
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Telecommunication Engineering

Migration of Virtual Machines in
the Computing Cloud

Master thesis

Author: Bc. Tomáš Kukrál

Supervisor: doc. Ing. Leoš Boháč, Ph.D.

Acknowledgement

I would like to thank to doc. Ing. Leoš Boháč, Ph.D., Ing. Miloš Kozák and
Ing. Tomáš Hégr for their help and useful comments. I would like also thank to
club tech@SU for providing hardware for testing and development.

I

http://tech.su.cvut.cz

Proclamation

I declare that I worked out the presented thesis independently and I quoted
all used sources of information accord with Methodical instructions about ethical
principles for writing academical thesis.

Bc. Tomáš Kukrál

II

Abstract

This thesis deals with the evaluation of virtual machine migrations. Distributed
datacenter technologies are described in theoretical part with special focus on the
virtual networks and the storage methods.

Practical part introduced an application for testing virtual machine availability
during the migration. It can perform repetitive migration according migration plan
and collects the results. The application is prepared to work with OpenNebula
orchestrator.

Keywords:
virtualization, virtual machine, migration, OpenNebula, cloud, overlay network

IV

Contents

I Theoretical background 1

1 Virtualization 2
1.1 Types of virtualization . 3
1.2 Advantages of virtualization . 5

2 Cloud computing 7
2.1 Deployment models . 8
2.2 Service models . 9
2.3 Networking . 10
2.4 Storage . 22
2.5 Orchestration software . 25

3 Migration of virtual machines 33
3.1 Migration of resources . 33
3.2 Cold migration . 35
3.3 Live migration . 35

II Measurement of migration 37

4 Introduction 38

5 Methodology overview 39
5.1 Measurement session . 39
5.2 Management . 39

6 Themis application 41
6.1 Measure models . 42
6.2 Virtual machines . 47
6.3 Agent . 48
6.4 Frontend . 49

7 Conclusion 53

List of Abbreviations 55

List of Figures 57

List of Tables 58

A Appendix 61

V

Part I

Theoretical background

1

Virtualization

Virtualization, is in my opinion, the most important technology in data centers
because it caused significant progress in the field. It is not technology itself, so it
should rather be called an architecture than a technology.

Definition of virtualization as stated in [2] says that ”virtualization is a tech-
nique for hiding the physical characteristics of computing resources from the way
how systems, applications or end users interact with those resources. The concept
of virtualization is very broad and covers devices, servers, operating systems, appli-
cations and even networks.” This definition describes the virtualization and can be
applied to any type of virtualization.

Computer virtualization it it the oldest and probably the most common type
of virtualization. It started in 1960s with mainframes as an attempt to employ
resource sharing and the idea is still alive in current time. Virtual computer is logical
representation of physical computer in software. [2] Virtual computers are usually
called virtual machines (VMs) and physical machines hosting VMs are called hosts.
The physical computer which is used only to run virtual machines is sometimes
called a hypervisor. However, this terminology is not right, because hypervisor is a
software for running the virtual machines.

It is possible and very advantageous to host many virtual machines on single
physical computer because it brings technical and economical benefits. Decoupling
a computer and it’s software from hardware is important advantage because it brings
additional level of abstraction and gives ability to shift virtual machines between
hypervisors. Economical benefit is quite obvious since it is not necessary to buy
single physical server for every service. Electricity saving is also appreciable.

Another important type of virtualization is virtualization of networks. It is
typically used together with computer virtualization, since it can decouple network
devices from network itself. Physical machines are not as flexible as VMs are, so
plugging them into virtual network is not as beneficial as VMs because there are still
physical network cables that can be hardly virtualized. Software Defined Networking
(SDN) is currently popular topic and it is having a potential to provide virtualization
into physical network infrastructure, thus it may be good idea to integrate physical
machines into virtual network as well.

Storage virtualization should also be taken into account because it provides ab-
straction of the storage. Typical unvirtualized storage uses physical device for stor-
ing data and metadata, but this approach is not flexible enough since it is usually
limited to just one physical machine or group of machines connected to shared stor-
age. It is necessary to find an agile and scalable storage virtualization technique.

Service virtualization, memory virtualization, I/O virtualization or database vir-
tualization are another types of virtualization. It is not possible to enumerate all
types of virtualization because it is fairly possible to virtualize almost everything so
new type of virtualization will probably arise.

Term virtualization is will be used in meaning of computer virtualization, other

2

types of virtualization will always be denoted.

1.1 Types of virtualization

There are three different computer virtualization types and they vary by method
used to add virtualization layer between guests and physical hardware. It it not
possible to easily choose better or worse virtualization types because it depends on
intended usage, character of computing tasks and required operating system.

Common computer architectures are designed to run on the physical harware, so
is in not easy to virtualize these architectures. Access to hardware is controlled by
priority levels called rings. Lowest priority is assigned to the userspace applications
and highest priority (ring 0) is reserved for operating system. It is necessary to
insert virtualization layer between operating system and hardware, but there is not
any ring with higher priority than operating system uses. This problem needs to be
solved and it is not the only one. There are sensitive instructions incompatible with
virtualization because they use different semantics if they are not run in ring 0, as
mentioned in [12].

1.1.1 Paravirtualization

Paravirtualization is type of virtualization with necessity of modifications in
guest kernel. Modifications of kernel are necessary because operating system uses
non-virtualizable instructions that are trying to gain direct access to the hardware.
These instruction need to be replaced with hypercalls that communicate directly
with virtualization layer of hypervisor. [12] It is obvious, that guest operating system
knows it is running virtualized.

Biggest advantage of paravirtualization is lower overhead because is not neces-
sary to translate instructions before running. However, this advantage becomes less
significant because there are processors with hardware optimization for instruction
translation. Main drawback of this type of virtualization is the need for operating
system modifications, which are not always possible or allowed. Running modified
OS also brings additional administration and additional cost.

It is possible to take a different look at paravirtualization and use operating
system-level virtualization. It does not duplicate whole kernel for each virtual ma-
chine because tenants share same kernel and isolation is performed in userspace.
These userspaces are called containers and therefore this approach is called con-
tainer virtualization. It does not provide entire isolated virtual machine, but allows
to run software packed in a container. It is advantageous because there is almost
none overhead in running software from container while maintaining sufficient level
of container isolation. Container virtualization is applicable in situation where en-
tire virtual machine is not needed and where containers brings huge performance
improvements since operating system layer is shared. Containers can be the next
revolution in virtualization. For example Dustin Kirkland, Cloud Solutions Prod-
uct Manager at Canonical wrote: ”Linux containers, repositories of popular base
images, snapshots using modern copy-on-write filesystem features. Brilliant, yet
so simple. Docker.io for the win!” [13]. I think, that container virtualization may
bring compelling advantages and I also like using it, but it is not suitable for every

3

situation. It is still technically kind of paravirtualization and thus it is limited to
provide only additional layer on host’s operating system.

1.1.2 Full virtualization

Virtualization capable or running unmodified operating system is called full vir-
tualization. It utilizes runtime translation, which captures non-virtualizable com-
mands and emulates them using hypervisor virtualization layer. Virtualizable in-
structions are executed directly on the hardware. Modification of ”problematic”
calls is carried by the hypervisor which constitutes the main difference compared
with paravirtualization.

Most important benefit of full virtualization is running guest operating system
without any changes, so guest OS is not aware of being virtualized. This makes
guest operating system fully detached from underlaying hardware. It is possible to
run different operating systems on a single host. This virtualization can be used to
migrate operating system from physical machine to virtual machines because it it not
necessary to make any changes to operating system. Drawback of full virtualization
is overhead caused by catching and translating non-virtualizable calls.

1.1.3 Hardware assisted virtualization

Full virtualization has significant overhead caused by binary translation, so CPU
vendors introduced technologies capable of inserting virtualization layer between
ring 0 and physical hardware. It speeds-up traps of privileged and sensitive calls
and it is not necessary to perform binary translation or to modificate kernel of guest
operating system.

Benefit of this type is quite obvious because it lowers virtualization overhead
and thus provides better performance compared with full virtualization together
with elimination of guest kernel modifications compared with paravirtualization. It
is necessary to have a support in host’s CPU which is the primary drawback of
this virtualization type. However hardware assisted virtualization is supported by
almost every processor used for servers.

Running unmodified guest operating system leaves all necessary translations on
hypervisor layer, but it may be better to introduce small changes to guest’s operating
system, which will reduce work left for the hypervisor, but at the same time limit
changes done to guest’s kernel. This approach is called hybrid virtualization and
it is subset of hardware assisted virtualization. Installation of additional drivers
is required, but it is not necessary to make any changes in a whole kernel. These
drivers are aware of virtualization and use virtualization layer directly without any
translations made by the hypervisor. This method increases driver’s IOPS and
therefore is usually used for virtualized network cards and storages. Driver able
to deliver hybrid virtualization is virtio for KVM, Xen call it paravirtualized device
drivers and VMWare Guest Tools.

1.1.4 Summary

General virtualization types were presented together with pros and cons. Uni-
versal virtualization type suitable for all use cases does not exists, thus is always

4

possible to decide on planned usage. It also depends whether it is required to run
different kernel on single physical host or it is sufficient to share one kernel for all
containers. Differences are compared in table 1.1.1.

We can divide virtualization into two groups:

• One group provides guests with full virtual machine, every VM uses it’s own
isolated kernel and VMs are fully decoupled from hardware. Full, hardware
assisted and hybrid virtualization belongs to this group.

• Members of second group are containers and paravirtualization. This group
is specific by lightweight containers and host kernel shared by all running
containers.

Virtualization is massively used even by czech companies. First group is used
for example by Wedos for their virtual server hosting and related services. Second
group is used by Seznam.cz as they use LXC for web servers as well as for Hadoop
cluster.

Table 1.1.1: Comparison of virtualization types

Type method guest modif. usage
Paravirtualization hypercalls by guest

kernel
yes same workloads and

same OS
Full translation of in-

structions
no when full abstrac-

tion is needed
Hardware assisted translation with help

of hardware
no same as full, but

with compatible
CPU

Hybrid translations and
driver changes

driver only when possible to
install additional
drives

1.2 Advantages of virtualization

Most important advantages is decoupling software from physical hardware, at
least in my opinion. It is possible to migrate virtual machines with running services
between physical hosts without significant impact on service behavior. This brings
amazing opportunity to adapt service environment on demand and scale the service.

It is possible to perform any hardware and software upgrades because all running
services may be temporarily migrated to other physical host. Virtual machines are
much more easier to deploy than physical ones. It takes only a few seconds to create
and run VM which is significantly less than time required to deploy a physical
machine. Deployment of the virtual machine do not have to be performed manually
because it is possible to employ an orchestration and scale out the service (add
virtual machines) automatically. Reset of virtual machine is actually just software
instruction in hypervisor, so it may by done remotely with ease.

Geographical backups or failover is much more easier to accomplish with virtu-
alization approach. You can rent virtual machine from provider in foreign country

5

and start your services in a few moments. It is huge simplification compared with
running physical machine at foreign data center.

Virtualization brings also economical and environmental advantages. Econom-
ical advantages are fairly obvious as it is no longer necessary to purchase physical
servers. Non-virtualizational approach requires one physical machine for every run-
ning server, but that is not longer necessary with virtualization. It is possible to
run many virtual servers or containers on single physical machine. It is also possible
to move even to the higher level of CAPEX cutting and rent virtual machine from
provider and absolutely eliminate need for running any server machine. Renting
virtual server increases OPEX, but they are more flexible and easier to control.
Electrical consumption should also be taken into account because single physical
machine, even under higher load, will definitely consume less power compared with
two or more similar machines.

I asked Petr Hodač, technical manager at SiliconHill and he stated, that they
managed to reduce electricity consumption of whole server room by 19% due to
deployment of virtualization. It produced also additional saving because they need
less UPS batteries and less cooling capacity, but savings on cooling are not included
in mentioned savings.

However, there is drawback too. Failure of physical host causes failure of all
virtual machines or containers running on this host. It it can look as a single point
of failure, but we can fight it by duplication of service nodes between different hosts,
datacenters, providers or continents. Another disadvantage is hidden in additional
virtualization level, since it is necessary to take care of hypervisors. I think that is
not a real disadvantage, since traditional non-virtualized approach needs to take a
care of many physical machines.

Deployment of virtualization should always be well planned because it can bring
many advantages, but it is also able to cause a disaster in case of poor system design
or amateurish administration.

6

Cloud computing

It is possible to find many services called ”cloud based” and it is important to
agree on accurate definition of these services. It is quite clear that cloud based service
will use principle of cloud computing. Definition of cloud computing by NIST says,
that ”Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications and services) than can be rapidly provisioned and
released with minimal management effort or service provide interaction.” [15]. This
definition clarifies what cloud computing is, but says nothing about parameters and
used technologies.

I think that it would be more convenient to start definition from lower levels,
which provides elementary parts, and get to the cloud service afterwards. This
definition gives different look at cloud computing than NISTs, but it uses same
conditions and therefore results are basically the same. It focuses on currently used
principles and provides more technical description of cloud services.

Cloud computing services are nowadays heavily dependent on virtualization be-
cause it allows to replace physical machines with virtual machines (VMs) or con-
tainers and brings a lot more flexibility than physical machine can ever provide.

Basic element of cloud computing system is virtual machine or container. Physi-
cal machine can also be part of the cloud system, but it is not able to deliver required
rapid provisioning and it is not possible to deploy physical machine without service
provider interaction. Virtual machine uses additional resources. These resources can
be for example networking, which is used for interconnection between VMs as well
as for reaching customers or storage used for system internal or customer data. It is
important to employ some configuration management and orchestration because it
is able to deliver rapid provisioning of virtual machines and minimizes effort required
for administration.

Virtual machines together provide the service, which is exposed to users via any
kind of network. It doesn’t matter whether customers access the service directly or
via a proxy, but hiding VMs brings additional flexibility for migration and scalability.

Difference between cloud computing and bare virtualization is intelligence in-
cluded in cloud because it is controlled automatically according to events or mon-
itoring observed at cloud system. It is common to provide configuration interface,
which allows customers to tune service parameters. However, bare virtualization
does not offer any intelligence, even if it is equipped with shiny user interfaces and
opportunity to scale virtual machines up or down because changes are performed
manually.

Cloud computing is very popular topic, so it is often used just for marketing
purposes and thus it is recommended to perform service analysis and do no trust
every buzzword used in marketing materials.

7

2.1 Deployment models

There are three scenarios possible for deploying cloud solutions. Models differ
by ownership and administration responsibility. Right solution depends on expected
load, available budget as well as on expected classification of data. Public model
and private model are mutually contradictory and last model, called hybrid, is com-
bination of first two mentioned.

2.1.1 Private

Private model defines cloud environment build exclusively for single subject.
Typical scenario is to build private cloud in datacenter owned by the subject, but
it is not strictly required. There is common misunderstanding of the term private
because it means private usage of cloud resources and not private ownership of cloud
infrastructure. Private cloud may be leased from third-party provider and it can
also be running on a third-party hardware.

Running private cloud gives an advantage in an elimination of any inter-tenant
isolation problems and it is possible to adapt configuration to fit the tenant needs.
It may be necessary to store sensitive data internally and with limited access, so it is
necessary to build private or hybrid cloud for this kind of usage. Cloud systems can
be deployed across many states and international law about privacy of cloud data
is not defined. There is currently running case with US judge ordering Microsoft to
provide data stored in Ireland. [17]

Drawback of private cloud is higher initial cost and probably also higher opera-
tional cost, but it depends on the expected usage.

2.1.2 Public

Public cloud deployment model is based on a resource sharing between tenants.
There is usually one subject called cloud provider and many customers (tenants).
These tenants buy resources and rights to use them. Resources are usually charged
according to their usage.

Billing per resource usage is called pay-per-use. There are plans with various
CPU, memory and storage options and final cost depends on real usage. Pricing
plan based on pay-per-use is favourable for services with low load with occasional
peaks. Service under constant high load is not well suited for this payment model
because it does not bring any benefits.

The infrastructure is not dedicated and it is shared between tenants. Resources
are shared, but must be strictly isolated because it is unacceptable to allow any
interference between tenants, unless they make an explicit request to allow it.

It is common to provide services with flexible parameters, for example Amazon
calls it EC2 - Elastic Compute Cloud1. Elasticity allows tenant to use more resources
when needed and fall back afterwards.

1http://aws.amazon.com/ec2/

8

http://aws.amazon.com/ec2/

2.1.3 Hybrid

Hybrid cloud is model utilizing both previous mentioned models. The goal is
to combine advantages of models and eliminate drawbacks. Public cloud is usually
more cost effective, but may not be able to meet the security requirements and on
the other hand private cloud can be designed to comply with users requests, but it is
more expensive. Hybrid designed solution can use private cloud part for confidential
data and public cloud for less sensitive ones.

It is also possible to utilize cloud bursting in which system runs in private cloud
and delegates portion of load into public cloud. Lets describe it with application
for collecting votes - sensitive part responsible for counting votes and generating
results will run in private cloud and public report will be saved to and served from
infrastructure of public cloud. High level of security of counting votes is guaranteed
and application is also able to deliver results to many subscribers as it can scale out
into public cloud.

2.2 Service models

Purpose of the cloud computing is to deliver the service and provide customers
with tools to manage this service. Service models differ by level of control provided
to customers and thus with areas of responsibility. I am going to call boundary
between responsibility of customer and responsibility of provider as responsibility
border. Responsibility borders according to service models are depicted in the figure
2.2.1.

Some of the service models leave almost all control and responsibility at provider’s
side and other supplies customer with more control. It is necessary to select right
service model according to expected service usage and required control level.

2.2.1 Infrastructure as a Service

IaaS is a model with the most of a configuration tasks left at customer’s side.
Customer is responsible for the virtual machines and it’s services, so it gives much
more flexibility than other models and it is well-suited for services with extraordinary
requirements.

Customer manages virtual machines as well as running services, so provider is
responsible only for the virtualization and underneath layers. It is even possible to
run custom operating system, but provider usually offers prepared images. Prepared
OS images are tested and modified to run well in cloud environment. There can be
preinstalled hybrid virtualization drivers, kernel tweaked to run virtualized and it is
also good idea to remove unused drivers and software.

This model is good choice if special configuration is needed, but service deploy-
ment is more difficult because some expertise is needed. IaaS can be used if customer
requires additional level of security because virtual machine can use crypted volume
and make disk unreadable for provider. Unfortunately it is still possible for provider
to acquire confidential data from other sources, for example from memory, but it is
much more complicated.

9

Typical example of IaaS are Amazon Web Services2 and Active24’s VPS3.

2.2.2 Platform as a Service

Border of responsibility of PaaS is located two layers higher compared to IaaS.
Service provider is responsible for platform and all underlaying layers, thus provider
takes care of same layers as in IaaS plus operating system and platform. Leaving
operating system maintenance on provider’s side may be beneficial because provider
can adjust operating system for virtualization and takes care about software updates.

Provider usually manages many operating systems for many customers, so the
updating and maintenance tasks may be automated or executed in a batch. Sharing
the operating system layer between customers with preserving adequate level of
isolation can save many resource and make operating system administration easier.

Customer using service according to this model runs his own software and does
not take care of any lower layers. It is not necessary to do any administration tasks
and more effort can be given to application development.

This model is well-suited for running applications without any special require-
ments. It makes service deployment faster and easier, but it is more limited by used
platform. Typical example are project Evia4 and Microsoft Azure5.

2.2.3 Software as a Service

SaaS is the model with whole stack prepared by provider to run customer’s
application. Software is hosted and maintained by service provider and customer is
using the service. Service is accessed remotely via network (usually the Internet).
It is common mistake to say, that service is accessed as Web service because any
remote access can be used.

This model is right solution for customers looking for service without hassling
with it’s administration.

2.3 Networking

Networking is essential part of cloud computing because it would not be possible
to access any services without networking. All services in cloud networking paradigm
are accessed through data network. Network is also used for the communication
between virtual machines, fo migrations, storage access and many other purposes.

Various Ethernet versions are used in cloud data centers. There are many ver-
sions with different link bandwidth and wiring, but 1G and 10G with twisted pairs
or optical fibers are used most widely. Fast Ethernet were used in the past but it
does not make sense to use it for server link today because bandwidth is limited to
100Mbps and price is similar to Gigabit Ethernet.

It is common to insert two independent NICs into every server and connect-
ing them into independent switches because it improves fault-tolerance. There is

2http://aws.amazon.com/
3http://www.active24.cz/produkty-a-sluzby/servery/virtualni-privatni-servery/
4http://eviaproject.org/
5http://azure.microsoft.com/en-us/

10

http://aws.amazon.com/
http://www.active24.cz/produkty-a-sluzby/servery/virtualni-privatni-servery/
http://eviaproject.org/
http://azure.microsoft.com/en-us/

Figure 2.2.1: Service model responsibility

usually one more NIC for remote management. Remote management can be con-
nected using detached cable or shared with any of network interfaces. Separate
cable brings more flexibility and fault-tolerance, shared cable reduces cabling and
simplifies maintenance. Both solutions are used.

All servers in rack need to be connected to network infrastructure. There are
different topologies, but most common is hierarchical structure with two or three
tiers. [11] There is also approach called ”fabric” which implies non-blocking every-
to-every mesh connection between switches. However, fabric technologies are pro-
prietary and limited to the vendor.

Every rack can easily contain about 40 servers and these servers are connected
to switch called ToR. This switch is located in the rack and acts as access layer for
servers. Servers are connected to at least two ToRs if additional fault-tolerance is
required.

Another view on network topology is network layer. Internet is based on TCP/IP
so it is necessary to use this protocol family and assign IP addresses to servers,
virtual machines and other network elements. There are two different versions of IP
protocol:

version 4 is the older version, with 32 bit address space. This version is still used
more than version 6 even though it’s address space is depleted and new version
exists for more than 15 years.

version 6 is the ”new” one, uses 128 bit address space and different headers, it is
incompatible with version 4.

11

Modern data center must provide both versions of IP protocol because both
versions are used. However, there is a problem with obtaining public IPv4 addresses
because available pool is depleted. It is beneficial to employ IPv6 protocol as primary
one and try to limit the amount of required IPv4 addresses.

There are different ways how to use both versions concurently:

• Dual-stack is the simplest and probably the most used way. One IPv4 and
one IPv6 address is assigned to each interface. Use of both versions causes
additional maintenance burden because it is necessary to manage two separate
L3 networks.

• Tunelling IPv6 via existing IPv4 infrastructure with technologies like 6to4, 6rd
or ISATAP is another way. This solution can be used for IPv6 deployment in
networks with working IPv4. Tunelling is usually focused on deployment in
access networks, but deployment in data center network is also applicable, as
described in [19].

• Translating IPv4 addresses into IPv6 addressing space is different approach
than previous mentinoned because it operates on IPv6-only network. This
technique does not require every box to have assigned an IPv4 address and
thus is good for saving address space. Hovewer address translations may not be
suitable for data center usage because it does not preserve original IP addresses
and makes customer tracking almost impossible. Further information can be
found in [1].

It is beneficial to deploy IPv6 protocol as primary one in my opinion because it
will become more and more needed over time. Hardware on current market usually
supports protocol IPv6 at least partialy, but there are still some hidden pitfalls.
There may be problem for example with server’s remote management that does
not have to support IPv6 protocol and thus it is totally unusable on IPv6-only
network. None of the servers I have used for practical part of this thesis support
remote management over IPv6. However, there is currently only small demand for
IPv6 support and IPv6 deployment does not bring any direct benefit. Even thought
there are many problems and advantages are invisible in short-term view, it is not
possible to ignore this protocol.

Virtual machine migration must be taken into account durring addressing schema
design because it plays crucial role in data center operation. Migrations are per-
formed between hypervisors, i.e. physical servers, and these servers may be located
in different racks, halls or even in different data centers. It is usually required to
preserve IP address of virtual machine during migration process and thus adressing
schema must be prepared to move single IP address around almost whole data center
without any significant configuration changes.

First solution for unlimited migrations while preserving IP address is L2 sharing
between hypervisors. Data link layer is shared between all hypervisors and then
virtual machine is located in the same L2 network before and after migration. This
solution does not scale well since it is not recommended to place more than a few
hundreds of hosts into a single L2 domain, necessitating division of single L2 into
many smaller networks. This can be easily deployed for hypervisors in same rack,
but it is more difficult to do with more distant servers and even more when servers
are located in different data centers.

12

Another way how to accomplish unlimited VM migrations is to use routing for
machine connectivity. This method uses temporary and fixed IP addresses. Hy-
pervisors do not have to be in same L2 network and there is higher variability in
addresses assigned to virtual machines. Temporary address is assigned according
to VM’s location and it changes during migration. Fixed address does not change
during migration and packet with this destination address are routed to temporary
address. Any routing protocol can be used, e.g. OSPF, to provide correct routing of
fixed address to the destination virtual machine. It is neccesary to insert one entry
in routing table for every virtual machine because \32 routes are being advertised.
Huge routing table may be a problem for data centers with many virtual machines.

Higher layer is used to get more flexibility than lower level can offer. Main
drawback of this solution is complexity caused by routing and longer address swap
because it takes some time to propagate routing to new temporary address. It is
not easy to perform live migration because it is neccesary to change IP address of
VM’s interface and thus opened sessions will terminate.

2.3.1 Overlays

Virtualization is used often and it is necessary to provide networking solutions
with at least same flexibility as virtualization offers. Multitenancy, VM migrations,
fast reconfiguration and rapid deployment are most missing features of physical
network. It is currently possible to migrate virtual machines without service in-
terruption, but there is not clear solution how to perform migration across whole
data center with preserving IP address. Overlay networking is one of the proposed
solutions capable of decoupling network from physical hardware using additional ab-
straction layer. Technologies like VXLAN, STT and NVGRE are capable to build
overlay network.

Data center network need to be robust so parallel paths are used to provide the
redundancy and avoid outage caused by single link failure. It is necessary to avoid
loops on L2 network but there are loops caused by redundant paths and L2 network
does not use anything like TTL field. Spanning Tree Protocol (STP) can be used to
avoid loops in L2 networks, but there are two major problems. First, it is necessary
is need to adjust STP if VLANs are used because it is essential to build special tree
for each VLAN. Second, the problem caused by STP is in utilization of parallel links.
STP allows only one of parallel link running and the others are disabled to avoid
topology loops. This is suboptimal solution because links utilization is low and it
is impossible to increase connection bandwidth by adding parallel links. Upgrading
to higher link speed is limited and does not make economical sense. 10G cards are
becoming affordable, but 40G cards are still very expensive.

Servers housed in rack are usually connected to switch called Top of Rack (ToR)
and this switch is learning MAC addresses. ToR switch must able to learn addresses
of all devices connected to it’s ports. However, virtualization techniques let us run
many virtual machines on single physical server so the number of MAC addresses
can increase significantly. The number of addresses may grow even more because
each virtual machine can have more than one interface and ToR switch must be able
to learn all these addresses.

Public cloud solutions tend to serve many tenants and it is necessary to avoid
unwanted interaction between them. It is quite easy to guarantee this on virtual-

13

ization layer but much harder to accomplish on network layer. Tenant isolation can
be performed on Layer 3 or Layer 2. VLANs are often used for isolation on Layer 2,
but this solution suffers from insufficient scaling issues because only 12 bit VLAN
identifier is used so it provides less than 4096 different tags. This might be enough
for smaller solution but it is not sufficient for huge cloud systems. Each physical
server can host up to 100 virtual machines/containers6 owned by different tenants so
1 server can consume about 100 VLAN tags. All available tags can be depleted by
40 high performance servers which can fit in just one rack. Isolation at Layer 3 does
not provide sufficient scaling as well. It is necessary to provide unlimited migration
facility between hypervisors in different racks and it is sometimes required to spread
out Layer 2 through all tenant’s virtual machines. Layer 3 isolation is not capable
of this.

VXLAN

Virtual eXtensible Local Area Network is an overlay scheme with multitenancy
and domain isolation. It is defined on Layer 3 and uses encapsulation as tunneling
mechanism.

Most important thing is encapsulation since it provides VXLAN domain isolation
and defines overlay network. Layer called VTEP is responsible for encapsulation and
tunnel organization. It analyzes every frame received from VM and prepends outer
header with the label. This label is called VXLAN Network Identifier (VNI) and it
is used to isolate domains. Virtual machines in different domains are not allowed to
communicate directly with each other. Encapsulated packet is send to destination
VTEP as an UDP packet. Destination VTEP unpacks packet, checks whether there
is any virtual machine in VXLAN domain and delivers the frame. NVE is another
term for VTEP and it was used in [7] as part of general network virtualization
framework.

It is necessary for VTEP to be able to find destination VTEP for every en-
capsulated packet. This can be solved by data plane learning during forwarding
as specified in [8] or by acquiring this information from orchestrator. Getting in-
formation from orchestrator is better in my opinion because it avoids additional
actions. Some kind of orchestrator or information system must be present in every
data center and this system already knows location of all virtual machines as well
as addresses of VTEPs. I think that it does not make sense to perform learning
during forwarding because required informations are already saved in orchestrator.
Orchestrator can directly distribute forwarding rules to all VTEPs or VTEP can
ask orchestrator on-demand using any kind of API. Overlay unicast traffic can be
forwarded directly to destination VTEP without any additional learning or even
flooding.

There is traffic called BUM (Broadcast, Unknown unicast and Multicast) which
is not easy to handle by VXLAN. This kind of traffic needs to be delivered to
more than one host in a single VXLAN domain and thus it is necessary to send
encapsulated packet to many VTEPs at the same time. Multicast should be used
as described in [8], but it requires mapping between VXLAN VNI and multicast
address. This mapping should be managed by orchestrator. It would be beneficial

6Server node2.brg/vpsfree.cz is currently running 117 VPSs with hardware: Supermicro
X9DR3-F, 2x Xeon E5 2630Lv2, 256GB DDR3, 8x 2TB WD2002FAEX, 2x Intel DC S3700 200GB

14

to have technology for delivering BUM traffic without multicast because it brings
additional complexity and is not working in the global Internet. Unknown uni-
cast can be mitigated by getting information about addresses from orchestrator as
described in previous paragraph because the orchestrator knows all addresses and
there is not any unknown traffic. Sending encapsulated broadcast and multicast to
many VTEPs can be achieved by multicast in underlay network or any advanced
delivery methods can be uses. It is possible to send this traffic as unicast between
source VTEP and every other VTEP. However, this solution is suboptimal due to
packet duplication and network bandwidth usage. Only advantage is that multicast
in underlay network is not required. It is also possible to select one node as ”router”
for encapsulated VXLAN traffic between VTEPs but this is technically similar to
building multicast tree. There is proprietary technology called IBM DOVE which
is very similar to VXLAN but does not require multicast.

I think that VXLAN is quite promising technology for network virtualization in
data center. It brings much more flexibility than traditional VLAN approach and
can be called as evolution of VLAN. Principle of overlay network is building virtual
network on the top of a physical infrastructure. Benefits were described in previous
paragraphs and the main drawback is the lack of cooperation between overlay and
underlay network.

Figure 2.3.2: Model of VXLAN topology

NVGRE

Network virtualization using GRE is another overlay technology for multi-tenant
data centers. It is very similar to previously mentioned VXLAN because it uses same
topology scheme with different encapsulation mechanism. Further information and
current draft version can be found in [9] [6] [4].

The biggest difference is encapsulation mechanism. VXLAN uses new encapsu-
lation approach and NVGRE uses GRE. Using GRE can be beneficial because some
boxes already support is and there is no need to make significant changes to physical
infrastructure. Details about encapsulation mechanism can be found in [6] and [4]
describes header extensions used to carry VSID. VSID is identifier for virtual subnet
isolation, it is analogue of VNI used by VXLAN with same length of 24 b.

15

Outer packer header with encapsulated payload is sent to destination NVE thus
usage of ECMP may be suboptimal. There may be lack of entropy in outer header
because destination address is same for all virtual machines residing at same NVE.
This problem can be solved in ECMP hashing procedure by integrating VSID into
sources for hash generation.

Multicast and broadcast traffic within overlay network is handled using multicast
in underlay network. There is also defined N-Way unicast which do not depend on
multicast: ”In N-Way unicast, the sender NVE would send one encapsulated packet
to every NVE in the virtual subnet. The sender NVE can encapsulate and send the
packet as described in the Unicast Traffic Section 4.3. This alleviates the need for
multicast support in the physical network.” [9] However, this solution is suboptimal
because there is unwanted packet duplication and thus it is better to deploy multicast
and use it as a carrier mechanism.

NVGRE definition [9] is still labeled as a draft, last version was published on
2014-11-05 and new updates are expected. Proposed draft is simple and there are
still major problems waiting to be solved. For example there is not set any method
how to distribute locations of addresses within overlay network. Document [9] says:
”This information can be provisioned via a management plane, or obtained via a
combination of control plane distribution or data plane learning approaches. This
document assumes that the location information, including VSID, is available to the
NVGRE endpoint.” It is obvious that this need to be solved before deployment in
production.

STT

Last but not least, technology used for building overlay network is Stateless
Transport Tunneling (STT). It is designed to meet common requirements as al-
low overlapping of tenant’s address space, decouple virtual network from physical
infrastructure and to allow an unlimited virtual machine migration.

Basic principle is still same - some box (usually called NVE) encapsulates pack-
ets from overlay network and send it through underlay network to other NVEs.
However, STT introduces completely new encapsulation method. TCP-like header
is used as an encapsulation header and there is no three-way handshake. Header
is used only as a storage for metadata about encapsulation. Field called Context
Identifier is assigned to every flow and is used as a generalized form of virtual net-
work identifier. [3] It is beneficial to use this generalization because there is space
available for future services. Space reserved for Context Identifier is 64 bits long so
there is really enormous amount of combinations available.

It is important for every overlay technology to support ECMP because efficient
flow distribution between multiple paths can be used for underlay network in data
center. First important requirement is to route each packet belonging to single flow
same way which is accomplished by using same ports and addresses for these pack-
ets. Second requirement is to provide enough entropy for uniform flow distribution.
Packet’s source port is a function of inner header and thus it provides entropy data
for ECMP mechanism.

Using almost standard TCP segmentation for encapsulation is advantageous be-
cause it may bring significant performance improvement. Segmentation offloading is
heavily used these days and it can be used to speed-up encapsulation process. The

16

most important advantage of STT is providing new functions and using existent
hardware techniques.

However, I can see some problems with deploying STT. First and the most
important is changing meaning of TCP header field since this will probably cause
problems in middle boxes. It is necessary to adjust configuration of state firewalls
to allow STT because TCP headers are expected to behave differently. Defining
document [3] is still in a draft version and it is already expired. Last version is
#06 at time of writing this paragraph (2014-11-13) and this version expired on
2014-10-17.

2.3.2 Hop-by-hop network virtualization

It is possible to use new technologies, e.g. SDN, and build different kind of
virtual network called hop-by-hop. Hop-by-hop virtual network is totally different
from previously described overlays since it does not use any encapsulation and data
path is established by joining independent links between hops.

Node is responsible only for forwarding data unit to next hop and whole flow is
directed by a controller. Controller is software appliance responsible for communi-
cation with physical boxes, distributing routes and analyzing packets received from
forwarding plane. It is usually tightly collaborating with orchestrator.

There is different perspective on network since control plane is separated from
forwarding plane and physical devices are used for fast packet transfers and data
plane is responsible for network control. Every decision is performed in controller or
orchestrator and propagated to forwarding plane through data plane. It is obvious
that the orchestrator should not be physically centralized because it would create
single point of failure so it is better to use any distributed solution.

Figure 2.3.3: Overlay virtual network

2.3.3 Load balancing and high availability

Load balancing is an essential part of service operation because it is required
to achieve better scalability and availability than single machine approach can ever
achieve. It was quite common in the past that one service had been served just by
single machine. However, this solution is suboptimal since it is absolutely unscalable
and it is impossible to provide high-availability solution.

17

Figure 2.3.4: Hop-by-hop virtual network

It is necessary to employ service load balancing because load and service demand
is still increasing and only properly designed load balancing solution can meet all of
the requirements. Common requirements are

• low latency - request should be processed without any significant delay

• high availability - service should stay up during partial infrastructure failure

• scalability - infrastructure should be ready to increase resource when the load
is enormous

There are many different ways how to deploy load balancing and they differ by
flexibility and functions available. Load balancing performed at higher levels is more
flexible, but the best solution is a combination between two or more technologies on
different layers. Appropriate solution depends also on access method because there
are different balancing possibilities for HTTP API, remote terminal service and
video streaming service. Methods presented in the following text will be general as
well as access method specific, right use case will be always mentioned.

Load balancing is closely related with scaling. There are two types of scaling
- scaling-up and scaling-out. Scaling-up is accomplished by using more powerful
resources, e.g. using interfaces with higher line rate or upgrading the server. It is
easier, achievable faster and does not require load balancing, but it is quite easy to
reach limit of scaling-up. Gigabit Ethernet NICs are very common, 10 Gigabit are
a bit more expensive but still possible to purchase and 100 Gigabit Ethernet cards
are very expensive. It is also necessary to take economical aspect into account since
performance improvement and price functions are not equally steep.

Scaling-out is other possible scaling schema, and it is accomplished by adding
many parallel workers with common capacity. This approach is more favourable
from economical view because performance growth is almost linear and technical
benefit is in redundancy. However, it is necessary to use load balancing to distribute
workload across nodes. I think that the best scaling solution lies somewhere between
so I would recommend to slowly scale-up and use scale-out for massive increase of
performance.

Load balancing methods can be divided into two groups by session persistence.
Session persistence mean that one client is always routed to same computing node.
It is required if there is a client’s information, called session, available only on this

18

computing node and session would be lost in case of redirecting to another node.
Application can be designed with taking load balancing into account and thus it
does not require session persistence. However, session persistence is usually needed
for load balancing of the services designed without load balancing capabilities.

DNS based approach

DNS load balancing is the first possible solution because it takes place before
establishing session between a client and the server. It is easy to deploy and appli-
cation redesign may not be necessary. Basic implementation can be, for example,
round-robin DNS which is carried out by assigning many AAAA or A records for
service host name. Client selects one record during resolving host name and use it
and thus basically performs load balancing already at user’s device. This method is
really simple but it lacks any advanced management options. First problem is with
high availability because it is not possible to quickly remove host from a zone in case
of a failure. There is a field called TTL assigned to every record in the zone and this
field defines how long can be this record cached, maximum time between change in
zone and propagation to all clients should be TTL and SOA. However, there are
Internet Service Providers ignoring this standard so it is possible that some client
will still get wrong records even after TTL expiration. Sample zone file with AAAA
and A records and TTL 6 minutes is in figure 2.3.5.

Different variant of DNS based load balancing is modification of the zone per-
formed by an authoritative DNS server. There is usually just one AAAA/A record
for service hostname, but returned IP address can be different for each query. This
method can use geolocation and return IP address of the nearest server according to
user’s position, although user can use different recursive servers and geolocation can
be very inaccurate. Technically this method is only variation of method mentioned
in the first paragraph with better control of distribution and the problem with TTL
is still remaining. This method is used by web portal Seznam.cz for load balancing
between primary and secondary data center. They use TTL 5 minutes and also
experienced problem with incorrect caching but I am not allowed to publish any
detailed information.

Another problem with DNS load balancing, especially failover, is DNS pinning.
It is mechanism implemented in web browsers to make DNS rebinding attacks more
difficult. This attack is based on the pushing faked DNS record to client and then
forward all traffic to attacker’s IP address. Browser with pinning implemented
”pins” first resolved IP address and use it even after TTL expiration so it basically
prevents load balancing mechanism from switch client to another computing node.
Further information can be found in [18].

Application level load balancing

One of the most flexible method is application load balancing. Is is performed
on Layer 7 so it is possible to differentiate all lower layers. This solution is benefi-
cial because application is able to decide on exact mapping between the customer
connection and the working node. Customer is connected to balancing part of an
application at first. This part (group of nodes) is responsible for the redirecting or
forwarding request to a computing node. Login can be required before redirection
and then the request if forwarded according to information acquired during login.

19

Figure 2.3.5: Example zone file for DNS load balancing

app.example.com 360 IN AAAA 2001:db8::1

app.example.com 360 IN AAAA 2001:db8::2

app.example.com 360 IN AAAA 2001:db8::3

app.example.com 360 IN A 192.0.2.1

app.example.com 360 IN A 192.0.2.2

app.example.com 360 IN A 192.0.2.3

Every information about the customer is already available, like an IP address and
login name, so computing node can be selected and it is also very simple to achieve
session persistence. Balancing procedure is depicted in the figure 2.3.6.

Advantage of this method is direct connection between client and computing
node, so balancing part is not overloaded with forwarding requests between users
and computing nodes. Direct connection eliminates bottlenecks because there is not
any central authority responsible for load balancing. Technically there is a central
authority in load balancing part, but it can be redundant and balanced using other
method, e.g. DNS load balancing. However, it is necessary to expose computing
nodes to user’s network and thus some may say that is insecure. I think that exposing
computing nodes to outside word is not security hazard because security should be
provided by proper application design and network security. Obscurity is not good
security approach, in my opinion.

Figure 2.3.6: Load balancing at application level

20

Anycast load balancing

It is possible to use anycast routing for load balancing and workload distribution.
Typical architecture is depicted in the figure 2.3.7 Only anycast IP address is prop-
agated to outside world, so every incoming packet go to this destination address.
This address is also assigned to local interfaces of compute nodes and advertised to
local router using any routing protocol, e.g. OSPF.

An incoming packet is delivered to local router and this router performs lookup
and selects destination address according to it’s actual routing table. This is advan-
tageous because it is possible to assign priority to routes propagated by computing
nodes and failed node is almost immediately removed from routing table.

However, this solution does not provide session persistence because packet can
be routed to different computing node each time. There is a bottleneck in topology
described in figure 2.3.7 but this method can be adjusted to eliminate this problem
and propagate different anycast addresses from different autonomous systems.

Global pool of root DNS servers use exactly this load balancing principle so
request should always be delivered to the nearest server and thus almost perfectly
distributed around world servers. According to data published in [20] up to 80% of
DNS queries are routed to the nearest anycast instance.

Figure 2.3.7: Anycast load balancing

21

2.3.4 Load balancers

Load balancing of TCP flows can be performed on the network layer using box
called load balancer. It does not have to be strictly physical box since there are also
software solutions. This box modifies headers and basically translate flows from
customer’s side to internal and back.

The simplest solution is rewriting destination address. Packet received on ex-
ternal interface of load balancer is analyzed, destination address is changed to one
of the computation nodes and packet is delivered to computation node. Address
rewriting must be performed also on packets received from computing node as well
as on every related packet.

Load balancer box must maintain a list of available computing nodes and contin-
uously monitor their status because it have to select suitable node for every incoming
flow. Monitoring method and node choosing algorithm depends on the application.
It is also possible to integrate monitoring service into orchestrator and then control
load balancer with an orchestrator.

It would be probably required to guarantee the session persistence so a load
balancer will have to keep mapping table between customers and computing nodes.
This table provides information about the current mappings and thus make it pos-
sible to deliver all packets from single flow to the same computing node.

Additional technologies can be integrated in the load balancer box, for example
offloading, deep packet inspection or intrusion prevention. SSL offloading is used
sometimes to decouple encryption from application running on computing nodes
and to enable header rewriting. It is also possible to terminate TCP session on load
balancer and establish new session for communication with computing node with
maintaining packet’s payload. It is even possible to carry out translation between
IPv6 and IPv6.

Load balancer box provides advanced function but is introduce bottleneck and
single point of failure. Rewriting of packet headers and maintaining mapping table
are even more resource expensive than router described in anycast load balancing.
This solution is suitable for legacy application without any load balancing capabili-
ties.

2.4 Storage

Storage is an essential part of a datacenter since it provides space for saving
information. We can distinguish among different types of storages and dozens of
storage access methods, so it is obvious that building one universal solution for all
use cases is impossible.

2.4.1 Physical storage

Storage can be divided into layers. First layer is a physical storage and it is
represented by a physical hardware used to save data. It is, for example, physical
rotary drive, SSD, tape drive or any other kind of physical storage. Each server can
be equipped with a small drive which is used as a local storage. This approach is
called Direct Attached Storages and it is connected with share-nothing architecture.
The advantages of share-nothing is high level of node’s independence, but I think

22

that this solution is not flexible enough to be used as main storage scenario for a
whole data center.

Another way of providing servers with a semi-physical storage is using some
sort of shared storage. There is a box stuffed with a physical storage and other
servers are using this storage via some standardized protocol like FCP or iSCSI.
Shared storage brings better flexibility compared to direct attached storage because
physical storage is not fixed to a single server. However, shared storages are usually
centralized too and it is a bottleneck and a single point of failure.

The physical storage can be organized into layers called tiers. Tiers are groups of
a physical storage devices usually organized by their performance, reliability or price.
It is obviously better to uses only high performance and reliable devices, however
these are usually the most expensive with low capacity/price coefficient. Tiered
storage can provide high performance and capacity together but it is necessary
to use different tiers and optimize data placement. Storage with 3 tiers can use
following drives:

• tier 1 - FC drives

• tier 2 - SATA drives

• tier 3 - magnetic tapes

Exactly this 3 tier model is used by CESNET’s data storages facilities in Pilsen.
However, tier model can be extended with more technologies such as flashcache7

capable of increasing drive IOPS by writethrough caching to another faster drive.
Another extension layers may be introduced by using different RAID for each tier.

It is obviously not possible to share a physical storage in distributed datacenter
but semi-physical storage (like iSCSI) is technically possible to share. However,
latency can be serious problem because a few millisecond can be significant increase
to the disk IO operations. For example RTT from server located in Czech republic
to Norway (Trondheim) is about 50 ms and 150 ms to USA (Stanford). This time
is not acceptable for sharing physical storage because each disk access operation
performed in distributed storage will be about 100 ms longer than a physical access
time. It may be possible to use this kind of storage of longer distances using direct
optical connection with minimal RTT, like CESNET Lambda or Photonic.

2.4.2 Virtual storage

To deliver the storage for a physical server is only the first problem, since it is
required to split this raw storage and use another storage layers. There are three
fundamental virtual storage types: block storage, file system and object storage.
It does not matter if this virtual storage is used directly by a physical server or a
virtual server via any virtualization layer since the access method is actually the
same.

A block storage is used way similar to directly attached. Block device is exposed
to an operating system and storage is accessed through a block device. Storage
operations are managed directly by the operating system and it is the main charac-
teristic of this storage type. Block device can be formated with filesystem, used as
physical volume for LVM or used as encrypted storage.

7http://github.com/facebook/flashcache

23

http://github.com/facebook/flashcache

Filesystem storage is used to save files and it’s attributes. Filesystem can be
build upon local block device or accessed as NAS. Filesystem on a local block device
can provide lower latency and it is easier to match permissions with local user
accounts, but these advantages count only for a strictly local filesystem. I think
that using NAS is almost required in case when any user or computer sharing is
required. Storage accessed via network will probably be easier to maintain and it is
also easier to perform backups.

Object storage is something between previously mentioned storage types since
it is capable to save objects and access them similar way as accessing files in a
filesystem. However, an object storage is more general way of saving data and can
be used to store various objects and it is not limited only to files. It provides very
high level of storage abstraction because it is capable to operate on almost any data,
access it in standardized way and decouples the object from their location.

2.4.3 Network access

I think that traditional approach with separate block and file storage is becom-
ing nowadays quite limiting. There are some request which are partially mutually
exclusive:

redundancy and distribution to spread a load and resist failures

agility and scalabity to provide flexible and elastic storage

security because it is critical to avoid any unauthorized access or a leakage

inteoperabilty between different technologies and vendors

Distributed storages are a solution which can fulfill all of these requirements.
This kind of storage can not be referred as neither block nor storage because it is
necessary to use different storage element. These elements are stored on storage
nodes according to storage map and rules. It is possible to define how much time
should be each element saved, on how many nodes or on which type of physical
storage.

Element mentioned in the paragraph above can be easily referred as an object,
so an object storage can be build in a distributed way. However, not every object
storage is distributed storage because object storages can be local too.

Typical example of distributed object storage is Ceph, referred in [10]. It uses
Reliable, Automatic, Distributed Object Store (RADOS) mechanism to store objects
in a Ceph cluster. Every type of data is stored as an object in flat namespace so it
doesn’t matter whether it is text, file or binary image.

Common problem of distributes storages is central gateway, which is used for
client connections and coordinates whole cluster. It introduces single point of fail-
ure. However, Ceph eliminates this by using CRUSH algorithm to compute object
location without querying the central lookup table. Each client can compute object
placement on it’s own and then directly connect to the storage node.

Ceph cluster consists of two types of nodes. OSD and monitor. OSD is used to
store objects monitor is responsible for maintaining placement map together with
monitoring of other monitors and OSD. It is necessary to design the cluster right
because performance can be poor otherwise. It is, for example, not recommended to

24

place an OSD and monitor on same disk because many parallel IO operations will
be requested.

Object store is a base and it can be extended by other services, there is for
example RBD providing block devices and CephFS used to store files. Distributed
object storage is well suited for distributed datacenter because it can be designed
to provide shared storage. However, it introduces additional abstraction layer in
storage system, so it will probably provide worse performance compared to a strictly
physical storage. It is a trade off for the flexibility.

2.5 Orchestration software

There are common routines in a cloud data center administration and these
routines are repeating very frequently. For example simple workflow for virtual
machine creation can involve:

• clone the image from a prepared operating system

• log into the hypervisor console and create VM definition

• deploy the virtual machine

• configure a firewall and a router

• configure vswitch or attach virtual machine into a bridge

• set up the network interfaces in VM

• set root’s password and add authorized keys

• update monitoring definition

There can be dozens of tasks similar to the mentioned above and it can take
negligible amount of time. These task are usually very simple and all necessary
information can be generated automatically or loaded from an information system.
It is very favorable to perform these task automatically because it does not need any
assistance of human and the automated solution is much more faster and strictly
deterministic.

The orchestration is automated management of services and resources performed
according to a predefined procedure. An inteligence is implemented into an orches-
trator so it can make desicions and execute actions without an interaction with a
human. Orchestrator acts autonomously according to configurated parameters in
contrast to remote control interface which only perfroms requested actions.

It is necessary to use an orchestration for every cloud solution because it is not
possible to cope with a manual configuration and management of many cooperating
services and resources. Rapid provisioning with minimal management effort is re-
quired in cloud computing definition mentioned in the beginning of this thesis and
it can not be accomplished without orchestration.

There is actually one more step between completely manual management and or-
chestration and it is called a configration management. Configuration management
solution is used for uniform management of configuration and executing repetitive

25

task. It is possible to develop own solution or use any software available. For ex-
ample Ansible, Puppet or SaltStack are well known open-source altenatives. Con-
figuration management software can be integrated into an orchestrator and used as
a interlayer between orchestrator and performed actions. Ansible is used for virtual
machine configuration used in practical part of this thesis as well as for installation
and configuration of OpenNebule IaaS cloud. It creates a cloud environemnt with
defined parameters and prepare an initial configuration so it significantly shorten
time required for installation and also eliminates configuration mistakes.

2.5.1 OpenNebula

OpenNebula is an open source cloud OS capable of building IaaS solution, so
it is technically an orchestrator. [16] However, it is not only an orchestrator but a
complete solution for datacenter orchestration capable to build IaaS. It was initially
created as a research project in 2005 and the first public release was in 2008. It is
currently developed by the community in cooperation with OpenNebula Systems.

It is completely platform agnostics so major virtualization techniques can be
used. KVM, XEN and VMware is supported at current time but it is possible to
develop modules for other virtualization platforms. There is, for example, a driver
OneLXC developed by China Mobile and this driver brings support for LXC hosts
and containers.

Project architecture is modular and can be modified according to system require-
ments. There is one node called frontend which is responsible for orchestration and
other nodes are used as computing nodes, i.e. hypervisors. It is not required to ded-
icated separate hardware node for frontend because it can be deployed on physical
server together with computing node. However, it is recommended to deployed the
frontend as a virtual appliance in HA since it is more flexible and robust. Sample
physical infrastructure is depicted in the figure 2.5.8.

Frontend acts as an orchestrator and uses additional modules to operate the
cloud infrastructure. There modules are universal to work with various underlying
systems and each module must provide a standardized interface for the orchestrator.
Modules and functions as defined in [16] are:

Infrastructure and cloud drivers enable access to infrastructure and cloud providers

Virtual machine manager is used for managing VMs and executing actions on
them

Network manager provides network configuration and management

Storage manager supply storage for services and customers

Image manager maintains library of VM images

Information manager is collecting runtime information about a physical infras-
tructure, VMs and other devices

Authentication and authorization is used to authenticate users and store in-
formation about them, their permission and quotas

26

Figure 2.5.8: OpenNebula architecture

Accounting and auditing gather information about resource usage and can be
used to generate billing data

Federation manager provides mechanisms to access remote cloud providers

Scheduler manages initial placement of new VMs according to a scheduling policy

Administrative tools provide interface for users and administrator to perform
task on cloud system

Service manager can work with group of interconnected VMs as with one service
with defined requirements and deployment rules

Orchestration is performed by the frontend and remote tasks are executed at the
nodes using SSH. There is a single point of failure because frontend may go down
so it is recommended to use a HA solution and minimize possibility of the frontend
unavailability. However, frontend failure does not affects running virtual machines
since they stay online, but monitoring will stop and it will not be possible to execute
any action on virtual machines.

Datastores

Storage part of an OpenNebula system is called datastore. It is abstraction of a
physical storage and it is used to store persistent and non-persistent data. Persistent
data are preserved during whole VM life cycle and non-persistent objects are restored
to default state after virtual machine recreation. There are three types of datastore
according to type and format of stored data:

image datastore is used to store the images of non-running virtual machines

27

system datastore holds images used of running VMs

files datastore is used to save single files like kernels, contextualization data and
files which are stored alone, meaning not as part of image

The image of a virtual machine is cloned from image datatastore to system
datatastore during deployment phase and then copied back after shutdown if the im-
age is persistent. Non-persistent images do not save back to system datastore so they
can be destroyed. It is necessary to select technology for transfer to system datastore
at nodes. Options are listed below, but it is possible to create script for any other
method. Original scripts are located in /var/lib/one/remotes/{datastore,tm}/.8

shared is filesystem directory and OpenNebula does not care about sharing tech-
nology, it just expects the directory to be available on every node

ssh can be used to transfer the images, it is always available but also vastly slow

vmfs copies images using vmkfstools (VMware)

qcow driver uses qemu-qcow to handle the images

ceph use ceph cluster to store images as RBDs

lvm images are shared using clustered LVM

Networking

OpenNebula can assign a virtual network to each VM so networking driver is
executed during virtual machine deployment and virtual machine is connected to
the virtual network. Networking driver can provide virtual machine isolation and a
basic network configuration. Network manager takes care about leased IP addresses9

and generates contextualization.
The simplest network driver is called dummy and VM’s interface is only added

into specified bridge using bridge-utils. Bridge must be configured in advance. This
driver does not provide any additional functionality but it can be used as a starting
point for writing customized network drives. Every network driver can be extended
with hooks too.

Little more advanced driver is fw and it does the same job as dummy driver but
it can configure a firewall too. Firewall rules are applied at physical host so it is not
necessary to install any software into the virtual machine. Iptables package must
be install on node to use this driver. Firewall rules described in the figure 6.3.6 are
added after VM deployment and removed after a shutdown. TCP and UDP ports
can be whitelisted or blacklisted and it is also possible to drop an incoming ICMP
packets. Driver’s capabilities can be easily extended by editing scripts located at
/var/lib/one/remotes/vnm/fw/{pre,post,clean}.

802.1Q driver uses VLANs to isolate the virtual machines. It creates a bridge
for every virtual network, assigns VLAN id to this bridge and attaches physical
interface defined in PHYDEV variable. Physical interface is in a trunk mode because
it transfers tagged Ethernet frames. This approach is beneficial because VLAN

8It is necessary to run onehost sync after changing any remote script at frontend.
9IPv6 is supported as well as legacy IPv4

28

Create a new chain for each network interface

-A FORWARD -m physdev --physdev-out <tap_device> -j one-<vm_id>-<net_id>

Accept already established connections

-A one-<vm_id>-<net_id> -p <protocol> -m state --state ESTABLISHED \

-j ACCEPT

Accept the specified <iprange>

-A one-<vm_id>-<net_id> -p <protocol> -m multiport --dports <iprange> \

-j ACCEPT

Drop everything else

-A one-<vm_id>-<net_id> -p <protocol> -j DROP

Create a new chain for each network interface

-A FORWARD -m physdev --physdev-out <tap_device> -j one-<vm_id>-<net_id>

Drop traffic directed to the iprange ports

-A one-<vm_id>-<net_id> -p <protocol> -m multiport --dports <iprange> \

-j DROP

Create a new chain for each network interface

-A FORWARD -m physdev --physdev-out <tap_device> -j one-<vm_id>-<net_id>

Accept already established ICMP connections

-A one-<vm_id>-<net_id> -p icmp -m state --state ESTABLISHED -j ACCEPT

Drop new ICMP connections

-A one-<vm_id>-<net_id> -p icmp -j DROP

Figure 2.5.9: Iptables rules created by fw network driver

aware network switch can be used to forward tagged traffic. VLAN support is
required on the nodes so it is necessary to load the kernel module called 8021q
or compile support directly into the kernel. VLAN id is calculated as a sum of
CONF [: start vlan] from /var/lib/one/remotes/vnm/OpenNebulaNetwork.rb and
virtual network id, however both can be edited of course.

Driver called ebtables is simple but it can be useful is many cases. It uses
ebtables package and creates ebtables rules described in figure 2.5.10. It prevents
virtual machine from changing it’s MAC address and eliminates the possibility of
MAC spoofing.

Figure 2.5.10: Ebtables rules uses by ebtables network driver

-s ! <mac_address>/ff:ff:ff:ff:ff:0 -o <tap_device> -j DROP

-s ! <mac_address> -i <tap_device> -j DROP

The most advanced driver is is Open vSwitch (OVS). This driver provides same
network isolation functionality as 802.1Q driver but also enables to use special func-
tions provided by the Open vSwitch, for example the OpenFlow rules or using
logically centralized network controller.

There are two variants of this Open vSwitch driver:

29

ovswitch can be used only with KVM nodes

ovswitch brcomat can be used with KVM and Xen, however this driver requires
compatibility layer for bridging

I think that this driver is the best choice because it provides all functionality
of Open vSwitch. It means that it is possible to use advanced filtering, NetFlow,
traffic shaping and the most important thing is the OpenFlow. The OpenFlow is a
control plane protocol for forwarding plane configuration so it is possible to decouple
control plane from switch and let network controller to manage switches remotely.
It is possible to manage physical and virtual switches together and create single
converged network. I think that Open vSwitch driver is the best choice if advanced
configuration is needed apart from use cases when simple bridging is sufficient

However, this driver is the most difficult to configure because Open vSwitch
must be installed on the nodes. It is necessary to use kernel with OVS support and
install userspace tools. The latest version of OVS is 2.3 and it supports Linux kernel
version 2.6.32 to 3.14 so newer kernel version can not be used to run nodes with
Open vSwitch. However, major distribution use compatible kernels, at least version
with long term support. For example latest Ubuntu server version 14.04 is using
kernel 3.13.0 so there is not any incompatibility problem.

Templates

Virtual machine deployment with cloud OS is different from method used in
bare virtualization because it is not possible to create virtual machine directly. It
is typical for bare virtualization that it is necessary to manually create virtual ma-
chine, generate or import disk image, configure parameters and boot it afterwards.
However, it is not longer possible because VM deployment is managed by virtual
machine manager module and user is not able to directly interact with hypervisors.

OpenNebula is using concept of templates for all virtual and physical entities.
Template is definition of parameters and it is used by modules. Template file for
virtual machine used for measurements in practical part is in the figure 2.5.11.
For example virtual machine manager reads the template and creates the virtual
machine using infrastructure driver and VM is then deployed by scheduler. It is
of course possible to manually edit parameters of virtual machine however initial
creation must be always performed by the manager.

Contextualization

It is common that single virtual disk image is running in many instances and
it can be used for scaling out or failover. The group of virtual machines deployed
for a same purpose is called pool. It is necessary to clone disk image from image
repository to system repository for each machine and second even more important
task is to adjust configuration parameters. It is not applicable to run each machine
from single pool with the same configuration since at least MAC address, IP address
and hostname need to be changed.

Changing parameters before the first boot is one of an available solutions. Hooks
can be used to mount disk image, perform required changes, unmount it and boot
virtual machine. However, this solution is slow and computation expensive.

30

Figure 2.5.11: Template for virtual machine

CONTEXT=[

CONTEXTUALIZED="1",

NETWORK="YES",

SET_HOSTNAME="themis-VM",

SSH_PUBLIC_KEY="ssh-rsa AAtb-shortened-geNmcJO8QbyG/xLOP",

THEMIS_TYPE="VM",

THEMIS_USER="root"

]

CPU="1"

DESCRIPTION="VM ready to be uses by Themis project"

DISK=[

IMAGE="themis - VM - Ubuntu server 14.04. base",

IMAGE_UNAME="tom"

]

GRAPHICS=[

LISTEN="0.0.0.0",

TYPE="VNC"

]

MEMORY="512"

NIC=[

IP="10.104.33.8",

NETWORK="club Buben - Themis",

NETWORK_UNAME="tom"

]

OS=[

ARCH="x86_64"

]

Another approach is imperative configuration after initial boot. Every machine
can use same IP address during the first boot and it will be changed by a configu-
ration management system, e.g. Ansible or Puppet. There are problems which are
not easy to solve and the most serious is simultaneous booting of multiple virtual
machines because it is not possible to duplicate IP within single virtual network.
IP address change will cause interruption of any ongoing communication including
management channel (SSH for example). This approach will not scale well because
there is a central authority responsible for initial configuration and it is not possi-
ble to boot more than one virtual machines simultaneously due to IP duplication
problem.

Solution used by OpenNebula is called contextualization and it solves all of
problems mentioned above. First problem to be solved is how to deliver contex-
tualization information to the virtual machine. There are two contextualization
mechanisms with totally different approach.

Auto IP assignment can configure only IP address. Hypervisor can assign MAC
address of VM’s network interface and this address is used for IP address autogenera-
tion. Virtual machine’s disk image need to be updated with file /etc/init.d/vmcontext.sh

31

which is executed during the boot in runlevel 2. This Bash script parses 3. - 6. group
of hexadecimal numbers from MAC address. Converts each group to decimal base
and assigns this as an IP address. It usually just generates configuration and restarts
networking script, but it depends on distribution and can be changed really easily.
However, there is always used 255.255.255.0 network mask thus this contextualiza-
tion approach can not be used for networks with different mask. Example of IP
generation is in equation 2.1. Autogeneration algorithm can be upgraded to work
with different network mask by modifying vmcontext.sh script to read mask from
first or second group, but three groups at the beginning of MAC address are OUI
so generated MAC addresses may collide with range already assigned to an existing
organization.

02 : 00 : 0a : 68 : 21 : 08→ 10.10.33.8 (2.1)

Second contextualization approach is called general contextualization and it is
more mighty than previous one. File named context.sh is used to save all informa-
tion and configuration. This file is generated before VM deployment and it can be
easily extended with user defined variables. Contextualization file is packed into the
binary image with ISO 9660 filesystem and mounted as a disk in virtual machine.
It is still necessary to provide additional script to read and apply the contextual-
ization but it is much more powerful than previous approach. Main script is called
vmcontext and it is responsible for mounting image with contextualization, loading
contextualization variables and executing scripts /etc/one-context.d/*.

There are already prepared scripts for configuration of network and DNS, gen-
erating autorized keys file, mounting swap, setting hostname and executing addi-
tion script supplied from files datastore. Contextualization file used in practical
part is in the figure 2.5.12. There are two custom variable THEMIS TYPE and
THEMIS USER defined in template and used by middleware. Purpose of other
variables is obvious.

Figure 2.5.12: Contextualization file

Context variables generated by OpenNebula

CONTEXTUALIZED=’1’

DISK_ID=’1’

ETH0_DNS=’10.104.1.2 8.8.8.8’

ETH0_GATEWAY=’10.104.1.1’

ETH0_IP=’10.104.33.8’

ETH0_MAC=’02:00:0a:68:21:08’

ETH0_MASK=’255.254.0.0’

ETH0_NETWORK=’10.104.0.0’

NETWORK=’YES’

SET_HOSTNAME=’themis-VM’

SSH_PUBLIC_KEY=’ssh-rsa AAtb-shortened-geNmcJO8QbyG/xLOP’

TARGET=’hda’

THEMIS_TYPE=’VM’

THEMIS_USER=’root’

32

Migration of virtual machines

Virtualization is enabling technology for cloud computing and it provides sep-
aration of running operating system (VM) from physical machine. Software can
be fully decoupled from hardware and located anywhere in the datacenter or even
migrated between datacenters.

Virtual machines (VM) are running on the physical servers called nodes or hy-
pervisors. Migration is process of shifting virtual machine from source hypervisor to
destination hypervisor. Migration should be undetectable for virtual machine since
software running inside must stay running and remain intact.

It can be theoretically possible to detect ongoing migration but detection will be
based on performance changes so it should not be possible to detect hypervisor VM
is running on.

There are two different types of migration - cold and live. Both types migrate
virtual machine from source hypervisor to destination, but difference is in migration
parameters and method for solving boundary value problem.

3.1 Migration of resources

Virtual machine can be abstracted as a group of mutually cooperating resources.
These resource are required for virtual machine operation and thus all of the resource
need to be transfered to destination hypervisor during migration. Resources can be

• VM parameters (e.g. number of CPU, reserved memory, virtual NIC)

• image of system disk (used to boot operating system)

• additional images (e.g. CD-ROM images, encrypted block devices)

• other interfaces (e.g. physical USB devices)

• virtual network

• memory

Migrating all of these resource may not be trivial because different migration ap-
proach must be used. Migration of VM parameters is easy because it is just very
small plain text, XML or JSON file. There are techniques to migrate other resources,
except physical devices attached to hypervisor.

3.1.1 Storage

Image of system disk, as well as additional images, need to be available for
destination hypervisor. The easiest solution is to transfer images during migration
but it can take long time, consume all bandwidth available and thus significantly

33

affects service performance as well as other tenant’s traffic. Workaround based on
dynamic rate-limiting is proposed in [5].

More advanced solution is using shared storage. This storage is shared between
all of the hypervisors and thus all images are immediately available. It can be
used for distributed datacenter where hypervisor may be distant in geographical
and network manner. Critical parameter for storage in distributed datacenter is
round-trip time because synchronous write operations need to be acknowledged. It
is possible to use storage in asynchronous mode, but it is dangerous because data
corruption may occur and single control node is needed. Single control node is single
point of failure as well.

I think that migration between datacenters (i.e. in distributed datacenter) should
combine different storage technologies. It does not make sense to store all images
in inter-datacenter shared storage because there is significant performance penalty
caused by IO operations transfered over network. Migration can be realized in two
steps. The image can be migrated from inter-datacenter to intra-datacenter storage
in the first step and then whole virtual machine migration can be carried-out.

3.1.2 Network

Some of tenants may require to maintain Layer 2 connectivity after migration,
but this practically mean that Layer 2 connectivity between hypervisors is needed.

It relative easy to build Layer 2 connectivity between hypervisors in single dat-
acenter, but it gets much more complicated for distributed datacenter. Overlay
networks described in 2.3.1 are capable to spread Layer 2 between datacenters, so
this technologies can be used if required.

However, I think that it is better to build application without L2 connectiv-
ity between computing nodes, for example by using load-balancing approach on
higher layers. L2 connectivity is unsuitable for moving to another datacenter and
cloud-bursting. It is better, at least in my opinion, to use other ways to provide com-
munication between virtual machines than using overlays for geographically large
installations.

3.1.3 Memory

Memory migration is required for preserving VM state during migration, i.e.
perform live migration. It is not necessary to migrate memory for cold migration
because virtual machine is powered-off and thus memory is actually empty during
migration and can be easily recreated on destination hypervisor.

Migration procedure must be able to read VM’s memory at source node and
create identical copy on destination node. However, virtual machine is still running
on source node and memory is constantly changing. Transfer mechanism proposed
in [5] introduces three phases of memory migration:

push Memory pages are pushed from source to destination and pages changed dur-
ing transfer are labeled as ”dirty”. Dirty pages are transfered in next round.
However, it is not possible to transfer all pages during this phase because some
pages get dirty faster than they can be transfered.

34

stop-and-copy Virtual machine is paused and all remaining dirty pages are trans-
fered. This phase is used to transfer remaining quickly dirtied pages because
page dirtying is paused.

pull Virtual machine is running on destination hypervisor but there can be pages
which are not copied yet so they are transfered on-demand.

Serious complication is rapid page dirtying described in [5], caused by rapidly
modified pages which are dirtied promptly after their transfer. This is caused by
disproportion between memory write speed and network bandwidth because it is
possible to write into memory much more faster than transfer dirty pages over
the network. Only one available solution is to use stop-and-copy phase and stop
memory writing during transfer. However, memory transmission can take long time
and thus it can significantly increase service downtime, but total migration time will
be reduced.

3.2 Cold migration

Procedure of cold migration is simpler than live migration. Virtual machine must
be in power-off state before migration, so disadvantage of this method is obvious
because all running processes must be terminated and complete operating system
shutdown is needed.

Service downtime for cold migration is much longer compared to live migration
because it is required to shutdown VM and virtual machine is not running during
migration. However, complete virtual machine shutdown can be beneficial for vir-
tual machines with intensive memory writes because it significantly decreases total
migration time.

Cold migration is suitable for virtual machines which are part of cluster with
working failover and shutdown of single virtual machine is not going to cause service
outage. Another appropriate case is migration without shared storage and thus
image must be transfered during migration. However, disk transfer may be beneficial
if it is necessary to change datastore or even virtualization technology.

This type of migration is easier to perform in distributed datacenter than live
migration because resources, like disk image, can be converted during transfer and
shared storage is not required.

3.3 Live migration

Migration can be performed ”live” almost without service disruption. According
to measurements provided in [5] can downtime be as low as 60 ms but it depends
on application and infrastructure parameters.

Live migration provides administrator with tool for shifting virtual machines
between hypervisors without any significant outage. It is beneficial for cloud ad-
ministration and maintenance because it is possible to move VM as required. It
allows to make hardware upgrades since all virtual machines can be migrated to
another hypervisor. Hypervisor can be upgraded and then VM migrated back. It is
extensively used for IaaS because infrastructure administrator can migrate machines
without the need of root access into VM.

35

It is necessary to perform migration in secure way so virtual machine must not
stay unusable on both hypervisors. There are 4 basic step which need to be per-
formed:

1. VM is created on destination node, but it is paused.

2. Migration of resources is started. This includes disk image migration (or shar-
ing), memory migration and also ensuring that all other resource are available
on destination node.

3. VM is paused on source node.

4. VM is resumed on destination node and deleted on source node.

Cloud orchestrator usually requires shared datastore for live migration of disk
images. NFS or any distributed filesystem can be used. Live migration of memory
is performed by combination of push and stop-and-copy approach. Push phase is
responsible to transfer most of the memory and stop-and-copy is used preferably
to quickly move the rest of the memory. Migration mechanism should monitor
duration of migration and memory writes because it may be necessary to switch to
stop-and-copy phase even if significant amount of memory pages is still waiting to
be transfered. This is caused by a rapid page dirtying and it is necessary to stop
virtual machine otherwise it would never finish migration.

There are extra tasks which can be executed after successful migration. It is, for
example, necessary to update FDB and ARP table on all intermediate network boxes
because virtual machine changed it’s location. Obvious solution is to sent gratuitous
ARP, but some routers block this kind of ARP message. Virtual machine can send
directed ARP messages to all addresses in it’s cache as suggested in [5].

36

Part II

Measurement of migration

37

Introduction

The goal of practical part is to develop system capable to measure virtual ma-
chine availability during migration.

Virtualization is enabling technology for VM migration since it decouples virtual
machine from physical server. However, there are some dependencies which must
be transfered together with virtual machine such as virtual network and disk image.
Disk image transfer can be solved by shared storage or using cold migration, but it
is not very clear how will migration affect the networking communication.

Network connected to virtual machine is called virtual network but physical
infrastructure is required to transfer signal between virtual server and other side of
communication (usually customer). It is possible to migrate virtual machine to any
server almost without any limitations but there may be serious problem with virtual
network.

Virtual machine availability can be measured on many layers. Application layer
can be tested by simulating customer requests. Testing can be performed by soft-
ware called ApacheBench. It can send many parallel request to HTTP server and
measure statistics like time for request, transfered bytes etc. There are other similar
benchmarks as dkftpbench1 or SPECweb992 but they are always limited to one type
of service or protocol. I think that this limitation is critical for evaluation of virtual
machine migrations and it is necessary to use more general approach.

General measurement procedure should be independent on platform and ser-
vice so only possible solution is to perform measurement directly on network layer.
Statistics acquired by network measurement may be approximately converted into
higher layers and estimation of service availability can be calculated. Network mea-
surement can give some information about network environment during migration
as well. Packet loss is the most relevant sign for virtual machine availability during
migration but there are other parameters which should be taken into account. For
example packet delay can significantly affect service quality, especially for a storage.

Testing of virtual machine migration is extensive topic because there are addi-
tional parameters specific for migration of virtual machines. Total migration time
may be used to decide whether it is convenient to use live or cold migration. To-
tal migration time is crucial indicator used in emergency migration cases which
may include unplanned outage or a natural disaster. Another special parameter is
migration success rate since migration request can be unsuccessful in some cases.

I think that it is important to introduce application capable to evaluate virtual
machine migrations so I have developed an application called Themis3. Themis is
modular framework which can be instructed to provide migrations in defined way,
collect performance data and export them.

1http://freecode.com/projects/dkftpbench
2https://www.spec.org/web99/
3Themis is Greek Titaness usually depicted holding scales and it is a reason why application is

called Themis.

38

http://freecode.com/projects/dkftpbench
https://www.spec.org/web99/

Methodology overview

Testing framework should be universal as much as possible so I have decided to
measure performance on the network layer since this it the most universal technology
available. Network measurement can be performed on any platform and it is not
restricted to single vendor or technology.

Primary task of an application is to measure an availability of virtual machine
during live migration. Two virtual machines are used: VM under test and supervi-
sor. Virtual machine is migrated between hypervisors while measure session between
VM and supervisor is established. Supervisor is deployed as a virtual machine be-
cause it can be moved to any location and actually change testing parameters, but
supervisor is fixed and is not migrating during measurement session. It can be
deployed as physical machine as well.

IP address must be retained during migration because there is measurement
session established and it would break in case of address change. It is possible to
measure migration with IP change, but it is necessary to use VPN or advanced
routing to provide VM ↔ supervisor connectivity.

Framework is ready to measure cold and live migration. Live migration can be
used without any special configuration, but VM must be prepared to perform cold
migration. Machine is powered-off during migration and then booted at destination
hypervisor so it is necessary to start migration agent right after booting. This may
be achieved by init script or process monitoring framework, e.g. God1.

5.1 Measurement session

Session between VM need to be established to obtain data for analysis. Packet
generator and receiver need to be running on VM and supervisor. I have developed
agents capable to run session and export results back to the backend.

Traffic generators are investigated and compared in [14] and [21]. I have decided
to use iperf because this tool is widely available, runs on many platforms and gives
similar results as others without any significant deviation. It really does not matter
which tool is used because it is very easy to adjust management module and agent
code to use different tool.

5.2 Management

Managements access is used to orchestrate virtual machines as well as for or-
chestrating the orchestrator. These steps need to be performed for each session:

1. load measure session parameters

1http://godrb.com

39

http://godrb.com

2. launch measurement agents on VM and supervisor

3. request migration (VM is migrated, supervisor is fixed)

4. wait for migration to finish (e.i VM is in running state)

5. end measurement session

6. check whether migration was correct

Various protocols can be used to run commands on virtual machines but SSH is
most common and provides all required features as well as sufficient security level.

Management module must be able to control OpenNebula orchestrator and ac-
quire information about hosts and virtual machines. There are various methods
how to control orchestrator. OpenNebula provides low-level API via XML-RPC
with wrappers available in Java and Ruby. There is also an OCCI interface imple-
mented, but XML-RPC interface seems to be better choice because it is tailored for
OpenNebula.

Security aspect must be taken into account because it is unacceptable to al-
low unauthorized access to OpenNebula cloud interface and SSH console of virtual
machines. It is not acceptable to save any passwords into source code repository.

Figure 5.2.1: Methodology overview

40

Themis application

Themis is an application for evaluation of virtual machine migrations. It is
prepared to be used for availability measurements and can be easily adjusted to
perform other task during migration.

Application is modular and can be adapted for different orchestrator than Open-
Nebula. Architecture is depicted in figure 6.0.1. Backend is responsible for mea-
surement management and processing the results. Frontend provides web interface.
Result can be displayed in browser or exported in CSV format.

Figure 6.0.1: Architecture of Themis application

Application is written in Ruby using Ruby on Rails framework. Ruby is platform
independent and can run on almost every currently used operating system. Ruby
on Rails (RoR) is framework providing database abstraction and it is strictly based
on model-view-controller (MVC) architecture. Application isis defined by an object
model, outputs are generated using views and controller is responsible for sending
commands to models and forward results to views.

I have decided to use this framework because it provides better interaction with
system services, e.g. SSH and SCP, than other web frameworks. There are classes
available for interaction with OpenNebula and OpenStack cloud API so it is not
necessary to create XML-RPC parsers from scratch.

41

6.1 Measure models

There are three models of measurement tasks and results. It is definition, session
and transfer. These models are used to describe migration plans, migration progress
and results. Relation between models is depicted in the figure 6.1.2.

All measurement models mentioned bellow are descendants of an ActiveRe-
cord::Base and mapping between objects and tables is handled by this build-in
class. It also describes inter-model associations and performs validation.

Figure 6.1.2: Relation between measurement models

6.1.1 Definition

Definition class, formally MeasureDefinition, is used to save prescription for mea-
surement task and track time taken. Parameters are listed in the table 6.1.1 and
their meaning is described bellow.

vm is virtual machine which is going to be migrated. List of VMs available for
migration is loaded on-demand from orchestrator using OneOrchestrator class.
Virtual machine must be in running state and variable THEMIS TYPE = ’VM’

need to be present in contextualization settings.

source is source host for virtual machine. VM have to be migrated to this host
before starting measurement session. List of hosts is loaded using OneOrches-
trator class and hosts status is checked for each host.

destination is destination host. VM is migrated to this host during measurement
session.

bandwidth determines packet generation rate (in Mbps) passed to the agent.

cycles set number of migration repetitions.

42

supervisor is an IP address of supervisor services, i.e. packet receiver and result
exporter

description can by used to attach any note.

started at is timestamp taken at the beginning of measurement.

finished at is timestamp taken after finishing all migrations.

Definition class has one-to-many relation with session class and also one-to-many
indirect relation with transfer class connected through sessions. It means that it is
possible to load every information from subordinate classes (models) and it is useful
for generating exports and web views.

Definition class is the highest class in the hierarchy so it is connected with or-
chestrator. There is a class variable @@shared orchestrator which is providing link
to an orchestrator interface. This variable is shared by all class instances so it is not
necessary to initialize more parallel connections.

Methods for manipulation with orchestrator resources are declared in definition
class. Host source and host destination returns host object for source and destina-
tion host. Method called virtual machine returns virtual machine object which is
going be used for migration evaluation and control.

Most important method of the definition class is start because it executes mi-
gration evaluation. It is responsible for generation of sessions and starting all of
them. One session object will be prepared for each migration cycle, so number of
session objects is the same as number stored in cycles parameter. Sessions need to
be started one by one so there is an loop which starts new session right after finishing
the previous one. Session start is performed by calling start of session class. This
method is different from previously mentioned method with same name because this
one is defined in session class. Finished at parameter is set to current timestamp
right after finishing the last session, i.e. at the end of migration evaluation.

Migration evaluation is not very computation expensive, but it can take really
long time to perform many migration cycles, in particular for virtual machines under
load. It is not possible to run these long running tasks on request from web interface
because request will timeout shortly and task would be terminated. I have decided to
use Delayed::Job (DJ) to run these task asynchronously. DJ can run task in detached
process and it can run for a long time without any timeout problems. It is also
possible to run DJ worker on separate machine so migration evaluation is executed
in completely separated environment. This approach eliminates interference with
other processes or network traffic. Security is improved too, since the orchestrator
interface does not need to be accessible from machine serving web interface.

There is one special function called flush and it clears measurement definition and
all of it’s subordinate objects. It can be used for debugging because it is sometimes
necessary to repeat the migration with same parameters. However, it is not possible
to run migration which was running in the past and all of sessions have already
finished.

6.1.2 Session

Session class, precisely MeasureSession, is a link between definition and trans-
fers. This class is responsible for migration and measurement coordination. Remote

43

Table 6.1.1: MeasureDefinition parameters

Parameter Required Type Editable by user Notes
vm yes string yes
source yes integer yes
destination yes integer yes
bandwidth yes integer yes
cycles yes integer yes required bigger than 0
supervisor yes string yes IP address
description no text yes
started at no timestamp no
finished at no timestamp no

management of virtual machines and orchestrator is performed inside this class.
There are no parameters editable by a user because all necessary information

about migration are inherited from the definition. Table 6.1.2 describes all param-
eters. There are two timestamp fields with evident purpose, reference to Measure-
Definition and two fields special for this class:

seq is sequence number in scope of superior MeasureDefinition. Session with seq = 1
is going to be executed first and seq = measure definition.cycles is the last one.

status determines status of measurement session:

• 0 - pending - session is waiting for execution, this is the default status

• 1 - running - session is running right now

• 2 - done - migration was finished successfully

• 3 - failed - migration was executed and failed to finish

Table 6.1.2: MeasureSession parameters

Parameter Required Type Edit. Notes
measure definition id yes reference no reference to Measure-

Definition
status yes integer no
seq yes integer no
started at no timestamp no
finished at no timestamp no

Most important part of MeasureSession class is start method. This method is ex-
ecuted by superior definition, so it is not necessary to set an asynchronous execution
with Delayed::Job because higher object is already running asynchronously.

It is necessary to load migration parameters, so only an information about su-
pervisor IP is loaded as a string and the rest is loaded as objects. It is beneficial
to work with objects instead of identifiers because it allows to execute commands
directly without any additional parsing.

44

Net::SSH client library is used for connection to virtual machine under test and
supervisor. I have implemented authentication using keys because it is necessary
to provide password-less login for the backend service. It is possible to implement
password authentication just by editing the client library configuration, but I wanted
to avoid storing any passwords in the source code.

Migration process can be divided into 3 stages. First stage is preparation for
migration, second stage is migration and third stage is migration verification and
reporting. Tasks must be carried out sequentially because next task always depends
on previous one.

First task after loading migration information is clearing previous measurement
session. Established session between packet generator and packer receiver can be-
come stale if it was not terminated successfully after previous migration. Packet
generator and receiver should be terminated after virtual machine migration, but it
may stay running in case of unexpected backend error or unclean shutdown. Com-
mand in the figure 6.1.3 is executed on VM and supervisor just to be sure there are
no stale sessions. This command is optimized for agent.rb and need to be adapted
to work with another measurement tools.

KILLPID=$(ps aux | grep -v grep | grep agent\.rb | grep ruby \

| xargs | cut -d’ ’ -f2); if [-n "$KILLPID"]; then \

kill -SIGINT "$KILLPID"; fi

Figure 6.1.3: Clear stale sessions command

Next action performed during the first stage is migration to the source host.
Source and destination hosts are loaded from the measure definition and the migra-
tion must be performed exactly from the source to the destination, so the VM need
to be running on the source host. Unmeasured migration to source host is requested
during this stage if VM is not already running on right host.

Last task in preparation stage is to run agents. It is necessary to start agents on
VM and supervisor. Both agents must also stay running after SSH disconnection.
It is difficult to run a Ruby script on a remote machine in a subshell because normal
behavior it is to terminate process after disconnection. I am using screen software
which is able to run detached processes. However, situation is even more compli-
cated due to different Ruby installation methods on VM and supervisor. Virtual
machine uses standard Ruby version installed via package manager by command
apt-get install ruby, so it easier to run agent.rb because it does not require in-
teractive shell. Rbenv1 is used to install Ruby on supervisor because agent.rb in
receiver mode requires newer version than provided by package manager. Rbenv is
initialized in file /̃.bashrc so it is necessary to run all Ruby scripts in interactive
shell. Parameters for agent.rb can be found below in the table 6.3.5.

Known problems

Sessions are not atomic because asynchronous API is used and many sequential
actions need to be performed. Orchestrator works in ”best effort” manner, so mi-
gration request is refused sometimes. It is usually caused by temporary unknown

1https://github.com/sstephenson/rbenv

45

https://github.com/sstephenson/rbenv

Figure 6.1.4: Run remote agents command

generator - VM

screen -d -m /bin/bash -c ’~/themis/agent.rb "generator" \

#{supervisor} #{5000 + (id % 1000)} #{measure_definition.bandwidth}M’

receiver - supervisor

screen -d -m /bin/bash -li -c ’~/themis/agent.rb "receiver" \

#{supervisor} #{5000 + (id % 1000)} \

#{measure_transfers_upload_url(:measure_session => id, :format => ’json’)}’

VM state. This behavior can not be solved in application so this kind of session is
just marked as failed and next session is started.

Another problem is virtual machine stuck in migration state. It is caused by
hypervisor error (usually deadlock). Orchestrator keeps asking about virtual ma-
chine state but never gets an answer, so virtual machine is stuck in actual state.
It is necessary to fix this error manually in orchestrator because application will
get stuck in waiting for migration to finish. It is necessary to fix faulty hypervisor,
delete VM and recreate it. Measurement task will continue after VM under test is
back in running state.

Most serious problem is caused by zombie VMs. Zombie is virtual machine
running on hypervisor, although it should not. Even worse is that OpenNebula
orchestrator does not display zombies in list of virtual machines and it is possible to
deploy virtual machine with same id on different host. This situation is depicted in
figure 6.1.5. It is obviously not possible to migrate one-247 between hosts because
it already exists on both of them. I am working on modification of OpenNebula
scheduler to stop deployment of virtual machine in case of zombie with same name
already exists.

Figure 6.1.5: Zombie VM

All of these errors are caused by incorrect orchestrator behavior, so it is necessary
to solve them in orchestrator. Application will wait for problem to be fixed or labels
session as failed.

46

6.1.3 Transfer

Class MeasureTransfer is used to store information about the transfers and it
actually parses output from packet receiver. There are no user editable fields because
objects are uploaded via API. Model parameters are described in the table 6.1.3.

Themis application uses iperf to measure packet flow, so MeasureTransfer class
is tailored for output of the iperf. Adapting to another measurement software is
fairly easy because just one database migration script and small model changes will
do the job.

Table 6.1.3: MeasureTransfer parameters

Parameter Required Type Edit. Notes
measure session id yes reference no reference to Measure-

Session
timestamp no timestamp no
time relative yes float no
jitter no float no
datagrams transfered no integer no
datagrams lost no integer no
bits transfered no integer no
bits lost no integer no
bandwidth no integer no bits per second

It is necessary to provide interface for automatic uploading MeasureTransfer
objects. URL for uploads is /measure transfers/:measure session(.:format) and it is
routed to measure transfers#upload. This URL needs to be passed to the packet
generator.

First task is to load the superior MeasureSession object and check whether this
object actually exists. Transfers without a session is not valid and can no be saved.

Upload action of MeasureTranfers controller parses input objects received in
JSON format and saves them into the database. However, it is necessary to make a
few changes to each object. Iperf uses different format of timestamp than database
and it does not support time zone, so each timestamp received from the iperf must
be parsed, converted to native DateTime object and merged with timezone data.

Parsed DateTime object is used to calculate time relative. It is time between
current time and start of migration session. Relative time is used to align migrations
for graphing and exports.

Rails framework implements CSRF prevention mechanism, so it is necessary to
create an exception for an upload action. I have added exception to Application-
Controller for all request in the JSON format.

6.2 Virtual machines

Virtual machine, used for migration testing, needs to be prepared first. It is
possible to migrate every virtual machine, but agent.rb wrapper needs. Agent is
also used to export results from the supervisor to the backend.

47

Agent.rb is expected to exist in path /̃themis/agent.rb and it is already saved
there in prepared images. It is also necessary to install Ruby interpreter. I have
used package available in distribution for VM under test and rbenv for supervisor.

Virtual machines are already contextualized for OpenNebula, and agent.rb with
Ruby is installed. These images can be directly imported into OpenNebula image
datastore and used in templates.

Table 6.2.4: Virtual machines parameters

Parameter VM for migration Supervisor
Operating system Ubuntu server 14.04.1 LTS
Kernel version 3.13.0-32
Image size 5.9G
Image type raw
Device prefix vd
Username root
Password none, only SSH keys using contextualization
Agent.rb /root/themis/agent.rb
Ruby version 1.9.3p484 2.1.3p242
Ruby install method package manager rbenv

6.3 Agent

It was necessary to develop a script wrapper capable to parse iperf output and
upload results to the backend module. This script is called agent.rb, it is attached
on the CD and will be published in project repository. It is written in Ruby to be
compatible with the rest of the project. Agent script is executed by the backend in
migration session model in start method and SSH is used for remote execution.

Agent script must be available in the virtual machine under test as well as in
supervisor. However, distribution is fairly simple because it is just a single file
(agent.rb) with a few dependencies. This file can be distributed manually, but it
is not very usable for large or frequent deployment. Automatic deployment using
OpenNebula’s contextualization is much more efficient since orchestrator takes care
of saving file into VMs. It is also possible to use configuration management system
to upload this file and prepare environment to run migration. I am using Ansible
to deploy agent.rb because it was necessary to update Ruby version.

There are two modes of running agent. Modes differ in packet generator pa-
rameters and required dependencies. Mode is determined by ARGV[0] parameter,
which is the first parameter after filename. It is necessary to select correct mode
and properly configure all parameters from the table 6.3.5 because measure session
can not be established otherwise.

Generator mode only creates packets and sends them to receiver so it requires
nothing more than the Ruby and the iperf available. Receiver mode is more advanced
and it uploads results to the backend besides receiving packets. Receiver mode
requires these dependencies:

• net/http used to upload results to then backend using HTTP POST method

48

• json necessary to export data into JSON before sending

• date used to parse iperf timestamp and convert it into backend compatible
format

Both modes use IO class to read pipeline output from iperf program. This
class is part of a Ruby core so it is not necessary to install it separately. Receiver
dependencies can be installed using package manager or with gem utility using
command gem install net/http json date.

Table 6.3.5: Agent.rb parameters

Generator mode Receiver mode
ARGV[i] Parameter Example Parameter Example

0 Mode generator Mode receiver
1 Destination IP 192.0.2.1 Listen IP 192.0.2.1
2 Destination port 5004 Listen port 5004
3 Bandwidth 1M Upload URL http://backend/

measure_transfers/

23.json

Agent is using legacy iperf version developed by NLANR/DAST, but it intro-
duces several problems which must be resolved in agent.rb and measure session
routine. I am going to adapt agent.rb for iperf32. It is a new implementation de-
veloped by ESnet/Lawrence Berkeley National Laboratory. Iperf3 provides JSON
output and probably will not suffer from problems presented below.

First problem is automatic session reestablishment. This occurs when running
session is interrupted by a client and new session is initialized with the same receiver
in short interval (less than few seconds). Iperf server joins new session with previous
one which is not desired behavior. This it the reason why there is 5 second interval
inserted before generator restart.

Second problem is handling INT signal by legacy iperf. SIGINT is reserved for
external interrupt and this signal is, for example, sent to process when Ctrl + C
is pressed. Iperf catches this signal preventing user to accidentally stop running
measure session. I understand reason why this function was implemented but I
think that is total nonsense to require two consecutive INT signals to quit the
program. I have solved this by trapping SIGINT and sending KILL signal to iperf
before agent.rb exits. This is only one possible way to reliably stop running agent
together with the iperf.

6.4 Frontend

I have developed web interface for managing Themis application because it is
easier for users to interact with web interface then configure application using con-
sole. Although web interface was not main goal of this thesis, I have decided to

2Available on https://github.com/esnet/iperf

49

http://backend/measure_transfers/23.json
http://backend/measure_transfers/23.json
http://backend/measure_transfers/23.json
https://github.com/esnet/iperf

Figure 6.3.6: Example of agent.rb and iperf commands

agent in generator mode

./agent.rb "generator" 192.0.2.1 5004 10M

expanded iperf command in generator mode

iperf --udp --interval 1 --time 3600 --client 192.0.2.1 --port 5004 \

--bandwidth 10M --format b

agent in receiver mode

./agent.rb "receiver" 192.0.2.1 5004 http://backend/measure_transfers/23.json

expanded iperf command in receiver mode

iperf --server --bind 192.0.2.1 --port 5004 --udp --interval \

--reportstyle c --format

implement it to provide better information about running migration and simple
interface.

Web frontend is created in respect with model-view-architecture of Ruby on
Rails. Twitter Bootstrap3 is used for user interface components.

Figure 6.4.7: Welcome page with tabs

There are three tabs in the main page:

• Themis

• Waiting jobs

• Measure definitions

First tab is just welcome page with elementary information. The most important
information on this page is current version. Application is prepared to be deployed
using Capistrano4 so current running version is loaded from GIT repository.

Waiting jobs tab displays running and pending tasks. All long-running tasks
need to be executed asynchronously with Delayed::Job, so task is first saved into the
database and then executed by a worker after some time defined in the configuration.
Pending and running jobs can be reviewed in this tab. However, it is not allowed
to perform any changes on running or pending task because it could break relation
between Delayed::Job and running processes.

3https://github.com/twbs/bootstrap
4https://github.com/capistrano/capistrano

50

https://github.com/twbs/bootstrap
https://github.com/capistrano/capistrano

6.4.1 Definitions

The most important tab is the Measure definitions because actions can be per-
formed here. List of all definitions is displayed after clicking this tab, screenshot is
in the figure 6.4.8. User accessible parameters from table 6.1.1 are displayed there.
There are also basic actions as view, edit and destroy. Already started definition
can not be edited.

Figure 6.4.8: List of all definitions

I have decided to print the source and the destination host only as an id because
each name lookup takes one request send to the orchestrator. I think that listing id
is sufficient because user should be already familiar with OpenNebula hosts.

More information about definition can be displayed by following ”view” action
link on the right side. This page displays all information about the selected defini-
tion, it’s parameters, sessions and transfers. Screenshot is in the figure 6.4.9.

Progress bar represents ratio between finished, failed and pending sessions. First
green part is a ratio of successfully finished sessions to all migrations, red part is a
ratio of failed sessions and rest is a percentage of pending.

There is a table of all sessions under the progress bar. Session is single migration
from the source host to the destination host together with network measurement.
Status, time of start end finish, id and number of rows is displayed for each session.

Information about transfers during the session can be displayed as a table or
a graph. Graphing library is Chart.js5 so it is necessary to use a browser with
JavaScript and HTML5 support. It is much slower to generate graph in the browser
than using MATLAB because it is not optimized to work with huge datasets. Graph-
ing in browser is intended to be used for a quick overview and more complex visu-
alization should be generated from CSV file using MATLAB or matplotlib.

The frontend does not implement any kind of authorization and authentication
because it is supposed to run on the isolated network or as a part of an existing

5https://github.com/nnnick/Chart.js

51

https://github.com/nnnick/Chart.js

Figure 6.4.9: Definition overview

Figure 6.4.10: Bandwidth visualization

system with authorization. Each client gets unlimited access to all migration data
and can perform any action. It is necessary to negotiate rules in case of multiuser
usage. It is not difficult to implement a user access control, but it is beyond the scope
of this thesis. Authentication library Authlogic6 can be uses with authorization
provided by for example CanCanCan7.

6https://github.com/binarylogic/authlogic
7https://github.com/CanCanCommunity/cancancan

52

https://github.com/binarylogic/authlogic
https://github.com/CanCanCommunity/cancancan

Conclusion

I have analyzed and compared networking and storage technologies used in dis-
tributed (cloud) datacenters. Virtualization is mentioned in the beginning because
it is an enabling technology for the cloud computing. Cloud deployment and service
models are compared and appropriate use cases are mentioned.

The biggest attention is dedicated to the cloud computing, especially to net-
working, storage and orchestration technologies. Comparison is made by defining
the use cases and commenting advantages and disadvantages. It is not possible to
rigorously decide on the best solution because there are many use cases and each of
them requires individual approach.

Networking is an essential part of the datacenter design and legacy technologies
are not able to fulfill current demand. Overlays techniques are supposed to provide
required flexibility and network virtualization. VXLAN, STT and NVGRE is dis-
cussed. Hop-by-hop network virtualization is mentioned too, but it is tightly tied
to the SDN and SDN is still kind of sci-fi technology because it is not widely sup-
ported. I have found out that load balancing is an important topic connected with
overlay networks and VM migrations, so I have included the load balancing into the
networking section too.

The orchestration is described in a theoretical part and special attention is given
to OpenNebula because it is used in a practical part. I have explained principles of
the orchestration with special focus on virtual networks. Contextualization packages
from a practical part are presented.

I think that the virtualization brings so many improvements to the datacenters
that a legacy networking technologies are not able to keep pace. Most of the cur-
rently used technologies were designed before the virtualization era and it is the
reason why they are to rigid to meet nowadays requirements. It is common to live
migrate the virtual machine nowadays but it was impossible in a few years before.

We are trying to build a highly agile technology, like virtualized and distributed
datacenter, on top of the legacy techniques. This approach is obviously not able to
work well and there are two possible solutions.

The first radical solution is to totally redesign current network stack and take
current requirements into ccount. However, it is very hard to design solution for
all use cases with with respect to a future usage. It also does not make sense
from economical point of view because network equipment needs to be upgraded or
replaced. SDN is, in my opinion, a typical example of this technology since it brings
amazing new features and it is usually can not be used on the legacy devices.

Second approach is to build a new overlay network on top of an existing net-
work. This overlay network can provide additional functionality, but also brings
some limitations caused by an underlaying physical network. It is, for example, not
possible to handle priority packets from the overlay networks with special care in
the underlay network because the underlay knows nothing about the overlay net-
work. Another problem is the BUM traffic because it is problematic to handle and

53

multicast needs to be implemented in the underlay network. The overlay networks
can immediately bring some significant improvements to a datacenter networking,
but there is a trade-off. I thing that overlays are an appropriate temporary solution,
but I would recommend to use the hop-by-hop with SDN when available.

It is possible to migrate a virtual machine with really minimal outage so VMs
can be moved between the hypervisors to optimize performance or minimize an
energy consumption. It is necessary to think about a networking aspect of migration
because transfer degradation will definitely appear during the migration. I have
developed an application called Themis. It is capable to evaluate a virtual machine
availability during live migration. It combines network measurements, orchestration
and data analysis.

Typical use case is a migration of the virtual machine with SLA. It is necessary to
measure service disruption before migration because there are the limits, for example
for packet loss, defined in SLA. Themis can be used to migrate testing virtual
machine and check whether service degradation during migration is acceptable.

Fork of the application is used in Department of Electromagnetic Field, CTU
FEE, for automatic measurement of wireless links and monitoring. The migration
routines are not used and the remote management is replaced by an agent responsible
for a continuous packet generation.

A migration schema can be defined using a console or a web interface. Virtual
machine availability is then evaluated according to the schema. Repetitive migra-
tions are supported as well as configurable bandwidth for packet generator. The
application manages virtual machines via SSH, starts measurement session, request
migration via orchestrator API and collects the results. Whole process is fully au-
tomated, so no manual configuration is needed.

Results can be viewed in a browser or exported into a CSV file. Sample mea-
surement outputs are presented in appendix A. I have performed various migration
schemas with different parameters.

Noticeable transfer degradation can be seen in bandwidth graphs (e.g. A.1.1).
This degradation is caused by stop-and-copy phase during migration. Figure A.1.4
depicts measurement performed during period with higher load and results are sig-
nificantly affected by other traffic because switch between hosts is not reserved
exclusively for the measurement. Packet jitter (delay variation) is presented in the
figure A.1.6. Significant peak during stop-and-copy phase can be seen in graph.

The application will be used for evaluation of migration driven by orchestrator
combined with network controller. Acquired data will be used to compare traditional
approach with migration supported by SDN.

Most significant advantages of the application compared to a manual measure-
ment are the repetitive migrations with exactly defined parameters and automatic
collection of the results. I have prepared virtual machines and developed whole
framework for managing migration and collecting the results. The application can
be easily modified to execute tasks different from the network measurement, for
example start a benchmark and compare performance of the physical hosts.

54

List of Abbreviations

API Application Programming Interface.
ARP Address Resolution Protocol.
Bash Bourne-again sh.
BUM Broadcast, Unknown unicast and Multicast.
CAPEX Capital Expenditures.
CPU Central Processing Unit.
CRUSH Controlled, Scalable, Decentralized Placement of

Replicated Data.
CSRF Cross-size Request Forgery.
CSV Comma-separated values.
DJ Delayed::Job.
DNS Domain Name Service.
ECMP Equal-cost multi-path routing.
FC Fibre Channel.
FCP Fibre Channel Protocol.
FDB Forwarding Database.
GRE Generic Routing Encapsulation.
HA High Availability.
HTML Hypertext Markup Language.
HTTP HyperText Transfer Protocol.
IaaS Infrastructure as a Service.
ICMP Internet Control Message Protocol.
IO Input/Output.
IOPS Input/Output Operations Per Second.
IP Internet Protocol.
IPv4 Internet Protocol version 4.
IPv6 Internet Protocol version 6.
ISATAP Intra-Site Automatic Tunnel Addressing Protocol.
iSCSI Internet Small Computer System Interface.
JSON JavaScript Object Notation.
KVM Kernel-based Virtual Machine.
LVM Logical Volume Management.
LXC LinuX Containers.
MAC Media Access Control.
MVC Model-view-controller.
NAS Network Access Storage.
NFS Network File System.
NIC Network Interface Card.
NIST National Institure of Standards and Technology.

55

NVE Network Virtualization Edge.
NVGRE Network Virtualization using Generic Routing Encap-

sulation.
OCCI Open Cloud Computing Inteface.
OPEX Operating Expenditures.
OS Operating System.
OSD Object Storage Device.
OSPF Open Shortest Path First.
OUI Organization Unique Identifier.
OVS Open vSwitch.
PaaS Platform as a Service.
RADOS Reliable Automatic Distributed Object Store.
RAID Redundant Array of Independent Disks.
RBD RADOS Block Device.
RoR Ruby on Rails.
RPC Remote Procedure Call.
RTT Round-trip Time.
SaaS Software as a Service.
SATA Serial Advanced Technology Attachment.
SCP Secure Copy.
SDN Software Defined Networking.
SLA Service Layer Agreement.
SOA Start Of Authority.
SSD Solid State Drive.
SSH Secure Shell.
SSL Secure Sockets Layer.
STP Spanning Tree Protocol.
STT Stateless Transport Tunelling.
TCP Transmission Control Protocol.
ToR Top of Rack.
TTL Time To Live.
UDP User Datagram Protocol.
UPS Uninterruptible Power Supply.
URL Uniform Resource Locator.
US United States.
USB Universal Serial Bus.
VLAN Virtual Local Area Network.
VM Virtual Machine.
VNI VXLAN Network Identifier.
VPN Virtual Private Network.
VPS Virtual Private Server.
VSID Virtual Subnet Identifier.
VTEP VXLAN Tunnel Endpoint.
VXLAN Virtual Extensible Local Area Network.
XML Extensible Markup Language.

56

List of Figures

2.2.1 Service model responsibility . 11
2.3.2 Model of VXLAN topology . 15
2.3.3 Overlay virtual network . 17
2.3.4 Hop-by-hop virtual network . 18
2.3.5 Example zone file for DNS load balancing 20
2.3.6 Load balancing at application level 20
2.3.7 Anycast load balancing . 21
2.5.8 OpenNebula architecture . 27
2.5.9 Iptables rules created by fw network driver 29
2.5.10 Ebtables rules uses by ebtables network driver 29
2.5.11 Template for virtual machine . 31
2.5.12 Contextualization file . 32

5.2.1 Methodology overview . 40

6.0.1 Architecture of Themis application 41
6.1.2 Relation between measurement models 42
6.1.3 Clear stale sessions command . 45
6.1.4 Run remote agents command . 46
6.1.5 Zombie VM . 46
6.3.6 Example of agent.rb and iperf commands 50
6.4.7 Welcome page with tabs . 50
6.4.8 List of all definitions . 51
6.4.9 Definition overview . 52
6.4.10 Bandwidth visualization . 52

57

List of Tables

1.1.1 Comparison of virtualization types 5

6.1.1 MeasureDefinition parameters . 44
6.1.2 MeasureSession parameters . 44
6.1.3 MeasureTransfer parameters . 47
6.2.4 Virtual machines parameters . 48
6.3.5 Agent.rb parameters . 49

58

Bibliography

[1] Ondřej Celetka. IPv4 jako služba aneb jak śı̌t zbavit dual-stacku. http://www.
root.cz/clanky/ipv4-jako-sluzba-aneb-jak-sit-zbavit-dual-stacku/.
[Online; retrieved 2014-09-30].

[2] IBM Corporation. Virtualization in education. http://www-07.ibm.com/

solutions/in/education/download/Virtualization%20in%20Education.

pdf, 2007. [Online; retrieved 2014-09-17].

[3] Davie and Gross. A stateless transport tunneling protocol for network virtual-
ization (STT). http://tools.ietf.org/html/draft-davie-stt-06. [Online;
retrieved 2014-11-12].

[4] G. Dommety. Key and sequence number extensions to GRE. http://tools.

ietf.org/html/rfc2890. [Online; retrieved 2014-08-10].

[5] Clark et al. Live migration of virtual machines. https://www.usenix.org/

legacy/events/nsdi05/tech/full_papers/clark/clark.pdf, 2005. [On-
line; retrieved 2014-08-17].

[6] Farinacci et al. Generic routing encapsulation (GRE). http://tools.ietf.

org/html/rfc2748. [Online; retrieved 2014-08-10].

[7] Lasserre et al. Framework for data center (DC) network virtualization. http:

//tools.ietf.org/html/rfc7365. [Online; retrieved 2014-11-11].

[8] Mahalingam et al. Virtual extensible local area network (VXLAN): A frame-
work for overlaying virtualized layer 2 networks over layer 3 networks. http:

//tools.ietf.org/html/rfc7348. [Online; retrieved 2014-11-10].

[9] Sridharan et al. NVGRE: Network virtualization using
generic routing encapsulation. http://tools.ietf.org/html/

draft-sridharan-virtualization-nvgre-06. [Online; retrieved 2014-
11-11].

[10] Weil et al. Ceph: A scalable, high-performance distributed file system. In 7th
Conference on Operating System Design and Implementation, 2006.

[11] A. Hammadi and L Mhamdi. A survey on architectures and energy efficiency
in data center networks. Computer Communications, 40, 2014.

[12] Chris Horne. Understanding full virtualization, paravirtualization,
and hardware assist. http://www.vmware.com/files/pdf/VMware_

paravirtualization.pdf. [Online; retrieved 2014-08-20].

59

http://www.root.cz/clanky/ipv4-jako-sluzba-aneb-jak-sit-zbavit-dual-stacku/
http://www.root.cz/clanky/ipv4-jako-sluzba-aneb-jak-sit-zbavit-dual-stacku/
http://www-07.ibm.com/solutions/in/education/download/Virtualization%20in%20Education.pdf
http://www-07.ibm.com/solutions/in/education/download/Virtualization%20in%20Education.pdf
http://www-07.ibm.com/solutions/in/education/download/Virtualization%20in%20Education.pdf
http://tools.ietf.org/html/draft-davie-stt-06
http://tools.ietf.org/html/rfc2890
http://tools.ietf.org/html/rfc2890
https://www.usenix.org/legacy/events/nsdi05/tech/full_papers/clark/clark.pdf
https://www.usenix.org/legacy/events/nsdi05/tech/full_papers/clark/clark.pdf
http://tools.ietf.org/html/rfc2748
http://tools.ietf.org/html/rfc2748
http://tools.ietf.org/html/rfc7365
http://tools.ietf.org/html/rfc7365
http://tools.ietf.org/html/rfc7348
http://tools.ietf.org/html/rfc7348
http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-06
http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-06
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf

[13] Dustin Kirkland. Docker in ubuntu, ubuntu in docker. http://blog.

docker.com/2014/04/docker-in-ubuntu-ubuntu-in-docker/. [Online; re-
trieved 2014-09-20].

[14] S.S. Kolahi, S. Narayan, D.D.T. Nguyen, and Y. Sunarto. Performance moni-
toring of various network traffic generators. In Computer Modelling and Simu-
lation (UKSim), 2011 UkSim 13th International Conference on, pages 501–506,
March 2011.

[15] T. Mell, P. Grance. The NIST definition of cloud computing. http://

csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf. [Online;
retrieved 2014-08-17].

[16] R. Moreno-Vozmediano, R.S. Montero, and I.M. Llorente. IaaS cloud archi-
tecture: From virtualized datacenters to federated cloud infrastructures. Com-
puter, 45(12):65–72, Dec 2012.

[17] Ellen Nakashima. Judge orders microsoft to turn over data held over-
seas. http://www.washingtonpost.com/world/national-security/

judge-orders-microsoft-to-turn-over-data-held-overseas/2014/

07/31/b07c4952-18d4-11e4-9e3b-7f2f110c6265_story.html. [Online;
retrieved 2014-09-12].

[18] B. Radha and S. Selvakumar. Deepav2: A DNS monitor tool for prevention
of public IP DNS rebinding attack. In Advances in Recent Technologies in
Communication and Computing (ARTCom 2011), 3rd International Conference
on, pages 72–77, Nov 2011.

[19] M. Townsley S. Tsuchiya, Ed. and S. Ohkubo. IPv6 rapid deploy-
ment (6rd) in a large data center. http://tools.ietf.org/html/

draft-sakura-6rd-datacenter-04. [Online; retrieved 2014-05-30].

[20] S. Sarat, Vasileios Pappas, and A. Terzis. On the use of anycast in DNS.
In Computer Communications and Networks, 2006. ICCCN 2006. Proceed-
ings.15th International Conference on, pages 71–78, Oct 2006.

[21] S. Srivastava, S. Anmulwar, A.M. Sapkal, T. Batra, A.K. Gupta, and V. Ku-
mar. Comparative study of various traffic generator tools. In Engineering and
Computational Sciences (RAECS), 2014 Recent Advances in, pages 1–6, March
2014.

60

http://blog.docker.com/2014/04/docker-in-ubuntu-ubuntu-in-docker/
http://blog.docker.com/2014/04/docker-in-ubuntu-ubuntu-in-docker/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.washingtonpost.com/world/national-security/judge-orders-microsoft-to-turn-over-data-held-overseas/2014/07/31/b07c4952-18d4-11e4-9e3b-7f2f110c6265_story.html
http://www.washingtonpost.com/world/national-security/judge-orders-microsoft-to-turn-over-data-held-overseas/2014/07/31/b07c4952-18d4-11e4-9e3b-7f2f110c6265_story.html
http://www.washingtonpost.com/world/national-security/judge-orders-microsoft-to-turn-over-data-held-overseas/2014/07/31/b07c4952-18d4-11e4-9e3b-7f2f110c6265_story.html
http://tools.ietf.org/html/draft-sakura-6rd-datacenter-04
http://tools.ietf.org/html/draft-sakura-6rd-datacenter-04

Appendix

Measurement samples

A.1.1 Measurement #23

100 Mb/s, 100 cycles, 6% failed

Figure A.1.1: #23, bandwidth [b/s]

61

Figure A.1.2: #23, bandwidth [b/s] (z axis - color), flat view

62

A.1.2 Measurement #26

140 Mb/s, 300 cycles, 6% failed

Figure A.1.3: #26, bandwidth for all sessions (top), average (bottom) [b/s]

63

Figure A.1.4: #26, bandwidth [b/s]

Figure A.1.5: #26, bandwidth [b/s] (z axis - color), flat view

64

A.1.3 Measurement #27

80 Mb/s, 200 cycles, 10% failed

Figure A.1.6: #27, packet jitter for all sessions (top), average (bottom) [ms]

65

Figure A.1.7: #27, bandwidth for all sessions (top), average (bottom) [b/s]

Figure A.1.8: #27, bandwidth [b/s]

66

Figure A.1.9: #27, bandwidth [b/s] (z axis - color), flat view

67

	I Theoretical background
	Virtualization
	Types of virtualization
	Advantages of virtualization

	Cloud computing
	Deployment models
	Service models
	Networking
	Storage
	Orchestration software

	Migration of virtual machines
	Migration of resources
	Cold migration
	Live migration

	II Measurement of migration
	Introduction
	Methodology overview
	Measurement session
	Management

	Themis application
	Measure models
	Virtual machines
	Agent
	Frontend

	Conclusion
	List of Abbreviations
	List of Figures
	List of Tables
	Appendix

