

Master’s thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Algorithms and Tests for Human
Resource Management Tools

Bc. Michal Frdlík
Open Informatics, Artificial Intelligence

February 2014
Supervisor: Prof. Dr. Ing. Zdeněk Hanzálek

Abstrakt / Abstract
Tato práce se zaměřuje na silně ome-

zený rozvrhovací problém nalezení roz-
vrhu kurzů s neúplnou a časově závis-
lou informací o těchto kurzech. Cílem
této práce je navrhnout a implemento-
vat efektivní algoritmus, který by tento
problém řešil, respektive softwarový ná-
stroj, který by tento algoritmus využí-
val.

Na základě rešerše moderních algo-
ritmů týkajících se tohoto problému je
navrhnut algoritmus nový, využívající
vnitřního optimalizačního algoritmu,
a tedy se jedná o meta-algoritmus. Na
základě analýzy je několik optimalizač-
ních algoritmů podrobeno důkladnému
testování a následně je nejvhodnejší
z nich zvolen a implementován jako sou-
část meta-algoritmu. Meta-algoritmus
sám je následně podroben testům.

Následně je navržen a implementován
softwarový nástroj, který tohoto meta-
algoritmu využívá, a jeho zdrojový kód
je podroben jednotkovým a integračním
testům, jejichž metodologie je v práci
také popsána.

Klíčová slova: rozvrhování, metodo-
logie testů, algoritmy

Překlad titulu: Algoritmy a testy pro
nástroj na organizaci zaměstnanců

This thesis concerns the problem of
strongly constrained course timetabling
with imperfect time-dependent informa-
tion taken into account. The aim of this
thesis is to design and implement an ef-
fective incremental activity scheduling
algorithm which would solve this prob-
lem.

After reviewing the state of the art,
a novel meta-algorithm is proposed,
which encapsulates an inner search al-
gorithm. Several suitable inner search
algorithms are subjected to benchmarks
and the best one is found and chosen as
the inner search algorithm. The meta-
algorithm itself is then also subjected
to benchmarks in order to find best
settings for it.

Then the software tool which makes
use of this algorithm is designed, imple-
mented and its code base is covered by
unit and integration tests. General soft-
ware testing and algorithm benchmark-
ing methodology is described.

Keywords: scheduling, testing
methodology, algorithms

iv

Contents /
1 Introduction .1
1.1 Aim of This Thesis1

1.1.1 Goal Specification.1
1.2 Problem Definition.1

1.2.1 Problem Complexity2
1.3 The Challenge.4

2 Review of Literature6
2.1 Literature Concerning Itera-

tive Scheduling6
2.1.1 Reactive Scheduling6
2.1.2 Dynamic Timetabling6
2.1.3 Online Scheduling.6
2.1.4 Fuzzy Scheduling6

2.2 Literature Concerning
Timetabling .7
2.2.1 Integer Linear Pro-

gramming7
2.2.2 Constraint Satisfaction

over Finite Domains7
2.2.3 Boolean Satisfiability

Problem (SAT)7
2.2.4 Reduction to Graph

Colouring7
2.2.5 Genetic Algorithms8
2.2.6 Simulated Annealing.8
2.2.7 Tabu Search8

3 Integer Linear Programming9
3.1 Method Description.9
3.2 Formal Definition9

3.2.1 Variables9
3.2.2 Features .9
3.2.3 Constraints 10
3.2.4 Objective Function 11

3.3 Platform Selection 11
3.3.1 Preliminary Bench-

marking 12
3.4 Implementation 13

3.4.1 Using Wrappers for
Solver Libraries 13

3.4.2 Using Third Party
Solver Frameworks 14

3.4.3 Using Custom Solver
Framework 16

3.5 Conclusion on ILP 16
4 Proposition of a Solution 17
4.1 The Meta-algorithm 17

4.1.1 Student Arrival Pre-
dictions 17

4.1.2 Lifecycle of a Student. . . . 17
4.1.3 Common Properties of

Perturbation Operators. . 18
4.1.4 Common Properties of

Randomisation Func-
tors . 18

4.1.5 General Flow of the
Meta-algorithm 19

4.2 The Implementation 19
4.2.1 Individual Representa-

tion . 21
4.2.2 The Problem Context . . . 24
4.2.3 Functors 26
4.2.4 Search Algorithm Ob-

ject Model 31
4.2.5 Dynamic Timetabling

Object Model 33
4.2.6 The Input Format 33

4.3 Objective Function. 35
4.3.1 Formalisation 35
4.3.2 Hard Constraints 35
4.3.3 Maximal Schedule

Length . 36
4.3.4 Standard Deviation of

Teacher Utilisation. 36
4.3.5 Feasibility Objective

Function 36
4.3.6 Objective Function

with Maximal Sched-
ule Length. 36

4.3.7 Combined Objective
Function 36

4.3.8 Fitness Functor 37
5 Benchmarking Methodology 38
5.1 F-test of Equality of Vari-

ances. 38
5.2 Student’s T-test of Equality

of Means. 39
5.3 Concluding about Algorithm

Stability . 40
5.4 Implementation of Statisti-

cal Functionality 40
5.4.1 Matlab-exporting Sta-

tistical Program. 41

v

6 Inquiry into Conventional
Perturbation-based State
Space Search Methods 42

6.1 The State Space. 42
6.1.1 Branching Factor 42
6.1.2 State Space Size 43

6.2 Exhaustive Enumerative
Search . 43

6.3 First-improving Local Search. . 43
6.4 Best-improving local search . . . 43
6.5 Stochastic Hill Climbing 44
6.6 Simulated Annealing 44
6.7 Tabu Search . 44
6.8 Applicability on the Problem

of our Concern 45
7 Inquiry into Population-based

State Space Search Methods . . . 46
7.1 Standard Genetic Algorithm . . 46

7.1.1 Initialisation. 47
7.1.2 Selection. 47
7.1.3 Recombination 47
7.1.4 Population Renewal 47

7.2 Memetic Algorithms 48
8 Experiments with Convention-

al Perturbation-based State
Space Search Methods 49

8.1 Benchmark Scenarios 49
8.2 Perturbation Operators 49

8.2.1 Blind Position Pertur-
bation Operator 50

8.2.2 Non Overnight Posi-
tion Perturbation Op-
erator . 50

8.2.3 Informed Position Per-
turbation Operator 50

8.2.4 Non Overnight In-
formed Position
Perturbation Operator. . . 51

8.2.5 Stochastic Non
Overnight Informed
Position Perturbation
Operator 51

8.2.6 Blind Teacher Pertur-
bation Operator 51

8.2.7 Informed Teacher Per-
turbation Operator 51

8.2.8 Stochastic Informed
Teacher Perturbation
Operator 51

8.3 First-improving Local Search. . 51
8.3.1 Using Blind Operators

on “SLS” Scenario 51
8.3.2 Comparison of Blind

and Non-overnight Op-
erators on “SLS” Sce-
nario . 54

8.3.3 Comparing Informed,
Uninformed and
Stochastic Informed
Operators on “STS”
Scenario 55

8.3.4 Comparing Informed,
Uninformed and
Stochastic Informed
Operators on “STU”
(unsatisfiable) Scenario . . 57

8.3.5 Using Blind and
Stochastic Informed
Operators on Realistic
Scenarios 58

8.3.6 Conclusion on First-
improving Local Search. . 59

8.4 Stochastic Hillclimbing 59
8.4.1 “STU” Scenario

Benchmark 59
8.4.2 Conclusion on Stochas-

tic Hillclimbing. 60
8.5 Simulated Annealing 60

8.5.1 “STU” Scenario
Benchmark 60

8.5.2 Conclusion on Simulat-
ed Annealing 60

8.6 Comparison Tables 61
9 Experiments with Genetic Al-

gorithms . 62
9.1 Settings . 62

9.1.1 Mutation Operator 62
9.1.2 Recombination Opera-

tors . 62
9.1.3 Selection Operator 62
9.1.4 Population Renewal 62
9.1.5 Inner Local Search 62

vi

9.2 Standard Genetic Algorithm . . 62
9.2.1 Comparing Recombi-

nation Operators 63
9.2.2 Comparing SGA with

Stochastic Informed
First-improving Local
Search . 63

9.2.3 SGA and LS on Unsat-
isfiable Scenario 64

9.3 Memetic Algorithms 64
9.3.1 Comparing Memetic

Algorithms with SGA . . . 65
9.4 Comparison Tables 66

10 Conclusion on experiments 67
10.1 Comparison Table 69

11 Graphical User Interface 70
12 Testing the Dynamic

Timetabling Library 71
12.1 Unit Testing . 71

12.1.1 Fakes (fake objects) 71
12.1.2 Mocks (mock objects) . . . 72

12.2 Integration Testing 74
13 Conclusion . 75
13.1 Goals to Achievements Map-

ping . 75
13.2 Work not Declared in Goals . . . 75
13.3 Results . 75
13.4 Future Work 76

References . 77
A Hardware and Software Spec-

ification . 79
A.1 Hardware specifiaction. 79
A.2 Software specification 79

B DVD Content . 80

vii

Tables /
3.1. Preliminary solver bench-

mark obj: O1 12
3.2. Preliminary solver bench-

mark obj: 0 . 12
3.3. Model size . 12
3.4. Precedence constraint signif-

icance . 12
3.5. Objective function signifi-

cance . 13
3.6. Subject length significance 13
3.7. Subject length significance 13
3.8. Subject volume significance 13
8.1. Comparison of overnight and

non-overnight operators. 61
8.2. Comparison of blind, in-

formed and stochatic in-
formed operators 61

8.3. Perturbation based algo-
rithm results comparison 61

9.1. Comparison of mild, one-
point and uniform recom-
bination . 66

9.2. Comparison of mild, one-
point and uniform recom-
bination . 66

10.1. Comparison of rerandomisa-
tion and no rerandomisation
when applied on different
lock strategies 69

viii

Chapter 1
Introduction

1.1 Aim of This Thesis
The main aim of this thesis is to design and implement an incremental activity schedul-
ing algorithm suitable for the problem specified in 1.2, which shall achieve good results
in terms of both optimality and effectiveness. Besides the main aim, this work shall
also provide a description of general benchmarking and testing methodology, suitable
for algorithms similar to the aforementioned kind. Several goals are specified in 1.1.1.

1.1.1 Goal Specification

.Review of the SotA activity scheduling methods and algorithms.Evaluation of these methods and algorithms.Design of an incremental activity scheduling algorithm suitable for the given problem. Implementation and evaluation of the above mentioned algorithm.Choice and specification of the appropriate testing methodology. Implementation of tests on different levels of abstraction

1.2 Problem Definition
The problem of our concern is a strongly constrained course timetabling problem with
imperfect information taken into account. It features students, teachers and courses.
The task is to construct a timetable, which assigns students and teachers to courses,
and courses to their respective days and periods, and assures that none of the hard
constraints are violated. Moreover, the scheduling process itself has to happen in a serial
manner, i.e. as the time goes on (and some of the scheduled activities are already
in progress), new students may arrive, immediately demanding timetables for their
curricula. When these new timetables are constructed, one must take into account,
that previously scheduled activities cannot change.

Character of the given percentage of the forthcoming students’ curricula is known
a priori and the remaining part is supposed to have the same probability distribution.

In a valid timetable, these constraints need to hold (they are reffered to as hard
constraints):.No student may be assigned to two or more classes at the same time.No teacher may be assigned to two or more classes at the same time.Classes need to have exactly one student and one teacher assigned.Classes need to be scheduled at most once per day. If a class C is scheduled, it needs to be scheduled to exactly k consecutive periods,

where k is the length of C.A teacher must not be assigned to the period of his unavailability (lunch time)

1

1. Introduction .
.Every student must be assigned to all the class types C he has in his curriculum and

exactly volume(C) times.No student has to have any class scheduled before the time of his arrival

The aforementioned constraints are enough to ensure the feasibility of the resulting
timetable, but it may not be sufficient in terms of optimality. Hence, the following
properties, which improve the objective function, but need not to hold, are specified
(they are reffered to as soft constraints):.Length of the daily schedule should approach its minimal possible value.Classes of the same type (of a given student) should be evenly distributed throughout

the days and should be equidistant if possible.Daily workload of the teachers should approach mean workload.Average gap between subjects should approach zero

1.2.1 Problem Complexity
In order to justify the time and space complexity of the methods and algorithms pro-
posed in this thesis, it needs to be shown, that the underlying timetabling decision prob-
lem (i.e. problem that decides whether a valid timetable exists w.r.t. given resources
and constraints) is NP-Complete, and therefore that the corresponding optimisation
problem (i.e. problem that finds the valid timetable) is NP-Hard. This shall be done
using a sequence of proofs, but firstly, some fundamental concepts ([1]) of complexity
theory are briefly reviewed.

1.2.1.1 Definition. Turing machine. Informally, a Turing machine can be viewed as
a physical machine consisting of a control unit (which can hold a single state), a tape
of infinite length (divided to discrete fields) and a head (which can read from and write
to the tape). According to the actual tape symbol (i.e. a symbol read by the head) and
the actual state, the control unit changes the actual state and moves the head either
to the left or to the right, according to the transition function. Formally, a Turing
machine is a seven-tuple (Q,Σ,Γ, δ, q0, B, F), where Q is a finite set of states, Σ is
a finite set of input symbols, Γ is a finite set of tape symbols (where Σ ⊆ Γ), B is an
empty symbol (also called a blank), δ is a transition function (i.e. a partial mapping
δ : (Q \ F)× Γ→ Q× Γ× {L,R}, where L and R represent the transition of the head
to the left or to the right, respectively), q0 ∈ Q is an initial state, and F ⊆ Q is a set
of terminal states.

1.2.1.2 Definition. Nondeterministic Turing machine. Nondeterministic Turing ma-
chine (NTM) is a Turing machine, which is allowed (at every step) to branch the com-
putation to several branches, that evaluate simultaneously. In other words, an NTM is
allowed to be in multiple states at one time.

1.2.1.3 Definition. Time complexity of a Turing machine. Time complexity of a Tur-
ing machine is the maximal number of steps, after which the machine successfully halts.
The maximum is evaluated over all possible initial configurations of the tape.

1.2.1.4 Definition. Decision problem. Decision problem is a problem, for which there
exists a Turing machine, which can decide it (i.e. for every instance of the problem
(input tape) it can give a yes/no answer).

1.2.1.5 Note. Turing machine can be adapted to simulate the logic of any computer
algorithm.

2

. 1.2 Problem Definition

1.2.1.6 Definition. Class P. We say that a decision problem U lies in class P if and
only if there exists a Turing machine, which can decide it and operate in polynomial
time.

1.2.1.7 Definition. Class NP. We say that a decision problem U lies in class P if and
only if there exists a Nondeterministic Turing machine, which can decide it and operate
in polynomial time.

1.2.1.8 Definition. Polynomial reduction. We say that a decision problem U is poly-
nomially reducible to a decision problem V if and only if there exists an algorithm
(modeled by some Turing machine), which can convert any input of the problem U to
the input of the problem V , while operating in polynomial time and assuring that every
YES input of U translates to YES input of V , and every NO input of U translates to
NO input of V .

1.2.1.9 Definition. Class NP-Complete. We say that a decision problem U lies in
class NP -Complete if and only if U lies in NP and every decision problem that lies in
NP can be polynomially reduced to U .

1.2.1.10 Definition. SAT problem. A SAT (boolean satisfiability) problem is the
problem of deciding whether a formula in general conjunctive normal form is satisfiable
by some interpretation.

1.2.1.11 Theorem. Cook, 1971. SAT problem is NP-Complete[2].

1.2.1.12 Theorem. 3-SAT problem is NP-Complete.

1.2.1.13 Proof. Firstly, 3-SAT lies inNP , because any interpretation can be evaluated
in linear time. Let φ ≡ C1 ∧ C2 ∧ . . . ∧ Cn be a formula in CNF. Then for every
Ci ≡ l1 ∨ l2 ∨ . . . ∨ lk, where k > 3, construct new formula Xi using the following
prescription:

Xi ≡ (l1 ∨ l2 ∨ x1) ∧ (¬x1 ∨ l3 ∨ x2) ∧ (¬x2 ∨ l4 ∨ x3) ∧ . . . ∧ (¬xk−3 ∨ kk−1 ∨ lk)

Then Ci |= Xi and Xi |= Ci, and by replacing Ci for Xi in the original formula, we get
3-CNF formula, Q.E.D.

1.2.1.14 Definition. Graph colouring problem. A graph G = (V,E) is 3-colourable
if and only if there exists a mapping colour : V → N, such that for every pair of
vertices {v1, v2} that are adjacent (coonected through an edge) holds that colour(v1) 6=
colour(v2).

1.2.1.15 Definition. Graph 3-colouring problem. A graph G = (V,E) is 3-colourable
if and only if there exists a mapping colour : V → {1, 2, 3}, such that for every pair of
vertices {v1, v2} that are adjacent (coonected through an edge) holds that colour(v1) 6=
colour(v2).

1.2.1.16 Theorem. 3-SAT is polynomially reducible to 3-colouring[3]

1.2.1.17 Definition. General timetabling problem. In a general timetabling problem,
there are three sets defined: T (set of time slots), R (set of resources) and M (set of
meetings). Every meeting consists of a timeslot on which it is supposed to happen, and
a set of resources, that will be taken by it (in our case one teacher and one student).

3

1. Introduction .
We ask if there is a configuration, in which no resource is used twice or more in the
same timeslot.

1.2.1.18 Theorem. 3-colouring is polynomially reducible to General timetabling
problem.

1.2.1.19 Proof.[4] Firstly, general timetabling problem lies in NP, because consistency
violations can be detected simply by checking all the time slots for multiple presence of
the same resource. Now suppose the following graph k-colouring instance: G = (V,E),
where |V | = n and |E| = m. Construct the folowing general timetabling instance T =
{t1 . . . tk}, R = {r1 . . . rm} and M = {M1 . . .Mn}, where Mi = {t ∈ T, {ci,1 . . . ci,ki}},
where the resources ci,1 . . . ci,ki in the meeting Mi are the resources rj , such that ej is
adjacent to vi in G. Suppose that k-colouring colour : V → {1, . . . , k} exists for G.
Then assign tk where k = colour(vi) to Mi for every i. The condition colour(vi) 6=
colour(vj) whenever {vi, vj} ∈ E guarantees, that meetings which share resources are
assigned to different time-slots. Also a valid timetabling configuration guarantees, that
colour exists for G, Q.E.D.

1.3 The Challenge
The underlying timetabling problem of 1.2 is well studied. Many optimal and heuristic
techniques exist. Unfortunately, that cannot be said about the primary problem (see 2)
of dealing with uncertainty and iterative nature.

Generally, the objective functions which are commonly used for timetabling tend to
have superadditive nature:

f(s(C1 + C2, {})) ≥ f(s(C1, C2)),
where C1 and C2 are sets of constraints, function s(A,B) maps sets of constraints

to schedules (where set B is applied after set A, with respect to the constraints, that
arise from application of A), and function f is the objective function. Operator + does
union on its operands. Operator ≥ represents relation “better”.

On the left side of the inequality, constraint set C2 is known a priori (which is the
fully informed case), and on the right side, C2 is known after C1 is applied (which is
the uninformed or partially informed case). The partially informed case can never be
better than the informed one, given that s creates optimal schedules.

Let us show an example using cmax objective function (i.e. function that maps
schedules to their lengths).

T1

T2

Sub1 Sub1

Sub2 Sub3 Sub3 Sub3

Student 1 Student 2 Unavailable

 1 2 3 4 5 6 7 8

Figure 1.1. Uninformed iterative scheduling.

Let us have a simplified timetabling problem with two teachers (T1 and T2) teaching
the same subjects. Teacher T1 is unavailable at time period 3. Student 1 has subjects
Sub1 and Sub2 in his curriculum, whereas student 2 only has subject Sub3.

4

. 1.3 The Challenge

The effect of iterative scheduling applied to this problem is depicted in figure 1.1.
In this situation, student 1 is optimally scheduled (subject 2 cannot be scheduled to
timeslots 1,2 of teacher 1 and 2, nor to timeslot 3 of teacher 1, due to consistency
constraints or unavailability constraints, respectively) and then student 2 is optimally
scheduled to the actual schedule.

T1

T2

Sub1 Sub1 Sub2

Sub3 Sub3 Sub3

Student 1 Student 2 Unavailable

 1 2 3 4 5 6 7 8

Figure 1.2. Optimal scheduling with complete information.

On the other side, when both students’ curriculla are known a priori, as depicted in
figure 1.2, the resulting schedule is optimal, having cmax = 4 instead of 6.

In the problem 1.2, only incomplete information about forthcoming students is known
a priori. It is rather obvious, that having some kind of information about forthcoming
students is conditio sine qua non of successful iterative scheduling. The question is,
how to utilise this information.

5

Chapter 2
Review of Literature

In recent years, a considerable attention has been devoted to the automated timetabling
problem and its variations, yet nobody seems to have been investigating the problem
of our concern (as defined in 1.2).

In this chapter, publications relevant to 1.2 shall be reviewed.

2.1 Literature Concerning Iterative Scheduling
By “iterative scheduling” it is meant the iterative nature of the problem (as new students
arrive, the scheduling procedure is repeated with existing students’ schedules taken into
account).

2.1.1 Reactive Scheduling
The term “reactive scheduling” is used by Herroelen and Leus in [5] and [6] to describe
resource constrained project scheduling problem (RCPSP), where tasks arrive over time
and their processing time is unknown. Arrival of the task is known a priori, but the
processing time and the exact time of arrival is not. It is the exact opposite of our
problem, where times of arrival and processing times are known a priori, but tasks are
not. Moreover, in [5] and [6], there is a strong accent on precedence constraints, which
are not important in our case. Simplicity of constraints defined in these articles and no
implementation description renders the methods mentioned unusable for our problem.

2.1.2 Dynamic Timetabling
The term “dynamic timetabling” is coined in [7], where it is most promisingly stated,
that most of the approaches to the timetabling problem focus on the timetable con-
struction as a static process. Authors of the article then propose a reactive constraint
agents architecture, which can cope with real-time changes of a timetable with minimal
modification. By “changes of the timetable” they mean changes of constraints. Sadly,
in our problem, constraints are strictly forbidden to change, which, again, renders the
methods mentioned in this article unusable for our problem.

In [8], there is an RCPSP based method proposed, but as in [7], an already scheduled
timetable is allowed to change, which is unacceptable in our problem, because it violates
the most important constraint.

2.1.3 Online Scheduling
Articles concerning online scheduling, such as [9], are mostly thorough mathematical
analyses of basic scheduling instances, such as P |rj , pmtn|

∑
j wjCj and P |rj |

∑
j wjCj ,

without further constraints defined, heavily theoretical and with no practical use in this
thesis.

2.1.4 Fuzzy Scheduling
In [6], there is a mention about fuzzy scheduling, but again, only fuzzy processing times
are taken into account.

6

. 2.2 Literature Concerning Timetabling

2.2 Literature Concerning Timetabling
Contrary to literature concerning iterative scheduling, there is a vast ammount of ar-
ticles concerning timetabling (and for our problem in particular—university course
timetabling and examination timetabling). The method range is very wide—starting
with well known and well studied integer linear programming (also known as mixed
integer programming), which also has very good software support, and ending with
simple specialised local search algorithms.

2.2.1 Integer Linear Programming
There are many integer linear programming formulations in the literature, but in [10],
there is an efficient and exceptionally well-described formulation of constraints and
objective functions, which suit underlying timetabling problem of 1.2 very well. The
model in [10] even contains definition for consecutive multi-period classes, which are
rarely present in the literature. This model is adapted and further analysed in 3.

2.2.2 Constraint Satisfaction over Finite Domains
Another method for solving timetabling problem is constraint satisfaction. In [11], there
is a description of such method, but it lacks multi-period classes, which are essential
for our problem, and explanation is not as exhaustive as it is in [10]. Moreover, integer
linear programming and constraint satisfaction problem can be polynomially reduced
to one another, so it is possible for an integer linear programming formulation to be
also tested on constraint satisfaction problem solvers.

2.2.3 Boolean Satisfiability Problem (SAT)
As it is shown in [12], the timetabling problem can also be solved by using SAT and
MaxSAT (explained in appendix B). It is generally known, that SAT solvers are very
powerful tools, especially in comparison with CSP solvers. Article [12] supports this
statement with exceptional results of the proposed method: Out of 32 standard bench-
mark instances derived from the Second international timetabling competition held in
2007, techniques proposed in [12] yielded the best known solutions for 21 instances,
while improving the previously best known solution for 9 of them, which is impressive.

Sadly, the propositional logic operates with low expressivity and some high-order con-
structs, such as cardinality constraints, cause SAT formulation to grow exponentially.
For example, defining a constraint “at most 2 of 5 variables must hold” will translate
to 10 CNF clauses. For the instances we are dealing with, the number of clauses shall
drain memory very fast.

Moreover, authors of [12] have developed their own SAT and MaxSAT solvers (called
Barcelogic), which are more suitable for the timetabling problem than conventional
solvers (such as MiniSAT).

2.2.4 Reduction to Graph Colouring
As it is shown in proof 1.2.1.19, a graph colouring problem can be polynomially reduced
to a timetabling problem (making it NP-Complete). Article [13] shows, how a problem
of finding a feasible timetable can be reduced to a problem of finding chromatic num-
ber (i.e. minimal possible number of colours needed to succesfully colour a graph) of
a graph. An exact (and rather easy) algorithm called CHROMA is proposed, along with
its alteration, which can even minimise daily cmax. However, constraint specification
requires severe changes in the algorithm itself, making it non-flexible and unusable for
our problem.

7

2. Review of Literature .
2.2.5 Genetic Algorithms

Genetic algorithms (explained in appendix B) are obvious choice for their robustness
and previous successes in solving highly constrained problems. There is a vast amount
of articles describing various genetic algorithms solving various timetabling problems.
Some of them are described in [14] (page 9-11). Most of these differ only in a choice
of genetic operators (according to the timetabling problems which they are supposed
to solve). Some of the genetic algorithms use exotic representations (such as [15], in
which an individual is represented as a sequence of quantum bits), others use sophis-
ticated population models or inner local search procedures. Generally, all randomised
search–based methods are suitable for the timetabling problem, especially because of
the possibility to choose nearly any fitness function to be optimised.

2.2.6 Simulated Annealing
Simulated annealing (explained in appendix B) is a notable example of a randomised
search–based method, which is known for it’s ability to overcome local extrema. Articles
[16] and [17] describe such methods. One of the advantages of simulated annealing is
a fact, that the search itself can begin from any solution, and so it is suitable for
interactive timetabling (where manual schedule corrections are expected to be made
from time to time).

2.2.7 Tabu Search
Tabu search is so far the most successful heuristic method for solving the timetabling
problem (namely the algorithm proposed by Schaerf in [13]).

8

Chapter 3
Integer Linear Programming

3.1 Method Description
The Integer Linear Programming (ILP) is a mathematical programming method in-
tended to solve problems of the following form: Given matrix A ∈ Rm×n and vectors
b ∈ Rm, c ∈ Rn, we search for a vector x ∈ Zn such that A · x ≤ b and cT is maximal.
ILP is NP-Complete.

The fundamental difference between the common linear programming and the ILP is
that the variables in the ILP are restricted to integers (sometimes both real and integral
numbers are allowed and then it is called Mixed Integer Programming). Restriction to
integral numbers allows us to define many practical problems as ILP and solve them
using powerful industrial solvers (for instance IBM CPLEX).

There are several methods to solve ILP, such as enumeration, branch and bound or
cutting planes, however the solvers used in this thesis use only the branch and bound
method.

3.2 Formal Definition
There are two common ILP models of the timetabling problem: A time-indexed model
and a relative-indexed one. In the time-indexed model, the time axis of each day is
discretised to equidistant atomic time intervals of given length, whereas in the relative-
indexed model, only a relative ordering of courses and their durations are specified.
The advantage of the time-indexed model is that uniqueness constraints (one teacher
teaches only one course at certain time) can be expressed trivially, because of native
time-alignment of the model. Thus we shall proceed with the time indexed model.

3.2.1 Variables
Two sets of binary variables are adopted. The main variable xstu,sub,tea,day,per, which
specifies whether the student stu has the subject sub, which is taught by the teacher
tea on day day and time period per of that day. The auxiliary variable ystu,sub,tea,day

specifies whether the student stu has the subject sub, which is taught by the teacher
tea on day day.

3.2.2 Features
The problem features are divided into the following basic sets:. I – set of days.J – set of periods.K – set of students.L – set of teachers.M – set of subjects

9

3. Integer Linear Programming .
and these basic sets are also divided into more specific subset classes, which may help

with reducing the size of the model:.Lk – set of teachers teaching at least one subject for the student k.Li – set of teachers available at day i.Lm – set of teachers teaching the subject m.Ml – set of courses taught by the teacher l

There is also the relation PREC ⊂ M2, which specifies precedence relation on the
subjects, function curriculum : K → P(M) specifiing subjects of student’s curriculum,
function volume : (K,M) → R specifiing desired volume of the curriculum subject.
There is also a function specifiing availability of teachers: available1 : L → P(I),
available2 : L → P(J), a function specifiing duration of subjects: duration : M → N,
and a function specifiing teacher proficiency: proficiency : L→ P(M).

3.2.3 Constraints
C1. Time consistency (teachers): On every day and every period, every teacher
teaches at most one student in one subject (the capacity of the courses is treated
elsewhere):

∀i ∈ I, ∀j ∈ J, ∀l ∈ L :
∑
k∈K

∑
m∈M

xi,j,k,l,m ≤ 1 (1)

C2. Time consistency (students): On every day and every period, every student
attends at most one subject with one teacher:

∀i ∈ I, ∀j ∈ J, ∀k ∈ K :
∑
l∈L

∑
m∈M

xi,j,k,l,m ≤ 1 (2)

C3. Subject volume: Every student k needs his curriculum subjects m to be scheduled
exactly at the volume volume(k,m) he needs. Additionally, no student may study
a subject, which he does not have in his curriculum. Formally: For every student k and
every subject m, the sum of variable x over teachers l who teach the subject m, over
days i and period of days j, must be either the volume(k,m) (if the subject m is the
curriculum subject for the student k) or 0 (otherwise).

∀k ∈ K,∀m ∈ curriculum(K) :
∑
l∈Lm

∑
i∈I

∑
j∈J

xi,j,k,l,m = volume(k,m) (3)

∀k ∈ K,∀m /∈ curriculum(K) :
∑
l∈Lm

∑
i∈I

∑
j∈J

xi,j,k,l,m = 0 (4)

C4. Teacher availability: No teacher may teach anything when he is not available:

∀m ∈M,∀l ∈ Lm,∀i ∈ available1(l), ∀k ∈ K,∀j ∈ available2(l) : xi,j,k,l,m ≤ 0 (5)

C5. Subject completeness: Whenever a subject is scheduled in a certain day, it must
be scheduled fully (scheduled units must equal subject duration).

∀k ∈ K,∀i ∈ I, ∀l ∈ Li,∀m ∈ proficiency(l) :

(
∑
j∈J

xi,j,k,l,m)− duration(m) · yi,k,l,m = 0 (6)

10

. 3.3 Platform Selection

C6. No repetitions in one day: Whenever a subject is scheduled in a certain day, it
must not be scheduled again in that day.

∀k ∈ K,∀m ∈M,∀i ∈ I :
∑
l∈Lm

∑
j∈J

xi,j,k,l,m ≤ duration(m) (7)

C7. Consecutiveness: Whenever a subject is scheduled in a certain day, its periods
must be scheduled consecutivelly.

∀k ∈ K,∀m ∈M,∀l ∈ Lm,∀i ∈ I, ∀t ∈ J : xi,j,k,l,m − xi,t,k,l,m ≤ 0 (8)

∀k ∈ K,∀m ∈M, ∀l ∈ Lm,∀i ∈ I, ∀j ∈ J, ∀t ∈ J \ {0, 1} :

−xi,j,k,l,m + xi,j+1,k,l,m − xi,j+t,k,l,m ≤ 0 (9)

C8. Precedence: Whenever subjects a and b are scheduled in a certain day and subject
b is supposed to go after subject a, subject b must be scheduled after subject a or must
not be scheduled at all.

∀k ∈ K,∀i ∈ I, ∀ma ∈M,∀ja ∈ J, ∀mb ∈M, ∀jb ∈ B, ∀la ∈ L,∀lb ∈ L :

ja · xi,ja,k,la,ma − jb · xi,jb,k,lb,mb
+ ja · xi,jb,k,lb,mb

≤ ja (10)

3.2.4 Objective Function
O1. Shortest timetable in terms of days: Minimize quadratic penalty function for
days. ∑

i∈I

∑
j∈J

∑
L∈Li

∑
k∈K

∑
m∈Ml

i2 · xi,j,k,l,m (11)

O2. Shortest timetable in terms of periods: Minimize quadratic penalty function for
periods. ∑

i∈I

∑
j∈J

∑
L∈Li

∑
k∈K

∑
m∈Ml

j2 · xi,j,k,l,m (12)

O3. Shortest timetable in terms of both days and periods: Minimize quadratic
penalty function for both days and periods.

O1 +O2 (13)

3.3 Platform Selection
In order to satisfy the request for free ILP solving software, the following three promi-
nent solvers shall be compared in terms of performance (hadrware and software envi-
ronment used for benchmarking is described in appendix A)..GNU Linear Programming Kit GLPSOL1).LPSolve2).COIN-OR CBC3)

1) http://www.gnu.org/software/glpk/
2) http://lpsolve.sourceforge.net/5.5/
3) https://projects.coin-or.org/Cbc

11

http://www.gnu.org/software/glpk/
http://lpsolve.sourceforge.net/5.5/
https://projects.coin-or.org/Cbc

3. Integer Linear Programming .
3.3.1 Preliminary Benchmarking

In order to select the most suitable ILP solver of the three above mentioned, a small
instance of the described problem was created. The parameters of this instance are the
following:.20 teachers, each having proficiency for exactly 1 subject.20 days horizon.10 periods (time slots) per day.4 courses (3 having duration 2, 1 having duration 3).2 students (one actual, second representing next one to arrive).Student 1 has 4 subjects in his curriculum, student 2 has 2..2 precedence rules.Curriculum subject volumes are {12, 20, 20, 20}, {12, 10} respectively.Lunch break for teachers is scheduled to period 7.Objective function O1 is used

Solver (obj: O1) Runtime [s] (— means over 300)
Constraints enabled up to C4 C5 C6 C7 C8
GLPSOL 4.52 0.20 — 1.40 7.10 —
LPSolve 5.5.2.0 0.54 — 0.81 — —
CBC 2.7.5 0.48 — 1.66 5.95 50.66

Table 3.1. Preliminary solver benchmark (objective O1)

Solver (obj: ZERO) Runtime [s]
Constraints enabled up to C4 C5 C6 C7 C8
GLPSOL 4.52 0.20 15.90 1.10 7.70 58.20
LPSolve 5.5.2.0 0.56 8.54 1.23 3.90 64.84
CBC 2.7.5 0.46 2.56 3.12 10.27 48.61

Table 3.2. Preliminary solver benchmark (only searching for feasible)

Constraints enabled up to
C4 C5 C6 C7 C8

times C4 [1] 1.00 1.27 1.59 2.40 17.21

Table 3.3. Model size

In the table 2.1., we can see that CBC outperforms GLPSOL and LPSolve (for the
specified problem), so we shall continue with further analysis of the model with CBC.

Precedence constraints
Disabled 1 simple 2 simple 2 chained 3 chained

Runtime [s] 3.97 34.62 37.83 50.36 52.79

Table 3.4. Precedence constraint (C8) significance

12

. 3.4 Implementation

Precedence constraints
Disabled 2 simple

O1 Runtime [s] 3.97 37.83
O2 Runtime [s] 2.78 —
O3 Runtime [s] 17.44 —

Table 3.5. Objective function significance

Subject length [periods]
Distinct subjects 1 2 3

1 0.19 0.94 1.42
2 0.21 0.55 2.00
3 0.25 1.50 3.38
4 0.29 1.97 6.60
5 0.34 2.75 43.32
6 0.39 3.16 —
7 0.42 7.36 —

Table 3.6. Subject length significance (runtimes in seconds) with C8 disabled

Subject length [periods]
Distinct subjects 1 2 3
2 (1 prec. rel.) 19.83 21.04 19.52
4 (2 prec. rel.) 26.94 28.78 58.78
6 (3 prec. rel.) 41.75 36.06 —

Table 3.7. Subject length significance (runtimes in seconds) with C8 enabled

Precedence constraints
Subject volume disabled 2 simple
12 (x7 subjects) 6.72 80.24
24 (x7 subjects) 7.34 228.48
36 (x7 subjects) 13.08 —

Table 3.8. Curriculum subjects volume significance (runtimes in seconds)

3.4 Implementation
There are several ways of implementing programatical interfaces to the solvers:.Using wrappers for solver libraries.Using third party solver frameworks.Using custom solver framework

3.4.1 Using Wrappers for Solver Libraries
C# wrappers are managed libraries which provide entry points for functions in unman-
aged libraries. They are not intuitive, nor easy to use, as they need to be provided
with raw ILP matrices and vectors (in sparse forms). Construction of the matrices and
vectors is a very time-consuming process, especially with complex constraints (like the
ones our problem has).

13

3. Integer Linear Programming .
3.4.2 Using Third Party Solver Frameworks

Third party solver frameworks provide strongly typed and intuitive mechanisms of
constraint definition. There are two most prominent frameworks—Microsoft Solver
Foundation and Google OR.

Microsoft Solver Foundation is a commercial product with limited functionality trial
version (limited number of variables), but provided there’s a plugin, which adapts it
to the solver we need, it can become a very powerful tool. For instance, the following
listing shows, how variables (in MS Solver Foundation they are called decisions) are
defined:

SolverContext context = SolverContext.GetContext();
Model model = context.CreateModel();

Dictionary<Subject, Dictionary<Teacher, Dictionary<Student,
Dictionary<int, Dictionary<int, Decision>>>>> x;

x = new Dictionary<Subject, Dictionary<Teacher, Dictionary<Student,
Dictionary<int, Dictionary<int, Decision>>>>>();

foreach (Subject subject in M)
{

x[subject] = new Dictionary<Teacher, Dictionary<Student,
Dictionary<int, Dictionary<int, Decision>>>>();

foreach (Teacher teacher in L)
{

x[subject][teacher] = new Dictionary<Student,
Dictionary<int, Dictionary<int, Decision>>>();

foreach (Student student in K)
{

x[subject][teacher][student] = new Dictionary<int,
Dictionary<int, Decision>>();

for (int period = 0; period < Problem.periods; period++)
{

x[subject][teacher][student][period] = new Dictionary<Int32,
Decision>();

for (int day = 0; day < Problem.days; day++)
{

Decision d = new Decision(Domain.Boolean, "SUB" +
subject.number + "_TEA" + teacher.number + "_STU" +

student.number + "_PER" + period + "_DAY" + day);
x[subject][teacher][student][period][day] = d;
model.AddDecision(d);

}
}

}
}

}

We create a solver context, from which we obtain a model and then we add boolean
variables to it according to our theoretical model (defined in 3.2), i.e. we have one
variable for every student-subject-teacher-day-period. These variables are stored in
a system of associative arrays, in order to fetch result from them later in the code.

In the next listing, we show how constraints are defined.

14

. 3.4 Implementation

// CONSTRAINT UNIQ 1
int cnt = 0;
for (int day = 0; day < Problem.days; day++)
{

for (int period = 0; period < Problem.periods; period++)
{

foreach (Teacher teacher in L)
{

SumTermBuilder sum = new SumTermBuilder(1000);
// SUM BEGINS
foreach (Student student in K)
{

foreach (Subject subject in M)
{

sum.Add(x[subject][teacher][student][period][day]);
}

}
// SUM ENDS
model.AddConstraints("UNIQ1_" + cnt, sum.ToTerm() <= 1);
cnt++;

}
}

}

The constraints have a form of equations, in which we use the very variables we
defined before. In the listing above, we programatically define constraint 3.2.3.C1.

Objective functions are defined likewise:

SumTermBuilder objective1 = new SumTermBuilder(10000);
for (int day = 0; day < Problem.days; day++)
{

for (int period = 0; period < Problem.periods; period++)
{

foreach (Teacher teacher in L)
{

foreach (Student student in K)
{

foreach (Subject subject in M)
{

objective1.Add(Problem.penalty_day(day) *
x[subject][teacher][student][period][day]);

}
}

}
}

}

model.AddGoal("objective", GoalKind.Minimize, objective1.ToTerm());

Then the model is solved and the results are obtained.

Google OR provides basically the same functionality as MS Solver Foundation, but
it is free. Major drawback of both Google OR and MSSF is that they only support
a few solvers and they do not allow model export. Another drawback that was found

15

3. Integer Linear Programming .
during testing is that there’s a bug in DLL version of COIN-OR CBC, which results in
significant performance loss, and because the frameworks are unable to use standalone
version of CBC, this loss affects them.

3.4.3 Using Custom Solver Framework
Due to the drawbacks of the third party frameworks mentioned in the previous section,
there was a need of creating a custom framework, which would be easy to use, would
provide export functionality and would overcome the DLL-related performance loss of
CBC. For this purpose, a custom framework was created, which allows following:. Intuitive and easy definition of variables, constraints and objective functions.Export to .lp file format.Ability to call solver standalones on .lp files

3.5 Conclusion on ILP
Due to computational unsustainability of ILP even on extremely small timetabling
instances, it will not be used in the final software. Instead of ILP, we shall focus on
more conventional and straightforward search methods.

16

Chapter 4
Proposition of a Solution

Due to conclusion 3.5, a novel approach to solving problem 1.2 shall be proposed. This
approach will make use of the search algorithms mentioned later in this thesis (namely
chapters 6 and 7); in this chapter, a principle of the proposed meta-algorithm will be
explained and the software object model (which will later be used in part 12, concerning
testing) will be described.

4.1 The Meta-algorithm
The algorithm we are speaking of, is, strictly speaking, a meta-algorithm. A meta-
algorithm is an algorithm designed to manipulate other algorithms which are embed-
ded inside it. This meta-algorithm is designed to manipulate various inner search
algorithms, such as local search algorithms and genetic algorithms.

4.1.1 Student Arrival Predictions
As it was stated in 1.3, a certain information about forthcoming students is needed
for the meta-algorithm to perform well. In case of the proposed meta-algorithm, this
information is a prediction based on previously arrived students, which consists of:.Estimated number of students to arrive.Days of arrival of these students.Estimated curricula of these students.Estimated subject volumes of these students

The estimation itself is not a part of the meta-algorithm and has to be known a priori.
For the testing purpose, the proposed meta-algorithm works with randomly generated so
called scenarios, which are basically randomly generated (fake) estimations. Scenarios
also include another information which is vital for the meta-algorithm, such as:.Number of days.Number of periods (time slots) of a day.Number of teachers.Proficiencies of specific teachers.Available periods of specific teachers.List of subjects and their lengths

4.1.2 Lifecycle of a Student
A student enters the meta-algorithm in the state of prediction (as seen in figure 4.1).
In this state, the student is subjected to scheduling, so the meta-algorithm is allowed
to reschedule his or her lessons to another day and time, or to change teachers of his
or her curriculum subjects. This rescheduling, of course, may only move subjects from
the present to the future or vice versa. Moving subjects to the past is inconsistent with
the nature of prediction.

17

4. Proposition of a Solution .
In all moments, all the subjects from student’s curriculum are scheduled in required

volume, despite that there may not be a way to schedule them without inconsistency.

prediction arriving
today?

yes

no

expected

arrived?
yes

locked

deleted

no

subject to scheduling subject to scheduling

cannot be rescheduled

Figure 4.1. Lifecycle of a student

When a predicted day of arrival of a certain student matches the current day, this
student’s state is then changed to expected. At this point of the algorithm, a user needs
to provide reflection of a real state to the algorithm—to tell whether a student has
actually arrived or whether he or she has not.

A student who has actually arrived is then transfered to locked state, which means,
that perturbation operators will not be able to select and perturb his or her lessons
anymore. Once a student is locked, his timetable becomes immutable.

A student (prediction) who has not arrived must be deleted from the timetable.
Transition to a next day is not allowed until all students expected to arrive on the

actual day have been locked or deleted. If the transition to a next day was allowed
with students in expected state, there would exist a chance, that some of the lessons of
the expected students would be left in the past, with perturbation operators unable to
reposition then (because perturbation operators are not allowed to alter the past).

4.1.3 Common Properties of Perturbation Operators
Although, there are many possibilities of how to perturb a timetable, all such operators
must share certain common properties (given by this scheduling meta-algorithm); the
following must hold:.Perturbation operators do not alter lessons of locked students..Perturbation operators do not operate on the past.

If perturbation operators were allowed to operate on the past, there would be a non-
zero probability of never reaching a consistent timetable, which is not acceptable.

4.1.4 Common Properties of Randomisation Functors
Randomisation functors are used to generate random (more or less) timetables, which
are then used as intial solutions for various search methods. These functors must also
share certain properties:.Randomisation operators do not alter lessons of locked students..Randomisation functors do not place student’s lessons before their (student’s) days

of arrival.
If randomisation functors were allowed to place student’s lessons before their days of

arrival, perturbation operators would be unable to relocate the lessons assigned to the
past (by randomisation functors).

18

. 4.2 The Implementation

4.1.5 General Flow of the Meta-algorithm
The general flow of this meta-algorithm is depicted in the figure 4.2

Initialise

Improve

Reflect

Either/
Or

Adv
an

ce
 d

ay

User intervention

User intervention

Figure 4.2. General flow of the meta-algorithm

In the first stage, the algorithm is initialised (the initialisation procedure itself is
controlled by the inner search algorithm—for instance when using a local search, this
may mean just a plain randomisation or some form of informed initialisation, and
when we use a genetic algorithm, the initialisation stands for generation of an initial
population, may it be random or informed).

After the initialisation stage, there is a stage of solution improvement. Again, the
procedure itself is solely in hands of the inner search algorithm. Termination state
of this stage is not defined—it happens until certain number of iterations have been
reached, but the user can decide to continue improving until the solution is good enough.

Upon emergence of a temporaly-dependent information which was unknown before
(arrival or non-arrival of a student expected to arrive on the actual day), a user can
trigger a transition to the next state called the reflection state. In the reflection state,
the user is supposed to provide this new information to the algorithm, so the user either
turns a predicted student into an actual one (which leads to its lock-off) or delete the
predicted student.

After the reflection, the user may continue with improvement of a current solution or,
in the case all the predicted students are either locked or deleted, advance the current
day.

After advancing to a next day, the previous day becomes the past, which is no more
subjected to scheduling. The user now may decide between re-randomizing the solution
(with keeping settings of all the locked students, of course) and improving the current
one.

4.2 The Implementation
In compliance with the assignment, an object model was designed and implemented
with accordance to the SOLID principles of object programming and design, which
lead to good maintainability, extensibility and testability of a code and which will now
be briefly explained.

19

4. Proposition of a Solution .
Single Responsibility Principle
This principle states that a class should only serve one purpose and all its functionality
should be aligned with that purpose. The term was coined by Robert C. Martin in
his book Agile Software Development, Principles, Patterns, and Practices [18]. In this
book, Martin states that a class should only have one reason to change and he gives an
example of a class, which represents a report, but it also has a function which prints
the report on a standard output. Assuming that responsibility of the class is to hold
a report data, it should only change when the strucure of the data has changed. But in
this case, it would also have to change when there is a change in the output method,
so, clearly, the single responsibility principle does not hold for this class.

Open/Closed Principle
This principle, coined by Bertand Meyer in his book Object Oriented Software Construc-
tion[19] states that a class should be closed for modification, but opened for extension.
In practice, this means, that a modification of a class should not be accomplished
through modification of the code of the class itself, but rather by extension of the class
using inheritance.

Liskov Substitution Principle
This principle, formulated by Barbara Liskov in [20], is considered a cornerstone of
object modelling:. If S is a subtype of T, then objects of type T may be substituted with objects of type

S without altering any of the desirable properties of that program.

This principle is inherent to the most of modern object-oriented programming languages
(in our case to C#).

Interface Segregation Principle
This principle, formulated by Martin in [18], states that a class should not depend on
a fuctionality it does not use. For instance, when a class if forced to implement an
interface from which it will only use one method, the rest of the methods still must
be implemented, though they will not be used (which violates the interface segregation
principle). By using this principle, we are forced to write specific interfaces instead of
general ones.

Dependency Inversion Principle
This principle, also formulated by Martin in [18], states that:.High-level modules should not depend on low-level modules. Both should depend on

abstractions..Abstractions should not depend on details. Details should depend on abstractions.

In practice it means, that a class should not depend on concrete types, but rather
on abstract ones. This also goes hand in hand with the single responsibility principle,
because such class would be unable to instantiate its object components by itself (it is
not its responsibility), beacuse that would make it dependent on concrete (instantiable)
data types. The responsibility of instantating is delegated to a separate class, sometimes
called an IoC (inversion of control) container.

20

. 4.2 The Implementation

Because correct and generic implementation of this principle is non-trivial, this prin-
ciple might be the most violated one, but there are several libraries (such as Unity,
Autofac and SimpleInjector), which provide quality implementation of IoC and make
observance of this principle very straightforward.

4.2.1 Individual Representation
The form of individual representation has significant impact on performance of individ-
ual algorithms and it must be designed in a way which would allow fast and efficient
computation of its objective function value. The form must also allow fast and efficient
perturbation. There are several forms of representation which were considered:.Full-form multidimensional matrix.Sparse-form multidimensional matrix.Custom associative array

Full-form Multidimensional Matrix

This representation basically corresponds to the ILP boolean variable xstu,sub,tea,day,per

from the section 3.2.1, which specifies whether the student stu has the subject sub, which
is taught by the teacher tea on day day and time period per of that day.

Advantage of this form is its extraordinary simplicity, be it implemented as an actual
array or as a some form of dynamic array, which can be expanded over time, and
constant worst-time complexity of random access.

Main drawback of this form is that with every additional dimension, the matrix gets
exponentially sparser and exponentially more difficult (in terms of time and memory)
to operate with.

Sparse-form Multidimensional Matrix

In this representation, only non-zero elements of the matrix are stored along with
their coordinates. There are three prevalent methods of storing sparse matrices:.Dictionary of Keys: This method uses an associative array to map coordinates to their

values. It has amortized constant time complexity of random access and amortized
linear time complexity of search, but there is no way to efficiently perturb a timetable
stored in this form..Coordinate List: A sorted list, which stores coordinates along with their values. This
method has O(log(n)) time complexity for random access and O(n) for search.

Custom Associative Array

This form of representation was created especially for the problem of our concern. It
exploits some specific features of the problem:.Curriculum of a student cannot change during computation: This means that instead

of capturing every possible student-to-subject assignment combination, we may con-
serve memory by storing only a list of student-subject pairs. And because these pairs
never change during computation, we can use them as keys in an associative array..Only things that change during computation are teachers and times assigned to
student-subject pairs: This means, that teacher-time pairs can be used as values of
an associative array (indexed by the student-subject pairs mentioned above).

21

4. Proposition of a Solution .
.Duration of subjects also does not change during computation: This means that

collisions in the timetable can be detected in linear time using just simple arithmetics..Days always have the same amount of periods (slots): This means that we don’t have
to physically separate days, because simple one-dimensional encoding of two dimen-
sional data can be used. This significantly simplifies complexity of perturbation. For
instance, in figure 4.3 the following holds:

Ri =
⌈
Xi

W

⌉

Li = mod(Xi − 1,W) + 1

or for index base zero:

Ri =
⌊
Xi

W

⌋

Li = mod(Xi,W)

where Ri is a row index corresponding to item Xi, Ci is a column index corresponding
to item Xi and W is width of a row (in our case number of periods in a single day).

R1

R2

R3

R4

C1 C2 C3 C4

X1 X2 X3 X4

X5 X6 X7 X8

X9 X10 X11 X12

X13 X14 X15 X16

W=4

H
=
4

Figure 4.3. 1D encoding of 2D data

By exploiting these features, we can spare ourselves writing computationally ineffi-
cient procedures for obtaining objective function values or for perturbations.

Structure of the representation is shown in figure 4.4.

22

. 4.2 The Implementation

Student1 Subject1

Student1 Subject2

Student2 Subject1

StudentN SubjectM

Teacher3 T 19

Teacher7 T 98

Teacher1 T 4

Teacher1 T 250

T 98 T 99 T 100 T 101 T 102T 97

Next day

Figure 4.4. Custom associative array

Clearly, this form of representation suits our needs the best.

Implementation

Regarding the implementation, we need several classes to implement this data struc-
ture, namely:.class Student, which represents a single student. Fields and properties of this class

are the following:

public int number; // ID of the student
public string name; // Name of the student
public int arrival; // Day of arrival
public HashSet<Subject> curriculum; // Student’s curriculum
public Dictionary<Subject, int> volume; // Subject volume
public bool Locked { get; set; } // Lock status

Student’s curriculum is a set of all the subjects student wants to enroll (where Subject
volume specifies how many lessons of these subjects he wants to take). Lock status
tells whether a timetable of a student can or cannot change (i.e. whether the student
is a prediction or whether he is actually scheduled).

.class Subject, which represents a single subject, with the following fields:

public int number; // ID of the subject
public string name; // Name of the subject
public string abbr; // Abbreviation of the name
public int units; // How many periods the subject takes

23

4. Proposition of a Solution .
When these classes are defined, we can define an aggregation class which would serve
as our hashmap’s key type:

.class StudentSubject, with these properties:
public Student Student { get; set; } // Involved student
public Subject Subject { get; set; } // Involved subject
public int VolumeIdx { get; set; } // Volume index
public bool Locked { get; set; } // Lock status

This class aggregates a single student and a single subject, creating an object rep-
resentation of a single lesson of that subject. Student usually wants to take more
lessons of the same subject, so there is a Volume index property, which specifies
which particular lesson is represented by this object.

.class Teacher, which represents a single teacher along with properties that charac-
terize him or her. Fields and properties are the following:

public int number; // ID of the teacher
public string name; // Name of the teacher
public HashSet<Subject> proficiency; // Teacher’s proficiency
// Set of unavailable periods for each day
public Dictionary<int, HashSet<int>> units_unavailable;

Teacher’s proficiency is a property, which specifies subjects that a teacher can teach.
units unavailable maps days to set of units, on which a teacher cannot teach (for
that particular day).

Having defined class Teacher, we can define an aggregation class, which links teach-
ers to time periods:

.class TeacherTime, with the following properties:
public Teacher Teacher { get; set; }
public int Time { get; set; }

Now a final data structure can be implemented as follows:
public Dictionary<StudentSubject, TeacherTime> Table { get; set; }

4.2.2 The Problem Context
In order to create a scalable design, a concept of so called problem context was intro-
duced. A problem context is a data structure, whose purpose is to:.Provide data.Provide methods for data alteration.Hold the temporal context (i.e. current day).Define functors for inner algorithms to use:.Randomisation functor (which provides methods for randomizing individuals or

their concrete parts).Fitness functor (which specifies an objective function).Mutation and recombination functors (for population based inner search algo-
rithms).Position and teacher mutation functors (which specify perturbation functions for
position a teacher perturbation, respectively)

24

. 4.2 The Implementation

.Auxiliary variables

Figure 4.5. UML Class diagram of DTL::ProblemContext

Auxiliary variables is a concept, which creates a compromise between good design and
computational performance. In a well designed system, every search algorithm would
be responsible for creation and management of its vital temporary variables, but in
our case, this would mean a significant performance loss. This loss is due to extremely
frequent calls to IFitnessFunctor.Calculate(). Upon every call, this function would
need to allocate large heap space for these variables, compute the objective function
and dispose these variables for garbage collection just to reallocate them in the next
call, which follows almost immediately. This constant allocation and disposal of large
memory chunks presents an unacceptable performance loss.

25

4. Proposition of a Solution .

Figure 4.6. UML Class diagram of DTL::AuxiliaryVars

In the concept of auxiliary variables as presented here, these variables are allocated
only once and then constantly reused by the fitness functor. Major drawback of this
solution is that there is no way to compute objective functions parallelly in a single
context. On the other side, on a single processor, this concept leads to a significant
increase in performance.

A solution that performs the best in terms of performance, is to use static variables
with no object hierarchy at all. Despite its good performance, it will not be used,
because it is not well scalable nor testable.

4.2.3 Functors
A multitude of functions which share the same signature and return type, is a reason to
use an abstraction. In C#, there are several ways of representing structures which act
as pointers to funtions (i.e. they allow functions to be treated as variables, for instance
to be passed as arguments, stored as class members etc.). Whereas traditional C-style
function pointers are not object oriented, not type-safe and not secure, C# alternatives
are.

First way of doing so, is by using delegates—a C# native feature. A delegate is
a type, which encapsulates a method. A new delegate type is defined by specifiing
signature and return type of an encapsulated method. For instance, for a delegate type

26

. 4.2 The Implementation

which encapsulates methods with signature (double, double) and with double return
type, the definition would be:

public delegate double FitnDelegate(double param1, double param2);

Then there would have to be some functions to choose from:

public static class FitnessFunctions
{

public static double FitnVar1(double a, double b)
{

return a * b;
}

public static double FitnVar2(double c, double d)
{

return Math.Sqrt(c * c + d * d);
}

}

And a class that would make use of it:

public class Computer
{

public FitnDelegate FitnessFunctor { get; private set; }
public Computer(FitnDelegate fitnessFunctor)
{

this.FitnessFunctor = fitnessFunctor;
}
public double Compute(double x, double y)
{

return this.FitnessFunctor(x, y);
}

}

We can see, that the class Computer is separated from the computation process itself
through an abstraction. The initialisation may happen through an existing function:

Computer c1 = new Computer(FitnessFunctions.FitnVar1);
Computer c2 = new Computer(FitnessFunctions.FitnVar2);

double param1 = 9;
double param2 = 13;

Console.WriteLine(c1.Compute(param1, param2));
Console.WriteLine(c2.Compute(param1, param2));

Or through a lambda function:

Computer c3 = new Computer((x, y) => x * x + x * y + y * y);
Console.WriteLine(c3.Compute(param1, param2));

Or through anonymous function which allows statements:

Computer c3 = new Computer
(

delegate(double x, double y)
{

27

4. Proposition of a Solution .
Console.WriteLine("xˆ2 + xy + yˆ2");
return x * x + x * y + y * y;

}
);
Console.WriteLine(c3.Compute(param1, param2));

Another way of creating an abstract function are custom delegate objects known as
functors. Functors is our representation of choice, because they are more versatile.
Functors are not sealed, which means, that they can be extended ad infinitum using
inheritance mechanics.

First, we have to define the encapsulated method’s signature and return type through
an interface:

public interface I2DToDFunctor
{

double Call(double a, double b);
}

The interface I2DToDFunctor is an interface that all the functions which take two
doubles and return a double use. Every time we define a functor, we define a class
that implements a signature interface of this functor’s encapsulated function and we
specify the concrete behaviour in the implementation of the Call() method:

public class MultiplicativeFunctor : I2DToDFunctor
{

public double Call(double a, double b)
{

return a * b;
}

}

Then we define a class which will make use of the functor:

public class FunctorComputer
{

public I2DToDFunctor FitnessFunctor { get; private set; }
public FunctorComputer(I2DToDFunctor fitnessFunctor)
{

this.FitnessFunctor = fitnessFunctor;
}
public double Compute(double x, double y)
{

return this.FitnessFunctor.Call(x, y);
}

}

We see that the only change (when comparing to the variant using delegates) is in
a method of calling the delegate/functor. The usage itself is also very similar:

FunctorComputer c4 = new FunctorComputer(new MultiplicativeFunctor());

double param1 = 9;
double param2 = 13;

Console.WriteLine(c4.Compute(param1, param2));

28

. 4.2 The Implementation

A problem context class can use one of three pseudo random number generator
implementations, which are then used mainly by randomization functors:

Figure 4.7. UML Class diagram of DTL::IPseudoRandomNumberGenerator

Figure 4.8. UML Class diagram of DTL::IRandomizationFunctor

These implementations are:.Standard fixed-seed PRNG – This PRNG is used for testing purposes, for the ran-
domised algorithms always yield the same results when a seed is constant.

29

4. Proposition of a Solution .
.Standard time-seeded PRNG – This PRNG is used in the final appliaction and in

statistical testing, because the seed is based on system time and therefore, results
from algorithms are always different (as intended)..Cryptographically secure PRNG – This PRNG is intended for future use in scenar-
ios, where cryptographical security is preferred over speed (generation of salt, for
instance).

Randomization functors
Randomization functors are used to randomize whole individuals or to randomize

their parts (single students or teachers).
There are two implementations of IRandomizationFunctor:.Standard randomization functor – Assigns completely random time and completely
random teacher to every student-subject..Non-overnight randomization functor – Assigns completely random teacher to every
student, but makes sure that assigned random time never crosses boundaries of days
(i.e. lessons are not separated by night). In other words, it makes sure that the
following equation holds: ⌊

Pn

Np

⌋
=
⌊
Pn +Ns

Np

⌋
,

where Pn is randomly generated period for a subject to start on, Np is the number
of periods per day and Ns is the number of periods taken by the subject.

The two methods of the interface are meant to do the following:.Randomize(IIndividual ind) – This method is meant to randomize complete indi-
vidual (i.e. the complete timetable). Every student-subject (apart from locked ones)
is assigned a new starting period and a new teacher (with appropriate proficiency)..RandomizeSpecific(IIndividual ind, Student student) – This method is
meant to randomize only a student (i.e. the student-subjects that refer to him or
her) defined by the second argument. Other students are left untouched.

Mutation and recombination functors
Mutation and recombination functors are used for mutation/perturbation of a single

individual and for recombination of a pair of individuals, respectively.
These functors must implement one of the following interfaces, according to their

type:.IMutationFunctor.IRecombinationFunctor

Concrete implementations of these interfaces are described in sections 6 and 7. Inner
search algorithms typically use two mutation functors—one for altering student-subject
positions and one for altering teachers of these student-subjects.

Fitness functors
Fitness functors are used for computation of an objective function value of a specified

individual. The concrete implementation is described in section 4.3.

30

. 4.2 The Implementation

4.2.4 Search Algorithm Object Model
An inner search algorithm of the dynamic timetabling meta-algorithm is represented
by the interface type ISearchAlgorithm. Because a search algorithm needs to inform
external entities about its progression (for visualisation, debugging and for statistical
purposes), its model has to implement some form of observer design pattern.

public interface ISearchAlgorithm
{

IIndividual Search(IProblemContext ctx);
IIndividual Improve(IProblemContext ctx, IIndividual ind,

int iterations);

// Signal from external entity to stop the main loop.
void SignalStop();

// Signals to registered observers (external entities).
event EventHandler BetterSolutionFound;
event EventHandler SearchCompleted;
event EventHandler StatisticalHit;

}

The observer design pattern is used, when an object needs to notify some other
entities about some changes in its internal state or about some event, but the object
itself is not responsible for creating or maintaining these entities (called observers). The
pattern specifies, that the object, which notifies (called an observed object), extends
a supertype, which makes external observers able to register on it. Upon the given
event, the observed object calls the notification method of the supertype, which notifies
all the registered observers about the specified event. All observers are responsible for
their registration on the observed object.

In our case, the search algorithm needs to notify, for instance, a statistical module
about the best solution after every fitness function call. For this functionality, we use
a native C# feature called an event. An event is, in fact, a language integrated observer
design pattern. In the interface, we specify, that every class that implements it, must
be able to send notifications:

event EventHandler BetterSolutionFound;

Then we create an abstract observer, which will contain methods for registering
and unregistering particular event handlers of particular events. In our case, an event
handler is represented by a method of a specific signature:

public abstract class BetterSolutionEventListener
{

public void ListenOn(DynamicTimetabling dt)
{

if (dt.SearchAlgorithm != null)
{

dt.SearchAlgorithm.BetterSolutionFound +=
SearchAlgorithm_BetterSolutionFound;

}
}

public void StopListeningOn(DynamicTimetabling dt)
{

31

4. Proposition of a Solution .
dt.SearchAlgorithm.BetterSolutionFound -=

SearchAlgorithm_BetterSolutionFound;
}

abstract public void SearchAlgorithm_BetterSolutionFound(
object sender, EventArgs e);

}

A program, which uses the dynamic timetabling library, then may create an extension
of BetterSolutionEventListener class to handle the event of discovering a better
solution in a specific way:

public class StdoutDumpBSEListener : BetterSolutionEventListener
{

public override void SearchAlgorithm_BetterSolutionFound(
object sender, EventArgs e)

{
// Print solution to stdout.

}
}

And then register the listener to the oberved object:

BetterSolutionEventListener bsel = new StdoutDumpBSEListener();
bsel.ListenOn(dt);

In the observed object, the event is raised by calling the handler:

if (this.SearchCompleted != null)
{

this.SearchCompleted(best, new IterationEventArgs(iter));
}

Figure 4.9. UML Class diagram of DTL::ISearchAlgorithm

The interface also contains method SignalStop(), which is called, for instance, by
a visualisation thread, when user demands stopping the algorithm loop immediately
(without achieving given number of iterations).

Method Improve(IProblemContext ctx, IIndividual ind, int n) improves the
provided solution (individual) for another n iterations, and method Search(IProblem
Context ctx) creates a random solution, which is then improved.

32

. 4.2 The Implementation

4.2.5 Dynamic Timetabling Object Model
The dynamic timetabling meta-algorithm itself is represented by the class Dynamic-
Timetabling. This class implements no interface, because it is represents the top-layer
access point to the library and is not supposed to be extended in any way.

Figure 4.10. UML Class diagram of DTL::DynamicTimetabling

The DynamicTimetabling class is responsible for the meta-algorithm actions, such
as:.Advancing day (method AdvanceDay()).Adding students (method AddStudent()).Deleting students (method DeleteStudent()).Locking students (method LockStudent())

It also provides a method for projecting the change of context onto the existing
individuals.

4.2.6 The Input Format
An input scenario (scenarios are described in 4.1.1) is stored in a text, which has the
following format: First line contains total numbers of expected students, total number
of teachers, days, subjects, number of days and numbers of periods in a single day:

TT DATA | STUDENTS 20 | TEACHERS 40 | SUBJECTS 20 | DAYS 20 | PERIODS 30

this line must be followed by exactly n lines, where n is the number of subjects. Each
line specifies name of a particular subject in its duration:

33

4. Proposition of a Solution .
SUBJECT | NAME C0 | DURAT 3

These lines must be followed by exactly m lines, where m is the number of teachers.
Each line specifies respectively:.Teacher’s name.Proficiency of the teacher (subject names separated by space).List of unavailable days.List of unabavilable periods in form of X:A,B,C;Y:D,E,F;, where X and Y are day

indices and A,B,C,D,E,F are unavailable periods (slots) of particular days

TEACHER | NAME T0 | PROFICIENCY C0 | UNAV_DAYS | UNAV_PERIODS
0:13,14,15,16;1:13,14,15,16;2:13,14,15,16;3:13,14,15,16;4:13,14,15,
16;5:13,14,15,16;6:13,14,15,16;7:13,14,15,16;8:13,14,15,16;9:13,14,
15,16;10:13,14,15,16;11:13,14,15,16;12:13,14,15,16;13:13,14,15,16;
14:13,14,15,16;15:13,14,15,16;16:13,14,15,16;17:13,14,15,16;18:13,
14,15,16;19:13,14,15,16

These lines must be followed by exactly p lines, where p is the number of students.
Each line specifies respectively:.Student’s name.Day of student’s arrival.Students curriculum and lesson volume in form of SUB1:X,SUB2:Y,..., where SUB1

and SUB2 are names of subjects and X,Y are their respective volumes.

STUDENT | NAME S0 | ARRIVAL 0 | CURRICULUM C16:5,C6:3,C1:2,C17:3,C15:2,
C11:3

File in this format is then parsed by the DTL::Data.LoadFromFile(string path)
method into the DTL::Data type object, which holds the data in a form of simple lists:

public List<Student> Students { get; set; }
public List<Teacher> Teachers { get; set; }
public List<Subject> Subjects { get; set; }

public int StudentCount { get; set; }
public int TeacherCount { get; set; }
public int SubjectCount { get; set; }
public int DayCount { get; set; }
public int PeriodCount { get; set; }

This Data object is then fed to the ProblemContext through its constructor.
These scenario files can be randomly generated by the DP DATAGEN project, which

allows user to control several parameters of random variables, namely:.Student count, teacher count, subject count [exact].Teacher proficiency [range].Subject duration [range].Day count [exact].Periods of a single day [exact].Lessons per subject of a student [range].Number of subjects enrolled [range].Teacher unavailability periods [exact].Student arrival times [range]

34

. 4.3 Objective Function

4.3 Objective Function
An objective function (called also a fitness function in the terminology of genetic algo-
rithms) is used to determine quality of a timetable (called an individual in the terminol-
ogy of genetic algorithms) and is supposed to be minimised or maximised (minimised
in our case).

An objective function may only take soft constraints into account (when hard con-
straints are dealt with by state transition operators) or it may also take hard constraints
into account (when state transtition operators allow hard constraint violation). In our
case, both soft and hard constraints are taken into account.

4.3.1 Formalisation
Let:.S be the set of all student-subjects,.T be the set of all teachers,.St be the set of all student-subjects taught by teacher t,. time : S 7→ N be the mapping of student-subjects to their scheduled times.Np be the number of periods (slots) of a single day. tc(x, y), x ∈ S, y ∈ S be the predicate which is true exactly when teachers of student-

subjects x and y are the same and are participating in a teacher clash (i.e. one
teacher is supposed to teach two different lessons in one time),.sc(x, y), x ∈ S, y ∈ S be the predicate which is true exactly when students of student-
subjects x and y are the same and are participating in a student clash (i.e. one
student is supposed to take two different lessons in one time),.on(x), x ∈ S be the predicate which is true exactly when the student-subject x is
scheduled in such way that it crosses from one day to another (for instance, the first
half of the lesson is scheduled to monday evening and the second half of the lesson
is scheduled to tuesday morning). This situation is called an overnight violation,.av(x), x ∈ S be the predicate which is true exactly when the teacher of the student-
subject x is unavailable at the time x is scheduled. This situation is called an avail-
ability violation,.Tc = {x ∈ S | y ∈ S, x 6= y, tc(x, y)} (the set of all student-subjects which participate
in teacher clashes).Sc = {x ∈ S | y ∈ S, x 6= y, sc(x, y)} (the set of all student-subjects which participate
in student clashes).Oc = {x ∈ S | on(x)} (the set of all student-subjects which participate in overnight
violations).Ac = {x ∈ S | av(x)} (the set of all student-subjects which participate in availability
violations)

4.3.2 Hard Constraints
This component of the objective function has the biggest priority and it is required to
be zero before locking any students or advancing to a next day. Advancing to a next
day without Ch = 0 may cause severe structural violations in a timetable.

Ch = |Tc| + |Sc| + |Oc| + |Ac|

35

4. Proposition of a Solution .
4.3.3 Maximal Schedule Length

This component computes an average start time of all student-subjects with respect
to days they are scheduled on. It sums every student-subject start times in class ZNp

and divides the sum with the number of all student-subjects. The result is therefore
normalised.

Cmax =
∑

x∈S
mod(time(x),Np)

Np

|S|

4.3.4 Standard Deviation of Teacher Utilisation
Utilisation of a certain teacher specifies how many lessons that particular teacher
teaches. Minimalisation of a standard deviation of this number over all teachers should
guarantee that all the teachers teach roughly the same amount of lessons.

First, we need a mean value of utilisation Um:

Um =
∑

t∈T
∑

x∈St
1

|T|
And then the standard deviation Ustd is computed. In order to properly normalise

the standard deviation, a maximal standard deviation would have to be found, but
because it presents an additional computational overhead, a precomputed mean value
is used instead.

Ustd = 1
Um

√∑
t∈T (Um −

∑
x∈St

1)2

|T|

4.3.5 Feasibility Objective Function
This objective function is used in cases when we only want to get feasible schedule.

F = |Tc| + |Sc| + |Oc| + |Ac|

4.3.6 Objective Function with Maximal Schedule Length
This objective function (1.05× slower than the feasibility objective function) is used in
cases when we also want maximal schedule length as a soft constraint.

F = |Tc| + |Sc| + |Oc| + |Ac|+
∑

x∈S
mod(time(x),Np)

Np

|S|

4.3.7 Combined Objective Function
This objective function combines both soft constraints (maximal schedule length and
standard deviation of teacher utilisation) and gives them equal convex coefficients (0.5).
In theory, the sum of soft constraint values should never get bigger than 1 (so the
improvement in one hard constraint is prefered over improvement in all the soft con-
straints), but due to rough normalisation of Ustd, this might actually happen (although
it never happened during experiments).

F = |Tc| + |Sc| + |Oc| + |Ac|+
∑

x∈S
mod(time(x),Np)

Np

2 |S| + 1
2Um

√∑
t∈T (Um −

∑
x∈St

1)2

|T|

36

. 4.3 Objective Function

4.3.8 Fitness Functor
Fitness functors, apart from providing objective function value for individuals, also
seek and mark hard constraint-violating student-subjects of inviable individuals. These
marks are then utilised in informed perturabation operators.

Figure 4.11. UML Class diagram of DTL::IFitnessFunctor

Class diagram 4.11 shows, that there are three concrete implementations which ex-
actly correspond to the functions defined in 4.3.5, 4.3.6 and 4.3.7.

37

Chapter 5
Benchmarking Methodology

This chapter describes statistical testing ([21]) and visualisation methods which are used
to evaluate results of benchmarks. In our case, statistical tests are used for concluding
about equality of underlying distributions of benchmark results (for instance, to see if
resulting objective function values differ when multiple parameter settings are used).

5.1 F-test of Equality of Variances
F-test or Fischer’s test ([21]) is used to conclude about equality of variances of two
sample sets, whose probability distributions are normal (which is very reasonable as-
sumption).

We assume two random independent sample sets sampled from distributions
N(EA,DA) and N(EB,DB) and we want to test null hypothesis about equality of
variances. The test statistic is:

T = SA

SB

This statistic has Fisher-Snedecor distribution F (ξ, η) wit ξ and η degrees of freedom.
Figure 5.1 shows Fisher-Snedecor distribution for (5, 5) degrees of freedom.

Figure 5.1. Fisher-Snedecor probability distribution for (5, 5) degrees of freedom

In the F-test, the F-distribution has (n−1,m−1) degrees of freedom, where n is the
number of samples in the first set and m is the number of samples in the second set.

Given the level of accuracy α, we can obtain critical points:

38

. 5.2 Student’s T-test of Equality of Means

k1 = uF (n−1,m−1)

(
α

2

)
and

k2 = uF (n−1,m−1)

(
1− α

2

)
If the realisation t of the test statistic T lies inside the interval (k1, k2), null hypothesis

holds.

5.2 Student’s T-test of Equality of Means
T-test or Student’s T-test ([21]) is used to conclude about equality of means of two
sample sets, whose probability distributions are assumed to be normal.

Again, we assume two random independent sample sets sampled from distributions
N(EA,DA) and N(EB,DB) but this time we want to test null hypothesis about
equality of means. The test statistic is:

T = A−B√
(n− 1)S2

A + (m− 1)S2
B

·
√
mn(m+ n− 2)

m+ n

This statistic has Student’s T-distribution with m+n−2 degrees of freedom. Figure
5.2 show Student’s T-distribution with 5 degrees of freedom.

Figure 5.2. Student’s T-distribution for 5 degrees of freedom

We need to compare realisation of the test statistic with an appropriate quantile:

qT (m+n−2)

(
1−

(α
2

))
If the realisation t of the statistic T lies beneath this quantile, the null hypothesis

holds.

39

5. Benchmarking Methodology .
5.3 Concluding about Algorithm Stability

The common way of visualising results of multiple runs of a randomised algorithm is
to plot mean results, but this way of visualising does not say anything about variance
and thus about stability.

More proper way of visualising results is by using boxplots.

88

90

92

94

96

98

100

1

Q3+1.5 IQR

Q1-1.5 IQR

Third quartile (Q3)

First quartile (Q1)

Median

Interquartile range (IQR)

1.58 IQR

n

outliers

Figure 5.3. Description of boxplot

Boxplots depict data medians, as well as remaining two quartiles (to show an interval
inside which the majority of data lies) along with some additional statistical information
(interquartile range and outliers).

5.4 Implementation of Statistical Functionality
It is reasonable to use number of objective function calls as an independent variable
(instead of time), because this measure is hardware-independent and equidistance of
samples can be obtained without any special effort. For this reason, the ISearchAlgo-
rithm interface contains the event called StatisticalHit.

Figure 5.4. UML Class diagram of DTL::StatisticalModule

40

. 5.4 Implementation of Statistical Functionality

StatisticalHit event is raised by an inner search algorithm whenever an objective
function is called. If there is an approriate listener registered on the event, it will be
called and provided with statistical data. The dynamic timetabling library provides
StatisticalModule abstract class, which can be extended by external statistical soft-
ware. In our case, this software is a statistical project, which exports the data to
a ready-to-execute MATLAB files, which produce various graphs and boxplots upon
their execution.

5.4.1 Matlab-exporting Statistical Program
In order to visualise results of the algorithm, a program which exports statistical data
from the algorithm to MATLAB M-files was created. This program executes so-called
execution plan on a DynamicTimetabling instance and repeats the execution several
times with different seeds, while obtaining statistical data by using MatlabStatisti-
calModule observer, which listens on the DynamicTimetabling instance.

The execution plan simulates behaviour of a meta-algorithm user. It is represented
as an ordered list of enum-type variables, for instance the following plan

List<DTAction> plan = new List<DTAction>
{

DTAction.Improve,
DTAction.LockRemaining,
DTAction.AdvanceDay,
DTAction.Randomize

}

runs an improvement cycle (for a number of iterations specified a priori), then it
locks all the students who were expected at that day, then it advances the day and then
it randomizes remaining students’ lessons. There are several types of actions which can
be part of the execution plan:.DTAction.Improve — Runs improvement cycle for n iterations, where n is specified

a priori..DTAction.AdvanceDay — Advances the current day..DTAction.Lock — Locks the next student in the arrival-expectation queue..DTAction.Delete — Deletes the next student in the arrival-expectation queue..DTAction.LockRemaining — Locks the whole arrival-expectation queue..DTAction.DeleteRemaining — Deletes the whole arrival-expectation queue..DTAction.Randomize — Randomizes remaining students’ lesons.

41

Chapter 6
Inquiry into Conventional Perturbation-based
State Space Search Methods

In this chapter, we shall describe conventional perturbation-based state space search
methods (such as exhaustive enumerative search, local search with different search
strategies, tabu search and stochastic hill-climbing) and discuss their advantages and
drawbacks in terms of applicability on the problem of our concern.

6.1 The State Space
Prior to any inquiry into perturbation-based search methods, an analysis of the state
space must be performed, for it is the size and the complexity of the state space, which
is crucial to performance of these algorithms.

Our state space S is a space of timetables constrained by their dimensions (number
of timeslots, students-subjects and teachers). A timetable always has all the student-
subjects scheduled, may it or may it not be consistent.

There are two atomic operators: Xp(ls), s ∈ S, which moves the student-subject ls
of the state s to another time; and Xt(rls), s ∈ S, which changes the teacher rls of the
student-subject ls to another teacher. The transitive closure of the relation specified
by the operators {Xp, Xt} is equal to the state space S.

6.1.1 Branching Factor
Branching factor of S specifies how many state space transitions are possible from
a single state. Because there are two transition operators, total branching factor equals
to the sum of branching factors of particular operators:

F = FXp + FXt

Branching factor of a position operator is:

FXp = nl · nd · np

where nl is the number student-subjects, nd is the number of days and np is the
number of periods (slots) of a single day. We can select any student-subject and put it
to any time in any day.

Branching factor of a teacher operator is:

FXt = nl · nr

where nr is the number of teachers (in practice, this is reduced to just those teachers
who have appropriate profficiency in the subject of l).

So the total branching factor is:

F = nl · (ndnp + nr)

42

. 6.2 Exhaustive Enumerative Search

6.1.2 State Space Size
Cardinality of S is given by the following equation.

|S| = nl!(ntndnp)nl

6.2 Exhaustive Enumerative Search
Exhaustive enumerative state space search, as its name suggests, is based on enumera-
tion of the whole state space and selecting the best solution from this enumeration. It
is often realised by recursive depth or breadth first search.

This method is only applicable on small discrete search spaces. The size of our state
space renders this method unusable.

6.3 First-improving Local Search
First-improving local search is a local search variant, which selects the first solution
which improves the temporary best one and continues the search on this new solution.
The search is repeated until some termination condition is met.

Solution x.
Initialize(x).
Until termination condition Do

Solution y = Perturb(x).
If TargetFcn(y) > TargetFcn(x)

x := y;
End

End

Because often there is no specific reason for deterministic perturbation, this method
is often stochastic, i.e. it generates more or less random neighbours of the currently
best solution.

Performance of this method is correlated with the size of the state space: When the
state space is small, there is a huge risk of getting stuck in a local extreme (but the
search is very fast). On the opposite side, when the state space is very large (which
holds in our case), the risk of stucking in a local extreme is reduced (it is reduced even
more significantly in case of multiple runs with different seeds).

6.4 Best-improving local search
Best-improving local search is the second possible local search variant, which, instead of
selecting the first improving solution, enumerates the whole neighbourhood and selects
the best transition possible.

Solution x.
Initialize(x).
Until termination condition Do

Solution y = BestFromNeighbourhood(N(x)).
If TargetFcn(y) > TargetFcn(x)

x := y.
End

End

This method is very inefficent on large neighbourhoods (which is again, our case).

43

6. Inquiry into Conventional Perturbation-based State Space Search Methods
6.5 Stochastic Hill Climbing

Stochastic hill climbing is a variant of local search which introduces a method for
overcoming local extremes. In this algorithm, there is always non-zero probability
of selecting a solution from the neighbourhood, which is worse than the best-so-far
solution.

P = .05.
Solution x.
Initialize(x).
Until termination condition Do

Solution y = Perturb(N(x)).
If TargetFcn(y) > TargetFcn(x) OR RandomDouble(0.0,1.0) < P

x := y.
End

End

6.6 Simulated Annealing
Simulated annealing is a metallurgy-inspired probabilistic search method based on phys-
ical properties of metal annealing.

In metallurgy, annealing is a method used to ensure regular atom grid in metals.
A piece of metal is treated by extreme heat, so the atoms can move from their non-
optimal positions, which cause the metal piece to be non-homogenous, and then slowly
cooled down. In the process of cooling down, atoms tend to locate themselves in their
equilibrium states.

An optimisation analogy of this process means introducing a time-dependent tem-
perature function, which defines randomness of perturbation.

Solution x.
Initialize(x).
Temperature t.
Heat(t).
Until termination condition Do

Solution y = Perturb(x).
If TargetFcn(y) > TargetFcn(x)

x := y.
Else

p := e ˆ - ((TargetFcn(y) - TargetFcn(x)) / T).
If RandomDouble(0.0,1.0) < p

x := y.
End

End
Cool(t).

End

6.7 Tabu Search
Tabu search is very similar to common hill climbing, but it allows transitions whenever
the new solution is better than or equally good (or possibly some delta) as the best-
so-far solution. To avoid cycles, which are very likely to happen due to this non-strict

44

. 6.8 Applicability on the Problem of our Concern

transition rule, the concept of memory is introduced. In this concept, inverses of the
last n transitions are stored (i.e. when a transition A→ B is made, B → A is stored)
in a list called a memory.

Whenever a transition is about to be made, the algorithm iterates the memory and
checks whether there is such transition in it. If there is, no transition is made, because
it would lead the algorithm to already recently searched part of the state space.

After every iteration, some of the memories are deleted (according to their age).

Solution x.
Initialize(x).
List m.
Until termination condition Do

Solution y = Perturb(x).
If TargetFcn(y) >= TargetFcn(x) AND NotContains(m,[x->y])

x := y.
AddTo(m,[y->x]).

End
DeleteOldItems(m).

End

The major drawback of this method is that for large state spaces, the memory would
have to be enormous to work effectively.

6.8 Applicability on the Problem of our Concern
Because of very large state spaces and neighbourhoods of the problem of our concern,
only some methods of the previously mentioned are suitable and will be implemented,
namely:.First-improving local search.Stochastic hill climbing.Simulated annealing

45

Chapter 7
Inquiry into Population-based State Space
Search Methods

Population-based state space search methods are, as the name suggests, search methods,
which build their functionality upon maintaining a set of solutions called a population.
There are many population-based search methods, such as genetic algorithms, evolu-
tionary algorithms, ant colonies, particle swarm optimisation, scatter search etc., but
in this thesis, we will only concern genetic algorithms and their hybrids.

7.1 Standard Genetic Algorithm
A standard genetic algorithm (SGA) is an algorithm which maintains a population of
solutions, which is subjected to initialisation, selection, mutation, recombination and
renewal (these are also called genetic operators).

The SGA can be inspired by one of the following theories of evolution ([22]):.Either by Darwinian theory, which states that life experience of parents does not
affect the child.or by Lamarckian theory, which states exactly the opposite.or by Baldwinian theory, which states that genetic information encodes the ability
to learn.

All of these theories share the common idea called the survival of the fittest, which
states that only the individuals, which show an exceptional ability to survive in their
surroundings, get to live, reproduce and possibly project their qualities onto their off-
springs.

The SGA tries to implement the following analogy betwen one of the evolution the-
ories and problem optimisation:.Population of life forms = Population of problem solutions.Fitness of a single life form = Value of the problem solution objective function.Natural selection = Stochastic selection functions based on objective function value.Mating to maintain genetic diversity = Combination of two solutions.Genetic mutation = Slight alteration of problem solutions.Dying of age = Population replacement (generations)

By implementing this analogy, we obtain the inherent properties of evolution, but
applied to problem optimisation. The basic structure of a genetic algorithm is the
following:

Population P As List.
Population NewP As List.
Individual Best := null;
1. Initialise(P).
2. Individual A := Select(P).

46

. 7.1 Standard Genetic Algorithm

3. Individual B := Select(P).
4. Individual C := Recombine(A,B).
5. C := Mutate(C).
6. If Fitness(C) > Fitness(Best)

Best := C.
End

7. Add(C, NewP).
8. If Size(NewP) = Size(P)

P := NewP.
Clear(NewP).

End
9. If Not TerminationCondition

Goto 2.
End

7.1.1 Initialisation
An initialisation operator is used to fill the first population with individuals. These
individuals can be either completely random or partially random (improved or generated
by some informed procedure).

7.1.2 Selection
A selection operator selects two individuals which will be subjected to recombination.
The selection must be based on an objective function value, so the better individuals are
selected more often. Also, to achive genetic diversity (and thus the ability to overcome
local extrema), there must be a non-zero probabilty, that the worst individual from the
population gets selected. Two most common selection operators are:.Fitness proportional selection (also called roulette selection) — Each individual has

a probability of selection, which is directly equal to the percentage of his share on
the total fitness of the whole population. For instance, if there are three individuals
in the population, having fitness values 50, 25 and 25, respectively, then the first
individual has a probability of 0.5 of being selected..Tournament selection — A certain number of random individuals is selected from
the population. Given the probability p, the best individual of this selection is
selected for recombination with probability p. The second individual of this selection
is selected for recombination with probability p(1− p) etc.

7.1.3 Recombination
A recombination operator (also called crossover operator) constructs one or more new
individuals by combining genotypes of selected parents. This operation’s effectivity is
based on assumption, that it is possible to obtain a child that is better (in terms of its
fitness) than both of its parents. There are two common types of recombination:.Uniform recombination — parts of parental genotypes are combined completely at

random..n-point recombination — parental genotypes are split by n cuts and the resulting
sections are combined to produce one or more different children

7.1.4 Population Renewal
Population can be either completely replaced by offspring in each generation, or it can
be continually pruned and updated with children.

47

7. Inquiry into Population-based State Space Search Methods .
One of the important aspects of the SGA is called elitism. When using elitism, the

most fit individuals from the old population are selected deterministicaly and transfered
to the new population without any changes. This behaviour is supposed to guarantee,
that the quality of the solution will not decrease from generation to generation.

7.2 Memetic Algorithms
Memetic algorithms ([22]) are genetic algorithms that follow the Lamarckian evolution
scheme, according to which some life experiences of the parents can be inherited by
their children.

Optimisation analogy of this behaviour is implemented by using an additional inner
search operator. This inner search operator tries to improve a genotype (commonly by
using some local search technique) before or after its mutation, or to improve genotypes
of individuals in the initial population.

There exists a standard categorisation of memetic algorithms:.LTH (Low-level teamwork hybrid) — Local search embedded in a GA.HRH (High-level relay hybrid) — Initial population of a GA is built by a local search.HTH (High-level teamwork hybrid) — Several GAs are run in a parallel model,
cooperating with one another

48

Chapter 8
Experiments with Conventional Perturbation-
based State Space Search Methods

In this chapter, the algorithms mentioned in 6 will be subjected to several benchmarks
in order to select the most suitable one for the dynamic timetabling tool. In addition,
several perturbation operators will be presented, analysed and their performance will
be evaluated.

8.1 Benchmark Scenarios
There are five different benchmarking instances:.Small Loose Satisfiable (SLS) — An instance very easy to solve, with 20 students,

40 teachers, 20 subjects, 20 days, 30 periods, with subject durations being 2 to
5 periods, curriculum size being 4 to 7 subjects and lesson volume being 2 to 5 lessons
per subject..Small Tight Unsatisfiable (STU) — A small instance, which was proven to be
unsatisfiable..Small Tight Satisfiable (STS) — A small instance, which is satisfiable, but the
resulting timetable is very tight (with not much space between lessons)..Realistic Satisfiable 1 (RS1) — A large instance with 100 students, 200 teachers,
100 subjects, 25 days, 16 periods (one period equals 30 minutes, thus adding to
8 hour work day), 1 to 3 period subject durations (either 30, 60 or 90 minute lessons),
lunchbreaks taking 1 period (30 minutes), students arriving until day 5, each having
enrolled 4 to 8 subjects with 5 to 10 lessons of each..Realistic Satisfiable 2 (RS2) — Another large instance with same parameters as
RS1.

8.2 Perturbation Operators
Several position and teacher perturbation operators were designed and will be subjected
to benchmarking. In general, there are two basic groups of these operators—informed
and uninformed. Uninformed perturbation operators do not exploit any of the proper-
ties of the problem and are almost completely random. This randomness decreases the
risk of getting stuck in a local extreme, but it makes the search process itself signifi-
cantly slower. On the other side, informed perturbation operators exploit the fact, that
there are subparts of timetable, which cause worse penalty than any other subparts.
These subparts are identified by a fitness function, which sets a predicate called Bad on
those student-subjects, which cause hard constraint violations.

Perturbation operators can also introduce a stochastic element, which will control the
amount of information they exploit. This element is a ratio, which specifies how many
times a Bad predicate is ignored. These are called stochastic informed perturbation
operators.

49

8. Experiments with Conventional Perturbation-based State Space Search Methods
Some operators can also guarantee, that their execution will not cause any new hard

constraint violations (or violations of subsets of hard constraints). In our case, oper-
ators with prefix NonOvernight are guaranteed not to violate 3.2.3.C7 (i.e. overnight
constraint).

8.2.1 Blind Position Perturbation Operator
This operator selects a student-subject from so called unlocked subset of a timetable,
which is defined by the following lambda selector:

var unlockedSubset = ind.Table.Keys.Where(x => !x.Student.Locked &&
ind.Table[x].Time >= Math.Max(day_offset,
x.Student.arrival * ind.ProblemContext.Data.PeriodCount));

where ind is the perturbed timetable (individual), ind.Table is the timetable
hashtable (described in 4.2.1). As we can see, the unlocked subset contains only
unlocked student-subjects whose start times do not precede the current day. The
day offset is defined as:

int day_offset = ind.ProblemContext.CurrentDay *
ind.ProblemContext.Data.PeriodCount;

After selecting a random element of the unlocked subset, its time is changed to
a randomly selected new position, which must also satisfy certain conditions (it must
not be in the past, for instance).

int rnd_ss = (int)Math.Floor(ind.ProblemContext.Random.NextDouble() *
(unlockedSubset.Count()));
var ss = unlockedSubset.ElementAt(rnd_ss);

day_offset = Math.Max(day_offset, ss.Student.arrival *
ind.ProblemContext.Data.PeriodCount);

int rnd_subject_pos = day_offset + (int)Math.Floor(
ind.ProblemContext.Random.NextDouble() * ((
ind.ProblemContext.Data.PeriodCount *
ind.ProblemContext.Data.DayCount) - ss.Subject.units - day_offset));

ind.Table[ss].Time = rnd_subject_pos;

8.2.2 Non Overnight Position Perturbation Operator
This operator guarantees, that its execution will not cause any new violation of con-
straint 3.2.3.C7 by making sure, that the following equation holds:⌊

Pn

Np

⌋
=
⌊
Pn +Ns

Np

⌋
,

where Pn is the randomly generated period for the subject to start on, Np is the number
of periods per day and Ns is the number of periods taken by the subject.

8.2.3 Informed Position Perturbation Operator
This operator introduces the so called inviable set, which is a subset of an unlocked set
and is defined by the following lambda selector:

var inviableSubset = unlockedSubset.Where(x => x.Bad);

50

. 8.3 First-improving Local Search

In other words, it selects all the elements from the unlocked set, which have Bad
predicate on them. After defining the inviable set, it continues to operate the same way
as shown in 8.2.1, but it uses the inviable set instead of the unlocked one until there
are no more hard constraint violations. After that, it falls back to using the unlocked
set.

8.2.4 Non Overnight Informed Position Perturbation Operator
This operator combines features of operators 8.2.2 and 8.2.3.

8.2.5 Stochastic Non Overnight Informed Position Perturbation
Operator

This operator is very similar to the operator 8.2.4, but unlike it, this operator can be
set to ignore Bad predicates with certain probability, causing the search process to be
less likely to get stuck in a local extreme.

8.2.6 Blind Teacher Perturbation Operator
This operator changes the teacher of a student-subject randomly selected from the
unlocked set. The new teacher is selected from a set of teachers which have appropriate
profficiency.

8.2.7 Informed Teacher Perturbation Operator
This operator acts similarly to the operator 8.2.3, but it changes teachers instead of
postions.

8.2.8 Stochastic Informed Teacher Perturbation Operator
This operator is very similar to the operator 8.2.7, but unlike it, this operator can be
set to ignore Bad predicates in the same way as shown in 8.2.5.

8.3 First-improving Local Search
As it was stated in 6.8, first-improving local search is one of the perturbation-based
state space search methods, which is suitable for the problem of our concern, because
it can cope with large neighbourhoods.

In the object model, this algorithm is represented by the RandomisedLocalSearch
class (randomised because of the stochastic neighbour selector mentioned in the inquiry
(6.3)).

8.3.1 Using Blind Operators on “SLS” Scenario
In the figures 8.1 and 8.2, we can see the dependency of hard and soft constraints
(respectively) on the number of objective function evaluations. We can see that the
convergence of the number of hard constraint violations is rather fast and it does con-
verge to zero. Soft constraints converge slower, which was expected, because their share
in the objective function is lower.

In the figures 8.3, 8.4, 8.5, 8.6, 8.7 and 8.8, we can see, that the algorithm becomes
increasingly stable (the experiment was repeated 10 times).

51

8. Experiments with Conventional Perturbation-based State Space Search Methods

Figure 8.1. Hard constraint progress for first-improving local search with blind p.o.

Figure 8.2. Soft constraint progress for first-improving local search with blind p.o.

Figure 8.3. Student clashes boxplots for first-improving local search with blind p.o.

52

. 8.3 First-improving Local Search

Figure 8.4. Teacher clashes boxplots for first-improving local search with blind p.o.

Figure 8.5. Availability violation boxplots for first-improving local search with blind p.o.

Figure 8.6. Overnight violation boxplots for first-improving local search with blind p.o.

53

8. Experiments with Conventional Perturbation-based State Space Search Methods

Figure 8.7. Cmax boxplots for first-improving local search with blind p.o.

Figure 8.8. Fitness boxplots for first-improving local search with blind p.o.

8.3.2 Comparison of Blind and Non-overnight Operators on
“SLS” Scenario

As we can see in the figure 8.9, non-overnight perturbation operators have achieved very
similar results in terms of convergence and stability, so a statistical test was performed
to see if there is any significant difference.

Results of the statistical test (α = .05) showed, that fitness variances at 104th objec-
tive function evaluation are equal, but means are not (non-overnight operator produced
lower mean fitness), and thus the non-overnight operators perform better on the SLS
scenario.

54

. 8.3 First-improving Local Search

Figure 8.9. Comparison of blind and non-overnight p.o. objective function and Cmax.

8.3.3 Comparing Informed, Uninformed and Stochastic Informed
Operators on “STS” Scenario

Due to the results of the previous experiments, which show, that the non-overnight
operators are more effective than the blinds ones, only non-overnight operators will be
used henceforth.

In this experiment, we compared three of the non-overnight operator variants (blind,
informed and stochastic informed) and compared progress, stability and final values of
hard and soft constraints.

Figure 8.10. Fitness value progress comparison for blind, informed and stochastic inf. op.

As we can see in the figure 8.10, the informed operator has got stuck in a local
extreme and it was unable to recover from it, because the inviable set contained too
few elements. The blind operator has a significantly slower convergence rate, but it
is able to overcome the extremes. The stochastic informed operator, which chooses
to ignore the inviable set with probability 0.5, converges nearly as fast as the blind

55

8. Experiments with Conventional Perturbation-based State Space Search Methods
operator, but has no problems with getting stuck. It was shown by statistical test
(with α = .05), that the blind and stochastic informed operators have the same means
and variances at 3 · 104 evaluations, but yet the stochastic one is clearly better because
of the convergence ratio it can achieve.

Figure 8.11. Cmax value progress comparison for blind, informed and stochastic inf. op.

In the figure 8.11 we can see, that in case of the informed operator, the Cmax
converges slowly, because most of the student-subjects lie outside the inviable set. Sta-
tistical test has shown (with α = .05), that the blind and stochastic operators have the
same means and variances at 3 · 104 evaluations.

Figure 8.12. SC progress comparison for blind, informed and stochastic inf. op.

In the figures 8.12, 8.13 and 8.14 we can see the progression of the number of hard
constraint violations. In case of availability constraints, the stochastic informed opera-
tor was shown to be significantly better at 3 · 104 evaluations than the remaining two
operators.

56

. 8.3 First-improving Local Search

Figure 8.13. TC progress comparison for blind, informed and stochastic inf. op.

Figure 8.14. AV progress comparison for blind, informed and stochastic inf. op.

8.3.4 Comparing Informed, Uninformed and Stochastic Informed
Operators on “STU” (unsatisfiable) Scenario

As we can see in the figure 8.15, all the operators perform equally bad on the unsatis-
fiable scenario.

57

8. Experiments with Conventional Perturbation-based State Space Search Methods

Figure 8.15. Fitness progress comparison for blind, informed and stochastic inf. op.

8.3.5 Using Blind and Stochastic Informed Operators on Realis-
tic Scenarios

According to the previous experiments, stochastic informed operators outperform the
remaining ones on small scenarios. In this experiment, we shall compare their perfor-
mance on realistic scenarios (“RS1” and “RS2”).

Figure 8.16. Fitness progress comparison for blind and stochastic inf. op. on RS1

We can see clearly from the figure 8.16, that the stochastic perturbation operators
outperform the blind ones on the first realistic scenario as well. The algorithm was
unable to achieve feasible and consistent timetable with blind operators, whereas with
the stochastic informed ones, it was. In the figure 8.17 there is a similar result obtained

58

. 8.4 Stochastic Hillclimbing

from the same experiment, but on the “RS2” scenario (which was generated by using
exactly the same parameters as “RS1”).

Figure 8.17. Fitness progress comparison for blind and stochastic inf. op. on RS2

8.3.6 Conclusion on First-improving Local Search
The first-improving local search was thoroughly analysed and found suitable for the
problem. Several types of perturbation operators were tested with different benchmarks
and the best one (informed stochastic) was found.

8.4 Stochastic Hillclimbing
Stochastic hillclimbing is the second algorithm suggested by the theoretical analysis
conclusions in 6.8. It differs from the first-improving local search in one aspect—it can
randomly select to accept worse solution. This behaviour should improve the ability of
overcoming local extrema in the fitness function.

8.4.1 “STU” Scenario Benchmark

Figure 8.18. Comparison of deterministic and stochastic local search

59

8. Experiments with Conventional Perturbation-based State Space Search Methods
The objective function we are using in this thesis seems not to have major extrema,

so the stochastic hillclimbing was tested on the unsatisfiable scenario to see if it can
ouperform the deterministic local search in the lowest number of hard constraint vio-
lations. As it can be seen in the figure 8.18 and as supported by statistical tests, it
cannot.

8.4.2 Conclusion on Stochastic Hillclimbing
The stochastic hillclimbing algorithm was found unsuitable for the problem of our
concern, because its main advantage lies in overcoming an objective function property,
which the one of ours seems not to have.

8.5 Simulated Annealing
Simulated annealing is the last algorithm suggested by the theoretical analysis conclu-
sions in 6.8. It differs from the first-improving local search in introducing a temperature
function, according to which it allows transitions to worse states. In our case, the tem-
perature function is:

T = 1− tanh
(

i

0.1Ni

)
where i is the current iteration and Ni is the total number or iterations.

8.5.1 “STU” Scenario Benchmark
In the figure 8.19 we can see the progress of the objective function in comparison
with deterministic local search. The “hot” stage of the annealing has no effect at all,
because the objective function seems not to have major local extrema for the algorithm
to overcome.

Figure 8.19. Comparison of deterministic local search as simulated annealing

8.5.2 Conclusion on Simulated Annealing
The simulated annealing algorithm was found unsuitable for the problem of our concern,
because of the same reasons as stated in 8.4.2.

60

. 8.6 Comparison Tables

8.6 Comparison Tables

Scenario
Perturbation Operator Type SLS

Overnight 0.7914
Non-overnight 0.4142

Table 8.1. Comparison of overnight and non-overnight operators on the SLS scenario (local
search, measured at 104 evaluations)

Scenario
Perturbation Operator Type STU STS

Blind 90.6766 0.9753
Informed 96.1931 2.5349

Stochastic Informed 86.2798 0.5763
Table 8.2. Comparison of blind, informed and stochastic informed non-overnight operators

on STU ans STS scenarios (local search, measured at 304 evaluations)

Scenario
Algorithm STU

First-improving Local Search 86.2798
Stochastic Hillclimbing 84.9843

Simulated Annealing 86.7820
Table 8.3. Comparison of local search, stochastic hillclimbing and simulated annealing on

the STU scenario (measured at 304 evaluations)

61

Chapter 9
Experiments with Genetic Algorithms

In this chapter, the algorithms mentioned in chapter 7 will be subjected to several
benchmarks in order to find out whether or not they are suitable for the problem of our
concern. In addition, several recombination operators will be proposed and compared.

9.1 Settings
9.1.1 Mutation Operator

According to the results of chapter 8, stochastic informed non-overnight perturbation
operator was selected as a mutation operator.

9.1.2 Recombination Operators
There are three recombination operators:.Uniform recombination operator: Child takes parent student-subjects completely

at random..One point recombination operator: A random student-subject index is selected.
Child takes student-subjects from the first parent up to this index. After this index,
the child takes student-subjects from the seconds parent..Mild recombination operator: Child has nearly exactly the same genotype as the
first parent, only a single randomly selected student-subject is taken from the second
parent.

9.1.3 Selection Operator
According to the results of preliminary benchmarking, the fitness proportional (roulette)
selection operator was selected.

9.1.4 Population Renewal
Each population is nearly completely replaced by its offspring; only two best individuals
from the old population are transfered to the new one (elitism) without having to
undergo selection process.

9.1.5 Inner Local Search
If there is a need to use an inner local search (memetic algorithms), the first-improving
variant with stochastic informed non-overnight perturbation is used (according to the
results of chapter 8).

9.2 Standard Genetic Algorithm
A standard darwinian evolution theory based genetic algorithm with random population
initialisation and no inner local search was implemented and subjected to benchmarks.
All the following benchmarks were made with 0.8 recombination probability, 0.2 muta-
tion probability and with population of 50.

62

. 9.2 Standard Genetic Algorithm

9.2.1 Comparing Recombination Operators
As we can see in the figure 9.1, uniform recombination operator outperforms the other
two in terms of convergence.

Figure 9.1. Comparison of SGA recombination operators

9.2.2 Comparing SGA with Stochastic Informed First-improving
Local Search

In the figure 9.2 we can see, that the stochastic informed non-overnight local search
performs far better (in terms of convergence) on the “SLS” scenario than the standard
genetic algorithm with uniform recombination.

Figure 9.2. Comparison of SGA and stochastic informed first-improving LS on “SLS”

Genetic algorithms are known for their ability to overcome local extrema, so this
behaviour was expected on this scenario. The following experiment tries to find out
whether this ability will or will not help finding better solution on an unsatisfiable
scenario.

63

9. Experiments with Genetic Algorithms .
9.2.3 SGA and LS on Unsatisfiable Scenario

Figure 9.3. Comparison of SGA and stochastic informed first-improving LS on “STU”

Even on the unsatisfiable “STU” scenario, standard genetic algorithm seems to per-
form worse than the best of the tested local search algorithms.

9.3 Memetic Algorithms
Two memetic algorithms were implemented and subjected to benchmarks—an LTH
(low-level teamwork hybrid), which embeds a local search into a standard genetic al-
gorithm, and an HRH (high-level relay hybrid), which is a standard genetic algorithm
with initial population built by a local search.

The local search procedure used in these hybrids is stochastic informed non-overnight
first-improving local search, which achieved the highest performance in experiments
concerning peturbation-based search methods.

Figure 9.4. Fitness comparison of SGA and memetic LS on “SLS” scenario

64

. 9.3 Memetic Algorithms

9.3.1 Comparing Memetic Algorithms with SGA
As we can see in the figure 9.4, on a small, loose and satisfiable scenario, memetic algo-
rithm with inner local search tends to have slower convergence rate, while ls-initialised
hybrid converges very fast. But fitness function evaluation-wise, the standard genetic
algorithm still performs better.

Figure 9.5. Fitness comparison of SGA and memetic LS on “STU” scenario

However, on an unsatisfiable scenario, as we can see in the figure 9.5, the LTH (inner
LS) hybrid overcomes the extrema which the remaining two algorithms are unable to
overcome.

Figure 9.6. Fitness comparison of SGA and memetic LS on “STU” scenario

If we repeat the last benchmark with 105 fitness function evaluations and if we
compare the results with our best-so-far local search (figure 9.6), we will see that the
hybrid which seemed promising is still being outperformed.

65

9. Experiments with Genetic Algorithms .
9.4 Comparison Tables

Scenario
Recombination Operator STU

Mild 90.6766
One-point 96.1931

Uniform 86.2798
Table 9.1. Comparison of mild, one-point and uniform recombination operators on SLS

scenario (standard genetic algorithm, measured at 304 evaluations)

Scenario
Algorithm STU SLS

First-improving Local Search 0.4142 82.7829
Standard Genetic Algorithm 0.4453 221.3097

Memetic Algorithm (Ls-initialised) 0.4415 241.4105
Memetic Algorithm (Inner Ls) 0.4403 181.1022

Table 9.2. Comparison of first improving local search (stochastic informed perturbation
operator) with standard genetic algorithm, memetic algorithm with ls-initialised popu-
lation and with memetic algorithm with embedded inner local search (measured at 304

evaluations)

66

Chapter 10
Conclusion on experiments

According to experiments in chapters 8 and 9, the most suitable algorithm for the prob-
lem of our concern is first-improving local search with stochastic neighbourhood and
stochastic informed position and teacher perturbation operator. This algorithm will
be subjected to the final benchmark, where the whole timetabling process is simulated.

There are six strategies, which differ in their plans (for information about plans, see
section 5.4.1):.Lock strategy with rerandomisation: Consists of the following plan chunks:

DTAction.Improve,
DTAction.LockRemaining,
DTAction.AdvanceDay,
DTAction.Randomize,.Lock strategy: Consists of the following plan chunks:

DTAction.Improve,
DTAction.LockRemaining,
DTAction.AdvanceDay,.Delete strategy with rerandomisation: Consists of the following plan chunks:

DTAction.Improve,
DTAction.DeleteRemaining,
DTAction.AdvanceDay,
DTAction.Randomize,.Delete strategy: Consists of the following plan chunks:

DTAction.Improve,
DTAction.DeleteRemaining,
DTAction.AdvanceDay,.Alternative strategy with rerandomisation: Consists of the following plan chunks:

DTAction.Improve,
DTAction.LockRemaining,
DTAction.AdvanceDay,
DTAction.Randomize,

DTAction.Improve,
DTAction.DeleteRemaining,
DTAction.AdvanceDay,
DTAction.Randomize,.Alternative strategy: Consists of the following plan chunks:

67

10. Conclusion on experiments .
DTAction.Improve,
DTAction.LockRemaining,
DTAction.AdvanceDay,

DTAction.Improve,
DTAction.DeleteRemaining,
DTAction.AdvanceDay,

The reason for using so many different strategies is to find out, whether there is any
difference between rerandomisation ano no rerandomisation in between particular days.

As we can see in the figure 10.1, fitness function steadily declines in both cases as
more students are having their schedules locked. Red dots on the x-axis denote day
advancement.

Figure 10.1. Final algorithm with day advancement and rerandomisation (lock strategy)

Figure 10.2. Final algorithm with day advancement and rerandomisation (delete strategy)

Figures 10.2 and 10.3 show the same decline on both rerandomisation and non-
rerandomisation delete and alternative strategies.

68

. 10.1 Comparison Table

Figure 10.3. Final algorithm with day advancement and rerandomisation (alternative
lock/delete strategy)

We conclude that rerandomisation does not improve the final solution.

10.1 Comparison Table

Strategy
Rerandomisation Lock Delete Alternative

Enabled 0.3404 0.4748 0.3178
Disabled 0.3090 0.3544 0.2933

Table 10.1. Comparison of rerandomisation and no rerandomisation when applied on dif-
ferent lock strategies (measured at 18 · 104 evaluations)

69

Chapter 11
Graphical User Interface

In order to visualise algorithm progress and to browse and examine particular timetables
of students and teachers, a graphical user interface was designed.

Figure 11.1. Dynamic timetabling graphical user interface

This interface allows users to load scenarios and execute search algorithms upon
these scenarios. It provides full functionality of the meta-algorithm, so the user can
stop search at any point, lock or delete arriving students, advance day and/or randomize
remaining students.

Figure 11.2. Visualisation of clashes

Users can also examine timetables and see the concrete clashes, if there are any.

70

Chapter 12
Testing the Dynamic Timetabling Library

While functionality of search algorithms themselves is tested by various benchmarks
with various input data (in this thesis, this is covered in chapters 8 and 9), the rest
of a code base must be covered by unit tests and itegration tests, to make sure, that
separate pieces of code work properly on their own, and that code layers interoperate
correctly, respectively.

12.1 Unit Testing
Unit testing is a software testing method, in which elementary pieces of code are tested
in isolation. A unit test of a code piece (a class, a method, etc.) should test whether
or not this piece serves its purpose and ignore any other puproses and consequences
(this is very closely related to the Single responsibility principle, as stated in 4.2).
This isolation should also be maintained on code pieces, which depend of lower levels
of the software model, for instance: A database accessor is dependent on a database
connection provider, but its unit test should only concern the accessor’s purpose, which
is to read data. It should not concern connecting a database, in other words, it should
be isolated from the conncetion process. In unit testing, this is done by:.Strictly obeying Dependency inversion principle (4.2).Using fakes (see 12.1.1).Using mocks (see 12.1.2)

Level of Dependency inversion principle obedience directly affects ability to isolate
unit tests.

12.1.1 Fakes (fake objects)
If a piece of code obeys Dependency inversion principle to the greatest extent, it depends
solely on abstractions (interfaces and abstract classes in case of C#).

Fakes are types (classes in C#) that extend (implement or extend in C#) these
abstract types, but instead of accessing lower level functionality (and thus creating
dependencies), they provide “fake” functionality, which is mostly very trivial, but it
does suffice for the purpose of unit testing.

Fakes aren’t by any means dynamic. They are concrete implementations of abstract
types written by a programmer (contrary to mocks).

Let us demonstrate the use of fakes on the simple database accessor example given
in 12.1. Suppose we have a class DatabaseAccessor, which depends on the inteface
IDatabaseConnector. A concrete implementation of this interface is injected to the
accessor through the constructor. Normally, a database dependent implementation
of the interface would be injected, but for the sake of isolation of our test, we create
another concrete implementation called FakeDatabaseConnector, which does not actu-
ally connect to a database, but instead to an ordinary in-memory list of items specified
directly in the fake. By injecting this fake to the accessor, we isolate it from an external
dependency.

71

12. Testing the Dynamic Timetabling Library .
12.1.2 Mocks (mock objects)

Mocks are very similar to fakes, but unlike fakes, mocks are not created by manually
implementing interfaces of our concern. They are created dynamically by using very
high-level language features, such as reflection or generics.

For our platform of choice (.NET framework 4.5), there exists a widely used frame-
work called “Moq”, which provides an extensive mocking library. This library is used
by dynamic timetabling library unit test project.

Let us, again, demonstrate the use of mock on a trivial exmple, this time by using
actual code, which uses the Moq framework. In the first phase of a test, a mock object
must be created:

var mockConnector = new Mock<IDatabaseConnector>();

Then the mock object must be set up. By setting up, we can specify behaviour of
almost any method, any property and any field. We can choose what values meth-
ods should return (and even based on their parameter properties) or we can specify
a callback function, which will be called instead of the member method.

In our case, we want our method to, for instance, return a filled list of objects, so we
set it up that way:

mockConnector
.Setup(x => x.ReturnSomething())
.Returns(new List<object> { 1, "something" });

And at last we inject the mock to the accessor through the Object property of the
mock:

IDatabaseAccessor = new DatabaseAccessor(mockConnector.Object);

Because the Moq framework is used for unit testing of the dynamic timetabling
library, we will show a real example of mocking, which uses some more advanced features
of the framework.

The situation is, that we need to test that the RandomisedLocalSearch raises an
appropriate event when it encounters a new individual with better fitness. Using fakes
would be very time consuming, because depends on a large stack of abstractions (ab-
stractions which depent on another abstractions), so a full fake stack would have to be
created. By using mocks, we can create a mock stack directly in our test method and
set up only those features we know that the class under test uses.

So first we need to mock IData and IAuxiliaryVars (for information about the
object model, see 4.2). We dont need to set them up, because they will never be
accessed.

var mockData = new Mock<IData>();
var mockAux = new Mock<IAuxiliaryVars>();

Then we need to set up mock random number generator, which will act determinis-
ticaly and return 0.1 all the time, so we will have control of the algorithm flow.

var mockRand = new Mock<IPseudoRandomNumberGenerator>();
mockRand.Setup(x => x.NextDouble()).Returns(0.1);

Then we have to create a fitness functor, which would always return the best possible
fitness (because we want to raise an event, which should be raised upon encountering
a better solution). Because the fitness functor sets the vital LastFit parameter on its
argument, we need to register a callback function on the mock, which would be called

72

. 12.1 Unit Testing

instead of method Calculate and which would always return an inidividual with fitness
0.

var mockFitnessFunctor = new Mock<IFitnessFunctor>();
mockFitnessFunctor.Setup(x => x.Calculate(It.IsAny<IIndividual>()))
.Callback<IIndividual>(p => { p.LastFit = 0.0; });

Then we need to specify mocks for the rest of the functors. These functors would
normally alter provided objects, but because we do not set them up, they will not do
so (they will leave provided objects unaltered).

var mockMutationFunctor = new Mock<IMutationFunctor>();
var mockRecombinationFunctor = new Mock<IRecombinationFunctor>();
var mockRandomizationFunctor = new Mock<IRandomizationFunctor>();

Then we need to create a mock problem context (another layer), which would access
the mock we have defined instead of real implementations.

var mockContext = new Mock<IProblemContext>();
mockContext.Setup(x => x.RandomizationFunctor)
.Returns(mockRandomizationFunctor.Object);
mockContext.Setup(x => x.Data).Returns(mockData.Object);
mockContext.Setup(x => x.AuxiliaryVars).Returns(mockAux.Object);
mockContext.Setup(x => x.FitnessFunctor)
.Returns(mockFitnessFunctor.Object);
mockContext.Setup(x => x.PositionMutationFunctor)
.Returns(mockMutationFunctor.Object);
mockContext.Setup(x => x.TeacherMutationFunctor)
.Returns(mockMutationFunctor.Object);
mockContext.Setup(x => x.RecombinationFunctor)
.Returns(mockRecombinationFunctor.Object);
mockContext.Setup(x => x.RandomizationFunctor)
.Returns(mockRandomizationFunctor.Object);
mockContext.Setup(x => x.CurrentDay).Returns(0);
mockContext.Setup(x => x.Random).Returns(mockRand.Object);

Then we need to specify an input IIndividual and an individual which would be
returned as a result of perturbation process (the process itself will not be called). The
first individual will have its fitness set to worst possible, whereas the second individual
(which will be obtained as a result of perturbation) will have its fintess set to the best
possible. This setting makes sure, that the event should be raised if the implementation
is correct.

var mockIndividual1 = new Mock<IIndividual>();
mockIndividual1.Setup(x => x.LastFit).Returns(int.MaxValue);

var mockIndividual2 = new Mock<IIndividual>();
mockIndividual2.Setup(x => x.LastFit).Returns(0);

mockIndividual1.Setup(x => x.MutatePositionOnClone())
.Returns(mockIndividual2.Object);
mockIndividual1.Setup(x => x.MutateTeacherOnClone())
.Returns(mockIndividual2.Object);
mockIndividual2.Setup(x => x.MutatePositionOnClone())
.Returns(mockIndividual2.Object);
mockIndividual2.Setup(x => x.MutateTeacherOnClone())
.Returns(mockIndividual2.Object);

73

12. Testing the Dynamic Timetabling Library .
Then we need to define a crucial mock—a mock, which will represent an event listener.

var betterSolutionListenerMock = new Mock<BetterSolutionEventListener>()

We need to register this mock on the algorithm under test:

ISearchAlgorithm search = new RandomisedLocalSearch(0);
search.BetterSolutionFound +=
betterSolutionListenerMock.Object.SearchAlgorithm_BetterSolutionFound;

Then we eventually run the algorithm under test (with all the underlying layers being
mocked and thus making the algorithm under test completely isolated). We can run
it for several iterations, because there is loop set up on the mock individuals (first one
returns second one on perturbation and the second one always returns itself, so the
event should be guaranteed to be raised on the first iteration).

search.Improve(mockContext.Object, mockIndividual1.Object, 10);

Finally, we shall verify, that the event was raised, by checking, that the event callback
method on the mock event handler was called:

betterSolutionListenerMock.Verify
(x => x.SearchAlgorithm_BetterSolutionFound(

It.IsAny<object>(),
It.IsAny<EventArgs>()

));

We verify, that the method SearchAlgorithm BetterSolutionFound was called with
first parameter being any subtype of object and the second parameter being any sub-
type of EventArgs.

12.2 Integration Testing
Contrary to unit testing, integration testing can extend the level of isolation to any
subset of the code base, because its purpose is to test interoperability of the whole
stack of software layers.

An integration test should consist of code pieces, which have already been unit tested
and the testing should have several stages. It should start at the lowest level (in our
case, it is a scenario file parser) and continually add higher layers (in our case, problem
context, dynamic timetabling facade and graphical user interface).

The dynamic timetabling library is covered by integration tests.

74

Chapter 13
Conclusion

The main aim of this thesis was to review algorithms suitable for the problem defined in
1.2, to implement them, to select the best of them according to thorough benchmarks,
and to design, implement and test a human resource management tool which would
make use of this algorithm.

In this chapter, the goals declared in 1.1.1 are mapped to respective achievements.

13.1 Goals to Achievements Mapping

.SotA algorithms were reviewed (chapter 2) and suitable algorithms were selected
(chapter 10).These algorithms were analysed (chapters 3, 6 and 7) and subjected to benchmarks
(chapters 8 and 9).A tool was designed (chapter 4) along with benchmarking framework (chapter 5.4).Benchmarking (chapter 5) and testing methodology (chapter 12) was described.Tool was provided with unit tests, abstraction tests and benchmarks

13.2 Work not Declared in Goals

.Graphical user interface for the tool was designed and implemented.Statistical matlab-exporting support library was implemented.Custom ILP problem definition LP-exporting framework was implemented

13.3 Results
After reviewing the state of the art, no suitable algorithms were found, which would suit
the problem of our concern. The reviewed algorithms were almost always too specific or
only theoretical and the corresponding papers did not provide any implementation, so
a novel solution, tailored for the unusual specifications of our problem, was proposed.

The proposed algorithm (called dynamic timetabling meta-algorithm), requires pre-
dictions of student arrival dates and curriculums on its input, and makes use of an inner
search algorithm, which is supposed to have the ability to improve an existing solution.

Based on statements about state space size, several algorithms were selected to par-
ticipate in final algorithm selection process:.Randomised first-improving local search.Stochastic hillclimbing.Simulated annealing.Standard genetic algorithm.LTH hybrid memetic algorithm

75

13. Conclusion .
.HRH hybrid memetic algorithm

These algorithms were subjected to thorough benchmarks, and throughout the bench-
marking process, several petrurbation, mutation and recombination operators were
tested:.Blind perturbation/mutation operators. Informed perturbation/mutation operators.Stochastic informed perturbation/mutation operators.Uniform recombination operator.Mild recombination operator.One-point recombination operator

The benchmarks have shown, that given the objective (fitness) function we were
using, there is no need for algorithms to have quality which makes them able to easily
overcome local extrema, because the empirical probability of getting stuck in such an
exteme was shown (by repeating the experiments) to be very low.

The benchmarks have also shown, that selection and recombination processes in
genetic and memetic algorithms do not lead to any improvement in quality of the final
solution, nor to better fitness convergence. On the other side, the type of perturbation
operator was proved to be crucial.

According to benchmarks, the best algorithm was selected (first-improving local
search with stochastic neighbourhood and stochastic informed position and teacher
perturbation operator) and implemented as an inner search procedure of the dynamic
timetabling meta-algorithm.

Then the meta-algorithm itself was subjected to several benchmarks on various ex-
ecution plans. According to these benchmarks, it was concluded on the settings of
the algorithm (no-rerandomisation variant was shown to have better results on all the
execution plans).

13.4 Future Work
The dynamic timetabling tool will be provided with the ability to dynamicaly alter the
scenario during its execution. It will also be provided with database connectivity and
with web-based user interface.

The tool will also be provided with the ability to prioritise user-selected clashes and
manually rearrange student and teacher schedules.

76

References
[1] Marie Demlová. Přednášky z předmětu teorie algoritmů.
[2] Stephen Cook. The complexity of theorem proving procedures. Proceedings of the

Third Annual ACM Symposium on Theory of Computing, 1971.
[3] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-complete prob-

lems. Proceedings of the Sixth Annual ACM Symposium on Theory of Computing,
1971.

[4] T. B. Cooper and J. H. Kingston. The complexity of timetable construction problems.
1995.

[5] W. Herroelen and R. Leus. Robust and reactive project scheduling: A review and
classification of procedures. International Journal of Production Research 42 (8),
2004.

[6] W. Herroelen and R. Leus. Project scheduling under uncertainty: Survey and re-
search potentials. European Journal of Operational Research 165, 2003.

[7] H. Alashwal and S. Deris. Dynamic timetabling using reactive constraint agents,
2007.

[8] A. Elkhyari, Ch. Guéret, and N. Jussien. Solving dynamic timetabling problems
as dynamic resource constrained project scheduling problems using new constraint
programming tools.

[9] J. Correa and M. Wagner. Lp-based online scheduling: from single to parallel
machines, 2007.

[10] S. Daskalaki, T. Birbas, and E. Housos. An integer programming formulation for a
case study in university timetabling. European Journal of Operational Research 153,
117-135, 2004.

[11] Ch. Guéret, J. Narendra, P. Boizumault, and Ch. Prins. Building university
timetables using constraint logic programming.

[12] R. Achá and R. Nieuwenhuis. Curriculum-based course timetabling with sat and
maxsat, 2012.

[13] M. Cangalovic and J. Schreuder. Exact colouring algorithm for weighted graphs
applied to timetabling problems with lectures of different lengths. European Journal
of Operational Research 51, 248-258, 1991.

[14] Nelishia Pillay. A survey of school timetabling research. Annals of operations
research DOI 10.1007/s10479-013-1321-8, 2013.

[15] Yu Zheng, Jing-fa Liu, Wue-hua Geng, and Jing-yu Yang. Quantum-inspired genetic
evolutionary algorithm for course timetabling. Third international conference on
genetic and evolutionary computing, 2009.

[16] J. Nelson, I. Craddock, and K. Imamura. Academic course scheduling by simulated
annealing.

77

References .
[17] J. Frausto-Solís, F. Alonso-Pecina, and J. Mora-Vargas. An efficient simulated

annealing algorithm for feasible solutions of course timetabling.
[18] Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices.

Prentice Hall, 2002.
[19] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.
[20] Barbara Liskov. Keynote address – data abstraction and hierarchy, 1988. ACM

SIGPLAN Notices 23 (5): 17–34.
[21] Mirko Navara. Pravděpodobnost a matematická statistika. Nakladatelství ČVUT,

2007.
[22] Petr Pošík. Přednášky z předmětu evoluční optimalizační algoritmy.

78

Appendix A
Hardware and Software Specification

A.1 Hardware specifiaction
All benchmarks in this thesis were run of the following hadrware specification:. Intel Core i5-4690 at 3.50 GHz.8 GB memory

A.2 Software specification
All development and benchmarking software was run on:.Microsoft Windows 8.1 Pro 64bit

Software development platform for the dynamic timetabling algorithm and for statistical
testing was:.Microsoft .NET Framework 4.5 (with C# being the language of choice).Microsoft Visual Studio Ultimate 2013 (under MSDNAA licence)

Third party .NET libraries.More Linq.NUnit Framework.Moq Framework

Software used for visualisation purposes:.Matlab R2009b

Typesetting software:.TEX Typesetting System

Truly exceptional TEX support software by RNDr. Petr Olšák:.CSplain.OPMac plainTEX macros.CTUstyle plainTEX template

79

Appendix B
DVD Content

Folder C SHARP — C# source files.
Folder MATLAB — MATLAB source files including raw benchmark data.
Folder TeX — TEX sources and resources.
Folder THESIS — Colour and black-and-white versions of this document.
File thesis.pdf — Thesis in with inserted assignment.

80

	TITLE
	Abstrakt/Abstract
	Contents/
	Tables/
	Introduction
	Aim of This Thesis
	Goal Specification

	Problem Definition
	Problem Complexity

	The Challenge

	Review of Literature
	Literature Concerning Iterative Scheduling
	Reactive Scheduling
	Dynamic Timetabling
	Online Scheduling
	Fuzzy Scheduling

	Literature Concerning Timetabling
	Integer Linear Programming
	Constraint Satisfaction over Finite Domains
	Boolean Satisfiability Problem (SAT)
	Reduction to Graph Colouring
	Genetic Algorithms
	Simulated Annealing
	Tabu Search

	Integer Linear Programming
	Method Description
	Formal Definition
	Variables
	Features
	Constraints
	Objective Function

	Platform Selection
	Preliminary Benchmarking

	Implementation
	Using Wrappers for Solver Libraries
	Using Third Party Solver Frameworks
	Using Custom Solver Framework

	Conclusion on ILP

	Proposition of a Solution
	The Meta-algorithm
	Student Arrival Predictions
	Lifecycle of a Student
	Common Properties of Perturbation Operators
	Common Properties of Randomisation Functors
	General Flow of the Meta-algorithm

	The Implementation
	Individual Representation
	The Problem Context
	Functors
	Search Algorithm Object Model
	Dynamic Timetabling Object Model
	The Input Format

	Objective Function
	Formalisation
	Hard Constraints
	Maximal Schedule Length
	Standard Deviation of Teacher Utilisation
	Feasibility Objective Function
	Objective Function with Maximal Schedule Length
	Combined Objective Function
	Fitness Functor

	Benchmarking Methodology
	F-test of Equality of Variances
	Student's T-test of Equality of Means
	Concluding about Algorithm Stability
	Implementation of Statistical Functionality
	Matlab-exporting Statistical Program

	Inquiry into Conventional Perturbation-based State Space Search Methods
	The State Space
	Branching Factor
	State Space Size

	Exhaustive Enumerative Search
	First-improving Local Search
	Best-improving local search
	Stochastic Hill Climbing
	Simulated Annealing
	Tabu Search
	Applicability on the Problem of our Concern

	Inquiry into Population-based State Space Search Methods
	Standard Genetic Algorithm
	Initialisation
	Selection
	Recombination
	Population Renewal

	Memetic Algorithms

	Experiments with Conventional Perturbation-based State Space Search Methods
	Benchmark Scenarios
	Perturbation Operators
	Blind Position Perturbation Operator
	Non Overnight Position Perturbation Operator
	Informed Position Perturbation Operator
	Non Overnight Informed Position Perturbation Operator
	Stochastic Non Overnight Informed Position Perturbation Operator
	Blind Teacher Perturbation Operator
	Informed Teacher Perturbation Operator
	Stochastic Informed Teacher Perturbation Operator

	First-improving Local Search
	Using Blind Operators on ``SLS'' Scenario
	Comparison of Blind and Non-overnight Operators on ``SLS'' Scenario
	Comparing Informed, Uninformed and Stochastic Informed Operators on ``STS'' Scenario
	Comparing Informed, Uninformed and Stochastic Informed Operators on ``STU'' (unsatisfiable) Scenario
	Using Blind and Stochastic Informed Operators on Realistic Scenarios
	Conclusion on First-improving Local Search

	Stochastic Hillclimbing
	``STU'' Scenario Benchmark
	Conclusion on Stochastic Hillclimbing

	Simulated Annealing
	``STU'' Scenario Benchmark
	Conclusion on Simulated Annealing

	Comparison Tables

	Experiments with Genetic Algorithms
	Settings
	Mutation Operator
	Recombination Operators
	Selection Operator
	Population Renewal
	Inner Local Search

	Standard Genetic Algorithm
	Comparing Recombination Operators
	Comparing SGA with Stochastic Informed First-improving Local Search
	SGA and LS on Unsatisfiable Scenario

	Memetic Algorithms
	Comparing Memetic Algorithms with SGA

	Comparison Tables

	Conclusion on experiments
	Comparison Table

	Graphical User Interface
	Testing the Dynamic Timetabling Library
	Unit Testing
	Fakes (fake objects)
	Mocks (mock objects)

	Integration Testing

	Conclusion
	Goals to Achievements Mapping
	Work not Declared in Goals
	Results
	Future Work

	References
	Hardware and Software Specification
	Hardware specifiaction
	Software specification

	DVD Content

