypertext Transfer Protocol is an application protocol for dis-
tributed, collaborative, hypermedia information systems.

IDE An Integrated Development Environment is a software application
that provides comprehensive facilities to computer programmers for soft-
ware development.

JSF JavaServer Faces is a Java specification for building component-based
user interfaces for web applications.

JSON JavaScript Object Notation is an open standard format that uses
human-readable text to transmit data objects consisting of at-
tribute–value pairs.

PaaS Platform as a Service is a category of cloud computing services that
provides a computing platform and a solution stack as a service.

SEO Search Engine Optimization is the process of affecting the visibility
of a website or a web page in a search engine’s natural or un-paid
(organic) search results.

UI The User Interface is the space where interaction between humans
and machines occurs.

URL A Uniform Resource Locator is a specific character string that consti-
tutes a reference to an Internet resource.

UX User Experience involves a person’s behaviors, attitudes, and emotions
about using a particular product, system or service.

XML Extensible Markup Language is a markup language that defines a set
of rules for encoding documents in a format that is both human-readable
and machine-readable.

57

Appendix B
Functional Requirements

B.1 Implemented
1. System must let user manage his account.

1. System must let user create a station.
2. System must let user delete the station.
3. System must let Individual user register using the link provided in a notification

email received when buying an animal.
4. System must let user sign in.

2. System must let user fill in About Us page content.
3. System must let user manage entries in the News page.

1. System must let user fill in date, title, text and pictures.
4. System must let user manage links in the Links page.

1. System must let user fill in URL and title.
5. System must let anonymous users leave a post in Guestbook.

1. System must let anonymous user fill in name, email, link and text; fields name
and text are mandatory.

2. System must let admin of a station leave a reply to a post.
3. System must let admin of a station modify or delete a post.

6. System must let user fill in contact information about the Station.
1. System must let user fill in: Station name, FCI organization number, street, zip

code, city, country, GPS, owner’s name, phone number, email.
2. System must provide Contact Page with a map of Station’s location.
3. System must let user insert HTML Content after the contact info.

7. System must let user manage animals.
1. System must let user create an animal which s/he owns.

1. System must let user select a breed.
2. System must let user fill in animal’s name.

2. System must let user create and modify an animal which s/he doesn’t own only
for a litter parenthood purposes.
1. System must let user only insert or modify name, profile picture and pedigree

related information.
3. System must let user set animal’s state to Retired(not for breeding anymore).
4. System must let user set date of death of an animal.

58

. B.2 Not implemented

5. System must let user delete an animal only if there’s no relationship in the system
to it.

6. System must let user upload animal’s profile picture.
8. System must let user manage litters.

1. System must let user create a litter.
1. System must let user choose dom and dad (create if non existing).
2. System must let user fill in (expected) date of birth.

2. System must let user manage children in a litter.
1. System must let user change the state of an Animal (just born, for sale, reserved,

sold, not for sale).
2. System must let user transfer the ownership of a child.

1. to another station.
2. to individual person who will create an account if s/he has got none.

3. System must let user delete a litter.
9. System must let user manage custom pages content.

10. System must provide a double footer.
1. Upper part holds info about station.
2. Bottom part holds info about the system.

11. System must provide appropriate error pages (404, etc.)

B.2 Not implemented
1. System must let user insert infinite number of warnings.

1. Each warning can point to any user created page.
2. Warnings are shown one at a time in random order at the top of the page.
3. System must provide automatic warnings for litters for sale.

2. System must provide every page with an appropriate call to action element.
3. System must provide RSS feed with recent changes.

1. System must provide updates for custom page content changes, new litter, new
animal, new page, contact information changes.

4. System must let user change his password.
5. System must provide a wizard to help a user get acquainted with the system functions.
6. System must give user to the option of remembering him or her on the computer.
7. System must send an email notification to the anonymous user about the reply

in the guestbook with a link to the reply.

59

Appendix C
Non-functional Requirements

1. To each Hypertext Transfer Protocol (HTTP) frontend page request shall system
respond with fully generated html (SEO bots friendly).

2. System shall deliver all public frontend pages under 500 ms.
3. System frontend shall keep 60 fps.
4. System shall keep 99.9% uptime.
5. Webpage design shall be responsive.
6. Each page has to be represented with meaningful URL.

60

Appendix D
Use Case Scenarios

D.1 Station
Create station

Actor: Guest
1. UC starts with the user navigating himself to the sign up page.
2. He or she fills in station name, email and password.
3. The system generates automatically the URL based on the station name.
4. IF station with generated URL exists..The system shows appropriate error message..The system enables the user to change the URL to an available one.
5. The system creates the station.
6. The system sends an email that verifies the email address.
7. The user clicks on the verification link in the email body.
8. The system sets the user email and the station as confirmed.
9. UC ends.

Edit contact information

Actor: Admin
1. UC starts with the user being on the contact page.
2. The user clicks on the edit contact information link.
3. The user fills in the information.
4. The system automatically updates the map according to the information.
5. The user clicks on the save button.
6. The system saves the contact information.
7. UC ends.

Edit the about us section

Actor: Admin
1. UC starts with the user located on the About Us page.
2. The user clicks on the Edit Text link.
3. The system shows form.
4. The user edits the text.
5. IF the users selects edit photos option.

61

D Use Case Scenarios .
.The user deletes / uploads new pictures..The user saves the pictures.

6. The user clicks on the save button.
7. The system saves the modifications.
8. IF the user does now want to save the modifications..The user cancels the modifications.
9. UC ends.

Delete a station

Actor: Admin
1. UC starts with the user being on the contact page.
2. The user clicks on the edit contact information link.
3. The user clicks on the delete station link.
4. The system deletes the station and all associated information.
5. The user is redirected to index page.
6. UC ends.

D.2 News Section
Add post

Actor: Admin
1. UC starts with the user being on the news page.
2. The user clicks on the add post link.
3. The user inserts text / uploads images.
4. The user clicks on the save button.
5. IF the user does now want to save the post..The user cancels the creation of the post..UC ends.
6. The system saves the post.
7. UC ends.

Edit post

Actor: Admin
1. UC starts with the user being on the news page.
2. The user clicks on the edit post link at the particular post.
3. The user modifies text / images.
4. The user clicks on the save button.
5. IF the user does now want to save the modifications..The user cancels the modifications..UC ends.
6. The system saves the modifications.
7. UC ends.

62

. D.3 Links Section

Delete post

Actor: Admin
1. UC starts with the user being on the news page.
2. The user clicks on the delete post link at the particular post.
3. The system deletes the post.
4. UC ends.

D.3 Links Section

Add link

Actor: Admin
1. UC starts with the user being on the links page.
2. The user clicks on the add link group link.
3. The user fills in the title for the group.
4. The user clicks on the save button.
5. The system saves the group.
6. The user clicks on the add link button.
7. The user inserts the title and the URL.
8. The user clicks on the save button.
9. IF the user does now want to save the link..The user cancels the creation of the link..UC ends.

10. The system saves the link.
11. UC ends.

Edit link

Actor: Admin
1. UC starts with the user being on the links page.
2. The user clicks on the edit link button at the particular post.
3. The user modifies the title or the URL.
4. The user clicks on the save button.
5. IF the user does now want to save the modifications..The user cancels the modifications..UC ends.
6. The system saves the modifications.
7. UC ends.

Delete link

Actor: Admin
1. UC starts with the user being on the links page.
2. The user clicks on the delete link button at the particular link.

63

D Use Case Scenarios .
3. The system deletes the link.
4. UC ends.

D.4 Guestbook
Leave post
Actors: Guest, Admin, System Emailer
1. UC starts with the user being on the guestbook page.
2. The user fills in name and text, optionally email and web.
3. The user clicks on the save button.
4. The system saves the entry.
5. The system sends a notification email to the breeder about the new post.
6. The system shows the entry at the top of the list of entries.
7. UC ends.

Edit post
Actor: Admin
1. UC starts with the user being on the guestbook page.
2. The user clicks on the edit link at the particular post.
3. The user modifies the post.
4. The user clicks on the save button.
5. The system saves the modifications.
6. UC ends.

Delete post
Actor: Admin
1. UC starts with the user being on the guestbook page.
2. The user clicks on the delete link at the particular post.
3. The system deletes the particular post.
4. The system updates the list of posts.
5. UC ends.

Leave reply
Actors: Guest, Admin, System Emailer
1. UC starts with the user being on the guestbook page.
2. The user clicks on the reply link at the particular post.
3. The system shows a form with prefilled name and a text field.
4. The user fills in name and text.
5. The user clicks on the save button.
6. The system saves the reply.
7. IF the user who left the original post had filled the email address..The system sends a notification email to the creator of the original post.
8. UC ends.

64

. D.5 Animal

D.5 Animal

Add animal

Actor: Admin
1. UC starts with the user being on the animal administration page.
2. The user clicks on the add animal link.
3. The system shows the option to select the sex of the animal.
4. The user selects the sex.
5. The system shows the option to select the breed of the animal.
6. The user selects the breed.
7. The system shows the list of animals yet without an owner.
8. The user selects an animal which he owns
9. IF the user cannot find the animal in the list of animals without an owner..The user clicks on the create animal button..The system shows a text field for the animal’s name..The user fills in the animal’s name..The user clicks on the save button..The system creates the animal and adds it to the user’s breeding station..UC ends.

10. The system adds the animal to the breeding station.
11. UC ends.

Delete animal

Actor: Admin
1. UC starts with the user being on the animal administration page.
2. The user clicks on the delete animal button at the particular animal.
3. The system deletes the animal.
4. IF the animal is assigned as a parent to a litter or another animal..The system removes the animal only from the user’s breeding station.
5. The system updates the list of animals.
6. UC ends.

Edit animal’s birthdate

Actor: Admin
1. UC starts with the user being on the animal profile page.
2. The user clicks on the edit birthdate button.
3. The system shows a text field with a calendar popup.
4. The user types or selects the date of birth.
5. The user clicks on the save button.
6. The system saves the birthdate.
7. UC ends.

65

D Use Case Scenarios .
Edit animal’s general information

Actor: Admin
1. UC starts with the user being on the animal profile page.
2. The user clicks on the edit general information button.
3. The system shows a text field.
4. The user fills in the text / uploads pictures.
5. The user clicks on the save button.
6. The system saves the general information.
7. UC ends.

Set animal’s parents

Actor: Admin
1. UC starts with the user being on the animal profile page.
2. The user clicks on the add mom / add dad button.
3. IF the animal already has a mom / dad..The user clicks on the remove mom / remove dad button..The system removes mom / dad from the animal..UC continues with 2nd step.
4. The system shows the option to select an animal currently in the system having

the same breed and the particular sex.
5. The user selects an existing animal.
6. IF the animal does not exist within the system..The user clicks on the create animal button..The system shows a text field for animal’s name..The user fills in the name of the animal..The user clicks on the save button..The system creates the animal.
7. The system assigns the animal as a mom / dad.
8. UC ends.

Add post to animal’s diary

Actor: Admin
1. UC starts with the user being on the animal profile page.
2. The user clicks on the add diary post button.
3. The system shows form.
4. The user fills in text, date and uploads pictures.
5. The user clicks on the save button.
6. The system saves the post.
7. IF the owner is not the breeder..The system sends an email notification to the breeder about the post.
8. The system updates list of posts in diary.
9. UC ends.

66

. D.6 Litter

Change animal’s state

Actor: Admin
1. UC starts with the user being on the animal profile page.
2. The user clicks on the for sale / retired / in memory button.
3. The system saves the animal state.
4. IF there is no for sale section for the breed..The system creates for sale section in the left menu..UC ends.
5. IF there is no retired / in memory section in the left menu..The system creates retired / in memory section in the left menu.
6. UC ends.

D.6 Litter

Add litter

Actor: Admin
1. UC starts with the user being on the litter administration page.
2. The user fills in the breed and a letter in the add litter section.
3. The user clicks on the save button.
4. The system saves the litter.
5. The system updates the list of litters.
6. UC ends.

Set the date

Actor: Admin
1. UC starts with the user being on the litter administration page.
2. The user clicks on the date of the particular litter in the litters list.
3. The system shows a text field with calendar popup.
4. The user fills in the date.
5. The user blurs the text field.
6. The system saves the date.
7. UC ends.

Edit general information

Actor: Admin
1. UC starts with the user being on the litter profile page.
2. The user clicks on the edit general information button.
3. The system shows a form.
4. The user fills in the text / uploads pictures.
5. The user clicks on the save button.
6. The system saves the general information.

67

D Use Case Scenarios .
7. UC ends.

Set parents

Actor: Admin
1. UC starts with the user being on the litter profile page.
2. The user clicks on the add mom / add dad button.
3. The system shows the option to select an animal currently in the system having

the same breed and the particular sex.
4. The user selects an existing animal.
5. IF the dad does not exist within the system..The user clicks on the create animal button..The system shows a text field for animal’s name..The user fills in the name of the animal..The user clicks on the save button..The system creates the animal.
6. IF the mom does not exist within the breeding station..The system shows a message that the user needs to add the mom in the animal

administration first..UC ends.
7. The system assigns the animal as a mom / dad.
8. UC ends.

Add child

Actor: Admin
Precondition: The litter has to have both parents assigned.
1. UC starts with the user being on the litter profile page.
2. The user clicks on the add child button.
3. The system shows the form.
4. The user fills in the name and the sex.
5. The user clicks on the save button.
6. The system saves the child.
7. The system updates the list of children.
8. UC ends.

Add post to child’s diary

Actor: Admin
1. UC starts with the user being on the litter profile page.
2. The user clicks on the add post button at the particular child.
3. The system shows the form.
4. The user fills in the text / uploads pictures.
5. The user clicks on the save button.
6. The system saves the post.
7. The system sets the first uploaded picture as a new profile picture for the child.

68

. D.7 Custom Page

8. UC ends.

Change child’s state

Actor: Admin
1. UC starts with the user being on the litter profile page.
2. The user click on the not for˜sale / for sale / reserved / sold button at the par-

ticular child.
3. The system saves the state.
4. UC ends.

Archive litter

Actor: Admin
Precondition: All of the litter’s children have to have the state sold or not for˜sale.
1. UC starts with the user being on the litter profile page.
2. The user clicks on the archive the˜litter button at the particular litter.
3. The system saves the archived litter state.
4. IF there is no past litters section for the particular breed in the left menu..The system creates the past litters section for the particular breed in the left

menu.
5. UC ends.

D.7 Custom Page

Add custom page

Actor: Admin
1. UC starts with the user being on the custom pages administration page.
2. The user clicks on the add custom page group link.
3. The user fills in the title of the group.
4. The user saves the group.
5. The user clicks on the add custom page link.
6. The user fills in the name of the custom page.
7. The user clicks on the save link.
8. The system saves the custom page.
9. The system shows the custom page in the left menu.

10. UC ends.

Edit custom page content

Actor: Admin
1. UC starts with the user being on the particular custom page.
2. The user clicks on the edit content link.
3. The user modifies the text / uploads / deletes the pictures.
4. The user confirms the modifications.

69

D Use Case Scenarios .
5. IF the user does now want to save the modifications..The user cancels the modifications..UC ends.
6. The system saves the modifications.
7. UC ends.

Delete custom page

Actor: Admin
1. UC starts with the user being on the custom pages administration page.
2. The user clicks on the delete link at the particular custom page.
3. The system deletes the page along with it’s content.
4. The system updates the list of custom pages in the left menu.
5. UC ends.

70

Appendix E
Public Pages Content

Full list of public pages along with it’s URL and content.

E.1 About Us

/<station-name>. Introduction [content].Latest piece of news [dated content]

E.2 News

/<station-name>/news.List of news [dated content].Date.Title (optional).Text [content]

E.3 Links

/<station-name>/links.List of links groups.List of links.Url.Title

E.4 Guestbook

/<station-name>/guestbook.Post form.List of posts.Contributor’s Name.Date

71

E Public Pages Content .
.Email.Website.Text.Breeder’s reply

E.5 Contact
/<station-name>/contact.Map.Contact Info.Breeding station name.Street.City.Zip.Country.GPS (optional).Owner’s name.Phone.Email.More information (optional) [content]

E.6 Animal Profile
station - /<station-name>/<animal-name-urlfied>

no station - /animal/<breed>/<animal-name-urlfied>.Animal Info.Profile picture.Name.Date of birth.Date of death (optional).Additional info (examinations, show winnings) [content].Parents.Pedigree.Siblings.Diary (only for Animal with station) [dated content].Past Litters.Descendants

E.7 Breed — (Fe)Males
/<station-name>/<breed>/(fe)males.List of animals

72

. E.8 Breed For Sale

E.8 Breed For Sale
/<station-name>/<breed>/for-sale. Individual animals for sale.Current litters for sale.Letter.Date.Parents.Children.Name.State.Latest post in diary.Planned litters for sale.Letter.Date.Parents

E.9 Past Litters
/<station-name>/<breed>/past-litters.List of past litters.Letter.Date.Parents.Children

E.10 Litter Profile
/<station-name>/<breed>/litter/<letter>/<litter-id>.Letter.Date.Parents. Information (optional) [content].Children.Name.Latest post in diary

E.11 Retired
/<station-name>/retired.List of retired animals

73

E Public Pages Content .
E.12 In Memory

/<station-name>/in-memory.List of dead animals

E.13 Custom Page

/<station-name>/s/<page-group-name-urlfied>/<page-name-urlfied>.Content [content]

74

Appendix F
Admin Pages Content

Full list of admin pages along with it’s URL and content.

F.1 Animals Admin

/<station-name>/animal-admin.List of animals.Add an animal form

F.2 Litters Admin

/<station-name>/litter-admin.List of litters.Add a litter form

F.3 Custom Pages Admin

/<station-name>/custom-pages-admin.List of custom page groups.List of custom pages

75

Appendix G
User Experience Test Scenario

User experience test scenario presented to the respondents.

G.1 Public Pages

This section describes the most common case when a potential buyer is looking
for a puppy.
1. You would like to buy a puppy. Find the animals for sale.
2. Choose a puppy that you fancy the most and look for more pictures of it.
3. You really like the puppy and want to get in touch with the breeder. Find the contact

information.

G.2 Admin Pages

A breeder likes the service and wants to create his or her own presentation.
1. Sign up your breeding station.
2. Write one paragraph in the “About Us” section describing the essence of your station.
3. Fill in the contact information.
4. Add a bitch.

1. Fill in her birthdate.
2. Upload her profile picture.
3. Fill in the important information such as her nature, awards won, etc.
4. Add her parents.

5. There is a litter expected to be born in two months. Create it.
1. Fill in the expected date.
2. Add the parents of the litter.
3. The bitch just gave birth to three vital puppies. Add a general information about

the litter along with a picture of the mum and her children.
4. One week passed and you decide to add the children to the litter. Add the first

puppy girl publish her fresh pictures along with her weight measurement.
5. Add a boy.
6. Add the last girl.

6. Mark that you want keep the first girl thus it is not going to be for sale.
7. You just sold the boy to another breeding station also registered with the service.

Transfer the ownership of the animal.

76

. G.2 Admin Pages

8. The last girl was just sold to a guy without a breeding station. Transfer the ownership
using his email address.

9. All of the puppies are sold. Archive the litter moving it to the “Past Litters” section.
10. The guy who bought the last girl does not want to pay for it so you decide to take

the puppy back. Reclaim your ownership.
11. What is it that you like besides dogs? Oh you have a horse? Ok, create a custom

page about the horse.
12. Publish two links in the links section pointing to your favourite breeding stations.
13. You just figured that you want to sell the first bitch that you own. Mark it for sale.
14. Unfortunately it died before you managed to sell it. Mark it dead moving it to “In

Memory” section.

77

Appendix H
CD Contents

CD Contents./src/ - diploma thesis source files in plainTEX format./polcama1_2014dipl.pdf - diploma thesis in PDF format

78

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Hypothesis
	Executive Summary

	Analysis
	Main Use Cases
	Puppies presentation
	Choosing a Father for an Upcoming Litter
	Keeping Animal's Diary
	Having Complete Information about the Dog
	Keeping Track of Dog's Descendants

	Related Work And Existing Systems
	Advertisement Portals
	General Content Management Systems
	Custom Made Website
	Breeding Station Catalogues
	Animal Pedigree Catalogues

	Requirements
	Priorities of Requirements

	Use Cases
	Domain Model

	Software Design
	Architecture
	Programming Language
	Web Server
	Database Layer
	Security
	Hosting
	Data Storage
	Front-end Framework

	Design Model
	Graphic Design
	Layout
	Public Pages
	Admin Pages
	Responsive Design

	Implementation
	Encountered Problems and Solutions
	Programming Language
	Security
	File Upload
	Autosuggest PrimeFaces Component with Diacritics
	JSF Composite Components
	Markdown Support
	Maven Spring Dependencies
	Pedigree Recursive Construction
	PrettyTime Integration
	PrettyFaces Integration
	Spring Beans View Scope Support

	State Diagrams
	Database Model
	Screenshots

	Deployment
	Testing
	Unit Testing
	Test Driven Development

	Integration Testing
	Stress Testing
	Usability Testing
	Principles
	Hypothesis
	Testing
	Results

	Static Code Analysis
	Future
	Scope Extension
	Additional features
	Monetization
	No Success Prediction

	Conclusion
	References
	Abbreviations
	Functional Requirements
	Implemented
	Not implemented

	Non-functional Requirements
	Use Case Scenarios
	Station
	News Section
	Links Section
	Guestbook
	Animal
	Litter
	Custom Page

	Public Pages Content
	About Us
	News
	Links
	Guestbook
	Contact
	Animal Profile
	Breed --- (Fe)Males
	Breed For Sale
	Past Litters
	Litter Profile
	Retired
	In Memory
	Custom Page

	Admin Pages Content
	Animals Admin
	Litters Admin
	Custom Pages Admin

	User Experience Test Scenario
	Public Pages
	Admin Pages

	CD Contents

