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ABSTRACT

We register images based on their multiclass segmentations, for cases when correspondence of local features cannot be

established. A discrete mutual information is used as a similarity criterion. It is evaluated at a sparse set of location on

the interfaces between classes. A thin-plate spline regularization is approximated by pairwise interactions. The problem

is cast into a discrete setting and solved efficiently by belief propagation. Further speedup and robustness is provided by

a multiresolution framework. Preliminary experiments suggest that our method can provide similar registration quality to

standard methods at a fraction of the computational cost.

1. INTRODUCTION

We present a method to register images with very different appearance and local structure. Stained consecutive histological

slices (Fig. 1) are a prime example. The slices need to be registered to fuse information from the different stains.1 The

misalignment is due to the cutting and acquisition process. The different stainings results not only in different colour but

also in different elements of the tissue being visible. In addition, the small scale details are different between the slices

because of the slice thickness. Finally, the original images can be very large (108 pixels).

We propose to register the images based on their segmentations, assuming that a membership of pixels in a small

number of classes is the only common information shared between the images and useful for registration. The algorithm

is designed to be fast by considering only boundaries between classes, approximating regularization by automatically

identified pairwise interactions, and applying a multiresolution belief propagation to the discretized non-linear optimization

problem.

Many different methods have been applied to align histology slices, mostly based on minimizing a pixel-based similar-

ity criteria,1–3 but also feature-based methods4 or local search methods.5, 6 Binary segmented images have been registered

through descriptors7, 8 or level sets.9 The number of equally classified pixels is maximized in.10

2. METHODS

The fixed and moving images are represented by two pixel-level 2D segmentations with LF and LG classes, respectively.

Since classes are typically spatially compact, we expect that sufficient information relevant for finding the correspondences

between the two images can be obtained in the vicinity of a sparse set of keypoints x1,x2, . . .xN located around the edges

of the segmentation. where N ≪ M and M is the number of pixels in the image. The task is to find a displacement

function g : R2 → R
2, g(x) =

[
gx(x) gy(x)

]T
that minimizes the following criterion:

N∑

i=1

Di

(
yi

)
+ λ0R(g) (1)

where yi = g(xi) are keypoint displacements and Di measures the local image dissimilarity of the neighborhood of xi
in the fixed image and xi + yi in the moving image. Note that while Di encodes the image information and should be

represented accurately, the regularization R is far less important. Its ‘only’ role is to keep g smooth. We will therefore take

the liberty of approximating it rather crudely later on in order to obtain a fast algorithm.
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2.1 Dissimilarity criterion

For each keypoint xi, we compare labels lF from the fixed image segmentation inside a rectangular window Ω
(
xi

)
of size

h× h pixels centered around xi, with labels lG of the moving image segmentation centered around xi + yi. To cope with

a general stochastic relationship between labels in the two images, we use a discrete mutual information

Di(yi) = −

LF∑

m=1

LG∑

n=1

pm,n log
spm,n
spmspn

︸ ︷︷ ︸

ψ(m,n)

(2)

= −
∑

x∈Ω(xi)

ψ
(
lF (x), lG(x+ yi − xi)

)
(3)

where spm, spn are marginal probabilities. The class co-occurrence probabilities spm,n are calculated over the whole image,

while pm,n are calculated inside the window Ω
(
xi

)
. This implicitely assumes that the relationship between class labels

in the two images is not spatially dependent. On the other hand, and unlike standard mutual information on intensities, it

permits to reliably assess the local similarity even for very small window size h.

2.2 Thin-plate splines

Choosing the smoothness criterion R(g) = R(gx) +R(gy) to penalize the second derivatives,

R(g) =

∫ (
∂2g

∂x2

)2

+ 2

(
∂2g

∂x∂y

)2

+

(
∂2g

∂y2

)2

dx (4)

is a natural choice because of its lack of parameters, and rotational, translational, and scale invariance.11 It leads to

the well known thin-plate splines (TPS),12 which we review here shortly. Each of the functions gx, gy (note that they

are independent and thus for simplicity we will treat only the scalar case here) is uniquely determined by the N values

v =
[
v1 . . . vN

]
=

[
g(x1) . . . g(xN )

]
and can be written as

g(x) =
[
x 1]a+

N∑

i=1

wiϕ(‖x− xi‖) (5)

with ϕ(r) = r2 log r. The parameters
[
w a

]T
are found by solving a linear system of equations

L

[
w

a

]

=

[
v

0

]

with L =

[
K P

PT 0

]

(6)

Kij = ϕ(‖x− xi‖), and Pi = [1 xi yi]. There is a closed-form expression13 for the smoothness

R(g) = ξwtKw = ξ vtQv (7)

where the smoothness matrix Q is the top left N × N part of L−1 from (6) and ξ is a known constant. This comes

from the fact that the w are the Lagrange multipliers with respect to the measurements v. The variational prob-

lem (1) is therefore simplified to the following multidimensional minimization with respect to y =
[
vx vy

]
=

[
gx(x1) . . . gx(xN ) gy(x1) . . . gy(xN )

]

N∑

i=1

Di

(
yi

)
+ λyT sQy with sQ =

[
Q 0

0 Q

]

(8)

where we have incorporated ξ into λ = λ0ξ.



2.3 Large number of keypoints

The bottleneck of evaluating (8) is the matrix inverse L−1, needed to calculate Q, with computational complexity O(N3).
This is acceptable for N up to about 100∼1000. When more keypoints are needed, Q needs to be approximated. Simple

techniques such as using a low rank approximation of K (suggested e.g. for Gaussian kernels14) do not work as they

neglect small eigenvalues which have a large influence on the inverse matrix. It is possible to heuristicaly or randomly

subsample the basis functions13 but there is no clearly justified strategy for which ones to keep. Instead, we have extended

a technique by Wood15 which chooses the approximation space automatically. It starts by calculating a truncated spectral

decomposition K̃ = UΛUT of rank k of the thin-plate spline matrix K ≈ K̃. It turns out that K is reasonably well

approximated even if we choose k ≪ N and that an approximate truncated SVD can be calculated quickly by randomized

techniques16 with complexity O(kN2). We apply SVD again to the much smaller matrix PTU, to find a basis Z of its

null space of dimension k − 3. If we choose w = UZw̃ from this null space, then the orthogonality condition PTw = 0

from (6) is automatically satisfied for any w̃. Minimizing the squared approximation error

∑

i

‖vi − g(xi)‖
2
=

∥
∥
∥
∥
v −

[
K P

]
[
w

a

]∥
∥
∥
∥

2

=

∥
∥
∥
∥
v −

[
UΛZ P

]
[
w̃

a

]∥
∥
∥
∥

2

(9)

with respect to w̃ leads to a system of k linear equations

L̃

[
w̃

a

]

=

[
ZTΛUTv
PTv

]

, L̃ =

[
ZTΛ2Z ZTΛUTP
PTUΛZ PTP

]

(10)

which gives us the “best” reduced parameter vector

w̃ = Mv, with M = LaZ
TΛUT + LbP

T (11)

where La, Lb are the top left and right blocks of L̃−1. Note that the size of the matrix L̃ is only k × k.

Given that vTQv = w
TKw = w̃

T
ZTΛZw̃ = v

TMTZTΛZMv for w = UZw̃, we can see that the approximation of

the smoothness matrix

Q ≈ Q̃ = MTZTΛZM (12)

can be calculated in time O(kN2).

2.4 Pairwise interaction approximation

With sQ or its approximation known, the minimization (8) can be done with standard iterative multidimensional minimiza-

tion techniques but it remains time consuming due to the non-linearity of Di and the non-sparsity of Q. We therefore

approximate sQ by pairwise interactions

(1/ξ)R(g) = y
T sQy ≈

1

2

∑

1≤i,j≤N

ωij
∥
∥yi − yj

∥
∥
2

(13)

which makes the result dependent only on pairwise displacement differences. It is clear that (13) could be made exact

by adding suitable unary and constant terms. However, we assume these terms to be zero, making R(g) depend only on

pairwise distances between points. This is motivated by the fact that R is translation invariant.

Second, we sort the negative elements above the main diagonal of Q and keep only the αN largest ones, setting

ωij = ωji = −Qij . Choosing α = 2 makes each yi interact with four other points on the average, which was found to

give adequate approximation of R(g) in most cases. The criterion to be minimized becomes

J(y) =

N∑

i=1

Di

(
yi

)
+

1

2
λ
∑

(i,j)∈E

ωij
∥
∥yi − yj

∥
∥
2

(14)

where E is a set of αN undirected edges connecting interacting keypoints, i.e. (i, j) ≡ (j, i). This reduces the complexity

of evaluating the regularization part of (14) from O(N2) for (8) to O(N). The advantage of our approach is that the

topology and weights of the interaction graph is derived automatically from the data.



2.5 Belief propagation

We discretize (14) by allowing only integer positions yi and limiting the maximum displacement, ‖yi‖∞ ≤ d. Then (14)

can be efficiently minimized by belief propagation. Each node (keypoint) i sends in time t a message

µti→(yj) = min
yi

(

ωij
∥
∥yi − yj

∥
∥
2
+Di(yi) +

∑

s 6=j

µt−1
s→i(yj)

)

to all neighbors j, with (i, j) ∈ E. The (2d + 1)2 values of the dissimilarity criterion Di need to be precalculated. Each

message is a matrix of (2d+1)2 real numbers, one for each possible displacement yj . It can be calculated in timeO(d2),17

if Di(yi) is precalculated for the (2d+ 1)2 possible displacements yi.

We stop iterating when the decrease of J is smaller than a threshold. In our experience, very small number of iterations

is needed, usually less than 10, so the time complexity of this step is O(Nd2). Then, the optimum solution is

y
∗
j = argmax

yj

(

Dj(yj) +
∑

i

µti→j(yj)
)

(15)

2.6 Multiresolution

We employ multiresolution in order to reduce the computational complexity O(Nd2) of precalculating the dissimilarity

criteria Di and the belief propagation itself when larger displacements d must be handled. We build a dyadic image

hierarchy so that pixel (x, y) at level κ corresponds to pixels {2x, 2x + 1} × {2y, 2y + 1} at level κ + 1. Instead of

subsampling, for each pixel we keep a number cm of corresponding finest level pixels having class m. The probability

in (3) is then calculated as pm,n =
∑

m,n c
F
mc

M
n /

(∑
cFm ·

∑
cMn

)
. The parameters h and d are kept constant, so at coarse

levels we take into account larger spatial features and allow longer maximum displacements than finer levels.

The registration at the coarsest level produces a displacement estimate y
∗, which is used as an initial estimate of y for

the next finer level, yκ−1
0 = 2y∗,κ, where the multiplication by 2 corresponds to the coordinate transformation. This is

repeated recursively until the finest level, κ = 0.

The belief propagation is modified as follows: The messages µt−1
s→i : Υi → R where Υi =

{
y;

∥
∥yi − y

0
i

∥
∥
∞

≤ d
}

are

extended to Υj ∪Υi by setting all undefined values to maxy∈Υi
µt−1
s→i(y). The result µti→j is then restricted to Υj .

3. RESULTS

We show the results of registering adjacent histological slices of prostate1 and rat kidney (Figure 1). The images of

a typical size 1400 × 2050 were very quickly semi-automatically segmented by Ilastik∗ into four classes. As you can

see, the segmentations are rather inconsistent. The segmentations were simplified by a mode filter of size 10 pixels. The

keypoints were determined as points where two different classes touch; then they were recursively pruned so that their

minimum distance was at least 50 pixels, yielding around 250 keypoints. Our method was run using 6 multiresolution

levels, maximum displacement d = 3 pixels, window size h = 10 pixels, and regularization weight λ = 50.

As a baseline, we use a standard B-spline non-linear registration with cross-correlation similarity criterion, based on

ITK.†

Using our unoptimized single-threaded Python+Cython‡ implementation on a rather weak laptop computer, each level

of the multiresolution pyramid took only a couple of seconds, with the whole registration taking about a minute. The most

time-consuming part is the final image warping using thin-plate splines. In contrast, the multithreaded C++ ITK B-spline

method took over an hour on the same, two-core machine.

From visual inspection, the results of both methods are acceptable, with slightly better alignment provided by the new

method. The B-spline results can be improved by using a finer control grid at the expense of further increase of computation

time.

∗
ilastik.org

†
itk.org

‡
python.org, cython.org
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(d) (e) (f)

(g) (h) (i)

(j) (k)
Figure 1. Histology slice of human prostate. Fixed image (a), moving image (b), and a warped moving image after registration (c).

Segmentation of the fixed image (d) and moving image (e) with the initial keypoint positions. Keypoints in the moving image after

registration (f). Overlay of the input images before registration (g), using the proposed method (h), and using ITK B-spline registration

(i). The interaction graph (j) and the warped moving image after the ITK registration (k). (Images best viewed in color, available in the

electronic version.)

4. CONCLUSIONS

We have presented a method for registering images based on their segmentations, useful for registering dissimilar images,

when traditional pixel-based methods are too slow, or when feature-based methods fail to establish correspondences. The

method does not assume any particular topology or relationship between the classes. It uses a number of novel techniques

such as class-based mutual information similarity criterion, approximation of TPS regularization by data-derived pairwise

interactions, and efficient multiresolution keypoint displacement optimization by loopy belief propagation. We also provide

explicit formulas for low-rank thin-plate regression splines. The method can be used with other similarity criteria and

regularizers, and can be coupled with fully automatic segmentation methods.
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(g) (h) (i)

(j) (k)
Figure 2. Histology slices of rat kidney. Fixed image (a), moving image (b), and a warped moving image after registration (c). Segmen-

tation of the fixed image (d) and moving image (e) with the initial keypoint positions. Keypoints in the moving image after registration

(f). Overlay of the input images before registration (g), using the proposed method (h), and using ITK B-spline registration (i). The

interaction graph (j) and the warped moving image after the ITK registration (k). (Images best viewed in color, available in the electronic

version.)

On our images, the method performs as good or better than standard B-spline registration in less than 1/10 of the time.

By careful implementation, parallelisation, and by using hierarchical methods18 for TPS interpolation, we expect to gain

an additional 10 ∼ 100 fold speedup.
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