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Abstract 

Navigation systems providing the attitude, position and velocity of an object play a key role 

in a wide range of applications. Their accuracy depends on the choice of sensors. The most precise sensors 

are ring laser gyroscopes, fiber optic gyroscopes and servo and Quartz accelerometers for angular 

rate/acceleration measurements. These navigation grade sensors would be convenient for all 

applications; however, their price can be too high. A cheaper alternative can be Micro-Electro-Mechanical-

Systems (MEMS). The technological progress in the precision of MEMS has enabled their use in cost-

effective applications, such as in unmanned aerial vehicles (UAVs) or small aircrafts. Despite the MEMS-

based inertial sensors carrying a lot of advantages, their performance has many weaknesses such as low 

resolution, noisy output, worse bias stability, etc. For these reasons, as a standalone system they are not 

able to provide a navigation solution and thus they need to be fused with other aiding sources via adaptive 

data processing approaches. GNSS, a magnetometer, a pressure-based altimeter, an electrolytic tilt sensor 

(ETS), and so on can be employed as possible aiding sources. 

A main aim of the doctoral thesis is an improvement of overall accuracy of the developed low-cost 

inertial navigation system (INS) by means such as usage of alternative sensors, estimation of sensor errors 

and usage of adaptive attitude estimation approaches. The INS utilizes data from the MEMS-based inertial 

sensors (accelerometers and gyroscopes), magnetometer and an ETS. The intention is paid just to attitude, 

thus the objectives are focused on a design and development of algorithms for attitude evaluation 

excluding GPS. The final low-cost INS realization is primarily developed for usage on UAVs or small 

aircrafts. 

The first part is focused on inertial sensors and magnetometer calibration. It covers design of the 

sensor error models (SEMs) which contain scale factors, non-orthogonality angles, offsets and measuring 

framework misalignments. The parameters of the SEMs are identified by proposed calibration procedures 

and algorithms and, in the end, the sensor errors compensations are applied and evaluated. 

The second part provides the overview of different ETSs, their principle of operation, parameters 

and performed analyses which are focused on correction of triaxial accelerometer data. Based on several 

performed analyses, the most convenient ETS is chosen for use in the INS realization. 

The last part deals with adaptive data processing approaches for attitude estimation. The algorithm 

for attitude estimation preprocesses data from accelerometer, magnetometer and ETS data via Gauss-

Newton method and the resultant quaternion is fused with gyroscope data via extended Kalman filter 

which provides as estimates three angular rates, four components of quaternion and three gyroscope 

biases. The proposed algorithms are evaluated using real flight data and the final accuracy of attitude 

estimation as well as accuracy analyses are presented. 
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Abstrakt 

Navigační systémy poskytující polohové úhly, pozici a rychlost navigovaného objektu jsou 

v současné době využívány v širokém spektru uživatelských aplikací. Přesnost těchto systémů závisí 

především na přesnosti použitých senzorů. Mezi nejpřesnější patří laserové gyroskopy, gyroskopy 

s optickým vláknem, servo a quartz akcelerometry měřící úhlové rychlosti/zrychlení. Tyto velmi přesné 

senzory by bylo vhodné využít pro všechny požadované aplikace, kdyby jejich cena nebyla příliš vysoká. 

Levnější alternativou mohou být senzory vyrobené MEMS technologií, které vzhledem ke zvyšující se 

přesnosti mohou být využity např. na bezpilotních prostředcích, malých letadlech, atd. Ačkoliv mají MEMS 

inerciální senzory mnoho výhod, mají rovněž i své slabé stránky jako nízké rozlišení, vysoký šum 

výstupních dat, nízká stabilita, atd. Z těchto důvodů nejsou schopny MEMS senzory poskytovat navigační 

úlohu nezávisle a tudíž potřebují být integrovány s doplňkovými zdroji informací jako např. GNSS, 

magnetometr, barometrický výškoměr, elektrolytická libela, atd. 

Hlavním cílem této disertační práce je zvýšení přesnosti inerciálního navigačního systému (INS), 

který využívá levné senzory, a to pomocí alternativních senzorů, kalibrací použitých senzorů a využitím 

adaptivních algoritmů pro odhad polohových úhlů. INS využívá data z tříosého akcelerometru, gyroskopu, 

magnetometru a elektrolytické libely, která jsou pomocí vhodných algoritmů použita pro odhad 

polohových úhlů bez nutnosti využití GPS. 

První část disertační práce je zaměřena na kalibraci tříosých akcelerometrů, gyroskopů a 

magnetometrů, což zahrnuje návrh deterministických chybových modelů (obsahují převodní konstanty, 

úhly neortogonalit, ofsety a koeficientů matice zarovnání), návrh a realizaci algoritmů a kalibračních 

postupů. 

Ve druhé části je uveden přehled elektrolytických libel včetně jejich nejvýznamnějších parametrů, 

princip jejich činnosti a experimentální ověření jejich parametrů. Na základě provedených analýz byl 

vybrán nejvhodnější senzor pro využití v inerciálním navigačním systému. 

Poslední část disertační práce je zaměřena na adaptivní metody určení polohových úhlů. Výsledný 

algoritmus je založen na kombinaci Gauss-Newtonovy metody a algoritmu rozšířeného Kalmanova filtru. 

Gauss-Newtonova metoda je využita pro odhad kvaternionu na základě dat z  akcelerometru, 

magnetometru a elektrolytické libely. Tento kvaternion je následně integrován s daty ze tříosého 

gyroskopu pomocí algoritmu rozšířeného Kalmanova filtru. Výstupními odhady je trojice úhlových 

rychlostí a jejich biasy a čtveřice komponent kvaternionu reprezentujícího orientaci navigovaného 

objektu. Navržené algoritmy a přesnost určení polohových úhlů byly ověřeny na základě reálných dat 

získaných na bezpilotním prostředku. 
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1. Introduction 

Navigation systems which provide information on attitude, position and velocity of object are 

nowadays used in a wide range of civil and military applications, such as in unmanned aerial vehicles 

(UAVs), aircrafts, indoor and outdoor personal navigation, human motion tracking, attitude control 

systems, in mobile phones, terrestrial vehicles, biomedical systems and so on [1] - [5]. The accuracy of 

the navigation solution depends strongly on the inertial sensors employed: accelerometers and 

gyroscopes (the term gyroscope is also used for angular rate sensor in the thesis) and on the algorithms 

utilized for data processing. 

The most precise sensors are ring laser gyroscopes (RLGs), fiber optic gyroscopes (FOGs) and servo 

and Quartz accelerometers (ACCs) which belong to the navigation grade category. Nowadays, these 

sensors are mainly used on transport airplanes, helicopters, etc.  Their main disadvantage is that they are 

too expensive, thereby limiting their usage. In applications where it is not possible to use these sensors, 

because their price is comparable to price of navigated object, the alternative Micro-Electro-Mechanical-

Systems (MEMS) can be used. The technological progress in precision of MEMS has enabled their usage 

in cost-effective applications, such as in UAVs or small aircrafts [5], [6]. They provide low power 

consumption, light weight, small size and low price. On the other hand they have some weaknesses, such 

as low resolution, a high level of noise, worse bias stability, etc., limiting their usage in navigation systems. 

Due to the aforementioned weaknesses, MEMS-based inertial sensors are not able to provide a standalone 

navigation solution, so they need to be combined with other sources such as GNSS, a magnetometer, 

a pressure-based altimeter, an ultrasonic sensor for distance measurement, a visual odometer, electrolytic 

tilt sensor (ETS), etc. The fusion of inertial sensors and aiding sources is currently done via adaptive data 

processing algorithms which increase the overall accuracy, reliability and robustness of navigation 

solution. 

This doctoral thesis deals with improvement of overall accuracy of the developed inertial 

navigation system (INS) by means such as usage of alternative sensors, estimation of sensor errors and 

usage of adaptive attitude estimation approaches. The INS consists of low-cost inertial measurement unit 

(IMU) which is aided by a triaxial magnetometer and a biaxial electrolytic tilt sensor. The data fusion is 

performed via the Gauss-Newton method (GNM) and extended Kalman filter (EKF) in quaternion domain. 

The doctoral thesis is organized as follows. In chapter 2, the objectives of the doctoral thesis are 

defined, and the current state of the art is described in chapter 3. Results, in the form of the six most 

significant journal and conference papers of the author, are related to the thesis and presented 

in chapter 4. They describe the calibration procedures of accelerometers, gyroscopes and magnetometers, 

an overview of electrolytic tilt sensors utilization in navigation systems, the correction of accelerometer 

data by ETS’s data and attitude estimation approach which uses the Gauss-Newton method and extended 

Kalman filter. The additional unpublished results are presented in chapter 5; and the author’s 

contribution, fulfillment of thesis objectives and future work are concluded in chapter 6. The author’s 

publications are listed in Appendix A. 
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2. Aims of the Doctoral Thesis  

A main aim of the thesis is improvement of overall attitude estimation accuracy of inertial 

navigation system (INS) developed primarily for use on UAVs or small aircrafts. Considering 

the application of INS, it consists of a MEMS-based, low-cost IMU which is not possible to use as 

a standalone solution, requiring that it is assisted to function properly. As convenient aiding sensors, 

the triaxial magnetometer and biaxial electrolytic tilt sensor are chosen for fusion with inertial sensors. 

The intention is paid just to attitude, therefore the objectives are focused on a design and development of 

adaptive data processing approaches for attitude evaluation in situations when GPS signal is not available. 

The partial objectives of the thesis which lead to improvement of INS overall accuracy are as 

follows: 

� Calibration of inertial sensors and magnetometer used in inertial navigation system 

The main aim of this part is definition of deterministic sensor error models (SEMs) and 

estimation of their parameters. To estimate them, the calibration procedures and algorithms are 

proposed, realized and the influence of applied compensations is analyzed for both types of 

inertial sensors and magnetometer. 

� Usage of electrolytic tilt sensor in navigation systems 

This part of the thesis is focused on usage of ETS in navigation systems to improve the final 

accuracy of attitude estimation. The ETS is finally used for correction of triaxial accelerometer 

initial bias error under static conditions and for corrections of acceleration under low-dynamic 

conditions. 

� Evaluation of adaptive data processing approaches for attitude estimation 

This part deals with the implementation of adaptive data processing approaches for attitude 

estimation. To aid data from triaxial accelerometer, triaxial magnetometer and biaxial electrolytic 

tilt sensor, the Gauss-Newton method (GNM) is implemented and the resultant product of GNM is 

then fused with gyroscope data via extended Kalman filter. 

The design and realization of INS using the aforementioned sensors include hardware as well as 

software realization. The developed algorithms are firstly evaluated using simulations and finally 

the attitude estimation accuracy is evaluated and confirmed using real flight data measured on UAV. 
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3. Current State of the Art 

Inertial navigation systems provide information on orientation, position and velocity of navigated 

object. The core of INS is based on an Inertial Measurement Unit (IMU) containing accelerometers and 

gyroscopes. Thus, the accuracy of the navigation solution depends on the precision of the sensors, their 

performance and the algorithms utilized for data processing. The most precise sensors, and also most 

expensive, are RLGs, FOGs, servo and Quartz ACCs. Unfortunately, their usage is limited because often 

their price is comparable to or higher than that of object navigated. Due to this reason, the MEMS based 

IMUs are used nowadays as an alternative. They have many advantages allowing them to be used 

in a wide range of applications. On the other hand, their usage is limited due to used technology 

imperfections such as misalignments, temperature dependency, etc., and weaknesses such as low 

resolution and so on. These imperfections need to be compensated for, corrected, and adaptively 

processed for proper function of an INS.  

Since low-cost MEMS inertial sensors are employed, there are some limitations in comparison 

with precise sensors such as RLGs, servo ACCs, etc. To achieve the accuracy for the desired application, 

the MEMS accelerometers and gyroscopes cannot be used as a standalone solution for attitude and 

position estimation. They need to be combined with other sources such as GNSS, a magnetometer, 

a pressure-based altimeter, an electrolytic tilt sensor (ETSs), etc. 

Accordingly, this doctoral thesis aims at dealing with improving the overall accuracy of 

the proposed INS and with the state of the art overview through three main areas of research: 

� calibration of triaxial accelerometers, gyroscopes, and magnetometers, 

� usage of electrolytic tilt sensors in navigation systems, 

� algorithms and methods for attitude estimation. 

3.1. Inertial Sensors and Magnetometer Calibration 

Over the past decades, the MEMS inertial sensors and magnetometers have been widely used due to 

their small size, light weight, low power consumption and low price [7]. On the other hand, they have 

imperfections caused by manufacturing technology which need to be compensated for their proper 

function [8]. Although the manufacturers perform the sensor calibration, it is not good enough, and 

therefore, individual sensors must be calibrated [3], [9]. The calibration process means to identify 

the parameters of the deterministic  sensor errors such as  scale factors, non-orthogonality angles, offsets, 

and measuring framework misalignments [1], [3], [10], [11]. These errors are further applied to be called 

sensor error model (SEM). For identifying SEMs’ parameters, a wide range of calibration approaches are 

well known, but their usage is often limited by a precise and thus very expensive positioning platform 

[11] - [16]. The current research aims to design and realize calibration approaches that save process time, 

overall workload, and costs [3].  

In case of accelerometer calibration, the Earth Gravity Field (EGF) is commonly and with advantage 

used as a reference [12], [17]. Further, several calibration procedures and algorithms with different 

workloads and using different SEMs are known. One example of a simple calibration process is based on 

measuring six static positions used only for scale factor and offset determination [12], [17]; 
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but, the calibration accuracy strongly depends on the alignment accuracy [9]. The precise alignment 

for calibration purposes can be done, for example, by a 3D optical tracking system [10], robotic arm [12] 

or a 3D positioning platform [18]. Using these platforms, the SEMs with more parameters than the scale 

factors and offsets can be estimated by several estimation techniques such as a nonlinear least square 

algorithm [12], fminunc Matlab function, Newton method [19], a linearized and modified ellipsoid fitting 

algorithm [20], Quasi-Newton factorization algorithm [21] and so on. 

When magnetometers are calibrated, it is possible to use similar SEMs and algorithms 

for parameter determination as to those in the case with accelerometers. Similarly to EGF, the Earth 

Magnetic Field (EMF) is in most calibration approaches utilized as a reference but the close attention 

should be paid to data measurement procedure which supposes the homogenous and non-disturbed EMF 

[11], [18]. Due to this reason, it is hard to perform calibration under laboratory conditions using EMF [22]. 

To calibrate magnetometers, for example in laboratory environment, it is possible to use another 

approach without using EMF, such as system which uses 3D Helmholtz coils [23]. The principle of this is 

a system in which the sensor is stationary and the magnetic field generated by the 3D Helmholtz coils is 

rotated around the sensor. 

 In the case of gyroscope calibration, it is possible to use the Earth’s rotation as a reference value 

[24]. It can be employed in cases of RLGs, FOGs, and precise MEMS gyroscopes, when the sensors are able 

to resolve the Earth’s angular rate. In the case of low-cost MEMS gyroscopes calibration, the Earth rotation 

is mostly under their resolution and thus the calibration cannot be performed in this way. This leads to 

using devices such as single-axis turntable [14], [15], [19] a bike wheel as a turntable [25], or a dual-axis 

rotational gimbal motion system [26]. For estimation of SEMs’ parameters, the different algorithms can be 

applied. The algorithm for automatic real-time offset calibration is proposed in [15], the other possible 

algorithm is based on non-linear least squares method [14], Newton’s method [19] or Gauss-Newton 

iterative algorithm [26]. 

In this doctoral thesis, the SEMs are defined for inertial sensors and the magnetometer; and 

the calibration procedures are proposed for all sensors. In terms of accelerometers and magnetometers, 

the iterative algorithm such as Levenberg-Marquardt is proposed, implemented, and evaluated. 

For gyroscope calibration, the procedure which requires only a simple manually-driven platform is 

implemented according to [1]. For estimation of parameters, the Cholesky decomposition and LU 

factorization are used. All applied compensations are successfully evaluated by several analyses. 

The calibration approaches are presented in chapter 4 in selected papers [3], [27], [28]. 

3.2. Usage of Electrolytic Tilt Sensor for Attitude Determination 

Using tilt sensors is one of possible ways to determine the pitch and roll angles (orientation or 

inclination angles). Based on principle of tilt measurements the several types of tilt sensors such as MEMS 

accelerometer (MEMS ACC) based tilt sensor, electrolytic tilt sensor, optical tilt sensor, or 

magnetorezistive tilt sensor exist [29]. As the most sufficient sensors for aerial applications, the MEMS 

ACC-based tilt sensors and electrolytic tilt sensors can be used. 

The principle of these sensors is the determination of an object’s tilt angles with respect to gravity. 

In the case of MEMS ACC-based tilt sensors, the core of the sensor consists of a proof of mass which is 
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connected by flexible beams to the fixed sensor part. The proof of mass as well as the fixed part contains 

electrodes – sensing fingers forming differential capacitors. If the sensor is tilted, the mass changes its 

position respecting the applied acceleration, thus the position of flexible electrodes is also changed 

causing the change of capacitance which leads to tilt angle observability [30].  

In the case of an electrolytic tilt sensor, the body of the sensor is formed by three electrodes 

for single axis sensor and five electrodes for dual-axis sensor and fluid electrolyte. When the sensor is 

tilted, the fluid inside the sensor covers more or less the outer electrodes. This causes the conductive path 

to present a ratio between the electrodes. Electrically, the ETS provides an output voltage which is 

proportional to the tilt angles and thus it can be compared to a potentiometer with the wiper forming 

the common electrode [31], [32]. 

Focusing on ETSs, they are designed to measure angles along two axes [32], [33] in a wide range 

applications that include, but not limited to, aircraft avionics, machine tool leveling, geophysical 

monitoring, construction lasers, constructions equipment, systems for platform and camera stabilization, 

as magnetometer correction in compasses [34], geophysical tilt meters, industrial application, etc.  

[31] - [37]. The performance of an ETS is based on several properties, including the low noise of 

the sensor, excellent repeatability, stability, environmental durability, and accuracy when operating at low 

frequencies [38], [39]. According to [35], [36], [39] they can be used under conditions of extreme 

temperature, humidity, dynamics conditions, and shock with very good linearity and high resolution. 

On the other hand, the main disadvantage of ETSs is that they can be significantly influenced by cross-

coupling errors and long-term electrolyte stability [40]. Thus, for the best performance, the sensors 

should be calibrated before they are used [41]. 

Compared to electrolytic tilt sensors, MEMS-based sensors generally are smaller in size and lower 

in cost, making them attractive components for use in manufacturing. On the other hand, most MEMS-

based sensors require stable voltage power supplies which increase their manufacturing costs. Properly 

designed ETSs have an advantage of ratiometric measurements not affected by the variations of power 

supply. While the performance of MEMSs has improved, they still cannot compete with ETSs in high-

repeatability applications. The high-end ETSs typically provide a sub-arc-second repeatability; even low-

cost products can provide the five-arc-second repeatability [39]. The other advantage is that ETSs do not 

have any moving parts to wear out; they can have long lifetimes and can handle vibration and shock [32]. 

Nowadays, ETSs are employed in applications where static or quasi-static conditions are ensured or 

under slow movements [42], [43] such as in low-cost head gesture recognition system [44], in fusion 

with gyroscopes for attitude estimation [45] or in the six-wheel robotic platform [42]. 

Innovations in ETSs development increase their performance and durability. For example, novel 

thick film-based glass ETSs are able to measure with sub-arc second repeatability at significantly lower 

cost, ceramic sensors are able operate in high temperatures, and so on. With recent and emerging 

innovations, ETSs continue to be a proven, reliable, and cost-effective technology [39], [46]. 

In this doctoral thesis, the biaxial ETS is employed to increase the overall accuracy of attitude 

estimation. The five ETSs with different parameters are analyzed and the most suitable sensor is chosen. 

It is used for determining the triaxial accelerometer initial bias error under static conditions and, during 
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the flight, accelerometer data corrections are used under low dynamics. The suitability of ETS usage is 

confirmed according performance analyses in chapter 4 and in papers [47], [48], [49]. 

3.3. Algorithms and Methods for Attitude Estimation 

As stated earlier, for obtaining the navigation solution the IMU contains accelerometers and 

gyroscopes that measure acceleration/angular rate in 3-dimmensional coordinate system. When precise 

sensors such as RLG and servo accelerometers are employed, it can be possible to use INS as a standalone 

system. However, for MEMS-based sensors, other sources of information must be added. 

If only the attitude (roll, pitch, yaw angles) is required, the accelerometer, gyroscope and 

magnetometer are used for data processing and they form a so-called Attitude and Reference Heading 

System (AHRS). If the algorithm of attitude determination is extended to incorporate position and velocity 

estimation, an Inertial Navigation System (INS) is created. The following state of the art overview is 

focused on the INS part of attitude estimation using low-cost sensors. 

The most commonly used attitude representation approaches employed in navigation systems are 

Euler angles (roll, pitch, and yaw) [49], [50], [51], and quaternions [52], [53]. The overview describing 

the attitude representation approaches and their transformations are presented in [54]. 

The simplest attitude determination approach is based on gyroscope-only data by numerical 

integration of angular rates [50]. Since the gyroscope data is burdened with imperfections, the attitude 

estimation is limited to a short time; thus, for longer periods, the use of additional aiding sources takes 

place. To aid attitude determination, sensors or systems such as accelerometers and magnetometers, GPS, 

or cameras are commonly used to limit unbounded error caused by the integration of noises included 

in measured angular rates [55] - [58]. 

To fuse inertial sensors and aiding sources data for obtaining the attitude, several estimation 

techniques can be applied. An efficient and cost effective way of attitude estimation is done via 

a complementary filter [56], [59], [60]. It combines the long-term stability of roll, pitch and yaw angle 

estimates based on accelerometer and magnetometer data with short-term stability of integrated angular 

rates.  

The other commonly used estimation technique for aided attitude estimation and for suppression 

of measurement noise is a Kalman Filter (KF) [61], [62]. Though originally designed for linear systems, 

it has been modified for nonlinear solutions and is known as an Extended Kalman Filter (EKF). There are 

two possible implementations of EKF: total state (direct) and error state (indirect) which are described 

in [50], [63]. The tutorial summarizing the implementation and description of linearized and extended KFs 

with navigation solution examples is published in [64]. An alternative to EKF can be, for example, 

an Unscented Kalman Filter (UKF). The difference between these approaches lies in that the EKF 

linearizes the model through the Jacobians or Hessians, while the UKF computes the estimates of the state 

vector through a nonlinear model directly, and thus, the estimation is more accurate than in the case of 

EKF [53], [65]. 

Another kind of estimation technique method relies on estimation techniques coming from 

the artificial intelligence research community. For example, the attitude estimation approach which relies 

on a digital neural network is presented in [66], the INS/GPS data fusion via the Monte Carlo method is 
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evaluated in [67]. Although many different approaches for attitude estimation exist, the EKF is still 

the standard and commonly-used estimation technique [50]. 

A different approach for attitude estimation utilizes a combination of EKF and other optimization 

algorithms which preprocesses the data from accelerometers and magnetometers. There are several 

possible optimization algorithms such as the Gauss-Newton method (GNM) [68], [69], the gradient 

descent method [70], the Quest algorithm [71], and the Factored Quaternion Algorithm (FQA) [71]. 

The usage of these optimization algorithms reduces the state space model applied in EKF and thus 

simplifies the evaluation process and decrease the calculation load [71], [72]. Despite the better 

performance of FQA and Quest compared to GNM or similar approaches, for aircraft parameter estimation 

purposes, the GNM is still widely used [69], [73]. 

In this doctoral thesis the approach utilizing the combination of EKF with Gauss-Newton 

optimization algorithm in quaternion domain is employed. The GNM uses data from accelerometer, 

magnetometer, and also from an electrolytic tilt sensor. The resulting quaternion computed by GNM is 

then fused with gyroscope data via EKF. The performance analyses of EKF with GNM are presented 

in chapter 4 and in [49]. 
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4. Published Results 

This chapter deals with author’s results related to his doctoral thesis. It is written in the form of 

the reviewed journal and conference papers. This format is approved by a directive issued by the Dean of 

Faculty of Electrical Engineering (FEE) of Czech Technical University in Prague (CTU) called “Directive of 

the Dean for dissertation theses defense at CTU in Prague, FEE”1. In the following, the author’s six most 

important journal and conference papers relevant to the topic of the doctoral thesis are presented, 

with co-authorship at least 50%. The rest of author’s papers are listed in the Appendix A. 

Considering chapter 2, there are described tasks which deal with the design and development of 

INS and with improving of its accuracy. In the INS, the low-cost MEMS based inertial sensors 

(accelerometers and gyroscopes), magnetometer, and biaxial electrolytic tilt sensor are employed. 

The intention is paid to algorithms for attitude estimation only, thus the GPS receiver is not used in this 

work. The final application is focused on INS usage for example on UAVs and small aircrafts in GPS denied 

applications. 

First of all, the calibration process needs to be performed to eliminate the sensors’ deterministic 

errors. Although the most of sensors are calibrated by the manufacturer, the calibration is not good 

enough in most cases and the additional calibration can take a place. It means to find parameters of sensor 

error model as scale factors, non-orthogonality angles, offsets, etc. The overview on the triaxial 

accelerometer calibration, SEM parameters identification, sensor errors compensation and proposal of 

new calibration procedure is described in paper: 

� Šipoš, M. - Pačes, P. - Roháč, J. - Nováček, P.: „Analyses of Triaxial Accelerometer Calibration Algorithms“, 
IEEE Sensors Journal, 2012, vol.12, no.5, p.1157-1165, ISSN 1530-437X, DOI: 10.1109/JSEN.2011.2167319, 
co-authorship: 65%, IF: 1.852. 

The slightly extended SEM is defined for triaxial gyroscope calibration. In comparison 

with accelerometer’s SEM, it contains also an alignment matrix. The SEM as well as the estimation of its 

parameters, calibration procedure and results after sensor error compensation are described in details 

in following paper. Additional unpublished results related to gyroscope calibration are mentioned 

in chapter 5.1. 

� Šipoš, M. - Roháč, J.: „Calibration of Tri-axial Angular Rate Sensors“, Proceedings of z 10th International 
Conference Measurement, Diagnostics, Dependability of Aircraft Systems, Brno, University of Defence, 
Faculty of Military Technology, p. 148-152, 2010, ISBN 978-80-7231-741-7, co-authorship: 80%, IF: --. 

In the case of the triaxial magnetometer, the slightly modified accelerometer calibration procedure 

is used for parameters estimation. The magnetometer calibration procedure, estimated SEMs’ parameters 

of accelerometer and magnetometer and analyses of the influence of SEMs’ compensation to yaw angle 

estimates are described in paper: 

� Šipoš, M. - Roháč, J.- Nováček, P.: „Improvement of Electronic Compass Accuracy Based on Magnetometer 
and Accelerometer Calibration“, Acta Physica Polonica A, 2012, vol. 121, no. 4, p. 1111-1115, ISSN 0587-
4246, co-authorship: 70%, IF: 0.604. 

                                                           
1 http://www.fel.cvut.cz/cz/vv/doktorandi/predpisy/SmobhDIS.pdf 
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Although the triaxial accelerometer is calibrated, its performance can be improved by other aiding 

sensors. For these purposes, the electrolytic tilt sensor is used and evaluated in this thesis. The overview 

about principle and parameters of ETSs and analyses of different ETSs from viscosity point of view under 

static and dynamic conditions are published in the following paper. The unpublished results and analyses 

of five ETSs are summarized in chapter 5.2. 

� Šipoš, M. - Roháč, J.: „Comparison of Electrolytic Tilt Modules for Attitude Correction“, Proceedings of 
z 12th International Conference Measurement, Diagnostics, Dependability of Aircraft Systems, Brno, 
University of Defence, Faculty of Military Technology, 2012, p. 3-13, ISBN 978-80-7231-894-0,  
co-authorship: 80%, invited paper, IF: --. 

To confirm that the electrolytic tilt sensor is useful for improvement of triaxial accelerometer 

performance, several characteristics under static conditions are measured and analyzed. The results 

presented in the following paper show that the usage of ETS can reduce the accelerometer initial bias 

error and thus it can improve the final accuracy of attitude determination. The procedure of initial bias 

error estimation is described in chapter 0. 

� Šipoš, M. - Roháč, J. - Nováček, P.: “Analyses of Electronic Inclinometer Data for Tri-axial Accelerometer's 
Initial Alignment”, Przeglad Elektrotechniczny, 2012, vol. 88, no. 01a, p. 286-290, ISSN 0033-2097,  
co-authorship: 60%, IF: 0.24 (2011). 

Since the low-cost IMU is used as a part of INS, it is not possible to use it as a standalone system 

because the sensors’ imperfections causing the unbounded error in attitude estimation by numerical 

integration of measured angular rates. To reduce these errors, the adaptive algorithms (KF is commonly 

used) which fuse data from IMU and aiding sources are used for attitude estimation. The last provided 

paper 

� Šipoš, M. - Šimánek, J. - Roháč, J.: “Practical Approaches to Attitude Estimation in Aerial Applications”, 
International Journal of Aerospace Engineering, ISSN 1587-5974, (submitted for publication 2014),  
co-authorship: 50%, IF: --. 

deals with design and realization of Extended Kalman Filter with Gauss-Newton minimization method. 

This approach is used for attitude estimation based on data from accelerometer, gyroscope, 

magnetometer and electrolytic tilt sensor and it is evaluated on real flight data obtained from sensors 

mounted on UAV Bellanca Super Decathlon XXL. The complete GNM and EKF algorithm, analyses of 

applied compensations and corrections on final accuracy of attitude estimation in GPS denied 

environment are presented. The results are also compared to results of other approaches for attitude 

estimation. 
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4.1. Analyses of Triaxial Accelerometer Calibration Algorithms 
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4.2. Calibration of Triaxial Gyroscopes 



Martin Šipoš Improvement of INS Accuracy Using Alternative Sensors 

 
29 

 



Martin Šipoš Improvement of INS Accuracy Using Alternative Sensors 

 
30 

 



Martin Šipoš Improvement of INS Accuracy Using Alternative Sensors 

 
31 

 



Martin Šipoš Improvement of INS Accuracy Using Alternative Sensors 

 
32 

  



Martin Šipoš Improvement of INS Accuracy Using Alternative Sensors 

 
33 

4.3. Improvement of Electronic Compass Accuracy Based on Magnetometer and Accelerometer 
Calibration 
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4.4. Comparison of Electrolytic Tilt Sensors for Accelerometer Data Correction 
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4.5. Analyses of Electrolytic Tilt Sensor Data for Triaxial Accelerometer’s Initial Alignment 
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4.6. Practical Approaches to Attitude Estimation in Aerial Applications 
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5. Unpublished Results Related to the Thesis 

In chapter 4, the results related to the author’s thesis are presented through selected journal and 

conference papers. Due to the limited number of pages in the published papers and due to progressive 

development in the thesis objectives further results unpublished are present in details in following 

subchapters. 

5.1. Results Related to Triaxial Gyroscope Calibration 

A main goal of the proposed gyroscope calibration as already described in details in chapter 4.2 

involves the estimation of deterministic errors (in form of the SEM) such as non-orthogonalities, scale 

factor errors, offsets, and gyroscope framework misalignments. The calibration process is based on three 

consecutive rotations of gyroscope along all sensitivity axes. For parameter estimation, measured angular 

rates are numerically integrated to obtain the angles of performed rotation. The reference angles of 

the rotation can be obtained by means of a theodolite [28], FOG based measurement system (Fig. 1) [74], 

or already calibrated accelerometers [75]. Based on the minimization criterion considering deviations 

between gyroscope based data and the reference data the SEM is estimated. The algorithm applied 

for the SEM estimation is based on Cholesky decomposition and LU (Lower-Upper) factorization. 

For calibration purposes two AHRS units, 3DM-GX2 (Microstrain) and AHRS M3 (Innalabs) were used.  

 

Fig. 1: Concept scheme of measurement setup (on the left); measurement setup with two AHRS units (AHRS M3,  
3DM-GX2) mounted on (center); FOG based measurement system used for triaxial gyroscope calibration (right) 

The main advantage of this calibration approach is that it does not require any precise rotational or 

positioning platform. The other advantage is that the calibration process requires only angles of rotation 

as a reference which means that referential angular rates are not needed. 

When already calibrated accelerometers are used as a reference, the calibration procedure assumes 

that the accelerometer frame coincides with gyroscope frame, because the compensated accelerometer 

readings are used to align gyroscope’s axis to the plane in which the rotation is performed 

with the accuracy better than ±1° [75]. When this alignment angle error is less than ±1°, the error caused 

in the angular rate is about 0.02% which can be assumed as negligible. 



Martin Šipoš Improvement of INS Accuracy Using Alternative Sensors 

 
67 

5.1.1. Verification of Gyroscope Calibration  

The parameters of SEMs were estimated for gyroscopes of 3DM-GX2 and AHRS M3 (Fig. 1). 

The resultant accuracy of both gyroscope’s SEMs were verified on seven independent data sets. 

As an evaluation criterion, the RMSE via a deviation matrix is defined and used as a criterion 

for calibration compensation efficiency following (1). 

��,� = ���,� �	,� �
,���	 �	,	 �
,	��,
 �	,
 �
,
�, (1) 

where ei,j reflects a residual deviation of an integrated angle projected to the j-axis when an angular rate 

was applied along the i-axis [76]. 

To verify the final accuracy of the integrated angles from those seven different datasets a combined 

matrix was needed to form. The matrix was formed in a way that each element was calculated as the RMSE 

of all specific elements belonging to the specified position in the already evaluated deviation matrices 

from (1). The final combined matrix is presented in Table 1 for 3DM-GX2 and in Table 2 for AHRS M3. 

TABLE 1: EVALUATION OF ESTIMATED GYROSCOPE SEMS, RMSE OF DEVIATION MATRICES BEFORE/AFTER COMPENSATIONS - 3DM-GX2  

RSME of deviation matrices before 
compensation ∆α (°) 

RSME of deviation matrices after 
compensation ∆α (°) 

7.53 7.34 6.85 0.40 0.13 0.47 
4.03 0.61 47.02 0.33 0.42 0.21 
5.48 3.04 1.55 0.63 0.34 0.75 

 

TABLE 2: EVALUATION OF ESTIMATED GYROSCOPE SEMS, RMSE OF DEVIATION MATRICES BEFORE/AFTER COMPENSATION - AHRS M3 

RSME of deviation matrices before 
compensation ∆α (°) 

RSME of deviation matrices after 
compensation ∆α (°) 

3.74 8.97 8.22 0.88 0.73 1.08 
1.11 0.63 4.31 0.28 0.63 0.84 

13.89 3.68 2.04 0.42 0.43 1.30 

The results presented in Table 1 and Table 2 confirm the suitability and efficiency of sensor errors 

compensation. The application of SEMs improved the accuracy of angle determination based on 

gyroscopes angular rates. Based on 30 second long experiments, the average error of angle determination 

was 2.6% before compensation and 0.1% after compensation for 3DM-GX2 gyroscope framework and was 

1.4% before and 0.2% after compensation for AHRS M3. 

5.1.2. Angular Rate Domain Approach of Gyroscope Calibration 

Even if a proposed methodology for gyroscope calibration uses an angle domain approach, 

a calibration in angular rate domain is also possible. There are two possible ways how to calibrate 

the gyroscopes in the angular rate domain.  

First approach requires the calibration platform capable of constant and known rotation. 

The values of reference and measured angular rates are then processed by any calibration algorithm 

to determine sensor errors. Unfortunately, this approach mostly relies on precise and expensive rotational 

platforms which limit its common usage. 
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Second approach assumes that the reference and measured angular rates are recorded and then 

processed by any calibration algorithm. Nevertheless, this approach is limited by precision of reference 

system which should be able to measure the angular rate with at least 10 times better accuracy than 

the calibrated sensor. This condition is ensured for example when systems such as RLGs, FOGs are 

employed for calibration of low-cost MEMS-based gyroscopes. 

The second approach for the calibration in angular rate domain was evaluated in [76]. 

For the calibration purposes the combination of the FOG based measurement system [74] and a simple 

manually-driven platform was utilized (Fig. 1). The measured and reference angular rates were recorded 

and synchronized using a correlation function. Afterwards the parameters of gyroscope’s SEM were 

estimated by the same algorithm as in the case of calibration in angle domain. The results were evaluated 

based on accuracy analyses, it showed that the calibration performed in the angular rate domain has 

approximately 3.7 times worse RMSE of residual deviations for both calibrated IMUs than the calibration 

performed in the angle domain [76]. 

5.2. Analyses of Electrolytic Tilt Sensors for Accelerometer Data Correction 

The motivation for this work was to analyze and evaluate data of five ETSs with different 

electrolyte viscosity: standard, 15%, 30%, 50% (Advanced Orientation System, Inc. - Fig. 2) and standard 

from Spectron Glass and Electronic Incorporated (Fig. 2). Finally the most convenient electrolytic tilt 

sensor which can be used for corrections of triaxial accelerometer’s imperfections such as initial bias 

error, null repeatability and so on was determined. Since the initial bias error of triaxial accelerometer can 

vary in the range up to ±50 mg ≈ ±2.9° for ADIS16405 (based on manufacturer’s specifications), the ETS 

can be used as an suitable aiding source for improvement of accelerometer performance and thus for 

improvement of the overall accuracy of attitude estimation. 

 

Fig. 2: Module with electrolytic tilt sensor EZ-TILT-2000-008-50% (on the left); module Micro 50-D70 with 
electrolytic tilt sensor (on the right) 

The overview of ETS’s principle of operation and typical parameters of five ETSs with different 

electrolyte viscosity was introduced in chapter 4.4 and the suitability of corrections based on ETS data 

were confirmed in chapter 4.5. In the following subchapters the performance of five ETSs was evaluated 

under static and dynamic conditions based on particular experiments. 
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5.2.1. Transfer Characteristics of Electrolytic Tilt Sensors 

The biaxial electrolytic tilt sensors measure the angles of tilt in direction of two sensitivity axes X 

and Y (the direction of X and Y axes generally then corresponds to axes in navigation frame North-East-

Down). The angle measured in direction of X axis is called pitch angle (θ) and in direction of Y axis is called 

roll angle (φ). 

First of all, the transfer characteristics of all ETSs were measured for in both axes of tilt (Fig. 3). 

Based on measured and reference data the 3rd order polynomial functions were obtained to get 

corrections for pitch and roll angles. The corrections were applied on the measured characteristics, 

the deviations after corrections are shown in Fig. 4. The minimal, maximal and RMSE values of all ETSs are 

listed in Table 3. 

 

Fig. 3: Measurement setup with five electrolytic tilt sensors (on the left); measurement setup for testing of influence of 
vibrations on ETSs (on the right) 

 

Fig. 4: Deviations (∆) of pitch and roll angles from reference values after correction 

-10 -8 -6 -4 -2 0 2 4 6 8 10

-0.1

-0.05

0

0.05

0.1

0.15

∆ P
IT

C
H
 (°

)

 

 

reference angle (°)

ETS-STD ETS-15% ETS-30% ETS-50% Micro 50-D70

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.1

-0.05

0

0.05

0.1

∆ R
O

LL
 (

°)

reference angle (°)

 

 



Martin Šipoš Improvement of INS Accuracy Using Alternative Sensors 

 
70 

TABLE 3: DEVIATIONS OF PITCH AND ROLL ANGLES FROM REFERENCE VALUES BEFORE AND AFTER CORRECTION 

  
Micro 50D-70 EZ-TILT-2000-045-STD EZ-TILT-2000-045-15% 

  
Min Max RMSE Min Max RMSE Min Max RMSE 

θ (°) 
Before -0.38 0.17 0.19 0.07 2.04 1.23 0.39 1.34 0.94 

After -0.06 0.04 0.02 -0.03 0.02 0.01 -0.02 0.03 0.01 

φ (°) 
Before -0.47 -0.27 0.38 -0.60 1.25 0.71 -0.67 0.24 0.34 

After -0.04 0.02 0.02 -0.02 0.02 0.01 -0.01 0.02 0.01 
 

  
EZ-TILT-2000-045-30% EZ-TILT-2000-008-50% 

  
Min Max RMSE Min Max RMSE 

θ (°) 
Before 0.35 1.81 1.13 -0.97 2.39 0.82 

After -0.06 0.04 0.02 -0.13 0.15 0.08 

φ (°) 
Before -0.81 0.48 0.43 -0.67 2.98 1.50 

After -0.02 0.02 0.01 -0.08 0.08 0.03 

The worst case based on minimal, maximal, and RMSE values was found out in the case of  

EZ-TILT-2000-008-50%; on the other hand as the most accurate sensor the EZ-TILT-2000-045-15% was 

determined based on the lowest RMSE value. 

5.2.2. Deviations of Tilt Angles Evaluated by Electrolytic Tilt Sensors 

The measured data were corrected using 3rd order polynomial functions and the deviations of tilt 

angles were evaluated based on data measured according the following procedure: the sensors were tilted 

from -10° up to +10° with steps of 1° along pitch axis. Afterwards they were tilted back from +10° to -10° 

with the same step along the pitch axis again. The same procedure was used also along roll axis.  

The deviations within position pairs of both directions were analyzed and are shown in Fig. 5. The RMSE, 

minimal and maximal values of these deviations were computed and summarized in Table 4. From these 

analyses, the most convenient ETS EZ-TILT-2000-045-15% is chosen based on the lowest RMSE value. 

 

Fig. 5: Deviations (∆) of pitch and roll angles evaluated by upward and downward direction measurements 
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TABLE 4: DEVIATIONS BETWEEN TILT ANGLES EVALUATED BY UPWARD AND DOWNWARD DIRECTION OF MEASUREMENTS 

Electrolytic Tilt Sensor Pitch Angle (°) Roll Angle (°) 

 
RMSE MIN MAX RMSE MIN MAX 

EZ-TILT-2000-045-STD 0.06 -0.11 0.00 0.05 -0.07 0.00 

EZ-TILT-2000-045-15% 0.02 -0.05 0.05 0.04 -0.01 0.10 

EZ-TILT-2000-045-30% 0.08 -0.12 0.10 0.08 -0.16 0.01 

EZ-TILT-2000-008-50% 0.13 -0.43 0.22 0.16 -0.34 0.29 

Micro 50-D70 0.05 -0.09 0.11 0.12 0.02 0.24 

5.2.3. Analyses of Settling Time 

The settling time defined by a producer is the time elapsed from the end of the tilt disturbance until 

the sensor output reaches a steady state with boundaries ±1 σ (σ is standard deviation obtained from data 

under static conditions). All ETSs were mounted on rotational and tilt platform and the data were 

measured for 8 preset positions that were reached by a ramp with positive and negative angular velocities 

in the range from 5°/s to 55°/s. Since evaluated settling times for individual ETSs did not vary more than 

10% a mean value for each sensor was evaluated. Their values are denoted in Table 5. Moreover, 

examples of settling progressions are shown in Fig. 6. It can be seen that ETS EZ-TILT-2000-045-30% has 

the lowest settling time. As such, considering the minimum settling time ETS EZ-TILT-2000-045-30% is 

the most suitable sensor from this point of view. 

 

Fig. 6: Settling time: a) EZ-TILT-2000-045-STD; b) EZ-TILT-2000-045-15%; c) EZ-TILT-2000-045-30%;  
d) EZ-TILT-2000-008-50%; e) Micro 50-D70 

TABLE 5: SETTLING TIME OF ALL EVALUATED ELECTROLYTIC TILT SENSORS 

Electrolytic Tilt Sensor Ts (s) 

EZ-TILT-2000-045-STD 2.41 

EZ-TILT-2000-045-15% 1.28 

EZ-TILT-2000-045-30% 0.61 

EZ-TILT-2000-008-50% 5.25 

Micro 50-D70 1.88 
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5.2.4. Influence of Vibrations on Attitude Determined by Electrolytic Tilt Sensors 

The influence of vibrations was tested using the system for vibration testing (Fig. 3) which is 

described in details in [77]. Based on real flight data and vibration characteristics, the amplitude of 

vibrations a = 0.05g was chosen and with respect to the sampling frequency of the system, the frequency 

range from 5 Hz to 10 Hz was evaluated. The frequencies below 5 Hz could not be tested due to the 

platform limitation. For the comparison of results, the standard deviations σ is used as a criterion. 

The values of σ  for all 5 tested ETSs are listed in Table 6. From the table, it can be seen that the most 

resistant ETS to the vibration is with 50% viscosity of electrolyte, followed by 30% viscosity. There is 

a slight difference between sensors with standard and 15% viscosity of electrolyte. The worst immunity of 

vibrations is observed in case of sensor Micro 50-D70. 

Table 6: INFLUENCE OF VIBRATIONS TO FIVE ELECTROLYTIC TILT SENSORS 

a=0.05 g Micro 50-D70 EZ-TILT-2000-045-STD EZ-TILT-2000-045-15% 

f (Hz) σθ (°) σφ (°) σθ (°) σφ (°) σθ (°) σφ (°) 

5 1.52 0.72 0.24 0.43 0.16 0.32 

6 1.19 0.77 0.09 0.23 0.11 0.24 

7 1.67 1.26 0.12 0.16 0.16 0.36 

8 1.21 0.96 0.16 0.22 0.14 0.33 

9 1.01 0.73 0.05 0.11 0.10 0.24 

10 0.45 0.41 0.03 0.09 0.07 0.17 
 

a=0.05 g          EZ-TILT-2000-045-30% EZ-TILT-2000-008-50% 

f (Hz) σθ (°) σφ (°) σθ (°) σφ (°) 

5 0.15 0.33 0.02 0.02 

6 0.10 0.25 0.02 0.02 

7 0.15 0.37 0.02 0.02 

8 0.12 0.33 0.02 0.02 

9 0.09 0.23 0.02 0.02 

10 0.06 0.17 0.02 0.02 

Considering the all measured characteristics, the following order of electrolytic tilt sensors was 

determined (the most convenient is the first one): 

� EZ-TILT-2000-045-15%, 

� EZ-TILT-2000-045-30%, 

� EZ-TILT-2000-045-STD%, 

� Micro 50-D70, 

� EZ-TILT-2000-008-50%. 

All tested sensors were also mounted on the UAV and tested for the improvement of INS accuracy 

in harsh environment are presented in [46] and in chapter 4.6. 
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5.2.5. Triaxial Accelerometer Initial Bias Estimation based on Electrolytic Tilt Sensor Data 

The results published in paper [48] confirm that the ETS data are useful for triaxial accelerometer 

initial bias estimation and can significantly improve the accuracy of initial attitude determination.  

From measured pitch and roll angles by biaxial electrolytic tilt sensor the accelerations can be 

computed using (2) [78]. The vector of accelerometer initial biases is possible to estimate using (3). 

 

���� = −�	sin�����, 
���� = �	sin�����cos�����, 
���
 = �	cos�����cos�����. 

(2) 

 

� !!� = � !!� − ���� ,	 
� !!� = � !!� − ���� , 
� !!" = � !!" − ���" , 

(3) 

where ���, ���  are pitch and roll angles measured by biaxial electrolytic tilt sensor; G = 1g = 9.80665 

m/s2 is the value of gravity vector; ����� , ���� , ���"�� is the vector of accelerations obtained from 

electrolytic tilt sensor data; �� !!� , � !!� , � !!"��is the vector of accelerations measured by triaxial 

accelerometer; �� !!� , � !!� , � !!"�� is the estimated vector of initial biases. 
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6. Conclusion 

6.1. Summary and Contribution 

This doctoral thesis is primarily dedicated to the improvement of low-cost INS overall accuracy 

from attitude point of view by means such as usage of alternative sensors, estimation of sensor errors and 

usage of adaptive attitude estimation approaches. This kind of INS generally consists of MEMS based low-

cost inertial navigation unit in which gyroscopes are aided by accelerometer and electrolytic tilt sensor. 

Since the intention is paid just to attitude, the objectives included a design and development of low-cost 

INS with algorithms for attitude evaluation and excluding GPS. The final low-cost INS realization was 

primarily developed for usage on UAVs or small aircrafts. 

To increase the final accuracy of roll, pitch and yaw angles estimation, several steps were taken 

improving the performance of the sensors. Firstly the parameters of accelerometer, gyroscope and 

magnetometer deterministic SEMs were estimated providing means for consecutive error compensation.  

The suitability of accelerometer SEMs compensation was verified for three evaluated 

accelerometers ADIS16405, AHRS M3 and CXL02LF3. As long as manufactures provide just basic 

calibration of low-cost inertial sensors additional is generally needed. The improvement can vary 

manufacturer to manufacturer and piece by piece. In the case of ADIS16405 and AHRS M3 the original 

accuracy was improved about 2% in average. The better improvement was achieved in the case of 

CXL02LF3 about 13% (for details see chapter 4.1). 

To evaluate the gyroscope errors compensation suitability, the approximately 30 second long 

experiments were done and the measured angular rates were integrated to obtain roll, pitch and yaw 

angles for gyroscopes of AHRS M3 and 3DM-GX2 units. The average error of angle determination was 

2.6% before and 0.1% after compensation for 3DM-GX2 gyroscope framework and was 1.4% before and 

0.2% after compensation for AHRS M3. The detailed analyses were presented in chapters 4.2 and 5.1. 

The influence of magnetometer errors compensation was also analyzed in chapter 4.3. 

The verification was based on different 64 combinations of roll, pitch and yaw angles under static 

conditions. The average error of yaw angle determination was before compensation 6.9% and  

after it 2.4%. 

Although the triaxial accelerometer is calibrated, its performance can be further improved using 

an electrolytic tilt sensor. Based on several static tests, the ETS with a viscosity about 15% higher than 

standard was assumed as the most convenient sensor for initial bias estimation under static conditions. 

The vector of ADIS16405 accelerometer initial biases was determined as (0.008g, 0.009g, 0.005g). This 

vector has reduced the error of accelerometer-based initial pitch and roll angles about approximately 0.5°.  

Finally, the adaptive data processing approach for attitude estimation was designed and 

implemented in quaternion form. The Gauss-Newton method was utilized for data fusion of 

accelerometer, magnetometer and electrolytic tilt sensor. The quaternion obtained from GNM was then 

aided with gyroscope data via an extended Kalman filter. The implemented algorithms were evaluated 

using data set obtained from UAV Bellanca Super Decathlon XXL. The final accuracy of EKF with GNM 

attitude estimation represented by RMSE values was compared to other attitude estimation approaches 

such as attitude determination based on gyroscopes, accelerometers, complementary filter, IMU/GPS EKF 
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and so on. The minimal RMSE values of roll, pitch and yaw angles (1.2°, 2.0°, 4.3°) were reached in case of 

IMU/GPS EKF, nevertheless in this approach position obtained from GPS receiver was used and thus it is 

not independent on external sources. In case of GNM+EKF, the RMSE values were (1.8°, 2.6°, 5.3°) and 

thus it reached the minimal RMSE values from all evaluated approaches which were independent 

on external sources of information. 

The improvement of attitude determination accuracy based on sensor error compensations was 

confirmed under static conditions in chapters 4 and 5. The applying of accelerometer’s and gyroscope’s 

SEMs was also evaluated using real flight data. The overall accuracy of roll, pitch and yaw angles was 

improved about 0.1%, 5.2% and 15%, respectively. 

The other analyses were focused on usage of ETS for accelerometer data corrections. The final 

accuracy of attitude estimation was verified for accelerometer only and for accelerometer aided by ETS. 

The usage of ETS improved the overall accuracy of roll, pitch and yaw angles about 2.2%, 6.0% and 3.2%, 

respectively. Even if the final accuracy improvement might seem negligible it needs to have in mind that 

the experiment included a real flight data and slight differences in RMSEs do not unambiguously provide 

a measure of behavior during dynamic changes. During the performed experiment only 16.8% of ACC+ETS 

corrections were possible to use. The detailed analyses and results were presented in chapter 4.6. 

In this doctoral thesis, it was confirmed that the overall accuracy of attitude estimation was 

improved by usage of calibration techniques of all used sensors, by usage of electrolytic tilt sensor and by 

adaptive data processing approach. The objectives of the thesis were also successfully fulfilled. 

6.2. Future Work 

Even though the objectives of doctoral thesis are fulfilled, there are still tasks and challenges 

in navigation systems which need to be solved and further can improve the attitude estimation accuracy. 

� The calibration procedures for inertial sensors were proposed in the thesis. Nevertheless, these 

procedures were primarily proposed for calibration of MEMS sensors with respect their typical 

resolution. For calibration of accelerometers and gyroscopes with resolution at least 100 times better 

than in case of MEMS sensors (sensors in tactical grade category and higher), the calibration 

procedures are not good enough and thus the more sophisticated approaches need to be developed. 

� The accelerometers and gyroscopes used on UAV and small airplanes are strongly influenced by 

vibrations which degrade the final attitude determination. During the different flight modes, 

the different character, amplitudes and frequencies of vibrations are present. Therefore, to minimize 

the impact of vibrations, the algorithms for data denoising need to be designed and realized to 

improve the accuracy of attitude estimation in harsh environment conditions. The suppression of 

vibrations plays a key role when inertial navigation data are preprocessed. 

� The aiding systems can significantly improve the overall accuracy of INS when they are applied under 

convenient conditions: for example the ACC-based corrections need to be applied under static or low-

dynamic conditions; the magnetometer corrections can be applied only if the Earth magnetic field is 

not disturbed, and so on. To determine the convenient conditions for usage of aiding sources, 

the development of algorithms for detection of dynamics and validation of data are nowadays 

challenge in field of navigation systems. 
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